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ARTICLE INFO ABSTRACT

Keywords: In this paper, we investigate a delayed reaction-diffusion-advection Nicholson’s blowfly model
Reaction-diffusion-advection equation under the influence of predation. By analyzing the principal eigenvalue of the elliptic operator,
Hopf bifurcation

we establish the stability of the positive steady state solution and the existence of a Hopf bifur-
cation. Furthermore, employing normal form theory and center manifold theory, we examine the
stability and direction of the periodic solutions arising from the Hopf bifurcation. In addition,
numerical simulations are conducted to validate our theoretical results. The numerical findings
indicate that population density decreases with increasing advection rate, saturation predation
rate, and mortality rate. Moreover, Hopf bifurcation induced by time delay is more likely to occur
when these parameters are relatively low. Conversely, population density increases with the half-
saturation constant, and Hopf bifurcation is more likely to arise when the half-saturation constant
is small.

Normal form theory
Center manifold theory

1. Introduction

Mathematical biology is an interdisciplinary field combining biology and mathematics. Using mathematical tools, it explores and
reveals the underlying principles of biological systems, holding significant theoretical and practical value. In recent years, mathemati-
cal biology has become one of the most active research directions in applied mathematics. The research in this field typically involves
two aspects: on the one hand, mathematical models are established and analyzed to understand and predict the intrinsic mechanisms
of biological processes; on the other hand, population models not only help discover new mathematical problems but also promote the
development of related fields. For example, in epidemic modeling, mathematical analysis can be used to optimize control strategies;
in resource competition and population dynamics research, mathematical models can reveal novel dynamic behaviors.

Early population models were primarily based on ordinary differential equations to describe changes in individual numbers over
time. In studying Nicholson’s blowfly model, Nicholson [1] suggested that the primary cause of oscillations was the time delay between
density-dependent responses and their effects. In 1976, May [2] used a delayed logistic model to simulate Nicholson’s experiments
and inferred that the development time from egg to adult was 9 days. However, this differed significantly from Nicholson’s observed
value of approximately 15 days. To address this discrepancy, in 1990, Gurney et al.[3] proposed the following delay differential
equation to describe the dynamics of Nicholson’s blowfly population:

du

i —Su(t) + pu(t — t)e~ =D,
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where p is the maximum per capita egg-laying rate per day, i represents the population size at which the Nicholson’s blowfly
reproduces at its maximum rate, § is the average adult mortality rate per day, and r denotes the maturation time.

Although this model effectively describes the population fluctuations of Nicholson’s blowflies, its fundamental assumption is that
the population is spatially homogeneous, meaning that interactions among individuals are global and do not account for spatial
diffusion or migration. However, in real ecological systems, biological individuals are often not uniformly distributed, and spatial
structure may lead to encountering frequencies differing from the homogeneous assumption.

To address this issue, in 1998, So and Yang [4], building upon the model of Gurney, introduced a diffusion term and formulated
the following delayed reaction-diffusion model for Nicholson’s blowfly population:

% = dAu(x,1) — u(x, 1) + pu(x,t — )e =),

This model is defined on a finite domain with homogeneous Neumann boundary conditions. It analyzed the effect of the non-
monotonicity of the delay term on system stability under Dirichlet boundary conditions and established a novel mathematical ap-
proach to study the global attractivity of equilibrium states.

In 2000, So et al. [5] conducted numerical simulations of this model, exploring the Hopf bifurcation phenomenon. In 2016, Guo
and Ma [6] applied the Lyapunov-Schmidt reduction method to investigate the existence of spatially nonhomogeneous steady-state
solutions. By analyzing the distribution of eigenvalues, they derived conditions for the existence of Hopf bifurcation at these steady
states. Using normal form theory and center manifold reduction, they further examined the direction of the Hopf bifurcation and the
stability of the bifurcating periodic solutions.

Although the above model incorporates diffusion effects, it still assumes that individual movement is directionless, meaning that
diffusion is random. However, in real ecological systems, individual movement is often influenced by environmental gradients, such as
water currents, wind direction, or heterogeneous resource distribution. Therefore, in recent years, researchers have further introduced
advection terms into population diffusion models to more accurately describe migration patterns under environmental gradients or
external disturbances.

Reaction-diffusion-advection models effectively describe population movement patterns and biological processes, making them
a powerful tool for studying spatial population dynamics. A significant problem in spatial ecology is understanding the impact of
spatially heterogeneous environments on species invasion. A heterogeneous environment refers to the spatially varying distribution
of environmental conditions. For example, phytoplankton in oceans or lakes require light, whose intensity varies with depth in the
vertical direction. In such heterogeneous environments, species movement involves not only random diffusion but also advection.

To address the above, in 2022, Zhang and Wei [7] studied the following delayed reaction-diffusion-advection population model:

3—’: =dAu—aV - wVm)+ulx,t—1)f(u(x,t — 7)) — ou, x € Q,t>0,
do,u— aud,m =0, x € 0Q,t> 0,

where 7 represents the maturation time, § denotes the mortality rate, and the advection term aV - (uVm) describes population move-
ment biased along resource gradients or advection due to water flow with velocity am(x). The parameters d,«, 7,5 are positive
constants, and m(x) € C%(Q). The study results indicate that delay-induced Hopf bifurcation is more likely to occur at lower advection
rates. The impact of advection on the spatial distribution of general competitive populations has been investigated in previous studies
[8-11].

In this paper, we further consider additional factors that inhibit population growth, such as low mating rates, artificial harvesting,
and predation by potential predators. Compared to previous models, our study incorporates the effects of time delay, spatial diffusion,
advection, and predation, providing a more realistic representation of population dynamics in ecosystems.

By analyzing the steady state solutions, stability, and delay-induced bifurcations of the model, we explore the effects of preda-
tion, time delay, and environmental gradients on population dynamics, offering theoretical support for ecosystem management and
conservation. In this paper, we study the following reaction-diffusion-advection model of the Nicholson’s blowfly population under
predation effects:

2
{ z)u((;;,t) = dyAu(x, 1) = V - [auVm(x)] = 2850 — su(x, 1) + pu(x,t — )™ 4D, x € Q1> 0, o

c24u?(x,t)
do,u—aud,m=0, x€dQt>0.

where u(x, 1) represents the population density at location x and time 7, d; is the random diffusion rate, b is the saturation predation
rate, representing the maximum predation capacity at high prey density, and c¢ is the half-saturation constant, representing the
prey population density at which the predation rate reaches half of its maximum value. The function m(x) describes the resource
distribution, and «; is the advection rate describing population movement along the gradient of m(x).

The domain Q is a bounded region with a smooth boundary dQ, and » is the outward unit normal vector on dQ. The no-flux
boundary condition implies that no individuals pass through the boundary.

