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matrix, heightening the risk of model misspecification. Current research lacks systematic
model averaging methods for integrating multiple weight matrices and addressing spatial effect
uncertainty. This study proposes a novel model averaging framework for spatial autoregressive
panel data models with fixed effects, extending model averaging methodology to the spatial
panel context and enabling flexible combinations of multiple weight matrices for both depen-
dent variables and error terms. An adaptive Mallows-type criterion is developed, dynamically
adjusting to the presence or absence of spatial effects, with its asymptotic optimality established.
Monte Carlo simulations confirm robustness across scenarios with no, single, or mixed spatial
dependencies. An empirical application to Chinese provincial housing prices identifies economic
adjacency as the key spatial dependence driver, validating the method’s predictive accuracy and
policy utility for spatiotemporal data analysis.

1. Introduction

Spatial econometrics provides powerful tools for modeling spatial dependencies in data, with applications in regional economics,
environmental science, and urban studies (Anselin, 1988). A cornerstone of this field is the spatial autoregressive models with
autoregressive disturbances (SARAR) (Kelejian and Prucha, 2010), which capture spatial interactions in both dependent variables
and error terms. However, traditional SARAR models typically rely on a single spatial weight matrix to define spatial relationships,
such as geographical proximity or economic connections (LeSage and Pace, 2009). This reliance poses a significant risk of model
misspecification, as real-world spatial dependencies are often complex and may arise from multiple sources. For instance, in regional
housing price analysis, spatial effects may stem from both geographical adjacency and economic linkages, and an incorrectly
specified weight matrix can lead to biased estimates and unreliable predictions. Therefore, effectively integrating information from
different spatial structures to enhance model robustness and prediction accuracy has become a critical challenge in the field of
spatial econometrics.

To address model uncertainty, econometricians have developed selection criteria like the Akaike information criterion (AIC)
(Akaike, 1973) and Bayesian information criterion (BIC) (Schwarz, 1978). Additionally, the development of specification tests
like the spatial J-test (Kelejian, 2008) and its extensions (Kelejian and Piras, 2011) has provided important tools for detecting
model misspecification in spatial contexts. Specification tests such as the J-test for spatial autoregressive binary models can help in
validating the choice of spatial structure (Piras and Sarrias, 2025). However, these methods select a single “best” model but fail to
account for uncertainty across multiple plausible specifications.
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Model averaging (MA) provides a principled framework to mitigate model uncertainty by combining estimates across multiple
specifications, weighting them according to predictive performance (Hansen, 2007). Within spatial econometrics, LeSage and Parent
(2007) pioneered Bayesian model averaging (BMA) for spatial models, while Zhang and Yu (2018) developed frequentist MA
methods for selecting and averaging weight matrices in cross-sectional spatial autoregressive (SAR) models. Nguyen and Veraart
(2017) introduced a novel approach using volatility modulated moving averages to model spatial heteroskedasticity, where variances
and covariances vary stochastically across space, offering robust applications in fields like environmental science. However, these
approaches face challenges when applied to SARAR panel models: (i) BMA methods are computationally intensive, especially for
large panels; (ii) existing frequentist MA methods (Zhang and Yu, 2018) focus primarily on cross-sectional SAR models and do not
address the complexities of SARAR structures with panel fixed effects; (iii) no method systematically handles the combinatorial
selection of multiple distinct weight matrices (W, for the dependent variable and M, for the errors) within the SARAR panel
framework; and (iv) current criteria lack mechanisms to adaptively handle degenerate cases (e.g., A = 0 or p = 0), potentially
leading to inconsistent model selection when spatial effects are absent.

Recent advances in spatial model averaging and uncertainty have expanded the scope of spatial econometric methods. For
instance, Ben Abdallah et al. (2025) explore stock return co-movements using a convex combination of spatial weight matrices,
demonstrating that financial-distance measures outperform geographical ones. In traffic analysis, Similarly, Chen et al. (2025)
apply functional SAR model averaging with a Mallows criterion to estimate urban traffic density, constructing macroscopic
fundamental diagrams for Guiyang City. Additionally, Song and Cibin (2024) optimize spatial weight matrices using graph-based
shortest path algorithms, improving crime event predictions in New York City, while Su et al. (2023) introduce a Bayesian
spatiotemporal autoregressive (STAR) model with spatiotemporal autoregressive conditional heteroscedasticity (STARCH) errors,
employing Bayesian model averaging to capture dependence in mean and variance simultaneously. While these studies advance
spatial modeling, they focus on cross-sectional, functional, or Bayesian contexts and do not address SARAR panel models with
multiple weight matrices and fixed effects.

Recent advances in time series model averaging (Liao et al., 2021; Lin and Liu, 2025; Zou et al., 2025), though not directly
addressing spatial dependence, provide valuable insights for managing model uncertainty and complexity. Similarly, work on spatial
panel estimation (Lee and Yu, 2010; Jin and Lee, 2020; Tian et al., 2025) and interval-valued models (Li et al., 2025) offers relevant
methodologies but does not resolve the fundamental gap.

This study addresses these gaps by introducing a novel model averaging framework for SARAR panel models, tackling uncertainty
in spatial dependence structures through the integration of multiple spatial weight matrices. The Mallows-type model averaging
approach (Hansen, 2007) is extended to the spatial panel context, incorporating an adaptive criterion that dynamically adjusts to the
presence or absence of spatial effects. Orthogonal transformations are employed to eliminate individual fixed effects while preserving
error structures, ensuring computational efficiency. Monte Carlo simulations confirm the framework’s robustness across scenarios
with no, single, or mixed spatial dependencies, while an empirical application to Chinese provincial housing prices (2013-2022)
highlights its practical utility in identifying economic adjacency as a primary driver of spatial dependence.

Our contributions advance the field of spatial econometrics in four significant ways:

» Extend the Mallows-type model averaging method from spatial cross-sectional to spatial panel models;

« Provide a systematic treatment of model averaging for SARAR panel models with multiple spatial weight matrices;
+ Develop an adaptive model selection criterion that adjusts to the presence or absence of spatial effects;

» Offer a computationally efficient implementation for practical empirical applications.

These advancements enhance the robustness and predictive accuracy of spatial econometric models, offering a versatile tool for
researchers and policymakers analyzing spatiotemporal data.

The rest of the paper is organized as follows. Section 2 establishes the spatial panel SARAR model framework and derives the
quasi-maximum likelihood (QML) estimation procedure. Section 3 proposes the Mallows-type model averaging framework with
adaptive penalty mechanisms and its asymptotic properties are proved. Section 4 systematically examines three degenerate model
specifications. Monte Carlo simulation designs and empirical results are presented in Sections 5 and 6, respectively. We conclude
with policy implications and future research directions in Section 7. Technical proofs and additional derivations are provided in
Appendix A.

2. Model and estimation

We consider a spatial autoregressive panel model with fixed effects and SAR disturbances

Ym—AW,,Ym+Xmﬂ+cn0+Um, U,=pM,U +V_. 1= 1,...,T,
where Y = (y]”‘t, e yi)and V= (UTr’ ..., U3 ) are nx 1 vectors, with v} ~ i.i.d.(0, ag) across i and ¢. The matrix X7, (of dimension

nx k) contains nonstochastic time varying regressors, and ¢, is an nx 1 vector of fixed effects. The nxn nonstochastic spatial weights
matrix W, captures cross-sectional spatial dependence among the units in y};, M, is a n x n spatial weights matrix related to the
error. The detailed explanations of the symbols used can be found in Table 10 of Appendix B.

Consider a panel dataset containing » cross-sectional units over 7' time periods,

Y* =il @ W)Y + X B +1; @ ¢,o + U*,  U* = p(I; @ M,)U* + V*, )
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. ! !
where stacked dependent variable Y* = (Yn*l’ R Yn*z’, Yn*T’) and stacked error term V* = (Vn*l/ R Vn*z/ L e V"*T’) are NT x 1 vectors.
Design matrix of explanatory variables X* is an NT x K vector as follow:
* £ £
g *rz o Yk
* * *
Yo *z o Yk
x| ¢ : . :
* * *
X110 *2ap 0 Yok
£ * £
an,l an,2 o an,K_
To ensure consistent estimation of the variance parameter (see the supplementary materials), we employ orthogonal transforma-

tions to eliminate individual effects. An orthogonal transformation matrix Fy ;_; of dimension 7'x (T —1) is utilized while preserving
the independence structure of error terms. This matrix satisfies the following key properties:

Fro Froo =l Frp_er=0,
thus it has
/ 1 ,
Fro Fpp =1y - T(eTeT)’

where I_, is the identity matrix of dimension (T — 1) x (T — 1), and e; is a T x 1 vector of ones. The first condition ensures the
orthogonality of Fr ;_;, while the second condition guarantees that the transformation removes the time-invariant individual fixed
effects by projecting the data onto a subspace orthogonal to the vector of ones.

The transformation operator Q = F ’T,T_ , ®1, is constructed as the Kronecker product of Frr_; and the n x n identity matrix I,,.
This operator is applied to the stacked panel data to perform the transformation. Specifically, for the dependent variable Y*, the
explanatory variables X*, and the error term V*, the transformed versions are obtained as follows:

Y=QY" = (Yn,l’ Yy, o Yn,(T—l)),; X=Qx"= (Xr,ll’ Xy o X;(T—l)),;
U=QU" = (Ur,rl’ Urllz’ Ur,:(T—l)),; V=QV'= (anl’ anz’ V;(T—l)),'
The transformed SARAR panel model takes the following form:
Y=AI; @W,)Y+XB+1;®c,+U, Us=pldy @M,)U+V.
The reduced form of the SARAR panel model is
Y = (- ®S,(A) ' XB+ Ir_; ®S,(A) Uy ®R,()'V, 2

where the spatial transformation matrices are defined as S,(4) = I, — AW, and R,(p) = I, — pM,, with S, = S,(1) and
R, = R,(p) corresponding to the true parameter values A and p, respectively. The model comprises a nonstochastic component,
(Ir_; ®S,(4))"'XB, and a stochastic component, (I;_; ® S,(4)"';_; ® R,(p))~'V. The conditional expectation of the dependent
variable is expressed as:

p=EY)=(dr_; ®S,4)'Xp, 3)
and the variance-covariance matrix of Y is given by Q = US (Ir_; ® S,,()»)R,,(p))fl (Ir_; ® R,,(p)’SW(}L)’y1 .

