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Abstract

In this article, the author establishes a wavelet characterization of inhomogeneous
Lipschitz space lip, (X') via Carleson sequence, where X’ is a space of homogeneous
type introduced by R. R. Coifman and G. Weiss. As applications, characterizations of
several geometric conditions on &, involving the upper bound, the lower bound, and
the Ahlfors regular condition, are obtained.
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1 Introduction

As very fundamental function spaces, (inhomogeneous) Lipschitz spaces permeate
both pure and applied disciplines. Their significance extends ubiquitously across
diverse mathematical domains, such as ordinary and partial differential equations,
measure-theoretic analysis, and nonlinear functional analysis, as well as geometric-
topological contexts including metric geometry, fractal theory, and topological
dynamics. Beyond theoretical mathematics, these functions demonstrate remarkable
versatility in computational science, finding essential applications in image processing
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algorithms, search engine optimization architectures, and stability analysis of machine
learning models.

During the 1970s, Coifman and Weiss [13, 14] introduced the groundbreaking con-
cept of spaces (X, d, n) of homogeneous type (see Definition 2.1 below), a framework
extending classical Euclidean analysis to general metric measure spaces. This inno-
vation catalyzed profound investigations into Lipschitz spaces over such structures.
In [38], Macias and Segovia made contributions by elucidating the geometric struc-
ture of X’ and unifying several definitions of Lipschitz functions on these spaces. In
2020, Zheng et al. [46] established the Littlewood—Paley characterization of Lipschitz
spaces on Ahlfors regular spaces. Later, Li and Zheng [31] obtained the bounded-
ness of Caldron—Zygmund operators on Lipschitz spaces. Motivated by the advent of
wavelets system constructed in [2], Liu et al. [36] developed an wavelets characteri-
zation of homogeneous Lipschitz spaces. On the other hand, He et al. [22, Definition
2.7] introduced a new kind of approximations of the identity with exponential decay,
a pivotal tool to establish (in)homogeneous continuous/discrete Calderén reproduc-
ing formulae on X. Building on this foundation, He et al. [21] obtained a complete
real-variable theory of atomic Hardy spaces on X'. Recently, based on the concept of
inhomogeneous approximation of the identity with exponential decay, He et al. [25]
established several characterizations of local Hardy space 47 (X)) and showed that the
dual of 27 (X) is the inhomogeneous Lipschitz space lip; ,,,_; (X). We refer the reader
to [10, 11, 32, 42, 43] for more recent progress on the topic of (local) Hardy spaces
and their duals on spaces of homogeneous type.

Theoretically, an important significance of Lipschitz spaces lies in their role as the
dual of Hardy-type spaces. Thus, the products of functions in Hardy spaces and Lips-
chitz spaces have also garnered significant research interest. Inspired by the progress on
geometric function theory (see, for instance, [1]) and the nonlinear elasticity (see, for
instance, [3, 39]), Bonami et al. [8] pioneered the investigation into bilinear decomposi-
tions involving products of functions in Hardy spaces and Lipschitz spaces. Subsequent
developments by Bonami and Feuto [5, 15] established the linear decomposition of
product of functions in H”(R") and its dual space. Concurrently, Li and Peng [33]
obtained a linear decomposition of product of functions in H Ll (R™) and its dual space
BMO¢r (R"), where L := —A + V is a Schrodinger operator; see also Ky [29] for a
bilinear version. In the context of local Hardy space #” (R"), Cao et al. [12] established
a bilinear decomposition of products for functions in 27 (R") and its dual spaces with
p € (0, 1], which was further refined by Yang et al. [44]. In [44], Yang et al. obtained
alternative bilinear decomposition of products for functions in A7 (R") and its dual
spaces with p € (0, 1), which was shown to be sharp in the dual sense. Moreover,
using this bilinear decomposition, Yang et al. [44] obtained some div-curl estimates.
These results of bilinear decomposition also play key roles in the estimates of weak
Jacobians (see, forinstance, [6, 7]) and commutators (see, for instance, [28, 34]). These
works further inspire many new ideas in the research of nonlinear partial differential
equations; see, for instance, [8, 27, 30] and their references therein for more details.
Recent advances in (bi)linear decomposition theory for (local) Hardy space products
and their duals continue to emerge, as documented in [4, 9, 17, 35, 37], highlighting
the enduring vitality of this research direction.
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Notice that wavelet characterization for (inhomogeneous) Lipschitz spaces plays
a key role when analyzing products of functions in (local) Hardy spaces and their
duals. This naturally raises an question: Can inhomogeneous Lipschitz spaces on
general spaces of homogeneous type admit analogous wavelet characterizations? The
main target of this paper is to give an affirmative answer. Precisely, we develop a
wavelet characterization of the inhomogeneous Lipschitz space lip, (X) via Carleson
sequence, where w is the upper dimension in 2.3, n is the smooth index of wavelets
in Lemma 3.1, and L%(X ) is the collection of all measurable functions f on X such
that f1z € L?(X) for any ball B C X.

Theorem 1.1 Let w be as in (2.3), n € (0, 1] be as in Lemma 3.1, and 6 € (0, n/w).
Then, for any f € L%(X ), the following statements are equivalent:

(i) f € lipy(X);

(i)
F= (1000l + 3 3 (roukt) st
acAy k=0 BeGy
in L%(X) and
1 2
£l = stgo W Z Kf ¢2>

{acAg:09CO}

+i Z Kf, w§+l>‘2 < 0.

k=0{peGy: 0 co)

D=

Moreover, there exists a constant C € [1, 00), such that

CMIf e < 1 Mipy vy < CILf I

This result crucially eliminates dependencies on the reverse doubling condition
of the measure and the metric condition of the quasi-metric under consideration.
Moreover, using this characterization, we discuss several geometric conditions on X,
involving the upper bound, the lower bound, and the Ahlfors regular condition, and
obtain some equivalence characterizations.

The organization of the remainder of this article is as follows.

In Section 2, we first recall some basic preliminaries on spaces of homogeneous
type, inhomogeneous Lipschitz spaces, dyadic cube system established in [26], spaces
of test functions, and spaces of distributions. We show that all test functions are
pointwise multipliers on the inhomogeneous Lipschitz spaces; see Proposition 2.8
below.

Section 3 is devoted to proving Theorem 1.1. To this end, we first recall the
wavelets system obtained in [2]. Using theses wavelets, we establish an equiva-
lence characterization of imhomogenous Lipschitz spaces via Carleson sequences.
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Differently from the proof of [12, Theorem 2.8] on Euclidean spaces R", the relation
lipg (X) = F2’(X) = C*?(X) may not holds true in the general setting of spaces of
homogeneous type; see Corollary 4.3 below. To overcome this, we fully use the expo-
nential decay of the wavelets to obtain that the integrals of the products of functions
in lip, (X)) and wavelets also have enough decay; see Proposition 3.5 below.

In Section 4, we give some applications. As corollaries of Theorem 1.1, we develop
three equivalent characterizations of geometric conditions on X, involving the upper
bound, the lower bound, and the Ahlfors regular condition. Corollary 4.3 extends
results in [42, Theorem 3.2] to the inhomogeneous version.

Finally, let us make some conventions on notation. Throughout this article, Ag is
used to denote the positive constant appearing in (2.1), w is used to to denote the upper
dimension in (2.3), and n is used to denote the smoothness index of wavelets in Lemma
3.1. Moreover, ¢ is a small positive number coming from the construction of the dyadic
cubes on X’ (see Lemma 2.6 below). We use C to denote a positive constant which
is independent of the main parameters involved, but may vary from line to line. The
symbol C(, g,...) denotes a positive constant depending on the indicated parameters
a, B, ....The symbol A < B means that A < CB for some positive constant C,
while A ~ Bmeans A < B S A If f < Cgand g = hor g < h, we then write
f<Sg=horf <g<h.Foranyset E C X, 1g means the characteristic function
of E. For any set F, #F denotes its cardinality.

2 Inhomogeneous Lipschitz Spaces on Spaces of Homogeneous Type

In this section, we mainly investigate the inhomogeneous Lipschitz spaces lip, (') on
spaces of homogeneous type, including the relation between lipy (X') and distributions
spaces. Moreover, we establish an equivalent characterization of lip, (X') via Carleson
sequences. Let us first recall the concept of space of homogeneous type in the sense
of Coifman and Weiss [13, 14].

Definition 2.1 Let X’ be a non-empty set, d a non-negative function defined on X' x X,
and p ameasure on X. (X, d, ) is called a space of homogeneous type provided that
d and p satisfy the following conditions:

(D forany x,y,z € &,

(i) d(x,y) =0if and only if x = y;
(i) d(x,y) =d(y, x);
(ii1) there exists a constant Ag € [1, co0), independent of x, y, and z, such that

d(x,z) < Aold(x,y) +d(y,2)]; 2.1
(IT) there exists a constant C € [1, co) such that, for any ball B C &,

nw(2B) < Cu(B), (2.2)
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where, the ball B, centered at xp € X with radius rg € (0, 00), of X is defined
by setting
B:=B(xg,rg) :={x e X: dxp,x) <rp}

and, for any 7 € (0, 00), tB := B(xp, trp).

Observe that, for u(X) < oo, He et al. [25, Proposition 6.5] showed that
H?(X) = h?(X) with equivalent norms. By the duality theory of H” (X’) and h? (X),
we know that homogeneous Lipschitz spaces coincide with inhomogeneous Lipschitz
spaces if u(X) < oo. In [36, Theorems 3.6, 3.7, and 3.8], Liu et al. established the
wavelet characterization of homogeneous Lipschitz spaces. Thus, concentrating on
inhomogeneous Lipschitz spaces, in what follows, we always assume that u(X) = oo.
Note that diamX = oo implies u(X) = oo (see, for instance, [40, Lemma 5.1] and
[2, Lemma 8.1]). Therefore, under the assumptions of this article, u(X) = oo if and
only if diamX = oco. For any x € X, we also assume that the balls {B(x, r)},¢(0,00)
form a basis of open neighborhoods of x. Moreover, we also assume that p is Borel
regular, that is, all open sets are measurable and every set A C X is contained in a
Borel set E satisfying that ©(A) = w(E). Forany x € X andr € (0, 00), we suppose
that w(B(x,r)) € (0,00) and u({x}) = 0. Let

Cqy = sup u2B)/u(B).
ball BCX

Then it is easy to prove that C(y) is the smallest positive constant satisfying (2.2).
Moreover, (2.2) further implies that, for any ball B and any A € [1, 00),

ROB) < Cuyr®u(B), 2.3)

where w := log, C,) is called the upper dimension of X.