Let ii(x,7) = e-0/d0mXy(x, 1), f = d,t, and # = d,r. Defining 1 = % and a =

Z—‘, we omit the hat notation for simplicity. Conse-
1

quently, system Eq. (1) is transformed into the following form:

am(x)

u(x,t—7)
ot 2 42m 2 (x,1) ,x€E€Q,t>0,

d,u=0, x€0Q,t>0.

am(x),2
{M = e~tmy . [e‘""(x)Vu(x, t)] S | i 2 ) R Adu(x,t) + Apu(x,t — t)e” @)
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In this paper, we assume that m(x) satisfies the following condition:
H,)m(x) € CZ(Q) and m(x) > 0, m(x) # 0.

The rest of this paper is organized as follows: Section 2 studies the existence of positive steady state solutions. Section 3 investigates
the corresponding eigenvalue problem and the existence of Hopf bifurcations. Section 4 analyzes the direction of Hopf bifurcations and
the stability of bifurcating periodic solutions using normal form theory and center manifold reduction. Section 5 provides numerical
simulations and discusses the impact of parameters on Hopf bifurcations.

According to the literature [12,13], we define the following spaces as

X={ue H*Q) : 0u=0,x€0Q},Y = L*(Q),C = C([-7,01,Y),
and C = C([-1,0],Y). The complexification of the linear space Z is defined as
Zec :=Z+iZ={a+ib . abe Z}.

For a linear operator T, we define its domain as D(T), its kernel as N'(T'), and its range as R(T'). Furthermore, for the Hilbert space
Yc, the standard inner product is

(u,v) = / a(x)v(x)dx.
Q

2. Existence of positive steady state solution

This section focuses on the existence of positive steady state solutions for model (2), which satisfies the following elliptic
equation:

am(x) am(x
{V . [e‘""(")Vu] + Aue”"’(")(—be—(” — & + pe~% ‘ )"> =0, x€e€Q, 3)

2 te2am(x) 2
d,u=0, xe€oQ.
Define the operator
Py =V [y,

and assume that it satisfies the homogeneous Neumann boundary condition. According to Belgacem and Cosner[14], Lou and
Zhou[15] , the principal eigenvalue of the operator — P, under the homogeneous Neumann boundary condition is A; = 0, and the
corresponding eigenfunction ¢ can be chosen as a constant. For simplicity, we take ¢ = 1.

It is easy to verify that P, is a self-adjoint Fredholm operator from space X to Y. Therefore, the spaces X and Y can be decomposed
as follows:

X=N(P)®X,Y=N(P)®Y,

where

N (Py) = span{¢} = span{1}, X, :{yEX : /y(x)dx:O},
Q

Y, =R(P0) = {er : /y(x)dx=0}.
Q

By an argument similar to Theorem 2.1 in Cantrell et al. [16], we obtain the following existence result for positive steady-state
solutions.

Theorem 2.1. Assume that condition (H,) holds and the following conditions are satisfied: (H,) p > 6, 0 < e®"™ < c. Then, there exists
A* > 0 and a continuously differentiable mapping A — u, from the interval [0, A*] into X, such that for 4 € (0, A*], u, is a positive steady state
solution of Eq. (3). Moreover,

limu, =
Lim bos

where f, is the unique solution of the following equation:

am(x b 2am(x)
/ et ema B g / — 5 Sdx -5 / e dx = 0. @
Q Q ¢ + 2 p Q

Proof. The positive steady-state solutions of model (2) satisfy Eq. (3). Now, we define the mapping H : RX X; xR Y:

am() e b OB + )

— A6e™m .
JERpETRYPS e B+n

H(B,n,4) =Pyn + Ap(f + n)e

Let u = f + 5, where f € R, # € X,. Substituting it into Eq. (3), we see that Eq. (3) has a solution (u, 1) with u € X and 4 > 0 if and
only if there exist some f € R and € X, along with 4 > 0, such that the equation H(f,#, 1) = 0 is solvable.

3
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Clearly, for any f € R, we have H(f,0,0) = 0. We compute the Fréchet derivative of H(f,n, 1) with respect to (1, 1):

am(x) ,—ae" ) be**™(p + 'I)z

— §emx)
Ry o — e B+n)o

D, »H(B, 1, DI, 6] = Pyd + p(f + e

2 p2am(x)
_ 2™t 59— 46e“™ 9 + Ape™ (B + me "B g _ Jap(p + n)?e2Hm) g B g,

(CZ + eZam(x)(ﬂ + 11)2)

Then

Dy, o H(B,0,0)[8,0] = Pyd + fe™ g LGl pe=ae™" B
(.2) > WL 0 2 + e2am(x) g2 ’

Noting that

beam(x) ,
—foe™Pa _ bR 1) +pe_aem<v)ﬁ0 €Y, =R,
0 3 ) b3 1
c2+e “'"<X)ﬂ0

there exists a unique 9, € X, satisfying

P9 = — e ( — be™™™) g 5+ pe_aeammﬁo
0 0 2 4+ eZam(x)ﬂg ’

thus
N (D1 H (£p.0,0)) = {(s9,.5) : s € R}.
Further computation gives

—ge®m(x)
eZam(x) P ﬂ,

ap

b am(x) i b 2am(x)( .2 _ [p2 ,2am(x)
DDy H (P,0.0) [9.. 1] :eam(x)<_ ") g 5+ peae ()ﬁ>_ e (c* = p%e )

2 4 e2amp2 (2 + pRe2am())?

where D; D, ; H(),0,0) is the Fréchet derivative of D, ; H(#,#, 1) with respect to § at (f,0,0). We claim that
DDy 1 H (o, 0,0) [1., 1] & R(Dyy 5 H (o, 0,0) )

Assume that the statement is false. Then, there exists (5, E) such that

beZam(x) ﬁZ
CZ + e2am(x)ﬂ2

2 2,2
_ g [ be¥™X) 54 pe_aeam(x)ﬁ 4ot _ be®M(X) (2 — glelam(x)y B apeam(x)e_aeaM(X)ﬂ
CZ + e2am(x)ﬂ2 (02 + ﬁ2€2am(x))2 ’

Dy H By, 0.0)(3.5] = Pyd - & = e G + ppe e "I

which implies that

_amo [ beam(x)ﬂ _ —ae™mp () _beam(x)(CZ _ ﬂ2e2am(x)) B am(x) —ae™ g
A(x) =e ——  — 6+ pe +e ape e € R(T).
2 + e2am(x) g2 (c2 + fRe2amx))?

By direct computation, we obtain

belam(x)(CZ _ e2am(x)ﬂ2) .
/ ACdx = _ﬂo/ T——dx - aph / Aam() g=aeeo g
Q Q (62 + eZam(x)ﬂg) Q

#0.