To account for uncertainty in spatial dependence, we consider sets of candidate spatial weight matrices W = {W,,..., Wy} for
the dependent variable and M = {M,,...,M} for the error term, yielding .S x H model specifications. For each candidate model
(s, h), the QML estimator (Lee and Yu, 2010) is derived from the log-likelihood:

n(T —1) 5 |
In L(O) = i In2zoy) +1In|(Ir_; & S, (A )| +1In[Ip_; @ R, (p; )] — 2—2V O)V(0), 4
o}
0

where the transformed error vector is V(0) = (Ir_; @ R,(p, 1)) [(Ir_; ® S,(4,,)) Y — XB].
The parameter estimates for the sth candidate model W, and the Ath model M,, are

Bon =X (Ir_; ® R,(5,)) (Ir_; ® R,(5,)) X] ™'
XX/ <IT—I ® Rn(ﬁs,h),> (IT—I ® Rn(ﬁx,h)) (IT—I ® Sn(zx,h)) Y’ (5)
and

A 1 A X
0-52:,11 = n(T _ 1) [(IT—I ® Sn(j'x,h)) Y- Xﬁx,h],
X (ITfl ® Rn(ﬁ:,h)/) (ITfl ® Rn(ﬁs,h)) [(ITfl ® Sn(js.h)) Y- Xﬁs,h] .
The resulting estimator for the expected value u is:

i‘x,h = (IT—] ® Sn(ix,h))_l Xﬁs,h’ (6)
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which can be equivalently expressed as
i‘s,h = (IT—I ® Sn(ls,h))_l X [X, (IT—I ® Rn(ﬁs,h),) (IT—I ® Rn(ﬁs,h)) X]_I
xX' (Ir_; ® R, (5;p)") (Ir—1 ® Ry (A1) (Ir—1 ® S,(As ) Y- @
The projection matrix P, , in this context is defined as
Py = (L ®8,(4,) " XX (Lo ®R,(5p)') (I @ R, () X] ™
X X, (IT—I ® Rn(ﬁs,h)/) (IT—I ® Rn(ﬁx,h)) (IT—I ® Sn(js,h)) s (8)

where the transformed error vector is V(6) = (Iy_; ® R,(p, 1)) [Ir_; ® S,(4,,)Y — XB] .
For analytical purposes, we obtain the following derivatives:

0ps PmLe\™" 2 , ,
7 =" <a—,,z> =y ®S,(0) (I @R, () (U @ M,)Z, ©)
P,

As,h=<A ()AB C+AB ‘)F), 10)
aps,h aps,h aps,h
Y 2mLe\" 2
Frai <T) ;(IT_I AR, (p)Ar_; ® W,)V(0), an
P,

sh_ (92 e+ aB2C ). 12)
FY 0l Py

The derivation of Egs. (9)-(12), along with the definitions of A, B, and C are detailed in Appendix A. For Egs. (9) and (11), the
primary approach involves differentiating both sides of the score equation, following Greven and Kneib (2010). These equations are
instrumental in developing the model selection criterion discussed in the subsequent section.

3. Model averaging framework
3.1. Model averaging procedure

We consider S candidate spatial weight matrices W, (s = 1, ..., S) for the dependent variable and H matrices M;, (h=1,..., H)
for the error terms, where W, and M, represent null matrices (no spatial effects). We allow the dimensions .§ and H to grow with
the sample size n(T — 1), ensuring the asymptotic validity of our approach as the number of observations increases. This framework
generates .S x H possible model specifications, each indexed by a unique pair (s, h). Let w = (wy ..., wg y)' belonging to the set
H= {w el0 1157 . 35 Y w = 1} , and define P(w) = Y% ¥ w P, ,. The model average estimator of  would then be

S H
W) =PWY = 3 3w, it (13)
s=1 h=1
This paper addresses the challenge of selecting an optimal spatial weight matrix by adopting a model averaging approach that
integrates multiple candidate models to minimize the risk of suboptimal selection. By combining predictions from diverse models,
model averaging enhances robustness against model uncertainty, overcoming the limitations of relying on a single specification.
Drawing on the literature on model selection and averaging (Hansen, 2007; Zhang and Yu, 2018), a criterion function is developed,
tailored to the spatial econometric framework. The objective is to minimize the squared loss, defined as L(w) = |j(w) — ul?,
where ji(w) represents the estimated mean vector parameterized by the weight vector w, and u denotes the true mean vector. The
associated risk, R(w) = E[|| i(w) — u||*], quantifies the expected squared loss. An optimal weight matrix is identified by minimizing
an approximation of R(w), which serves as the model averaging criterion in this framework.
Assuming the covariance matrix Q is known, we propose a Mallows-type criterion for optimizing the weights w as follows:
~ o & = aﬁs,h af)s,h 023,?1 af)s,h
cw) = [PwY - Y|? +2 ; Zi {w&h u® @)+ =0 o Y+ —F0 " Y} )
This criterion balances model fit, captured by the first term |[P(w)Y — Y||?, against model complexity represented by the second
term. To clarify the complexity term, we define the model degrees of freedom following Efron (2004) and Zou et al. (2007) as
d f = cov(fu(w)’,Y"), where the covariance operator cov(a,b) = E[(a — E[a])(b — E[b])’] applies to arbitrary random vectors a and b.
The second term of C(w) is shown to be an unbiased estimator of d f,,. Under the assumption of normally distributed errors ¢, we
apply Stein’s lemma (Stein, 1981) to establish that:

14)

E[C(W)] = R(w) — tr(Q), (15)

demonstrating that C(w) serves as an unbiased estimator of the risk, adjusted by a constant(see Appendix A).
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In practice, the covariance matrix € is typically unknown and requires estimation by Q. A feasible weight selection criterion is
therefore proposed as follows:

S H
Cori(W) = IPWY = Y[ +2 Y 3w, Dy,
s=1 h=1

where the term “ori” refers to the original criterion. The complexity measure D, is defined as:

0pyp , 0P 94 , 0P,
s,h O A.s,hY s,h O A.s,hY
YT 9p,, 2) QI VI

To ensure consistent selection of the true spatial weights matrix when it is a zero matrix, a penalty term is incorporated into
C,ri(W), resulting in a modified criterion:

. ~ L pen,,
Com =PWY -YI2+2Y Y w,, {sth+ > } (16)

s=1 h=1

D, =tr(P, Q) +

The penalty term pen  is defined as:

0, ifs=land h=1,
0.1 i
X p—XB 12 ifs=Lhsl
Pelen =9 _vnT-D ifs#1Lh=1
IXBs1 —XB11>’ ’ ’

0.1 Vn(M=1) .

KBra—Xb P T Xy xpy 0 S Fand AL
This penalty term enhances the model selection criterion’s ability to consistently identify the true spatial weights matrix by penalizing
deviations from the baseline model (s = 1, 2 = 1). The rationale for this penalty structure relies on asymptotic behavior under specific
regularity conditions. When the true spatial weights matrix W is the zero matrix, the estimators ﬁsy, (for s # 1) and Bu converge

VnT=1)

A O IXBy —XBy I
zero matrix, f; , (for h # 1) and B, share the same limit, leading to

to the same limit, causing the term to approach infinity as n(T — 1) — oo. Similarly, when the true matrix M is the

0.1
IXB1,n—XB,1 11
non-zero, ﬁs, | (for s #1) and B 11 generally have distinct limits, so the penalty term remains bounded, i.e.,

— o0 as n(T — 1) - oo. Conversely, when W is
\/n(T=1)

————— =0,(1

x5, xp, - OrlD)as

n(T — 1) - oco. Likewise, when M is non-zero, 31,h (for A # 1) and [3],, have different limits, resulting in = 0,(1) as

. . IXB1 n—XBy, 112
n(T — 1) —» oo. The selected weight is then
W = arg mi2 E(w).
we
Define

[P, Y-Y.P,Y-Y,..,P ;Y-Y

P, Y-Y.P,Y-Y,... B, Y-Y

H=|P;,Y-Y,Py,Y-VY,....P; ;) Y-Y

e

|Ps Y-Y.Pg,Y-Y,.. PgyY-Y

and
p6~'2 trace(l:’l’zlg) . trace(l:’l’H !g)
L= trace(P, Q) trace(P,,Q) ... trace(P, y<2) +
_trace(f’sJ Q) trace(f’s,z.()) . trace(f’s,H.é)
[ 911 o 9Pr 91H o PLE
0 ~ 2 . Y ~T 2 i Y
9421 o P2 Y 922 4 P Y + 9422 A P Y 9%ru A Pon Y + LNl O Py %
aYT "% 9dy, oYT "% 9pyy oYT "% 0l o oYT "% 0py oYT ™% 9dy +
dlsi o OPsi 9hsa A 9Psa 0dsy A OPso Obs.H f P ddsu 5 Psnm
—== 0 —= == 0Q—=Y == Q—=Y .. S Q—=Y = Q==Y
LoYT ™ ods, oY "7 dpg, T 9isp oy’ 9hs.H o 04s.H
r 0 peny | peny g
7 5
peny peny o peny g
2 2
peng peng s peng g
L 2 2 2
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It is straightforward to show that
C(w) = wH'Hw + 2w'L, 17)

so that C(w) is a quadratic function of w. Numerous software packages are available to obtain the solution to this problem
(e.g., quadprog of Matlab), and they generally work effectively and efficiently, even when S, T are very large.

