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 A B S T R A C T

The complexity incorporated in global supply chain (GSC) means the production, transportation, and delivery 
are totally operating and completing in the dynamic business environment with unforeseen events. At present, 
there are two key challenges in the transnational supply chain network: addressing the demand ambiguity 
and enhancing cooperation among supply chain entities. To optimize the production–transportation–delivery 
decision in GSC, a novel globalized distributionally robust GSC (GDR-GSC) model with horizontal cooperation 
is proposed, in which the ambiguity of demand distribution is characterized by inner and outer ambiguity sets. 
Subsequently, the proposed model is transformed into mixed integer nonlinear programming (MINLP) model 
by duality theory. It is commonly difficult to solve in high-dimensional case. Therefore, a customized Branch-
and-Cut (B&C) algorithm tailored for the GDR-GSC model is designed to handle complex MINLP problems, 
and improves computational efficiency and solution quality. The case study based on Apple’s sales operations 
in China and Malaysia demonstrates the effectiveness and superiority of the B&C algorithm in solving the 
GDR-GSC model. Numerical experiments show that the customized B&C algorithm can improve the average 
solving time by 18% while maintaining the same solution quality. Based on realistic cases, we know that 
horizontal cooperation can increase profits by at least 6.25%.
1. Introduction

Global supply chain (GSC) refers to the worldwide network of 
businesses, organizations, and activities involved in the production 
and distribution of goods and services from raw materials to end 
consumers. This network includes suppliers, manufacturers, transporta-
tion providers, distributors, retailers, and customers, all interconnected 
through complex logistical, financial, and informational processes. The 
goal of the GSC is to efficiently manage the flow of products and 
services across international borders to meet consumer demand and 
optimize business operations (Khan, 2020). Nowadays, multinational 
corporations face mounting challenges in managing their GSCs, since 
production, transportation, and delivery activities span multiple coun-
tries. Hereinto, there are mainly two difficulties in the GSC need to be 
solved: (1) How to accurately depict the customer demand? (2) How to 
strengthen cooperation among some links in the supply chain to reduce 
costs?

Due to market fluctuations and policy impacts, customer demand 
is often uncertain. The uncertain parameter in the model significantly 
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increases the complexity of optimization, as the uncertainty may af-
fect the feasibility and stability of the solution (Hasani et al., 2021; 
Wang et al., 2025). To address this issue, two major frameworks are 
typically used: stochastic optimization (SO) and robust optimization 
(RO). SO assumes that uncertain parameter follows a known proba-
bility distribution, and solves the problem by optimizing the expected 
value or by meeting the objective function at a certain confidence 
level (Birge and Louveaux, 2011). This method is suitable for scenarios 
where the distribution of uncertainty can be estimated with reasonable 
accuracy. However, in practical applications, it is often difficult to 
obtain precise probabilistic information of customer demand, limiting 
the applicability of SO in complex uncertain environments. RO assumes 
that uncertain parameter varies within a known set and addresses 
uncertainty by optimizing the worst-case outcome. RO focuses more 
on feasibility, ensuring that the solution remains feasible regardless of 
how the distribution of uncertain parameters changes (Ben-Tal et al., 
2009). Therefore, traditional RO can sometimes lead to overly conser-
vative solutions, which may limit the potential for maximizing returns. 
Therefore, to a certain extent, these traditional optimization methods 
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tend to be overly conservative or inefficient, necessitating more flexible 
and robust optimization approaches to handle such problems.

Distributionally robust optimization (DRO) seeks the worst-case 
optimality under given partial distribution information about the pa-
rameters (Saif and Madani, 2022; Wang et al., 2024b). The core idea 
of this method in handling uncertainty is to strictly limit constraints 
within the ambiguity set of distributions to meet feasibility require-
ments. However, in GSC problems, due to the cross-border hetero-
geneity and dynamic complexity of customer demand, the situation 
that the true distribution of parameters is excluded from the ambi-
guity set is particularly prominent. Specifically, first, demand data in 
transnational supply chains are often scattered across different regions, 
resulting in limited historical samples and insufficient representative-
ness (Timmer et al., 2021). Second, cross-border disruptive events such 
as geopolitical conflicts and global pandemics occur frequently, and 
the demand impact of such low-probability events often exceeds the 
modeling boundaries of traditional ambiguity sets (Yang, 2021). In 
fact, the escape of the true distribution from the ambiguity set is a 
frequent and critical challenge in GSCs. The statistics show that 70% 
of multinational enterprises experience at least one disruption caused 
by this phenomenon each year, resulting in significant losses (World 
Economic Forum, 2022). Unlike traditional DRO which lacks escape-
response mechanisms, the globalized distributionally robust optimiza-
tion (GDRO) (Liu et al., 2023) employs two ambiguity sets: the inner set 
enforces operational stability in high-probability scenarios, while the 
outer set enables controlled adjustments during distribution escapes—
ensuring both baseline robustness and adaptive resilience in complex 
environments.

Horizontal cooperation is an effective strategy to improve opera-
tional efficiency and responsiveness, especially in the face of fluctu-
ations and uncertainties in global market demand. Horizontal coop-
eration in the GSC refers to collaboration between companies at the 
same stage of the supply chain, typically competitors or peers, working 
together to share resources, reduce costs, and improve efficiency (Hos-
seinnezhad et al., 2023). For example, warehouses in different regions 
can coordinate and share inventory, thereby reducing logistics costs 
and improving the resilience of the supply chain (Li et al., 2012; 
Yang et al., 2017; Wu and Shang, 2021). The uncertainty factors and 
considered horizontal cooperation make the GSC model more complex, 
and solving it will be a huge challenge. The current commercial solvers 
have taken shape for solving complex problems, but some specific types 
of problems still take a long time to explore feasible solutions. At this 
time, it is necessary to design heuristic algorithms or exact algorithms 
for specific problems (Tsai and Chao, 2009; Enayati and Özaltın, 2024). 
Therefore, how to effectively solve our GSC production, transportation 
and delivery problems remains a challenge.

Driven by the reasons mentioned above, this paper presents a 
novel globalized distributionally robust global supply chain (GDR-
GSC) model to optimize the production, transportation, and delivery 
processes in a multinational supply chain under demand ambiguity. The 
core of this model is the GDRO framework simultaneously incorporates 
distributional uncertainty and model errors, delivering critical advan-
tages for global supply chain challenges. The GDRO approach addresses 
dual complexity through integrated risk control: it avoids deterministic 
overreliance while mitigating extreme-scenario risks, and resolves the 
inherent trade-off between core-scenario stability and extreme-scenario 
adaptability (Shi et al., 2013; Duan et al., 2023). The single ambiguity 
sets or rigid constraints often lead to risk operational rigidity when 
over-constrained, or reliability loss happens when under-constrained. 
Differently, GDR-GSC model employs a hierarchical ambiguity struc-
ture. The inner set (core constraint region) enforces strict satisfaction 
of robust constraints for high-probability demand scenarios, ensuring 
stable core-market supply; The outer set covers low-probability extreme 
events (e.g., regional demand surges), permitting tolerable constraint 
violations within model-error margins to balance risk containment 
and operational flexibility (Liu et al., 2023). This framework enables 
2 
enterprises to maximize efficiency and profitability while minimizing 
risks in uncertain environments.

Another key aspect of the model is the exploration of horizon-
tal cooperation among warehouses at the same level within multina-
tional corporations. By sharing customer location and demand histori-
cal data, warehouses can significantly streamline distribution processes 
and lower delivery costs. This cooperation enhances responsiveness 
to demand fluctuations and improves resource allocation across the 
supply chain. However, implementing such cooperation is complex. For 
multiple warehouses to function cohesively, the distribution network 
evolves into a vehicle routing problem (VRP), a well-known NP-hard 
challenge. As the number of customers and warehouses grows, the 
problem’s complexity increases exponentially, making traditional meth-
ods inadequate for quickly finding optimal solutions. To address this 
issue, we employ the B&C algorithm, an exact method that dynamically 
adds new constraints during the solution process, effectively narrowing 
the search space. To enhance efficiency further, we introduce a special 
ordered set (SOS) branching combined pseudo shadow price (PSP) 
branching and a customized 𝑘-path cut. The 𝑘-path cut is a specific cut-
ting plane approach that accelerates the search for optimal solution in 
these complex scenarios. Through numerical experiments, we conclude 
that the customized B&C algorithm can significantly improve compu-
tational speed while maintaining the optimal solution. Subsequently, 
we validate the feasibility of the model using real-world cases, and the 
results demonstrate that the horizontal cooperation strategy effectively 
reduces supply chain costs. Additionally, we analyze the role of key pa-
rameters and thoroughly explore the impact of these parameter changes 
on the model’s outcomes, revealing potential insights for management 
decision-making.

Based on the prementioned statements, the GDR-GSC model not 
only significantly reduces delivery costs but also effectively manages 
customer demand fluctuations in complex supply chain networks. The 
horizontal cooperation strengthens multinational corporations’ compet-
itiveness in GSC management. Here are the main contributions of this 
paper:

• We introduce a GDR-GSC model that effectively tackles the issue 
of demand ambiguity commonly faced in GSCs. By incorporating 
GDRO method, the inner and outer ambiguity sets are utilized, 
which allows us to comprehensively manage worst-case scenarios 
and demand uncertainties. This ensures robust decision-making 
capabilities that can withstand variable market conditions.

• Our GDR-GSC model further integrates horizontal cooperation 
strategies among warehouses, which is an effectual approach to 
GSC management. By facilitating the sharing of customer infor-
mation and coordinating vehicle routing among different ware-
houses, our model not only increases supply chain flexibility but 
also reduces operational costs and mitigates potential risks. This 
tactic offers a more resilient and efficient solution to the various 
challenges faced in GSCs, ultimately contributing to better overall 
performance.

• A customized B&C algorithm is developed specifically for our 
GDR-GSC model, which significantly enhances both computa-
tional efficiency and solution quality by incorporating joint branch
ing strategy and strengthened 𝑘-path cuts. This tailored algorithm 
optimizes key decisions related to production, transportation, and 
delivery across multinational supply chain networks, enabling 
faster and more accurate solutions.

The structure of the upcoming sections is as follows: Section 2 
presents the literature review. In Section 3, we formulate the model, 
followed by a detailed analysis in Section 4. Section 5 introduces a 
customized B&C algorithm for the GDR-GSC model and evaluates the 
performance of the algorithm. In Section 6, we apply the model to 
a real-world case study and analyze the effects of different parame-
ters, comparing the situations with and without of horizontal cooper-
ation and the differences among different models. Finally, Section 8 
summarizes our conclusions.
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2. Literature review

In this section, we review our paper in three parts to better explore 
research gap and state our study.

2.1. Global supply chain with cooperation

GSC management is a critical area of focus, with recent research em-
phasizing multiple aspects (Zhen et al., 2019; Tokito et al., 2023). Hasan
et al. (2021) developed a robust multi-objective optimization model 
that configured a green GSC network, considering disruptions and 
focusing on economic and environmental aspects. Sarkar et al. (2022) 
aimed to nullify food waste in a two-stage parallel supply chain.

General GSCs often lack efficiency. The integration of cooperation 
within GSC strategies has garnered significant attention due to its po-
tential to enhance operational synergies and bolster market presence. Li 
et al. (2022) explored the application of carbon emissions trading poli-
cies in supply chain management and how to achieve overall emission 
reduction goals through reasonable cooperation models. Wang et al. 
(2024c) aimed to provide a clearer understanding of the cooperation 
patterns and their impact on the supply chain during the COVID-19 
pandemic. However, in recent years, there has been little research on 
horizontal cooperation on the same tier in the GSC. Horizontal coop-
eration is a multifaceted approach that holds promise for advancing 
supply chain objectives across economic, environmental, and social 
dimensions. It offers a pathway for supply chain actors to navigate 
the intricacies of a global marketplace, where cooperation can lead to 
mutual gains and collective resilience.