This leads to a contradiction, and hence the above statement holds.
Using the Crandall-Rabinowitz [17] bifurcation theorem, the solutions of H(f,#, 1) = 0 near (f,, 0,0) form the curve {(5,0,0) : p €
R} and

{(B(s),n(s), A(s)) @ s € (=€, )},

here, B(s), n(s), and A(s) are continuously differentiable, satisfying $(0) = f,, n(0) = 0, A(0) = 0, #’(0) = 1, and A'(0) = 1. Thus, A(s) has
an inverse s(4) near zero. Since f, > 0, there exists A* > 0 such that Eq. (3) has a positive solution u; = f(s(4)) + n(s(4)) for 4 € (0, 1*).
Moreover,

ug = f(s(0)) + n(s(0)) = p(0) +n(0) = fo.

This completes the proof. O
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3. Hopf bifurcation analysis

This section considers the eigenvalue problem associated with the positive steady-state solution of (2). Linearizing system (2) at
u,, we obtain

ou(x,t)

ZAbcze“'"(")u/lu(x, 1)
or —————— — Au(x, 1) + AB (A, x)u(x,t — 1), xeQ,t>0,

ey [e“m(")Vu(x, t)] - 3
(c2 + ezam(x)ui) (5)

o,u=0, x€dt>0,
where
B (4,x) = p(l — au,le“’"(’())e’“em(x)“i, B(x) = p(l - aﬁoe"’"(x))e’“"m(x)ﬂ“.
According to Wu [18], the solution semigroup of Eq. (5) has an infinitesimal generator A, ; satisfying
Aw =,
for w € D(A, ;), where
DA, )={wveCly0 e X yO) =L, v}
and
24bc? ey,

————— — A8 |w(0) + 4B (4, x)y (=7),
(c2+ eZam(x)ui)z

Loy =[P~

where Cl =C'([-7,0],Yc). The complex number 4 is an eigenvalue of A, ; if and only if
neo(A, ) ={ue€C|AUnu vy =0y e Xc\{0}},
where
24bc2e®™ Xy,

AG, )y 1= |e "I Py — >
(62 4 eZam(x)ui)

— A8 |y + AB (A, x)e Ty — py.

Lemma 3.1. Suppose that (M’U»W) is a solution of A(4, u, 7)w =0, where Re y; >0, 7, >0, and y,(# 0) € X. Then, ‘”7‘| is bounded
for A € (0, A*].

Proof. Multiplying both sides of A(4, y;,7;)w; = 0 by e®"®y; and integrating over Q, we obtain

e2rxm(x) u

(W, Pow,) + Ae™HaTi / ) By (A, )|y P dx — iy / ¢ |y, | dx — 2/1bc2/ ————dx - 15/ ¢y, |> dx = 0.
Q Q Q (52 + e2aM(X)ui) Q

Noting that
(wa Powa) = —/ | vy, |* dx <0,
Q
and since Re y; > 0, 7, > 0, we have

Re (e4% [ e By, 0w [ dx)

Re(£4) < -
A faem Tl
< |1Bi (4, %) o
and
‘ u, Im (e’”/lf/l Jo € B (4, x)|y/,1|2dx)
m(32)|<

Jo ey [ dx
< 18160

Since the mapping 4 ~ ||u,]||, is continuous, we conclude that |”7* is bounded. This completes the proof. [
Lemma 3.2. Suppose z € (X, ). Then

[(Pyz,z)| = }QHZ”Z@’
where 4, is the second eigenvalue of the operator — P, under homogeneous Neumann boundary conditions.

5
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Proof. Itis well known that the operator — P, on the domain Q with zero Neumann boundary conditions has a sequence of eigenvalues
{4,} -, satisfying
0=14; <Ay A3 <, lim 4, = oo,
n—oo
and the corresponding eigenfunctions {¢,,}:°=1 form an orthogonal basis of Y,, Moreover, ¢, = 1. In particular, for each v € X,
satisfying (v, 1) = 0, there exists a sequence of real numbers {c,,}:o:2 such that

o
v= 2 c,by-
n=2

Thus
[se] (8]
Pow=Y ¢,Pod, = Culuhy
n=2 n=2

From the above equation, we obtain

)

KRow, o) = X 2, bll72 2 42 D 2l bully, = Aalvll,.
n=2

n=2
This completes the proof. O
Theorem 3.3. If L < 0, then there exists A* such that
o(A,;) C{x+iy:x,yeR x<0}
for A € (0, A*] and = > 0, where
Ly= / [paﬂoezam(x)e_“eam(X)ﬁO - 2<—2[;C292am(x)ﬁo + 6e””‘(x))] dx.
Q 2+ ez“"’(")ﬂg
Proof. If the contrary, then there exists a positive sequence { (4. f,. 7. ,) }:il such that lim,_, , 4, =0, and for n > 1, 4, > 0, satis-
fying
A(Ays s 70 )0 = 0,
with Re (y,) > 0, 7, > 0, and w,(# 0) € X¢. Ignoring a scalar factor, suppose u, = 4,h, and express v, as
v, =r,py+A,2,,2, € (Xl)c,r,, >0,
il =210+ s, = Ao ©
Substituting y, = 4,h, and (6) into A(4,, u4,,7,)w, = 0, we obtain
2bc2e2am¥)y

Hy (20 s s Ty A) = PoZy + €070 By (2, )€™ (1, + Ay 2,) = ———
(62 4 eZam(x)ui)

n>""n> "n>“*n

(ruBo + A,z,)

— (6™ 4 R, ™™ X)) (1, fy + Ayz,) =0,
Hy (200700 40) = (= 1191 + 1245, = 0.
By Lemma 3.1, we obtain that for 4 € (0, 4], |h,| is bounded, and |r,| < 1. By Lemma 3.2, there exist constants M,, M, > 0 such that
Aollzally, < [Pozw 2| < Mil|z,lly, + Moy |zl5,
Thus, for 4 € (0, "], { z,,}:il is bounded in Y. Since the operator
Py (Xi)e = (M)

has a bounded inverse P!, it follows that P, H, (z,. . h,.7,. 4,) = 0, implying that {z, } ** is bounded in (X, ). Hence, the sequence

. o
{ (zn’ Fos h", e Re (Anrnh,,) , e—llm (Anrnh,,) ) }
n=1
is bounded. This sequence is precompact in Y X R? x C, so there exists a convergent subsequence
(s
. ’e—Re(/lnkrnkhnk)’e—llm (A,,kr,,kh,,k)
k k k k=1

with limit (z,,r,, h,,0,, e %), where

r,=1z,€Ye,h,eCReh, >0),0, €[0,27),0, € [0,1].
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Noting that
o opel
,}Lrg Py H, (znk,rnk, h”k’T"k’ Ank ) =0,
we obtain z, € (X;)., and (z,,r,, h,,0,,0,) satisfies

2b62e2am(x)ﬂ .
Pyz, — P04 st g et By + o.e7% B(A, x)e®™ ™ gy = 0.

