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Abstract
In this article, the author establishes a wavelet characterization of inhomogeneous
Lipschitz space lipθ (X ) via Carleson sequence, where X is a space of homogeneous
type introduced by R. R. Coifman and G. Weiss. As applications, characterizations of
several geometric conditions on X , involving the upper bound, the lower bound, and
the Ahlfors regular condition, are obtained.
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1 Introduction

As very fundamental function spaces, (inhomogeneous) Lipschitz spaces permeate
both pure and applied disciplines. Their significance extends ubiquitously across
diverse mathematical domains, such as ordinary and partial differential equations,
measure-theoretic analysis, and nonlinear functional analysis, as well as geometric-
topological contexts including metric geometry, fractal theory, and topological
dynamics. Beyond theoretical mathematics, these functions demonstrate remarkable
versatility in computational science, finding essential applications in image processing
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algorithms, search engine optimization architectures, and stability analysis of machine
learning models.

During the 1970s, Coifman andWeiss [13, 14] introduced the groundbreaking con-
cept of spaces (X , d, μ) of homogeneous type (seeDefinition 2.1 below), a framework
extending classical Euclidean analysis to general metric measure spaces. This inno-
vation catalyzed profound investigations into Lipschitz spaces over such structures.
In [38], Macías and Segovia made contributions by elucidating the geometric struc-
ture of X and unifying several definitions of Lipschitz functions on these spaces. In
2020, Zheng et al. [46] established the Littlewood–Paley characterization of Lipschitz
spaces on Ahlfors regular spaces. Later, Li and Zheng [31] obtained the bounded-
ness of Caldrón–Zygmund operators on Lipschitz spaces. Motivated by the advent of
wavelets system constructed in [2], Liu et al. [36] developed an wavelets characteri-
zation of homogeneous Lipschitz spaces. On the other hand, He et al. [22, Definition
2.7] introduced a new kind of approximations of the identity with exponential decay,
a pivotal tool to establish (in)homogeneous continuous/discrete Calderón reproduc-
ing formulae on X . Building on this foundation, He et al. [21] obtained a complete
real-variable theory of atomic Hardy spaces on X . Recently, based on the concept of
inhomogeneous approximation of the identity with exponential decay, He et al. [25]
established several characterizations of local Hardy space h p(X ) and showed that the
dual of h p(X ) is the inhomogeneous Lipschitz space lip1/p−1(X ). We refer the reader
to [10, 11, 32, 42, 43] for more recent progress on the topic of (local) Hardy spaces
and their duals on spaces of homogeneous type.

Theoretically, an important significance of Lipschitz spaces lies in their role as the
dual of Hardy-type spaces. Thus, the products of functions in Hardy spaces and Lips-
chitz spaces have also garnered significant research interest. Inspired by the progress on
geometric function theory (see, for instance, [1]) and the nonlinear elasticity (see, for
instance, [3, 39]), Bonami et al. [8] pioneered the investigation into bilinear decomposi-
tions involving products of functions inHardy spaces andLipschitz spaces. Subsequent
developments by Bonami and Feuto [5, 15] established the linear decomposition of
product of functions in H p(Rn) and its dual space. Concurrently, Li and Peng [33]
obtained a linear decomposition of product of functions in H1

L(Rn) and its dual space
BMOL(Rn), where L := −� + V is a Schrödinger operator; see also Ky [29] for a
bilinear version. In the context of local Hardy space h p(Rn), Cao et al. [12] established
a bilinear decomposition of products for functions in h p(Rn) and its dual spaces with
p ∈ (0, 1], which was further refined by Yang et al. [44]. In [44], Yang et al. obtained
alternative bilinear decomposition of products for functions in h p(Rn) and its dual
spaces with p ∈ (0, 1), which was shown to be sharp in the dual sense. Moreover,
using this bilinear decomposition, Yang et al. [44] obtained some div-curl estimates.
These results of bilinear decomposition also play key roles in the estimates of weak
Jacobians (see, for instance, [6, 7]) and commutators (see, for instance, [28, 34]). These
works further inspire many new ideas in the research of nonlinear partial differential
equations; see, for instance, [8, 27, 30] and their references therein for more details.
Recent advances in (bi)linear decomposition theory for (local) Hardy space products
and their duals continue to emerge, as documented in [4, 9, 17, 35, 37], highlighting
the enduring vitality of this research direction.
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Notice that wavelet characterization for (inhomogeneous) Lipschitz spaces plays
a key role when analyzing products of functions in (local) Hardy spaces and their
duals. This naturally raises an question: Can inhomogeneous Lipschitz spaces on
general spaces of homogeneous type admit analogous wavelet characterizations? The
main target of this paper is to give an affirmative answer. Precisely, we develop a
wavelet characterization of the inhomogeneous Lipschitz space lipθ (X ) via Carleson
sequence, where ω is the upper dimension in 2.3, η is the smooth index of wavelets
in Lemma 3.1, and L2

B(X ) is the collection of all measurable functions f on X such
that f 1B ∈ L2(X ) for any ball B ⊂ X .

Theorem 1.1 Let ω be as in (2.3), η ∈ (0, 1] be as in Lemma 3.1, and θ ∈ (0, η/ω).
Then, for any f ∈ L2

B(X ), the following statements are equivalent:

(i) f ∈ lipθ (X );
(ii)

f =
∑

α∈A0

〈
f , φ0

α

〉
φ0

α +
∞∑

k=0

∑

β∈Gk

〈
f , ψk+1

β

〉
ψk+1

β

in L2
B(X ) and

‖ f ‖∗ = sup
Q∈D0

⎧
⎨

⎩
1

[μ(Q)]1+2θ

⎡

⎣
∑

{α∈A0:Q0
α⊂Q}

∣∣∣
〈
f , φ0

α

〉∣∣∣
2

+
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q}

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

< ∞.

Moreover, there exists a constant C ∈ [1,∞), such that

C−1‖ f ‖∗ ≤ ‖ f ‖lipθ (X ) ≤ C‖ f ‖∗.

This result crucially eliminates dependencies on the reverse doubling condition
of the measure and the metric condition of the quasi-metric under consideration.
Moreover, using this characterization, we discuss several geometric conditions on X ,
involving the upper bound, the lower bound, and the Ahlfors regular condition, and
obtain some equivalence characterizations.

The organization of the remainder of this article is as follows.
In Section 2, we first recall some basic preliminaries on spaces of homogeneous

type, inhomogeneous Lipschitz spaces, dyadic cube system established in [26], spaces
of test functions, and spaces of distributions. We show that all test functions are
pointwise multipliers on the inhomogeneous Lipschitz spaces; see Proposition 2.8
below.

Section 3 is devoted to proving Theorem 1.1. To this end, we first recall the
wavelets system obtained in [2]. Using theses wavelets, we establish an equiva-
lence characterization of imhomogenous Lipschitz spaces via Carleson sequences.
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Differently from the proof of [12, Theorem 2.8] on Euclidean spaces Rn , the relation
lipθ (X ) = Fωθ∞,∞(X ) = Cωθ (X )may not holds true in the general setting of spaces of
homogeneous type; see Corollary 4.3 below. To overcome this, we fully use the expo-
nential decay of the wavelets to obtain that the integrals of the products of functions
in lipθ (X ) and wavelets also have enough decay; see Proposition 3.5 below.

In Section 4, we give some applications. As corollaries of Theorem 1.1, we develop
three equivalent characterizations of geometric conditions on X , involving the upper
bound, the lower bound, and the Ahlfors regular condition. Corollary 4.3 extends
results in [42, Theorem 3.2] to the inhomogeneous version.

Finally, let us make some conventions on notation. Throughout this article, A0 is
used to denote the positive constant appearing in (2.1),ω is used to to denote the upper
dimension in (2.3), and η is used to denote the smoothness index of wavelets in Lemma
3.1.Moreover, δ is a small positive number coming from the construction of the dyadic
cubes on X (see Lemma 2.6 below). We use C to denote a positive constant which
is independent of the main parameters involved, but may vary from line to line. The
symbol C(α,β,... ) denotes a positive constant depending on the indicated parameters
α, β, . . . . The symbol A � B means that A ≤ CB for some positive constant C ,
while A ∼ B means A � B � A. If f ≤ Cg and g = h or g ≤ h, we then write
f � g = h or f � g ≤ h. For any set E ⊂ X , 1E means the characteristic function
of E . For any set F , #F denotes its cardinality.

2 Inhomogeneous Lipschitz Spaces on Spaces of Homogeneous Type

In this section, we mainly investigate the inhomogeneous Lipschitz spaces lipθ (X ) on
spaces of homogeneous type, including the relation between lipθ (X ) and distributions
spaces. Moreover, we establish an equivalent characterization of lipθ (X ) via Carleson
sequences. Let us first recall the concept of space of homogeneous type in the sense
of Coifman and Weiss [13, 14].

Definition 2.1 LetX be a non-empty set, d a non-negative function defined onX ×X ,
and μ a measure on X . (X , d, μ) is called a space of homogeneous type provided that
d and μ satisfy the following conditions:

(I) for any x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) there exists a constant A0 ∈ [1,∞), independent of x , y, and z, such that

d(x, z) ≤ A0[d(x, y) + d(y, z)]; (2.1)

(II) there exists a constant C ∈ [1,∞) such that, for any ball B ⊂ X ,

μ(2B) ≤ Cμ(B), (2.2)
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where, the ball B, centered at xB ∈ X with radius rB ∈ (0,∞), of X is defined
by setting

B := B(xB, rB) := {x ∈ X : d(xB, x) < rB}
and, for any τ ∈ (0,∞), τ B := B(xB, τrB).

Observe that, for μ(X ) < ∞, He et al. [25, Proposition 6.5] showed that
H p(X ) = h p(X )with equivalent norms. By the duality theory of H p(X ) and h p(X ),
we know that homogeneous Lipschitz spaces coincide with inhomogeneous Lipschitz
spaces if μ(X ) < ∞. In [36, Theorems 3.6, 3.7, and 3.8], Liu et al. established the
wavelet characterization of homogeneous Lipschitz spaces. Thus, concentrating on
inhomogeneous Lipschitz spaces, in what follows, we always assume thatμ(X ) = ∞.
Note that diamX = ∞ implies μ(X ) = ∞ (see, for instance, [40, Lemma 5.1] and
[2, Lemma 8.1]). Therefore, under the assumptions of this article, μ(X ) = ∞ if and
only if diamX = ∞. For any x ∈ X , we also assume that the balls {B(x, r)}r∈(0,∞)

form a basis of open neighborhoods of x . Moreover, we also assume that μ is Borel
regular, that is, all open sets are measurable and every set A ⊂ X is contained in a
Borel set E satisfying that μ(A) = μ(E). For any x ∈ X and r ∈ (0,∞), we suppose
that μ(B(x, r)) ∈ (0,∞) and μ({x}) = 0. Let

C(μ) := sup
ball B⊂X

μ(2B)/μ(B).

Then it is easy to prove that C(μ) is the smallest positive constant satisfying (2.2).
Moreover, (2.2) further implies that, for any ball B and any λ ∈ [1,∞),

μ(λB) ≤ C(μ)λ
ωμ(B), (2.3)

where ω := log2 C(μ) is called the upper dimension of X .
The following lemma includes some useful estimates related to the measure of

balls; see, for instance, [20, Lemma 2.1] for more details (see also [22, Lemma 2.4]).
For any r ∈ (0,∞) and x, y ∈ X with x 	= y, let

V (x, y) := μ(B(x, d(x, y))) and Vr (x) := μ(B(x, r)).