2.2. Uncertainty in global supply chain

Uncertainty in the GSC has emerged as a significant challenge, stem-
ming from various sources such as demand fluctuations (Sirikasemsuk 
and Luong, 2017), supply instabilities (Nguyen and Chen, 2018), and 
production delays (Niu et al., 2023). To address these uncertainties, 
researchers have proposed a range of strategies and models aimed at en-
hancing the resilience and agility of supply chains. Lalmazloumian et al. 
(2016) used a RO approach to handle uncertainties in procurement, 
production, and distribution costs. Kim et al. (2018) developed a mixed-
integer optimization model along with robust counterparts to address 
the uncertainties of recycled products and customer demand in the fash-
ion industry. Chen et al. (2024) presented a multi-product, multi-period 
construction supply chain model that accounted for supplier capacity 
and material demand uncertainties, using RO to address these uncer-
tainties. When dealing with different uncertain parameters, different 
approaches are taken. In cases when partial distribution information of 
uncertain parameters is known, previous research often employs DRO 
method (Qu et al., 2017; Wang et al., 2024a; Wei et al., 2024). Petridis 
et al. (2023) tackled uncertainty risk in supply chain design by adopt-
ing SO approach. Zhang et al. (2022) established a bi-objective DRO 
model to balance transportation time and safety, considering demand, 
transportation time, freight costs, and safety coefficients as uncertain 
variables with partial distribution information. Gao et al. (2024) uti-
lized DRO approach to address uncertainties in purchasing cost, carbon 
emissions, and demand problem. Recently, Liu et al. (2023) proposed 
the GDRO method, which is more suitable for our complex GSC prob-
lem with distributional ambiguity of demand. Compared to previous 
methods, GDRO method effectively reduces the conservativeness of the 
model when dealing with uncertainty, thereby avoiding profit loss or 
cost increases caused by excessive conservativeness. At the same time, 
this method does not significantly increase computational complex-
ity, making it highly efficient for large-scale optimization problems. 
Therefore, in this paper, we take this approach to optimize production, 
transportation and delivery in the GSC.
3 
2.3. Method of solution

In GSC problems, large-scale integer programming models are often 
involved, which are difficult to solve directly using commercial solvers. 
Many scholars employed customized heuristic or exact algorithms to 
increase solution efficiency (Koyuncuoğlu and Demir, 2023; Bakhshi 
Sasi et al., 2024). A multicut version of the Benders decomposition 
approach for handling two-stage stochastic linear programming chal-
lenges was introduced by You and Grossmann (2013). Computational 
studies demonstrated that this approach provided significant CPU time 
savings compared to the standard method while effectively dealing 
with large-scale problems. Peivastehgar et al. (2023) minimized green-
house gas emissions and costs in a bi-objective production routing 
problem using a hybrid of branch-and-bound and multi-objective fuzzy 
goal programming. Elyasi et al. (2024) emphasized the importance 
of flexible manufacturing systems in addressing demand ambiguity 
and provided an effective solution through a column generation-based 
heuristic algorithm. Not all heuristic or exact algorithms can accelerate 
problem-solving; only those specifically tailored to particular problems 
can significantly enhance solution efficiency. This is because different 
problems possess unique structures and characteristics, and general 
algorithms may fail to effectively leverage these features for optimiza-
tion. By thoroughly analyzing the problem’s attributes and designing 
targeted algorithms in this paper, it is possible to better capture the 
complexity within the problem, reduce unnecessary computations, and 
thereby improve the speed of finding solutions.

2.4. Research gap and our study

Table  1 shows some relevant works and makes a comparison be-
tween our study and them in line with critical factors so as to offer a 
general perspective. From Table  1, we find the following research gaps:

• In the study of GSCs, cooperative strategies have been substantial 
implemented. Studies such as Soysal et al. (2018), Fan et al. 
(2020), and Hacardiaux and Tancrez (2022) have examined the 
impact of horizontal cooperation on supply chains, while (Saeed, 
2013) has focused on the effects of vertical cooperation strategies. 
Especially, Yazdekhasti et al. (2021) has explored both forms 
of cooperation, and regarded that horizontal cooperation has 
more advantages than vertical cooperation. It is notable that, the 
cooperation strategies studied by these scholars are commonly 
the cooperations among different companies within the supply 
chain. The adoption of such cooperation strategies will result in 
the problem of unbalanced benefit distribution. There is little 
research that considers the cooperation of different distributors of 
the same multinational. Nevertheless, it can maximize the bene-
fits of the multinational corporation and reduce costs throughout 
the supply chain.

• Many researchers have also considered uncertainties within sup-
ply chains, in which some addressed cost uncertainties (Petridis 
et al., 2023; Zhao et al., 2024). But most of them focused on 
demand uncertainties, as seen in You and Grossmann (2013), 
Dong and Yuan (2025), Elyasi et al. (2024), and Chen et al. 
(2024). Moreover, in the literature that captured the uncertainty 
of demand, few studies considered complex ambiguity of demand 
distribution, and characterized it with inner and outer ambiguous 
distribution sets.

• To address these uncertainties, methods including those proposed 
in You and Grossmann (2013), Yazdekhasti et al. (2021), Petridis 
et al. (2023), Elyasi et al. (2024) for SO, Kim et al. (2018), Hasani 
et al. (2021), Chen et al. (2024) for RO, and Dong and Yuan 
(2025), Zhao et al. (2024) for DRO have been considered. Most 
optimization methods for handling uncertainty in GSC problems 
focus on SO, RO and DRO. However, aiming at the complex 
ambiguity of demand distribution, few studies handle it with a 
more flexible perspective of soft constraint.
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Table 1
The summary of the related literature mentioned above.
 Reference Cooperation strategy Uncertainty Optimization method Solution method  
 Horizontal Vertical Demand Cost  
 You and Grossmann (2013) ✓ Stochastic Benders decomposition 
 Saeed (2013) ✓ Deterministic Commercial solver  
 Soysal et al. (2018) ✓ ✓ Stochastic Commercial solver  
 Kim et al. (2018) ✓ Robust Commercial solver  
 Fan et al. (2020) ✓ Deterministic Commercial solver  
 Tan et al. (2021) ✓ Deterministic Heuristic  
 Hasani et al. (2021) ✓ Robust Heuristic  
 Yazdekhasti et al. (2021) ✓ ✓ ✓ Stochastic B&C  
 Hacardiaux and Tancrez (2022) ✓ ✓ Stochastic Commercial solver  
 Dong and Yuan (2025) ✓ Distributionally robust Commercial solver  
 Petridis et al. (2023) ✓ Stochastic Commercial solver  
 Elyasi et al. (2024) ✓ Stochastic Heuristic  
 Wang et al. (2024a) ✓ Stochastic Benders decomposition 
 Zhao et al. (2024) ✓ Distributionally robust Commercial solver  
 Chen et al. (2024) ✓ Robust Commercial solver  
 Our paper ✓ ✓ GDRO Customized B&C  
 

• Solving complex models remains a significant challenge. Commer-
cial solvers have been used in various studies, including Hacar-
diaux and Tancrez (2022), Dong and Yuan (2025), Petridis et al. 
(2023), Zhao et al. (2024), and Chen et al. (2024). In addition, 
some scholars have developed some algorithms to better suit spe-
cific problems, achieving higher solving efficiency. For instance, 
heuristic algorithms were used in Tan et al. (2021) and Elyasi 
et al. (2024), Benders decomposition in You and Grossmann 
(2013), Wang et al. (2024a), and B&C algorithm in Yazdekhasti 
et al. (2021). It is worth noting that among these customized al-
gorithms, the exact solution algorithm performs better in solution 
quality, but there is insufficient attention given to the effective 
solving in the delivery of GSC.

This paper addresses the above research gaps by introducing a 
novel GDR-GSC model. The GDR-GSC model is designed to optimize 
production, transportation, and delivery decisions across multinational 
supply chain networks, incorporating horizontal cooperation strategies 
among distributors. This cooperation enables the sharing of customer 
information and coordination of vehicle routing, which reduces opera-
tional costs and improves supply chain resilience. The model integrates 
GDRO techniques, leveraging both inner and outer ambiguity sets 
to manage worst-case scenarios and mitigate the impact of demand 
fluctuations. We also propose a customized B&C algorithm to solve the 
GDR-GSC model, enhancing the computational efficiency and solution 
quality, particularly in large-scale problem instances. By dynamically 
adding strengthened 𝑘-path cuts, the algorithm significantly reduces 
computation time while preserving solution accuracy.

3. Model formulation

In this section, we present a GDR production–transportation–delivery
model for a GSC, involving multiple manufacturers, retailers, ware-
houses, and customers in two countries.

3.1. Problem statement, assumption and notations

The global logistics system of Amazon is underpinned by a vast 
network of fulfillment centers. As a key example of horizontal co-
operation in a tech-driven context, in many regions (such as Europe 
and North America), Amazon’s warehouses share real-time informa-
tion on inventory levels and customer demand, allowing for dynamic 
routing and load balancing (Fan et al., 2020). Horizontal cooperation 
within multinational corporations is prevalent due to interconnected 
warehouse networks that balance workloads and inventory (Hacar-
diaux and Tancrez, 2020), increased supply chain resilience against 
disruptions (Lotfi and Larmour, 2021), and centralized ownership that 
4 
Fig. 1. GSC problem studied in this paper.

avoids profit-sharing hurdles faced by independent firms (Wen et al., 
2019). Thus, this study integrates horizontal collaboration strategies 
among warehouses of a multinational corporation, coordinating ve-
hicle scheduling across different warehouses under vehicle capacity 
constraints.

Specifically, we consider a GSC operated by a multinational corpo-
ration across two countries: Country A and B. The GSC is structured 
into four hierarchical tiers: manufacturers, retailers, warehouses, and 
end customers, as shown in Fig.  1.

• Manufacturers located in Country A are responsible for produc-
tion, each with a predefined production capacity and incurring 
both startup and unit production costs.

• Retailers, also located in Country A, procure products from man-
ufacturers at fixed wholesale prices and distribute them domesti-
cally. The transportation cost between manufacturers and retail-
ers is a function of land-based distance.

• Warehouses, situated in Country B, receive goods shipped in-
ternationally from manufacturers. These warehouses incur both 
startup and operating costs, and serve as distribution hubs for 
the local market. A key modeling feature is the implementation 
of horizontal cooperation among warehouses. This enables the 
sharing of customer demand information and coordination of 
vehicle routing, thereby reducing logistical costs and improving 
responsiveness to demand fluctuations.

• End customers are located in Country B. Deliveries are executed 
using a fleet of vehicles with limited capacity, and the associated 
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Table 2
Notations.
 Notation Description  
 Sets  
   = {1, 2,… ,𝑀} Set of manufacturers in country A  
   = {1, 2,… , 𝐼} Set of retailers in country A  
   = {1, 2,… , 𝐽} Set of warehouses in country B  
   = {1, 2,… , 𝐾} Set of customers in country B  
   =  ∪ Set of nodes in country B  
   = {1, 2,… , 𝑉 } Set of vehicles used by warehouses  
   = {1, 2,… , 𝑁} Set of sample data  
 Parameters  
  𝐶𝑚 Production capacity of manufacturer 𝑚  
  𝑃𝑚 Startup cost of manufacturer 𝑚  
  𝐺 Unit production cost  
  𝑊 𝐴

𝑚𝑖 Wholesale price from 𝑚 to retailer 𝑖  
  𝑊 𝐵

𝑚𝑗 Wholesale price from 𝑚 to warehouse 𝑗  
  𝑇𝐶 Unit land transportation cost  
  𝑇𝑆 Unit shipping cost  
  𝑆𝐴𝑚𝑖 Distance from 𝑚 to retailer 𝑖  
  𝑆𝐵𝑚𝑗 Distance from 𝑚 to warehouse 𝑗  
  𝑅𝐴𝑖 Order quantity of retailer 𝑖  
  𝑅𝐵𝑗 Order quantity of warehouse 𝑗  
  𝑂𝑗 Operating cost of warehouse 𝑗  
  𝐶𝑗𝑘 Path cost for vehicle from 𝑗 to 𝑘  
  𝑉𝐹 Fixed cost of using a vehicle  
  𝑄 Capacity of vehicle  
  𝑑𝑘 Demand quantity of customer 𝑘  
  𝑋()∕𝑋𝛽 () Sum/Affine sum of traffic flow entering the set   
 𝛿() All arcs crossing into or out of set   
 Decision variables  
  𝑞𝑚 Production quantity of manufacturer 𝑚  
  𝑟𝑡𝐴𝑚𝑖 Quantity shipped from 𝑚 to retailer 𝑖  
  𝑟𝑡𝐵𝑚𝑗 Quantity shipped from 𝑚 to warehouse 𝑗  
  𝑌 𝐴𝑚 Binary variable for opening of manufacturer 𝑚  
  𝑌 𝐵𝑗 Binary variable for opening of warehouse 𝑗  
  𝑓𝑗𝑘𝑣 Binary variable for vehicle 𝑣 traveling from 𝑗 to 𝑘  
  𝑢𝑗𝑣 Position of node 𝑗 in vehicle 𝑣’s route  
  𝑋𝑗𝑘 Binary variable for customer 𝑘 assigned to warehouse 𝑗 

logistics are modeled as a vehicle routing problem, subject to 
routing feasibility constraints such as no repetition and subtour 
elimination (Quintero-Araujo et al., 2019).

The central objective of GSC problem is to jointly optimize produc-
tion quantities, facility opening decisions, transportation flows, and de-
livery routes for a maximization of overall profit. The profit is from the 
total revenue derived from wholesale transactions minuses the aggre-
gate costs related to production, transportation, warehousing, and dis-
tribution. For GSC problem, we have the following assumptions (Wang 
et al., 2021):

• The operational costs of warehouses are fixed and do not vary 
with the level of demand or the number of deliveries made.

• The wholesale prices of goods shipped from manufacturers to 
retailers and warehouses are fixed and determined by market 
conditions and agreements between the parties.

• The startup costs for opening a manufacturer or a warehouse are 
fixed and represent the one-time costs associated with initiating 
operations at these facilities.