2 4 o2am(x) g2y
(c +e‘"’”‘ﬂ0)

Thus, we obtain

ZbCZeZam(x)c
M) gy 4 / 5e ™) dx, +/ - 0 S dx
Q Q (62 4 eZam(x)Cg)

o, cos 0, / B, (4,x)e"¥dx =Reh, /
Q

Q

-0, sin@, / B, (4, x)e™dx = Im h, / "M g x.
Q Q
Since Re h,, > 0, we have

2
2 2 ,2am(x)
2bc“e
Gf(/ B (x)e™™) dx> > / —ﬂozdx+/5e"'”(")dx
Q Q (2 + 92am(X)ﬂ§) Q
which implies that

2
2bC2€2am(x) ﬂ()

GfLO / paﬁoe—“lea'"(x)ﬁoez"‘m(x)dx > / Sdx + / 5e™ x| . 7
Q Q (2 + ez”m(")ﬂg) Q

Noting that L, < 0 and o, € [0, 1], it follows from (7) that
0<o’L, / paﬁoe_"lemmﬁ(lez"”’(")dx <0.
Q

This contradicts the previous derivation, thus proving the theorem. O

According to Theorem 3.3, when L, < 0, we can see that all eigenvalues of A, ; have negative real parts for 1 € (0, A*]. The
following discussion focuses on the case L, > 0. Next, we analyze the scenario when A, ; has a pair of purely imaginary eigenvalues
1 = +iw with @ > 0.

From the previous arguments, we conclude that if 4 = iw € 6(4, ;) for some 7 > 0, then the following holds if and only if

2/1[702@“”‘(")14/1

A i, T)y = <e“"”(x>P0 - 5 - xa)w + Ae7B (4, Xy — iy, (8)
(CZ+EZam(x)ul)

is solvable for some w > 0, 6 € [0,2x), and y € X(# 0), where 0 := wr.
If (o, 0, w) satisfies (8), then y can be decomposed and normalized as

w=rBy+iz,z€ (Xl)c,rzo,

9
I, = Pa10l + 21212, = f2IQ. ©
Substituting Eq. (9) and @ = Ah into Eq. (8), we obtain the following equivalent system:
. 2bC2€2am(x)u<
g(z,r,h,0,2) :=Pyz + [e_‘gBl(/l, x)e“m(x)] (rﬂo + Az) - [—A2 + 6% 4 jpem)] (rﬁo + /lz) =0,
(6‘2 + ez”m(’”ui) (10)

&z, r A) 1= (P = 1)B21Q| + ,12||z||§c =0.
Define the mapping G : (Xl)@ X R* - Yo xR as
G(z,r,h,0,%) 1= (g, 8)-
We use the implicit function theorem to analyze the solvability of the equation G(z,r, h,6, 1) = 0 when 4 = 0.

Lemma 3.4. Suppose L, > 0. Then the following equation

G(z,r,h,0,0) =0,
z€ (X)) h>0,r>0,60 €[0,2x],
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has a unique solution (zy, ro, hy, 6,), where

2bL‘2 e2am(x) ﬁO
= R0 dx+6 [, e Mdx
‘/9 (‘.2+62am(x)ﬂ§)2 /Q

Jo Bi(x)e®m™d x

—hy /9 M) g x

sin 6, = ,COS
0 Jo Bi(x)e®m™dx

6y =

5

1

2, 2am(x) 22 (11)
(/g Bi(x)et™m dx)2 - </Q Zbce—ﬁozdx +38 [ e dx)

(2 +e2am(x)ﬂ3)

h() = /Q o) gy > O,

and z; € (X, )a: is the unique solution to the following equation:

2bc2e2am(x)ﬂ0

Pyz = —e "B ()™ B, + (¢2 4 o2am(x) g2)2
(2 + e2emp3)

+ 8¢ 4 jpe®m) g

Proof. Clearly, when A =0, we have r =r, = 1, and
Zbc2e2am(x)ﬂ0

£ (z, ro.h, 0, O) =Pyz+ pe’iee_“emuwo 1- aﬂoe"”’("))e‘""(x)ﬂo - (Se‘""(")ﬁo ——
(1 + e2am(x)ﬁ§)

— 1he™ ™) g,

thus

g1(z.r9,h,6,0) =0,
z€ (X))o h20,r20,60 €[0,2x],

is solvable if and only if

2be2 e2am(x)
2T A x 15 [, e ¥dx,
(‘.2+62am(x)ﬁ§)

—sinf [, By (x)e"™Xdx = h [, e dx,

cos 6 [, By(x)e™Xdx = [,

admits a solution (6, h), where 4 > 0 and 6 € [0,2x]. According to (4), from L, > 0 we obtain

2
(fg B, (x)e®m) dx)2 _ </g wdx +6 /Q eam(x) dx>

2
(62 +e2am(x) p[Z))

e ax)’

Thus, sin 6, and cos 6, satisfy Eq. (11). This completes the proof. O

=

o > 0.

Lemma 3.5. Assume L, > 0. Then there exists 4 € (0, 2*] and a continuously differentiable mapping
A (zj,rj,hl,e/l)
from [0, 3*] to (X, ). X R3, such that (z,,r;,h,,6,) is the unique solution to the equation
G(zj,r3.hy,0,,2) =0,
where G is the mapping defined in Lemma 3.4:
{G(z, rh,0,2) =0,
z€ (X))o h>0,r 20,6 €[0,27).

Proof. LetT = (T}, T;) : (X;). X R* = Y¢ x R be the Fréchet derivative of the mapping G with respect to (z,r, b, ) at (zo, ry, hy, ).
Then, for (r,x,€,9) € (X,). x R?, we compute

—2b0282am(x)ﬂg

Tily.x,e,91=Pyy — iﬂoe“m(")e - ie_ieﬂoBl (x)e®™X) g — ihoﬂoe"”’(")lc + ﬂoe_igo B (x)e®™) - ﬁe"”’(")ﬂo K,

(02 + e2ntm(x)ﬂg)2
Tolx.k,e 91 =243 |1Qx.

We now prove that T : (X 1 )c x R3 - Y x R is bijective. In fact, T is linear with respect to y, x, ¢, 9, then for any (y,s) € Yo X R,
there exists v = (y, x, €, 9) such that T(v) = (y, s), this implies that T is surjective, in the following it suffices to show that T is injective.
IfT5(x, k,€,9) =0, then k = 0. Substituting ¥ = 0 into T}, we obtain T (v, k, €, 9) = 0, which implies y = ¢ = 9 = 0. Thus, T is injective.
By the implicit function theorem, there exists 4 > 0 and a continuously differentiable mapping 4 — (z,,r;, h;,0,;) defined on [0, 1*]
with values in (X, )C x R3, satisfying G(zy,r4.hy.0;. 1) = 0. We now prove uniqueness. It suffices to show that if G(z*, 4, h*,0%) =0,
where z* € (X;), h* > 0,r* > 0, and 6 € [0, 27), then

(24,74, n*,0%) = (20,70, ho, 6) = (20, 1. . 0p)
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as A — 0, in the norm of (X, ). x R?, By Lemma 3.1, the sequences {h*}, {r*}, and {6*} are bounded for 4 € [0, 2*]. Multiplying the

first equation in Eq. (10) by z, and integrating over Q, we obtain the existence of constants M,, M, > 0 such that

al <ozt ) < 3=, + Ml

which implies that {z*} is bounded in Y. for sufficiently small A. Since PO‘1 exists and is a bounded mapping from (Y, )(C to

it follows that {z*} is bounded in X.. Therefore, {(z*,r%, h*,64) : 1 € (0, A]} is precompact in Y X R3.
Consequently, there exists a subsequence {(z*:,r*, h*,6%)} such that

(z*ﬂ,rl",hl",elﬂ) — (zO,rU,hO,SO) in Ye X R3, A, > 0asn— .