Lemma 2.2 (i) Let x, y ∈ X with x 	= y and r ∈ (0,∞). Then V (x, y) ∼ V (y, x)
and

Vr (x) + Vr (y) + V (x, y) ∼ Vr (x) + V (x, y) ∼ Vr (y) + V (x, y)

∼ μ(B(x, r + d(x, y))).

Moreover, if d(x, y) ≤ r , then Vr (x) ∼ Vr (y). Here all the above positive
equivalence constants are independent of x, y, and r.

(ii) Let γ ∈ (0,∞). There exists a positive constant C such that, for any x1 ∈ X and
r ∈ (0,∞),

∫

X
1

Vr (x1) + V (x1, y)

[
r

r + d(x1, y)

]γ

dμ(y) ≤ C .
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(iii) There exists a positive constant C such that, for any x ∈ X and R ∈ (0,∞),

∫

{z∈X : d(x,z)≥R}
1

V (x, y)

[
R

d(x, y)

]β

dμ(y) ≤ C .

On the ratio of measures of two balls, we have the following lemma.

Lemma 2.3 Let x, y ∈ X and r1, r2 ∈ (0,∞). If r1 + d(x, y) ≥ r2, then

μ(B(x, r1))

μ(B(y, r2))
≤ Aω

0

[
r1 + d(x, y)

r2

]ω

.

Proof Let x, y ∈ X and r1, r2 ∈ (0,∞). By (2.1), we find that, for any z ∈ B(x, r1),

d(z, y) ≤ A0[d(z, x) + d(x, y)] < A0[r1 + d(x, y)],

which further implies that

B(x, r1) ⊂ B(y, A0[r1 + d(x, y)]) = B

(
y, A0

r1 + d(x, y)

r2
r2

)
.

This, together with (2.3), further implies that

μ(B(x, r1)) ≤ Aω
0

[
r1 + d(x, y)

r2

]ω

μ(B(y, r2)),

which completes the proof of Lemma 2.3. ��
Now, we recall the concept of inhomogeneous Lipschitz spaces on spaces of homo-

geneous type. For any q ∈ [1,∞], the set Lq
B(X ) denotes the collection of all

measurable functions f on X such that f 1B ∈ Lq(X ) for any ball B ⊂ X . For
any { fn}n∈N ⊂ Lq

B(X ) and f ∈ Lq
B(X ), if, for any B ⊂ X ,

lim
n→∞ ‖ fn − f ‖Lq (B) = 0,

then we say that { fn}n∈N converges to f in Lq
B(X ).

Definition 2.4 For any B := B(xB, rB) ⊂ X , θ ∈ (0, 1), and f ∈ L∞
B (X ), let

MB
θ ( f ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sup
x,y∈B

| f (x) − f (y)|
[μ(B)]θ if rB ∈ (0, 1],

‖ f ‖L∞(B)

[μ(B)]θ if rB ∈ (1,∞).
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The inhomogeneous Lipschitz spaces lipθ (X ) is defined by setting

lipθ (X ) :=
{
f ∈ Lq

B(X ) : ‖ f ‖lipθ (X ) := sup
ball B⊂X

MB
θ ( f ) < ∞

}
.

By Definition 2.4, we find that, for any f ∈ lipθ (X ), f is continuous. Moreover,
we have the following properties of lipθ (X ).

Lemma 2.5 Let θ ∈ (0, 1). Then there exists a positive constant C such that, for any
x ∈ X , r ∈ (1,∞), and f ∈ lipθ (X ),

| f (x)| ≤ C‖ f ‖lipθ (X )[Vr (x)]θ , (2.4)

and, for any x, y ∈ X with x 	= y,

| f (x) − f (y)| ≤ C‖ f ‖lipθ (X )[V (x, y)]θ . (2.5)

To prove Lemma 2.5, we need the following dyadic cube system established by
Hytönen and Kairema in [26, Theorem 2.2].

Lemma 2.6 Let c0,C0 ∈ (0,∞) and δ ∈ (0, 1) be such that c0 < C0 and 12A3
0C0δ ≤

c0. Assume that Ak , a set of indices for any k ∈ Z, and a set of points, {xkα : k ∈
Z, α ∈ Ak} ⊂ X , have the following properties: for any k ∈ Z,

d(xkα, xkβ) ≥ c0δ
k if α 	= β, and min

α∈Ak

d(x, xkα) < C0δ
k for any x ∈ X . (2.6)

Then there exists a family of sets, {Qk
α : k ∈ Z, α ∈ Ak}, such that

(i) for any k ∈ Z, {Qk
α : α ∈ Ak} is disjoint and ⋃

α∈Ak
Qk

α = X ;

(ii) if l, k ∈ Z and l ≤ k, then, for any α ∈ Al and β ∈ Ak , either Qk
β ⊂ Ql

α or

Qk
β ∩ Ql

α = ∅;
(iii) for any k ∈ Z and α ∈ Ak , B(xkα, c#δk) ⊂ Qk

α ⊂ B(xkα,C#δ
k), where c# :=

(3A2
0)

−1c0 and C# := max{2A0C0, 1}.
Points in {xkα : k ∈ Z, α ∈ Ak} ⊂ X are called dyadic points. For any k ∈ Z, let

X k :=
{
xkα : α ∈ Ak

}
.

By the construction of dyadic points in [26, 2.21], wemay assume thatX k is countable
and X k ⊂ X k+1 for any k ∈ Z. For any k ∈ Z, define

Yk := X k+1 \ X k

and
Gk :=

{
α ∈ Ak+1 : ykα := xk+1

α ∈ Yk
}

.
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For any x ∈ X , let
d(x,Yk) := inf

y∈Yk
d(x, y).

Next, we prove Lemma 2.5.

Proof of Lemma 2.5 Notice that f is continuous. To show (2.4), it suffices to prove that
(2.4) holds true for almost every x ∈ X . For this purpose, assume that

E := {
x ∈ X : | f (x)| > C‖ f ‖lipθ (X )[Vr (x)]θ

}
and μ(E) > 0, (2.7)

where C is determined later. Find k0 ∈ Z such that C#δ
k0 < r where C# is the same

as in Lemma 2.6(iii). For any α ∈ Ak0 , let Eα := E ∩ B(xk0α , r). Then, by (i) and (ii)
of Lemma 2.6, we have E = ⋃

α∈Ak0
Eα. From this, the fact that Ak0 is countable,

and (2.7), we deduce that there exists α0 ∈ Ak0 such that

μ
(
Eα0

)
> 0. (2.8)

By (2.1), we conclude that, for any y ∈ B(xk0α0 , r) and x ∈ Eα0 ,

d(y, x) ≤ A0

[
d
(
y, xk0α0

)
+ d

(
xk0α0

, x
)]

< 2A0r ,

which further implies that B(xk0α0 , r) ⊂ B(x, 2A0r). Combining this and (2.2), we find
that, for any x ∈ Eα0 ,

μ
(
B
(
xk0α0

, r
))

≤ C(μ)(2A0)
ωμ(B(x, r)). (2.9)

This, together with (2.7), further implies that, for any x ∈ Eα0 ,

| f (x)| > CC−θ
(μ)(2A0)

−θω
[
μ
(
B
(
xk0α0

, r
))]θ ‖ f ‖lipθ (X ).

Using this and (2.8), we infer that

‖ f ‖
L∞(B(x

k0
α0 ,r))

> CC−θ
(μ)(2A0)

−θω
[
μ
(
B
(
xk0α0

, r
))]θ ‖ f ‖lipθ (X ). (2.10)

Choose C := 2Cθ
(μ)(2A0)

θω. Then (2.10) implies that

‖ f ‖lipθ (X ) ≥
‖ f ‖

L∞(B(x
k0
α0 ,r))

[μ(B(xk0α0 , r))]θ
> 2‖ f ‖lipθ (X ).

This is a contradiction and henceμ(E) = 0. This show that (2.4) holds true for almost
every x ∈ X and finishes the prove of (2.4).

To prove (2.5), we consider the following two cases on d(x, y).
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Case 1. d(x, y) < 1. In this case, since d(x, y) < 1, if follows that there exists
N ∈ N such that

N + 1

N
d(x, y) < 1. (2.11)

Let BN := B(x, N+1
N d(x, y)). Then x, y ∈ BN . By (2.11), Definition 2.4, (2.3), and

(N + 1)/N ≤ 2, we obtain

| f (x) − f (y)| ≤ ‖ f ‖lipθ (X )[μ(BN )]θ � ‖ f ‖lipθ (X )[V (x, y)]θ .

This is the desired estimate.
Case 2. d(x, y) ≥ 1. In this case, applying (2.4), Lemma 2.2, and (2.3), we deduce

that

| f (x) − f (y)| ≤ | f (x)| + | f (y)|
� ‖ f ‖lipθ (X )[V2(x)]θ + ‖ f ‖lipθ (X )[V2(y)]θ
� ‖ f ‖lipθ (X )[V2(x) + V2(y) + V (x, y)]θ
� ‖ f ‖lipθ (X )[V (x, y)]θ .

This is the desired estimate. Combining the above two cases, we finish the proof of
(2.5) and hence Lemma 2.5. ��

Now, we recall the concepts of test functions and distributions on X ; see, for
instance, [19, 20]. For any γ ∈ (0,∞), the function Pγ with Polynomial decay is
defined by setting, for any x, y ∈ X and r ∈ (0,∞),

Pγ (x, y; r) := 1

Vr (x) + V (x, y)

[
r

r + d(x, y)

]γ

. (2.12)

Definition 2.7 (test functions) Let x0 ∈ X , β ∈ (0, 1], and r , γ ∈ (0,∞). If a
measurable function f on X satisfies that there exists a positive constant C such that

(i) for any x ∈ X ,
| f (x)| ≤ CPγ (x0, x; r); (2.13)

(ii) for any x, y ∈ X satisfying d(x, y) ≤ (2A0)
−1[r + d(x0, x)],

| f (x) − f (y)| ≤ C

[
d(x, y)

r + d(x0, x)

]β

Pγ (x0, x; r), (2.14)

where, for any x, y ∈ X and r ∈ (0,∞), Pγ is the same as in (2.12), then f is called
a test function of type (x0, r , β, γ ).

The symbol G(x0, r , β, γ ) denotes the collection of all test functions of type
(x0, r , β, γ ). For any f ∈ G(x0, r , β, γ ), its norm ‖ f ‖G(x0,r ,β,γ ) in G(x0, r , β, γ )

is defined by setting

‖ f ‖G(x0,r ,β,γ ) := inf{C ∈ (0,∞) : (2.13) and (2.14) hold}.
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Observe that, for any x1, x2 ∈ X and r1, r2 ∈ (0,∞),

G(x1, r1, β, γ ) = G(x2, r2, β, γ )

with equivalent norms while the positive equivalence constants may depend on x1, x2,
r1, and r2. For a fixed point x0 ∈ X , the space G(x0, 1, β, γ ) is simplified by G(β, γ ).
Usually, G(β, γ ) is called the spaces of test functions on X .

Fix ε ∈ (0, 1] and β, γ ∈ (0, ε]. The symbol Gε
0(β, γ ) denotes the completion of

the set G(ε, ε) in G(β, γ ) with the norm of Gε
0(β, γ ) defined by setting ‖ · ‖Gε

0 (β,γ ) :=
‖ · ‖G(β,γ ). The dual space (Gε

0(β, γ ))′ is defined to be the collection of all continuous
linear functionals from Gε

0(β, γ ) to C, equipped with the weak-∗ topology. Usually,
(Gε

0(β, γ ))′ is called the spaces of distributions on X .
The following proposition indicates that all test functions are pointwise multipliers

on the inhomogeneous Lipschitz space.

