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ARTICLE INFO ABSTRACT
Keywords: The complexity incorporated in global supply chain (GSC) means the production, transportation, and delivery
Global supply chain are totally operating and completing in the dynamic business environment with unforeseen events. At present,

Horizontal cooperation

Demand ambiguity

Globalized distributionally robust optimization
Branch-and-Cut

there are two key challenges in the transnational supply chain network: addressing the demand ambiguity
and enhancing cooperation among supply chain entities. To optimize the production-transportation—delivery
decision in GSC, a novel globalized distributionally robust GSC (GDR-GSC) model with horizontal cooperation
is proposed, in which the ambiguity of demand distribution is characterized by inner and outer ambiguity sets.
Subsequently, the proposed model is transformed into mixed integer nonlinear programming (MINLP) model
by duality theory. It is commonly difficult to solve in high-dimensional case. Therefore, a customized Branch-
and-Cut (B&C) algorithm tailored for the GDR-GSC model is designed to handle complex MINLP problems,
and improves computational efficiency and solution quality. The case study based on Apple’s sales operations
in China and Malaysia demonstrates the effectiveness and superiority of the B&C algorithm in solving the
GDR-GSC model. Numerical experiments show that the customized B&C algorithm can improve the average
solving time by 18% while maintaining the same solution quality. Based on realistic cases, we know that
horizontal cooperation can increase profits by at least 6.25%.

1. Introduction

Global supply chain (GSC) refers to the worldwide network of
businesses, organizations, and activities involved in the production
and distribution of goods and services from raw materials to end
consumers. This network includes suppliers, manufacturers, transporta-
tion providers, distributors, retailers, and customers, all interconnected
through complex logistical, financial, and informational processes. The
goal of the GSC is to efficiently manage the flow of products and
services across international borders to meet consumer demand and
optimize business operations (Khan, 2020). Nowadays, multinational
corporations face mounting challenges in managing their GSCs, since
production, transportation, and delivery activities span multiple coun-
tries. Hereinto, there are mainly two difficulties in the GSC need to be
solved: (1) How to accurately depict the customer demand? (2) How to
strengthen cooperation among some links in the supply chain to reduce
costs?

Due to market fluctuations and policy impacts, customer demand
is often uncertain. The uncertain parameter in the model significantly
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increases the complexity of optimization, as the uncertainty may af-
fect the feasibility and stability of the solution (Hasani et al., 2021;
Wang et al., 2025). To address this issue, two major frameworks are
typically used: stochastic optimization (SO) and robust optimization
(RO). SO assumes that uncertain parameter follows a known proba-
bility distribution, and solves the problem by optimizing the expected
value or by meeting the objective function at a certain confidence
level (Birge and Louveaux, 2011). This method is suitable for scenarios
where the distribution of uncertainty can be estimated with reasonable
accuracy. However, in practical applications, it is often difficult to
obtain precise probabilistic information of customer demand, limiting
the applicability of SO in complex uncertain environments. RO assumes
that uncertain parameter varies within a known set and addresses
uncertainty by optimizing the worst-case outcome. RO focuses more
on feasibility, ensuring that the solution remains feasible regardless of
how the distribution of uncertain parameters changes (Ben-Tal et al.,
2009). Therefore, traditional RO can sometimes lead to overly conser-
vative solutions, which may limit the potential for maximizing returns.
Therefore, to a certain extent, these traditional optimization methods
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tend to be overly conservative or inefficient, necessitating more flexible
and robust optimization approaches to handle such problems.

Distributionally robust optimization (DRO) seeks the worst-case
optimality under given partial distribution information about the pa-
rameters (Saif and Madani, 2022; Wang et al., 2024b). The core idea
of this method in handling uncertainty is to strictly limit constraints
within the ambiguity set of distributions to meet feasibility require-
ments. However, in GSC problems, due to the cross-border hetero-
geneity and dynamic complexity of customer demand, the situation
that the true distribution of parameters is excluded from the ambi-
guity set is particularly prominent. Specifically, first, demand data in
transnational supply chains are often scattered across different regions,
resulting in limited historical samples and insufficient representative-
ness (Timmer et al., 2021). Second, cross-border disruptive events such
as geopolitical conflicts and global pandemics occur frequently, and
the demand impact of such low-probability events often exceeds the
modeling boundaries of traditional ambiguity sets (Yang, 2021). In
fact, the escape of the true distribution from the ambiguity set is a
frequent and critical challenge in GSCs. The statistics show that 70%
of multinational enterprises experience at least one disruption caused
by this phenomenon each year, resulting in significant losses (World
Economic Forum, 2022). Unlike traditional DRO which lacks escape-
response mechanisms, the globalized distributionally robust optimiza-
tion (GDRO) (Liu et al., 2023) employs two ambiguity sets: the inner set
enforces operational stability in high-probability scenarios, while the
outer set enables controlled adjustments during distribution escapes—
ensuring both baseline robustness and adaptive resilience in complex
environments.

Horizontal cooperation is an effective strategy to improve opera-
tional efficiency and responsiveness, especially in the face of fluctu-
ations and uncertainties in global market demand. Horizontal coop-
eration in the GSC refers to collaboration between companies at the
same stage of the supply chain, typically competitors or peers, working
together to share resources, reduce costs, and improve efficiency (Hos-
seinnezhad et al., 2023). For example, warehouses in different regions
can coordinate and share inventory, thereby reducing logistics costs
and improving the resilience of the supply chain (Li et al., 2012;
Yang et al., 2017; Wu and Shang, 2021). The uncertainty factors and
considered horizontal cooperation make the GSC model more complex,
and solving it will be a huge challenge. The current commercial solvers
have taken shape for solving complex problems, but some specific types
of problems still take a long time to explore feasible solutions. At this
time, it is necessary to design heuristic algorithms or exact algorithms
for specific problems (Tsai and Chao, 2009; Enayati and Ozaltin, 2024).
Therefore, how to effectively solve our GSC production, transportation
and delivery problems remains a challenge.

Driven by the reasons mentioned above, this paper presents a
novel globalized distributionally robust global supply chain (GDR-
GSC) model to optimize the production, transportation, and delivery
processes in a multinational supply chain under demand ambiguity. The
core of this model is the GDRO framework simultaneously incorporates
distributional uncertainty and model errors, delivering critical advan-
tages for global supply chain challenges. The GDRO approach addresses
dual complexity through integrated risk control: it avoids deterministic
overreliance while mitigating extreme-scenario risks, and resolves the
inherent trade-off between core-scenario stability and extreme-scenario
adaptability (Shi et al., 2013; Duan et al., 2023). The single ambiguity
sets or rigid constraints often lead to risk operational rigidity when
over-constrained, or reliability loss happens when under-constrained.
Differently, GDR-GSC model employs a hierarchical ambiguity struc-
ture. The inner set (core constraint region) enforces strict satisfaction
of robust constraints for high-probability demand scenarios, ensuring
stable core-market supply; The outer set covers low-probability extreme
events (e.g., regional demand surges), permitting tolerable constraint
violations within model-error margins to balance risk containment
and operational flexibility (Liu et al., 2023). This framework enables
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enterprises to maximize efficiency and profitability while minimizing
risks in uncertain environments.

Another key aspect of the model is the exploration of horizon-
tal cooperation among warehouses at the same level within multina-
tional corporations. By sharing customer location and demand histori-
cal data, warehouses can significantly streamline distribution processes
and lower delivery costs. This cooperation enhances responsiveness
to demand fluctuations and improves resource allocation across the
supply chain. However, implementing such cooperation is complex. For
multiple warehouses to function cohesively, the distribution network
evolves into a vehicle routing problem (VRP), a well-known NP-hard
challenge. As the number of customers and warehouses grows, the
problem’s complexity increases exponentially, making traditional meth-
ods inadequate for quickly finding optimal solutions. To address this
issue, we employ the B&C algorithm, an exact method that dynamically
adds new constraints during the solution process, effectively narrowing
the search space. To enhance efficiency further, we introduce a special
ordered set (SOS) branching combined pseudo shadow price (PSP)
branching and a customized k-path cut. The k-path cut is a specific cut-
ting plane approach that accelerates the search for optimal solution in
these complex scenarios. Through numerical experiments, we conclude
that the customized B&C algorithm can significantly improve compu-
tational speed while maintaining the optimal solution. Subsequently,
we validate the feasibility of the model using real-world cases, and the
results demonstrate that the horizontal cooperation strategy effectively
reduces supply chain costs. Additionally, we analyze the role of key pa-
rameters and thoroughly explore the impact of these parameter changes
on the model’s outcomes, revealing potential insights for management
decision-making.

Based on the prementioned statements, the GDR-GSC model not
only significantly reduces delivery costs but also effectively manages
customer demand fluctuations in complex supply chain networks. The
horizontal cooperation strengthens multinational corporations’ compet-
itiveness in GSC management. Here are the main contributions of this

paper:

» We introduce a GDR-GSC model that effectively tackles the issue
of demand ambiguity commonly faced in GSCs. By incorporating
GDRO method, the inner and outer ambiguity sets are utilized,
which allows us to comprehensively manage worst-case scenarios
and demand uncertainties. This ensures robust decision-making
capabilities that can withstand variable market conditions.

Our GDR-GSC model further integrates horizontal cooperation
strategies among warehouses, which is an effectual approach to
GSC management. By facilitating the sharing of customer infor-
mation and coordinating vehicle routing among different ware-
houses, our model not only increases supply chain flexibility but
also reduces operational costs and mitigates potential risks. This
tactic offers a more resilient and efficient solution to the various
challenges faced in GSCs, ultimately contributing to better overall
performance.

A customized B&C algorithm is developed specifically for our
GDR-GSC model, which significantly enhances both computa-
tional efficiency and solution quality by incorporating joint branch-
ing strategy and strengthened k-path cuts. This tailored algorithm
optimizes key decisions related to production, transportation, and
delivery across multinational supply chain networks, enabling
faster and more accurate solutions.