• All vehicles used in the distribution process are assumed with 
same specification and type, which means they have identical 
operational cost.

We use the following sets, parameters, and variables to represent the 
elements and decisions of the GSC problem. All notations and symbols 
are shown in Table  2.

3.2. Deterministic GSC model

In this subsection, we present the mathematical model for the 
production–transportation–delivery problem in a GSC. The objective 
5 
function aims to maximize the total revenue of the supply chain, 
while the constraints capture the various aspects of the production, 
transportation, and delivery processes.

max
∑

𝑚∈

∑

𝑖∈
𝑊 𝐴
𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖 −

∑

𝑚∈
𝑌 𝐴𝑚 𝑃𝑚 −

∑

𝑚∈
𝑞𝑚𝐺 −

∑

𝑚∈

∑

𝑖∈
𝑆𝐴𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖𝑇𝐶

+
∑

𝑚∈

∑

𝑗∈
𝑊 𝐵
𝑚𝑖𝑟𝑡

𝐵
𝑚𝑗 −

∑

𝑚∈

∑

𝑗∈
𝑆𝐵𝑚𝑗𝑟𝑡

𝐵
𝑚𝑗𝑇𝑆 (1)

−
∑

𝑗∈,𝑘∈,𝑗≠𝑘

∑

𝑣∈
𝑓𝑗𝑘𝑣𝐶𝑗𝑘 −

∑

𝑗∈
𝑂𝑗𝑌

𝐵
𝑗 −

∑

𝑗∈

∑

𝑘∈

∑

𝑣∈
𝑓𝑗𝑘𝑣𝑉𝐹

s.t. 𝑞𝑚 ≤ 𝐶𝑚𝑌
𝐴
𝑚 , ∀𝑚 ∈ ; (2)

𝑞𝑚 =
∑

𝑖∈
𝑟𝑡𝐴𝑚𝑖 +

∑

𝑗∈
𝑟𝑡𝐵𝑚𝑗 , ∀𝑚 ∈ ; (3)

𝑅𝑖 =
∑

𝑚∈
𝑟𝑡𝐴𝑚𝑖, ∀𝑖 ∈ ; (4)

𝑅𝑗 =
∑

𝑚∈
𝑟𝑡𝐵𝑚𝑗 , ∀𝑗 ∈  ; (5)

∑

𝑗∈

∑

𝑣∈
𝑓𝑗𝑘𝑣 = 1, ∀𝑘 ∈ ; (6)

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 ≤ 𝑄, ∀𝑣 ∈  ; (7)

∑

𝑘∈
𝑑𝑘𝑋𝑗𝑘 ≤ 𝑅𝑗𝑌

𝐵
𝑗 , ∀𝑗 ∈  ; (8)

∑

𝑘∈
𝑓𝑗𝑘𝑣 −

∑

𝑘∈
𝑓𝑘𝑗𝑣 = 0, ∀𝑗 ∈ ,∀𝑣 ∈  ; (9)

∑

𝑗∈

∑

𝑘∈
𝑓𝑗𝑘𝑣 ≤ 1, ∀𝑣 ∈  ; (10)

𝑢𝑗𝑣 − 𝑢𝑘𝑣 +𝑄𝑓𝑗𝑘𝑣 ≤ 𝑄 − 𝑑𝑘𝑓𝑗𝑘𝑣, ∀𝑗 ∈ ,∀𝑘 ∈ ,∀𝑣 ∈  , 𝑗 ≠ 𝑘;
(11)

∑

𝑢∈
𝑓𝑗𝑢𝑣 +

∑

𝑢∈⧵𝑘
𝑓𝑢𝑘𝑣 ≤ 1 +𝑋𝑗𝑘, ∀𝑗 ∈  ,∀𝑘 ∈ ,∀𝑣 ∈  ; (12)

𝑓𝑗𝑘𝑣, 𝑋𝑗𝑘, 𝐷𝑗 , 𝑌
𝐴
𝑚 , 𝑌

𝐵
𝑗 ∈ {0, 1}, ∀𝑗 ∈  ,∀𝑘 ∈ ,∀𝑣 ∈  ,∀𝑚 ∈ .

(13)

In this model, the objective function (1) aims to maximize the 
total revenue minus the total cost of the supply chain, whereinto the 
revenue includes the wholesale prices times quantities from the manu-
facturers to the retailers and warehouses, i.e., ∑𝑚∈

∑

𝑖∈ 𝑊
𝐴
𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖 and 

∑

𝑚∈
∑

𝑗∈ 𝑊
𝐵
𝑚𝑖𝑟𝑡

𝐵
𝑚𝑗 . The cost includes the start-up cost 

∑

𝑚∈ 𝑌 𝐴𝑚 𝑃𝑚, 
production cost ∑𝑚∈ 𝑞𝑚𝐺, transportation cost 

∑

𝑚∈
∑

𝑖∈ 𝑆
𝐴
𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖𝑇𝐶

and ∑𝑚∈
∑

𝑗∈ 𝑆
𝐵
𝑚𝑗𝑟𝑡𝑚𝑗𝑇𝑆 from the manufacturers to the retailers and 

warehouses, operation cost ∑

𝑗∈ 𝑂𝑗𝑌
𝐵
𝑗 , path cost

∑

𝑗∈,𝑘∈,𝑗≠𝑘
∑

𝑣∈ 𝑓𝑗𝑘𝑣𝐶𝑗𝑘 from the warehouses to the customers, and 
fixed cost ∑𝑗∈

∑

𝑘∈
∑

𝑣∈ 𝑓𝑗𝑘𝑣𝑉𝐹  of using the trucks. The model 
is specifically governed by the following constraints: Constraints (2) 
indicate that manufacturers’ production cannot surpass their capacity 
multiplied by their binary start-up variable. Constraints (3) assert that 
manufacturers’ production equals to the aggregate of goods transported 
to retailers and warehouses. Constraints (4) and (5) signify that re-
tailers’ or warehouses’ order quantity equals to the sum of goods 
transported from manufacturers. Constraints (6) stipulate that each 
customer can only be served once by one vehicle from one warehouse. 
Each vehicle’s load must not exceed its capacity, as shown in constraints 
(7). Constraints (8) dictate that a warehouse’s shipment cannot exceed 
its demand multiplied by its binary start-up variable. The inflow of 
each node must equal to its outflow, as described in constraints (9). 
Constraints (10) state that each vehicle can serve at most one customer. 
Constraints (11) prohibit repetition or sub-cycles in each vehicle’s path. 
Constraints (12) mandate that each vehicle’s path must be directly 
connected. Finally, all variables are non-negative, with some being 
binary.
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3.3. Globalized distributionally robust GSC model

In the real world, customer demands fluctuate due to various factors 
such as market dynamics, economic changes, or unforeseen events so 
that they are usually uncertain. This paper models the ambiguity in 
demand distribution of customers, and employs a generalized distribu-
tionally robust optimization framework to balance the robustness and 
feasibility. By treating 𝑑𝑘 as uncertain, the model becomes more adapt-
able to realistic demand scenarios, thus enhancing the applicability of 
the proposed optimization model.

To address the ambiguity distribution of demand 𝑑𝑘, we employ 
a GDRO approach, which allows for a more comprehensive treatment 
of uncertainty while maintaining computational efficiency and model 
flexibility (Liu et al., 2023). GDRO is to integrate distribution uncer-
tainty and model error into the distributionally robust optimization 
model at the same time. Specifically, on the one hand, the GDRO model 
requires that the robustness constraint strictly establish the probability 
distribution in the distribution uncertainty set, and on the other hand, 
for the probability distribution that is not in the distribution uncertainty 
set (i.e., the model error occurs), the robustness constraint is allowed to 
be violated to a certain extent, and the degree of violation is controlled 
by the model error tolerance level. In the GDRO method, the selection 
of ambiguity sets is crucial. The ambiguity sets are typically divided 
into two categories: moment-based and discrepancy-based (Lin et al., 
2022). To make the distribution in the ambiguity set closer to the 
nominal distribution, we opt for a discrepancy-based ambiguity set 
utilizing 1-Wasserstein metric (Luo and Mehrotra, 2019). The Wasser-
stein distance is a metric that measures the dissimilarity between two 
probability distributions by the minimum cost of transporting mass 
from one distribution to another. Formally, the 1-Wasserstein distance 
𝑑𝑊 (⋅, ⋅) between two probability distributions X and Y defined on a 
space 𝛯 is given by:

𝑑𝑊 (X,Y) ∶= inf
𝛱∈𝑄(X,Y)

{

∫𝛯×𝛯
‖𝑥 − 𝑦‖𝛱(d𝑥,d𝑦)

}

,

where 𝛱(X,Y) is the set of all joint distributions on 𝛯 × 𝛯 with 
marginals X and Y, 𝑥 ∈ X and 𝑦 ∈ Y and ‖ ⋅ ‖ represents an arbitrary 
norm on R𝐾 .

The terminology of inner and outer ambiguity sets in the GDR-
GSC model follows well-established conventions in robust optimization 
literature, tracing back to the foundational work on globalized robust 
optimization (Ben-Tal et al., 2017). This inner and outer ambiguity sets 
create a hierarchical protection mechanism: the inner ambiguity set 
𝑊 (𝜃) defines the core region where constraints must be strictly sat-
isfied (corresponding to high-probability demand scenarios), while the 
outer ambiguity set (𝛯) encompasses a broader range of possible dis-
tributions (including low-probability extreme events). The Wasserstein 
distance-based formulation of these sets provides both mathematical 
rigor and practical interpretability, as it quantifies distributional differ-
ences in terms of optimal transport costs. The containment relationship 
(𝑊 (𝜃) ⊆ (𝛯)) inherently embodies varying levels of protection 
priority, enabling our model to strictly enforce constraint satisfac-
tion for mandatory demand fulfillment scenarios while maintaining 
controlled adaptability when encountering statistically rare demand 
variations—an essential capability for supply chain risk mitigation.

The outer ambiguity set for uncertain demand vector 𝒅̃ = (𝑑1, 𝑑2,… ,
𝑑𝐾 ) is defined as (𝛯), which is the set of all possible probability distri-
butions on the support set 𝛯. Specifically, the support set 𝛯 defines the 
feasible region for demand realizations, containing all possible values 
of uncertain demand vector 𝒅̃. Furthermore, the inner ambiguity set 
can be expressed as 
𝑊 (𝜃) =

{

P ∈ (𝛯) ∶ 𝑑𝑊
(

P, P̂
)

≤ 𝜃
}

, (14)

where 𝑊 (𝜃) is the set of probability distribution P that has a Wasser-
stein distance at most 𝜃 from the empirical distribution P̂, with P̂ =
6 
∑

𝑛∈ 𝛿𝒅̂𝑛∕𝑁 . That is uniformly supported on 𝑁 empirical realizations 
𝒅̂ = (𝒅̂1,… , 𝒅̂𝑁 )𝑇 .

In the global supply chain model, uncertain demand vector 𝒅̃
is characterized through a hierarchical set framework following the 
GDRO method. The inner ambiguity set 𝑊 (𝜃) contains all probability 
distributions within a Wasserstein distance 𝜃 of the empirical distribu-
tion P̂, enforcing strict feasibility for high-probability demand. This is 
nested within the outer ambiguity set (𝛯) encompassing all possible 
distributions on the support 𝛯, which provides controlled flexibility for 
extreme demand realizations. The Wasserstein metric quantifies distri-
butional deviations in terms of optimal transport costs, with 𝜃 serving 
as a tunable risk parameter—smaller values yield more conservative 
solutions for reliable demand trends, while larger values accommo-
date greater volatility. This dual-set structure creates a rigorous yet 
interpretable framework for demand uncertainty quantification, where 
the inner ambiguity set ensures robust constraint satisfaction while 
the outer ambiguity set maintains adaptability for critical demand 
variations.

Based on the outer ambiguity set (𝛯) and inner ambiguity set (14), 
our GDR-GSC model can be reformulated as follows: 
max

∑

𝑚∈

∑

𝑖∈
𝑊 𝐴
𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖 −

∑

𝑚∈
𝑌 𝐴𝑚 𝑃𝑚 −

∑

𝑚∈
𝑞𝑚𝐺 −

∑

𝑚∈

∑

𝑖∈
𝑆𝐴𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖𝑇𝐶

+
∑

𝑚∈

∑

𝑗∈
𝑊 𝐵
𝑚𝑖𝑟𝑡

𝐵
𝑚𝑗 −

∑

𝑚∈

∑

𝑗∈
𝑆𝐵𝑚𝑗𝑟𝑡

𝐵
𝑚𝑗𝑇𝑆

−
∑

𝑗∈,𝑘∈,𝑗≠𝑘

∑

𝑣∈
𝑓𝑗𝑘𝑣𝐶𝑗𝑘 −

∑

𝑗∈
𝑂𝑗𝑌

𝐵
𝑗 −

∑

𝑗∈

∑

𝑘∈

∑

𝑣∈
𝑓𝑗𝑘𝑣𝑉𝐹

s.t. Constraints (2)–(6), (9)–(10), (12)–(13),
EP

[

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 −𝑄

]

≤ 𝛾1 min
Q∈𝑊 (𝜃)

𝑑𝑊 (P,Q), ∀P ∈ (𝛯),∀𝑣 ∈  ,

(15a)

EP

[

∑

𝑘∈
𝑑𝑘𝑋𝑗𝑘 − 𝑅𝑗𝑌 𝐵𝑗

]

≤ 𝛾2 min
Q∈𝑊 (𝜃)

𝑑𝑊 (P,Q), ∀P ∈ (𝛯),∀𝑗 ∈  ,

(15b)

EP

[

𝑢𝑗𝑣 − 𝑢𝑘𝑣 +𝑄𝑓𝑗𝑘𝑣 −𝑄 + 𝑑𝑘𝑓𝑗𝑘𝑣
]

≤ 𝛾3 min
Q∈𝑊 (𝜃)

𝑑𝑊 (P,Q), (15c)

∀P ∈ (𝛯),∀𝑣 ∈  ,∀𝑗, 𝑘 ∈ , 𝑗 ≠ 𝑘.