Proposition 2.8 Letω be as in (2.3), θ ∈ (0, 1/ω], β ∈ [θω, 1], and γ ∈ (0,∞). Then
there exists a positive constant C such that, for any ψ ∈ G(β, γ ) and f ∈ lipθ (X ),

‖ψ f ‖lipθ (X ) ≤ C‖ψ‖G(β,γ )‖ f ‖lipθ (X ).

Proof Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1. Let B :=
B(xB, rB) ⊂ X . We consider two cases on rB .

Case 1. rB ∈ (1,∞). In this case, by G(β, γ ) ⊂ L∞(X ), we have, for any x ∈ X ,

|ψ(x) f (x)| ≤ ‖ψ‖L∞(X )| f (x)| ≤ ‖ψ‖G(β,γ )| f (x)|,

which further implies that

‖ψ f ‖L∞(B)

[μ(B)]θ ≤ ‖ψ‖L∞(X )

‖ f ‖L∞(B)

[μ(B)]θ ≤ ‖ψ‖G(β,γ )‖ f ‖lipθ (X ). (2.15)

Case 2. rB ∈ (0, 1]. In this case, for any x, y ∈ B with x 	= y,

d(x, y) ≤ A0[d(x, xB) + d(xB, y)] < 2A0rB

and hence V (x, y) � μ(B). Moreover,

|ψ(x) f (x) − ψ(y) f (y)| = |ψ(x) f (x) − ψ(y) f (x) + ψ(y) f (x) − ψ(y) f (y)|
≤ |ψ(x) − ψ(y)|| f (x)| + |ψ(y)|| f (x) − f (y)|
=: I1 + I2.

For I2, by (2.5), we find that

I2 � ‖ψ‖G(β,γ )[V (x, y)]θ � ‖ψ‖G(β,γ )[μ(B)]θ . (2.16)
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To estimate I1, fix x0 ∈ X . Then, from Lemma 2.5, we deduce that

I1 ≤ |ψ(x) − ψ(y)|[| f (x) − f (x0)| + | f (x0)|]
� |ψ(x) − ψ(y)| {[V (x, x0)]θ + 1

}
.

In what follows, we consider two subcases on d(x, y).
Case 2.1. d(x, y) > (2A0)

−1[d(x, x0) + 1]. In this case, by Lemma 2.2(i), we
conclude that

[V (x, x0)]θ + 1 ∼ [V (x, x0) + 1]θ ∼ [μ(B(x, d(x, x0) + 1))]θ
� [μ(B(x, d(x, y)))]θ ∼ [μ(B)]θ .

Thus,

I1 � [|ψ(x)| + |ψ(y)|][μ(B)]θ � ‖ψ‖G(β,γ )[μ(B)]θ . (2.17)

Case 2.2. d(x, y) ≤ (2A0)
−1[d(x, x0)+1]. In this case, by Lemmas 2.2(i) and 2.3,

we obtain

[V (x, x0)]θ + 1 ∼ [μ(B(x, d(x, x0) + 1))]θ

�
[
d(x, x0) + 1

d(x, y)

]θω

[V (x, y)]θ �
[
d(x, x0) + 1

d(x, y)

]θω

[μ(B)]θ .

Using this, (2.14), and β ∈ [θω, 1], we infer that

I1 � ‖ψ‖G(β,γ )

[
d(x, y)

d(x, x0) + 1

]β−θω

[μ(B)]θ

� ‖ψ‖G(β,γ )[μ(B)]θ .

Combining this, (2.16), and (2.17), we conclude that, for any x, y ∈ B,

|ψ(x) f (x) − ψ(y) f (y)|
[μ(B)]θ � ‖ψ‖G(β,γ ),

which, together with (2.15), further implies that

‖ψ f ‖lipθ (X ) ≤ C‖ψ‖G(β,γ ).

This finishes the proof of Proposition 2.8. ��
Proposition 2.9 Let ω be as in (2.3), θ ∈ (0,∞), β ∈ (0, 1], and γ ∈ (θω,∞). Then
there exists a positive constant C such that, for any ψ ∈ G(β, γ ) and f ∈ lipθ (X ),

|〈 f , ψ〉| ≤ C‖ψ‖G(β,γ )‖ f ‖lipθ (X ). (2.18)
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Proof Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1. To show this propo-
sition, fix x0 ∈ X , and, for any f ∈ lipθ (X ) and ψ ∈ G(β, γ ), write

∣∣∣∣
∫

X
f (x)ψ(x) dμ(x)

∣∣∣∣

≤
∫

X
| f (x) − f (x0)||ψ(x)| dμ(x) + | f (x0)|

∫

X
|ψ(x)| dμ(x)

=: I + II.

For I, from (2.5) and (2.13), we deduce that

I � ‖ψ‖G(β,γ )

∫

X
[V (x, x0)]θ Pγ (x, x0; 1) dμ(x),

where Pγ is as in (2.12). Notice that, by Lemma 2.2(i) and (2.3),

V (x, x0) ∼ μ(B(x0, d(x, x0))) ≤ μ(B(x0, d(x, x0) + 1)) � [d(x, x0) + 1]ω,

which, combined with Lemma 2.2(ii) and γ ∈ (θω,∞), further implies that

I � ‖ψ‖G(β,γ )

∫

X
Pγ−θω(x, x0; 1) dμ(x) � ‖ψ‖G(β,γ ).

For II, using (2.4), (2.13), and Lemma 2.2(ii), we infer that

II � ‖ψ‖G(β,γ )

∫

X
Pγ (x, x0; 1) dμ(x) � ‖ψ‖G(β,γ ).

This, together with the estimate of I, finishes the proof of Proposition 2.9. ��
As a direct corollary of Proposition 2.9, we have the following conclusion.

Corollary 2.10 Let ω be the same as in (2.3), θ ∈ (0, 1/ω), η ∈ (θω, 1], β ∈ (0, η],
and γ ∈ (θω, η). Then lipθ (X ) ⊂ (Gη

0 (β, γ ))′ continuously.

3 Proof of Theorem 1.1

Now, we establish an equivalence characterization of lipθ (X ) via Carleson sequences.
Let us recall the wavelet systems in [2, Theorems 6.1 and 7.1 and Corollary 10.4]. For
any k ∈ Z, denote by Vk ⊂ L2(X ) the closed linear span of spline functions in [2].
Let s ∈ (0, 1] and ν ∈ (0,∞). For any k ∈ Z, the function Ek with exponential decay
is defined by setting, for any x, y ∈ X and r ∈ (0,∞),

Ek(x, y; r) := exp

(
−ν

r

[
d(x, y)

δk

]s)
. (3.1)
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Lemma 3.1 There exist constants s ∈ (0, 1], η ∈ (0, 1), C, ν ∈ (0,∞), and wavelet
functions {φk

α : k ∈ Z, α ∈ Ak} satisfying, for any k ∈ Z and α ∈ Ak ,

(i) for any x ∈ X ,

∣∣∣φk
α(x)

∣∣∣ ≤ C
[
Vδk (x

k
α)
]−1/2

Ek

(
x, xkα; 1

)
;

(ii) for any x, x ′ ∈ X with d(x, x ′) ≤ δk ,

∣∣∣φk
α(x) − φk

α(x ′)
∣∣∣ ≤ C

[
Vδk (x

k
α)
]−1/2

[
d(x, x ′)

δk

]η

Ek

(
x, xkα; 1

)
,

where Ek is the same as in (3.1). Moreover, for any k ∈ Z, the functions {φk
α}k form

an orthonormal base of Vk.

Lemma 3.2 There exist constants s ∈ (0, 1], η ∈ (0, 1), C, ν ∈ (0,∞), and wavelet
functions {ψk+1

β : k ∈ Z, β ∈ Gk} satisfying, for any k ∈ Z and β ∈ Gk ,
(i) for any x ∈ X ,

∣∣∣ψk+1
β (x)

∣∣∣ ≤ C
[
Vδk (x

k+1
β )

]−1/2
Ek

(
x, xk+1

β ; 1
)

;

(ii) for any x, x ′ ∈ X with d(x, x ′) ≤ δk ,

∣∣∣ψk+1
β (x) − ψk+1

β (x ′)
∣∣∣ ≤ C

[
Vδk (x

k+1
β )

]−1/2
[
d(x, x ′)

δk

]η

Ek

(
x, xk+1

β ; 1
)

;

(iii) ∫

X
ψk+1

β (x) dμ(x) = 0,

where Ek is the same as in (3.1). Moreover, the functions {ψk
α}k,α form an orthonormal

base of L2(X ) and an unconditional base of L p(X ) for any given p ∈ (1,∞).

Remark 3.3 (i) The constant η in Lemmas 3.1 and 3.2 comes from the construction
of random dyadic cubes in [2], which is very important because it characterizes
the smoothness of the wavelets. Moreover, from the construction of {ψk

α}k, β and

{φk
α}k, α in [2], we deduce that, for any k0 ∈ Z, {φk0

α }α∈Ak0
∪ {ψk

β : k ∈ Z, k ≥
k0, and β ∈ Gk} form an orthonormal base of L2(X ). Moreover, for any k, l ∈ Z,
α ∈ Ak , and β ∈ Gl ,

∫

X
ψ l+1

β (x)φk
α(x) dμ(x) = 0.

(ii) Using thewavelet systems in Lemmas 3.1 and 3.2, He et al. [22] introduced a kind
of approximations of the identity with exponential decay (for short, exp-ATI) and
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obtained new Calderón reproducing formulae on X , which proves necessary to
establish various real-variable characterizations of Hardy spaces. Motivated by
this, He et al. [21] developed a complete real-variable theory of Hardy spaces on
X including various real-variable equivalent characterizations, which solves an
open problem on the radial characterization of the Hardy space on X raised in
[14], and the boundedness of sublinear operators. We refer the readers to [16, 24,
45] for more applications of exp-ATIs.

(iii) The constants s and ν in Lemmas 3.1 and 3.2 are the same; see [2, Theorems 6.1
and 7.1 and Corollary 10.4] for more details. Thus, in what follows, we always
use s and ν to denote the same constant in Lemmas 3.1 and 3.2.

Now, we establish an equivalent characterization of imhomogenous Lipschitz
spaces via Carleson sequences. To this end, let

D0 :=
∞⋃

k=0

{
Qk

α : α ∈ Ak

}
.

Proposition 3.4 Let ω be as in (2.3), η ∈ (0, 1] be as in Lemma 3.1, and θ ∈ (0, η/ω).
Then there exists a positive constant C such that, for any f ∈ lipθ (X ),

sup
Q∈D0

⎧
⎨

⎩
1

[μ(Q)]1+2θ

⎡

⎣
∑

{α∈A0:Q0
α⊂Q}

∣∣∣
〈
f , φ0

α

〉∣∣∣
2

+
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q}

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

≤ C‖ f ‖lipθ (X ).

To prove Proposition 3.4, we need the following lemmawhich contains some useful
estimates on the pair 〈 f , φk

α〉 and 〈 f , ψk+1
β 〉. For any B ⊂ X and f ∈ L∞

B (X ), let

fB := 1

μ(B)

∫

B
f (x) dμ(x).