3.2. Asymptotic optimality

The model averaging estimator ji(W) achieves asymptotic optimality, meaning its squared loss converges to that of the infeasible
optimal averaging estimator. To formalize this, define the risk function:

S H
Z Z ws,h”s,h
s=1 h=1

where fi, ;, is the estimated mean function evaluated at the limiting parameters ( yr h), and u is the true mean vector. Let
&yr-1) = infy, R(W)*, representing the minimal achievable risk. Additionally, denote Amln(H yand A, (IT) as the smallest and largest
singular values, respectively, of any square matrix I7. All asymptotic properties are established as n(T — 1) - .

To ensure the asymptotic optimality of the model averaging estimator in the spatial panel data framework, we outline a
comprehensive set of assumptions that govern risk bounds, error distributions, matrix properties, parameter smoothness, and model
complexity. These assumptions are presented below, followed by a summary of their roles in achieving robust statistical inference
as the sample size n(T — 1) — oo.

2
Rw)*=E

—u

5

Ps.h=Py prhs n=Ag

Assumption 1. There exists a positive integer G such that the sum of inverse risks satisfies:

S H
SH(Ey 1) Y, YR = o(1).

s=1 h=1

Assumption 2. The error terms ¢; satisfy a finite moment condition of order at least 4G, meaning there exists a constant x > 0
such that for all components:

E(lg;|*%) < k < 0.

Assumption 3. The true mean vector and covariance matrices are bounded as follows:

I = 0T = 1)), Ay (@) = O(1),  and Ay (2) = O, (D).

Assumption 4. There exist constants ¢; > 0 and ¢, > 0 such that for all sample sizes:

X'X X'X
1 < Amin <m> < Amax (m) <o

Assumption 5. Under the limiting parameters (p% ,, 4* ), the spatial weight matrices satisfy:

Su’? Arnax ((IT—I ® Rn(p;k,h)_])> =o(1); SUP Amax ((IT 1 ® S (i*h) )) =o(1);

SUP Ay ((IT,1 ® pj'hws)) =o(1);  Sup Ay ((IT,l ® Athh)> = o(1).
s,h s,h ’

Assumption 6. The parameter estimators exhibit smoothness, satisfying:

aﬁs h 2 af)s,h ‘”“S h

L oP,
R Q
N op, T

S,h

‘En(T ) Sup

‘ = o(1).

Assumption 7. The projection operators converge as:

=o(l), n(T - 1)5&;7” su}f) )”max(iis,h - Ps,h) =o(1).
5,

Enr-1)

Assumption 1 is a critical assumption, widely adopted in the model averaging literature (Liu and Okui, 2013; Wan et al., 2010).
This component enables the determination of probability orders for terms that are linear and quadratic in ¢ using the generalized
Chebyshev’s inequality and Whittle’s inequality. It implicitly assumes a balance between the number of candidate models and the
goodness-of-fit of individual models. In SARAR models, this assumption is crucial for maintaining estimation stability due to the
spatial dependence in error terms. Assumption 2 guarantees that the error terms have finite higher-order moments, enabling the use
of Markov-type inequalities to manage higher-order terms. This assumption is also common in the literature on the model selection
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optimality (Li, 1987; Zhang and Yu, 2018). It is used to show that some quadratic forms of the error terms required in the analysis are
bounded in probability. This moment condition is applied to establish probabilistic bounds on both linear and quadratic terms of the
error. In SARAR models, this assumption is crucial for maintaining estimation stability due to the spatial dependence in error terms.
Assumption 3 ensures that the mean vector and covariance matrices remain bounded, maintaining stability in large samples. The
sum of n elements of u is also frequently employed in linear regression models (Liang et al., 2011). Extended from linear regression
models, this assumption in spatial panels guarantees numerical stability after orthogonal transformation and prevents covariance
explosion caused by spatial dependence. Assumption 4 guarantees that the covariate matrix X is well-conditioned, preventing
degeneracy or explosion. In spatial panels, this is particularly important because spatial lag terms may introduce endogeneity,
and well-conditioned covariates are prerequisites for QML estimation convergence. Assumption 5 ensures that the spatial weight
matrices are invertible and bounded under limiting parameters, supporting numerical stability. More specifically, this assumption
maintains the spectral radius of spatial transformation matrices below 1, which is crucial for model identifiability. Any violation of
this condition would result in the divergence of QML estimates. Assumption 6 is a common assumption in the literature on model
averaging (Liu and Okui, 2013). It is a high-level condition, ensures the smoothness of parameter estimators, reducing variability
in estimation. This condition constrains the rate of change of spatial parameter derivatives, ensuring estimation consistency of
complexity terms in Mallows’ criterion and maintaining the unbiasedness of risk functions. Assumption 7 is a standard assumption
in model averaging studies (Liu and Okui, 2013; Zhang and Yu, 2018). The first part of Assumption 7 stipulates that the parameter
dimension grows more slowly than the minimum risk descent rate. The second component of Assumption 7 ensures that the term
n(T — 1)5;('T_1) sup Amax(f’x’h _P:,h) = 0,(1), guaranteeing that the convergence rate of the projection matrix estimation error is strictly
faster than the sample size growth, consistent with findings in Zhang et al. (2014). This assumption is central to the optimality of
model averaging and manages the trade-off between model misspecification and asymptotic efficiency in spatial panels.

Theorem 3.1. Under Assumptions 1-7, the model averaging estimator achieves asymptotic optimality, as expressed by
L(W)

_ 1 18
infyey LW (18)

in probability as n(T — 1) — co. The detailed proof of Theorem 1 is provided in the supplemental file. Furthermore, the proof implies that the

estimator based on the original criterion is also asymptotically optimal. Specifically, with W,,; = arg miny,c;; C(W),;, we have: % -1

m weH
in probability as n(T — 1) — oo. ©

4. Analysis of degenerate models

This section examines the degenerate forms of the spatial panel SARAR model under specific conditions. By analyzing model
specifications and estimation methods under different degenerate scenarios, we provide theoretical guidance for model selection in
empirical research. We focus on three typical cases: (1) model with only spatial lag dependence; (2) model with only spatial error
dependence; and (3) model without spatial effects. For each case, we systematically derive the simplified model form, parameter
estimation methods, and corresponding model averaging criteria.

4.1. Model without spatial error dependence (SAR)
When the error term exhibits no spatial autocorrelation (M = 0) but the dependent variable retains spatial dependence, the
model is specified as:
Y =7 ®S,()) ' XB+Ir_; ®S,(A)7'V, 19

where S,,(1) =1,— AW, and W is the spatial weight matrix. The covariance matrix simplifies to Q = GS(IT, 1®S, (D) A ®S,(A))~L.
The conditional expectation is u = (Iy_; ® S,(4))"'Xp.
Given the QML estimators (Lee and Yu, 2010) for the sth candidate model, the QML estimators of § and o2 are

B, = X'X)'X'(r_; ®S,(4,))Y,

and
2

2 1 Py %3
6} = oy |t ®8,G0Y - X5,

The estimator for the expected value u is ji, = (I;_; ® S,(4,))"'XB, = P,Y, where P, = (I;_; ® S,,(1,))"'XX'X)~'X'(I;_; ® S,(4,)).

For model averaging, let the weight vector w = (w,,...,wg) € H = {w €[0,115 : Zle w, = 1}. Define P(w) = Zil wP,, the
model-averaged estimator is
Ky
uwy =Y wyju; = PW)Y.
s=1
The model selection criterion, penalizing spatial lag complexity, is:
s R .
iy 2 _ 0l oP.
Cw), = |PwmY-Y|" +2 g{ w, {tr(PS_Q) + aYS’ Qa—j;Y} . (20)

7
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Defined squared loss as L;(w) = ||i(w)— u||> and the associated risk is the expected squared loss given by R, (w) = E[|| fu(w)— p||*].
Under normality of ¢ and Stein’s Lemma, the expected criterion satisfies:

E[C(w);] = R(w) — tr (L),
In practice, @ is replaced by an estimator @, yielding the feasible criterion:
Ew), = [[PwY - Y| +2iw tr(P, Q) + o4, fzaPSY+ en, /2 (21)
s s oYT 9 ix peng .

s=1
The penalty term for model selection is defined as:

pen, = \/n(T—l)/“Xﬁs—X[il”z, 532,
0, o

>

where X is the design matrix, j, is the estimated coefficient vector for the sth model, and j, corresponds to the baseline model
(s = 1). The rationale for this penalty term is as follows: when the true coefficient matrix is the zero matrix, the estimators BS for
s> 2 and B, should have the same asymptotic limits, leading to pen, — co as n(T' — 1) — co. Conversely, when the true coefficient
matrix is not the zero matrix, BS for s > 2 and ﬁ | have different limits, resulting in pen; = O,(1) as n(T — 1) — oo.