Constraints (15a)–(15c) are GDRO constraints about demand, due to 
the ambiguity of distributions, these constraints cannot be enumer-
ated, which means the GDR-GSC model is a semi-infinite system. For 
instance, constraints (15a) can be interpreted through two cases:

Case I: EP

[

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 −𝑄

]

≤ 0, ∀P ∈ 𝑊 (𝜃),∀𝑣 ∈  ,

wherein no constraint violations occur for any distribution within the 
ambiguity set 𝑤(𝜃1).

Case II: EP

[

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 −𝑄

]

≤ 𝛾1 min
Q∈𝑊 (𝜃)

𝑑𝑊 (P,Q),

∀P ∈ (𝛯)∖𝑊 (𝜃),∀𝑣 ∈  ,

where controlled violations (via tolerance parameter 𝛾1) for distribu-
tions in (𝛯)∖𝑊 (𝜃) demonstrate soft outer robustness by bounding 
potential violations.

In these constraints, the right-hand side 𝛾𝑖minQ∈𝑊 (𝜃) 𝑑𝑊 (P,Q) serves
as a violation budget, transforming them into soft constraints: when the 
distribution P is within the inner ambiguity set, the violation degree is 
minimal, enforcing strict compliance (hard constraint); as P moves to 
the outer ambiguity set with higher uncertainty, the violation degree 
expands, allowing controlled violation of the left-hand side expecta-
tion by an amount regulated by the tolerance parameter 𝛾𝑖. Here, 𝛾𝑖
balances robustness and conservatism—larger values signify a more 
lenient attitude towards constraint violations and greater acceptance 
of uncertainty-related risks.

The proposed GDR-GSC model (15) makes decisions under the 
worst-case scenarios of the ambiguous demand, and provides robust 
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and efficient solutions for the production–transportation–delivery prob-
lem. In the GDR-GSC model, constraints (15a)–(15c) are the GDR 
expectation constraints, and also are the key difficulties in solving 
the proposed model. They are semi-infinite constraints, and need to 
derive their tractable counterpart forms based on inner and outer 
distributional ambiguity sets. Therefore, in the subsequent section, we 
will look into the ways of transforming the GDR-GSC model into a more 
tractable form and explore the solution methods.

4. Model analysis

In this section, we analyze the properties and solution methods of 
the GDR model. We transform the GDR model into a more manageable 
form by eliminating the semi-infinite constraints.

4.1. Tractable GDR counterpart of expectation constraints

To address the GDR expectation constraints outlined in (15a)–(15c), 
we convert these semi-infinite constraints into some finite systems. 

Theorem 1.  Suppose that 𝛯 is a box, i.e., 𝛯 = {𝒅 ∈ R𝐾 ∶
|

|

𝑑𝑘|| ≤ 𝛬, 𝑘 = 1, 2,… , 𝐾}. Let 𝒇 𝑗𝑣 = (𝑓𝑗1𝑣, 𝑓𝑗2𝑣,… , 𝑓𝑗𝐾𝑣)𝑇  and 𝑿𝑗 =
(𝑋𝑗1, 𝑋𝑗2,… , 𝑋𝑗𝐾 )𝑇 . Given the outer ambiguity set (𝛯) and inner am-
biguity set (14), by introducing auxiliary variables 𝜏𝑖𝑛, 𝑠𝑖𝑛 ∈ R,𝝎𝑖𝑛 ∈
R𝐾 , 𝑖 = 1, 2, 3,∀𝑛 ∈  , we can obtain the following equivalent systems 
of constraints (15a)–(15c): 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑁𝑡𝑖 +
∑

𝑛∈
𝑠𝑖𝑛 ≤ 0, 𝑖 = 1, 2, 3, (16a)

−𝑄 + 𝒅̂𝑇𝑛
∑

𝑗∈
𝒇 𝑗𝑣 + 𝝎1

𝑛𝒅̂
𝑇
𝑛 + 𝛬𝜏1𝑛 ≤ 𝑠1𝑛,∀𝑛 ∈  ,∀𝑣 ∈  , (16b)

− 𝑅𝑗𝑌 𝐵𝑗 + 𝒅̂𝑇𝑛𝑿𝑗 + 𝝎2
𝑛𝒅̂

𝑇
𝑛 + 𝛬𝜏2𝑛 ≤ 𝑠2𝑛,∀𝑛 ∈  ,∀𝑗 ∈ , (16c)

𝑢𝑗𝑣 − 𝑢𝑘𝑣 +𝑄𝑓𝑗𝑘𝑣 −𝑄 + 𝒅̂𝑇𝑛 𝒇 𝑗𝑣 + 𝝎3
𝑛𝒅̂

𝑇
𝑛 + 𝛬𝜏3𝑛 ≤ 𝑠3𝑛,

∀𝑛 ∈  ,∀𝑣 ∈  ,∀𝑗, 𝑘 ∈ , 𝑗 ≠ 𝑘, (16d)
‖

‖

‖

‖

‖

‖

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣

‖

‖

‖

‖

‖

‖∞

≤ 𝑡1,∀𝑣 ∈  ,∀𝑛 ∈  , (16e)

‖

‖

‖

𝝎2
𝑛 +𝑿𝑗

‖

‖

‖∞
≤ 𝑡2,∀𝑗 ∈ ,∀𝑛 ∈  , (16f)

‖

‖

‖

𝝎3
𝑛 + 𝒇 𝑗𝑣

‖

‖

‖∞
≤ 𝑡3,∀𝑗 ∈ ,∀𝑣 ∈  ,∀𝑛 ∈  , (16g)

𝜏 𝑖𝑛 ≥ ‖

‖

𝝎𝑖𝑛‖‖1 , 𝑖 = 1, 2, 3,∀𝑛 ∈  , (16h)
𝑡𝑖 ∈ [0, 𝛾𝑖], 𝑖 = 1, 2, 3. (16i)

Proof.  The proof of Theorem  1 is presented in Appendix. □

4.2. Linearization of constraints

The norm-based nonlinear terms in the constraints (16e)–(16h) 
directly affect the solution of the model. Thus, we will linearize the 
nonlinear constraints (16e)–(16h) by taking constraint (16e) as an 
example: 

‖

‖

‖

‖

‖

‖

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣

‖

‖

‖

‖

‖

‖∞

≤ 𝑡1,∀𝑣 ∈  ,∀𝑛 ∈ 

⇒ max
∀𝑣∈ ,∀𝑛∈

|

|

|

|

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣

|

|

|

|

≤ 𝑡1

⇒
|

|

|

|

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣

|

|

|

|

≤ 𝑡1, ∀𝑣 ∈  , ∀𝑛 ∈ 

=

⎧

⎪

⎨

⎪

⎩

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣 ≤ 𝑡1, 𝑖𝑓 𝝎1

𝑛 +
∑

𝑗∈
𝒇 𝑗𝑣 ≥ 0, ∀𝑣 ∈  , ∀𝑛 ∈  ,

− 𝝎1
𝑛 −

∑

𝑗∈
𝒇 𝑗𝑣 ≤ 𝑡1, 𝑖𝑓 𝝎1

𝑛 +
∑

𝑗∈
𝒇 𝑗𝑣 ≤ 0, ∀𝑣 ∈  , ∀𝑛 ∈  .
7 
Similarly, constraints (16e)–(16g) can be replaced equivalently with 
the following constraints:
𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣 ≤ 𝑡1, ∀𝑣 ∈  , ∀𝑛 ∈  , (17)

− 𝝎1
𝑛 −

∑

𝑗∈
𝒇 𝑗𝑣 ≤ 𝑡1, ∀𝑣 ∈  , ∀𝑛 ∈  , (18)

𝝎2
𝑛 +𝑿𝑗 ≤ 𝑡2, ∀𝑗 ∈ , ∀𝑛 ∈  , (19)

− 𝝎2
𝑛 −𝑿𝑗 ≤ 𝑡2, ∀𝑗 ∈ , ∀𝑛 ∈  , (20)

𝝎3
𝑛 + 𝒇 𝑗𝑣 ≤ 𝑡3, ∀𝑗 ∈ , ∀𝑣 ∈  , ∀𝑛 ∈  , (21)

− 𝝎3
𝑛 − 𝒇 𝑗𝑣 ≤ 𝑡3, ∀𝑗 ∈ , ∀𝑣 ∈  , ∀𝑛 ∈  . (22)

For each component 𝑘 of 𝝎𝑖𝑛, introduce auxiliary variables 𝑝𝑖𝑛,𝑘 and 𝑞𝑖𝑛,𝑘
such that 𝜔𝑖𝑛,𝑘 = 𝑝𝑖𝑛,𝑘 − 𝑞

𝑖
𝑛,𝑘, where 𝑝𝑖𝑛,𝑘 ≥ 0, 𝑞𝑖𝑛,𝑘 ≥ 0. Constraints (16h) 

can be transformed into the following linear equivalent form:
𝜏 𝑖𝑛 ≥

∑

𝑘
(𝑝𝑖𝑛,𝑘 + 𝑞

𝑖
𝑛,𝑘), 𝑖 = 1, 2, 3, ∀𝑛 ∈  , (23)

𝜏 𝑖𝑛 ≥ 𝑝𝑖𝑛,𝑘 + 𝑞
𝑖
𝑛,𝑘, 𝑖 = 1, 2, 3, ∀𝑘 ∈ , ∀𝑛 ∈  , (24)

𝜔𝑖𝑛,𝑘 = 𝑝𝑖𝑛,𝑘 − 𝑞
𝑖
𝑛,𝑘, 𝑖 = 1, 2, 3, ∀𝑘 ∈ , ∀𝑛 ∈  , (25)

𝑝𝑖𝑛,𝑘 ≥ 0, 𝑞𝑖𝑛,𝑘 ≥ 0, 𝑖 = 1, 2, 3, ∀𝑘 ∈ , ∀𝑛 ∈  . (26)

4.3. Equivalent formulation of GDR-GSC model

Based on Theorem  1, the original GDR expectation model (15) can 
be reformulated into the following equivalent model: 
max

∑

𝑚∈

∑

𝑖∈
𝑊 𝐴
𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖 −

∑

𝑚∈
𝑌 𝐴𝑚 𝑃𝑚 −

∑

𝑚∈
𝑞𝑚𝐺 −

∑

𝑚∈

∑

𝑖∈
𝑆𝐴𝑚𝑖𝑟𝑡

𝐴
𝑚𝑖𝑇𝐶

+
∑

𝑚∈

∑

𝑗∈
𝑊 𝐵
𝑚𝑖𝑟𝑡

𝐵
𝑚𝑗 −

∑

𝑚∈

∑

𝑗∈
𝑆𝐵𝑚𝑗𝑟𝑡

𝐵
𝑚𝑗𝑇𝑆

−
∑

𝑗∈,𝑘∈,𝑗≠𝑘

∑

𝑣∈
𝑓𝑗𝑘𝑣𝐶𝑗𝑘 −

∑

𝑗∈
𝑂𝑗𝑌

𝐵
𝑗 −

∑

𝑗∈

∑

𝑘∈

∑

𝑣∈
𝑓𝑗𝑘𝑣𝑉𝐹

s.t. Constraints (2)–(6), (9)–(10), (12)–(13),
(16a)–(16d), (16i), (17)–(26).

(27)

Solving the equivalent model (27) remains extremely challenging, since 
it is a MIP with VRP subproblem, so NP-hard (Kou et al., 2024). 
Therefore, in the next section, we will develop a B&C algorithm with 
specific strategies of branching and cut to handle it.