Lemma 3.5 Let θ ∈ (0,∞) and B := B(xB, rB) ⊂ X . Then there exists a positive
constant C such that, for any k ∈ Z, α ∈ Ak , and f ∈ lipθ (X ),

(i) in general,

∫

X
| f (x) − fB |

∣∣∣φk
α(x)

∣∣∣ dμ(x)

≤ C‖ f ‖lipθ (X )[μ(B)]θ
√
Vδk (xkα)

[
1 + δk + d(xB, xkα)

rB

]θω

;
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(ii) if rB ∈ (1,∞), then

∫

X
| f (x)|

∣∣∣φk
α(x)

∣∣∣ dμ(x) ≤ C‖ f ‖lipθ (X )[μ(B)]θ
√
Vδk (x

k
α)

[
1 + δk + d(xB , xkα)

rB

]θω

;

(iii) if δk ≤ rB and d(xB, xkα) < 2τrB for some τ ∈ [1,∞), then

∫

{x∈X :d(xB ,x)>4τ A0rB }
| f (x) − fB |

∣∣∣φk
α(x)

∣∣∣ dμ(x)

≤ C‖ f ‖lipθ (X )[μ(B)]θ
√
Vδk (xkα) exp

[
−ν

3

(τrB
δk

)s] ;

(iv) if δk ≤ rB, rB ∈ (1,∞), and d(xB, xkα) < 2τrB for some τ ∈ [1,∞), then

∫

{x∈X :d(xB ,x)>4τ A0rB }
| f (x)|

∣∣∣φk
α(x)

∣∣∣ dμ(x)

≤ C‖ f ‖lipθ (X )[μ(B)]θ
√
Vδk (xkα) exp

[
−ν

3

(τrB
δk

)s] ;

(v) items through (i) to (iv) still hold true if φk
α and xkα are replaced, respectively, by

ψk+1
β and xk+1

β .

Proof Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1. We first prove (i).
By (2.5), we have, for any x ∈ X ,

| f (x) − fB | ≤ 1

μ(B)

∫

B
| f (x) − f (y)| dμ(y)

� 1

μ(B)

∫

B
[V (x, y)]θ dμ(y). (3.2)

From (2.1), we deduce that, for any y ∈ B and z ∈ B(x, d(x, y)),

d(z, xB) ≤ A0[d(z, x) + d(x, xB)] < A0d(x, y) + A0d(x, xB)

≤ A2
0[d(x, xB) + d(xB , y)] + A0d(x, xB)

<
(
A2
0 + A0

)
d(x, xB) + A2

0rB,

which further implies that B(x, d(x, y)) ⊂ B(xB, (A2
0 + A0)d(x, xB) + A2

0rB). By
this, we conclude that, for x ∈ X and y ∈ B,

V (x, y) �
[
rB + d(x, xB)

rB

]ω

μ(B). (3.3)

By this, (3.2), and Lemma 3.1(i), we obtain
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∫

X
| f (x) − fB |

∣∣∣φk
α(x)

∣∣∣ dμ(x)

� [μ(B)]θ
√
Vδk (xkα)

∫

X

[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x),

where Ek is as in (3.1). To estimate the above integral, write

∫

X

[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x)

=
∫

B(xkα,rB+d(xkα,xB ))

[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x)

+
∫

X \B(xkα,rB+d(xkα,xB ))

· · ·

=: I1 + I2.

We first estimate I1. Using (2.1), we infer that, for any x ∈ B(xkα, rB + d(xkα, xB)),

d(x, xB) � d(x, xkα) + d(xkα, xB) � rB + d(xkα, xB). (3.4)

From Lemmas 2.2(i) and 2.3, we deduce that, for any x ∈ X ,

1

Vδk (xkα)
∼ 1

Vδk (xkα) + V (xkα, x)

V (xkα, δk + d(xkα, x))

Vδk (xkα)

� 1

Vδk (xkα) + V (xkα, x)

[
δk + d(xkα, x)

δk

]ω

. (3.5)

Moreover, notice that, for any x ∈ X and � ∈ (0,∞),

Ek

(
x, xkα; 1

)
�

[
δk

δk + d(xkα, x)

]�

. (3.6)

Combining this with � := ω + 1, (3.4), (3.5), and Lemma 2.2(ii), we find that

I1 �
[
rB + d(xkα, xB)

rB

]θω ∫

X
P1

(
x, xkα; δk

)
dμ(x)

�
[
rB + d(xkα, xB)

rB

]θω

, (3.7)

where P1 is as in (2.12) with γ = 1. To estimate I2, by (2.1), we conclude that, for
any x ∈ X \ B(xkα, rB + d(xkα, xB)),

rB + d(x, xB) � rB + d(x, xkα) + d(xkα, xB) � d(x, xkα).
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This, together with (3.5), (3.6) with � := θω + ω + 1, and Lemma 2.2(ii), further
implies that

I2 �
(

δk

rB

)θω ∫

X

[
d(x, xkα)

δk

]θω
1

Vδk (xkα) + V (xkα, x)

×
[
δk + d(xkα, x)

δk

]ω [
δk

δk + d(xkα, x)

]θω+ω+1

dμ(x)

�
(

δk

rB

)θω ∫

X
P1

(
x, xkα; δk

)
dμ(x) �

(
δk

rB

)θω

.

Combining the estimates of I1 and I2, we obtain

∫

X
| f (x) − fB |

∣∣∣φk
α(x)

∣∣∣ dμ(x) � [μ(B)]θ
√
Vδk (xkα)

[
1 + δk + d(xB , xkα)

rB

]θω

,

which completes the proof of (i).
Next, we prove (ii). Since rB ∈ (1,∞), by (2.4) and (2.3), it follows that, for any

x ∈ X ,

| f (x)| � [μ(B(x, rB))]θ � [μ(B)]θ
[
rB + d(x, xB)

rB

]θω

. (3.8)

Using this, Lemma 3.1(i), and the estimates of I1 and I2, we infer that

∫

X
| f (x)|

∣∣∣φk
α(x)

∣∣∣ dμ(x)

� [μ(B)]θ
√
Vδk (xkα)

×
∫

X

[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x)

� [μ(B)]θ
√
Vδk (xkα)

[
1 + δk + d(xB , xkα)

rB

]θω

.

This finishes the proof of (ii).
Now, we show (iii). By (3.2), (3.3), and Lemma 3.1(i), we find that

∫

{x∈X :d(xB ,x)>4τ A0rB }
| f (x) − fB |

∣∣∣φk
α(x)

∣∣∣ dμ(x)

� [μ(B)]θ
√
Vδk (xkα)

∫

{x∈X :d(xB ,x)>4τ A0rB }

[
rB + d(x, xB)

rB

]θω

× 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x). (3.9)
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Notice that, if δk ≤ rB and d(xB , xkα) < 2τrB for some τ ∈ [1,∞), then, by (2.1),
we have, for any x ∈ {x ∈ X : d(xB, x) > 4τ A0rB},

4τ A0rB < d(xB, x) ≤ A0

[
d(xB, xkα) + d(xkα, x)

]

< A0

[
2τrB + d(xkα, x)

]
, (3.10)

which further implies that 2τrB < d(xkα, x) and hence

[
d(x, xkα)

δk

]s
>

1

3

{[τrB
δk

]s +
[
d(x, xkα)

4δk

]s
+

[
d(x, xkα)

4δk

]s}

>
1

3

{[τrB
δk

]s +
[
d(x, xkα)

4δk

]s
+

(τ

2

)s
}

. (3.11)

Moreover, from δk ≤ rB and (3.10), we deduce that

rB + d(x, xB)

rB
� τ

rB + d(x, xkα)

rB
� τ

[
1 + d(x, xkα)

δk

]
.

Applying this, (3.5), and (3.11), we infer that, for any x ∈ {x ∈ X : d(xB, x) >

4τ A0rB},
[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)

� τ θω

[
1 + d(x, xkα)

δk

]θω
1

Vδk (xkα) + V (xkα, x)

[
δk + d(xkα, x)

δk

]ω

× exp
[
−ν

3

(τrB
δk

)s]
Ek

(
x, xkα; 3 · 4s

)
exp

(
− ντ s

3 · 2s
)

� exp
[
−ν

3

(τrB
δk

)s]
P1

(
x, xkα; δk

)
.

This, together with Lemma 2.3, further implies that

∫

{x∈X :d(xB ,x)>4τ A0rB }

[
rB + d(x, xB)

rB

]θω 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x)

� exp
[
−ν

3

(τrB
δk

)s] ∫

X
P1

(
x, xkα; δk

)
dμ(x) � exp

[
−ν

3

(τrB
δk

)s]
. (3.12)

Combining this and (3.9), we finish the proof of (iii).
We next prove (iv). By rB ∈ (1,∞), (3.8), (3.2), (3.3), Lemma 3.1(i), and (3.12),

we have
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∫

{x∈X :d(xB ,x)>4τ A0rB }
| f (x)|

∣∣∣φk
α(x)

∣∣∣ dμ(x)

� [μ(B)]θ
√
Vδk (xkα)

∫

{x∈X :d(xB ,x)>4τ A0rB }

[
rB + d(x, xB)

rB

]θω

× 1

Vδk (xkα)
Ek

(
x, xkα; 1

)
dμ(x)

� [μ(B)]θ
√
Vδk (xkα) exp

[
−ν

3

(τrB
δk

)s]
,

which completes the proof of (iv).
Finally, in the proofs of (i) through (iv), we only use the size condition of φk

α , which
ψk+1

β also satisfies. Thus, repeating the arguments in the proofs of (i) through (iv), we

show that items through (i) to (iv) still hold true if φk
α and xkα are replaced, respectively,

by ψk+1
β and xk+1

β . This finishes the proof of (v) and hence of Lemma 3.5. ��

Now, we show Proposition 3.4.

Proof of Proposition 3.4 Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1. To
prove this proposition, fix Q ∈ D0. Notice that, for any Q ∈ D0, there exist k0 ∈ Z+
and α0 ∈ Ak0 such that Q = Qk0

α0 .
We first show that

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
∑

{α∈A0:Q0
α⊂Q

k0
α0 }

∣∣∣
〈
f , φ0

α

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

� 1. (3.13)

If {α ∈ A0 : Q0
α ⊂ Qk0

α0} = ∅, then (3.13) holds true. If {α ∈ A0 : Q0
α ⊂ Qk0

α0} 	= ∅,

then, by Lemma 2.6(ii) and k0 ∈ Z+, we find that, for any α̃ ∈ {α ∈ A0 : Q0
α ⊂ Qk0

α0},
either Qk0

α0 ⊂ Q0
α̃
or Q0

α̃
∩ Qk0

α0 = ∅. Thus,

Qk0
α0

= Q0
α̃ and xk0α0

= x0α̃ . (3.14)

From Lemma 2.6(ii) agagin, we deduce that {α ∈ A0 : Q0
α ⊂ Qk0

α0} has only one
element α̃. To estimate |〈 f , φ0

α̃
〉|, let B := B(x0

α̃
, 2) and write

∣∣∣
〈
f , φ0

α̃

〉∣∣∣ =
∣∣∣∣
∫

X
f (x)φ0

α̃(x) dμ(x)

∣∣∣∣

≤
∫

X
| f (x) − fB |

∣∣∣φ0
α̃(x)

∣∣∣ dμ(x) + | fB |
∫

X

∣∣∣φ0
α̃(x)

∣∣∣ dμ(x)

=: J1 + J2.
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From Lemmas 3.5(i) and 2.6(iii) and (3.14), we deduce that

J1 � [μ(B)]θ
√
V1(x0α̃)

[
1 + 1 + d(x0

α̃
, x0

α̃
)

1

]θω

�
[
μ
(
Qk0

α0

)]θ+ 1
2
.

For J2, notice that, | fB | ≤ ‖ f ‖L∞(B). On the other hand, using Lemmas 3.1(i), 2.2,
2.6(iii), and 2.3, we infer that

∫

X

∣∣∣φ0
α̃(x)

∣∣∣ dμ(x) �
∫

X
1√

V1(x0α̃)

E0

(
x, x0α̃; 1

)
dμ(x)

�
[
V1(x

0
α̃)
] 1
2
∫

X

Vd(x,x0
α̃
)+1(x

0
α̃
)

V1(x0α̃)

× 1

V1(x0α̃) + V (x, x0
α̃
)
E0

(
x, x0α̃; 1

)
dμ(x)

�
[
V1(x

0
α̃)
] 1
2
∫

X
P1

(
x, x0α̃; 1

)
dμ(x) �

[
V1(x

0
α̃)
] 1
2
,

where E0 is as in (3.1) with k = 0 and P1 is as in (2.12) with γ = 1. This, together
with Lemma 2.6(iii), Definition 2.4, (2.3), and (3.14), further implies that

J2 � ‖ f ‖L∞(B)

[
V1(x

0
α̃)
] 1
2 �

[
μ
(
Q0

α̃

)]θ+ 1
2
.