The structure of the upcoming sections is as follows: Section 2
presents the literature review. In Section 3, we formulate the model,
followed by a detailed analysis in Section 4. Section 5 introduces a
customized B&C algorithm for the GDR-GSC model and evaluates the
performance of the algorithm. In Section 6, we apply the model to
a real-world case study and analyze the effects of different parame-
ters, comparing the situations with and without of horizontal cooper-
ation and the differences among different models. Finally, Section 8
summarizes our conclusions.
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2. Literature review

In this section, we review our paper in three parts to better explore
research gap and state our study.

2.1. Global supply chain with cooperation

GSC management is a critical area of focus, with recent research em-
phasizing multiple aspects (Zhen et al., 2019; Tokito et al., 2023). Hasani
et al. (2021) developed a robust multi-objective optimization model
that configured a green GSC network, considering disruptions and
focusing on economic and environmental aspects. Sarkar et al. (2022)
aimed to nullify food waste in a two-stage parallel supply chain.

General GSCs often lack efficiency. The integration of cooperation
within GSC strategies has garnered significant attention due to its po-
tential to enhance operational synergies and bolster market presence. Li
et al. (2022) explored the application of carbon emissions trading poli-
cies in supply chain management and how to achieve overall emission
reduction goals through reasonable cooperation models. Wang et al.
(2024c) aimed to provide a clearer understanding of the cooperation
patterns and their impact on the supply chain during the COVID-19
pandemic. However, in recent years, there has been little research on
horizontal cooperation on the same tier in the GSC. Horizontal coop-
eration is a multifaceted approach that holds promise for advancing
supply chain objectives across economic, environmental, and social
dimensions. It offers a pathway for supply chain actors to navigate
the intricacies of a global marketplace, where cooperation can lead to
mutual gains and collective resilience.

2.2. Uncertainty in global supply chain

Uncertainty in the GSC has emerged as a significant challenge, stem-
ming from various sources such as demand fluctuations (Sirikasemsuk
and Luong, 2017), supply instabilities (Nguyen and Chen, 2018), and
production delays (Niu et al., 2023). To address these uncertainties,
researchers have proposed a range of strategies and models aimed at en-
hancing the resilience and agility of supply chains. Lalmazloumian et al.
(2016) used a RO approach to handle uncertainties in procurement,
production, and distribution costs. Kim et al. (2018) developed a mixed-
integer optimization model along with robust counterparts to address
the uncertainties of recycled products and customer demand in the fash-
ion industry. Chen et al. (2024) presented a multi-product, multi-period
construction supply chain model that accounted for supplier capacity
and material demand uncertainties, using RO to address these uncer-
tainties. When dealing with different uncertain parameters, different
approaches are taken. In cases when partial distribution information of
uncertain parameters is known, previous research often employs DRO
method (Qu et al., 2017; Wang et al., 2024a; Wei et al., 2024). Petridis
et al. (2023) tackled uncertainty risk in supply chain design by adopt-
ing SO approach. Zhang et al. (2022) established a bi-objective DRO
model to balance transportation time and safety, considering demand,
transportation time, freight costs, and safety coefficients as uncertain
variables with partial distribution information. Gao et al. (2024) uti-
lized DRO approach to address uncertainties in purchasing cost, carbon
emissions, and demand problem. Recently, Liu et al. (2023) proposed
the GDRO method, which is more suitable for our complex GSC prob-
lem with distributional ambiguity of demand. Compared to previous
methods, GDRO method effectively reduces the conservativeness of the
model when dealing with uncertainty, thereby avoiding profit loss or
cost increases caused by excessive conservativeness. At the same time,
this method does not significantly increase computational complex-
ity, making it highly efficient for large-scale optimization problems.
Therefore, in this paper, we take this approach to optimize production,
transportation and delivery in the GSC.
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2.3. Method of solution

In GSC problems, large-scale integer programming models are often
involved, which are difficult to solve directly using commercial solvers.
Many scholars employed customized heuristic or exact algorithms to
increase solution efficiency (Koyuncuoglu and Demir, 2023; Bakhshi
Sasi et al.,, 2024). A multicut version of the Benders decomposition
approach for handling two-stage stochastic linear programming chal-
lenges was introduced by You and Grossmann (2013). Computational
studies demonstrated that this approach provided significant CPU time
savings compared to the standard method while effectively dealing
with large-scale problems. Peivastehgar et al. (2023) minimized green-
house gas emissions and costs in a bi-objective production routing
problem using a hybrid of branch-and-bound and multi-objective fuzzy
goal programming. Elyasi et al. (2024) emphasized the importance
of flexible manufacturing systems in addressing demand ambiguity
and provided an effective solution through a column generation-based
heuristic algorithm. Not all heuristic or exact algorithms can accelerate
problem-solving; only those specifically tailored to particular problems
can significantly enhance solution efficiency. This is because different
problems possess unique structures and characteristics, and general
algorithms may fail to effectively leverage these features for optimiza-
tion. By thoroughly analyzing the problem’s attributes and designing
targeted algorithms in this paper, it is possible to better capture the
complexity within the problem, reduce unnecessary computations, and
thereby improve the speed of finding solutions.

2.4. Research gap and our study

Table 1 shows some relevant works and makes a comparison be-
tween our study and them in line with critical factors so as to offer a
general perspective. From Table 1, we find the following research gaps:

+ In the study of GSCs, cooperative strategies have been substantial
implemented. Studies such as Soysal et al. (2018), Fan et al.
(2020), and Hacardiaux and Tancrez (2022) have examined the
impact of horizontal cooperation on supply chains, while (Saeed,
2013) has focused on the effects of vertical cooperation strategies.
Especially, Yazdekhasti et al. (2021) has explored both forms
of cooperation, and regarded that horizontal cooperation has
more advantages than vertical cooperation. It is notable that, the
cooperation strategies studied by these scholars are commonly
the cooperations among different companies within the supply
chain. The adoption of such cooperation strategies will result in
the problem of unbalanced benefit distribution. There is little
research that considers the cooperation of different distributors of
the same multinational. Nevertheless, it can maximize the bene-
fits of the multinational corporation and reduce costs throughout
the supply chain.

Many researchers have also considered uncertainties within sup-
ply chains, in which some addressed cost uncertainties (Petridis
et al., 2023; Zhao et al., 2024). But most of them focused on
demand uncertainties, as seen in You and Grossmann (2013),
Dong and Yuan (2025), Elyasi et al. (2024), and Chen et al.
(2024). Moreover, in the literature that captured the uncertainty
of demand, few studies considered complex ambiguity of demand
distribution, and characterized it with inner and outer ambiguous
distribution sets.

To address these uncertainties, methods including those proposed
in You and Grossmann (2013), Yazdekhasti et al. (2021), Petridis
et al. (2023), Elyasi et al. (2024) for SO, Kim et al. (2018), Hasani
et al. (2021), Chen et al. (2024) for RO, and Dong and Yuan
(2025), Zhao et al. (2024) for DRO have been considered. Most
optimization methods for handling uncertainty in GSC problems
focus on SO, RO and DRO. However, aiming at the complex
ambiguity of demand distribution, few studies handle it with a
more flexible perspective of soft constraint.
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Table 1
The summary of the related literature mentioned above.

Computers and Operations Research 185 (2026) 107293

Reference Cooperation strategy Uncertainty Optimization method Solution method
Horizontal Vertical Demand Cost
You and Grossmann (2013) v Stochastic Benders decomposition
Saeed (2013) v Deterministic Commercial solver
Soysal et al. (2018) v v Stochastic Commercial solver
Kim et al. (2018) v Robust Commercial solver
Fan et al. (2020) v Deterministic Commercial solver
Tan et al. (2021) v Deterministic Heuristic
Hasani et al. (2021) v Robust Heuristic
Yazdekhasti et al. (2021) v v v Stochastic B&C
Hacardiaux and Tancrez (2022) v v Stochastic Commercial solver
Dong and Yuan (2025) v Distributionally robust Commercial solver
Petridis et al. (2023) v Stochastic Commercial solver
Elyasi et al. (2024) v Stochastic Heuristic
Wang et al. (2024a) v Stochastic Benders decomposition
Zhao et al. (2024) v Distributionally robust Commercial solver
Chen et al. (2024) v Robust Commercial solver
Our paper v v GDRO Customized B&C
» Solving complex models remains a significant challenge. Commer- C T e e e =
cial solvers have been used in various studies, including Hacar- | manufacturers | production
diaux and Tancrez (2022), Dong and Yuan (2025), Petridis et al. ' g
(2023), Zhao et al. (2024), and Chen et al. (2024). In addition, t A :
some scholars have developed some algorithms to better suit spe- co‘,"‘ ry 0
cific problems, achieving higher solving efficiency. For instance i .
pr . § higher, g Y ’ : SUWN | transportation
heuristic algorithms were used in Tan et al. (2021) and Elyasi | retailers L a '
et al. (2024), Benders decomposition in You and Grossmann X — ;
(2013), Wang et al. (2024a), and B&C algorithm in Yazdekhasti P () SR i —
et al. (2021). It is worth noting that among these customized al- Q
gorithms, the exact solution algorithm performs better in solution | warehouses a
quality, but there is insufficient attention given to the effective : - [H:l@
solving in the delivery of GSC. delivery

This paper addresses the above research gaps by introducing a
novel GDR-GSC model. The GDR-GSC model is designed to optimize
production, transportation, and delivery decisions across multinational
supply chain networks, incorporating horizontal cooperation strategies
among distributors. This cooperation enables the sharing of customer
information and coordination of vehicle routing, which reduces opera-
tional costs and improves supply chain resilience. The model integrates
GDRO techniques, leveraging both inner and outer ambiguity sets
to manage worst-case scenarios and mitigate the impact of demand
fluctuations. We also propose a customized B&C algorithm to solve the
GDR-GSC model, enhancing the computational efficiency and solution
quality, particularly in large-scale problem instances. By dynamically
adding strengthened k-path cuts, the algorithm significantly reduces
computation time while preserving solution accuracy.

3. Model formulation

In this section, we present a GDR production—-transportation—delivery
model for a GSC, involving multiple manufacturers, retailers, ware-
houses, and customers in two countries.