Theorem 4.1. Under Assumptions 1-7, the selected weights W achieve asymptotic optimality:

Li(W) »
iy, L) L ST =D e, (22)

ensuring minimal risk in large samples. The proof process is similar to that of Theorem 3.1.
4.2. Model without spatial lag dependence (SEM)
When the dependent variable exhibits no spatial dependence (W = 0) but the error term shows spatial autocorrelation, the model
is
Y=Xp+Ir_; ®R,(0)'V, (23)

where R, (p) =1, — pM, and M is the error spatial weight matrix. The covariance matrix is Q = o-g(IT7l ® Rn(p))’l(IT, 1 ®R,(p) )L,
and the conditional expectation is u = Xp.
Given the QML estimators (Lee and Yu, 2010) for the hth candidate model, the estimators of g and og are

By = (X'Ir_; ® R, (5) Ar_; @ R,(3,)X) ™ X'(Ar_; ® R, (5,)Y,

and 62 = ﬁ H(IT_l R, ()Y — XﬁhHZ . The estimator for p is i, = XB;, = P, Y, where P, = X (X'(I7_; ® R, (5,)) Ir_; ® R,(5))
X)X/ (Iy_; @ R, (5))-

For model averaging, let w = (w,,...,wy) € H = {w efo, 117 : Zle wy, = 1}. Define P(w) = Zle w,P,, the model-averaged
estimator is

H
uw) =Y whyft, = POWY.
h=1
The model selection criterion is
H R -
3 ) _ ap, P,
C(w), = |[PWY - Y||° + 2’; wy, {tr(Ph!)) v Y|

Defined squared loss as L,(w) = ||j((w)— u||> and the associated risk is the expected squared loss, given by R,(w) = E[|| i(w)— p||*].
Under normality and Stein’s Lemma, the expected criterion is:

E[C(W),] = R(w) — tr(L).
With Q estimated by @, the feasible criterion is
Cw), = [Py - Y|* + 22‘1 wy, {tr(f’h{)) + %Q%Y + pen5/2} . (24)
The penalty term for model selection is defined as:
0.1/ |XB, - XB, “2 h>2,

peny, =

> ’
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where X is the design matrix, j, is the estimated coefficient vector for the Ath model, and B, corresponds to the baseline model
(h = 1). The rationale for this penalty term is as follows: when the true coefficient matrix is the zero matrix, the estimators Bh for
h>2 and B, should have the same asymptotic limits, leading to pen,, — oo as n(T — 1) — 0. Conversely, when the true coefficient
matrix is not the zero matrix, ﬁ , for h > 2 and ﬁ | have different limits, resulting in pen, = O,(1) as n(T — 1) = co.

Theorem 4.2. Under Assumptions 1-7, the selected weights w achieve asymptotic optimality:
LW
LW 2 enT 1) - o, (25)
infy, Ly(w)
guaranteeing optimal risk performance in large samples. The proof process is similar to that of Theorem 3.1.

4.3. Model without spatial effects (W = 0,M = 0)

When neither the dependent variable nor the error term exhibits spatial dependence (W = 0,M = 0), the model reduces to the
classical panel data model:

Y=XB+V. (26)
N 112
The maximum likelihood estimator (MLE) for g is: B = (X’X)"!X’Y, and the error variance estimator is: 6> = ﬁ HY -Xp |

The projection matrix is: P = X(X’X)~'X’, and the conditional expectation is u = X$ = PY.
The model averaging criterion simplifies to:

Corit = IIPY = Y||* +2p82, @27)

which aligns with Mallows’ C, criterion. This confirms the method’s appropriateness in the absence of spatial effects. When the
candidate model set includes the non-spatial model, the penalty mechanism favors this simpler model, avoiding unnecessary
complexity.

By incorporating mean structures, projection operators, and variance—covariance estimation into the model averaging frame-
work, this approach effectively addresses both spatial and non-spatial specifications. The adaptive penalty mechanism maintains
consistency with classical methods in the absence of spatial effects while adeptly capturing spatial dependence when it exists. This
dual capability strengthens theoretical rigor and enhances empirical applicability in spatial econometrics.

5. Monte Carlo experiments

To rigorously evaluate the performance of the proposed model averaging (MA) framework for spatial panel SARAR models, we
employ Monte Carlo simulations to assess its effectiveness in addressing uncertainty in spatial weight matrices, achieving accurate
parameter estimation, and ensuring robustness across a range of spatial dependence structures. This section is organized as follows:
Section 5.1 investigates the full SARAR model across diverse scenarios; Section 5.2 analyzes the performance of degenerate SAR and
SEM specifications; and Section 5.3 compares MA with classical model selection criteria, including Mallows’ C,, Akaike information
criterion (AIC), and Bayesian information criterion (BIC); Section 5.4 extends the analysis to irregular spatial weight matrices; and
Section 5.5 evaluates computational efficiency.

5.1. Simulation analysis of the SARAR model

5.1.1. Goals and design

The Monte Carlo experiments are designed to evaluate the performance of the proposed model averaging (MA) framework for
spatial autoregressive panel data models (SARAR) under varying spatial dependence structures. The objectives are to: (a) verify
the MA method’s capability to address uncertainty in multiple spatial weight matrices; (b) evaluate the estimation accuracy of
parameters 4, p, and B; (c) analyze robustness across no-effect, single-effect, and mixed-effect spatial dependence structures; (d)
confirm the asymptotic optimality of squared loss; and (e) test the adaptive penalty mechanism’s efficiency in identifying the true
model; and (f) assess model fitting diagnostics including residual distributions, actual-fitted correspondence.

The data-generating process (DGP) adheres to the SARAR model specified in Section 2:

Ym = AwnYm + Xmﬂ + €0 + Um! Unt = pMnUm + Vnr’ r= 1’ ’T’

where V,, ~ 1.i.d. N (0, o‘éln), X, ~ N(0,1) with k = 3 covariates, and true coefficients g = [1.5,-2.0,0.5]’. Individual fixed effects

¢, are eliminated via the orthogonal transformation Q = F/. . | ® L. The response variable is generated via the reduced form:

Y= (I, ®S,1)”" (Xﬁ +(Ir_, ®R,(p) ™" V) ,

where S,(1) = I, — AW, and R,(p) = I, — pM,,. The experimental design includes cross-sectional units n € {100,225} on a square
grid, time dimensions T € {5, 10}. Each configuration is replicated N, = 1000 times using MATLAB, with spatial weight matrices
generated from grid coordinates, QML estimators optimized via fminunc, and numerical stability ensured. The QML estimation
is initialized via 2SLS for A and GMM for p. The detailed code is provided in the supplemental file.



A. Jietal Spatial Statistics 70 (2025) 100931

Table 1
Model averaging performance for SARAR in Setting 1: True matrices in candidate set.
T=5 n Loss MA weight RMSE of 1 RMSE of / RMSE of f
No spatial effects 100 0.3036 1 0.0000 0.9000 0.0137
(W1,M1) 225 0.4429 1 0.0000 0.9000 0.0079
SAR Model 100 1.9083 0.8857 0.0181 0.8902 0.0256
(W2,M1) 225 2.5031 0.9744 0.0124 0.8011 0.0179
SEM Model 100 1.9923 0.5310 0.2335 0.0606 0.0328
(W1,M4) 225 2.4745 0.516 0.2346 0.0532 0.0228
Full SARAR Model 100 10.6820 0.674 0.0294 0.2316 0.0289
(W3,M2) 225 15.5653 0.7473 0.0238 0.1706 0.0206
T =10 n Loss MA weight RMSE of 1 RMSE of RMSE of j
No spatial effects 100 0.2730 1 0.0000 0.9000 0.0089
(W1,M1) 225 0.3668 1 0.0000 0.9000 0.0051
SAR Model 100 2.3915 0.9335 0.0062 0.8855 0.0148
(W2,M1) 225 2.3731 0.9832 0.0148 0.8476 0.0166
SEM Model 100 1.5022 0.5777 0.2096 0.0492 0.0198
(W1,M4) 225 1.6603 0.6130 0.2477 0.0513 0.0142
Full SARAR Model 100 13.1592 0.7187 0.0293 0.1714 0.0197
(W3,M2) 225 9.2017 0.8342 0.0146 0.1033 0.0165

Performance is quantified by: (1) prediction accuracy via squared loss ||i(w) — u||?, (2) parameter estimation accuracy via root
mean squared error (RMSE) of 4, 4, and B, and (3) model selection accuracy via MA weights i, ,. Additionally, model diagnostics are
assessed through “Actual vs. Fitted Values” plots and “Histogram of Residuals” to evaluate the model’s fit and residual distribution.

Two distinct experimental settings are considered to evaluate the MA framework’s robustness under different conditions for the
true and candidate spatial weight matrices.

Setting 1: True matrices in candidate set with zero matrices. In the first setting, the true spatial weight matrices are included in the
candidate set, which also contains zero matrices to allow for no spatial effects. The candidate spatial weight matrices include four
W matrices: zero matrix (W,), Queen contiguity (W,), Rook contiguity (W3), and torus matrix (W,), and four M matrices: zero
matrix (M), vertical Rook (M,), horizontal Rook (Mj3), and diagonal Rook (M,), all row-standardized, yielding 4 x 4 = 16 model
combinations. Four scenarios are considered: (1). No spatial effects (A = 0,p = 0, W, M,), (2). SAR model (4 = 0.5,p = 0,W,,M,),
(3). SEM model (1 =0, p = 0.7, W;,M,), (4). Full SARAR model (1 = 0.5, p = 0.7, W5, M,).

Setting 2: True matrices not in candidate set without zero matrices. In the second setting, the true spatial weight matrices are not
included in the candidate set, and the candidate set excludes zero matrices to test the MA method’s ability to approximate
complex spatial dependencies. The true matrices are defined as mixed structures: W, = W, + W; for the dependent variable
and My, = M, + M; for the error term, both row-standardized. The candidate set is restricted to non-zero matrices: W, (Queen
contiguity), W5 (Rook contiguity), W, (torus matrix) for W, and M, (vertical Rook), M; (horizontal Rook), M, (diagonal Rook) for
M, yielding 3 x 3 = 9 model combinations. The DGP parameters remain as in Setting 1, with 4 = 0.5, p = 0.7, and ag = 0.5. The
experiments are conducted for n € {100,225} and T € {5, 10}, with 1000 replications.

5.1.2. Experimental results

Table 1 presents the performance of the MA approach across the four scenarios. In the no spatial effects scenario (W,,M,), the
MA method assigns full weight (1.0000) to the correct non-spatial model, achieving zero RMSE for 1, low RMSE for (e.g., 0.0051
at T = 10, n = 225), and minimal loss (0.2730-0.4429), highlighting the adaptive penalty’s effectiveness in detecting the absence of
spatial effects. For the SAR model (W,,M,), MA strongly favors the correct spatial lag matrix W, with weights of 0.8857-0.9832,
reducing the RMSE of 1 by approximately 40% from T = 5 to T = 10 (e.g., from 0.0181 to 0.0062 at n = 100), with moderate loss
(1.9083-2.5031) reflecting spatial lag complexity. In the SEM model (W,,M,), MA assigns lower weights to the correct error matrix
M, (0.5160-0.6130), indicating challenges in modeling spatial error structures, yet maintains low RMSE for 5 (<0.0606) despite high
RMSE for the irrelevant A, with loss ranging from 1.5022 to 2.4745. The full SARAR model (W, M,), with dual spatial dependence,
exhibits the highest loss (9.2017-15.5653); however, increasing T to 10 reduces the RMSE of j by 55% (from 0.2316 to 0.1033
at n = 225), and MA weights reach 0.8342 for the correct model, showcasing robustness. Key insights include: (1) extending the
time dimension T significantly enhances estimation precision, particularly for SEM and SARAR models; (2) the adaptive penalty
mechanism reliably identifies non-spatial models; and (3) estimating complex spatial error structures remains challenging, with
RMSE often exceeding 0.1. These results affirm the MA framework’s robustness and adaptability across diverse spatial scenarios.