Combining the estimates of J1 and J2, we conclude that

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
∑

{α∈A0:Q0
α⊂Q

k0
α0 }

∣∣∣
〈
f , φ0

α

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

=
{

1

[μ(Qk0
α0)]1+2θ

∣∣∣
〈
f , φ0

α̃

〉∣∣∣
2
} 1

2

� 1.

This finishes the proof of (3.13).
Next, we show that

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

� 1. (3.15)
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For this purpose, write

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

�

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
k0−1∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

+

⎧
⎪⎨

⎪⎩
1

[μ(Qk0
α0)]1+2θ

⎡

⎢⎣
∞∑

k=k0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

=: J3 + J4.

We now estimate J3. Let, if k0 > 0,

E :=
{
(k, β) : k ∈ {0, · · · , k0 − 1}, β ∈ Gk, Qk+1

β ⊂ Qk0
α0

}

and, if k0 = 0, E := ∅. If E = ∅, then J3 = 0. If E 	= ∅, we claim that E has
only one element. Indeed, assume (k1, β1), (k2, β2) ∈ E . From Lemma 2.6(ii) and
the definition of E , we deduce that

Qk1+1
β1

= Qk0
α0

= Qk2+1
β2

and xk1+1
β1

= xk0α0
= xk2+1

β2
. (3.16)

Notice that xk1+1
β1

∈ Yk1 and xk2+1
β2

∈ Yk2 . By the definition of Yk , we find that, if

k1 	= k2, then Yk1 ∩ Yk2 = ∅ and hence xk1+1
β1

	= xk2+1
β2

. Therefore, k1 = k2 and
β1 = β2, which completes the proof of the above claim. Denote the only element in
E by (k̃, β̃). Then, by (3.16), we have

J3 = 1

[μ(Qk0
α0)]

1
2+θ

∣∣∣
〈
f , ψ k̃+1

β̃

〉∣∣∣ = 1

[μ(Qk̃+1
β̃

)] 12+θ

∣∣∣
〈
f , ψ k̃+1

β̃

〉∣∣∣ .

Let B1 := (xk̃+1
β̃

, δk̃+1). Then, using Lemma 3.2(iii), (i) and (v) of Lemma 3.5, and

(3.16), we infer that

J3 = 1

[μ(Qk̃+1
β̃

)] 12+θ

∣∣∣
〈
f − fB1 , ψ

k̃+1
β̃

〉∣∣∣

� 1

[μ(Qk̃+1
β̃

)] 12+θ
[μ(B1)]θ

√
V

δk̃
(xk̃+1

β̃
) � 1.
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To estimate J4, let B2 := B(xk0α0 , 2C#δ
k0) with C# as the same in Lemma 2.6(iii).

By Lemma 3.2(iii), we have

∞∑

k=k0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
f , ψk+1

β

〉∣∣∣
2

�
∞∑

k=k0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
[ f − fB2 ]14A0B2 , ψ

k+1
β

〉∣∣∣
2

+
∞∑

k=k0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

∣∣∣
〈
[ f − fB2 ]1X \(4A0B2), ψ

k+1
β

〉∣∣∣
2

=: J4,1 + J4,2.

For J4,1, notice that, by Definition 2.4, we have [ f − fB2 ]14A0B2 ∈ L2(X ). From this,
Lemma 3.2, and (2.5), we deduce that

J4,1 ≤ ∥∥[ f − fB2 ]14A0B2

∥∥2
L2(X )

≤
∫

4A0B2

[
1

μ(B2)

∫

B2
| f (x) − f (y)| dμ(y)

]2
dμ(x)

�
∫

4A0B2

[
1

μ(B2)

∫

B2
[V (x, y)]θ dμ(y)

]2
dμ(x)

� [μ(B2)]1+2θ .

For J4,2, since k ≥ k0 and Qk+1
β ⊂ Qk0

α0 , it follows that

δk+1 < C#δ
k0 and d(xk+1

β , xk0α0
) ≤ C#δ

k0 .

By this, (iii) and (v) of Lemma 3.5, and Lemma 2.6(ii), we obtain

J4,2 �
∞∑

k=k0

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

[μ(B2)]2θVδk (x
k+1
β ) exp

[
−2ν

3

(
C#δ

k0

δk

)s
]

∼ [μ(B2)]2θ
∞∑

k=k0

exp

[
−2ν

3

(
C#δ

k0

δk

)s
]

∑

{β∈Gk :Qk+1
β ⊂Q

k0
α0 }

μ(Qk+1
β )

� [μ(B2)]2θ+1,

which, together with the estimate of J4,1, further implies that

J4 � 1.
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Combining the estimates of J3 and J4, we find that (3.15) holds true, which completes
the proof of Proposition 3.4. ��
Proposition 3.6 Let η ∈ (0, 1] as the same in Lemma 3.1, θ ∈ (0, η

ω
). If a sequence

c :=
{
c0α

}

α∈A0
∪
{
ck+1
β

}

k∈Z+,β∈Gk
⊂ C

satisfies that

‖c‖∗ := sup
Q∈D0

⎧
⎪⎨

⎪⎩
1

[μ(Q)]1+2θ

⎡

⎢⎣
∑

{α∈A0:Q0
α⊂Q}

∣∣∣c0α
∣∣∣
2 +

∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q}

∣∣∣ck+1
β

∣∣∣
2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭

1
2

< ∞, (3.17)

then
∑

α∈A0

c0αφ0
α +

∞∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β

converges in L2
B(X ). Denote the limit by f . Then there exists a positive constant C,

independent of c, such that
‖ f ‖lipθ (X ) ≤ C‖c‖∗.

To prove Proposition 3.6, we need several lemmas. We first recall the following
very useful inequality.

Lemma 3.7 For any θ ∈ (0, 1] and {a j } j∈N ⊂ C, it holds true that

⎛

⎝
∞∑

j=1

|a j |
⎞

⎠
θ

≤
∞∑

j=1

|a j |θ .

The following lemma comes from [36, Lemma 2.21], whose proof is still valid if
d only satisfies (2.1). We omit details here.

Lemma 3.8 There exists a positive constant C such that, for any b, c ∈ (0,∞), k ∈ Z,
and x ∈ X ,

∑

α∈Ak

exp

(
−b

[
d(xkα, x)

δk

]c)
≤ C .

Now, we show Proposition 3.6.

Proof of Proposition 3.6 Let B := (xB, rB) ⊂ X , we consider two cases on rB .
Case 1. rB ∈ (1,∞). In this case, write
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∑

α∈A0

c0αφ0
α +

∞∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β

=
∑

{α∈A0:d(x0α,xB )<2A0rB }
c0αφ0

α +
∑

{α∈A0:d(x0α,xB )≥2A0rB }
c0αφ0

α

+
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )<2A0rB }

ck+1
β ψk+1

β

+
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

ck+1
β ψk+1

β

=: F1,1 + F1,2 + F1,3 + F1,4.

For F1,1, by (2.1) and Lemma 2.6(iii), we find that, for any α ∈ A0 such that
d(x0α, xB) < 2A0rB and any y ∈ Q0

α ,

d(y, xB) ≤ A0

[
d(y, x0α) + d(x0α, xB)

]
< A0(C# + 2A0)rB,

which further implies that Q0
α ⊂ B(xB, A0(C# + 2A0)rB) and hence

{
α ∈ A0 : d(x0α, xB) < 2A0rB

}
⊂

{
α ∈ A0 : Q0

α ⊂ B(xB, A0(C# + 2A0)rB)
}

.

Using this, Lemma 3.1, (3.17), and Lemmas 3.7 and 2.6(ii), we infer that

‖F1,1‖L2(X ) ≤
⎡

⎣
∑

{α∈A0:Q0
α⊂B(xB ,A0(C#+2A0)rB )}

∣∣∣c0α
∣∣∣
2

⎤

⎦

1
2

≤ ‖c‖∗

⎛

⎝
∑

{α∈A0:Q0
α⊂B(xB ,A0(C#+2A0)rB )}

[
μ(Q0

α)
]2θ+1

⎞

⎠

1
2

≤ ‖c‖∗

⎡

⎣
∑

{α∈A0:Q0
α⊂B(xB ,A0(C#+2A0)rB )}

μ(Q0
α)

⎤

⎦
θ+ 1

2

� ‖c‖∗[μ(B)]θ+ 1
2 .

For F1,2, by (3.17) and Lemma 3.1(i), we have, for any x ∈ B,

|F1,2(x)| ≤
∑

{α∈A0:d(x0α,xB )≥2A0rB }

∣∣∣c0α
∣∣∣
∣∣∣φ0

α(x)
∣∣∣
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� ‖c‖∗
∑

{α∈A0:d(x0α,xB )≥2A0rB }

[
μ(Q0

α)
]θ

E0

(
x0α, x; 1

)
,

where E0 is as in (3.1) with k = 0. Observe that, since d(x0α, xB) ≥ 2A0rB , it follows
that, for any x ∈ B,

2A0rB ≤ d(x0α, xB) ≤ A0

[
d(x0α, x) + d(x, xB)

]
< A0d(x0α, x) + A0rB . (3.18)

Thus, d(x, xB) < rB < d(x0α, x), which, together with (3.18), further implies that

d(x0α, xB) < 2A0d(x0α, x).

From this and Lemmas 2.3 and 3.8, we deduce that, for any x ∈ B,

|F1,2(x)| � ‖c‖∗
∑

{α∈A0:d(x0α,xB )≥2A0rB }

[
μ(Q0

α)
]θ

E0

(
x0α, xB; 2s As

0

)

� ‖c‖∗[μ(B)]θ
∑

{α∈A0:d(x0α,xB )≥2A0rB }

[
1 + d(x0α, xB)

]θω

E0

(
x0α, xB; 2s As

0

)

� ‖c‖∗[μ(B)]θ
∑

{α∈A0:d(x0α,xB )≥2A0rB }
E0

(
x0α, xB; 2s+1As

0

)

� ‖c‖∗[μ(B)]θ

and hence
‖F1,2‖L2(B) � ‖c‖∗[μ(B)]θ+ 1

2 .

Next, we estimate F1,3. Applying (2.1) and Lemma 2.6(iii), we infer that, for any
k ∈ Z+, β ∈ Gk such that d(xk+1

β , xB) < 2A0rB and any y ∈ Qk+1
β ,

d(y, xB) ≤ A0

[
d(y, xk+1

β ) + d(xk+1
β , xB)

]
< A0(C# + 2A0)rB,

which further implies that Qk+1
β ⊂ B(xB, A0(C# + 2A0)rB) and hence

{
β ∈ Gk : d(xk+1

β , xB) < 2A0rB
}

⊂
{
β ∈ Gk : Qk+1

β ⊂ B(xB, A0(C# + 2A0)rB)
}

.