3.1. Problem statement, assumption and notations

The global logistics system of Amazon is underpinned by a vast
network of fulfillment centers. As a key example of horizontal co-
operation in a tech-driven context, in many regions (such as Europe
and North America), Amazon’s warehouses share real-time informa-
tion on inventory levels and customer demand, allowing for dynamic
routing and load balancing (Fan et al., 2020). Horizontal cooperation
within multinational corporations is prevalent due to interconnected
warehouse networks that balance workloads and inventory (Hacar-
diaux and Tancrez, 2020), increased supply chain resilience against
disruptions (Lotfi and Larmour, 2021), and centralized ownership that

countryB N

2 & R R

Fig. 1. GSC problem studied in this paper.

avoids profit-sharing hurdles faced by independent firms (Wen et al.,
2019). Thus, this study integrates horizontal collaboration strategies
among warehouses of a multinational corporation, coordinating ve-
hicle scheduling across different warehouses under vehicle capacity
constraints.

Specifically, we consider a GSC operated by a multinational corpo-
ration across two countries: Country A and B. The GSC is structured
into four hierarchical tiers: manufacturers, retailers, warehouses, and
end customers, as shown in Fig. 1.

» Manufacturers located in Country A are responsible for produc-
tion, each with a predefined production capacity and incurring
both startup and unit production costs.

Retailers, also located in Country A, procure products from man-
ufacturers at fixed wholesale prices and distribute them domesti-
cally. The transportation cost between manufacturers and retail-
ers is a function of land-based distance.

Warehouses, situated in Country B, receive goods shipped in-
ternationally from manufacturers. These warehouses incur both
startup and operating costs, and serve as distribution hubs for
the local market. A key modeling feature is the implementation
of horizontal cooperation among warehouses. This enables the
sharing of customer demand information and coordination of
vehicle routing, thereby reducing logistical costs and improving
responsiveness to demand fluctuations.

End customers are located in Country B. Deliveries are executed
using a fleet of vehicles with limited capacity, and the associated
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Table 2
Notations.
Notation Description
Sets
M={1,2,....M} Set of manufacturers in country A
I={12,....1} Set of retailers in country A
J=1{1,2,...,J} Set of warehouses in country B
K=1{1,2,....,K} Set of customers in country B
L=JUuKk Set of nodes in country B
v={,2..,V} Set of vehicles used by warehouses
N ={12,....N} Set of sample data
Parameters
C, Production capacity of manufacturer m
P, Startup cost of manufacturer m
G Unit production cost
wa Wholesale price from m to retailer i
Wm‘j Wholesale price from m to warehouse j
TC Unit land transportation cost
TS Unit shipping cost
sS4 Distance from m to retailer i
SmEj Distance from m to warehouse j
RA Order quantity of retailer i
RI‘.’ Order quantity of warehouse j
0; Operating cost of warehouse j
Cix Path cost for vehicle from j to k
VF Fixed cost of using a vehicle
o Capacity of vehicle
dy Demand quantity of customer k
X(S)/XP(S) Sum/Affine sum of traffic flow entering the set S
5(S) All arcs crossing into or out of set S
Decision variables
A Production quantity of manufacturer m
. Quantity shipped from m to retailer i
rtgj Quantity shipped from m to warehouse j
YA Binary variable for opening of manufacturer m
Yj” Binary variable for opening of warehouse j
Siko Binary variable for vehicle v traveling from j to k
uj, Position of node j in vehicle v’s route
Xk Binary variable for customer k assigned to warehouse j

logistics are modeled as a vehicle routing problem, subject to
routing feasibility constraints such as no repetition and subtour
elimination (Quintero-Araujo et al., 2019).

The central objective of GSC problem is to jointly optimize produc-
tion quantities, facility opening decisions, transportation flows, and de-
livery routes for a maximization of overall profit. The profit is from the
total revenue derived from wholesale transactions minuses the aggre-
gate costs related to production, transportation, warehousing, and dis-
tribution. For GSC problem, we have the following assumptions (Wang
et al., 2021):

The operational costs of warehouses are fixed and do not vary
with the level of demand or the number of deliveries made.

The wholesale prices of goods shipped from manufacturers to
retailers and warehouses are fixed and determined by market
conditions and agreements between the parties.

The startup costs for opening a manufacturer or a warehouse are
fixed and represent the one-time costs associated with initiating
operations at these facilities.

All vehicles used in the distribution process are assumed with
same specification and type, which means they have identical
operational cost.

We use the following sets, parameters, and variables to represent the
elements and decisions of the GSC problem. All notations and symbols
are shown in Table 2.

3.2. Deterministic GSC model

In this subsection, we present the mathematical model for the
production-transportation—delivery problem in a GSC. The objective
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function aims to maximize the total revenue of the supply chain,
while the constraints capture the various aspects of the production,
transportation, and delivery processes.

max z ZW,,ﬁrtﬁ,-— Z VAP, - 2 4nG = Z ZS":irtz‘.TC

meM iel memM mem meM iel
+ ) Y Whl — N N SEnb TS 6h)
meM jeJ meM jeJ
B
- 2 XG0 - X Y SV
JEL.KEL, j#k vEV jeJ jeJ kek vevy
st g, <C, Y2 VmeM; (2)
Gn = D rtm + Y rih, Vme M; 3
iel jeJ
Ri= Y rt. Viel “
mem
Ry= Y rth, VjeJ; (5)
memM
XY fue=1 VkeKk; (6)
JEL VEY
z Z difi <0, YvEV; @
kek jer
Y d X SRYPE, VjieJ; ®
kek
> fiw= 2 frjp=0. Vi€LVoeP: ©)
kel kel
XY fuwsl Voew; (10)
JjeJ kek

Upy =y + OFf iy SO —dy fis Vi EKVEEKNYVEV,j#k;

(1)

Y ot O fuw <1+ Xy Vi€JVkeEKVYoeV; (12)

uek uel\k
Fikos X D, Y, Y P € (0,1}, Vj € T, Vk € K,Yv € V,Yme M.
13)

In this model, the objective function (1) aims to maximize the
total revenue minus the total cost of the supply chain, whereinto the
revenue includes the wholesale prices times quantities from the manu-
ez WArta and
Ynem Zjeg Worth;. The cost includes the start-up cost ¥, Y, P
production cost Y, 1, 4,,G, transportation cost Y., Y7 SArtA TC
and Y, e Xjcs S ,fjrt,,, ;TS from the manufacturers to the retailers and
warehouses, operation cost Yies O; YjB, path cost
Yjecker.jzk 2wey fiwCix from the warehouses to the customers, and
fixed cost X7 Yiei 2pey fixwVF Of using the trucks. The model
is specifically governed by the following constraints: Constraints (2)

facturers to the retailers and warehouses, i.e., 3,4 2

indicate that manufacturers’ production cannot surpass their capacity
multiplied by their binary start-up variable. Constraints (3) assert that
manufacturers’ production equals to the aggregate of goods transported
to retailers and warehouses. Constraints (4) and (5) signify that re-
tailers’ or warehouses’ order quantity equals to the sum of goods
transported from manufacturers. Constraints (6) stipulate that each
customer can only be served once by one vehicle from one warehouse.
Each vehicle’s load must not exceed its capacity, as shown in constraints
(7). Constraints (8) dictate that a warehouse’s shipment cannot exceed
its demand multiplied by its binary start-up variable. The inflow of
each node must equal to its outflow, as described in constraints (9).
Constraints (10) state that each vehicle can serve at most one customer.
Constraints (11) prohibit repetition or sub-cycles in each vehicle’s path.
Constraints (12) mandate that each vehicle’s path must be directly
connected. Finally, all variables are non-negative, with some being
binary.
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3.3. Globalized distributionally robust GSC model

In the real world, customer demands fluctuate due to various factors
such as market dynamics, economic changes, or unforeseen events so
that they are usually uncertain. This paper models the ambiguity in
demand distribution of customers, and employs a generalized distribu-
tionally robust optimization framework to balance the robustness and
feasibility. By treating d, as uncertain, the model becomes more adapt-
able to realistic demand scenarios, thus enhancing the applicability of
the proposed optimization model.

To address the ambiguity distribution of demand d,, we employ
a GDRO approach, which allows for a more comprehensive treatment
of uncertainty while maintaining computational efficiency and model
flexibility (Liu et al., 2023). GDRO is to integrate distribution uncer-
tainty and model error into the distributionally robust optimization
model at the same time. Specifically, on the one hand, the GDRO model
requires that the robustness constraint strictly establish the probability
distribution in the distribution uncertainty set, and on the other hand,
for the probability distribution that is not in the distribution uncertainty
set (i.e., the model error occurs), the robustness constraint is allowed to
be violated to a certain extent, and the degree of violation is controlled
by the model error tolerance level. In the GDRO method, the selection
of ambiguity sets is crucial. The ambiguity sets are typically divided
into two categories: moment-based and discrepancy-based (Lin et al.,
2022). To make the distribution in the ambiguity set closer to the
nominal distribution, we opt for a discrepancy-based ambiguity set
utilizing 1-Wasserstein metric (Luo and Mehrotra, 2019). The Wasser-
stein distance is a metric that measures the dissimilarity between two
probability distributions by the minimum cost of transporting mass
from one distribution to another. Formally, the 1-Wasserstein distance
dy (-,-) between two probability distributions X and Y defined on a
space = is given by:

dy (L) = | inf { / - yun(dx,dy)} ,

where I1(X,Y) is the set of all joint distributions on = x = with
marginals X and Y, x € X and y € Y and || - || represents an arbitrary
norm on RX,

The terminology of inner and outer ambiguity sets in the GDR-
GSC model follows well-established conventions in robust optimization
literature, tracing back to the foundational work on globalized robust
optimization (Ben-Tal et al., 2017). This inner and outer ambiguity sets
create a hierarchical protection mechanism: the inner ambiguity set
Fy/ () defines the core region where constraints must be strictly sat-
isfied (corresponding to high-probability demand scenarios), while the
outer ambiguity set P(Z) encompasses a broader range of possible dis-
tributions (including low-probability extreme events). The Wasserstein
distance-based formulation of these sets provides both mathematical
rigor and practical interpretability, as it quantifies distributional differ-
ences in terms of optimal transport costs. The containment relationship
(Fy(8) € P(5)) inherently embodies varying levels of protection
priority, enabling our model to strictly enforce constraint satisfac-
tion for mandatory demand fulfillment scenarios while maintaining
controlled adaptability when encountering statistically rare demand
variations—an essential capability for supply chain risk mitigation.