Fig. 1 and Table 2, report results for the mixed spatial structure scenario (W = W, + W3, M = M, + M3). At T = 10,n = 225,
over 80% of MA weights concentrate on the true matrix combinations (Fig. 1(g)), with MA loss (10.0042) significantly lower than
individual candidate losses, demonstrating robustness to complex dependencies. Parameter estimation shows high accuracy for A
(RMSE 0.0180) and f} (RMSE < 0.0166), but j exhibits higher RMSE (0.3097-0.3829) due to the intricate error structure. Increasing
T from 5 to 10 enhances weight concentration and reduces loss, though larger n at T = 5 slightly increases loss (15.0031) due

10



A. Jietal Spatial Statistics 70 (2025) 100931

(a) T =5,n =100, Weights (b) T =5,n=100, Loss (c) T =10,n = 100, Weights (d) T =10,n =100, Loss

(e) T =5,n =225, Weights (f) T =5,n=225, Loss (g) T =10,n =225, Weights (h) T =10,n =225, Loss

Fig. 1. Model averaging performance for SARAR in Setting 2: True matrices W, + W;,M, + Mj;.

Table 2

Model averaging performance for SARAR in Setting 2: True matrices W, + W3, M, + M;.
Scenario Avg. Loss RMSE of 1 RMSE of j RMSE of
T =5,n=100 8.8056 0.0309 0.3529 0.0298
T=5n=225 15.0031 0.0309 0.3829 0.0205
T =10,n =100 13.8559 0.0380 0.3206 0.0222
T =10,n=225 10.0042 0.0180 0.3097 0.0166

(a) T =5,n =100, Histogram of (b) T = 5,n = 100, Actual vs. (c) T = 10,n = 100, Histogram (d) T = 10,n = 100, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

(e) T =5,n =225, Histogram of (f) T = 5,n = 225, Actual vs. (g) T = 10,n = 225, Histogram (h) T = 10,n = 225, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

Fig. 2. Histogram of residuals and Actual vs. Fitted values SARAR in Setting 2: True matrices W, + W3, M, + Mj;.

to heightened complexity. These findings underscore the MA method’s efficacy in handling composite spatial dependencies, with
potential for further refinement in error structure estimation.

To further address model diagnostics, Fig. 2 present the histograms of residuals and scatter plots of actual versus fitted values
for the mixed spatial structure scenario. The residuals exhibit approximate normality, centered around zero with symmetric
distributions, indicating good model fit. The actual versus fitted values align closely along the 45-degree line, with minor deviations
at extreme values, confirming the MA framework’s predictive accuracy. These visuals substantiate the simulation results, showing
reduced variance in residuals as n and T increase, aligning with asymptotic optimality.

11
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Table 3
Model averaging performance for SAR: True matrices in candidate set.
T=5 True W is W, True W is W,
W, W, A W, w, W, W, w,
RMSE of 1 0.0000 0.0091 0.0052 0.0021 0.0000 0.0022 0.1935 0.2996
RMSE of j 0.0065 0.0064 0.0067 0.0067 0.0598 0.0053 0.0343 0.0284
n = 100 MA weights 1.0000 0 0 0 0.0926 0.9076 0.0000 0.0000
Loss 0.0590 0.0953 0.0804 0.0622 172.7 6.369 84.1 139.8
MA loss 0.0368 11.7289
RMSE of 1 0.0000 0.0007 0.0012 0.0015 0.0000 0.0033 0.1970 0.2870
RMSE of 0.0021 0.0021 0.0021 0.0019 0.0525 0.0028 0.0259 0.0318
n = 225 MA weights 1.0000 0 0 0 0.0716 0.9282 0.0002 0.0000
Loss 0.0139 0.0145 0.0170 0.0246 423.7 11.21 169.5 314.3
MA loss 0.0452 14.4523
T =10 True W is W, True W is W,
Wl WZ w3 W4 w] WZ w} W4
RMSE of 1 0.0000 0.0055 0.0008 0.0013 0.0000 0.0027 0.2159 0.2841
RMSE of ﬁ 0.0032 0.0033 0.0032 0.0033 0.0536 0.0034 0.0304 0.0339
n = 100 MA weights 1.0000 0 0 0 0.0674 0.9325 0.0000 0.0000
Loss 0.0315 0.0571 0.0326 0.0351 347.6 8.579 162.0 251.7
MA loss 0.0320 11.7289
RMSE of 1 0.0000 0.0003 0.0002 0.0008 0.0000 0.0033 0.1956 0.2972
RMSE of j 0.0015 0.0015 0.0015 0.0016 0.0482 0.0017 0.0179 0.0252
n = 225 MA weights 1.0000 0 0 0 0.0657 0.9341 0.0002 0.0000
Loss 0.0171 0.0172 0.0173 0.0219 823.3 16.26 332.0 641.7
MA loss 0.0328 25.8517
Table 4
Model averaging performance for SAR: True matrix W2+ W3.
T=5 w, W, W, W, MA
RMSE of 1 0.0000 0.0027 0.0991 0.2668 0.0473
= 100 RMSE of j 0.0769 0.0322 0.0113 0.0204 0.0069
- Loss 196.8 27.2 33.1 151.3 13.3089
MA weights 0.0084 0.4746 0.5168 0.0002
RMSE of 1 0.0000 0.0129 0.0914 0.2399 0.0404
— 5 RMSE of 0.0660 0.0154 0.0136 0.0256 0.0085
"= Loss 522 65.87 58.75 334.5 27.1051
MA weights 0.025 0.4979 0.4992 0.0004
T =10 W, W, W, W, MA
RMSE of 1 0.0000 0.0021 0.0941 0.24667 0.0436
— 100 RMSE of 0.0625 0.0209 0.0073 0.0405 0.0092
"= Loss 536.3 77.91 85.35 368.2 25.0403
MA weights 0.0014 0.4948 0.5038 0.0000
RMSE of 1 0.0000 0.0019 0.0983 0.2570 0.0416
=25 RMSE of j 0.0625 0.0209 0.0073 0.0405 0.0075
"= Loss 1037 134.6 144.6 683.6 47.5184
MA weights 0.0001 0.4971 0.5028 0.000

5.2. Degenerate model analysis

5.2.1. SAR model

The MA approach is evaluated for the SAR model, a degenerate form of SARAR with p = 0, employing the experimental design
from Section 5.1.1 and candidate matrices W,, W,, W5, W,. Scenarios include no spatial effects (1 = 0, W,), single spatial structure
(4 =0.5,W,), and mixed structure (W, + W3). Table 3 shows results for single-structure scenarios: for W,;, MA assigns full weight
(1.0000), with zero RMSE for A and low RMSE for j (e.g., 0.0015 at T = 10,n = 225), and minimal MA loss (0.0320-0.0452); for
W,, MA weights reach 0.9341 (T = 10, n = 225), with low RMSE (4: 0.0033, B: 0.0017) and MA loss (11.7289-25.8517) significantly
below misspecified models. Table 4 addresses the mixed structure, where MA weights are nearly equal for W, and W, (e.g., 0.4971,
0.5028 at T = 10,n = 225), excluding irrelevant matrices, with MA loss (e.g., 47.5184) lower than individual losses (e.g., 1037
for W,), highlighting the method’s adaptability to complex spatial dependencies. Fig. 3 for the mixed spatial structure scenario
(W, + W3) demonstrate that the residuals are approximately normally distributed, centered at zero, and symmetric, indicating
a good model fit. The scatter plots of actual versus fitted values show a strong alignment along the 45-degree line, with minor
deviations at extreme values, confirming the predictive accuracy of the MA framework.
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(a) T =5,n =100, Histogram of (b) T = 5,n = 100, Actual vs. (c) T = 10,n = 100, Histogram (d) T = 10,n = 100, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

(e) T =5,n =225, Histogram of (f) T = 5,n = 225, Actual vs. (g) T = 10,n = 225, Histogram (h) T = 10,n = 225, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

Fig. 3. Histogram of residuals and Actual vs. Fitted values for SAR: True matrices W, + Wj.