Taking the limit of the equation P gy (2%, r#n, h*, 0%4) = 0, as n — oo, we obtain
( An pn prn @7 ) — (Zo,ro,ho,ﬁo) in X¢ X R3, asn — oo,

and G(z°,/%,h0,6°,0) = 0. By Lemma 3.4, we conclude that
(20.7%.10,60°) = (2. 70. . 0).

This completes the proof. O

The following theorem follows directly from Lemma 3.5.

Theorem 3.6. Assume that L, > 0, for A € (0, A*], the following eigenvalue problem
A(Aiw, T)y = 0,0 > 0,7 > 0,w(# 0) € X

has a solution (w, 7, y) if and only if the following conditions are satisfied:

0, +2nm
w=w,=Ah;,y=cy;,T1=1,= T,n=0,1,2,...,

where y = ky, = k(r;fy + Az,), k is a nonzero constant, and z,,r,, h,,0, are defined according to Lemma 3.5.

To prove that iw is a simple eigenvalue and satisfies the transversality condition, we provide the following estimates.

Lemma 3.7. Assume that L > 0 and define

S,(4) 1= / w?dx + Ar,e % / B(4, x)yldx,
Q Q
where v, 7,, and 0, are given as in Theorem 3.6. Then, for n=0,1,2, ..., we have
lim S, (4) # 0.
r=0

Proof. According to Theorem 3.6, we have

lim Re 5,(4) = lim /ﬂ widx + At, cos 0, /9 B (A, x)yldx

= g1Ql +

0y + 2nx 2bc2e2am(x)
u 2 / P dx + 8|9
Q

hO (C2 + eZam(x)ﬁg )2

lim Im ,(2) = lim —4z,,sin 0, /Q B, (x)y3dx

— i 20,1+2n7rh|9|
= lim A———
A=0 /U’ZA

= B3 (8 + 2n7)|Q| # 0,
thus, we have
}LI% S,(4) # 0.
This completes the proof. O
Next, we prove that iw, is a simple eigenvalue.
Theorem 3.8. Assume that L, > 0. Then u = iw, is a simple eigenvalue of ATM for € (0,7*]landn =0,1,2,....
Proof. We know that

./\/'[.A,m,l - ico,l] = span {“*y, },

(Xl)a:’
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where s € [-7,,0]. Suppose that ¢, € N[ATM - 1cu,1] , then

[ATM - icoi]qbl € N[A,M - iwi] = span {ei("”w/l}.
Thus, there exists a constant a such that

[-Ar,,,/l - 1@1]4’1 = ae Py,
Therefore,

$1(s) = iw,;,(s) + aeiw*swi, S [—T,,,O],

2Abc? ey, (12)

$1(0) = e p, — — 28 [p(0) + AB(4, x)$(-7,,).

(62 + e2am(x)ui)2
From the first equation in Eq. (12), we obtain

$1(5) = b1 (00 + ase ™y,

] ) (13)
$,(0) = iw;¢,(0) + ay,.

From the second equations in Eq. (12) and Eq. (13), we get

2Abc? ey,

Adiw,, 7,) P (0) =] e—@m@Op - —— — A4
( i Tn) 1 0 (c2+e2‘""(x>ui)2

— 26 |¢,(0) + Ae7 3™ B, (4, x)¢b, (0) — icw;*" X, (0)

=ae®™ [w; + At,e" 04T B (4, ).

Noting that A(4, —iw,, 7,)#; = 0, it follows that

as,(A) = a< / ™"y dx + jr,e7 10 / B (A, x)e" Xy 2 dx)
Q Q
= (e"™MA(A, —iwy, 7,) W5, $0)) = (¥, P A(Aiw,, 7,)$(0)) = 0.

By Lemma 3.7, for 4 € (0, i*], it follows that a = 0. Therefore, ¢, € N [Ar,,, ) /1]. By induction, we obtain

J
N[ A a=io| =N[4, =] =234, n=012, ...

This completes the proof. O

Since u = iw, is a simple eigenvalue of A, ,, the implicit function theorem implies that there exists a neighborhood O, x D, X H,, C
R x C x X¢, containing the point (z,,iw,, v, ), and a continuously differentiable mapping (u(z), y(z)) : O, = D, x H,, such that for
each 7 € O, u(r) is the unique eigenvalue of A_ , in D,, satisfying

24bc? ey,

A, u(t), D (r) =| e Py — = 26 |w (1) + Ae™H" By (A, )y (7) — u(D)y(r) = 0. (14)

(c2 + e2am(0,2 )
where y(z,) = y,. Now, we verify the transversality condition for the Hopf bifurcation.

Theorem 3.9. Suppose L, > 0. Then, for A € (0, 1*], we have

d
I Re [1(z,)] >0.n=0,1,2,....

Proof. Differentiating Eq. (14) with respect to 7 at = = 7, we obtain

d,u(r,,)
dr

dy/(r,,)
dr

[A7,67% B (4, ), + ] = A(A iw,, T,) —iw; e B (A, X)y,. (15)

Noting that

dy (7, dy(t
<1/7A~,A(/1, iw,l,r,,) d(T") > = <A(/l, —ia),l,f,,)y‘//l, d(rn) > =0,
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multiplying both sides of Eq. (15) by y,; and integrating over Q, we obtain
du(z,) —iwie™% [, By (A, x)y? dx
b fyldx+ree i [o B ow] dx
—iwie™ [, B (4, x)wf dx [fﬂ wf dx + rr, e [, Bi(A, x)u/f dx]
IS,

=—|S (1/1)|2 [ia)/le_m‘/y/fdx/ Bl(/l,x)y/fdx]
Q Q
n

2
- | ! 7 [im,,zze"”x (/ B (4, x)y? dx> ]
S, (A Q

4 =cos @, —isin6,, we obtain

Since e~0

du(r,
Re ( n) - _ 1 > <sin91a)1/u/§a’x/ BI(A,x)y/fdx)
dr |Sn(}‘)| Q Q

Thus, we get

1d 1 2
lim — —=Re |u(7,)] = —————h
i-0 12 dr ()] lim,_q |S,(A[ ‘

This completes the proof. [
Theorem 3.10. Suppose fi, > 0. Then model Eq. (2) has a unique positive steady state solution u,. Moreover, for any A € (0, *], where
0 < A* < 1, the following conclusions hold:

() If Ly <0, then u, is locally asymptotically stable for = € [0, +o0);
(i) If Ly > O, then there exists a sequence {TVI};.;O (given by Theorem 3.6), such that: when © < 7, u, is locally asymptotically stable; when
T > 1y, u, is unstable; when t = 7, (i.e, n =0, 1, ...), model (2) undergoes a Hopf bifurcation.