The outer ambiguity set for uncertain demand vector d = (d,, d, ...,
dy) is defined as P(Z), which is the set of all possible probability distri-
butions on the support set =. Specifically, the support set = defines the
feasible region for demand realizations, containing all possible values
of uncertain demand vector d. Furthermore, the inner ambiguity set
can be expressed as

Fw (@) ={Pe P& :dy (P,P) <06}, 14

where Fy,(0) is the set of probability distribution PP that has a Wasser-
stein distance at most 6 from the empirical distribution P, with P =
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Dnen' 0 a, /N. That is uniformly supported on N empirical realizations
d=(,,....dy)".

In the global supply chain model, uncertain demand vector d
is characterized through a hierarchical set framework following the
GDRO method. The inner ambiguity set 7y, (f) contains all probability
distributions within a Wasserstein distance ¢ of the empirical distribu-
tion P, enforcing strict feasibility for high-probability demand. This is
nested within the outer ambiguity set (=) encompassing all possible
distributions on the support =, which provides controlled flexibility for
extreme demand realizations. The Wasserstein metric quantifies distri-
butional deviations in terms of optimal transport costs, with 6 serving
as a tunable risk parameter—smaller values yield more conservative
solutions for reliable demand trends, while larger values accommo-
date greater volatility. This dual-set structure creates a rigorous yet
interpretable framework for demand uncertainty quantification, where
the inner ambiguity set ensures robust constraint satisfaction while
the outer ambiguity set maintains adaptability for critical demand
variations.

Based on the outer ambiguity set P(=Z) and inner ambiguity set (14),
our GDR-GSC model can be reformulated as follows:

max Z ZWﬂﬁrt;‘li— z YAP, - Z 4G — Z Zsrﬁirtr/r‘liTc

meM i€l meM mem meM i€l
B B B B
* Y X Warts = Y, 3, SpyrinTS
memM jeJ memM jeJ
B
PR INIPI ML
JELKEL,j#k vEV JjeJ JE€J keK vev

s.t. Constraints (2)—(6), (9)-(10), (12)—(13),
B[ Y Y des-0] <7 Jmin dy (P.Q). VP EP(E). Vo eV,

kex jer
(15a)
o . o
Ep [k;cdkxﬂ RY?| <7, min dy®.Q. YPEPE)LYj €T,
(15b)
E]P |:uju — Uky + ijku - Q + kajkl)] < 73 Qen}l’iyn(ﬂ)dw(]?’ Q)’ (15C)

VP € P(5),Yo € V,Vj,k € K,j # k.

Constraints (15a)-(15c¢) are GDRO constraints about demand, due to
the ambiguity of distributions, these constraints cannot be enumer-
ated, which means the GDR-GSC model is a semi-infinite system. For
instance, constraints (15a) can be interpreted through two cases:

Casel: EP[Z N defjen - Q] <0, VPeF,@0).Voe V.

kek jeL
wherein no constraint violations occur for any distribution within the
ambiguity set F,,(0,).

Casell: EP[Z Z difiww — Q] <n o min ” dy (P, Q),

kex jer SFw (
VP € P(ENFy (0).Yv € P,

where controlled violations (via tolerance parameter y,) for distribu-
tions in P(£)\Fy, (6) demonstrate soft outer robustness by bounding
potential violations.

In these constraints, the right-hand side y; minger,, ) dw (P, Q) serves
as a violation budget, transforming them into soft constraints: when the
distribution PP is within the inner ambiguity set, the violation degree is
minimal, enforcing strict compliance (hard constraint); as P moves to
the outer ambiguity set with higher uncertainty, the violation degree
expands, allowing controlled violation of the left-hand side expecta-
tion by an amount regulated by the tolerance parameter y;. Here, y;
balances robustness and conservatism—larger values signify a more
lenient attitude towards constraint violations and greater acceptance
of uncertainty-related risks.

The proposed GDR-GSC model (15) makes decisions under the
worst-case scenarios of the ambiguous demand, and provides robust
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and efficient solutions for the production-transportation—delivery prob-
lem. In the GDR-GSC model, constraints (15a)-(15c) are the GDR
expectation constraints, and also are the key difficulties in solving
the proposed model. They are semi-infinite constraints, and need to
derive their tractable counterpart forms based on inner and outer
distributional ambiguity sets. Therefore, in the subsequent section, we
will look into the ways of transforming the GDR-GSC model into a more
tractable form and explore the solution methods.

4. Model analysis

In this section, we analyze the properties and solution methods of
the GDR model. We transform the GDR model into a more manageable
form by eliminating the semi-infinite constraints.

4.1. Tractable GDR counterpart of expectation constraints

To address the GDR expectation constraints outlined in (15a)-(15c),
we convert these semi-infinite constraints into some finite systems.

Theorem 1. Suppose that Z is a box, ie, £ = {d € RK
|de|] € Ak = 1,2,...,K}. Let f;, = (fj1p0 fjon -+ Fix0)" and X; =
(X;1. X5, ... X;x)T. Given the outer ambiguity set P(Z) and inner am-
biguity set (14), by introducing auxiliary variables rfl ,sil e R, a); e
RX,i = 1,2,3,Vn € N, we can obtain the following equivalent systems
of constraints (15a)—(15c):

ONt + Y s <0,i=1,2,3, (16a)
neN
—0+d, Y fi,+old, + Al <slVne N VoeV, (16b)
jek
—RYB+dX+a)2d +AT2 <2 Vne N,VjeK, (16¢)
ujl,_ukU+ijku_Q+dnij+a)ndn +A13§s'3',
Vvhne N .YoeV,Vj,ke K, j+k, (16d)
1 1
o + Y [ <twevvnen, (16¢)
jer .
Hmﬁ+Xj” <P VjeLNnEN, (16f)
| of| <P vieLwev.men, (16g)
(s
> i=1,23Vne N, (16h)
te0,y,],i=1,23. (16i)

Proof. The proof of Theorem 1 is presented in Appendix. []
4.2. Linearization of constraints

The norm-based nonlinear terms in the constraints (16e)-(16h)
directly affect the solution of the model. Thus, we will linearize the
nonlinear constraints (16e)-(16h) by taking constraint (16e) as an
example:

® +Zf

<tl,vUev,Vne N

JEL
= max
jec
= |o,+ Y f| <t Wwev, vmeN
jec
o)+ ) [ <t if o)+ Y f,20, VoeEV, Ve N,
_ JjeL JjEL
- 1 1 ip o1
o= f, <t if o)+ Y f;, <0, VwEV, VnEN.

jecr jeL
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Similarly, constraints (16e)-(16g) can be replaced equivalently with
the following constraints:

o)+ Y [, <t VeV, VneN, a”n
jecr
—oy =Y f, <t YweV,vneN, (18)
JeL
o+ X, <P VjeL VneEN, 19
—0:-X; <P VjEL VHEN, (20)
@ +f, <P VJELVYEV, VEN, (21)
—o,—f;, <P, VjEL YEV, VnEN. (22)

For each component k of o', introduce auxiliary variables pi & and q[

such that o, = pn X q o where p - 0, ¢' - 0. Constraints (16h)

can be transforrned into the followmg linear equ1valent form:

o2 Yl +dh,) i=1,23,VneN, (23)
k

2Pt =123, VkEK, VneN, @24

@ =D~y i = 1,23, VkEK, Vne N, (25)

P20, ¢, >0i=123VkeK VneN. (26)

4.3. Equivalent formulation of GDR-GSC model

Based on Theorem 1, the original GDR expectation model (15) can
be reformulated into the following equivalent model:

max 2 ZW”ﬁ.rI,An,-— Z YAp, - Z 4G — 2 252,-”2;”

meM i€l memM mem meM iel

+ 2 Z Wmlfrtzj— Z ZS,l:thml

memM jeg meM jeJ

= 2 X wCum RO =Y X D SpVF @n

JEL.KEL, j#k vEV J€T JET kEK veV
(2)-(6), (9)-(10), (12)—(13),
(16a)-(16d), (16i), (17)-(26).

s.t. Constraints

Solving the equivalent model (27) remains extremely challenging, since
it is a MIP with VRP subproblem, so NP-hard (Kou et al., 2024).
Therefore, in the next section, we will develop a B&C algorithm with
specific strategies of branching and cut to handle it.

5. Customized B&C algorithm for GDR-GSC model

The B&C algorithm, a powerful technique that combines branch-
and-bound with cutting-plane methods, is often used for solving mixed
integer programming problems. To illustrate the overall logic, Pseu-
docode 1 on a standard B&C algorithm step is presented. However,
the standard B&C algorithm fails to outperform general commercial
solvers in solving our GDR-GSC model. Hence, there is a need for
enhancements tailored to our specific problem within the standard B&C
framework. In Section 5.1, we propose valid inequalities to expedite the
algorithmic process. In Section 5.2, we analyze the branching strategy
within the B&C algorithm and put forward specific branching strategies
for our problem. In Section 5.3, we give a pseudocode of a customized
B&C algorithm.