The following lemma includes some useful estimates related to the measure of
balls; see, for instance, [20, Lemma 2.1] for more details (see also [22, Lemma 2.4]).
For any r € (0,00) and x, y € X with x # y, let

Vi(x,y) = uw(B(x,d(x,y))) and V,(x) := n(B(x, r)).

Lemma2.2 (i) Letx,y € X withx # yandr € (0,00). Then V(x,y) ~ V(y, x)
and

Vi) + V() + Ve, y) ~Ve(x) +Vx,y) ~ V() + Vix,y)
~u(Bx,r+dx,y))).

Moreover, if d(x,y) < r, then V.(x) ~ V,(y). Here all the above positive
equivalence constants are independent of x, y, and r.

(ii) Lety € (0, 00). There exists a positive constant C such that, for any x| € X and
r € (0, 00),

1 r 4
d C.
/X Vo) + Vi, y) [r+d(x1,y)} ) =
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(iii) There exists a positive constant C such that, for any x € X and R € (0, 00),

1 B
du(y) <C.
/{zeX: dx,0)=R} V (X, ) [d(x, )’)}

On the ratio of measures of two balls, we have the following lemma.

Lemma23 Letx,y € Xandry,r € (0,00). If r1 +d(x,y) > r, then

w(B(x,r1)) < A9 [n +d(x,y)r.
u(B(y, 1)) r

Proof Letx,y € X and r{, rp € (0, 00). By (2.1), we find that, for any z € B(x, ry),
d(z,y) < Aold(z, x) +d(x, y)] < Aolr1 +d(x, y)],

which further implies that

d 9
B(x,r1) C B(y, Aolr1 +d(x,y))) =B <y, AOL(X))),2> .

rn

This, together with (2.3), further implies that

w(B(x,r1)) < A

d(x, )%
[M} u(B(y,r2)),
)

which completes the proof of Lemma 2.3. O

Now, we recall the concept of inhomogeneous Lipschitz spaces on spaces of homo-
geneous type. For any g € [1, oc], the set L%(X ) denotes the collection of all
measurable functions f on & such that f1p € L9(X) for any ball B C X. For
any { fulnen C LE(X) and f € LE(X), if, forany B C X,

lim || f, — fllLay =0,
n—oo

then we say that { f,, },en converges to f in L%(X)-

Definition 2.4 For any B := B(xp,rp) C X,0 € (0, 1),and f € LF(X), let

[fGx)—fDI .
S e reeO
ME(f) =
| fllL(B) i |
—[M(B)](’ ifrg € (1, 00).
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The inhomogeneous Lipschitz spaces lipy(X) is defined by setting

lipg(X) := 1 f € LEX) < [ fllipycv) = sup  ME(f) < oo} .
ball BCX

By Definition 2.4, we find that, for any f € lipy(X), f is continuous. Moreover,
we have the following properties of lipy (&X).

Lemma 2.5 Let 6 € (0, 1). Then there exists a positive constant C such that, for any
x e X, re(l,00),and f € lipyg(X),

| £ O] < Cll S iy ) [V ()17, 2.4

and, for any x,y € X withx # vy,

|£00) = FWI = ClLS gy [V (e, 1. (2.5)

To prove Lemma 2.5, we need the following dyadic cube system established by
Hytonen and Kairema in [26, Theorem 2.2].

Lemma 2.6 Letcy, Cy € (0, 00) and § € (0, 1) be such that ¢y < Cy and 12A8C08 <
co. Assume that Ay, a set of indices for any k € Z, and a set of points, {xéj t ke
Z,a € Ar} C X, have the following properties: for any k € Z,

d(xg,xg) > cos* ifa # B, and mi‘rll d(x,xg) < C08kfor anyx € X. (2.6)
oEAL

Then there exists a family of sets, {Q’é ck €Z,a € Ay}, such that

() foranyk € Z, {QX = a € Ay} is disjoint and Uge, ok = x;
(ii) if I,k € Z and |l < k, then, for any o € A; and B € Ay, either Q’;g C Qfx or
Q%N Qy =0;
(iii) for any k € Z and o € Ay, B(xg,c#(Sk) - Q§ - B(xg, Cy85), where cy =
(3A%)~'co and Cy := max{24(Co, 1}.

Points in {xffl t keZ,a € Ay} C X are called dyadic points. For any k € Z, let
xk = {xi: aeAk}.

By the construction of dyadic points in [26, 2.21], we may assume that X is countable
and X* ¢ X**! for any k € Z. For any k € Z, define

yk — Xk-i—l \Xk

and
Gy = {oc € Agy1: yg = xéj“ € y"}.
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For any x € X, let

d(x, Y% = inf d(x, y).
yeYk

Next, we prove Lemma 2.5.

Proof of Lemma 2.5 Notice that f is continuous. To show (2.4), it suffices to prove that
(2.4) holds true for almost every x € X. For this purpose, assume that

E:={xeX:|f(0)] > Cllflip,cx,)[V,(0)I"} and u(E) >0, (27)
where C is determined later. Find ko € Z such that C48K < r where Cy is the same
as in Lemma 2.6(iii). For any o € Ay, let Ey := EN B(xg", r). Then, by (i) and (ii)

of Lemma 2.6, we have E = Ua Ay, E,. From this, the fact that Ay, is countable,
and (2.7), we deduce that there exists a9 € Ay, such that

1 (Eag) > 0. 238)

By (2.1), we conclude that, for any y € B(xﬁ?), r)yandx € Ey,
d(y,x) < Ao [d (y,x{;g) +d (xgg,x)] < 2Aqr,

which further implies that B (x{.ig, r) C B(x,2Apr). Combining this and (2.2), we find
that, for any x € Eq,

" (B (x{;g, r)) < Clo A0 1(B(x. 1)). (2.9)

This, together with (2.7), further implies that, for any x € Ey,,

£ > ccg@an ™ [ (B (€. 1)) ] 1 gy

Using this and (2.8), we infer that
4
1 sy > CCG0@AD T [ (B (5. 7)) ] W0 @10)

Choose C :=2C{  (2A40)"®. Then (2.10) implies that

I oy

e oo 2 hipg)-
1w (BGE. rF 17 Mg, ()

I/ hip, (x) =

This is a contradiction and hence @ (E) = 0. This show that (2.4) holds true for almost
every x € X and finishes the prove of (2.4).
To prove (2.5), we consider the following two cases on d(x, y).
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Case 1. d(x, y) < 1. In this case, since d(x, y) < 1, if follows that there exists

N € N such that
N+1

N

Let By := B(x, NTHd(x, ¥)). Then x, y € By. By (2.11), Definition 2.4, (2.3), and
(N +1)/N <2, we obtain

d(x,y) < 1. (2.11)

£ ) = FO = 1S Ntipy 0y [t (BN S 1 f i, ) [V (e, )T

This is the desired estimate.
Case 2. d(x, y) > 1.In this case, applying (2.4), Lemma 2.2, and (2.3), we deduce
that

1FG) = fFOI = I FOI+ £
S Mipy 20y [V20OT? + 1L f lhipy ) [V2 ()17
S f llipy 0y [V2 () + Vo (0) + V (x, )17
S f llipy 0y [V (e, 17

This is the desired estimate. Combining the above two cases, we finish the proof of
(2.5) and hence Lemma 2.5. m]

Now, we recall the concepts of test functions and distributions on X’; see, for
instance, [19, 20]. For any y € (0, 00), the function P, with Polynomial decay is
defined by setting, for any x, y € X and r € (0, 0c0),

1 r v
P,(x,y;r) = . 2.12
= v ) 212
Definition 2.7 (test functions) Let xg € X, 8 € (0,1], and r,y € (0,00). If a
measurable function f on X satisfies that there exists a positive constant C such that

(i) forany x € &,
[f ()] = CPy(xo, x;7); (2.13)

(ii) forany x,y € X satisfying d(x, y) < (2A¢)~'[r + d(xo, x)],

d(x,y)

B
m} PV(X(),X;}"), (214)

[f(x) = fOI = C[
where, forany x, y € A and r € (0, 00), P, is the same as in (2.12), then f is called

a test function of type (xo, 1, B, ¥).

The symbol G(xg, r, B, y) denotes the collection of all test functions of type
(x0. 7, B.y). For any f € G(xo. 7, B. ). its norm | fgeo.r.p.p) in GGxo. 7, B. y)
is defined by setting

1 I GGorp.y) = Inf{C € (0,00) : (2.13) and (2.14) hold}.
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Observe that, for any x1, xo € X and r1, 2 € (0, 00),

Gx1,r1,B,7) =G(x2, 12, B,7)

with equivalent norms while the positive equivalence constants may depend on x1, x2,
r1, and ;. For a fixed point xog € X, the space G(xo, 1, B, ) is simplified by G(8, y).
Usually, G(8, y) is called the spaces of test functions on X.

Fix € € (0,1] and B, ¥ € (0, €]. The symbol G (B, y) denotes the completion of
the set G(e, €) in G(B, y) with the norm of G (B, y) defined by setting || - ||g5(ﬁ,y) =
I - lg(s,y)- The dual space (G5 (B, y))’ is defined to be the collection of all continuous
linear functionals from G (B, y) to C, equipped with the weak-x topology. Usually,
(gg (B, y)) is called the spaces of distributions on X .