5. Customized B&C algorithm for GDR-GSC model

The B&C algorithm, a powerful technique that combines branch-
and-bound with cutting-plane methods, is often used for solving mixed 
integer programming problems. To illustrate the overall logic, Pseu-
docode 1 on a standard B&C algorithm step is presented. However, 
the standard B&C algorithm fails to outperform general commercial 
solvers in solving our GDR-GSC model. Hence, there is a need for 
enhancements tailored to our specific problem within the standard B&C 
framework. In Section 5.1, we propose valid inequalities to expedite the 
algorithmic process. In Section 5.2, we analyze the branching strategy 
within the B&C algorithm and put forward specific branching strategies 
for our problem. In Section 5.3, we give a pseudocode of a customized 
B&C algorithm. 

5.1. Strengthened 𝑘-path cuts for the GDR-GSC model

We introduce a strengthened 𝑘-path cut as valid inequality to rein-
force the vehicle routing constraints. The intuition behind 𝑘-path cuts 
stems from the observation that for any subset  ⊆  of customer 
nodes, the total demand within this subset must be met by a sufficient 
number of vehicles, each with a limited capacity 𝑄. Therefore, at least 
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Algorithm 1 Standard B&C Algorithm
1: Initialize problem with root node 
2: Set lower bound 𝐿𝐵 ← −∞
3: Set upper bound 𝑈𝐵 ← +∞
4: Add root node to the queue 𝑄
5: while 𝑄 is not empty do 
6: Select and remove node 𝑃  from 𝑄 with best bound 
7: Solve the LP relaxation of 𝑃
8: if LP is infeasible or LP bound ≥ 𝑈𝐵 then 
9: Discard node 𝑃
10: continue
11: end if
12: if LP solution is integer feasible then 
13: if LP objective < 𝑈𝐵 then 
14: 𝑈𝐵 ← LP objective 
15: Store current solution as best
16: end if
17: continue
18: end if
19: Apply cutting planes (valid inequalities) to strengthen the 

relaxation 
20: Re-optimize the LP with cuts 
21: if LP becomes infeasible or bound ≥ 𝑈𝐵 then 
22: Discard node 𝑃
23: continue
24: end if
25: Choose a branching variable 
26: Create child nodes 𝑃1 and 𝑃2 by branching 
27: Add 𝑃1 and 𝑃2 to 𝑄
28: end while
29: return the best integer solution found

⌈

∑

∈ 𝑑𝑘∕𝑄⌉ vehicles must enter this subset. Denote the minimum 
number as 𝑘(), and the standard cutset inequality is
∑

𝑣∈

∑

(𝑗,𝑘)∈𝛿()
𝑓𝑗𝑘𝑣 ≥ 𝑘(),

where 𝛿() is the set of arcs crossing the boundary of subset , and 
𝑓𝑗𝑘𝑣 indicates whether vehicle 𝑣 travels from node 𝑗 to node 𝑘 (Costa 
et al., 2019). To strengthen this inequality, we introduce weighting 
coefficients 𝛽𝑗𝑘𝑣 ∈ {0, 1}, where 𝛽𝑗𝑘𝑣 = 1 if arc (𝑗, 𝑘) is relevant to 
entering , and 0 otherwise. The strengthened 𝑘-path cut becomes 
∑

𝑣∈

∑

(𝑗,𝑘)∈𝛿()
𝛽𝑗𝑘𝑣𝑓𝑗𝑘𝑣 ≥ 𝑘(). (28)

A very intuitive method is given to estimate 𝑘(). We use the total 
demand of all customers in the set , divided by the capacity of 
vehicles, and take the upper bound, i.e.

𝑘() =
⌈

𝑑()
𝑄

⌉

=
⌈
∑

𝑘∈ 𝑑𝑘
𝑄

⌉

.

To concretely illustrate this concept, consider a small instance where 
customer subset  = {𝑘1, 𝑘2, 𝑘3} has demands 𝑑𝑘1 = 800, 𝑑𝑘2 = 700, 
𝑑𝑘3 = 1000, and the vehicle capacity 𝑄 = 1000. Then the total demand 
in  is 2500, requiring at least ⌈2500∕1000⌉ = 3 vehicles. If we 
identify three arcs entering this subset used by vehicles in the current 
solution, e.g., 𝑓𝑗1𝑘1𝑣1 , 𝑓𝑗2𝑘2𝑣2 , 𝑓𝑗3𝑘3𝑣3 , we can set 𝛽𝑗𝑘𝑣 = 1 for these arcs 
and 0 elsewhere to enforce at least three vehicles cross into . This 
helps prune infeasible or weakly constrained solutions during the B&C 
process. Next up, we conduct a feasibility reasoning with four detailed 
steps.

Step 1: Total demand over subset 
Let the total demand of customers in subset  ⊆  be

𝐷() ∶=
∑

𝑑𝑘.

𝑘∈

8 
Since each vehicle has a capacity 𝑄, the minimum number of vehicles 
required to fulfill the demand is

𝑘() ∶=
⌈

𝐷()
𝑄

⌉

.

Step 2: Capacity-based necessity
Suppose a feasible solution employs vehicles to serve the customer 

set  fewer than 𝑘(), the total capacity of all vehicles entering or 
serving  will be less than
𝑘()𝑄 < 𝐷().

This would make it impossible to deliver the required amount of goods 
to all customers in , contradicting feasibility. Therefore, any feasible 
solution must allocate at least 𝑘() vehicles to serve .

Step 3: Link to arc-based formulation
Let 𝛿() denote the set of arcs crossing into or out of , i.e.,

𝛿() ∶= {(𝑗, 𝑘) ∈  × } ∪ {(𝑘, 𝑗) ∈  ×  }.

Assume that every vehicle route is recorded by a binary variable 𝑓𝑗𝑘𝑣, 
indicating whether a vehicle 𝑣 travels on arc (𝑗, 𝑘). Then the number of 
vehicles entering or leaving  is given by
𝑋() ∶=

∑

𝑣∈

∑

(𝑗,𝑘)∈𝛿()
𝑓𝑗𝑘𝑣.

We apply indicator coefficients 𝛽𝑗𝑘𝑣 ∈ {0, 1} to restrict to a subset of 
arcs (e.g., only incoming ones, or filtered based on route structure)
𝑋𝛽 () ∶=

∑

𝑣∈

∑

(𝑗,𝑘)∈𝛿()
𝛽𝑗𝑘𝑣𝑓𝑗𝑘𝑣.

By assumption, all deliveries must go through arcs in 𝛿(), and no 
delivery is possible without a path in this set. Thus,
𝑋𝛽 () ≥ 𝑋() ≥ 𝑘().

Step 4: Conclusion
Therefore, the inequality

∑

𝑣∈

∑

(𝑗,𝑘)∈𝛿()
𝛽𝑗𝑘𝑣𝑓𝑗𝑘𝑣 ≥

⌈
∑

𝑘∈ 𝑑𝑘
𝑄

⌉

is a valid inequality for all feasible solutions of the GDR-GSC model, 
and thus constitutes a strengthened 𝑘-path cut that tightens the feasible 
region of the integer programming formulation.

Strengthened 𝑘-path cuts enhance constraints on the solution by 
limiting the number of vehicle paths in the solution. The introduction 
of cuts helps to more precisely describe the overall structure of the 
problem, improving the tightness of upper and lower bounds in the 
linear programming relaxation problem. By introducing strengthened 
𝑘-path cuts, we aim to refine the algorithm’s performance, making it 
more effective in solving GDR-GSC by providing more compact bounds 
and optimized solutions.

5.2. Joint branching strategy for the GDR-GSC model

This subsection focuses on the branching strategy within the B&C 
algorithm, tailored specifically for solving the GDR-GSC model. The 
branching strategy is a critical component of the B&C framework, as 
it determines how the solution space is explored by partitioning it 
into smaller subproblems. Some generic strategies like most-fractional 
(MF) branching (Ortega and Wolsey, 2003), strong branching (Dey 
et al., 2024), and pseudocost branching (Seman et al., 2023), are often 
utilized in B&C algorithm. However, due to the high dimensionality 
and structural complexity of our model, especially the vehicle rout-
ing subproblem under uncertainty, these conventional strategies are 
inefficient. Therefore, a joint branching strategy that combines SOS 
branching (De Farias et al., 2008) with PSP branching (Beale and 
Forrest, 1976) is designed and customized for the characteristics of the 
GDR-GSC problem.
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Fig. 2. SOS branching strategy for the GDR-GSC model.
In our model, the key binary variable 𝑓𝑗𝑘𝑣 indicates whether vehicle 
𝑣 travels from node 𝑗 to node 𝑘. Because each customer 𝑘 ∈  must be 
served exactly once by a single vehicle, a classical SOS constraint is 
structured as ∑𝑗∈

∑

𝑣∈ 𝑓𝑗𝑘𝑣 = 1, which ensures for each customer, 
only one variable in the set {𝑓𝑗𝑘𝑣}𝑗∈, 𝑘∈, 𝑣∈  can equal to 1 while the 
rest are zero. Once SOS branching is satisfied, we can efficiently parti-
tion the feasible region by selecting a subset of variables (e.g., routes 
for a particular customer) and creating branches based on prioritization 
rules rather than branching on individual variables. To implement this, 
we define a set  ⊆ × based on fractional values of 𝑓𝑗𝑘𝑣 in the current 
solution, then prioritize exploration of nodes in  using the following 
formulas:

 ∶= {(𝑗, 𝑣) ∈  ×  ∣ 𝑗 ≤ 𝛼1, 𝑣 ≤ 𝛼2} with 𝛼1 ∶=
∑

𝑗∈
𝑓𝑗𝑘𝑣 𝑗 and 𝛼2 ∶=

∑

𝑣∈
𝑓𝑗𝑘𝑣 𝑣.

Here, 𝛼1 and 𝛼2 are weighted averages that reflect the fractional in-
fluence of each variable in the candidate set, guiding the branching 
process towards the most promising nodes. As depicted in Fig.  2, the 
SOS branching scheme shows it has significantly advantageous than 
the standard way of doing branching on a single variable for each 
instance. This leads to a notable reduction in the number of nodes in 
the branch-and-bound tree.

Following the SOS-based partitioning, we further refine the search 
using PSP branching. This technique leverages information from dual 
variables (shadow prices) to prioritize variables whose branching is 
expected to lead to the greatest improvement in the objective function. 
By integrating these two strategies: structural SOS branching for rout-
ing constraints and PSP branching for other variables, we ensure both 
global convergence and local efficiency.

To highlight the efficiency of the joint branching strategy, a set 
of experiments is conducted. In the experimental setup with 𝑘-path 
cutting as the cut plane, we compare the PSP branching, SOS branching, 
MF branching, and joint branching strategy (PSP&SOS). Keeping other 
parameters fixed, the final results of the compute time (CPU(s)) and 
compute nodes (Nodes) are presented in Table  3. Several important 
observations can be drawn regarding the performance of different 
branching strategies in the customized B&C algorithm for the GDR-GSC 
model. (𝑖) The GDR-GSC model cannot be solved using the SOS branch-
ing strategy alone. (𝑖𝑖) The joint branching strategy, which combines 
SOS and PSP branching, consistently outperforms the other strategies – 
MF branching, standalone SOS branching, and PSP branching – across 
all tested instances. Specifically, in terms of computational time, the 
joint strategy achieves the shortest solution times in every instance. 
(𝑖𝑖𝑖) Furthermore, the joint strategy leads to a substantial reduction in 
the number of explored branch-and-bound nodes, which reflects a more 
9 
efficient search process and tighter relaxation bounds. For example, 
when the number of customers increases to 13, the joint strategy 
reduces the node count by more than 30% compared to the next-best 
strategy.

Notably, the PSP and MF branching strategies can produce feasible 
results individually, the SOS branching strategy alone fails to work 
within the B&C framework. Specifically, it is unable to generate a com-
plete branch-and-bound tree and thus does not yield any valid solution, 
indicating that SOS branching in isolation is insufficient for solving 
the GDR-GSC model. In smaller problem sizes, all strategies perform 
comparably; However, as the problem size grows, the advantages of the 
PSP&SOS branching strategy become increasingly significant, demon-
strating superior scalability. This suggests that the joint strategy not 
only accelerates convergence but also improves the tractability of solv-
ing large-scale mixed-integer nonlinear problems under uncertainty. 
These results validate the effectiveness of the proposed branching 
mechanism in reducing computational burden while preserving or even 
improving solution quality. 

5.3. Pseudocode of customized B&C algorithm

The customized B&C algorithm that incorporates strengthened 𝑘-
path cuts and joint branching strategy can improve the efficiency of 
solving large scale mixed-integer programming. The key algorithmic 
steps are summarized and outlined as follows:

Step 1 Initialization 
Set initial lower and upper bounds (LB, UB). Add the root node 
(original GDR-GSC problem) to the priority queue Q.

 Step 2 LP Relaxation and Feasibility Check 
While Q is not empty:
•Select the node P with the best bound;
•Solve its LP relaxation;
•If the solution is infeasible or worse than UB, discard P;
•If the solution is integer feasible and better than UB, update UB 
and save the solution.