5.1. Strengthened k-path cuts for the GDR-GSC model

We introduce a strengthened k-path cut as valid inequality to rein-
force the vehicle routing constraints. The intuition behind k-path cuts
stems from the observation that for any subset S C K of customer

nodes, the total demand within this subset must be met by a sufficient
number of vehicles, each with a limited capacity Q. Therefore, at least
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Algorithm 1 Standard B&C Algorithm

1: Initialize problem with root node

2: Set lower bound LB « —oo

3: Set upper bound UB « +oo

4: Add root node to the queue Q

5: while Q is not empty do

6: Select and remove node P from Q with best bound
7:  Solve the LP relaxation of P

8: if LP is infeasible or LP bound > U B then

9: Discard node P
10: continue
11: end if
12:  if LP solution is integer feasible then
13: if LP objective < U B then
14: UB < LP objective
15: Store current solution as best
16: end if
17: continue
18: end if
19:  Apply cutting planes (valid inequalities) to strengthen the

relaxation

20:  Re-optimize the LP with cuts
21:  if LP becomes infeasible or bound > U B then

22: Discard node P
23: continue
24:  end if

25:  Choose a branching variable

26:  Create child nodes P, and P, by branching
27:  Add P, and P, to Q

28: end while

29: return the best integer solution found

[Yxes di/Q]1 vehicles must enter this subset. Denote the minimum
number as k(S), and the standard cutset inequality is

Fiko 2 K(S),
VEV (J)ES(S)

where §(S) is the set of arcs crossing the boundary of subset S, and
fjkv indicates whether vehicle v travels from node j to node k (Costa
et al., 2019). To strengthen this inequality, we introduce weighting
coefficients f,, € {0,1}, where g, = 1 if arc (j,k) is relevant to
entering S, and 0 otherwise. The strengthened k-path cut becomes

> B = K(S). (28)
VEV (j,K)ES(S)
A very intuitive method is given to estimate k(S). We use the total
demand of all customers in the set S, divided by the capacity of
vehicles, and take the upper bound, i.e.

das) } _ [Zkes dy ]
ol | o |
To concretely illustrate this concept, consider a small instance where
customer subset S = {k;,ky, k3} has demands d;, = 800, d;, = 700,
dy, = 1000, and the vehicle capacity Q = 1000. Then the total demand
in § is 2500, requiring at least [2500/1000] = 3 vehicles. If we
identify three arcs entering this subset used by vehicles in the current
solution, €.8., f;,x,0,> fikyv,0 fisksos» WE €an set g, = 1 for these arcs
and O elsewhere to enforce at least three vehicles cross into S. This
helps prune infeasible or weakly constrained solutions during the B&C
process. Next up, we conduct a feasibility reasoning with four detailed
steps.

Step 1: Total demand over subset S

Let the total demand of customers in subset S C K be

D(S) = ) dy.

kes

k(S) = [
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Since each vehicle has a capacity O, the minimum number of vehicles
required to fulfill the demand is
k(S) 1= [&} )
o
Step 2: Capacity-based necessity
Suppose a feasible solution employs vehicles to serve the customer

set S fewer than k(S), the total capacity of all vehicles entering or
serving S will be less than

k(S) Q0 < D(S).

This would make it impossible to deliver the required amount of goods
to all customers in S, contradicting feasibility. Therefore, any feasible
solution must allocate at least k(S) vehicles to serve S.

Step 3: Link to arc-based formulation

Let 6(S) denote the set of arcs crossing into or out of S, i.e.,

6(8) :=={0U, ke T xStu{k,j)eSxT}.

Assume that every vehicle route is recorded by a binary variable f,,
indicating whether a vehicle v travels on arc (j, k). Then the number of
vehicles entering or leaving S is given by

XS =Y Y fiw

veV (j,KEH(S)
We apply indicator coefficients £, € {0,1} to restrict to a subset of
arcs (e.g., only incoming ones, or filtered based on route structure)

XIS =3 Y Bl

VeV (jK)ES(S)
By assumption, all deliveries must go through arcs in §(S), and no
delivery is possible without a path in this set. Thus,

XP(8) 2 X(S) = k(S).

Step 4: Conclusion
Therefore, the inequality

2 2 Pl [#]
VEV (JKES(S)

is a valid inequality for all feasible solutions of the GDR-GSC model,
and thus constitutes a strengthened k-path cut that tightens the feasible
region of the integer programming formulation.

Strengthened k-path cuts enhance constraints on the solution by
limiting the number of vehicle paths in the solution. The introduction
of cuts helps to more precisely describe the overall structure of the
problem, improving the tightness of upper and lower bounds in the
linear programming relaxation problem. By introducing strengthened
k-path cuts, we aim to refine the algorithm’s performance, making it
more effective in solving GDR-GSC by providing more compact bounds
and optimized solutions.

5.2. Joint branching strategy for the GDR-GSC model

This subsection focuses on the branching strategy within the B&C
algorithm, tailored specifically for solving the GDR-GSC model. The
branching strategy is a critical component of the B&C framework, as
it determines how the solution space is explored by partitioning it
into smaller subproblems. Some generic strategies like most-fractional
(MF) branching (Ortega and Wolsey, 2003), strong branching (Dey
et al., 2024), and pseudocost branching (Seman et al., 2023), are often
utilized in B&C algorithm. However, due to the high dimensionality
and structural complexity of our model, especially the vehicle rout-
ing subproblem under uncertainty, these conventional strategies are
inefficient. Therefore, a joint branching strategy that combines SOS
branching (De Farias et al.,, 2008) with PSP branching (Beale and
Forrest, 1976) is designed and customized for the characteristics of the
GDR-GSC problem.
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Fig. 2. SOS branching strategy for the GDR-GSC model.

In our model, the key binary variable f;, indicates whether vehicle
v travels from node j to node k. Because each customer k € K must be
served exactly once by a single vehicle, a classical SOS constraint is
structured as ;.. > ey fjx, = 1, which ensures for each customer,
only one variable in the set {f},} e kex,vey can equal to 1 while the
rest are zero. Once SOS branching is satisfied, we can efficiently parti-
tion the feasible region by selecting a subset of variables (e.g., routes
for a particular customer) and creating branches based on prioritization
rules rather than branching on individual variables. To implement this,
we define a set G C £LxV based on fractional values of f},,, in the current
solution, then prioritize exploration of nodes in G using the following
formulas:

C:={(,v)eLXV]|j<a,v<a} with a; := ij,wj and a, := ijku v.

JjeEL vey
Here, a; and a, are weighted averages that reflect the fractional in-
fluence of each variable in the candidate set, guiding the branching
process towards the most promising nodes. As depicted in Fig. 2, the
SOS branching scheme shows it has significantly advantageous than
the standard way of doing branching on a single variable for each
instance. This leads to a notable reduction in the number of nodes in
the branch-and-bound tree.

Following the SOS-based partitioning, we further refine the search
using PSP branching. This technique leverages information from dual
variables (shadow prices) to prioritize variables whose branching is
expected to lead to the greatest improvement in the objective function.
By integrating these two strategies: structural SOS branching for rout-
ing constraints and PSP branching for other variables, we ensure both
global convergence and local efficiency.

To highlight the efficiency of the joint branching strategy, a set
of experiments is conducted. In the experimental setup with k-path
cutting as the cut plane, we compare the PSP branching, SOS branching,
MF branching, and joint branching strategy (PSP&SOS). Keeping other
parameters fixed, the final results of the compute time (CPU(s)) and
compute nodes (Nodes) are presented in Table 3. Several important
observations can be drawn regarding the performance of different
branching strategies in the customized B&C algorithm for the GDR-GSC
model. (i) The GDR-GSC model cannot be solved using the SOS branch-
ing strategy alone. (ii) The joint branching strategy, which combines
SOS and PSP branching, consistently outperforms the other strategies —
MF branching, standalone SOS branching, and PSP branching - across
all tested instances. Specifically, in terms of computational time, the
joint strategy achieves the shortest solution times in every instance.
(iii) Furthermore, the joint strategy leads to a substantial reduction in
the number of explored branch-and-bound nodes, which reflects a more

efficient search process and tighter relaxation bounds. For example,
when the number of customers increases to 13, the joint strategy
reduces the node count by more than 30% compared to the next-best
strategy.

Notably, the PSP and MF branching strategies can produce feasible
results individually, the SOS branching strategy alone fails to work
within the B&C framework. Specifically, it is unable to generate a com-
plete branch-and-bound tree and thus does not yield any valid solution,
indicating that SOS branching in isolation is insufficient for solving
the GDR-GSC model. In smaller problem sizes, all strategies perform
comparably; However, as the problem size grows, the advantages of the
PSP&SOS branching strategy become increasingly significant, demon-
strating superior scalability. This suggests that the joint strategy not
only accelerates convergence but also improves the tractability of solv-
ing large-scale mixed-integer nonlinear problems under uncertainty.
These results validate the effectiveness of the proposed branching
mechanism in reducing computational burden while preserving or even
improving solution quality.

5.3. Pseudocode of customized B&C algorithm

The customized B&C algorithm that incorporates strengthened k-
path cuts and joint branching strategy can improve the efficiency of
solving large scale mixed-integer programming. The key algorithmic
steps are summarized and outlined as follows:

Step 1 Initialization
Set initial lower and upper bounds (LB, UB). Add the root node
(original GDR-GSC problem) to the priority queue Q.
Step 2 LP Relaxation and Feasibility Check
While Q is not empty:
*Select the node P with the best bound;
«Solve its LP relaxation;
«If the solution is infeasible or worse than UB, discard P;
«If the solution is integer feasible and better than UB, update UB
and save the solution.
Step 3 Branching and Cutting
If the solution is not integer feasible:

*Apply joint branching: first SOS branching (for routing con-
straints), then PSP branching (guided by shadow prices);
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Table 3

Performance comparison of different branching strategies for the GDR-GSC model.
Instance MF PSP SOS PSP&SOS

CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes CPU(s) Nodes

K=38 1.5 36428 1.2 25673 - - 0.9 21506
k=9 6.1 160 485 5.6 157834 - - 4.8 137059
K =10 53.8 1398475 40.5 1037534 - - 32.9 884628
K=11 342.3 4374853 255.4 3974583 - - 213.0 3563363
K=12 463.7 4857383 432.3 4255637 - - 334.5 3875821
K=13 1987.5 10995110 1728.2 10485760 - - 1450.3 9567453
Average 475.8 3637122 410.5 3322837 - - 339.4 3008305

«“_»

*Add strengthened k-path cuts to tighten the feasible region;

*Re-optimize the LPs of the new subproblems.

Step 4 Queue Update and Termination
*Add promising subproblems back into Q;
*Repeat until Q is empty;

*Return the best integer solution found.