The following proposition indicates that all test functions are pointwise multipliers
on the inhomogeneous Lipschitz space.

Proposition2.8 Letwbeasin(2.3),0 € (0, 1/w], B € [w, 1], and y € (0, 00). Then
there exists a positive constant C such that, for any ¥ € G(B, y) and f € lipy(X),

1V f llip, ) < ClY GBS lltip, () -
Proof Without loss of generality, we assume that || f lipyxy = 1. Let B :=

B(xp,rg) C X. We consider two cases on .
Case 1. rp € (1, 00). In this case, by G(8, y) C L°°(X), we have, for any x € X,

[V ) f OO = W llLoe )| f O = 1 NG, [f (I

which further implies that

I fllLo=(B)
[n(B)1?

Il f I Loo(B)

< W¥llze (B

< ¥ ligp.) 1S lipy ) - (2.15)

Case 2. rp € (0, 1]. In this case, for any x, y € B with x # y,
d(x,y) < Aold(x,xp) +d(xp,y)] <2Aorp
and hence V (x, y) < u(B). Moreover,

Y ) fx) =y =Y &) fx) =) f)+ ¥ ) fx) =) f)l
<) =y + DI &) = fF()I
=L+ D

A

For I, by (2.5), we find that

L S lgen Ve W17 S I llge. )[BT (2.16)
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To estimate I, fix xo € X. Then, from Lemma 2.5, we deduce that

I < [ (x) =y DI (x) = fxo)l + |f (o)l
S =WV e Xl + 1}

In what follows, we consider two subcases on d(x, y).
Case 2.1. d(x,y) > (2A¢) '[d(x, x0) + 1]. In this case, by Lemma 2.2(i), we
conclude that

[V (x, x0)1% + 1~ [V(x, x0) + 11° ~ [1(B(x, d(x, x0) + 1)1’
S Iu(B(x, d(x, y)N1° ~ [n(B)1.

Thus,

IS UYL+ IO NIB S 1Y lige. ) B, (2.17)

Case2.2.d(x, y) < (2A40) ' [d(x, x0) + 1]. In this case, by Lemmas 2.2(i) and 2.3,
we obtain

[V (x, x0)1” + 1~ [u(B(x,d(x, x0) + 1)1’

d(x, xo) + 17%¢ ) [d(x,xo)+1
< | 22T Vix, < | 220
“[ d(x. ) } VeS| a6y

Using this, (2.14), and B € [fw, 1], we infer that

Ow
} (B,

d , /3700)
I S llges.y) [%] [u(B)]°

S llGep.p (B’
Combining this, (2.16), and (2.17), we conclude that, for any x, y € B,

V() f(x) =¥ fO)]
[w(B)1?

S Y llge.y)-

which, together with (2.15), further implies that

1V f hipyxy < ClY llges.y)-
This finishes the proof of Proposition 2.8. O

Proposition 2.9 Let w be as in (2.3), 6 € (0,00), B € (0, 1], and y € (Bw, 00). Then
there exists a positive constant C such that, for any € G(B, y) and f € lipy(X),

I 9 = Clivlig . LS Tipy - (2.18)
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Proof Without loss of generality, we assume that || f'{|}p, () = 1. To show this propo-
sition, fix xo € &, and, for any f € lip,(X) and ¢ € G(B, y), write

V SO (x)du(x)
X
5/le(X)—f(XO)IIW(X)IdM(X)JrIf(Xo)I[XW(X)IdM(X)
=141

For I, from (2.5) and (2.13), we deduce that

LS Wl [ VGl Py oo 1 dieo,
where P, is as in (2.12). Notice that, by Lemma 2.2(i) and (2.3),

V(x, x0) ~ w(B(xo, d(x, x0))) < u(B(xo,d(x,x0) + 1) 5 [d(x, x0) + 1],

which, combined with Lemma 2.2(ii) and y € (Qw, 00), further implies that

1< 1Wllaes. /X Py g0, 30: D) i) < [V (s

For II, using (2.4), (2.13), and Lemma 2.2(ii), we infer that

IS 1 llge.y /X Py (x, x0; Ddpx) S 1Y lges.y)-

This, together with the estimate of I, finishes the proof of Proposition 2.9. O
As a direct corollary of Proposition 2.9, we have the following conclusion.

Corollary 2.10 Let w be the same as in (2.3), 6 € (0, 1/w), n € (Bw, 1], B € (0, n],
and y € (Bw, n). Then lipy(X) C (gg (B, y)) continuously.

3 Proof of Theorem 1.1

Now, we establish an equivalence characterization of lip, (&X') via Carleson sequences.
Let us recall the wavelet systems in [2, Theorems 6.1 and 7.1 and Corollary 10.4]. For
any k € Z, denote by Vi C L2(X) the closed linear span of spline functions in [2].
Lets € (0, 1]and v € (0, 00). For any k € Z, the function Ey with exponential decay
is defined by setting, for any x, y € & and r € (0, c0),

d , K
Ei(x,y;r) :=exp (—; [ ();ky)i| ) . 3.1)
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Lemma 3.1 There exist constants s € (0, 1], n € (0, 1), C,v € (0, 00), and wavelet
functions {¢k . k € Z,a € Ay} satisfying, for any k € Z and a € Ay,

(i) foranyx € X,
k ]2 k
‘qba(x)‘ <cC [Vsk(xa)] Ey (x,xa; 1);
(i) for any x, x' € X withd(x, x) < &,

<C [Vak(x{;)]_l/z [d(x’x/)]n Eq (x,x{;; 1) :

Ph(x) — Pl (x) 7

where Ey is the same as in (3.1). Moreover, for any k € 7Z, the functions {qﬁg}k form
an orthonormal base of V.

Lemma 3.2 There exist constants s € (0, 1], n € (0, 1), C,v € (0, c0), and wavelet
functions {wE‘H . k € Z, B € Gy} satisfying, for any k € Z and B € Gy,

(i) forany x € X,
v o] < [ve ekt 12 (x sy 1).
B = sk (xg k(X xgm s 1)
(i) forany x,x" € X withd(x, x") < 8%,

—1/2Td NN
< Ve ] [ (’;’kx)} Ex (x.xft51);

it — vt e

(iif)
/ Yt () duix) =0,
x

where Ey is the same as in (3.1). Moreover, the functions {wg}k,aform an orthonormal
base of L2(X) and an unconditional base of LP(X) for any given p € (1, 00).

Remark 3.3 (i) The constant  in Lemmas 3.1 and 3.2 comes from the construction
of random dyadic cubes in [2], which is very important because it characterizes
the smoothness of the wavelets. Moreover, from the construction of {wg}k, g and

{qbé}k,a in [2], we deduce that, for any ko € Z, {¢§O}aeAk0 U {wg ckelZ, k>
ko, and B € G} form an orthonormal base of L%(X). Moreover, for any k,l € Z,
a € Ag,and B € G,

/X Yt (gl () du(x) = 0.

(i1) Using the wavelet systems in Lemmas 3.1 and 3.2, He et al. [22] introduced a kind
of approximations of the identity with exponential decay (for short, exp-ATI) and
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obtained new Calder6n reproducing formulae on X', which proves necessary to
establish various real-variable characterizations of Hardy spaces. Motivated by
this, He et al. [21] developed a complete real-variable theory of Hardy spaces on
X including various real-variable equivalent characterizations, which solves an
open problem on the radial characterization of the Hardy space on X raised in
[14], and the boundedness of sublinear operators. We refer the readers to [16, 24,
45] for more applications of exp-ATTs.

(iii) The constants s and v in Lemmas 3.1 and 3.2 are the same; see [2, Theorems 6.1
and 7.1 and Corollary 10.4] for more details. Thus, in what follows, we always
use s and v to denote the same constant in Lemmas 3.1 and 3.2.

Now, we establish an equivalent characterization of imhomogenous Lipschitz
spaces via Carleson sequences. To this end, let

:G{Qﬁ:aeAk}.
k=0

Proposition 3.4 Let w be asin (2.3), n € (0, 1] be as in Lemma 3.1, and 0 € (0, n/w).
Then there exists a positive constant C such that, for any f € lipy(X),

1 2
- ’¢2
ochy | T@I# | AOZQ:QCQ}K’C )

1

2

+i ) ‘(f I/fkﬂﬂ < ClIf lhipy2)-

k=0 pegy: 0} co)

To prove Proposition 3.4, we need the following lemma which contains some useful
estimates on the pair (f, ¢a) and (f, 1//k+1) Forany B C X and f € LOBO(X), let

fB = / fx)dp(x).

w(B)

Lemma3.5 Let 6 € (0,00) and B := B(xp,rp) C X. Then there exists a positive
constant C such that, for any k € Z, o € Ay, and f € lipy(X),

(i) in general,

[ 176 = fatho] duco
X

Sk +d( i 5) Ow
SC||f||lip9(X)[M(B)]9m|:l+%} |
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(i) ifrp € (1, 00), then

8k d ’ k Ow
/X £k 0| dieo) = CIl g, o[BIy Ve () [1 + WW} ;

B

(i) if 8% < rp and d(xp, xX) < 2trp for some v € [1, 00), then

/ £ @) = fal |$00)| duco)
{xeX:d(xp,x)>4tAgrp}

= Cllf g, ol By Vi b exo -3 (52) ]

(iv) if ¥ <rp, rp € (1,00), and d(xp, xX) < 2trp for some © € [1, 00), then

/ £ @I |#0o)| i)
{xeX:d(xp,x)>4t Agrp}

= Cllf g, ol By Vi b exp -3 (52) ]

(v) items through (i) to (iv) still hold true if ¢§ and x§ are replaced, respectively, by
wk+1 and xk+1

Proof Without loss of generality, we assume that || f ll1ipy () = 1. We first prove (i).
By (2.5), we have, for any x € X,

|f(x) — fB] <ﬁ/ |f () = FDldu(y)

S —— [ Ve, P dry). (3.2)
(B) /B g Y
From (2.1), we deduce that, forany y € B and z € B(x,d(x, y)),

d(z,xp) < Aold(z,x) +d(x,xp)] < Aod(x,y) + Aod(x, xp)
< Adld(x, xp) +d(xp, )] + Aod (x, xp)
< (Ag + Ao) d(x,xp) + Akrg.

which further implies that B(x, d(x, y)) C B(xg, (A3 + Ao)d(x,xp) + Adrp). By
this, we conclude that, for x € X and y € B,

Vi) < [M} u(B). (33)

B

By this, (3.2), and Lemma 3.1(i), we obtain
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/ 1) — [l
X

d(x, o

where Ey is as in (3.1). To estimate the above integral, write

Ow
/ |:rB —i—d(x,xB)] 1 E (x,xg; 1) Ao
X

re V(;k(xéj)
d(x, bo
:/ |:rB +d(x XB)] —Ej (x,xf;; 1) dp(x)
B(xk,rp+d(xk,xp)) r Vik (xg)

o
X\B(xk,rp+d(xk.xp))
=1 +1.