4. The direction of the Hopf bifurcation

This section adopts the method from to study the direction of the Hopf bifurcation [19,20] for model Eq. (2). Let U(t) = u(-,1) — u,,
where ¢ = 77 and 7 = 7,, + . To simplify notation, we omit the tilde symbol, thus transforming system Eq. (2) into the following form:

d(g:’ ) _ ¢ e R U(1) + 1, P(U) + I (U, 0), (16)
where U, = U(1 +5) € C = C(|~1,0],Y), and
2bcze"‘”‘(")u,1
PU,) = —A—C G4y — 23U (1) + ABy (AU (1 — 1),

(c2+ e2am(x)ui)2

J(U,, 0) =0e™ " PyU(t) + 0P, (U,)

B,(4,x)
+ Mo+ 17,) X [Tuz(z -1
B;5(4,x)
+ Ao +1,) X [TU3(t)U3(t - D+ oW 1))
Cy(A, x Cy(4, x
— Mo +1,) % [ 2(2 )Uz(t)+ 3(6 )U3(t)+O(U4(t))],
where
By(4,x) = p(2ae‘""(x) + azullez‘”"(x))efaeamm"",
B,(x) = p(2ae‘""<") + azﬁoezam("))e—”eW(X)ﬁU,
By(A,x) = p(3a?e*™™) — a3u,1e3’”"(X))e_aeM(X)"*,
B3 (x) - p(302e2am(x) _ (13 ﬂ0e3am(x))e_ae”m(x)ﬂ0 ,
2bcz(c2 - 3e2“”’(")u2) 24bc2edam) 3
Cy(4,x) = —J,C3(/Lx) = —44,
(62 + eZam(x)ui)‘ (C2 + eZam(x)ui)
2bc*(c? — 32 g2y 24bc?e>*m) g3
Cy(x) = — 5 3(x) =

2 4 e2am(x) g2 2 o p2am(x) g2yt
(c +e‘“’”‘ﬂ0) (c +e‘"'”‘ﬁ0)

11
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Clearly, when ¢ = 0, model Eq. (18) undergoes a Hopf bifurcation at the zero equilibrium. For ¢ = 0, the linearized equation of

(18) at U, = 0 is given by
du@
e~

Let A,n be the infinitesimal generator of the solution semigroup of Eq. (17). Crandall and Rabinowitz [17] proved that for all ¥
D(A, ), we have

7,e" ™I P U + 7, P U,. a7

A ¥ =,

2bcZe®™¥y

D(A,) ={‘I’ € CeNCL : W(0) € X, Y(0) = 7,67 PyY(0) — Ar, (5 + SIW(0) + 47, B(4, x)‘I’(—l)},

(CZ + eZam(x)Mi )

where 601: = C!([-1,0], Y). Then Eq. (18) can be rewritten in an abstract form as

du,
d—t’ = A, U+ XoJ(U,,0), (18)

where

0, 60€l[-1,0),
Xo(9)={l 9:%) )

From the previous discussion, A, has only one pair of purely imaginary eigenvalues +iw,7,, which are simple. The corresponding
eigenfunctions are o(s) = y,;e/1™* and g(s) = e "“2™* for s € [-1,0], where y, is defined as in Theorem 3.6.

Since advection is present, the standard inner product on Y. is unsuitate for computing the normal form.
Following Chen et al. [21] , we introduce the following weighted inner product on Y:

(u,0); = / e (x)v(x) dx, for u,v € Ye.
Q

Since m(x) is bounded in Q and e*”™ is positive, we verify that Y. remains a Hilbert space under this inner product.
Lemma 4.1. The formal adjoint operator A} of A, is defined as

AL W(s) = —¥(s)
with the domain

2bc?em My,

D(AY) ={\i' ecin(c) 1 90) € X, —¥(0) = 7,6 Py(0) - Az, | 5 + > [90) + 47, B (4, x)‘i’(l)},

(CZ + e2am(x) ui )

1

where (CE) = C1([0,1],Y¢). Then, A, and Ar satisfy

({45, 20)) = ((¥.4,7)).
Proof. For ¥ € D(A, ) and ¥ e D(A; ), we have

{(P4.%))

0
:<l?(0), (,4,”'1’)(0)>1 +ar, /1 (s + 1), B (G, )W) ds
=(9(0), 7,6 PW(0)), + Az, (P(0), B, (4. x)¥(-1)},

. 2bcZe ™y,
— At,( ¥(0),]| ——— = +46|¥(0)
(CZ 4 eZam(x)ui)z

+r5, [ (s + 1), B (L 0¥(), ],

1

0,
—AT,,/ <‘P(s+1), Blu,x)llf(s)>lds

1
=((4;, 7)o ‘P(0)>1 + iz, /_? (=¥ + 1. B, x)‘]’(s)>lds
=((az 9.%)).

This completes the proof. O

12
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Similarly, we know that A; has only one pair of purely imaginary eigenvalues +iw,z,, and they are simple. The eigenfunctions
associated with iw, 7, ( —iw,z, ) are

4(3) =y (G(3) = gye )
for 5§ € [0, 1], where y, is defined as in Theorem 3.6. The center subspace of Eq. (18) is P = span{p(s), j(s)}. Moreover, the basis of
the eigenfunction space of the adjoint operator Ajn associated with the eigenvalues +iw,;7, is

P* = span{q(5), 43}
Furthermore, the formal adjoint subspace of P is P*. As usual, Cc can be decomposed as

Cc=P®Q, where Q = {y € Cc | ((§,w)) =0, Viy € P*}.
Define

= (p(s), p(s)), for s € [-1,0],

_ (4 9B <
¥ = (S,”W o ) for 5 € [0, 1].