Using this, Lemma 3.2, (3.17), and Lemmas 3.7 and 2.6(ii), we infer that

‖F1,3‖L2(X ) ≤
⎡

⎢⎣
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )<2A0rB }

∣∣∣ck+1
β

∣∣∣
2

⎤

⎥⎦

1
2
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≤
⎡

⎢⎣
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂B(xB ,A0(C#+2A0)rB )}

∣∣∣ck+1
β

∣∣∣
2

⎤

⎥⎦

1
2

≤
⎡

⎢⎣
∑

{α∈A0:Q0
α∩B(xB ,A0(C#+2A0)rB ) 	=∅}

∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q0

α}

∣∣∣ck+1
β

∣∣∣
2

⎤

⎥⎦

1
2

≤ ‖c‖∗

⎡

⎣
∑

{α∈A0:Q0
α∩B(xB ,A0(C#+2A0)rB ) 	=∅}

[
μ(Q0

α)
]2θ+1

⎤

⎦

1
2

≤ ‖c‖∗

⎡

⎣
∑

{α∈A0:Q0
α∩B(xB ,A0(C#+2A0)rB ) 	=∅}

μ(Q0
α)

⎤

⎦

1
2+θ

� ‖c‖∗[μ(B)]θ+ 1
2 .

Now, we estimate F1,4. By (3.17) and Lemma 3.1(i), we have, for any x ∈ B,

|F1,4(x)| ≤
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

∣∣∣ck+1
β

∣∣∣
∣∣∣ψk+1

β (x)
∣∣∣

� ‖c‖∗
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

[
μ(Qk+1

β )
]θ

Ek

(
xk+1
β , x; 1

)
.

From d(xk+1
β , xB) ≥ 2A0rB , we deduce that, for any x ∈ B,

2A0rB ≤ d(xk+1
β , xB) ≤ A0

[
d(xk+1

β , x) + d(x, xB)
]

< A0d(xk+1
β , x) + A0rB,

which further implies that

d(x, xB) < rB < d(xk+1
β , x) (3.19)

and hence
d(xk+1

β , xB) < 2A0d(xk+1
β , x).

By this and (3.19), we find that, for any x ∈ B,

d(xk+1
β , x) >

d(xk+1
β , xB)

4A0
+ rB

2
.
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Using this, Lemmas 2.3 and 3.8, we deduce that, for any x ∈ B,

|F1,4(x)| � ‖c‖∗
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

[
μ(Qk+1

β )
]θ

exp

(
−ν

[
d(xk+1

β , xB)

4A0δk
+ rB

2δk

]s)

� ‖c‖∗[μ(B)]θ
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

[
1 + d(xk+1

β , xB)

rB

]θω

× Ek

(
xk+1
β , xB ; 22s+1As

0

)
exp

[
− ν

2a+1

( rB
δk

)s]

� ‖c‖∗[μ(B)]θ
∞∑

k=0

exp

[
− ν

2a+1

(
1

δk

)s]

×
∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

Ek

(
xk+1
β , xB ; 4s+1As

0

)

� ‖c‖∗[μ(B)]θ

and hence
‖F1,4‖L2(B) � ‖c‖∗[μ(B)]θ+ 1

2 .

To summarize the estimates of F1,1, F1,2, F1,3, and F1,4, we conclude that, for
almost everywhere x ∈ B,

∑

α∈A0

c0αφ0
α(x) +

∞∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β (x)

converges. Letting

f :=
∑

α∈A0

c0αφ0
α +

∞∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β , (3.20)

then we find that (3.20) converges in L2
B(X ) and, for any B ⊂ X with rB ∈ (1,∞),

‖ f ‖L2(B) � ‖c‖∗[μ(B)]θ+ 1
2 . (3.21)

Case 2. rB ∈ (0, 1]. In this case, write, for any x ∈ B,

f (x) =
∑

α∈A0

c0α
[
φ0

α(x) − φ0
α(xB)

]
+

∑

α∈A0

c0αφ0
α(xB)

+
∑

{k∈Z+:δk≤rB }

∑

{β∈Gk :d(xk+1
β ,xB )<2A0rB }

ck+1
β ψk+1

β (x)

+
∑

{k∈Z+:δk≤rB }

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0rB }

ck+1
β ψk+1

β (x)
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+
∑

{k∈Z+:δk>rB }

∑

β∈Gk

ck+1
β

[
ψk+1

β (x) − ψk+1
β (xB)

]

+
∑

{k∈Z+:δk>rB }

∑

β∈Gk

ck+1
β ψk+1

β (xB)

=: F2,1 + F2,2 + F2,3 + F2,4 + F2,5 + F2,6.

We first estimate F2,1. Applying Lemma 3.1(ii), (3.17), Lemma 2.3, rB ∈ (0, 1],
θ ∈ (0, η

ω
), and Lemma 3.8, we infer that, for any x ∈ B,

|F2,1(x)| � ‖c‖∗
∑

α∈A0

[
μ(Q0

α)
]θ [d(x, xB)]ηE0

(
x0α, xB; 1

)

� ‖c‖∗[μ(B)]θ
∑

α∈A0

[
1 + d(x0α, xB)

rB

]θω

rη
B E0

(
x0α, xB; 1

)

� ‖c‖∗[μ(B)]θ
∑

α∈A0

E0

(
x0α, xB; 2

)
� ‖c‖∗[μ(B)]θ ,

which further implies that

‖F2,1‖L2(B) � ‖c‖∗[μ(B)]θ+ 1
2 .

Now, we estimate F2,2. By Lemma 3.1(i), (3.17), and Lemma 2.3, we conclude that,

|F2,2| �
∑

α∈A0

[
μ(Q0

α)
]θ

E0

(
x0α, xB; 1

)

�
∑

α∈A0

[
1 + d(x0α, xB)

rB

]θω

E0

(
x0α, xB; 1

)

�
∑

α∈A0

E0

(
x0α, xB; 2

)
� 1,

where the implicit positive constants may depend on B. Using an argument similar to
that used in the estimate of F1,3 and F1,4, we obtain

‖F2,3 + F2,4‖L2(B) � ‖c‖∗[μ(B)]θ+ 1
2 .

For F2,5, by an argument similar to that used in the estimate of F2,1, we find that, for
any x ∈ B,

∑

β∈Gk

∣∣∣ck+1
β

∣∣∣
∣∣∣ψk+1

β (x) − ψk+1
β (xB)

∣∣∣ � ‖c‖∗[μ(B)]θ
(rB

δk

)η−θω

,
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which, together with θ ∈ (0, η
ω
), further implies that,

|F2,5(x)| � ‖c‖∗[μ(B)]θ
∑

{k∈Z+:δk>rB }

(rB
δk

)η−θω

� ‖c‖∗[μ(B)]θ

and hence
‖F2,5‖L2(B) � ‖c‖∗[μ(B)]θ+ 1

2 .

To estimate F2,6, using an argument similar to that used in the estimate of F2,2, we
have ∑

β∈Gk

∣∣∣ck+1
β

∣∣∣
∣∣∣ψk+1

β (xB)

∣∣∣ � 1,

which, combining the fact that #{k ∈ Z+ : δk > rB} is a finite number only depending
on rB , further implies that

|F2,6| � 1,

where the implicit positive constants may depend on B. Let cB := F2,2 + F2,6. From
the estimates of F2,1 through F2,6, we deduce that

‖ f − cB‖L2(B) � ‖c‖∗[μ(B)]θ+ 1
2 ,

which, together with the Hölder inequality, further implies that

‖ f − fB‖L2(B) ≤ ‖ f − cB‖L2(B) + ‖cB − fB‖L2(B) � ‖c‖∗[μ(B)]θ+ 1
2 .

Applying this, (3.21), and [25, Corollary 7.5], we infer that f ∈ lipθ (X ) and

‖ f ‖lipθ (X ) ≤ C‖c‖∗.

This finishes the proof of Proposition 3.6. ��
Using Propositions 3.4 and 3.6, we have the followingwavelet reproducing formula

of functions in lipθ (X ).

Proposition 3.9 Let η ∈ (0, 1] as the same in Lemma 3.1, θ ∈ (0, η
ω
). Then, for any

f ∈ lipθ (X ),

f =
∑

α∈A0

〈
f , φ0

α

〉
φ0

α +
∞∑

k=0

∑

β∈Gk

〈
f , ψk+1

β

〉
ψk+1

β

in L2
B(X ).

To prove Proposition 3.9, we need the following lemma.

Lemma 3.10 Letη ∈ (0, 1] be as the same in Lemma3.1, θ ∈ (0, η
ω
), and f ∈ lipθ (X ).

If, for any α ∈ A0, 〈 f , φ0
α〉 = 0, and, for any k ∈ Z+ and β ∈ Gk , 〈 f , ψk+1

β 〉 = 0,
then, for any x ∈ X , f (x) = 0.
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Proof Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1. To prove Lemma
3.10, we only need to show that, for any ε ∈ (0,∞) and B := B(xB, rB) ⊂ X ,

‖ f ‖L∞(B) < ε. (3.22)

Let B̃ := A0t2B, where t is a large number such that A0t2rB > 1 and B ⊂ 4B̃. By
the definition of lipθ (X ), we find that 14B̃ f ∈ L2(X ). Applying Lemmas 3.1 and 3.2,
write

1B f = 1B14B̃ f

= 1B
∑

α∈A0

〈
14B̃ f , φ0

α

〉
φ0

α + 1B
∞∑

k=0

∑

β∈Gk

〈
14B̃ f , ψk+1

β

〉
ψk+1

β

= 1B
∑

{α∈A0:d(x0α,xB )<2A0t2rB }

〈
14B̃ f , φ0

α

〉
φ0

α

+ 1B
∑

{α∈A0:d(x0α,xB )≥2A0t2rB }

〈
14B̃ f , φ0

α

〉
φ0

α

+ 1B
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )<2A0t2rB }

〈
14B̃ f , ψk+1

β

〉
ψk+1

β

+ 1B
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0t2rB }

〈
14B̃ f , ψk+1

β

〉
ψk+1

β

=: J1 + J2 + J3 + J4.

We first consider J1. By 〈 f , φ0
α〉 = 0 and Lemma 3.5(iv), we have, for any α ∈ A0

with d(x0α, xB) < 2A0t2rB ,

∣∣∣
〈
14B̃ f , φ0

α

〉∣∣∣ =
∣∣∣
〈
1X \(4B̃) f , φ

0
α

〉∣∣∣

≤
∫

{x∈X :d(xB ,x)>4A0t2rB }
| f (x)|

∣∣∣φ0
α(x)

∣∣∣ dμ(x)

� [μ(B̃)]θ
√
V1(x0α) exp

[
−ν

3

(
A0t

2rB
)s]

. (3.23)

From this and Lemmas 3.1(i) and 3.8, we deduce that, for any x ∈ B,

|J1(x)| ≤
∑

{α∈A0:d(x0α,xB )<2A0t2rB }

∣∣∣
〈
14B̃ f , φ0

α

〉∣∣∣
∣∣∣φ0

α(x)
∣∣∣

�
[
μ(B̃)

]θ
exp

[
−ν

3

(
A0t

2rB
)s]

×
∑

{α∈A0:d(x0α,xB )<2A0t2rB }
exp

(
−ν

[
d(x0α, x)

]s)
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�
[
μ(B̃)

]θ
exp

[
−ν

3

(
A0t

2rB
)s]

.

To estimate J2, observe that, for any α ∈ A0 with d(x0α, xB) ≥ 2A0t2rB and any
x ∈ B,

2A0t
2rB ≤ d(x0α, xB) ≤ A0

[
d(x0α, x) + d(x, xB)

]
< A0

[
d(x0α, x) + rB

]

and hence
t2rB < d(x0α, x). (3.24)

Moreover,

1 + d(xB, x0α) ≤ 1 + A0

[
d(xB, x) + d(x, x0α)

]

< 1 + A0rB + A0d(x, x0α)

< 2A0t
2rB + A0d(x, x0α).