95 0)| dpcx)

We first estimate I;. Using (2.1), we infer that, for any x € B(xg, rg + d(xg, xB)),
d(x,xp) S d(x,xy) +d(xy, xp) S rp +d(xl, xp). (3.4)

From Lemmas 2.2(i) and 2.3, we deduce that, for any x € X,

1 1 V(xk, 8k +dxk, x))
Ve (xk) Ve (xb) + V(xk, x) Vi (xk)
1 sk +dxk, x)7”
Sy ] (35)
Vs (x5) + V(x£, x) 1)
Moreover, notice that, for any x € X and I" € (0, 00),
k st i
E ( X0 1) <|l=—1 . 3.6
AN ES |:5k+d(x§,x):| (5-6)
Combining this with I' := w + 1, (3.4), (3.5), and Lemma 2.2(ii), we find that
r +d(xk XB) b
L S [M} f P <x,x§; 51‘) du(x)
rp X
k Ow
< |:”B +d(xg, XB)i| ’ 37)
B

where P is as in (2.12) with y = 1. To estimate I, by (2.1), we conclude that, for
any x € X'\ B(xX, rg +d(xk, xp)),

rp +d(x,xp) Srp+dx, xb) +d(xk, xp) <dx, x5).
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This, together with (3.5), (3.6) with I' := 6w + @ + 1, and Lemma 2.2(ii), further

implies that
L (F 9"’/ d(x, x7% 1
2~ \s) Sl ek Vi (x5) + V (xk, x)

0 1
" sk +d(x§,x) ¢ 5k @tot
8k 8k +d(xk, x)

56\ sk
< <—> / P (x,xg; 8k) du(x) < (—)
rp X rp

Combining the estimates of I; and I, we obtain

/ ) = /3l
X

which completes the proof of (i).
Next, we prove (ii). Since rp € (1, 00), by (2.4) and (2.3), it follows that, for any
x e X,

dp(x)

Ow

¢+ d(xg, x5)77
rp ’

85 )| di(x) S 1B Vi (i) [1 +

2} 2} rg +d(x, xp) v
If O] S [u(B(x,rp)]” S [1(B)] | (3.8)
Using this, Lemma 3.1(i), and the estimates of I} and I, we infer that
[ 1rnfebeo] duco
S B’ Ve (x)
rg+d(x,xp) % 1 x
E Cxes 1) d
x /X[ - } T B (oadi 1) anc
8k+d ’ G144
< B Vi) [1 + #] .
B
This finishes the proof of (ii).
Now, we show (iii). By (3.2), (3.3), and Lemma 3.1(i), we find that
/ 1700 = fl @50 dpnco)
{xeX:d(xp,x)>4t Agrp}
rg +d(x, xp) 7%
S B\ Ve (xk) / [—}
i e {(xeX:d(xp,x)>4tAgrp} B
«—1 _E (x <k 1) du(x) (3.9)
Vi (xk) e ’ '
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Notice that, if 8% < rg and d(xp, xﬁ) < 2trp for some t € [1, 00), then, by (2.1),
we have, forany x € {x € X : d(xp, x) > 4t Aorp},

4tAgrp < d(xp. x) < Ao [d(xg, by + d(xk, x)]

< Ao [2n3 +d ek, x)] , (3.10)

which further implies that 2trp < d (xg, x) and hence
dx,x57° ! I:H:I-i- d(x, x5 3+ d(x, x57°
8k 3 8 48k 48k
1 Trg s d(x,xg) y T\
~ §{[5_k] +[ 46k +<§) ' G.1D

Moreover, from §F < rp and (3.10), we deduce that

rp+dxg) o rptd@oxy) T dOnxg)
rB rB ~ '

Applying this, (3.5), and (3.11), we infer that, for any x € {x € X : d(xp,x) >
4‘EA()VB},

d(x, fo
[rB +d(x XB):| —E| (x,xg; 1)
rB Vs (x2)
d(x, x5)7% | 8K+ d(xk, x)7?
sk Vs (xk) + V (xK, x) 5k

vV /TrB\* X s vt?
xexp[—g(a—k)]Ek(x,xa;3.4)exp —3'2x
V TrB § k. k
Sexp[—g (8_k> ]Pl ()C,)Ca,8 )

This, together with Lemma 2.3, further implies that

5.[90) [1+

d(x, fo
rg +dx xB)] Ey (x,xé;]) du(x)

/{xeX:d(xB,x)>4errB} |: rp V(Sk (xf.i)
V /TIrp\* V /Trg\*
<exp [—5 (8_") ]./X P (x,xg; 5k) du(x) <exp [_§ (8_") ] . (3.12)

Combining this and (3.9), we finish the proof of (iii).
We next prove (iv). By rp € (1, 00), (3.8), (3.2), (3.3), Lemma 3.1(i), and (3.12),
we have
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|f (0]

/ PL ()| o)
{xeX:d(xp,x)>4t Agrp}

fw
< B Ve ) /{ M}

xeX:d(xp,x)>41Agrp) [ s
X ——FE <x,xk; 1) du(x

TR o p(x)
v

SwEaehew X (52)].

which completes the proof of (iv).

Finally, in the proofs of (i) through (iv), we only use the size condition of ¢§ , which
ng also satisfies. Thus, repeating the arguments in the proofs of (i) through (iv), we
show that items through (i) to (iv) still hold true if ¢(’§ and x"f[ are replaced, respectively,
by 1//:;+1 and xg“. This finishes the proof of (v) and hence of Lemma 3.5. O

Now, we show Proposition 3.4.

Proof of Proposition 3.4 Without loss of generality, we assume that || f |1, (x) = 1. To
prove this proposition, fix Q € Dy. Notice that, for any Q € Dy, there exist kg € Z+
and o9 € Ay, such that O = Q],;%

We first show that

2
<1 (3.13)

1 > [re)

ko 11420
QI | o

If {o € Ag : Q0 C Q%1 =, then (3.13) holds true. If {o € Ag : Q0 C OK} # 0,
then, by Lemma 2.6(ii) and ko € Z., we find that, forany & € {@ € Ay : Qg - Qﬁ%},
either QX 0%o0r Q2N QK = . Thus,

0% = 0% and x% =0, (3.14)

@0 o o — Ta

From Lemma 2.6(ii) agagin, we deduce that {& € Ap : Qg C Qﬁ%} has only one
element &. To estimate |( f, ¢g) |, let B := B(xg, 2) and write

= ' f F)P2(x) dpu(x)
X

(7.42)

s/ 1f ) — f3l
X
=]+

8200 duo) + 17l [
X

92(0)| du(x)
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From Lemmas 3.5(i) and 2.6(iii) and (3.14), we deduce that

N e I

For J,, notice that, | fg| < || fllL~(g). On the other hand, using Lemmas 3.1(i), 2.2,
2.6(iii), and 2.3, we infer that

J,

seof a5 [ o (. 18:1) dnco

0
]% / Vd(x,xg)+1 ()
Vi(xd)

1
X Ey (x,x ; ) du(x)
Vi(xd) + V(x, x2) ¢

s[ved]’ [ 71 (ati1) aneo < [ w0

where Ej is as in (3.1) with k = 0 and Pj is as in (2.12) with y = 1. This, together
with Lemma 2.6(iii), Definition 2.4, (2.3), and (3.14), further implies that

1

LS Il [VieD]* < [u (QS)]H% .

Combining the estimates of J; and J,, we conclude that

=

1 > )

T AkoN11426
[1(Qap)] (e Ap:00c0l)

») 2
}51.

- {[M(Q(@;})]l-i_zg Kf’ ¢g>

This finishes the proof of (3.13).
Next, we show that

]1+2e Z > ’<f Wk“)‘z S L (3.15)

[e(
=0 peGi:0k 1 c o)
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For this purpose, write

=

> e

ko 1426
[1+(Qao)] =0 (peGi:04 o)

=

ko—1

e Do S T

[M(Q ) 0 (peGi:0ktc o)

> T e

ko 1 20
[ ( Qa1
k=ko 1pegr:0kt c o))

=:J3 4+ J4.

We now estimate J3. Let, if kg > 0,
= {0y ke (0, k-1 8 e G Of c 0l

and, if ko = 0, E := (0. If E = @, then J3 = 0. If E # ¢, we claim that E has
only one element. Indeed, assume (ki, 1), (kz, B2) € E. From Lemma 2.6(ii) and
the definition of E, we deduce that

Qk1+1 Q Qk2+1 and x/];iJrl _ x{;g _ xlléiJrl. (3.16)

Notice that xéi e YK and xéﬁ“ € Y*. By the definition of V¥, we find that, if

ki # ko, then Y¥1 N Y¥2 = ¢ and hence ng’l £ x%“. Therefore, k; = k» and
B1 = B2, which completes the proof of the above claim. Denote the only element in
E by (k, B). Then, by (3.16), we have

el A W w5

Let B| := (xé“, 6’2+1). Then, using Lemma 3.2(iii), (i) and (v) of Lemma 3.5, and
(3.16), we infer that
1

Ja = W ‘<f IBys 1ﬁ]f+1>’

1
< 0 |y (k+ly <
N[M(Q’é“)]ﬁe[ﬂwl)] (JC ) S L
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To estimate J4, let By = B(xao, 2C#6k0) with Cy as the same in Lemma 2.6(iii).
By Lemma 3.2(iii), we have

> x|

k=ko 1peGr:0kt c o))

<Y - fetasm o5

k=ko (peGy: 041 c 09}

o0
2
+y > ‘([f — B lx\(4a0B,)s ’»”EHM
k=ko (gegy: 01 c 0k}

=:J41+ J40.