Step 3 Branching and Cutting
If the solution is not integer feasible:
•Apply joint branching: first SOS branching (for routing con-
straints), then PSP branching (guided by shadow prices);
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Table 3
Performance comparison of different branching strategies for the GDR-GSC model.
 Instance MF PSP SOS PSP&SOS

 CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes  
  = 8 1.5 36428 1.2 25673 – – 0.9 21506  
  = 9 6.1 160485 5.6 157834 – – 4.8 137059  
  = 10 53.8 1 398475 40.5 1 037534 – – 32.9 884628  
  = 11 342.3 4 374853 255.4 3 974583 – – 213.0 3563363 
  = 12 463.7 4 857383 432.3 4 255637 – – 334.5 3875821 
  = 13 1987.5 10995110 1728.2 10485760 – – 1450.3 9567453 
 Average 475.8 3 637122 410.5 3 322837 – – 339.4 3008305 
‘‘–’’ indicates that the optimal value of the objective could not be acquired within the set time limit.
•Add strengthened 𝑘-path cuts to tighten the feasible region;
•Re-optimize the LPs of the new subproblems.

Step 4 Queue Update and Termination
•Add promising subproblems back into Q;
•Repeat until Q is empty;
•Return the best integer solution found.

Algorithm 2 below is the pseudocode for the B&C algorithm tailored 
for the GDR-GSC model.
Algorithm 2 Customized B&C Algorithm for GDR-GSC Model
1: Initialize the problem with the GDR-GSC model 
2: Set the initial lower bound 𝐿𝐵 ← −∞
3: Set the initial upper bound 𝑈𝐵 ← +∞
4: Create an empty priority queue 𝑄 for storing subproblems 
5: Add the root node (representing the original problem) to 𝑄
6: while 𝑄 is not empty do 
7: Select and remove the subproblem 𝑃  from 𝑄 with the lowest 

bound 
8: Solve the linear relaxation of 𝑃
9: Let 𝑧𝐿𝑃  be the optimal value of the linear relaxation
10: if 𝑧𝐿𝑃 ≥ 𝑈𝐵 then 
11: Discard subproblem 𝑃
12: continue
13: end if
14: if 𝑃  is integer feasible then 
15: if 𝑧𝐿𝑃 < 𝑈𝐵 then 
16: 𝑈𝐵 ← 𝑧𝐿𝑃

17: Store the current solution as the best found solution
18: end if
19: continue
20: end if
21: Apply the SOS branching strategy to create two new subproblems 

𝑃1 and 𝑃2
22: Apply PSP branching on 𝑃1 and 𝑃2 to further explore nodes 
23: Apply valid inequalities (strengthened 𝑘-path cuts) to 𝑃1 and 𝑃2
24: Compute the bounds for 𝑃1 and 𝑃2
25: if bound of 𝑃1 < 𝑈𝐵 then 
26: Add 𝑃1 to 𝑄
27: end if
28: if bound of 𝑃2 < 𝑈𝐵 then 
29: Add 𝑃2 to 𝑄
30: end if
31: end while
32: return  the best found solution

6. Numerical experiments

In this section, the performance of a customized B&C algorithm is 
first analyzed by a testing experiment. Next up, a realistic case is con-
ducted to validate the proposed model and algorithm. All experiments 
10 
Table 4
The number of warehouses and customers used in numerical experiments.
   \ 8 9 10 11 12 13 14 15 
 2 ✓ ✓ ✓ ✓ ✓  
 3 ✓ ✓ ✓ ✓ ✓  
 4 ✓ ✓ ✓ ✓  

are conducted on a machine running Linux 64-bit operating system 
with an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz, using Gurobi 
11.0.1 and Python 3.11 software.

6.1. Numerical examples

In this subsection, we use multiple numerical experiments to vali-
date the effectiveness and superior performance of the customized B&C 
algorithm. If the optimal value obtained directly by the customized 
B&C algorithm and solver are the same, we consider the algorithm 
feasible. Then, we use the computation time to judge the superiority of 
the method. After verification, we find that the number of warehouses 
and customers has the most significant impact on the solution time 
and convergence speed. Therefore, we gradually increase the number 
of warehouse and customer nodes, and then compare the solution 
time and solution quality of the GDR-GSC model with and without 
the B&C algorithm. The number of warehouses and customers used in 
our experiments is shown in Table  4. Exploration of the enumeration 
tree is limited to 172,800s of CPU time. We preprocess a set of data 
for the experiments, with a portion of it being randomly generated by 
the dedicated program including demand 𝑑𝑘, warehouse opening cost 
𝑂𝑗 and distance 𝑆𝐴𝑚𝑖 and 𝑆𝐵𝑚𝑗 . The distance data refers to the distance 
between cities in China. The detailed data are shown in Table  5. 

The detailed results of the numerical experiments, as presented in 
Table  6, clearly demonstrate the effectiveness and superiority of the 
customized B&C algorithm in solving the GDR-GSC model. In Table  6, 
‘‘B&C’’ indicates the use of our customized B&C algorithm for solving. 
We dynamically add strengthened 𝑘-path cuts using the Gurobi solver’s 
callback function. ‘‘BD’’ refers to solving the model using Benders 
decomposition algorithm. ‘‘Gurobi’’ indicates solving in the solver’s 
default settings. The ‘‘Obj" column displays the optimal objective value 
obtained within the specified time limit. The ‘‘Gap(%)’’ column shows 
the relative gap of the current result as Gap = ∣ObjBound−ObjVal∣

∣ObjVal∣ . Wherein, 
ObjVal is the objective function value from the current solution, and 
ObjBound is an estimated bound (upper for minimization, lower for 
maximization) on the optimal objective value, used to calculate the 
gap. The ‘‘CPU(s)’’ column displays the solution time. Instances with 
solution times marked with ‘‘-’’ indicate that the optimal objective value 
could not be obtained within the specified time limit.

Specifically, (𝑖) the algorithm consistently achieves the same opti-
mal objective value as Gurobi solver across all tested problem sizes, 
confirming its correctness and feasibility. (𝑖𝑖) In terms of computational 
time, the customized B&C algorithm significantly outperforms Gurobi 
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Table 5
Data summary for the numerical experiments.
 Parameters Notations Values Unit References  
 Manufacturing plants  3  
 Retailers  23  
 Vehicles  3  
 Production capacity for each 𝑚 𝐶𝑚 20,000 Li et al. (2023)  
 Vehicle capacity 𝑄 4,000 Li et al. (2023)  
 Demand of customer 𝑘 𝑑𝑘 [700, 800] Li et al. (2023)  
 Wholesale price for 𝑚 to 𝑖 𝑊 𝐴

𝑚𝑖 4.18 USD Shanghai Oil & Gas Trading Centera 
 Wholesale price for 𝑚 to 𝑗 𝑊 𝐵

𝑚𝑗 6.97 USD Shanghai Oil & Gas Trading Centera  
 Startup cost for each 𝑚 𝑃𝑚 139.32 USD Li et al. (2023)  
 Unit manufacturing cost 𝐺 1.93 USD Li et al. (2023)  
 Unit transport cost for 𝑚 to 𝑖 𝑇𝐶 0.03 USD Commodity Price Networkb  
 Unit transport cost for 𝑚 to 𝑗 𝑇𝑆 0.02 USD Commodity Price Networkb  
 Route cost 𝑉𝐹 27.86 USD Li et al. (2023)  
 Warehouse opening cost for each 𝑗 𝑂𝑗 [5.57, 11.15] USD Li et al. (2023)  
 Distance from 𝑚 to 𝑖 𝑆𝐴𝑚𝑖 [30, 100] km Google Mapsc  
 Distance from 𝑚 to 𝑗 𝑆𝐵𝑚𝑗 [100, 200] km Google Mapsc  
 Radius of ambiguity set 𝜃 0.5 Liu et al. (2023)  
 Tolerance level 𝛾 0.5 Liu et al. (2023)  
a https://www.shpgx.com/html/ChnLNGIndex.html
b https://price.mofcom.gov.cn/price_2021/trafficgoods/moretrafficgoods.shtml?flag=ly&w_m_y=week
c www.google.com/maps
Table 6
Comparison between B&C algorithms with Benders decomposition and Gurobi.
 Instance B&C BD Gurobi

 Obj Gap(%) CPU(s) Obj Gap(%) CPU(s) Obj Gap(%) CPU(s)  
  = 2  = 8 382239.2 0.0000 0.9 382239.2 0.0000 2.1 382239.2 0.0000 2.3  
  = 9 382013.7 0.0000 4.8 382013.7 0.0000 6.5 382013.7 0.0000 7.7  
  = 10 382065.0 0.0000 7.1 382065.0 0.0000 23.5 382065.0 0.0098 26.8  
  = 11 433067.3 0.0091 32.9 433067.3 0.0095 323.8 433067.3 0.0095 292.4  
  = 12 433090.2 0.0099 213.0 433090.2 0.0100 315.8 433090.2 0.0100 294.2  
  = 3  = 10 481542.8 0.0041 13.4 481542.8 0.0096 76.3 481542.8 0.0096 61.9  
  = 11 481304.7 0.0050 334.5 429847.2 12.2436 846.7 481304.7 0.0096 524.1  
  = 12 481069.0 0.0099 3022.8 408673.3 16.6438 11365.8 481069.0 0.0100 7493.8  
  = 13 481046.5 0.0100 33466.2 – – – 481046.5 0.0100 57244.8 
  = 14 480920.3 0.0100 166389.5 – – – – – –  
  = 4  = 12 532708.1 0.0100 2994.2 458946.2 15.8734 10783.5 532708.1 0.0100 6115.6  
  = 13 532582.3 0.0100 23576.0 – – – 532582.3 0.0100 34242.0 
  = 14 532676.1 0.0100 17809.4 – – – 532676.1 0.0100 27156.6 
  = 15 532497.2 0.0100 144216.6 – – – – – –  
 Average 0.0071 28005.8 4.9767 63410.3 0.0082 34218.7 
‘‘–’’ indicates that the optimal value of the objective could not be acquired within the set time limit.
in larger-scale instances. For example, when the number of customer 
nodes increases from 8 to 15 and warehouse nodes increase from 2 to 
4, Gurobi often reach its time limit of 172,800 s without producing 
an optimal solution, especially when customer nodes exceed 13. In 
contrast, the customized B&C algorithm is able to find optimal or near-
optimal solutions in a substantially shorter time frame, highlighting its 
computational efficiency and scalability. (𝑖𝑖𝑖) Furthermore, the exper-
iments reveal a critical limitation of standard Benders decomposition 
algorithm. While Benders could solve small- to medium-sized instances 
effectively, it fails to provide results for larger instances due to conver-
gence issues and excessive memory or time consumption. Specifically, 
Benders decomposition becomes infeasible or terminated prematurely 
when the number of customers and warehouses increases beyond a 
certain threshold, indicating poor scalability for complex global supply 
chain problems with ambiguity.

In conclusion, the customized B&C algorithm not only maintains 
high solution quality but also demonstrates superior solving efficiency 
and robustness compared to both the default solver and Benders de-
composition algorithm. It proves to be more scalable and reliable for 
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handling large-scale, mixed-integer nonlinear optimization problems 
under demand ambiguity. These findings underscore the practical ap-
plicability of the proposed method in real-world global supply chain 
scenarios, particularly when computational resources and time are 
critical constraints.

6.2. Empirical study on Apple Inc.

In this subsection, we show a case study on the product sales of 
Apple in a particular quarter.

6.2.1. Background and data
Apple’s strategy of establishing assembly factories in various parts 

of China is aimed at leveraging local labor and resources to meet 
global demand more efficiently. The Shenzhen manufacturer, as one of 
these facilities, holds a significant position in production, particularly 
in fulfilling the demands of both domestic and Southeast Asian markets. 
We will use the supply chain from the Shenzhen manufacturer to 
Guangdong Province and Malaysia as a case study. Guangdong Province 

https://www.shpgx.com/html/ChnLNGIndex.html
https://price.mofcom.gov.cn/price_2021/trafficgoods/moretrafficgoods.shtml?flag=ly&w_m_y=week
http://www.google.com/maps
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Table 7
Data utilized in the empirical study.
 Parameters Notations Values Unit 
 Manufacturing plants  1  
 Retailers  21  
 Vehicles  4  
 Production capacity for each 𝑚 𝐶𝑚 1,000,000  
 Vehicle capacity 𝑄 20,000  
 Demand of customer 𝑘 𝑑𝑘 [10, 000, 21, 000]  
 Wholesale price for 𝑚 to 𝑖 𝑊 𝐴

𝑚𝑖 700 USD 
 Wholesale price for 𝑚 to 𝑗 𝑊 𝐵

𝑚𝑗 700 USD 
 Startup cost for each 𝑚 𝑃𝑚 1,000 USD 
 Unit manufacturing cost 𝐺 432 USD 
 Unit transport cost for 𝑚 to 𝑖 𝑇𝐶 0.005 USD 
 Unit transport cost for 𝑚 to 𝑗 𝑇𝑆 0.002 USD 
 Route cost 𝑉𝐹 1,250 USD 
 Warehouse opening cost for each 𝑗 𝑂𝑗 3,000 USD 
 Radius of ambiguity set 𝜃 0.5  
 Tolerance level 𝛾 0.5  

has 21 cities, and the West Malaysian Peninsula has 11 states and 2 
federal territories.