Table 5
Model averaging performance for SEM.
T=5 True M is M, True M is M, + M,
M2 M3 M4 MZ M3 M4

RMSE of j 0.9348 0.0015 0.9114 0.2255 0.2245 0.3957
RMSE of ﬁ 0.2725 0.0561 0.2796 0.0658 0.0663 0.0688

n = 100 MA weights 0.0167 0.9643 0.0191 0.3809 0.4091 0.2091
Loss 119.9737 5.1553 133.9949 8.4881 7.4038 8.2330
MA loss 19.1765 7.1814
RMSE of j 0.8420 0.0031 0.8551 0.2258 0.2263 0.4021
RMSE of fS 0.3105 0.0310 0.3065 0.0466 0.0455 0.0501

n = 225 MA weights 0.0382 0.8775 0.0844 0.4941 0.2855 0.2203
Loss 341.7 9.343 308.8 10.2421 7.9955 9.6258
MA loss 45.4741 8.9202

T =10 True M is M; True M is M, + M;

M, M, M, M, M, M,

RMSE of 5 0.9296 0.0046 0.9331 0.2196 0.2159 0.3905
RMSE of [3 0.1004 0.0342 0.1013 0.0429 0.0449 0.0463

n = 100 MA weights 0.8918 0.8688 0.0420 0.4374 0.3659 0.1967
Loss 31.8830 3.6366 30.8502 7.8075 6.8633 7.5255
MA loss 56.6645 6.5630
RMSE of 0.9594 0.0020 0.9602 0.2294 0.2229 0.3990
RMSE of j 0.2666 0.0140 0.2663 0.0335 0.0326 0.0362

n = 225 MA weights 0.0847 0.8169 0.0985 0.4666 0.4315 0.1019
Loss 456.4304 1.3029 458.3563 9.2651 8.2181 9.7469
MA loss 71.0281 7.8890

5.2.2. SEM model

For the SEM model (4 =0, p = 0.5), we use candidate matrices M,,M,, My, testing single (M) and mixed (M, + Mj3) structures.
Table 5 shows that for M3, MA assigns dominant weights (e.g., 0.9643 at T = 5,n = 100), with low RMSE for / (0.0020) and ﬁ
(0.0140), and MA loss (e.g., 71.0281) controlled compared to misspecified models (e.g., 458.3563 for M;). In the mixed structure,
weights are distributed more evenly (e.g., 0.4666, 0.4315, 0.1019 at T = 10, n = 225), with MA loss (7.8890) outperforming single
models (e.g., 9.7469 for M;). Increasing T from 5 to 10 enhances precision (e.g., M, loss drops from 3.6366 to 1.3029), and larger
n reduces RMSE and loss, reinforcing the method’s robustness and accuracy in spatial error modeling. The histograms of residuals
in Fig. 4 for the mixed spatial structure scenario (M, + M;) reveal an approximately normal distribution centered at zero with
symmetry, suggesting that the model fits the data well. Furthermore, the scatter plots of actual versus fitted values exhibit a close
alignment along the 45-degree line, with only slight deviations at the extremes, which underscores the predictive accuracy of the
MA framework.
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(a) T =5,n=100, Histogram of (b) T = 5,n = 100, Actual vs. (c) T = 10,n = 100, Histogram (d) T = 10,n = 100, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

(e) T =5,n =225, Histogram of (f) T = 5,n = 225, Actual vs. (g) T = 10,n = 225, Histogram (h) T = 10,n = 225, Actual vs.
Residuals Fitted Values of Residuals Fitted Values

Fig. 4. Histogram of residuals and Actual vs. Fitted values for SEM: True matrices M, + M; (T =5 and T = 10).

5.3. Comparative study: MMA vs. classical criteria

We compare the MA method (MMA) with C,, AIC, and BIC using a simplified SARAR model: y = pWy+XB+u, u = pWu+e¢, with
p € {0,0.2,0.5,0.8}, true matrices W; or W3, and candidates W, W,, W5, W,. The design follows Section 5.1.1, with X ~ N (0, 1),
£ ~ N(0,0.1T), and response generated via y = (I—pW)~!(Xp+(I—pW)~'¢). Parameters are estimated via QMLE, and MMA optimizes
weights using quadratic programming with an adaptive penalty based on || X sh— XpB Lill?

Table 6 reveal significant spatial heterogeneity in the performance of model selection criteria, deeply influenced by the
interaction of spatial dependence intensity (p), time dimension (T), and sample size (n). For the true model W; (Rook adjacency),
under weak spatial dependence (p = 0.2), traditional criteria (C,/AIC/BIC) achieve 100% correct selection at T = 5, while MMA
assigns 69.6% weight to W3 (n = 100), distributing the remainder to other candidates. Increasing n to 225 and T to 10 raises
MMA'’s weight for W; to 78.8%, demonstrating synergistic enhancement from spatiotemporal information. In moderate dependence
(p =0.5), MMA attains 92.9% weight for W5 (n = 100, T = 5), with misassignment reduced by 82% compared to p = 0.2. Temporal
extension further concentrates weights to 95.6%, highlighting uncertainty compression. Under strong dependence (p = 0.8), all
methods perform optimally, yet MMA exhibits minor dispersion (86.1% weight for W; at n = 100, T = 5), mitigated to 88.3% with
n = 225. For the null model W, (p = 0), MMA achieves perfect identification (100% weight), whereas C, selects W, with only 80.0%
probability (n = 100, T = 5), and AIC/BIC show dispersed weights (e.g., 18.7% for W, under AIC). Temporal extension improves C,’s
accuracy to 56.0% (7" = 10), while MMA maintains 100% reliability. Spatiotemporal interaction analysis shows temporal extension
(T =5 — 10) enhances MMA performance (for p = 0.2) more than cross-sectional expansion (n = 100 — 225). Traditional criteria
remain insensitive to n, reflecting variance insensitivity. MMA’s superiority stems from dynamic penalties, weight smoothing for
small-sample robustness, and efficient temporal information utilization. Overall, MMA outperforms traditional criteria in controlling
overfitting, enhancing discriminative robustness.

5.4. Extension to irregular spatial weight matrices

In spatial econometrics, spatial units like administrative regions or economic zones often diverge from regular lattice structures.
To assess our proposed model averaging framework’s robustness in such scenarios, we extend Monte Carlo simulations using the SAR
model, incorporating six spatial weight matrices: three regular (Zero, Queen, Rook) and three irregular (Inverse Distance Weighting
(IDW), k-Nearest Neighbors (KNN), and Economic). The IDW matrix, built from random coordinates (» = 100), uses an exponential
decay function w;; = exp(—1.4-d,;/100) based on scaled Euclidean distances, row-standardized with zero diagonals. The KNN matrix
links each point to its four nearest neighbors with equal weights (1/4), while the Economic matrix, derived from random GDP
values (0 to 100), employs w;; = 1/(1 + |GDP; — GDP;|), also row-standardized. The true spatial weight matrix Wy, is a convex
combination of the IDW and Economic matrices with a mixing parameter wy.igh; = 0.5, alongside parameters § = [1.5, -2.0,0.5]7,
A =05, and 62 = 0.01, consistent with prior experiments in Section 5.1. This setup evaluates the framework’s ability to handle
mixed irregular spatial dependencies, including economic influences, in non-lattice settings.

Table 7 summarizes the performance across the four scenarios. For T = 5 and n = 100, the average loss is 0.4222, with RMSE
values of 0.0146 for 1 and 0.0056 for f. Increasing the spatial units to n = 225 (with T = 5) reduces the average loss to 0.3124
and improves the RMSE values to 0.0130 for 4 and 0.0036 for f§, highlighting the advantage of a larger cross-sectional sample in
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Table 6
Performance comparison of different model selection criteria.
p=02 True W is W; (T = 5) True W is W; (T = 10)
w, W, W, W, W, W, W, W,
c, 0 0 1 0 0 0 1 0
n =100 MMA 0.295 0.008 0.696 0.001 0.350 0 0.650 0
- AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
c, 0 0 1 0 0 0 1 0
n =225 MMA 0.165 0.013 0.822 0.000 0.212 0.000 0.788 0.000
- AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
=05 W, W, W, W, W, W, W, W,
c, 0 0 1 0 0 0 1 0
n =100 MMA 0.026 0.034 0.929 0.011 0.018 0.022 0.956 0.004
- AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
c, 0 0 1 0 0 0 1 0
n =295 MMA 0.019 0.029 0.943 0.008 0.019 0.025 0.952 0.004
- AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
=08 w, W, W, W, w, W, W, W,
c, 0 0 1 0 0 0 1 0
n =100 MMA 0.053 0.047 0.861 0.040 0.044 0.026 0.901 0.029
- AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
c, 0 0 1 0 0 0 1 0
n =295 MMA 0.038 0.055 0.883 0.024 0.046 0.031 0.900 0.023
AIC 0 0 1 0 0 0 1 0
BIC 0 0 1 0 0 0 1 0
p=0 True W is W, (T = 5) True W is W, (T = 10)
wl WZ w3 w4 wl W2 w3 W4
c, 0.800 0.120 0.060 0.020 0.560 0.220 0.120 0.100
n =100 MMA 1.000 0 0 0 1.000 0 0 0
- AIC 0.187 0.279 0.284 0.250 0.158 0.301 0.289 0.252
BIC 0.187 0.279 0.284 0.250 0.158 0.301 0.289 0.252
c, 0.680 0.120 0.060 0.140 0.640 0.120 0.060 0.180
n =225 MMA 1.000 0 0 0 1.000 0.000 0.000 0.000
AIC 0.166 0.265 0.259 0.310 0.166 0.270 0.264 0.300
BIC 0.166 0.265 0.259 0.310 0.166 0.270 0.264 0.300
Table 7
Model averaging performance for SAR in irregular spatial weight matrices: True matrix W, + Ws.
T=5 W, W, W, W, W, W, MA
RMSE of 1 0.0000 0.4577 0.4807 0.0163 0.0146 0.4730 0.0146
= 100 RMSE of 0.0122 0.0115 0.0117 0.0054 0.0057 0.0113 0.0056
"= Loss 28.8453 27.0758 27.9525 0.4842 0.4737 27.8998 0.4222
MA weights 0.0357 0.0000 0.0000 0.4114 0.5529 0.0113 -
RMSE of 1 0.0000 0.4746 0.4867 0.0147 0.0125 0.4830 0.0130
w25 RMSE of j 0.0058 0.0059 0.0060 0.0037 0.0036 0.0055 0.0036
- Loss 32.0208 30.9034 31.4402 0.3007 0.3077 31.3055 0.3124
MA weights 0.0279 0.0000 0.0000 0.4722 0.5000 0.0000 -
T=10 W, W, W, w, Ws W, MA
RMSE of 1 0.0000 0.4560 0.4773 0.0087 0.0090 0.4690 0.0087
w=100 RMSE of j 0.0098 0.0095 0.0095 0.0022 0.0022 0.0090 0.0021
- Loss 57.8474 53.9628 85.8446 0.6159 0.6150 55.4465 0.4713
MA weights 0.0127 0.0000 0.0000 0.5640 0.4233 0.0000 -
RMSE of 1 0.0195 0.4709 0.4863 0.0053 0.0070 0.4813 0.0061
— 5 RMSE of [3 0.0063 0.0059 0.0062 0.0023 0.0023 0.0061 0.0023
"= Loss 76.4969 73.3236 74.8490 0.6197 0.6664 74.6738 0.4954
MA weights 0.0092 0.0000 0.0000 0.4703 0.5205 0.0000 -

15



A. Jietal Spatial Statistics 70 (2025) 100931

enhancing estimation accuracy. Extending the time dimension to 7" = 10 with n = 100 increases the average loss slightly to 0.4713,
but improves RMSE values to 0.0087 for A and 0.0021 for f, suggesting that a longer time period reduces estimation variability,
particularly for regression coefficients. For T = 10 and n = 225, the average loss is 0.4954, with RMSE values of 0.0061 for 1
and 0.0023 for j, demonstrating the combined benefit of larger » and T in optimizing performance. The model averaging weights
predominantly favor the true combination W, + W5, with weights ranging from 0.9233 to 0.9908 across scenarios, indicating robust
identification of the irregular spatial structure.