For J4 1, notice that, by Definition 2.4, we have [ f — f,1144,B, € L2(X). From this,
Lemma 3.2, and (2.5), we deduce that

Jan < |Uf = fB.MaaB, Hizm

1 2
< / [ If(x)—f(y)ldu(y)} dp(x)
4A0B> I’L(Bz) By

1 ) 2
5/ [ [V(x, »] du(y)} dp(x)
4A0B> M(BZ) B>
< (BT,

For 14 2, since k > ko and Qk'H an, it follows that

sk < Cys%0  and d(x§+1 0y < Cys%0.

’0[0

By this, (iii) and (v) of Lemma 3.5, and Lemma 2.6(ii), we obtain

2v [ Cpsho\*
Jao Z Yo B Vg exp [ ;( 5 )]

k=ko (gegy: 0 c 0k

Cysko
~ [1(B2)] 292exp[ 3 ( S )} > wmegh

k=ko (BG4 c0))
< (B,

which, together with the estimate of J4 1, further implies that

s < 1.
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Combining the estimates of J3 and J4, we find that (3.15) holds true, which completes
the proof of Proposition 3.4. O

Proposition 3.6 Ler n € (0, 1] as the same in Lemma 3.1, 6 € (0, g). If a sequence

c:= {CO} U {ck+l} ccC
« aeAy B keZy,BeGy

satisfies that

1 o, v k+1[?
= A o B DR RO PRSP DI U
o {eeAo:09C 0} k=0 (pegi: 0} co)
- o, (3.17)

then

o0
D cubatd D g

acAy k=0 BeGyi

converges in L%(X ). Denote the limit by f. Then there exists a positive constant C,
independent of ¢, such that

I hipyxy < Cliclls.

To prove Proposition 3.6, we need several lemmas. We first recall the following
very useful inequality.

Lemma3.7 Forany 6 € (0, 1] and {a;}jen C C, it holds true that

0

o o

6
D lajl | =D sl
=1 j=1

j=

The following lemma comes from [36, Lemma 2.21], whose proof is still valid if
d only satisfies (2.1). We omit details here.

Lemma 3.8 There exists a positive constant C such that, for any b, ¢ € (0, 00), k € Z,

and x € X,
d(xk,x) ¢
Z exp <—b [;—k} <C.

ae Ay

Now, we show Proposition 3.6.

Proof of Proposition 3.6 Let B := (xp,rg) C X, we consider two cases on rp.
Case 1. rg € (1, 00). In this case, write
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oo
Y ey Y g

acAy k=0 Gy
0.0 0.0
= 2 ot + 2 cata
{eeAg:d(x9,xp)<2A0rp} {eeAg:d(x9,xp)>2A0rp}

o0
DI VR

k=0 (BeGrd (™ xp)<2A0rp)

(e.¢]
k+1_, k+1
+> ) 6V
k=0 (BeGrd (k™ xp)=240r5)

=F+F2+Fi3+ Fia.

For Fi 1, by (2.1) and Lemma 2.6(iii), we find that, for any @ € .4y such that
d(xg,xB) < 2Aprp and any y € Qg,

d(y,xp) = Ao d(y, x) +d(:D. xp) | < Ao(Cy +2A0)rs,
which further implies that Qg C B(xp, Ag(Cg + 2A¢)rp) and hence
{a € Ay:d(x0, xp) < 2A0r3} c {a € Ao: 0° C B(xp, Ao(Cy + 2A0)r3)} :

Using this, Lemma 3.1, (3.17), and Lemmas 3.7 and 2.6(ii), we infer that

1

2
IFi1 2y < > Ca
{aeAy:00CB(xp, Ao (Cy+2A0)rp)}
20+1 %
0
< llell ) [ncon)]
{aeAp:00CB(xp,Ag(C4+2A0)rp)}
- 0+
0
< el > 1(Q)
| {@eAy:0YCB(xp,Ao(Cy+2A0)rp)}

< el lu(B)1PTe.

For Fj 3, by (3.17) and Lemma 3.1(i), we have, for any x € B,

|F1200)] < >

{aeAy:d(x,xg)>2A0rp}

90x)|

0
Ca
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< lell > (1@ Eo (0. x:1).

{wcAo:d (x0,xp)>2A0r 5}

where Ej is asin (3.1) with k = 0. Observe that, since d(xg, xp) > 2Aprg, it follows
that, for any x € B,

2A0rp < d(x0, xp) < Ag [d(xg,x) +d(x,x3)] < Aod (%, x) + Agrg.  (3.18)

Thus, d(x,xp) <rg <d (xg, x), which, together with (3.18), further implies that
d(x2, xp) < 240d(x2, x).

From this and Lemmas 2.3 and 3.8, we deduce that, for any x € B,

FLa) 5 el > [100)] Eo (<2, x5 2 43)

{aeAg:d(x0,x)>2A0rp)

< lelllu ) 3 [1+aa, xB)]"“’ Fo (x2. x5 2 43

{aeAy:d(x9,xp)>2A0rp}

S llelll(B))’ 3 Eo (x0, x5: 241 43)

{aeAy:d(x9,xp)>2A0rp}

< lell«[e(B)1°

and hence 1
IFi 2028 < llell[m(B)1 T2,

Next, we estimate F 3. Applying (2.1) and Lemma 2.6(iii), we infer that, for any

ke€Zy,BeGysuchthatd(x;™, xp) < 2A0rp andany y € O,

d(y,xp) = Ao [d(y, x§™) +d (™ xm) | < Ao(Cy +240)rs,
which further implies that Q’/;*‘ C B(xg, Ao(Cs + 2A¢)rp) and hence

[BeGi:def xp) <240rm| {8 e Gi Of € Blxp, Ao(Cy +240)m) .
Using this, Lemma 3.2, (3.17), and Lemmas 3.7 and 2.6(ii), we infer that
1
2
ad 2
IF13l 200 < | D > ‘Cﬁ“‘
=0

k {ﬁegkid(xg+l,XB)<2AorB}
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_ 1
2
o0
K
= Z > Tl
k=0 {BeGr: 0t CB(xp,A0(Cs+2A0)rp)}
_ 1
2
o0
ke
= > > x4
| (e Ao:Q4NB (x5, Ao(Cy+2A0)rp) #0) k=0 (geG: 0k c 0Y)
_ 1
20+1
0
< el ) )]
| {eeAo:Q9NB(xp,Ao(C+2A0)rp)#V}
- 3+0
0
< el > ()
| {eeAp:Q9NB(xp,Ao(C+2A0)rp)#V}

< el u(B)1PT2.

Now, we estimate Fj 4. By (3.17) and Lemma 3.1(i), we have, for any x € B,

|Fraol <) >

k+l‘ ’wk-&-l(x)’
k=0 {pegrd(xit xp)=24075)

o0

SIS > [ ™] B (s

k=0 {pegrd(xit xp)=24075)

From d(x’;’l, xp) > 2Aorp, we deduce that, for any x € B,

,x;l).

2A0rp < d(k! xp) < Ao [d(xk+1 X) +d(x,x3)] < Aod (x5t x) + Aor,

which further implies that

k+1

d(x,xp) <rp < d(x ,X)

and hence
d()ckJrl xp) < 2A0d(xk+1,x).

By this and (3.19), we find that, for any x € B,

k+1
()C , XB) rB

dekt o > —L 04 F

4A¢ 2
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Using this, Lemmas 2.3 and 3.8, we deduce that, for any x € B,

- 6 Aot xp) oy ]
IFLa@l S llells Y > [M(QZH)] exp (_U[W+w

k=0 (pegp:d(xf ™! xp)=240r5)

00 d(xlﬁLI x ) fw
Sllelln®1’ ) > [1 + B}
}

B
k=0 (pegy:d(xf*! xp)=240rp

x Ex (xé“ 0¥l g8 )exp[ 2;11 (;—f)g]
o0 s
< lellu(B)’ ;Oexp [—2% (%) }

X Z Ey (xﬁ“, XB; 45+1Af))
{BeGri: d(JCH1 xg)=2Aorp}

< lellslw)1’

and hence .
IF1all 2 S llell[m(B)1P T2,

To summarize the estimates of Fp 1, F12, F1,3, and F] 4, we conclude that, for
almost everywhere x € B,

Z 00 (XH_Z ch+1wk+l(x)

acAy k=0 BeGy
converges. Letting
o
Fim XY Y e @20
acAy k=0 peGy

then we find that (3.20) converges in L%(X ) and, for any B C X with rp € (1, 00),

1120 S lelllu(BYIPS. 3.21)

Case 2. rp € (0, 1]. In this case, write, for any x € B,

fo =Y et —ghen]+ Y chobin

acAy aeAy

+ Z Z k+lwk+1 (x)

{(keZy:8k<rp)} {ﬁegk:d(xg“ xp)<2Aorp)

+ Z Z k+1 wk+1 (x)

{keZy:8" <rp} (BeGrd(xy " xp)=2A0rp)
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Y Y@ - v e

{(keZ :55>rp} BEGK
+ 2 Do G
{keZ:8k>rp} BTGk
=hi+khy+kh3+ s+ s+ Fp.