Using this, (3.24), and Lemmas 3.1(i) and 3.5(ii), we infer that, for any α ∈ A0 with
d(x0α, xB) ≥ 2A0t2rB and for any x ∈ B,

∣∣∣
〈
14B̃ f , φ0

α

〉∣∣∣
∣∣∣φ0

α(x)
∣∣∣

�
[
μ(B̃)

]θ
[
1 + 1 + d(xB, x0α)

A0t2rB

]θω

E0

(
x, x0α; 1

)

�
[
μ(B̃)

]θ [
1 + d(x, x0α)

]θω

E0

(
x, x0α; 1

)

�
[
μ(B̃)

]θ
exp

[
−ν

4

(
t2rB

)s]
E0

(
x, x0α; 4

)
, (3.25)

where E0 is as in (3.1) with k = 0. This, together with Lemma 3.8, further implies
that, for any x ∈ B,

|J2(x)| ≤
∑

{α∈A0:d(x0α,xB )≥2A0t2rB }

∣∣∣
〈
14B̃ f , φ0

α

〉∣∣∣
∣∣∣φ0

α(x)
∣∣∣

�
[
μ(B̃)

]θ
exp

[
−ν

4

(
t2rB

)s]

×
∑

{α∈A0:d(x0α,xB )≥2A0t2rB }
E0

(
x, x0α; 4

)

�
[
μ(B̃)

]θ
exp

[
−ν

4

(
t2rB

)s]
.
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Next, we estimate J3. Using an argument similar to that used in (3.23), we have,
for any β ∈ Gk with d(xk+1

β , xB) < 2A0t2rB ,

∣∣∣
〈
14B̃ f , ψk+1

β

〉∣∣∣ �
[
μ(B̃)

]θ √
Vδk (x

k+1
β ) exp

[
−ν

3

(
A0t2rB

δk

)s
]

.

By this and Lemmas 3.2(i) and 3.8, we conclude that, for any x ∈ B,

|J3(x)| �
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )<2A0t2rB }

∣∣∣
〈
14B̃ f , ψk+1

β

〉∣∣∣
∣∣∣ψk+1

β (x)
∣∣∣

�
[
μ(B̃)

]θ ∞∑

k=0

exp

[
−ν

3

(
A0t2rB

δk

)s
]

×
∑

{β∈Gk :d(xk+1
β ,xB )<2A0t2rB }

Ek

(
x, xk+1

β ; 1
)

�
[
μ(B̃)

]θ
exp

[
−ν

6

(
A0t

2rB
)s]

.

Finally, we estimate J4. Applying an argument similar to that used in (3.25), we
infer that, for any β ∈ Gk with d(xk+1

β , xB) ≥ 2A0t2rB ,

∣∣∣
〈
14B̃ f , ψk+1

β

〉∣∣∣
∣∣∣ψk+1

β (x)
∣∣∣

�
[
μ(B̃)

]θ
exp

[
−ν

4

(
t2rB
δk

)s
]
Ek

(
x, xk+1

β ; 4
)

,

which, combined with Lemma 3.8, further implies that, for any x ∈ B,

|J4(x)| �
∞∑

k=0

∑

{β∈Gk :d(xk+1
β ,xB )≥2A0t2rB }

∣∣∣
〈
14B̃ f , ψk+1

β

〉∣∣∣
∣∣∣ψk+1

β (x)
∣∣∣

�
[
μ(B̃)

]θ ∞∑

k=0

exp

[
−ν

4

(
t2rB
δk

)s
]

×
∑

{β∈Gk :d(xk+1
β ,xB )≥2A0t2rB }

Ek

(
x, xk+1

β ; 4
)

�
[
μ(B̃)

]θ
exp

[
−ν

8

(
t2rB

)s]
.

To summarize the estimates of J1, J2, J3, and J4, we find that

‖1B f ‖L∞(B) ≤ ‖J1‖L∞(B) + ‖J2‖L∞(B) + ‖J3‖L∞(B) + ‖J4‖L∞(B)
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�
[
μ(B̃)

]θ
exp

[
−ν

8

(
t2rB

)s] → 0

as t → ∞. This finishes the proof of (3.22) and hence Lemma 3.10. ��
Now, we show Proposition 3.9.

Proof of Proposition 3.9 Without loss of generality, we assume that ‖ f ‖lipθ (X ) = 1.
By Propositions 3.4 and 3.6, it follows that

∑

α∈A0

〈
f , φ0

α

〉
φ0

α +
∞∑

k=0

∑

β∈Gk

〈
f , ψk+1

β

〉
ψk+1

β

converges in L2
B(X ). Denote this limit by f̃ . To show Proposition 3.9, we only need

to prove that f = f̃ pointwise. Using Lemma 3.10, we further reduce to show that,
for any α0 ∈ A0, 〈

f − f̃ , φ0
α0

〉
= 0, (3.26)

and, for any k0 ∈ Z+ and β0 ∈ Gk0 ,
〈
f − f̃ , ψk0+1

β0

〉
= 0. (3.27)

To this end, let, for any α ∈ A0, c0α := 〈 f , φ0
α〉 and, for any k ∈ Z+ and β ∈ Gk ,

ck+1
β := 〈 f , ψk+1

β 〉.
We first show (3.26). By Lemma 2.9, we find that, for any α0 ∈ A0,

〈
f̃ , φ0

α0

〉
=

∫

X
f̃ (x)φ0

α0
(x) dμ(x)

=
∑

α̃∈A0

∫

X
f̃ (x)1Q0

α̃
(x)φ0

α0
(x) f̃ (x)1Q0

α̃
(x) dμ(x)

=
∑

α̃∈A0

∑

α∈A0

〈
c0αφ0

α1Q0
α̃
, φ0

α0
1Q0

α̃

〉

+
∑

α̃∈A0

∑

α∈A0

〈
∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃
, φ0

α0
1Q0

α̃

〉

=: I1 + I2.

To estimate I1, by Lemma 2.2(ii), we have, for any α ∈ A0,

∥∥∥φ0
α1Q0

α̃

∥∥∥
L2(X )

�
[∫

Q0
α̃

1

V1(x0α)
E0

(
x0α, x; 1

2

)
dμ(x)

] 1
2

,
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where E0 is as in (3.1) with k = 0. If d(x0α, x0
α̃
) ≤ 2A0C#, then, for any x ∈ Q0

α̃
,

d(x0α, x) ≤ A0

[
d(x0α, x0α̃) + d(x0α̃, x)

]
� 1.

From this and Lemma 2.2, we deduce that

∥∥∥φ0
α1Q0

α̃

∥∥∥
L2(X )

� 1 � E0

(
x0α, x0α̃; 2

)
.

If d(x0α, x0
α̃
) > 2A0C#, then, for any x ∈ Q0

α̃
,

d(x0α, x0α̃) ≤ A0

[
d(x0α, x) + d(x, x0α̃)

]
< A0d(x0α, x) + 1

2
d(x0α, x0α̃)

and hence 1
2A0

d(x0α, x0
α̃
) < d(x0α, x). Using this and Lemmas 2.3 and 2.2, we infer

that

∥∥∥φ0
α1Q0

α̃

∥∥∥
L2(X )

�
[∫

Q0
α̃

1

V1(x0α)
E0

(
x0α, x; 1

2

)
dμ(x)

] 1
2

� E0

(
x0α, x0α̃; 2A0

)[∫

Q0
α̃

1

V1(x0α)
E0

(
x0α, x; 1

)
dμ(x)

] 1
2

� E0

(
x0α, x0α̃; 2A0

)
.

By the Hölder inequality, Proposition 3.4, and Lemmas 2.3 and 3.8, we conclude that

∑

α̃∈A0

∑

α∈A0

∣∣∣
〈
c0αφ0

α1Q0
α̃
, φ0

α0
1Q0

α̃

〉∣∣∣

�
∑

α̃∈A0

∑

α∈A0

[
μ(Q0

α)
]θ+ 1

2
∥∥∥φ0

α1Q0
α̃

∥∥∥
L2(X )

∥∥∥φ0
α0
1Q0

α̃

∥∥∥
L2(X )

�
[
μ(Q0

α0
)
]θ+ 1

2
∑

α̃∈A0

∑

α∈A0

[
μ(Q0

α)

μ(Q0
α0

)

]θ+ 1
2

× E0

(
x0α, x0α̃; 2A0

)
E0

(
x0α0 , x

0
α̃; 2A0

)

�
[
μ(Q0

α0
)
]θ+ 1

2
.

This implies that I1 converges absolutely.
Next, we estimate I2. To this end, we consider two cases on d(x0α, x0

α̃
).
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Case 1. d(x0α, x0
α̃
) ≤ 4A2

0C#. In this case, by Lemmas 3.1 and 3.2, Proposition 3.4,
and Lemma 2.2(i), we obtain

∥∥∥∥∥∥∥

∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃

∥∥∥∥∥∥∥
L2(X )

�

⎛

⎜⎝
∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}

∣∣∣ck+1
β

∣∣∣
2

⎞

⎟⎠

1
2

�
[
μ(Q0

α)
]θ+ 1

2 �
[
μ(Q0

α̃)
]θ+ 1

2
E0

(
x0α, x0α̃; 1

)
.

Case 2. d(x0α, x0
α̃
) > 4A2

0C#. In this case, for any (k, β) such that Qk+1
β ⊂ Q0

α and

any x ∈ Q0
α̃
,

d(x0α, x0α̃) < A0d(x0α, x) + A0C# < A2
0C# + A2

0d(xk+1
β , x) + A0C#,

which further implies that

1 + d(x0α, x0
α̃
)

4A2
0

< d(xk+1
β , x). (3.28)

Applying this, Lemma 3.2(i), Proposition 3.4, and Lemmas 2.3 and 3.8, we deduce
that, for any x ∈ Q0

α̃
,

∣∣∣∣∣∣∣

∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β (x)

∣∣∣∣∣∣∣

�
∞∑

k=0

∑

{β∈Gk :Qk+1
β ⊂Q0

α}

[
μ(Qk+1

β )
]θ

Ek

(
xk+1
β , x; 2

)
exp

{
−ν

2

[
1 + d(x0α, x0

α̃
)

4A2
0δ

k

]s}

�
[
μ(Q0

α̃)
]θ

∞∑

k=0

[
1 + d(x0α, x0α̃)

]θω

exp

{
−ν

2

[
1 + d(x0α, x0

α̃
)

4A2
0δ

k

]s}

×
∑

{β∈Gk :Qk+1
β ⊂Q0

α}
Ek

(
xk+1
β , x; 2

)

�
[
μ(Q0

α̃)
]θ

exp

{
−ν

4

[
1 + d(x0α, x0

α̃
)

4A2
0

]s} ∞∑

k=0

δkθω

�
[
μ(Q0

α̃)
]θ

E0

(
x0α, x0α̃; 4s+1A2s

0

)
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and hence
∥∥∥∥∥∥∥

∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃

∥∥∥∥∥∥∥
L2(X )

�
[
μ(Q0

α̃)
]θ+ 1

2
E0

(
x0α, x0α̃; 4s+1A2s

0

)
.