Algorithm 2 below is the pseudocode for the B&C algorithm tailored
for the GDR-GSC model

Algorithm 2 Customized B&C Algorithm for GDR-GSC Model
1: Initialize the problem with the GDR-GSC model

2: Set the initial lower bound LB « —oo
3: Set the initial upper bound U B « +co
4: Create an empty priority queue Q for storing subproblems
5: Add the root node (representing the original problem) to O
6: while Q is not empty do
7:  Select and remove the subproblem P from Q with the lowest
bound
8:  Solve the linear relaxation of P
9:  Let zL? be the optimal value of the linear relaxation
10:  if zL? > UB then
11: Discard subproblem P
12: continue
13:  end if
14:  if P is integer feasible then
15: if zL¥ < UB then
16: UB « zL*
17: Store the current solution as the best found solution
18: end if
19: continue
20: end if
21:  Apply the SOS branching strategy to create two new subproblems
P, and P,
22:  Apply PSP branching on P, and P, to further explore nodes
23:  Apply valid inequalities (strengthened k-path cuts) to P, and P,
24:  Compute the bounds for P, and P,
25:  if bound of P, < UB then
26: Add P, to O
27:  end if
28:  if bound of P, < UB then
29: Add P, to Q
30: end if

31: end while
32: return the best found solution

6. Numerical experiments

In this section, the performance of a customized B&C algorithm is
first analyzed by a testing experiment. Next up, a realistic case is con-
ducted to validate the proposed model and algorithm. All experiments

10

indicates that the optimal value of the objective could not be acquired within the set time limit.

Table 4

The number of warehouses and customers used in numerical experiments.
J\K 8 9 10 11 12 13 14 15
2 v v v v v
3 v 4 v v v
4 4 v v v

are conducted on a machine running Linux 64-bit operating system
with an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz, using Gurobi
11.0.1 and Python 3.11 software.

6.1. Numerical examples

In this subsection, we use multiple numerical experiments to vali-
date the effectiveness and superior performance of the customized B&C
algorithm. If the optimal value obtained directly by the customized
B&C algorithm and solver are the same, we consider the algorithm
feasible. Then, we use the computation time to judge the superiority of
the method. After verification, we find that the number of warehouses
and customers has the most significant impact on the solution time
and convergence speed. Therefore, we gradually increase the number
of warehouse and customer nodes, and then compare the solution
time and solution quality of the GDR-GSC model with and without
the B&C algorithm. The number of warehouses and customers used in
our experiments is shown in Table 4. Exploration of the enumeration
tree is limited to 172,800s of CPU time. We preprocess a set of data
for the experiments, with a portion of it being randomly generated by
the dedicated program including demand d,, warehouse opening cost
O; and distance S,;‘[. and Sf;j. The distance data refers to the distance
between cities in China. The detailed data are shown in Table 5.

The detailed results of the numerical experiments, as presented in
Table 6, clearly demonstrate the effectiveness and superiority of the
customized B&C algorithm in solving the GDR-GSC model. In Table 6,
“B&C” indicates the use of our customized B&C algorithm for solving.
We dynamically add strengthened k-path cuts using the Gurobi solver’s
callback function. “BD” refers to solving the model using Benders
decomposition algorithm. “Gurobi” indicates solving in the solver’s
default settings. The “Obj" column displays the optimal objective value
obtained within the specified time limit. The “Gap(%)” column shows
the relative gap of the current result as Gap = W. Wherein,
ObjVal is the objective function value from the curjrent solution, and
ObjBound is an estimated bound (upper for minimization, lower for
maximization) on the optimal objective value, used to calculate the
gap. The “CPU(s)” column displays the solution time. Instances with
solution times marked with “-” indicate that the optimal objective value
could not be obtained within the specified time limit.

Specifically, (i) the algorithm consistently achieves the same opti-
mal objective value as Gurobi solver across all tested problem sizes,
confirming its correctness and feasibility. (ii) In terms of computational
time, the customized B&C algorithm significantly outperforms Gurobi
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Table 5
Data summary for the numerical experiments.
Parameters Notations Values Unit References
Manufacturing plants M 3
Retailers 1 23
Vehicles v 3
Production capacity for each m C, 20,000 Li et al. (2023)
Vehicle capacity o 4,000 Li et al. (2023)
Demand of customer k dy [700, 800] Li et al. (2023)
Wholesale price for m to i wa 4.18 UsDh Shanghai Oil & Gas Trading Center®
Wholesale price for m to j Wm‘j. 6.97 uUsD Shanghai Oil & Gas Trading Center®
Startup cost for each m P, 139.32 UsD Li et al. (2023)
Unit manufacturing cost G 1.93 USD Li et al. (2023)
Unit transport cost for m to i TC 0.03 UsD Commodity Price Network”
Unit transport cost for m to j TS 0.02 USD Commodity Price Network”
Route cost VF 27.86 USD Li et al. (2023)
Warehouse opening cost for each j 0; [5.57,11.15] USD Li et al. (2023)
Distance from m to i s [30, 100] km Google Maps®
Distance from m to j S,l:, [100,200] km Google Maps®
Radius of ambiguity set 0 0.5 Liu et al. (2023)
Tolerance level y 0.5 Liu et al. (2023)
2 https://www.shpgx.com/html/ChnLNGIndex.html
b https://price.mofcom.gov.cn/price_2021/trafficgoods/moretrafficgoods.shtml?flag=ly&w_m_y=week
¢ www.google.com/maps
Table 6
Comparison between B&C algorithms with Benders decomposition and Gurobi.
B&C BD Gurobi
Instance
Obj Gap(%) CPU(s) Obj Gap(%) CPU(s) Obj Gap(%) CPU(s)
J=2 =8 382239.2 0.0000 0.9 382239.2 0.0000 2.1 382239.2 0.0000 2.3
K=9 382013.7 0.0000 4.8 382013.7 0.0000 6.5 382013.7 0.0000 7.7
K=10 382065.0 0.0000 7.1 382065.0 0.0000 23.5 382065.0 0.0098 26.8
K=11 433067.3 0.0091 32.9 433067.3 0.0095 323.8 433067.3 0.0095 292.4
K=12 433090.2 0.0099 213.0 433090.2 0.0100 315.8 433090.2 0.0100 294.2
J=3 K =10 481542.8 0.0041 13.4 481542.8 0.0096 76.3 481542.8 0.0096 61.9
K=11 481304.7 0.0050 3345 429847.2 12.2436 846.7 481304.7 0.0096 524.1
k=12 481 069.0 0.0099 3022.8 408673.3 16.6438 11 365.8 481 069.0 0.0100 7493.8
K=13 481046.5 0.0100 33466.2 - - - 481 046.5 0.0100 57 244.8
K=14 480920.3 0.0100 166 389.5 - - - - - -
J=4 k=12 532708.1 0.0100 2994.2 458 946.2 15.8734 10783.5 532708.1 0.0100 6115.6
K=13 532582.3 0.0100 23576.0 - - - 532582.3 0.0100 34242.0
K=14 532676.1 0.0100 17809.4 - - - 532676.1 0.0100 27156.6
K=15 532497.2 0.0100 144216.6 - - - - - -
Average 0.0071 28005.8 4.9767 63410.3 0.0082 34218.7

w_»

in larger-scale instances. For example, when the number of customer
nodes increases from 8 to 15 and warehouse nodes increase from 2 to
4, Gurobi often reach its time limit of 172,800 s without producing
an optimal solution, especially when customer nodes exceed 13. In
contrast, the customized B&C algorithm is able to find optimal or near-
optimal solutions in a substantially shorter time frame, highlighting its
computational efficiency and scalability. (iii) Furthermore, the exper-
iments reveal a critical limitation of standard Benders decomposition
algorithm. While Benders could solve small- to medium-sized instances
effectively, it fails to provide results for larger instances due to conver-
gence issues and excessive memory or time consumption. Specifically,
Benders decomposition becomes infeasible or terminated prematurely
when the number of customers and warehouses increases beyond a
certain threshold, indicating poor scalability for complex global supply
chain problems with ambiguity.

In conclusion, the customized B&C algorithm not only maintains
high solution quality but also demonstrates superior solving efficiency
and robustness compared to both the default solver and Benders de-
composition algorithm. It proves to be more scalable and reliable for

11

indicates that the optimal value of the objective could not be acquired within the set time limit.

handling large-scale, mixed-integer nonlinear optimization problems
under demand ambiguity. These findings underscore the practical ap-
plicability of the proposed method in real-world global supply chain
scenarios, particularly when computational resources and time are
critical constraints.

6.2. Empirical study on Apple Inc.

In this subsection, we show a case study on the product sales of
Apple in a particular quarter.

6.2.1. Background and data

Apple’s strategy of establishing assembly factories in various parts
of China is aimed at leveraging local labor and resources to meet
global demand more efficiently. The Shenzhen manufacturer, as one of
these facilities, holds a significant position in production, particularly
in fulfilling the demands of both domestic and Southeast Asian markets.
We will use the supply chain from the Shenzhen manufacturer to
Guangdong Province and Malaysia as a case study. Guangdong Province


https://www.shpgx.com/html/ChnLNGIndex.html
https://price.mofcom.gov.cn/price_2021/trafficgoods/moretrafficgoods.shtml?flag=ly&w_m_y=week
http://www.google.com/maps
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Table 7

Data utilized in the empirical study.
Parameters Notations Values Unit
Manufacturing plants M 1
Retailers 1 21
Vehicles v 4
Production capacity for each m C, 1,000,000
Vehicle capacity o 20,000
Demand of customer k dy [10, 000, 21, 000]
Wholesale price for m to i wa 700 USD
Wholesale price for m to j Wm‘j. 700 UsD
Startup cost for each m P, 1,000 UsD
Unit manufacturing cost G 432 UsD
Unit transport cost for m to i TC 0.005 UsD
Unit transport cost for m to j TS 0.002 USD
Route cost VF 1,250 USD
Warehouse opening cost for each j 0; 3,000 USD
Radius of ambiguity set 0 0.5
Tolerance level y 0.5

has 21 cities, and the West Malaysian Peninsula has 11 states and 2
federal territories.
The data utilized in the empirical study are introduced as follows:

+ Customer demand (d,), unit transportation costs (T'C, T'S), whole-
sale prices (W”ﬁ., Wm‘j.), and the number of vehicles are provided
from Apple’s Q1 2019 report.! We utilize the sales data from
Malaysian retail outlets over the past five quarters as empirical
distribution data for sales point demand. The numbers and loca-
tions of manufacturing plants and retailers are also obtained from
this report. The above data are presented in Table 7.