These results underscore the framework’s adaptability to irregular spatial weight matrices, demonstrating its effectiveness in
identifying and weighting complex spatial dependencies driven by distance and economic factors. The consistent improvement in
RMSE and loss with increasing sample size highlights the practical utility of the approach for non-lattice spatial data.

5.5. Computational efficiency

The proposed model averaging framework achieves significant computational efficiency through three key mechanisms. First,
the orthogonal transformation matrix Q = F’T,T_ , ® I, eliminates individual fixed effects while reducing the temporal dimension
from T to T — 1, shrinking the parameter space from n + k + 3 to k + 3. This dimensional reduction avoids the variance
estimation bias plim 62¢ = ¢2 - =1 inherent in dummy methods when T is fixed, while ensuring consistent estimation and
asymptotic normality without additional bias-correction steps, substantially lowering computational overhead for large n. (see the
supplementary materials) Second, sparse matrix optimizations leverage the inherent structure of spatial weight matrices W, and M,,.
Critical operations like log-determinant calculations for |I, — AW, | achieve O(n) complexity via Chebyshev approximation or partial
eigenvalue decomposition, bypassing O(»*) full matrix inversion. The Kronecker product formulation (I;_; ®S,,(4))Y enables efficient
block-sparse operations, minimizing memory and computational demands during quasi-maximum likelihood estimation across
candidate models. Finally, the model averaging weight optimization W = arg minyc;, C(w) is solved as a quadratic programming
problem with linear constraints, efficiently implemented using established algorithms (e.g., MATLAB’s quadprog). The criterion
C(w) admits parallel computation of candidate-specific components D, and 133,,,, with interior-point methods ensuring scalability
even for large .§ x H model sets, maintaining tractability for high-dimensional spatiotemporal analyses.

Future developments may involve the integration of stochastic optimization techniques for large-scale samples and the utilization
of GPU acceleration for efficient sparse matrix computations, thereby broadening the framework’s applicability to extensive
spatiotemporal datasets without compromising computational feasibility.

6. Empirical experiment in housing prices

To demonstrate the practical applicability of the proposed model averaging (MA) approach for spatial panel SARAR models, an
empirical analysis of housing prices across 31 Chinese provinces from 2013 to 2022 is conducted, utilizing a spatial panel dataset
with 31x10 = 310 observations to explore spatial dependence patterns driven by economic and geographical factors (Liu et al., 2018).
Housing prices serve as a critical indicator of regional economic vitality, with elevated prices often signaling prosperity, population
inflow, and employment opportunities, while depressed prices may indicate economic slowdown or population outflow. Analyzing
spatial disparities in housing prices provides insights into regional economic health, resource allocation, industrial structure, and
infrastructure development, informing policy decisions to address imbalances.

The dataset, sourced from the China Statistical Yearbook (https://www.stats.gov.cn/sj/ndsj/), includes average residential
property prices per square meter as the dependent variable, with three key explanatory variables: per capita disposable income
(reflecting purchasing power), population density (capturing urbanization), and infrastructure investment (measuring development).
An orthogonal transformation Q = F/T,T—l ® I, eliminates individual fixed effects, reducing the time dimension from T = 10 to
T —1=09, yielding 31 x9 = 279 observations for estimation. Four candidate spatial weight matrices are defined for both W, and M,,
(s,h=1,...,4), generating 4 x 4 = 16 model combinations: W;,M, as a geographical adjacency matrix (1 for adjacent provinces, 0
otherwise, row-normalized); W,, M, as an economic adjacency matrix; W5, M; as a first-order distance band matrix (distance <300
km, row-normalized); and W,,M, as an exponential decay matrix (w;; = exp(-1.4 x (d;;/100)), row-normalized. Keller and Shiue
(2007) indicate that the specification with 8, = —1.4 effectively fits the data, determined through a constrained grid search based
on likelihood. Model estimation employs QML estimators to compute parameters 4, p, f for each candidate model, followed by
weighted averaging using a Mallows-type criterion.

The results presented in Fig. 5, reveal that the MA approach assigns the highest weight (0.6092) to the model combining the
economic adjacency matrix (W,) for the dependent variable and the exponential decay matrix (M,) for the error term, indicating
that spatial dependence in Chinese provincial housing prices is primarily driven by economic interactions, with error autocorrelation
following an exponential decay pattern. Additional notable weights include 0.2638 for the combination of W; and M3, and 0.1270
for W, and M;. The g coefficients, shown in Figs. 5(d)-5(f), suggest that per capita disposable income exerts the strongest influence
on housing prices, with estimates ranging from 0.2748 to 0.3751 across models, followed by infrastructure investment (ranging from
0.3613 to 0.4927), while population density has a smaller effect (ranging from —0.0320 to 0.0402). These findings are consistent
with econometric theory linking income and urbanization to real estate demand. Parameter estimates for 1 (Fig. 5(b)) range from
—0.1610 to 0.2585 across models, indicating moderate spatial lag dependence, while p estimates (Fig. 5(c)) vary from 0.0284 to
0.4789, reflecting weaker but significant error autocorrelation.

The Diagnostic metrics (Fig. 6) validate model performance: Moran’s I (0.0211-0.2421) indicates minimal residual autocorrela-
tion, particularly in models with economic/exponential decay matrices; R? (0.3831-0.4054) shows reasonable explanatory power;
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(a) Model Averaging Weights (b) A Estimates (c) p Estimates

(d) B, Estimates (e) p, Estimates (f) p5 Estimates

Fig. 5. Empirical experiment results.

(a) 'Moran’s | Values (b) R-squared Values

(c) AIC Values (d) BIC Values

Fig. 6. Empirical experiment results diagnostic.
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Table 8

Model averaging estimates and diagnostics.
Parameter Estimate
Inia 0.1250
Pria 0.2808
Py a1 (Income) 0.2962
Priar (Density) 0.0344
Prraz (Investment) 0.4297
E 0.0122
Diagnostic Value
R-squared 0.4022
AIC -1176.1029
BIC —1157.9469
Moran’s I 0.0723

Table 9

Spatial effects from model averaging.
Variable Direct effect Indirect effect Total effect
Per capita income 0.2977 0.0346 0.4319
Population density 0.0336 0.0043 0.0487
Infrastructure investment 0.3312 0.0388 0.4804

and lower AIC (-1177.58 to —1167.33)/BIC (—1159.43 to —1149.16) values favor exponential decay specifications. The diagnostic
metrics, presented in Fig. 6, provide further validation of the model performance. Moran’s I values, which measure residual spatial
autocorrelation, range from 0.0211 to 0.2421 across the candidate models, with lower values in models incorporating economic
and exponential decay matrices, suggesting effective capture of spatial dependence and minimal remaining autocorrelation in the
residuals. The R-squared values, ranging from 0.3831 to 0.4054, indicate that the models explain approximately 38% to 41% of the
variance in housing prices, reflecting reasonable explanatory power given the complexity of spatial panel data and the inclusion
of fixed effects. The AIC and BIC values, ranging from —1177.5829 to —1167.3292 for AIC and —1159.4268 to —1149.1649 for
BIC, serve as criteria for model comparison, where lower values denote better balance between fit and complexity; models with
exponential decay matrices tend to have lower (better) scores.

Table 8 summarizes MA results. The spatial lag parameter (4y, = 0.1250) indicates moderate positive dependence: a 1%
neighbor price increase raises local prices by 0.1250%. Error autocorrelation (py, = 0.2808) suggests spatial factors captured by
exponential decay. Coefficients confirm income (fya; = 0.2962) and investment (fya3 = 0.4297) as dominant drivers, with density
(Byiao = 0.0344) having marginal impact. The diagnostics reveal a R-squared of 0.4022, reflecting a solid fit ; AIC (-1176.10) and
BIC (-1157.94) values support model parsimony; and Moran’s I (0.0723) confirms minimal residual spatial patterns, validating
the MA framework’s effectiveness in handling model uncertainty. In summary, Table 8 consolidates the averaged parameters and
diagnostics.

Spatial effect decomposition Table 9 reveals: income increases exhibit local dominance (direct: 0.2962) with modest spillovers
(indirect: 0.0312; total: 0.3274); infrastructure investment generates strong local (0.4401) and regional spillovers (0.0463), yielding
the highest total effect (0.4864); density effects remain limited (total: 0.0379). These findings align with model diagnostics and
weight distributions.

The empirical analysis demonstrates how MA mitigates spatial structure uncertainty, distinguishes between dependent variable
and error dependence, and enhances robustness through Mallows weighting. Results indicate economic adjacency and exponential
decay matrices best capture China’s provincial housing price dynamics, with income and infrastructure as key determinants. Policy
implications include promoting economic integration for market stability and incorporating spatial error structures in infrastructure
planning. This confirms the MA framework’s utility for spatial panel analysis in real estate economics.