Combining the estimates of Cases 1 and 2, the Hölder inequality, Proposition 3.4, and
Lemma 3.8, we conclude that

∑

α̃∈A0

∑

α∈A0

∣∣∣∣∣∣∣

〈
∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃
, φ0

α0
1Q0

α̃

〉∣∣∣∣∣∣∣

�
∑

α̃∈A0

∑

α∈A0

∥∥∥∥∥∥∥

∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃

∥∥∥∥∥∥∥
L2(X )

∥∥∥φ0
α0
1Q0

α̃

∥∥∥
L2(X )

�
∑

α̃∈A0

∑

α∈A0

[
μ(Q0

α̃)
]θ+ 1

2
E0

(
x0α, x0α̃; 4s+1A2s

0

)
E0

(
x0α, x0α̃; 2A0

)

�
[
μ(Q0

α0
)
]θ+ 1

2
,

which further implies that I2 converges absolutely. Therefore, by the Fubini theorem
and the orthogonality of wavelets, we have

〈
f̃ , φ0

α0

〉
=

∑

α∈A0

∑

α̃∈A0

〈
c0αφ0

α1Q0
α̃
, φ0

α0
1Q0

α̃

〉

+
∑

α∈A0

∑

α̃∈A0

〈
∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β 1Q0
α̃
, φ0

α0
1Q0

α̃

〉

=
∑

α∈A0

c0α
〈
φ0

α, φ0
α0

〉
+

∑

α∈A0

〈
∑

{(k,β):k∈Z+,β∈Gk ,Q
k+1
β ⊂Q0

α}
ck+1
β ψk+1

β , φ0
α0

〉

= c0α0 =
〈
f , φ0

α0

〉
.

This proves (3.26).
Now, we show (3.27). Using an argument similar to that used in the proof of (3.26),

we infer that, for any k0 ∈ Z+ and β0 ∈ Gk0 ,
〈
∑

α∈A0

c0αφ0
α +

∞∑

k=k0

∑

β∈Gk

ck+1
β ψk+1

β , ψ
k0+1
β0

〉
= ck0+1

β0
=

〈
f , ψk0+1

β0

〉
.
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Thus, to show (3.27), it suffices to show that

〈
k0−1∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β , ψ
k0+1
β0

〉
= 0. (3.29)

If k0 = 0, then (3.29) holds true. If k0 > 0, by Lemma 3.2(i) and (2.1), we obtain, for
any k ∈ {0, · · · , k0 − 1}, β ∈ Gk , and x ∈ X ,

∣∣∣ψk+1
β (x)ψk0+1

β0
(x)

∣∣∣

� 1√
Vδk (x

k+1
β )

Ek

(
x, xk+1

β ; 1
)
Ek0

(
x, xk0+1

β0
; 1

)

� 1√
Vδk (x

k+1
β )

Ek

(
x, xk+1

β ; 2
)
exp

(
− ν

2s+1

[
d(x, xk0+1

β0
) + d(x, xk+1

β )
]s)

� 1√
Vδk (x

k+1
β )

Ek

(
x, xk+1

β ; 2
)
Ek

(
xk0+1
β0

, xk+1
β ; 2

s+1A0

δk0

)
,

where the implicit positive constants may depend on k0 and β0. From this, Proposition
3.6, and Lemmas 2.3, 2.2(ii), and 3.8, we deduce that

k0−1∑

k=0

∑

β∈Gk

∣∣∣ck+1
β

∣∣∣
∫

X

∣∣∣ψk+1
β (x)ψk0+1

β0
(x)

∣∣∣ dμ(x)

�
k0−1∑

k=0

∑

β∈Gk

[
μ(Qk+1

β )
]θ+ 1

2
Ek

(
xk0+1
β0

, xk+1
β ; 2

s+1A0

δk0

)

×
∫

X
1

Vδk (x
k+1
β )

Ek

(
x, xk+1

β ; 2
)
dμ(x)

�
k0−1∑

k=0

∑

β∈Gk

Ek

(
xk0+1
β0

, xk+1
β ; 2

s+2A0

δk0

)
� 1,

where the implicit positive constants depend on k0 and β0. Applying this, the Fubini
theorem, and the orthogonality of wavelets, we infer that

〈
k0−1∑

k=0

∑

β∈Gk

ck+1
β ψk+1

β , ψ
k0+1
β0

〉
=

k0−1∑

k=0

∑

β∈Gk

ck+1
β

〈
ψk+1

β , ψ
k0+1
β0

〉
= 0.

This finishes the proof of (3.29) and hence that of Proposition 3.9. ��
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Theorem 1.1 follows from Propositions 3.4, 3.6, and 3.9 derictly; we omit details
here. Moreover, using Propositions 3.4 and 3.6 and the proof of Proposition 3.9, we
also have the following conclusion; we omit details here.

Corollary 3.11 Let η ∈ (0, 1] as the same in Lemma 3.1, θ ∈ (0, η
ω
). For any n ∈ N

and f ∈ lipθ (X ), let

fn :=
∑

α∈A0

〈
f , φ0

α

〉
φ0

α +
n∑

k=0

∑

β∈Gk

〈
f , ψk+1

β

〉
ψk+1

β ,

Then f = limn→∞ fn converges in L2
B(X ) and there exists a positive constant C,

independent of f , such that, for any n ∈ N,

‖ fn‖lipθ (X ) ≤ C‖ f ‖lipθ (X ).

4 Applications

In this section, we establish several equivalence characterizations of geometric con-
ditions on X . The first one is as following related to the lower bound.

Corollary 4.1 Let (X , d, μ) be a space of homogeneous type and θ ∈ (0, 1). Then
1 ∈ lipθ (X ) if and only if there exists a positive constant C such that, for any x ∈ X ,
μ(x, 1) ≥ C.

Proof We first show the necessity. Assume that 1 ∈ lipθ (X ). Then, by the definition
of lipθ (X ), we have, for any x ∈ X ,

‖1‖L∞(B(x,2))

[μ(B(x, 2))]θ � 1

and hence 1 � [μ(B(x, 2))]θ , which further implies that 1 � μ(B(x, 1)).
Conversely, suppose 1 � μ(B(x, 1)). Let B := (xB, rB). If rB ∈ (0, 1], then

sup
x,y∈B,x 	=y

|1 − 1|
[μ(B)]θ = 0;

while, if rB ∈ (1,∞), then

‖1‖L∞(B)

[μ(B)]θ � 1

[μ(B(xB, 1))]θ � 1.

This implies that 1 ∈ lipθ (X ) and finishes the proof of Corollary 4.1. ��
Using Theorem 1.1, we have one equivalence characterization of the upper bound.
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Corollary 4.2 Let (X , d, μ) be a space of homogeneous type with upper dimension ω,
η ∈ (0, 1] as the same in Lemma 3.1, and θ ∈ (0, η

ω
). Then the following statements

are equivalent.

(i) lipθ (X ) ⊂ L∞(X );
(ii) there exists a positive constant C such that, for any x ∈ X , μ(B(x, 1)) ≤ C.

Proof (ii) ⇒ (i) follows from (2.4) directly. Thus, to show Corollary 4.2, it suffices to
prove (i) ⇒ (ii). By Theorem 1.1, we find that, for any α ∈ A0,

∥∥∥φ0
α

∥∥∥
lipθ (X )

∼
[
μ(Q0

α)
]− 1

2−θ

. (4.1)

On the other hand, by the proof of [2, Theorem 6.1], we obtain, for any α ∈ A0,

∥∥∥φ0
α

∥∥∥
L∞(X )

∼
∣∣∣φ0

α(x0α)

∣∣∣ ∼
[
μ(Q0

α)
]− 1

2
,

which, together with (i) and (4.1), further implies that

μ(Q0
α) � 1.

For any x ∈ X , by (2.6), we find that there exists α0 ∈ A0 such that d(x, x0α0) < C0.
This, combined Lemma 2.2(i), further implies that

μ(B(x, 1)) ∼ μ(B(x0α0 , 1)) � 1

and hence finishes the proof of Corollary 4.2. ��
At the end of this section, we establish a equivalence characterization of the so-

called Ahlfors regular space via Theorem 1.1.

Corollary 4.3 Let (X , d, μ) be a space of homogeneous type with upper dimension ω,
η ∈ (0, 1] as the same in Lemma 3.1, and θ ∈ (0, η

ω
). Then the following statements

are equivalent.

(i) X is an Ahlfors regular space: there exists a constant C ∈ [1,∞) such that, for
any x ∈ X and r ∈ (0,∞),

C−1rω ≤ μ(B(x, r)) ≤ Crω. (4.2)

(ii) lipθ (X ) = Cθω(X ) with equivalence quasi-norms, where

Cθω(X ) := {
f ∈ C(X ) : ‖ f ‖Cθω(X ) < ∞}

with, for any f ∈ C(X ),

‖ f ‖Cθω(X ) := sup
x, y∈X , x 	=y

| f (x) − f (y)|
[d(x, y)]θω

+ ‖ f ‖L∞(X ).
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Proof We first show (i) ⇒ (ii). To this end, suppose that f ∈ lipθ (X ). By Lemma 2.5
and (4.2), we find that, for any x ∈ X ,

| f (x)| � ‖ f ‖lipθ (X ),

and, for any x, y ∈ X with x 	= y,

| f (x) − f (y)| � ‖ f ‖lipθ (X )[V (x, y)]θ � ‖ f ‖lipθ (X )[d(x, y)]θω.

This further implies that f ∈ Cθω(X ) and ‖ f ‖Cθω(X ) � ‖ f ‖lipθ (X ). On the contrary,
assume that f ∈ Cθω(X ) and B := (xB, rB) for some xB ∈ X and rB ∈ (0,∞). If
rB ∈ (1,∞), then, by Definition 2.4 and (4.2), we have

MB
θ ( f ) = ‖ f ‖L∞(B)

[μ(B)]θ � ‖ f ‖L∞(X ) ≤ ‖ f ‖Cθω(X ). (4.3)

If rB ∈ (0, 1], then, for any x, y ∈ B with x 	= y, d(x, y) ≤ 2A0rB . From this and
(4.2), we deduce that, for any x, y ∈ B with x 	= y,

| f (x) − f (y)| ≤ ‖ f ‖Cθω(X )[d(x, y)]θω � ‖ f ‖Cθω(X )r
θω ∼ ‖ f ‖Cθω(X )[μ(B)]θω

and hence
MB

θ ( f ) � ‖ f ‖Cθω(X ),

which, combined with (4.3), further implies that f ∈ lipθ (X ) and ‖ f ‖lipθ (X ) �
‖ f ‖Cθω(X ). This finishes the proof of (i) ⇒ (ii).

Next, we show (ii) ⇒ (i). By [41, Theorem 6.15] and [23, Theorem 7.4(i)], we
conclude that, for any k ∈ Z+ and β ∈ Gk ,

∥∥∥ψk+1
β

∥∥∥
lipθ (X )

∼
∥∥∥ψk+1

β

∥∥∥
Ċθω(X )

∼ δ−kθω
[
μ(Qk+1

β )
]− 1

2
. (4.4)

On the other hand, from Theorem 1.1, we infer that, for any k ∈ Z+ and β ∈ Gk ,
∥∥∥ψk+1

β

∥∥∥
lipθ (X )

∼
[
μ(Qk+1

β )
]− 1

2−θ

.

This, together with (4.4), further implies that, for any k ∈ Z+ and β ∈ Gk ,

μ(Qk+1
β ) ∼ δkω. (4.5)

Using this and [18, Corollary 3.4], we deduce that, for any x ∈ X and r ∈ (0,∞),

μ(B(x, r)) � rω. (4.6)
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Moreover, applying an argument similar to that used in the proof of [42, Lemma 2.9]
and (4.5), we have, for any k ∈ Z+ and α ∈ Ak ,

μ(Qk
α) � δkω

and hence, for any α ∈ A0,

μ(B(x0α, 1)) ∼ μ(Qk
α) � 1.

By this, Lemma 2.6(iii), and X k ⊂ X 0 for any k ∈ Z \ Z+, we obtain, for any
k ∈ Z \ Z+ and α ∈ Ak ,

μ(Qk
α) ≤ μ(B(xkα,C#δ

k)) � δkμ(B(xkα, 1)) � δk,

which, combined with [42, Lemma 2.9], further implies that for any x ∈ X and
r ∈ (0,∞),

μ(B(x, r)) � rω.

This, together with (4.6), finishes the proof of (ii) ⇒ (i) and hence that of Corollary
4.3. ��
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