We first estimate F» 1. Applying Lemma 3.1(ii), (3.17), Lemma 2.3, rz € (0, 1],
6 e (0, %), and Lemma 3.8, we infer that, for any x € B,

0
1 @)1 S llelle Y [0 1de, x)1Eo (39, x8:1)
acAy
1 d 0’ Ow
Sl u@n’ 3 [ ] (5 i1)
acAy "B
S el B " Eo (39 48 2) S llellluB)Y,

acAy

which further implies that

1
IF2 il 28 S el [m(B)1P T2,

Now, we estimate F >. By Lemma 3.1(i), (3.17), and Lemma 2.3, we conclude that,

ool £ 3 (@] Eo (10, xs: 1)

aeAy

9
< Z [1 +d(x2,x3)} wEO (xg,xB; 1)

r
aeAy B

S Y Eo(xm2) S,

acAy

where the implicit positive constants may depend on B. Using an argument similar to
that used in the estimate of F] 3 and F 4, we obtain

1
1Fa3 + Faall 2z S llell[un(B)1F2.

For F; 5, by an argument similar to that used in the estimate of F, |, we find that, for
any x € B,

S |+ [k o — s | < ety (22)
BEGk
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which, together with 6 € (0, '57), further implies that,

—Ow
Bsl S el Y (5)" S lelltuay’

5k
(k€Zy:8k>rp)

and hence |
1F25ll 228y S llellele(B)PT2.

To estimate F> g, using an argument similar to that used in the estimate of F> >, we

have
> |k em)| s 1
Bl

which, combining the fact that #{k € Z, : 8* > rp} is a finite number only depending
on rp, further implies that

|F6l S 1,

where the implicit positive constants may depend on B. Let cp := F» 2 + F2 6. From
the estimates of F> ; through F ¢, we deduce that

1
If = call2m) S lellln(B)P*2,

which, together with the Holder inequality, further implies that

1
If = fall2m) < ILf —call2m) + e — fll 2y S lell«ln(B)P 2.

Applying this, (3.21), and [25, Corollary 7.5], we infer that f € lip,(X) and

I1f hipy () < Cliell™.

This finishes the proof of Proposition 3.6. O

Using Propositions 3.4 and 3.6, we have the following wavelet reproducing formula
of functions in lipy (X).

Proposition3.9 Ler n € (0, 1] as the same in Lemma 3.1, 6 € (0, %). Then, for any

f € lipy (), )
f= (o0l 3 (1) g

acAy k=0 BeGy
in L(X).
To prove Proposition 3.9, we need the following lemma.

Lemma3.10 Letn € (0, 1] be asthe same in Lemma 3.1, 60 € (0, %), and [ € lipy (&X).

If, for any a € Ao, (f,¢0) = 0, and, for any k € 7, and B € G, (f, 1//;;*1) =0,
then, forany x € X, f(x) = 0.
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Proof Without loss of generality, we assume that || fljip,x) = 1. To prove Lemma
3.10, we only need to show that, for any ¢ € (0, 00) and B := B(xp,rp) C &,

Il fllzeo(n) < e. (3.22)

Let B := Aot2B, where 7 is a large number such that Aot’rg > 1and B C 4B. By
the definition of lipy (X'), we find that 1,5 f € L%(X). Applying Lemmas 3.1 and 3.2,
write

1gf =115 f
=1z )_ <14§fv ¢2>¢2 +13) Y <14§f, W,§+1>1/fl,§+l
acAy k=0 BeGy

=1p Z <14§f7¢2>¢2

{aeAy:d(x9,xp)<2A0t2rg}

1 > (L5 7. 00) 2

{a E.A():d(xg,xB)ZZAoter}

+13 Z Z <14§f, 1/f],§+1>1ﬁ],§+1

k=0 {ﬁegk:d(x2+l xp)<2Apt%rp)

+1s Z Z <14§f’ 1/fl,;“) Wé“

k=0 (peGi:d(x}™" xp)=2A012r )

=J1+h+ 3+ Js.

We first consider Ji. By (f, ¢>8) = 0 and Lemma 3.5(iv), we have, for any o € Ay
with d(x0, xp) < 2A0t%rp,

‘(14§f1 ¢2> = ‘<1X\(4§)fv ¢’2>

<

/ £ 6000 diet)
(xeX:d(xp,x)>4A0t%rg)}

S @Y Vi exp -5 (40?rs) |- (3.23)

From this and Lemmas 3.1(i) and 3.8, we deduce that, for any x € B,

10| < > (1357, 00)

{aeAg:d(x0,xg)<2A0t%rp}
~ 10 vV N
< [wB)] exp [—5 (Aoter) ]

< ¥ er(wv[aeto])

{eeAg:d(x0,xp)<2A0t%rp}

#0)|
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< [M(E)]e exp [—g <A0t2r3>s] .

To estimate J5, observe that, for any o € Ay with d (xg, xXg) > 2A0t2r3 and any
X € B,

2A01%rp < d(x0, xp) < Ag [d<x2, X) +d(x, xB)] < Ao [d(xg, X) + rg]

and hence
*rg <d(x2, x). (3.24)

Moreover,
L+ dp. x9) < 1+ Ao [drg, x) +d(x, x0)

< 14 Agrg + Aod(x, x0)
< 2A0t%rg + Aod(x, x0).

Using this, (3.24), and Lemmas 3.1(i) and 3.5(ii), we infer that, for any « € Ag with
d(xg, Xp) > 2A0t2r3 and for any x € B,

(1izr. 00)| [0

- 14+ d(xg, x97%
S [wd] [1 + ﬁ] Eo (x, xg; 1)

< B 1+ dexD] ™ Bo (x.x0:1)
< [M(E)](9 exp [—2 (szB)S] Eq <X, x2; 4) , (3.25)

where Ej is as in (3.1) with k& = 0. This, together with Lemma 3.8, further implies
that, for any x € B,

[2(0)] = > (1357 02)| [600)

{weAo:d(xQ,xp)>2A01%rp)
~ V s
< [M(B)]e exp [_Z <t2r3) ]

X Z Ey (x, xg; 4)

{acAg:d(x0.xp)>2A01%rp)

S [ ®) exp[ -4 (i) ].
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Next, we estimate J3. Using an argument similar to that used in (3.23), we have,
for any B € Gy with d(xg“, xB) < 2Aot%rg,

frar i) < e o] - (472) ]

By this and Lemmas 3.2(i) and 3.8, we conclude that, for any x € B,

BEIE Y > (s p )| v o

k=0 {ﬁegk:d(xk"'l xp)<2Aot2rp)

[n(B)] Zexp [—— <A°t2r3>s}

X Z Ey (x xﬂJrl 1)

{ﬁegk:d(x[’;H,xB)<2A0t2r3}
~ s
< [wB)] exp [—g <A0t2r3> ] .

Finally, we estimate J4. Applying an argument similar to that used in (3.25), we
infer that, for any 8 € G with d()cg*'1 ,XB) > 2Aot2r3,

‘<14Bf wk+1)‘ ‘I/karl(x)‘
< [®)] exp [—2 (%” Ex (x.x5:4),

which, combined with Lemma 3.8, further implies that, for any x € B,

o]

PSS > (Lar )| v

k=0 {BeGr:d(xit" xp)=2401%rp)
N
t°rp
M(B) ZCXP |:—Z (8_k> j|
X Z Ey (x, x§+l; 4)

{B€Gi:d(xyt! xp)=2A012rp)
~ ) K
S [,U«(B)]g exp [—g (127’3> ] .
To summarize the estimates of Ji, J», J3, and J4, we find that
115 fliLesy < IillLeesy + IS2llLoo) + 1 J3llLoocp) + | JallLoo(B)
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~ N
< [,u(B)]Q exp [—% <t2r3> ] -0
as t — oo. This finishes the proof of (3.22) and hence Lemma 3.10. O

Now, we show Proposition 3.9.

Proof of Proposition 3.9 Without loss of generality, we assume that || f l1ip,x) = 1.
By Propositions 3.4 and 3.6, it follows that

o0

PRI ED IS A AR 7

acAy k=0 BeGy

converges in L2B(X ). Denote this limit by f To show Proposition 3.9, we only need
to prove that f = f pointwise. Using Lemma 3.10, we further reduce to show that,
for any g € Ay,

<f ~f. ¢20> =0, (3.26)

and, for any ko € Z4 and By € Gy,

(f 7 w’“)“) (3.27)

To this end, let, for any o« € Ay, cg = (f,qbg) and, for any k € Z4 and B8 € Gy,
Kl () 1#k+1

s
We ﬁrst show (3.26). By Lemma 2.9, we find that, for any ¢ € A,

(Fotbe) = [ Tt o duco

= § /f(x)qu(x)¢20(x)f(x)ng(x)d,u(x)
x a @
aeAy

> 2 (cg‘f’ngg’ ¢’201Q2>

aeAyaeAy

+ Z Z < Z §+1¢§+]1Q2’¢201Q2>

aedoacAo \((k,pykeZy feGr. 05 COY)

=11 + .

To estimate I, by Lemma 2.2(ii), we have, for any a € Ay,

1

1 0 :
Ly S [fgg Vl(xg)Eo<x x; )du(x)] ;

d)otQ‘
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where Eg is as in (3.1) with k = 0. If d(xg, xg) < 2A0C4, then, for any x € Qg,
A2, %) < Ao [d(2, 5D +d(: 0] S 1.
From this and Lemma 2.2, we deduce that

Ifd(xg, xg) > 2A0Cy, then, for any x € Qg,

S1<Eg (xg,xa,Z).