Referring to Quintero-Araujo et al. (2019), we obtain the pro-
duction capacity (C,,), vehicle capacity (Q), vehicle route cost
(VF), warehouse operating costs (Oj), facility startup cost (P,),
and unit production cost (G). The data mentioned above are also
summarized in Table 7.

One Apple sales point is select as end customer in every state
and federal territory. The Malaysian Peninsula has four distrib-
utors, each with their own warehouse (W1 to W4) to receive
products from the Shenzhen manufacturer and distribute them
to sales points in each state and federal territory. The locations
of customers and warehouses, along with the distance between
facility points, are sourced from Google Maps.> The locations of
warehouses and retailers are shown in Fig. 3, and the distances
from the manufacturer to each retailer and warehouse are shown
in Table 8.

The proposed case is in accordance with our GDR-GSC framework,
and the customized B&C algorithm presented in Section 5 is employed
for its resolution.

6.2.2. Computational result

In this subsection, a comprehensive discussion and completion re-
garding the calculation results of the GDR-GSC model are presented
under specific parameter settings. Specifically, we consider the case
where the ambiguity set parameter 6 and the globalized sensitivity pa-
rameter y are 0.5, and A equals to 1. The optimal profit value achieved
is determined to be 2.408 x 10% dollars. This figure serves as a crucial
benchmark for evaluating the economic viability and effectiveness of
the modeled system. Moreover, with respect to the production aspect, it
is found that the Shenzhen manufacturer has produced 990,000 units of
products. This quantity provides insights into the production capacity
and output level of the specific manufacturer within the overall supply

1 www.apple.com/newsroom/2019/01/apple-reports-first-quarter-results
2 www.google.com/maps
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Table 8
The distance from manufacturer (Shenzhen) to retailers and distributors’
warehouse (km).

Retailers Distance Retailers Distance
Shantou 283.5 Huizhou 73.2
Chaozhou 290.3 Dongguan 59.8
Jieyang 261.6 Qingyuan 162.2
Meizhou 285.4 Guangzhou 105.6
Heyuan 148.5 Foshan 110.8
Retailers Distance Retailers Distance
Zhaoqing 173.3 Yangjiang 227.4
Yunfu 211.6 Maoming 339.1
Jiangmen 101.8 Zhanjiang 408.4
Zhongshan 67.8 Shanwei 255.6
Zhuhai 57.9 Shaoguan 255.8
Warehouse Distance Warehouse Distance
w1 2261.1 W3 2389.6
w2 2330.3 W4 2505.5
Table 9
Optimal allocation results form warehouses to customers.
Warehouse ~ Customers
w1 Ipoh = George Town= Alor Setar = Kangar
w2 Kuala Lumpur = Shah Alam = Kota Baharu = Kuala Terengganu
w3 -
w4 Johor Baharu = Kota Melaka = Seremban = Putrajaya = Kuantan

chain framework. The quantity shipped from Shenzhen to each retailer
in the country is 30,000, and the quantity shipped to the warehouses
of various distributors in Malaysia is 90,000 respectively. Due to the
fact that there exists only one manufacturer in Shenzhen, the demand
of each retailer and warehouse in this context essentially corresponds
to the transportation volume of products. This relationship simplifies
the analysis of the product flow from the manufacturing source to the
downstream distribution nodes.

Finally, we focus on the decisions related to the logistics and distri-
bution operations in Malaysia. The customers-to-warehouse allocation
decisions in Malaysia are all presented in Table 9. Specifically, different
warehouses are assigned distinct distribution tasks. Warehouse “W1”
is tasked with distributing products to customers located in the areas
of Kangar, Alor Setar, George Town, and Ipoh. Warehouse “W2” is
responsible for distributing to customers in Kuala Terengganu, Kota
Baharu, Shah Alam, and Kuala Lumpur. Notably, Warehouse “W3” is
not involved in the delivery process, which is due to the consideration
of horizontal cooperation strategy to reduce costs. Warehouse “W4”,
on the other hand, is in charge of distributing to customers in Kuantan,
Putrajaya, Seremban, Kota Melaka, and Johor Baharu.

7. Analysis and comparison
7.1. Parameter analysis and managerial insight

The impact of two ambiguity parameters, i.e., Wasserstein radius 0
and tolerance level y, on the GDR-GSC model is discussed. We conduct
the experiments under different parameter combinations. First, the
change trend of the optimal values is examined with respect to y under
the values of 0 fixed as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Fig. 4
indicates that as the tolerance level y increases, the total revenue in the
GDR-GSC model always shows an upward trend under various scenarios
of 6. The finding reflects that the increase of tolerance level widens the
distance between the inner and outer ambiguity sets, thereby relaxing
constraints and providing decision makers with a broader feasible
region, and finally optimizing economic objective.

Subsequently, when 6 varies, the change trend of the optimal values
is investigated with the values of y fixed as 0.1, 0.3, 0.5, 0.7, and 0.9,


https://www.apple.com/newsroom/2019/01/apple-reports-first-quarter-results/
http://www.google.com/maps

Z. Wang et al.

West Malaysia

Computers and Operations Research 185 (2026) 107293

Guangdong Province, China

Fig. 3. The locations of warehouses, retailers, and customers in the empirical study.

Fig. 4. The impact of tolerance level on the optimal value.

respectively. Fig. 5 showcases that as the radius 0 increases, the total
revenue in the GDR-GSC model always shows a downward trend under
various scenarios of y. These results indicate that when Wasserstein
radius increase, the revenue objective is getting smaller. The reason
for this is that inner Wasserstein ambiguity set becomes larger. The
range of the constraint to meet the complete feasibility is expanded,
then decisions is more conservative and further deteriorate the revenue
objective.

» Analysis on tolerance level parameter y : The parameter y is
a tolerance level that controls the trade-off between robustness
and conservatism in the GDRO approach. It allows for controlled
constraint violation for distributions outside the ambiguity set.
Since a larger violation of constraints implies a larger feasible
region, the optimal value in the maximized objective will be
greater. In practical terms, setting y involves a strategic decision.
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Fig. 5. The impact of Wasserstein radius on the optimal value.

A company might choose a higher y if it values adaptability and
cost-efficiency, even if it means risking some level of constraint
violation during extreme events. Alternatively, a lower y would
be selected if the company prioritizes reliability and guarantee,
aiming to minimize the impact of ambiguity on its supply chain
operations.

Analysis on radius of ambiguity set 9: The parameter 6 de-
fines the radius of the Wasserstein ambiguity set in the GDRO
approach, which represents the level of ambiguity considered in
the model. A larger 6 indicates a broader set of possible demand
distributions, thus capturing a higher level of ambiguity. This can
lead to a more conservative optimization, which aims to ensure
robustness against a wider range of scenarios. Because the larger
ambiguity set, the more severe the worst-case scenario faced.
In the context of maximizing, this typically results in a smaller
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Fig. 6. Delivery routes of vehicles with and without horizontal cooperation.

optimal value. Conversely, a smaller 6 results in a narrower
ambiguity set, focusing on a more limited set of potential demand
distributions. This may lead to a less conservative optimization
process, while also increasing the risk. In the context of the GDR-
GSC model, increasing § would mean that the model is prepared
to handle more variability in demand, which could be crucial in
volatile markets. However, this increased robustness might come
at the cost of higher operational expenses due to over-preparation
for a wide range of scenarios. On the other hand, a smaller 6 could
result in cost savings but with the risk of being unprepared for
unexpected shifts in demand.

Managerial insights: The above findings provide the managerial
insights to decision-makers in the following four aspects:

(1) Dynamically adjust uncertainty response strategies: In the
model, the ambiguity set radius parameter # and the global
sensitivity parameter y have a significant impact on the optimal
profit. Specifically, an increase in # (i.e., higher ambiguity in
demand distribution) leads to a decrease in the optimal value,
while an increase in y (i.e., higher tolerance for constraint vio-
lations) results in an increase in the optimal value. This suggests
that managers need to dynamically adjust strategies according to
market volatility—in periods of stable demand, parameter 6 can
be reduced to lower the conservatism of decisions and thereby
improve profits; in periods of market turbulence, 6 should be
increased to enhance supply chain resilience, and at the same
time, parameter y can be adjusted to balance risks and returns.
(2) Optimize warehouse and distribution resource allocation: The
calculation results show that the horizontal cooperation strategy
causes warehouse W3 in Malaysia to cease operations, and its
originally served customers are reassigned to warehouses W2
and W4, reducing logistics costs through route integration. This
indicates that multinational enterprises should promote informa-
tion sharing and resource collaboration among warehouses at the
same level, improve efficiency by merging redundant warehouse
nodes and optimizing distribution routes. Especially in regions
with scattered or highly fluctuating demand, this approach can
significantly reduce transportation costs and improve the profit.
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(3) Data-driven parameter calibration: The quantification of de-
mand ambiguity relies on historical data (such as quarterly sales
data of Apple retail stores in Malaysia in the case) to construct
empirical distributions. Therefore, managers should attach impor-
tance to data accumulation and analysis, optimize the value of
0 by continuously updating demand samples to make the model
more in line with actual market characteristics; At the same
time, calibrate y combined with expert judgment to ensure the
controllability of constraints in extreme events and avoid model
deviations caused by over-reliance on data.

(4) Balance global and regional operations: In the case, the dif-
ferentiated distribution from the Shenzhen factory to retailers in
Guangdong and warehouses in Malaysia (30,000 units and 90,000
units respectively) indicates that production and transportation
plans need to be adjusted according to regional demand scales.
Managers should establish a flexible production system, combine
horizontal cooperation of local warehouses, take into account
the personalized needs of regional markets in the global layout,
and improve the overall efficiency of the supply chain through
reasonable capacity allocation and inventory sharing.

7.2. Strategy analysis

Horizontal cooperation among multinational corporation at the
same level is of great significance in the GSC. In the model proposed
in this study, horizontal cooperation is primarily manifested through
the sharing of historical data regarding customer locations and de-
mands among warehouses. Subsequently, the distribution routes are
coordinated and the resource allocation is optimized. We control the
value of variable Y;. When Y, takes a binary value, it indicates the
adoption of a horizontal cooperation strategy; when Y; = 1, it indicates
that all warehouses are being opened. Finally, we established multiple
sets of experiments by modifying the total order quantity, where the
order quantity is R; = 990000, R, = 1380000,R; = 1690000,R, =
1990000, R5 = 2380000.