The data utilized in the empirical study are introduced as follows:

• Customer demand (𝑑𝑘), unit transportation costs (𝑇𝐶, 𝑇𝑆), whole-
sale prices (𝑊 𝐴

𝑚𝑖, 𝑊 𝐵
𝑚𝑗), and the number of vehicles are provided 

from Apple’s Q1 2019 report.1 We utilize the sales data from 
Malaysian retail outlets over the past five quarters as empirical 
distribution data for sales point demand. The numbers and loca-
tions of manufacturing plants and retailers are also obtained from 
this report. The above data are presented in Table  7.

• Referring to Quintero-Araujo et al. (2019), we obtain the pro-
duction capacity (𝐶𝑚), vehicle capacity (𝑄), vehicle route cost 
(𝑉𝐹 ), warehouse operating costs (𝑂𝑗), facility startup cost (𝑃𝑚), 
and unit production cost (𝐺). The data mentioned above are also 
summarized in Table  7.

• One Apple sales point is select as end customer in every state 
and federal territory. The Malaysian Peninsula has four distrib-
utors, each with their own warehouse (W1 to W4) to receive 
products from the Shenzhen manufacturer and distribute them 
to sales points in each state and federal territory. The locations 
of customers and warehouses, along with the distance between 
facility points, are sourced from Google Maps.2 The locations of 
warehouses and retailers are shown in Fig.  3, and the distances 
from the manufacturer to each retailer and warehouse are shown 
in Table  8.

The proposed case is in accordance with our GDR-GSC framework, 
and the customized B&C algorithm presented in Section 5 is employed 
for its resolution. 

6.2.2. Computational result
In this subsection, a comprehensive discussion and completion re-

garding the calculation results of the GDR-GSC model are presented 
under specific parameter settings. Specifically, we consider the case 
where the ambiguity set parameter 𝜃 and the globalized sensitivity pa-
rameter 𝛾 are 0.5, and 𝛬 equals to 1. The optimal profit value achieved 
is determined to be 2.408 × 108 dollars. This figure serves as a crucial 
benchmark for evaluating the economic viability and effectiveness of 
the modeled system. Moreover, with respect to the production aspect, it 
is found that the Shenzhen manufacturer has produced 990,000 units of 
products. This quantity provides insights into the production capacity 
and output level of the specific manufacturer within the overall supply 

1 www.apple.com/newsroom/2019/01/apple-reports-first-quarter-results
2 www.google.com/maps
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Table 8
The distance from manufacturer (Shenzhen) to retailers and distributors’ 
warehouse (km).
 Retailers Distance Retailers Distance 
 Shantou 283.5 Huizhou 73.2  
 Chaozhou 290.3 Dongguan 59.8  
 Jieyang 261.6 Qingyuan 162.2  
 Meizhou 285.4 Guangzhou 105.6  
 Heyuan 148.5 Foshan 110.8  
 Retailers Distance Retailers Distance 
 Zhaoqing 173.3 Yangjiang 227.4  
 Yunfu 211.6 Maoming 339.1  
 Jiangmen 101.8 Zhanjiang 408.4  
 Zhongshan 67.8 Shanwei 255.6  
 Zhuhai 57.9 Shaoguan 255.8  
 Warehouse Distance Warehouse Distance 
 W1 2261.1 W3 2389.6  
 W2 2330.3 W4 2505.5  

Table 9
Optimal allocation results form warehouses to customers.
 Warehouse Customers  
 W1 Ipoh ⇒ George Town⇒ Alor Setar ⇒ Kangar  
 W2 Kuala Lumpur ⇒ Shah Alam ⇒ Kota Baharu ⇒ Kuala Terengganu  
 W3 –  
 W4 Johor Baharu ⇒ Kota Melaka ⇒ Seremban ⇒ Putrajaya ⇒ Kuantan 

chain framework. The quantity shipped from Shenzhen to each retailer 
in the country is 30,000, and the quantity shipped to the warehouses 
of various distributors in Malaysia is 90,000 respectively. Due to the 
fact that there exists only one manufacturer in Shenzhen, the demand 
of each retailer and warehouse in this context essentially corresponds 
to the transportation volume of products. This relationship simplifies 
the analysis of the product flow from the manufacturing source to the 
downstream distribution nodes.

Finally, we focus on the decisions related to the logistics and distri-
bution operations in Malaysia. The customers-to-warehouse allocation 
decisions in Malaysia are all presented in Table  9. Specifically, different 
warehouses are assigned distinct distribution tasks. Warehouse ‘‘W1’’ 
is tasked with distributing products to customers located in the areas 
of Kangar, Alor Setar, George Town, and Ipoh. Warehouse ‘‘W2’’ is 
responsible for distributing to customers in Kuala Terengganu, Kota 
Baharu, Shah Alam, and Kuala Lumpur. Notably, Warehouse ‘‘W3’’ is 
not involved in the delivery process, which is due to the consideration 
of horizontal cooperation strategy to reduce costs. Warehouse ‘‘W4’’, 
on the other hand, is in charge of distributing to customers in Kuantan, 
Putrajaya, Seremban, Kota Melaka, and Johor Baharu. 

7. Analysis and comparison

7.1. Parameter analysis and managerial insight

The impact of two ambiguity parameters, i.e., Wasserstein radius 𝜃
and tolerance level 𝛾, on the GDR-GSC model is discussed. We conduct 
the experiments under different parameter combinations. First, the 
change trend of the optimal values is examined with respect to 𝛾 under 
the values of 𝜃 fixed as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Fig.  4 
indicates that as the tolerance level 𝛾 increases, the total revenue in the 
GDR-GSC model always shows an upward trend under various scenarios 
of 𝜃. The finding reflects that the increase of tolerance level widens the 
distance between the inner and outer ambiguity sets, thereby relaxing 
constraints and providing decision makers with a broader feasible 
region, and finally optimizing economic objective.

Subsequently, when 𝜃 varies, the change trend of the optimal values 
is investigated with the values of 𝛾 fixed as 0.1, 0.3, 0.5, 0.7, and 0.9, 

https://www.apple.com/newsroom/2019/01/apple-reports-first-quarter-results/
http://www.google.com/maps
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Fig. 3. The locations of warehouses, retailers, and customers in the empirical study.
Fig. 4. The impact of tolerance level on the optimal value.

respectively. Fig.  5 showcases that as the radius 𝜃 increases, the total 
revenue in the GDR-GSC model always shows a downward trend under 
various scenarios of 𝛾. These results indicate that when Wasserstein 
radius increase, the revenue objective is getting smaller. The reason 
for this is that inner Wasserstein ambiguity set becomes larger. The 
range of the constraint to meet the complete feasibility is expanded, 
then decisions is more conservative and further deteriorate the revenue 
objective.

• Analysis on tolerance level parameter 𝛾 : The parameter 𝛾 is 
a tolerance level that controls the trade-off between robustness 
and conservatism in the GDRO approach. It allows for controlled 
constraint violation for distributions outside the ambiguity set. 
Since a larger violation of constraints implies a larger feasible 
region, the optimal value in the maximized objective will be 
greater. In practical terms, setting 𝛾 involves a strategic decision. 
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Fig. 5. The impact of Wasserstein radius on the optimal value.

A company might choose a higher 𝛾 if it values adaptability and 
cost-efficiency, even if it means risking some level of constraint 
violation during extreme events. Alternatively, a lower 𝛾 would 
be selected if the company prioritizes reliability and guarantee, 
aiming to minimize the impact of ambiguity on its supply chain 
operations.

• Analysis on radius of ambiguity set 𝜃: The parameter 𝜃 de-
fines the radius of the Wasserstein ambiguity set in the GDRO 
approach, which represents the level of ambiguity considered in 
the model. A larger 𝜃 indicates a broader set of possible demand 
distributions, thus capturing a higher level of ambiguity. This can 
lead to a more conservative optimization, which aims to ensure 
robustness against a wider range of scenarios. Because the larger 
ambiguity set, the more severe the worst-case scenario faced. 
In the context of maximizing, this typically results in a smaller 
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Fig. 6. Delivery routes of vehicles with and without horizontal cooperation.
optimal value. Conversely, a smaller 𝜃 results in a narrower 
ambiguity set, focusing on a more limited set of potential demand 
distributions. This may lead to a less conservative optimization 
process, while also increasing the risk. In the context of the GDR-
GSC model, increasing 𝜃 would mean that the model is prepared 
to handle more variability in demand, which could be crucial in 
volatile markets. However, this increased robustness might come 
at the cost of higher operational expenses due to over-preparation 
for a wide range of scenarios. On the other hand, a smaller 𝜃 could 
result in cost savings but with the risk of being unprepared for 
unexpected shifts in demand.

• Managerial insights: The above findings provide the managerial 
insights to decision-makers in the following four aspects:
(1) Dynamically adjust uncertainty response strategies: In the 
model, the ambiguity set radius parameter 𝜃 and the global 
sensitivity parameter 𝛾 have a significant impact on the optimal 
profit. Specifically, an increase in 𝜃 (i.e., higher ambiguity in 
demand distribution) leads to a decrease in the optimal value, 
while an increase in 𝛾 (i.e., higher tolerance for constraint vio-
lations) results in an increase in the optimal value. This suggests 
that managers need to dynamically adjust strategies according to 
market volatility—in periods of stable demand, parameter 𝜃 can 
be reduced to lower the conservatism of decisions and thereby 
improve profits; in periods of market turbulence, 𝜃 should be 
increased to enhance supply chain resilience, and at the same 
time, parameter 𝛾 can be adjusted to balance risks and returns.
(2) Optimize warehouse and distribution resource allocation: The 
calculation results show that the horizontal cooperation strategy 
causes warehouse W3 in Malaysia to cease operations, and its 
originally served customers are reassigned to warehouses W2 
and W4, reducing logistics costs through route integration. This 
indicates that multinational enterprises should promote informa-
tion sharing and resource collaboration among warehouses at the 
same level, improve efficiency by merging redundant warehouse 
nodes and optimizing distribution routes. Especially in regions 
with scattered or highly fluctuating demand, this approach can 
significantly reduce transportation costs and improve the profit.
14 
(3) Data-driven parameter calibration: The quantification of de-
mand ambiguity relies on historical data (such as quarterly sales 
data of Apple retail stores in Malaysia in the case) to construct 
empirical distributions. Therefore, managers should attach impor-
tance to data accumulation and analysis, optimize the value of 
𝜃 by continuously updating demand samples to make the model 
more in line with actual market characteristics; At the same 
time, calibrate 𝛾 combined with expert judgment to ensure the 
controllability of constraints in extreme events and avoid model 
deviations caused by over-reliance on data.
(4) Balance global and regional operations: In the case, the dif-
ferentiated distribution from the Shenzhen factory to retailers in 
Guangdong and warehouses in Malaysia (30,000 units and 90,000 
units respectively) indicates that production and transportation 
plans need to be adjusted according to regional demand scales. 
Managers should establish a flexible production system, combine 
horizontal cooperation of local warehouses, take into account 
the personalized needs of regional markets in the global layout, 
and improve the overall efficiency of the supply chain through 
reasonable capacity allocation and inventory sharing.

7.2. Strategy analysis

Horizontal cooperation among multinational corporation at the 
same level is of great significance in the GSC. In the model proposed 
in this study, horizontal cooperation is primarily manifested through 
the sharing of historical data regarding customer locations and de-
mands among warehouses. Subsequently, the distribution routes are 
coordinated and the resource allocation is optimized. We control the 
value of variable 𝑌𝑗 . When 𝑌𝑗 takes a binary value, it indicates the 
adoption of a horizontal cooperation strategy; when 𝑌𝑗 = 1, it indicates 
that all warehouses are being opened. Finally, we established multiple 
sets of experiments by modifying the total order quantity, where the 
order quantity is 𝑅1 = 990000, 𝑅2 = 1380000, 𝑅3 = 1690000, 𝑅4 =
1990000, 𝑅5 = 2380000.

As shown in Fig.  6, taking Apple’s sales supply chain in Guangdong, 
China and Malaysia as an example. When the horizontal cooperation 
strategy is not implemented, all warehouses function independently, 
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Fig. 7. The optimal value with and without horizontal cooperation.

taking on the task of distribution in particular areas. After enabling hor-
izontal cooperation, warehouse ‘‘W3’’ is no longer operational, and its 
originally responsible customers are assigned to warehouses ‘‘W2’’ and 
‘‘W4’’. Consequently, the distribution routes and customer assignments 
have all changed. This change has brought significant advantages. 
Through the optimization of distribution routes, not only has the lo-
gistics cost been cut down, but also the service level has been elevated. 
Moreover, the overall operational efficiency of the supply chain has 
been significantly boosted. Meanwhile, resources have been allocated 
more rationally, thereby enhancing the flexibility of the supply chain.

