周彩丽个人简介
周彩丽,1977年生,女,毕业于北京理工大学获得博士学位,副教授,硕士生导师。
邮箱:pumpkinlili@163.com
所授主要课程:概率论、统计学、模糊数学、模糊测度与积分、高等数学
研究方向:不确定信息处理
学术成果:
近几年主持和参与的主要项目:
[1] Banach 空间上集值和模糊值测度与积分理论研究, 河北省高等学校科学技术研究青年基金项目, 项目编号:QN2015005,主持。
[2]基于模糊数学的保定市大气质量评价,保定市科技局项目,项目编号:14ZF058,时间,主持。
[3]概念格构造及其在电子商务中的应用,河北省自然科学基金项目,项目编号:A2013201119, 第二参与人。
[4]基于景观结构的遥感影像分类尺度效应与尺度转换方法研究,国家自然科学基金项目,项目编号:41201327,第三参与人。
近几年发表的主要论文:
[1] Cai-Li Zhou, Jun-Hua Li, Xin Chen,Some properties and convergence theorems for fuzzy-valued Kluvánek–Lewis integrals, Computational and Applied Mathematics, 38, Article number:47(2019) , 1-14. (SCI)
[2] Cai-Li Zhou, Xin Chen, A New Fuzzy-Valued Integral and Its Convergence Theorems, Filomat, 2019, 33:7, 1877-1887. (SCI)
[3] Cai-Li Zhou, Fu-Gui Shi, New Set-valued Integral in a Banach Space, Journal of Function Spaces, 2015, 2015, Article ID:260238, 1-8. (SCI)
[4] Caili Zhou, Sheng hua Wang, Ljubomir Ciric, Saud M Alsulami, Generalized probabilistic metric spaces and fixed point theorems, Fixed Point Theory and Applications, 2014, 2014:91, 1-15. (SCI)
[5] Cai-Li Zhou, Fu-Gui Shi, A new integral with respect to a generalized fuzzy number measure, Journal of Intelligent &Fuzzy System, 2015, 2015:29, 1729-1738. (SCI)
[6] Cai-Li Zhou, Fu-Gui Shi, Lebesgue Decomposition Theorem and Weak Radon-Nikodym Theorem for generalized fuzzy number measures, Journal of Function Spaces , 2015, 2015, Article ID: 576134, 1-8. (SCI)
[7] Caili Zhou, Peng Wang, New Fuzzy Probability Spaces and Fuzzy Random Variables Based on Gradual Numbers, Bio-Inspired Computing-Theories and Applications Volume 472 of the series Communications in Computer and Information Science, 2014, 2014 , 472: 633-643. (EI)
[8] Caili Zhou, Jin Ho Baek, Sheng hua Wang, Fixed point theorems on c-distance in cone metric spaces, Pan American Mathematical Journal, 2011,2(21):27-34.
[9] Caili Zhou, Sheng hua Wang, Solving Fuzzy Two-Stage Programming Problem with Discrete Fuzzy Vector, International Journal of Mathematics Trends and Technology, 2014, 7:2, 114-120.
[10] Cai-Li Zhou, Gradual Metric Spaces, Applied Mathematical Sciences, 2015, 9:14, 689-701.
[11] Cai-Li Zhou, A New Fuzzy-Valued Additive Measure, American Journal of Applied Mathematics, 2015, 3(6):259-264 .