¢21Qg

L2(X)

1
A x)) < Ao [dl 3 +d (. x| < Aod (). ) + Sd(xf x)

a}llld hence ﬁd(xg, xg) < d(xg, x). Using this and Lemmas 2.3 and 2.2, we infer
that

1

1 1 2
E 0, = )d
2 S [/Qg Vi 0) £ (xa x 2) M(x)}
. 3
< 0 +0. - 0 x;
< E (xa,xa, 2A0) [/Qg v Fo (xa,x, 1) du(x)i|

< E (xa, x0; 2A0>

d’aQ‘

By the Holder inequality, Proposition 3.4, and Lemmas 2.3 and 3.8, we conclude that

> \(c2¢21Qg,¢201Qg>

aeApaeAy
S Z Z [M(Qg)] 9ol %l 22x) ‘¢201Qg L2(X)
aeAyacAy
1n(0Y) 3
< |y, [ 3 }
] T E |

x Eg (x 2A()> Ey ( Koy 9; 2A0)
1

< [uetn] ™

This implies that I} converges absolutely.
Next, we estimate I». To this end, we consider two cases on d (xg , xg).
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Case 1. d(xg, xg) < 4A%C#. In this case, by Lemmas 3.1 and 3.2, Proposition 3.4,
and Lemma 2.2(i), we obtain

k+1_; k+1
> cg Vg Lo

. k
{(k.B):keZy.peGy. 0F COY) 2

2

S )3 ol

{(k,ﬂ):k€Z+»;‘3€gk,QZHCQO}
0+%
<[u] ™ =[] ' o (x0.2:1).

Case 2. d(xg, xg) > 4A%C#. In this case, for any (k, ) such that Qll§+] C Qg and
any x € Qg,

d(x0,x2) < Agd(x0, x) + AgCy < AJCy + A d(xg“,x) + AgCy,

o’ Dl
which further implies that

1 +d(x8, xg)

il <d(x "“, x). (3.28)

Applying this, Lemma 3.2(i), Proposition 3.4, and Lemmas 2.3 and 3.8, we deduce
that, for any x € Qg,

Y A
{(k.B)keZy . peGi. OF ™ QY

k41 k+1 . _E 1+d(x2,x((x~)) K
I S R e B e

k=0 (pegi: 0} oY)

5[u<Q2>]9i[1+d(xa, a)] exp{_g [%ﬁéiﬁcg)}s}

k=0

X Z Ek( gH,x;Z)

[BeGr:05" 0%}
0 v 1+d(x0,x9) B
S [nod)] exp{——[—“ AR DI
~ 2
4 4A% =
0
<[] o (x. 2 4143
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and hence

Z k+lwk+11
{k.B)keZ,BeGr, O C 09}

0+%
< [n@D] 7 Eo (x0 % 441 aF).

L2(X)

Combining the estimates of Cases 1 and 2, the Holder inequality, Proposition 3.4, and
Lemma 3.8, we conclude that

Z Z < Z k+lwk+11Qo,¢201Qg>

aeAoacAo | \((k,pykeZy pedy, 0k c0Y)
< k+1 k+1 ‘ 0 ‘
S x A 100 1o,
aeAgaeAy {(k,ﬁ)ikézﬁ-,ﬂegk,Qﬁ* coY) oo
0+3
S S (@] Eo (9 x84 A3 ) Eo (x0. 22 240)

acAgacAy

+

< [metn] ™

which further implies that I, converges absolutely. Therefore, by the Fubini theorem
and the orthogonality of wavelets, we have

(7o00) = 22 2 (chob1g. 68,100)

acAyacAy

Y Y < 3 k+1wk+11Qo,¢301Qg>

acAoacAo \(k,p):keZs.pedr, O C0Y)

SPITIEXATS ol SEND S

acAp acA {(k,ﬁ):keh,ﬁegk,Q’;“cQg}
0 0
=cd, =(r.93,).
This proves (3.26).

Now, we show (3.27). Using an argument similar to that used in the proof of (3.26),
we infer that, for any ko € Z and By € Gx,,

<Z a%_l_ Z Z k+1wk+1 ko+l>: Z?)H <f wko+l>'

acAy k=ko Bk
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Thus, to show (3.27), it suffices to show that

ko—1
<ZZ eyt oy "°+1> 0. (3.29)

k=0 BeGy

If kg = 0, then (3.29) holds true. If kg > 0, by Lemma 3.2(i) and (2.1), we obtain, for
anyk € {0,--- ,kog— 1}, B € G,and x € X,

i @t o)

1
< —kEk (x,xé“; l) Ex, (x,xggﬂ; 1)
,/vak(xﬁ“)

1
S —FE; (x,xg“; 2) exp( Pyt [d(x xk°+1) +d(x, ka)] )
Vak(xkﬂ) 2

1 2s+1A
k+1, ko+1 _k+1 0
< \/:)Ek ()C xﬁ 2) (‘xlg() xﬁ ,ST),

Vi e+

where the implicit positive constants may depend on kg and . From this, Proposition
3.6, and Lemmas 2.3, 2.2(ii), and 3.8, we deduce that

ko—1
> 2l [ st wug o] duc
k=0 BeGy
ko—1 +1 1
1 2s+ A
k+1) 2 ko+1 _k+1. 0
< kZOﬂng [0} ] Ex (x,go P )
k
1 k1
—FE (x,x + ;2) du(x)
gy V(Sk(xkﬂ) B
ko—1
2572 A
ko+1 _k+1 0
<3 X (g )
k=0 BeGy

where the implicit positive constants depend on kg and By. Applying this, the Fubini
theorem, and the orthogonality of wavelets, we infer that

ko—1 ko—1

ko+1 k 1

<Z Z k+11//k+1 0+ > Z Z k+1 <1//k+1 0+ ) 0.
k=0 BeGy k=0 peGx

This finishes the proof of (3.29) and hence that of Proposition 3.9. O
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Theorem 1.1 follows from Propositions 3.4, 3.6, and 3.9 derictly; we omit details
here. Moreover, using Propositions 3.4 and 3.6 and the proof of Proposition 3.9, we
also have the following conclusion; we omit details here.

Corollary 3.11 Let n € (0, 1] as the same in Lemma 3.1, 6 € (0, g). Foranyn € N
and f € lipy(X), let

foi= 20 (1.08) 00 + >y (rowg gt

aeAy k=0 BeGi

Then f = lim,_,« fn converges in Lé(X ) and there exists a positive constant C,
independent of f, such that, for any n € N,

I falltipy 0y < ClLf Ntipy0)-

4 Applications

In this section, we establish several equivalence characterizations of geometric con-
ditions on X. The first one is as following related to the lower bound.

Corollary 4.1 Let (X,d, ) be a space of homogeneous type and 60 € (0, 1). Then
1 € lipy (X) if and only if there exists a positive constant C such that, for any x € X,
uix, 1) > C.

Proof We first show the necessity. Assume that 1 € lip, (X). Then, by the definition
of lip, (&X'), we have, for any x € X,

Mz
[n(B(x,2)]1 ~

and hence 1 < [u(B(x, 2))1?, which further implies that 1 < u(B(x, 1)).
Conversely, suppose 1 < w(B(x, 1)). Let B := (xp, rp). If rg € (0, 1], then

[1—1]
sup =
X,yEB,x#y (1 (B)]?

’

while, if rg € (1, 00), then

111 oo (B) < <1
k(B ~ [uw(Bxp, 1)1 ~

This implies that 1 € lipy(X') and finishes the proof of Corollary 4.1. O

Using Theorem 1.1, we have one equivalence characterization of the upper bound.
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Corollary 4.2 Let (X, d, ) be a space of homogeneous type with upper dimension w,
n € (0, 1] as the same in Lemma 3.1, and 6 € (0, %). Then the following statements
are equivalent.

(i) lipg(X) C L=(X);
(i1) there exists a positive constant C such that, for any x € X, u(B(x, 1)) < C.

Proof (ii) = (i) follows from (2.4) directly. Thus, to show Corollary 4.2, it suffices to
prove (i) = (ii). By Theorem 1.1, we find that, for any o € Ay,

On the other hand, by the proof of [2, Theorem 6.1], we obtain, for any o € Ay,

which, together with (i) and (4.1), further implies that

2

¢0

~[ueh] .0

lipy (X)

~

08 oy ™ [00GD] ~ 0] 7

neg < 1.
For any x € X, by (2.6), we find that there exists «g € Ag such that d (x, xgo) < Cp.
This, combined Lemma 2.2(i), further implies that
1(B(x, 1)) ~ u(B(xg,, 1) < 1
and hence finishes the proof of Corollary 4.2. O

At the end of this section, we establish a equivalence characterization of the so-
called Ahlfors regular space via Theorem 1.1.

Corollary 4.3 Let (X, d, i) be a space of homogeneous type with upper dimension w,
n € (0, 1] as the same in Lemma 3.1, and 6 € (0, g). Then the following statements
are equivalent.

(1) X is an Ahlfors regular space: there exists a constant C € [1, 00) such that, for
any x € X and r € (0, 00),

C ' < uw(B(x,r)) < Cre. (4.2)
(i1) lipg(X) = C/°(X) with equivalence quasi-norms, where
COX) = {f € C(X) : || fll gty < 00}

with, for any f € C(X),

I fllcooy == sup 1f) = fO)I

+ 1f 2oy
x, yeX, x#y [d(x, y)]e“’ 0
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Proof We first show (i) = (ii). To this end, suppose that f € lipg(&X’). By Lemma 2.5
and (4.2), we find that, for any x € X,

£ OIS S hipy )

and, for any x, y € X with x # y,

£ ) = FOI S 1 gy ey [V Ce 17 S 1 f iy ey [d e, )17

This further implies that f € C?“(X) and £l cooay S ILf lltip, ) On the contrary,
assume that f € C??(x) and B := (xp, rg) for some xp € X and rg € (0, 00). If
rp € (1, 00), then, by Definition 2.4 and (4.2), we have

ISl -

I fllzecxy = I f llceo(ay- 4.3)

If rp € (0, 1], then, for any x, y € B with x # y, d(x, y) < 2Agrp. From this and
(4.2), we deduce that, for any x, y € B with x # y,

1) = FO < 1 f llcoway[d e, 17 S L oo™ ~ I1Lf llcow ) [ (B)I

and hence

ME ) S fllooxy

which, combined with (4.3), further implies that f € lipy(X) and ||f||11p6(/\/) <
| £l cowx)- This finishes the proof of (i) = (ii).