It can be easily verified that

<<q)p’q‘p>> =1

where I is the identity matrix in R>*2. Since the bifurcation direction and stability formula we will study next are only related to
0 =0, we set ¢ = 0 in the system Eq. (18) and define

z(f) = s, M)«q, U).
Let
z2 z2
Wi(z,z)(s) = I/Vzo(s)? + Wi (s)zz + %2(5)7 + e,

be the center manifold with range in Q. Then the flow on the center manifold for Eq. (18) can be written as

U=0, (f(’ )> + W (z(0), (1))

Z(1)
Since ¢ = 0, we obtain
) 1 d{{q,Up)) . i}
(1) = ) T’ = iw,,z(t) + g(z(t), Z(1)), (19)
where

§z0, 20) = 5 /1)<q(0) F(U,.0)),

1 z(1) =
=3 D <q(0) F< <z(r)> + W (z(1), 2(1)), 0) >]

_ 22 - 72 22z
T 805 TENZZ T8RS TEI T

Clearly, simple calculations yield

At .
CZ()» x)eam(x)y/ dx + —— n 20,7y / By(4, x)e“m(X)l//;dx,
Q

2= 50 S,0°

n 2 Tn (x) 2
g1 =— —2 | Cy(4,x)e® Oy |y dx+—/B (4, x)e*™ Oy, [y, |"dx,
. S,,(A)/g ’ il 505 1o ™ el

At, / At, S
8p == — [ Cy(Ax)e™Dy,pldx + —L Pt / B,(4, x)e™ Xy, 52 dx,
02 S0 Jo ? A S(/l) o’ A

241, 2Mt, _
g = — 5 (/11) (2, x)eam(x) zw”(O)dx+ 5 (;) iw, 7, / By(4, x)eam(x) 2 5 (/1) Cz(ﬂ x)eam(x)ly/jl Wy (0)dx
At
5w / By 0™y g (=D x = 3 u) / Coh e sl
AT’! iw, 1, /
. B /1’ ntm(x) 2 d C /1 am(x) 2 d
tasme” Jy B il dx - 50 55, Cobmemilvifas
A1, e—imﬂn/ 33(/1,x)€am(x) 2|V/ | dx.
S, () Q
Now, only W,,(s) and W},(s) remain to be computed in g,,.
W — { Ar,,W - gP(S) - ﬁ(s)’ se [_1’0)’ (20)
A, W —gp(0) — 2p(0) + J(2Re{z(D)p} + W (z(1), Z(1)), 0), s=0.

13
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On the other hand, according to the definition of W, when the center manifold C, approaches the origin,
W =W,z + W;z
=[Wao(9)z + Wy (9)Z] 2 + [W],(8)z + Wip(9)Z] £ + -
=[Wao(9)z + W1()Z] (10,12 + (2. 2))
+ W19z + Wp(9)Z] (-i6,,,2 + (2. ) +

Combining the above equation with Eq. (20), we obtain

—820P(5) — & D(s), s € [-1,0),
(200,47 = Aq, YWan(s) =4 ~8200(0) = 8 B(O) = 47, Cah, W)™y 21)
+Arne_2‘“’ﬂn B, (4, x)e‘"”(x)y/f, s=0.
Moreover,
—811P(s) — §119(5), s € [-1,0),
- 2
— A, Wii(s) = 4 —811p(0) — 811 (0) — A7, Cy(4, )™ ™ |y, |
+47, By(4, x)e™™ |y, |7, s =0.

To compute W,,, from Eq. (21), we obtain
W (8) = 2i6,,,Wao(5) + 200() + &02(5), 5 € [—1,0).
Noting that p(s) = y,e/®1™%, we derive the following relation:

Wig(s) = —= ()+ 3 292 5(s) + Ee?i®its, (22)
W7, ;T

In particular, Egs. (21) and Eq. (22) indicate:

(Ziw ral = A, ) Eeoims| == z,Cy(h x)e ™y + Az, 204 By(A, )™y

which is equivalent to

A(4,2i0,,7,) E =17,Cy(A, )™ X y? — A1,e7204% B, (1, x)e Xy 2. (23)
Noting that 2iw, is not an eigenvalue of 4, ;, for 1 € (4,, 7*], we have:

E =3A(4,2iw,,7,) " Cy(A, 0)e™™Oy? — je 20 A (4, 2w, 7,) " By(dy x)e Oy
Similarly, from Eq. (21), we deduce that for s € [-1,0),

Wmm=—ﬁlmw+w B(s)+ F.

A%n AT

At s = 0, F satisfies the following relation:

—AF = iz, (By(4, X)€" = Cy (4, )¢ |y, |-
Thus, we obtain

F=-A(2,0,7,,)" [(Bz(/l, X)e™) — Cy(4, x)e™) |w|2]. (24)
Lemma 4.2. Assume that 4 € (0, 1*), and let E; and F, be defined by Eq. (23) and Eq. (24), respectively. Then, we have

Ej = piBo+ms, Ey = kyfo + 1 (25)
where n, and 7, satisfy

M3 71z € Xy, lim 71l x. =0 lim 7]l x. =0
and the constants p, and k, satisfy

lim p, = 20 By [ By(x)e2 D dx — fy [y Cy(x)e2 ¥ dx
is0"? D(x) + 2ih /Q eam(x) dx — e=2i6y /Q B, (x)ewn x

ik Bo Jo Ba(x)e ™D dx — By [, Cy(x)e*™ X dx
1m =
is0 D(x) — [, By(x)e™ (™ dx

B

. . 2 2am(x)f
where 6, h, are defined in Eq. (11), D(x) = [, (2[2’1 ;mmﬂ‘; dx+6 [ e dx.
C €

14
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Proof. We only prove the estimate for E,, as the estimate for F, can be obtained similarly. Substituting the expression of E, from
Eq. (25) into Eq. (23), we obtain

2 Abc2e2emx)y .
Pyn, — —12 + A8e"™X) 4 2iw, 7, ) (pafo +1y) + Ae~H0i™ B (A, x)e“™ (p, By +1,)

(6‘2 + e2am(x)ui) (26)
=AC,y (A, X)X ™Dy — ™14 B, (4, x)e> ™y 2,

Integrating Eq. (26) over Q, we get

2bc2e2am)y )
ol - 48 / —————— 5 dx— s / €M) g +pl<—2iwlﬁ0 / ™M) dx 4+ Jpye”H0iTn / B, (4, x)e®™™ dx>
Q (2 + eza’"(")ui) Q Q Q

2bc2e2em®y
=A/ —/1”12 dx + /15/ ey dx + 2iw, / ey dx @7
Q (62 + eZam(x)ui) Q Q

+2 / Cy(A, X)Xy 2 dx — pe= 103 / By (4, x)e* ™y 2 dx.
Q Q

w;

Since |w,|, = g lloos 1wl oo @and [ By (A, )l o, 11C5 (4, %)|, are bounded for 4 € (0, 1*], there exist constants M, > 0 and M, > 0 such

that

[p;l < ]\40”71,1”)/C + M, A€ (0, .