7. Conclusions and prospects

This paper proposes a novel model averaging framework for spatial panel SARAR models, significantly advancing spatial
econometric methodology by addressing uncertainty in spatial dependence structures. It integrates multiple spatial weight matrices,
W, and M,,, for the dependent variable and error terms, respectively, while employing orthogonal transformations to eliminate
individual fixed effects. The proposed adaptive Mallows-type criterion dynamically adjusts to the presence or absence of spatial
effects, enhancing robustness and predictive accuracy. Monte Carlo simulations validate its superior performance across scenarios
with no, single, or mixed spatial dependencies. An empirical analysis of Chinese provincial housing prices from 2013 to 2022
confirms the framework’s practical utility, identifying economic adjacency and exponential decay error structures as key drivers of
spatial dependence. Major contributions include extending the Mallows framework to panel data, providing a systematic approach
to handling multiple weight matrices, and ensuring computational efficiency for large-scale applications. This framework offers a
robust tool for spatiotemporal data analysis in regional economics, environmental science, and urban studies.
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Future research directions promise to further refine this framework’s applicability. Extending the model averaging approach to
dynamic spatial panel models could capture temporal lags and feedback effects, enhancing its relevance for evolving spatial systems.
Integrating machine learning techniques, such as neural networks or ensemble methods, may improve the selection and weighting
of spatial structures in high-dimensional settings. Exploring performance under non-Gaussian error distributions or heteroskedastic
conditions could broaden robustness to complex real-world data. Additionally, applying the method to diverse empirical contexts,
such as global trade networks or environmental pollution diffusion, could yield new insights into spatial interactions and inform
policy design. These advancements position the proposed framework as a cornerstone for innovative spatial econometric analysis,
with potential to address emerging challenges in mathematical modeling of spatiotemporal phenomena.
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Appendix A

A.1. Quasi-maximum likelihood function and derivatives

The log-likelihood function for the spatial panel SARAR model is defined to facilitate parameter estimation for = (4, p, 8, 5?).
The function is given by:

InL(9) = _Q InQ2z6?) +In [Ir_; ® S,(A)] +In |Ir_; @ R,(p)| — #VT(H)V(O),
o)

where the transformed error vector is V(0) = (Ir_; ® R,(p)) [(Ir_; ® S,(1)) Y — Xp| . Parameters j, ;, A, ;, B, 5, and 62, are obtained
by maximizing In L(#). Below, we derive the necessary partial derivatives for QML estimators and the Mallows criterion.

Partial derivative with respect to p
To compute the first-order partial derivative of the log-likelihood with respect to p, we express:
ol L©) _ a T
T op 1“ [Tr_; ® R, (0)| - —20— (VI©OV©)).
The first term involves the determinant In|I;_; @ R,(p)| = (T — 1)In|R,(p)|, with derivative m‘y{ =1r <Rﬂ(p)‘I %ﬂ(”)). Since

IR, (p) iy ®R, ()| _
F) p)

R,(p) =1, — pM,,, we have: = -M,, yielding —(T - Dtr (Ry(p)™'M,).

For the second term, define Z = (IT_ | ® Sn(/l)) Y - X8, so:

av(o

V) = (Ir_, ®R,(p) Z % =-(I;.1®M,)Z
Thus:

a (VT ()V(©o) av(o

(T) VHOIAC ( ) = 277 (1 @R, () (I ®M,) Z
Combining these, the first-order derlvatlve is:

dln L(6 _ 1

T() T = D (Ry()7M,) + 27 (1. ®R,(») (I,_, ®M,)Z

To derive ‘;’;—“ﬁ, we apply the implicit functlon theorem, setting dln L(B) = 0 and differentiating with respect to Y':
d (dlnL(©) 0p 0%In L(0) K]
- —— )= =—" T —-1)tr (R ™M
YT ( p ) N o oyt Sy (- =D (R,

|
2T (I ® R,(») (Ir_, ®M,) z) =0.
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Since aY_T = (IT 1 ®S (/1)) we compute:

aYT [ZT (I @R, () (Ir_, ®M,) ]_2(IT,1®S,,(,1))T(IT,1®Rn(p))T(IT,1®M,,)Z

Thus:

EY 2
Psh _ (M) Z (I ®8,0) (I @R, () (I, ®M,) Z

oYT op?

2
where (%) is the scalar information matrix term, not further expanded here.

Partial derivative with respect to (1)

Similarly, aYT "), we apply the implicit function theorem to the first-order condition ("ln LO) _ (). The log-likelihood
derivative with respect to A involves terms analogous to those for p, leading to:

-1
) 2 @R0) (7 W, Vo),

dhon _ <02 In L(6)
YT 042

2
where V() is the transformed error vector defined above, and (%) is the corresponding information matrix term.

Derivatives of the projection matrix
The projection matrix for model (s, h) is:

~ n -1 1
P, = (IT—I ® Sn(j’s,h)> X(XT (T @R, (3, )T (Ir—; ® R, (5, 1)) X)
X XT (I @R, (5 p)7) (Ir—y ® R, (B,1)) (Ir—1 ® S, (A1) -
Define:

A=(I;,® Sn(zs,h))_l , B=X (XT (X ®Rn(l3s,h)T) (Ir_; ® R,(3;.1)) X)_l X7,

C=(I_; ®R, (5 »)") (Ir_; ®R,(5,)) (Ir_; ®S, (4, ) -
Thus, P ;, = ABC. The partial derivative with respect to j,, is:
0135,11 aC

— = A C +AB s
aps,h aps h aps,h

where:

D= (I, ®R,(3,)") (Ir_; ®R,(3,)) -

% (Lo @R, (B, )T) (Ir— ®M,,) — (I, ® Mn)T (Ir_1 ® R, (3, 4)) »

s,h

9B _x(XDX)" (XT oD X) (XDX) ' XT,

aps,h ps,h

aC N T T N A
m = [_ (IT—I ® Rn(ps,h) ) (IT—I ® Mn) - (IT—l ® Mn) (IT—I ® Rn(ps,h))] (IT—I ® Sn(j':,h>) .

Hence:

oP
Sy = <A 9B 4+ ap2t )Y.
aps,h aps,h aps,h

For A, the derivative is:
op
;‘”‘Y:( BC + AB-2C >Y,
aﬂ's h ’ls,h aﬂ's,h

aiA and -2 follow from differentiating S, ().
s.h

where

A.2. Unbiased estimation of the Mallows criterion

To establish the unbiasedness of the Mallows-type criterion C(w), we derive the expected risk using Stein’s identity, ensuring the
complexity penalty terms align with the model’s degrees of freedom. Define the transformed response (z = 2'/?Y) (see Greven and
Kneib (2010)), where () is the covariance matrix. Stein’s identity yields:

E { (BwY)" (Y - ﬂ)} =E { (Q2Bw)@'2)" (2 - @'2p) }
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Table 10
Notation summary for spatial panel SARAR framework.
Symbol Description
n Number of spatial units (e.g., provinces, grid cells)
T Number of time periods
Y, nx 1 vector of dependent variables at time ¢

X, nx k matrix of explanatory variables at time ¢

W,.M, nx n spatial weight matrices for dependent variable and errors
A Spatial autoregressive parameter for dependent variable
P Spatial autoregressive parameter for error term

B k x 1 vector of regression coefficients

Cuo nx 1 vector of individual fixed effects

U, Spatially autocorrelated error term

Ve i.i.d. innovation term ~ (0, né)

Symbol Description

Y+, X*, V* Stacked panel data vectors/matrices (NT x 1 or NT x K)
o Orthogonal transformation matrix (Fyr_; ® 1,)

Fror_, Fixed effects elimination matrix (T x (T — 1))

S, (A) Spatial filter I, — AW,

R,(p) Error spatial filter 1, — pM,

" Conditional expectation E(Y) (Eq. (3))

Q Variance-covariance matrix of Y

Symbol Description

w,.M Candidate sets for W and M matrices

S, H Number of candidate matrices for W and M

0, Parameter vector (4, p, ;. B ) for model (s, h)

iy Estimated mean for candidate model (s, h) (Eq. (6))

13”, Projection matrix for model (s, h) (Eq. (8))

Wy p Weight assigned to model (s, h)

w Weight vector (w, ..., wg ;)"

H Simplex constraint set {w € [0,1]57 : ¥ /¥, w,, =1}
(w) Model-averaged estimator (Eq. (13))

C(w) Mallows-type criterion function (Eq. (14))

D,, Model complexity measure

pen,, Adaptive penalty term

2 (Q'*P(w)Q'/?z)
=E trace| ————
A
2 (QV2PwW)Q?2)  0p,,
s oaT

=E {trace (!21/213(w)!2]/2)} +E [ trace

2 (QV2Pw)Q?z) ai,

+ trace — T
0hs oz

s . 0p,, OP 0k, oP
=E ZZWM trace(PS’h.Q)+—ps’h.Q sh sh g sh

s=1 h=1 oYT  9pyp oYT ol

The risk is:
RW) = E|[PWY — || =E[BWY - Y +Y — p||* = E|[Pw)Y - Y|* +2E [(f’(w)Y)T (Y - ,u)] Fr(Q).

Substituting the expectation derived above, we obtain:

s u . _ . _
- - 0p P dA P
2 s,h s,h s,h s,h
R(w) =E [[PWY -Y| +2E w tr (P, ,Q) + —Q——Y + —Q——Y +tr(Q),
W) =E[Pw)Y - Y| ;:1 h§=1 s (Pon@) + g7 @55+ Sor @ @
firming that C(w) = [[PWY - Y|2 +2 35 > B ,0)+ LRy gy | biased estimator of th
confirming that C(w) = [PWY - Y[IP+2 X, ¥)1, w  tr (P, Q) + = T Y+ Gy Q52Y ¢ is an unbiased estimator of the

risk, adjusted by tr(€).

Appendix B

B.1. Glossary of key symbols

See Table 10.
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Appendix C. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spasta.2025.100931.
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