Next, we show (ii) = (i). By [41, Theorem 6.15] and [23, Theorem 7.4(i)], we
conclude that, for any k € Z and 8 € Gy,

~ v+

~okeluolth] L s

lipy (X) CP(X)

On the other hand, from Theorem 1.1, we infer that, for any k € Z and 8 € Gy,

1_
H k1 270

Vg

~ o]

lipy ()
This, together with (4.4), further implies that, for any k € Z and 8 € G,

n(Qgth ~ 8. (4.5)
Using this and [18, Corollary 3.4], we deduce that, for any x € X and r € (0, 00),
W(B(x, 1) 2 1. 4.6)
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Moreover, applying an argument similar to that used in the proof of [42, Lemma 2.9]
and (4.5), we have, for any k € Z, and o € A,

nw(ok) < sk

and hence, for any o € Ay,

w(B(xY, 1)) ~ u(0*) < 1.

By this, Lemma 2.6(iii), and Xk c x0 for any k € Z \ Z4, we obtain, for any
ke€Z\7Z4+anda € Ag,

w(Q%) < w(B(&xE, cyshy) < s B, 1)) < 85,

which, combined with [42, Lemma 2.9], further implies that for any x € X and
r € (0, 00),
W(B(x,r) Sr°.

This, together with (4.6), finishes the proof of (ii) = (i) and hence that of Corollary
4.3. O

Acknowledgements The author would like to thank Prof.s D. Yang and W. Yuan for their valuable sug-
gestions on this article. The author is also very grateful to both referees for their very carefully reading and
several useful and enlightening comments which indeed improve the quality and presentation of this article.

References

1. Astala, K., Iwaniec, T., Koskela, P., Martin, G.: Mappings of BMO-bounded distortion. Math. Ann.
317, 703-726 (2000)

2. Auscher, P, Hytonen, T.: Orthonormal bases of regular wavelets in spaces of homogeneous type. Appl.
Comput. Harmon. Anal. 34, 266-296 (2013)

3. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech.
Anal. 63, 337-403 (1976/1977)

4. Bonami, A., Cao, J., Ky, L.D., Liu, L., Yang, D., Yuan, W.: Multiplication between Hardy spaces and
their dual spaces. J. Math. Pures Appl. (9) 131, 130-170 (2019)

5. Bonami, A., Feuto, J.: Products of functions in Hardy and Lipschitz or BMO spaces. In: Recent
Developments in Real and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhduser Boston,
Boston, MA, 57-71 (2010)

6. Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat.
54, 341-358 (2010)

7. Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in BMO(R") and H! (R™)
through wavelets. J. Math. Pures Appl. (9) 97, 230-241 (2012)

8. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and H!. Ann.
Inst. Fourier (Grenoble) 57, 1405-1439 (2007)

9. Bonami, A, Jiao, Y., Xie, G., Yang, D., Zhou, D.: Products and commutators of martingales in H!
and BMO. J. Math. Pures Appl. 180, 188-229 (2023)

10. Bui, T.A., Duong, X.-T., Ly, EK.: Maximal function characterizations for new local Hardy-type spaces
on spaces of homogeneous type. Trans. Amer. Math. Soc. 370, 7229-7292 (2018)

11. Bui, T.A., Duong, X.-T., Ly, FK.: Maximal function characterizations for Hardy spaces on spaces of
homogeneous type with finite measure and applications. J. Funct. Anal. 278, 108423 (2020)

12. Cao,J., Ky, L.D., Yang, D.: Bilinear decompositions of products of local Hardy and Lipschitz or BMO
spaces through wavelets. Comm. Contemp. Math. 20, 1750025 (2018)

@ Springer



356

Page 42 of 43 F.Wang

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes,
(French) Ftude de Certaines Intégrales Singulieres, Lecture Notes in Mathematics, vol. 242. Springer-
Verlag, Berlin-New York (1971)

Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math.
Soc. 83, 569-645 (1977)

Feuto, J.: Products of functions in BMO and H'! spaces on spaces of homogeneous type. J. Math. Anal.
Appl. 359, 610-620 (2009)

Fu, X., Ma, T., Yang, D.: Real-variable characterizations of Musielak-Orlicz Hardy spaces on spaces
of homogeneous type. Ann. Acad. Sci. Fenn. Math. 45, 343-410 (2020)

Fu, X., Yang, D., Liang, Y.: Products of functions in BMO(X’) and Ha][(X ) via wavelets over spaces
of homogeneous type. J. Fourier Anal. Appl. 23, 919-990 (2017)

. Han, Y, Han, Y., He, Z., Li, J., Pereyra, C.: Geometric characterizations of embedding theorems:

For Sobolev, Besov, and Triebel-Lizorkin spaces on spaces of homogeneous type — via orthonormal
wavelets. J. Geom. Anal. 31, 8947-8978 (2021)

Han, Y., Miiller, D., Yang, D.: Littlewood-Paley characterizations for Hardy spaces on spaces of
homogeneous type. Math. Nachr. 279, 1505-1537 (2006)

Han, Y., Miiller, D., Yang, D.: A theory of Besov and Triebel-Lizorkin spaces on metric measure
spaces modeled on Carnot—Carathéodory spaces. Abstr. Appl. Anal., Art. ID 893409, 1-250 (2008)
He, Z., Han, Y., Li, J., Liu, L., Yang, D., Yuan, W.: A complete real-variable theory of Hardy spaces
on spaces of homogeneous type. J. Fourier Anal. Appl. 25, 2197-2267 (2019)

He, Z., Liu, L., Yang, D., Yuan, W.: New Calderén reproducing formulae with exponential decay on
spaces of homogeneous type. Sci China Math 62, 283-350 (2019)

He, Z., Wang, F.,, Yang, D., Yuan, W.: Wavelet characterizations of Besov and Triebel-Lizorkin spaces
on spaces of homogeneous type and its applications. Appl. Comput. Harmon. Anal. 54, 176-226 (2021)
He, Z., Yan, X., Yang, D.: Calderén reproducing formulae on product spaces of homogeneous type
and their applications. Math. Nachr. 298, 1839-1921 (2025)

He, Z., Yang, D., Yuan, W.: Real-variable characterizations of local Hardy spaces on spaces of homo-
geneous type. Math. Nachr. 249, 900-955 (2021)

Hytonen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126,
1-33 (2012)

Iwaniec, T., Sbordone, C.: Quasiharmonic fields. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18,
519-572 (2001)

Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Amer. Math.
Soc. 365, 2931-2958 (2013)

Ky, L.D.: Bilinear decompositions for the product space H Ll x BMOp . Math. Nachr. 287, 1288-1297
(2014)

Lemarié-Rieusset, P.G.: Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC
Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton, FL (2002)

Li, H., Zheng, T.: Calderén-Zygmund operators on Lipschitz spaces over RD spaces. Quaest. Math.
44(4), 473-494 (2021)

Li, J.: Atomic decomposition of weighted Triebel-Lizorkin spaces on spaces of homogeneous type. J.
Aust. Math. Soc. 89, 255-275 (2010)

Li, P, Peng, L.: The decomposition of product space H 11‘ x BMOy . J. Math. Anal. Appl. 349, 484-492
(2009)

Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint boundedness of commutators on spaces of homoge-
neous type. Appl. Anal. 96, 2408-2433 (2017)

Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint estimates of linear commutators on Hardy spaces
over spaces of homogeneous type. Math. Methods Appl. Sci. 41, 5951-5984 (2018)

Liu, L., Yang, D., Yuan, W.: Bilinear decompositions for products of Hardy and Lipschitz spaces on
spaces of homogeneous type. Dissertationes Math. 533, 1-93 (2018)

Liu, J., Yang, D., Zhang, M.: Sharp bilinear decomposition for products of both anisotropic Hardy
spaces and their dual spaces with its applications to endpoint boundedness of commutators. Sci China
Math 67, 2091-2152 (2024)

Macias, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257—
270 (1979)

Miiller, S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci., Sér. 1 Math.
307, 501-506 (1988)

@ Springer



Wavelet Characterization of Inhomogeneous Lipschitz Spaces. .. Page430f43 356

40. Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on
spaces of homogeneous type. Math. Japon. 46, 15-28 (1997)

41. Wang, F.,Han, Y., He, Z., Yang, D.: Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
with applications to boundedness of Calderén-Zygmund operators. Dissertationes Math. 565, 1-113
(2021)

42. Wang, F,, Yang, D., Yuan, W.: Geometric characterization of Ahlfors regular spaces in terms of dyadic
cubes related to wavelets with its applications to equivalences of Lipschitz spaces. Expo. Math. 42,
125574 (2024)

43. Yan, X., He, Z., Yang, D., Yuan, W.: Hardy spaces associated with ball quasi-Banach function spaces
on spaces of homogeneous type: Characterizations of maximal functions, decompositions, and dual
spaces. Math. Nachr. 296, 3056-3116 (2023)

44. Yang, D., Yuan, W., Zhang, Y.: Bilinear decomposition and divergence-curl estimates on products
related to local Hardy spaces and their dual spaces. J. Funct. Anal. 280, 108796 (2021)

45. Zhou, X., He, Z., Yang, D.: Real-variable characterizations of Hardy-Lorentz spaces on spaces of
homogeneous type with applications to real interpolation and boundedness of Calderén-Zygmund
operators. Anal. Geom. Metr. Spaces 8, 182-260 (2020)

46. Zheng, T., Li, H., Tao, X.: The boundedness of Calderén-Zygmund operators on Lipschitz spaces over
spaces of homogeneous type. Bull. Braz. Math. Soc. New Series 51, 653-669 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Wavelet Characterization of Inhomogeneous Lipschitz Spaces on Spaces of Homogeneous Type and Its Applications
	Abstract
	1 Introduction
	2 Inhomogeneous Lipschitz Spaces on Spaces of Homogeneous Type
	3 Proof of Theorem 1.1
	4 Applications
	Acknowledgements
	References