As shown in Fig. 6, taking Apple’s sales supply chain in Guangdong,
China and Malaysia as an example. When the horizontal cooperation
strategy is not implemented, all warehouses function independently,
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Fig. 7. The optimal value with and without horizontal cooperation.

taking on the task of distribution in particular areas. After enabling hor-
izontal cooperation, warehouse “W3” is no longer operational, and its
originally responsible customers are assigned to warehouses “W2” and
“W4”. Consequently, the distribution routes and customer assignments
have all changed. This change has brought significant advantages.
Through the optimization of distribution routes, not only has the lo-
gistics cost been cut down, but also the service level has been elevated.
Moreover, the overall operational efficiency of the supply chain has
been significantly boosted. Meanwhile, resources have been allocated
more rationally, thereby enhancing the flexibility of the supply chain.

Horizontal cooperation enables enterprises to better cope with the
complex and changing market environment. In Fig. 7, the horizontal
cooperation strategy has brought obvious profit growth. Multiple sets
of experiments show that the profit of the experimental group adopting
the horizontal cooperation strategy is higher than that of the control
group without adopting it. Moreover, the profit growth in R, is as
high as 6.25%. This fully proves the important value of horizontal
cooperation in supply chain management and is an effective way for
enterprises to achieve efficient and stable development.

7.3. Models comparison

In the prementioned section, we present a GDR model for GSC
optimization under demand ambiguity. This subsection aims to provide
a comparative analysis of the GDR-GSC model with the stochastic GSC
model (S-GSC) and the distributionally robust GSC model (DR-GSC)
to highlight the features and applications of the proposed GDR-GSC
model.

We compare the different models using Apple’s product sales data
from the real-world example. In S-GSC model, we assume that the
customers demand follows an uniform distribution, i.e., d ~ U(d —
Ad,d + Ad), the specific distribution is shown in Table 10. The DR-
GSC model can be viewed as a special case of the GDR-GSC model.
We adopt the outer ambiguity set in the GDR model as the ambiguity
set of the DR model to capture the uncertainty of customer demand for
calculating the optimal profit. Specifically, when we set y = 0, the GDR-
GSC model degenerates into the DR-GSC model. Finally, the results of
three different models are plotted in Fig. 8.

When it comes to supply chain optimization models, a comprehen-
sive analysis reveals significant insights. When comparing the three
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Fig. 8. Comparison of different models.

models in question, it is observed that the S-GSC model exhibits the
highest optimal value among the three. Here we take the uniform
distribution for the sake of calculation. However, it is important to note
that the true distribution of customer demands in realistic is difficult to
estimate. Nevertheless, ignoring the inaccuracy in the distribution may
lead to serious decision-making risks.

Conversely, the DR-GSC model demonstrates the higher level of
resilience when confronted with uncertain risk of random distribution.
Nevertheless, this enhanced resilience comes at the expense of a rel-
atively lower optimal value. This characteristic is at odds with the
overarching objective of commercial companies, which is to maximize
profits. In a business context, while risk mitigation is crucial, it must
be balanced with the pursuit of profitability to ensure the viability of
the enterprise.

Our proposed GDR-GSC model, on the other hand, strikes a balance
between risk resistance and profit maximization. It is designed not
only to provide a certain degree of protection against the risks of
ambiguous distribution but also to maximize profits in supply chain
as effectively as possible. Compared to DR-GSC model, the GDR-GSC
model is well-suited for real-world supply chain scenarios, where man-
aging the uncertainty and feasibility of constraints under a controllable
violation level is of paramount importance. The GDR-GSC model offers
a practical and effective solution for supply chain management in
complex and uncertain environments.

8. Conclusion

The research presented in this paper contributes to the field of sup-
ply chain management by introducing a GDR-GSC model that addresses
the challenges of demand ambiguity and horizontal cooperation. The
GDR-GSC model is designed to optimize location and routing decisions
within a GSC network, incorporating the complexities of production,
transportation, and delivery process. The model’s integration of the
GDRO approach allows for a robust solution that considers worst-case
scenarios and partial distributional information of demand ambiguity.
This approach is particularly relevant in the current global business
environment, where market dynamics and unforeseen events can sig-
nificantly impact customer demand. The introduction of strengthened
k-path cuts and tailored branching strategies further enhances the
algorithm’s performance, providing compact bounds and optimized
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Table 10

Demand distribution of customer.
Customer Demand Customer Demand
Kangar d, ~ U(10,000,20,000) Alor Setar d, ~ U(15,000,21,000)
George Town 0?3 ~ U(12,000,20,000) Kuala Terengganu 574 ~ U(12,000, 18,000)
Shah Alam zis ~ U(10,000, 18,000) Kuala Lumpur zi6 ~ U(12,000, 20, 000)
Seremban d; ~ U(10,000,20,000) Kota Melaka dg ~ U(14,000, 18,000)
Johor Baharu dy ~ U(10,000,20,000) Putrajaya d,, ~ U(10,000,20,000)
Ipoh d,, ~ U(10,000,20,000) Kuantan d,, ~ U(12,000,20,000)

Kota Baharu 5,3 ~ U(14,000, 18, 000)

solutions. Our numerical experiments demonstrate the effectiveness
and superiority of the customized B&C algorithm in solving the GDR-
GSC model. The algorithm’s ability to handle complex mixed-integer
nonlinear programming problems is evident in its improved solution
time and preserved solution quality. The case study based on Apple’s
sales in China and Malaysia illustrates the practical applicability of the
GDR-GSC model. It showcases how the model can be used to analyze
the impact of key parameters such as the radius of ambiguity set
parameter ¢ and the global sensitivity parameter y, offering valuable
insights for strategic decision-making under ambiguity. The adoption
of horizontal cooperation strategy in the GDR-GSC model is another
significant contribution. By enabling warehouses to collaborate, the
model demonstrates the potential for cost reduction, service level im-
provement, risk mitigation, enhanced flexibility, and sustainability.
Finally, based on the comparison of our models, we prove that the GDR-
GSC model has better performance, which can better resist risks and
achieve relatively high optimal profit value.

Future research could focus on the considerations on other im-
portant factors in the supply chain, such as supply disruptions, en-
vironmental sustainability, and multiple products (Ren et al., 2024).
This maybe incorporate additional constraints and variables into the
GDR-GSC model to more accurately represent real-world supply chain
scenarios. Additionally, further improvements in the exploration of
more efficient solution methods could be investigated (Praxedes et al.,
2024). This could involve exploring different branching strategies and
cut generation techniques to further reduce the solution time and im-
prove the solution quality. At the same time, we can consider multiple
evaluation objectives related to the GSC. In addition to maximizing
profit, other objectives such as minimizing lead times, or improving
customer service levels could be incorporated (Hasani et al., 2021).
This would push the use of the appropriate multi-objective optimization
techniques and the analysis of trade-offs between different objectives.
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Appendix. Proof of Theorem 1

Proof. First, we prove the equivalent form of (15a). The GDR counter-
part (15a) can be re-expressed as

{EP[Z z‘ikfjkv —Q] —VidW(P,Q)} <0.

kek jeL

sup (29)

PeP(E),QeFy (0)
To establish strong duality through Lemma 1 of Liu et al. (2023), our

model satisfies all necessary conditions: (i) the feasible set =, as a con-
structed bounded polyhedron, is compact; (ii) EP[ZkE © Xjer d.f ko~

Q] is proper, closed, and convex in dy, (-,-); (iii) the Wasserstein am-
biguity set F};-(9) maintains a non-empty interior through the moment
constraint dy, (P,?) < 6; and (iv) ¥yex Xjer difjro — Q is Lipschitz
continuity on =, since it is an affine function. Thus, the regularity
conditions of Lemma 1 are satisfied, and we can obtain

sup
PeP(2),QeFy ()

{EP[Z Z‘Zkfjkv_Q] _VldW(PsQ)}

keK jer

{911+% 2 sup{z ZdAk,,fj,w—Q—t1 ”[i—an
kek jeL

neN' dez

= inf
11€[0,;]

3

(30)

Given s!, u! and w! € RK are introduced arbitrary variables, we

can convert the right-hand side of (30) into the following constraints:

ONt' + Y sl <0,

nE./\/

5 PR 1

o { 3 Tdusu-0-1 fa-a] <. @D
dez \ ek jer
€0,y

Introducing arbitrary variables u! and w! € RX, based on Theorem
2 in Mohajerin Esfahani and Kuhn (2018), we transform (31) into the
ONt' + ) s) <0,

equivalent form:
neN
*
(3 Ziwn-o)| ==l
4 kek jer
+6*(w!|2)—d, gl < sl VveV,Vne N,

”ﬂ:l” <tl,Vvne N,
the [0, 7]

(32)

Let g(d,) = Yiex Xjer dinfjro — Q- Since the function g is in the form
of an affine sum, its conjugate function takes the following form:

N 0,
g'd,) = {
0,

1

o 33)
H, # @,

1
H,=w
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By setting ! = [@!; ], the conjugate of the support function §*(w!| =)
can be expressed as:
5*(wr1,|5) = sup{w:’fi,, : Afin +ceK}
1
i 1 €]

. T A
= 1vrlllf{cTy/,, : y/; d,= —wn,wrll € K.},
where K = {(z},0}) eRxRX : 7! > ||l0!||,,}, the dual cone is K, =
{z],w})) e RXRK : 7! > ||w!||; }. Then, by substituting Egs. (33) and
(34) into formula (32), formula (32) can be transformed into the
following form:

1 1
ONt' + ) sl <0,
7’EEN
-0+d, Y f,+ohd, + At} <s).Vne N, YveD,

ex
m:,+2fju <i'.Vvoev,vne N,

JEL o
1 1

7, > (o) 1,Vne./\f,
' €[0,7,].

Similarly, the tractable counterparts of constraints (15b) and (15c¢) can
be obtained.
The proof of theorem is complete.
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