Horizontal cooperation enables enterprises to better cope with the 
complex and changing market environment. In Fig.  7, the horizontal 
cooperation strategy has brought obvious profit growth. Multiple sets 
of experiments show that the profit of the experimental group adopting 
the horizontal cooperation strategy is higher than that of the control 
group without adopting it. Moreover, the profit growth in 𝑅2 is as 
high as 6.25%. This fully proves the important value of horizontal 
cooperation in supply chain management and is an effective way for 
enterprises to achieve efficient and stable development.

7.3. Models comparison

In the prementioned section, we present a GDR model for GSC 
optimization under demand ambiguity. This subsection aims to provide 
a comparative analysis of the GDR-GSC model with the stochastic GSC 
model (S-GSC) and the distributionally robust GSC model (DR-GSC) 
to highlight the features and applications of the proposed GDR-GSC 
model.

We compare the different models using Apple’s product sales data 
from the real-world example. In S-GSC model, we assume that the 
customers demand follows an uniform distribution, i.e., 𝒅̃ ∼ 𝑈 (𝒅̂ −
𝛥𝒅, 𝒅̂ + 𝛥𝒅), the specific distribution is shown in Table  10. The DR-
GSC model can be viewed as a special case of the GDR-GSC model. 
We adopt the outer ambiguity set in the GDR model as the ambiguity 
set of the DR model to capture the uncertainty of customer demand for 
calculating the optimal profit. Specifically, when we set 𝛾 = 0, the GDR-
GSC model degenerates into the DR-GSC model. Finally, the results of 
three different models are plotted in Fig.  8.

When it comes to supply chain optimization models, a comprehen-
sive analysis reveals significant insights. When comparing the three 
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Fig. 8. Comparison of different models.

models in question, it is observed that the S-GSC model exhibits the 
highest optimal value among the three. Here we take the uniform 
distribution for the sake of calculation. However, it is important to note 
that the true distribution of customer demands in realistic is difficult to 
estimate. Nevertheless, ignoring the inaccuracy in the distribution may 
lead to serious decision-making risks.

Conversely, the DR-GSC model demonstrates the higher level of 
resilience when confronted with uncertain risk of random distribution. 
Nevertheless, this enhanced resilience comes at the expense of a rel-
atively lower optimal value. This characteristic is at odds with the 
overarching objective of commercial companies, which is to maximize 
profits. In a business context, while risk mitigation is crucial, it must 
be balanced with the pursuit of profitability to ensure the viability of 
the enterprise.

Our proposed GDR-GSC model, on the other hand, strikes a balance 
between risk resistance and profit maximization. It is designed not 
only to provide a certain degree of protection against the risks of 
ambiguous distribution but also to maximize profits in supply chain 
as effectively as possible. Compared to DR-GSC model, the GDR-GSC 
model is well-suited for real-world supply chain scenarios, where man-
aging the uncertainty and feasibility of constraints under a controllable 
violation level is of paramount importance. The GDR-GSC model offers 
a practical and effective solution for supply chain management in 
complex and uncertain environments.

8. Conclusion

The research presented in this paper contributes to the field of sup-
ply chain management by introducing a GDR-GSC model that addresses 
the challenges of demand ambiguity and horizontal cooperation. The 
GDR-GSC model is designed to optimize location and routing decisions 
within a GSC network, incorporating the complexities of production, 
transportation, and delivery process. The model’s integration of the 
GDRO approach allows for a robust solution that considers worst-case 
scenarios and partial distributional information of demand ambiguity. 
This approach is particularly relevant in the current global business 
environment, where market dynamics and unforeseen events can sig-
nificantly impact customer demand. The introduction of strengthened 
𝑘-path cuts and tailored branching strategies further enhances the 
algorithm’s performance, providing compact bounds and optimized 
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Table 10
Demand distribution of customer.
 Customer Demand Customer Demand  
 Kangar 𝑑1 ∼ 𝑈 (10, 000, 20, 000) Alor Setar 𝑑2 ∼ 𝑈 (15, 000, 21, 000)  
 George Town 𝑑3 ∼ 𝑈 (12, 000, 20, 000) Kuala Terengganu 𝑑4 ∼ 𝑈 (12, 000, 18, 000)  
 Shah Alam 𝑑5 ∼ 𝑈 (10, 000, 18, 000) Kuala Lumpur 𝑑6 ∼ 𝑈 (12, 000, 20, 000)  
 Seremban 𝑑7 ∼ 𝑈 (10, 000, 20, 000) Kota Melaka 𝑑8 ∼ 𝑈 (14, 000, 18, 000)  
 Johor Baharu 𝑑9 ∼ 𝑈 (10, 000, 20, 000) Putrajaya 𝑑10 ∼ 𝑈 (10, 000, 20, 000) 
 Ipoh 𝑑11 ∼ 𝑈 (10, 000, 20, 000) Kuantan 𝑑12 ∼ 𝑈 (12, 000, 20, 000) 
 Kota Baharu 𝑑13 ∼ 𝑈 (14, 000, 18, 000)  
solutions. Our numerical experiments demonstrate the effectiveness 
and superiority of the customized B&C algorithm in solving the GDR-
GSC model. The algorithm’s ability to handle complex mixed-integer 
nonlinear programming problems is evident in its improved solution 
time and preserved solution quality. The case study based on Apple’s 
sales in China and Malaysia illustrates the practical applicability of the 
GDR-GSC model. It showcases how the model can be used to analyze 
the impact of key parameters such as the radius of ambiguity set 
parameter 𝜃 and the global sensitivity parameter 𝛾, offering valuable 
insights for strategic decision-making under ambiguity. The adoption 
of horizontal cooperation strategy in the GDR-GSC model is another 
significant contribution. By enabling warehouses to collaborate, the 
model demonstrates the potential for cost reduction, service level im-
provement, risk mitigation, enhanced flexibility, and sustainability. 
Finally, based on the comparison of our models, we prove that the GDR-
GSC model has better performance, which can better resist risks and 
achieve relatively high optimal profit value.

Future research could focus on the considerations on other im-
portant factors in the supply chain, such as supply disruptions, en-
vironmental sustainability, and multiple products (Ren et al., 2024). 
This maybe incorporate additional constraints and variables into the 
GDR-GSC model to more accurately represent real-world supply chain 
scenarios. Additionally, further improvements in the exploration of 
more efficient solution methods could be investigated (Praxedes et al., 
2024). This could involve exploring different branching strategies and 
cut generation techniques to further reduce the solution time and im-
prove the solution quality. At the same time, we can consider multiple 
evaluation objectives related to the GSC. In addition to maximizing 
profit, other objectives such as minimizing lead times, or improving 
customer service levels could be incorporated (Hasani et al., 2021). 
This would push the use of the appropriate multi-objective optimization 
techniques and the analysis of trade-offs between different objectives.
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Appendix. Proof of Theorem  1

Proof.  First, we prove the equivalent form of (15a). The GDR counter-
part (15a) can be re-expressed as 

sup
P∈(𝛯),Q∈𝑊 (𝜃)

{

EP

[

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 −𝑄

]

− 𝛾𝑖𝑑𝑊 (P,Q)

}

≤ 0. (29)

To establish strong duality through Lemma 1 of Liu et al. (2023), our 
model satisfies all necessary conditions: (𝑖) the feasible set 𝛯, as a con-
structed bounded polyhedron, is compact; (𝑖𝑖) EP

[

∑

𝑘∈
∑

𝑗∈ 𝑑𝑘𝑓𝑗𝑘𝑣 −

𝑄
]

 is proper, closed, and convex in 𝑑𝑊 (⋅, ⋅); (𝑖𝑖𝑖) the Wasserstein am-
biguity set 𝑊 (𝜃) maintains a non-empty interior through the moment 
constraint 𝑑𝑊

(

P, P̂
)

≤ 𝜃; and (𝑖𝑣) ∑

𝑘∈
∑

𝑗∈ 𝑑𝑘𝑓𝑗𝑘𝑣 − 𝑄 is Lipschitz 
continuity on 𝛯, since it is an affine function. Thus, the regularity 
conditions of Lemma 1 are satisfied, and we can obtain 

sup
P∈(𝛯),Q∈𝑊 (𝜃)

{

EP

[

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑓𝑗𝑘𝑣 −𝑄

]

− 𝛾1𝑑𝑊 (P,Q)

}

= inf
𝑡1∈[0,𝛾1]

{

𝜃𝑡1 + 1
𝑁

∑

𝑛∈
sup
𝒅∈𝛯

{

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑛𝑓𝑗𝑘𝑣 −𝑄 − 𝑡1 ‖‖

‖

𝒅̃ − 𝒅̂𝑛
‖

‖

‖

}}

.

(30)

Given 𝑠1𝑛, 𝝁1
𝑛 and 𝝕1

𝑛 ∈ R𝐾 are introduced arbitrary variables, we 
can convert the right-hand side of (30) into the following constraints: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃𝑁𝑡1 +
∑

𝑛∈
𝑠1𝑛 ≤ 0,

sup
𝒅∈𝛯

{

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑛𝑓𝑗𝑘𝑣 −𝑄 − 𝑡1 ‖‖

‖

𝒅̃ − 𝒅̂𝑛
‖

‖

‖

}

≤ 𝑠1𝑛,

𝑡1 ∈ [0, 𝛾1].

(31)

Introducing arbitrary variables 𝝁1
𝑛 and 𝝕1

𝑛 ∈ R𝐾 , based on Theorem 
2 in Mohajerin Esfahani and Kuhn (2018), we transform (31) into the 
equivalent form: 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜃𝑁𝑡1 +
∑

𝑛∈
𝑠1𝑛 ≤ 0,

[

−

(

∑

𝑘∈

∑

𝑗∈
𝑑𝑘𝑛𝑓𝑗𝑘𝑣 −𝑄

)]∗
(

𝝁1
𝑛 −𝝕1

𝑛
)

+𝛿∗(𝝕1
𝑛|𝛯) − 𝒅̂𝑇𝑛 𝝁

𝑖
𝑛 ≤ 𝑠1𝑛,∀𝑣 ∈  ,∀𝑛 ∈  ,

‖

‖

‖

𝝁1
𝑛
‖

‖

‖∗
≤ 𝑡1,∀𝑛 ∈  ,

𝑡1 ∈ [0, 𝛾1].

(32)

Let 𝑔(𝒅̂𝑛) =
∑

𝑘∈
∑

𝑗∈ 𝑑𝑘𝑛𝑓𝑗𝑘𝑣 −𝑄. Since the function 𝑔 is in the form 
of an affine sum, its conjugate function takes the following form: 

𝑔∗(𝒅̂𝑛) =

{

𝑄, 𝝁1
𝑛 = 𝝕1

𝑛,
1 1 (33)
∞, 𝝁𝑛 ≠ 𝝕𝑛.
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By setting 𝜓1
𝑛 = [𝝎1

𝑛; 𝜏
1
𝑛 ], the conjugate of the support function 𝛿∗(𝝕1

𝑛|𝛯)
can be expressed as: 
𝛿∗(𝝕1

𝑛|𝛯) = sup
𝝕1
𝑛

{𝝕1
𝑛𝒅̂𝑛 ∶ 𝐴𝒅̂𝑛 + 𝒄 ∈ 𝐾}

= inf
𝜓1
𝑛

{𝒄𝑇𝜓𝑛 ∶ 𝜓1
𝑛
𝑇 𝒅̂𝑛 = −𝝕1

𝑛,𝝕
1
𝑛 ∈ 𝐾∗},

(34)

where 𝐾 =
{

(𝜏1𝑛 ,𝝎
1
𝑛) ∈ R × R𝐾 ∶ 𝜏1𝑛 ≥ ‖𝝎1

𝑛‖∞
}

, the dual cone is 𝐾∗ =
{

(𝜏1𝑛 ,𝝎
1
𝑛) ∈ R × R𝐾 ∶ 𝜏1𝑛 ≥ ‖𝝎1

𝑛‖1
}

. Then, by substituting Eqs. (33) and 
(34) into formula (32), formula (32) can be transformed into the 
following form:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑁𝑡1 +
∑

𝑛∈
𝑠1𝑛 ≤ 0,

−𝑄 + 𝒅̂𝑇𝑛
∑

𝑗∈
𝒇 𝑗𝑣 + 𝜔1

𝑛𝒅̂𝑛 + 𝛬𝜏
1
𝑛 ≤ 𝑠1𝑛,∀𝑛 ∈  ,∀𝑣 ∈  ,

‖

‖

‖

‖

‖

‖

𝝎1
𝑛 +

∑

𝑗∈
𝒇 𝑗𝑣

‖

‖

‖

‖

‖

‖∞

≤ 𝑡1,∀𝑣 ∈  ,∀𝑛 ∈  ,

𝜏1𝑛 ≥ ‖

‖

‖

𝝎1
𝑛
‖

‖

‖1
,∀𝑛 ∈  ,

𝑡1 ∈ [0, 𝛾1].

Similarly, the tractable counterparts of constraints (15b) and (15c) can 
be obtained.

The proof of theorem is complete. □

Data availability

Data will be made available on request.
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