Multiplying Eq. (26) by 7, and integrating over Q, we obtain

2bc2eramx)y
o —Aﬁo/ —Azﬁldx—lﬁoé/e"""(")ﬁldx—Zia)A«ﬁo/e“'"(")ﬁldx
Q (2 + eZam(x)ui) Q Q

+ (n,, Pyny) + plﬂﬂoe_zmﬂn / B, (4, x)e“'"(x)ﬁ,ldx
Q

2bc2e2am)y
:A/ —’12|n,1|2dx+15/e“'"(x)lrulzdx+2i(o/1/e"'"(x)lr]/llzdx
Q (¢ + eza'"()‘)ui) Q Q

(28)

+4 /Q Cy(A, X)Xy, dx — he™ 203 /Q B,(4,x)e** "y 2, dx.
By Lemma 3.2 and Eq. (28), there exist constants M, > 0 and M3 > 0 such that
|/1z|||f1,1||§C < ilelfuII%C +AM3]in lly . 4 € (0, 271,
Thus, lim,_, ||n /1”)'@ = 0. Multiplying Eq. (27) by % and taking the limit as 4 — 0, we obtain that p, satisfies

i . e72i€0ﬂ0 [Q Bz(x)eZam(x)dx _ ﬁO fQ Cz(x)eZam(x)dx
=047 D(x) + 2ihyg [, e dx — e=2% [ By(x)e® ™ dx

This completes the proof. O

Thus, by computing the coefficients g,. g, g,, and g,;, we obtain the normal form Eq. (19) restricted to the center manifold C,.
Define

C1(0) = 51— |g11820 218 IZ——lgO2|2 + 51
1 29,,1 11820 11 3 2 .
Then, we have
= — Re(C;(0))
7T Re(W (7))
B, = 2Re(C,(0)),
~Im(C,(0)) + g Im(4'(z,)

Tn

T, =
These quantities determine the properties of the bifurcating periodic solutions at the critical value z,, namely:

(i) u, determines the direction of the Hopf bifurcation: if 4, > 0 (< 0), then the Hopf bifurcation is forward (backward), and the
bifurcating periodic solutions exist for = > 7, (z < 7,,).
(ii) p, determines the stability of the bifurcating periodic solutions: if f, < 0 (> 0), then the periodic solutions are orbitally asymptot-
ically stable (unstable) on the center manifold.
(iii) T, determines the period of the bifurcating periodic solutions: if T, > 0 (< 0), then the period increases (decreases).
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Theorem 4.3. Assume that Ly > 0 and 4 € (0, A*], where 0 < 1* < 1. Let {z, }

eachn=0,1,2,..., the Hopf bifurcation at z, is forward, and when Re [Cl 0)
asymptotically stable, when Re [C,(0)] > 0, the Hopf bifurcation is backward,

According to the study by Zhang and Wei [7], we know that when convection terms are present and « > 0, the sign of Re [C,(0)]

is unknown. Similarly, we provide an alternative method of calculation here.

Theorem 4.4. It is shown by calculation that

2
. . i 2 |g02| 821
}%RCC1(0)=£§%RG{M[g11820—2|811| -3 ] +7}

. AT,
= ﬂg (e 10, Tn / Bz(x)e‘""(x)dx> /llm(l)Re 25,00
T,

/C (X)e“'"(x)dx> 11m Re — 2 <2F/1 EA)
2 25, M\ By Bo

&\®4Tn / B (x)e"’""”dx) hm Re
Q

At,
6S,(2)

/Cg(x)e"”'(")dx lim Re —_
Q =0 6S,(4)

e7i0uTn / B (x)e‘""(x)dx> lim Re -~

s / C3(0e™dx ) lim Re == ATy
0 28,(4)°

where f, is given in Theorem 2.1, and F; and E, are given in Lemma 4.2.

28, (/1)

Proof. By Lemmas 3.4, 4.2, and Theorem 3.6, we have:
li =y, li = By, limy; = By, li =0, + 2nr,
limu, = fo. limy; = fo. lim g7 = fo. lim w; 7, = 6 + 2nz

and

. i1,
lim g5, = f; <e-2“”o / By (x)e® M dx — / Cz(x)e’”"(x)dx> lim
A—=0 Q Q

=0 S,(A)’
Aty
B — 3 am(x) _ am(x)
}lgr(l)g“ B, (/Q B;(x)e dx /QCz(x)e dx) }lgn 5 (/1)

. A,
B — 3 26 am(x) _ am(x)
}11_r>r(1)g02 8, (e LBz(x)e dx /Cz(x)e dx> 11II(1) 5.’

. 247, (g ST
lim gy, = —f [ Cy(x)e™ P dx lim —= L
PRl ﬁo/ (x)e e SO\ T, @, By

) 247, i : ig
+ﬂge_‘90 / B, (x)e™ ¥ dx lim ——= <—ﬂe"'“’ﬂ’" + S

-0 .8, (4) w;T, ;T,

) 2it, ( F
3 —i6 A
+ fye i / B (X)eam(x)dx lgn 5.0 (ﬂ_0>

A, 1g ig E
3 am(x) 20 02 s
- p Cy(x dx lim —_—+ —
0 / 2(x)e 1—> S,(A) <w,1r,, 3w,1, ﬁO )

. At, i . ig
+ ﬂg el B ) (x)e®™ ) dx lim —" 1820 piv;m + 802
=0 S, (1) \ w7, 3w,7,

+ﬂgei90/B ()€™ dx lim —2— ATy <ﬂe‘2i"’ﬂ’n>

=0 S,(H \ By
ir,
+/30< 1% / By (x)e™Wdx — / C;(x)e"'"(’()dx) lim - 3, (/1)
A
+ﬁ4< —"’o [ By~ / C(x)e"'"(x)dx) lim S?:l)
—2ig 1820 2i|3|1| + 1811820 +i|302|
w,T, w,T, T, 3,1,
it, (2F, E
+ ““’Afn B (x)e"m(x)dx> lim —2 <—'1 + —A>
& < SO\ T
it, (2F, E
ﬂ < Cz(x)e"'”‘”dx) lim —n_ <J+J>
=0 S, (M) \ By bo
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eia)/lr,,>

elm;j,,)

be the sequence of Hopf bifurcation values. Then, for
] <0, the periodic solution bifurcating from = = 7, is orbitally
and the periodic solution bifurcating from t = z is unstable.
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. A
+ﬂ61 <e""f1"71 /S!B3(x)e”'"(")dx - / C (x)e“'"(")dx> }gﬂ 3ST(/1)

) A
+ﬁ§ <e_""”" / B;(x)e™®dx — / C; (x)e"”’(")dx> lim —n
Q

150 S, (A1)

Substituting the above results into the expression for C,(0), we obtain

2
. . i 2 |g02| 821
}%RCC1(0)=£§I€)R€{W[g11820—2|g|1| -3 ] +7}

. iz, (2F, E
= 3 emoxm / By(x)e™dx ) lim Re In (24, 24
0 28,(A) ﬂo ﬂo

A 2F E
Cz(x)e"m(")dx> Jim Re —1_ < Ay 4 )
-0 2S5,(4) ﬁ() bo

3
0

+ ﬂ e“””” B (x)e‘""(x)dx> 11m Re —— s (/1)

T,
6S,(4)

+ 5 -‘Wn B (x)e“”“”dx) lim Re

T
-0 28,(4)

4
0

-5 < C3(x)e’”"(x)dx> lim Re

At,
am(x) lim R
C (x)e dx) Am}) e —— 23, (/1)

This completes the proof. O
5. Numerical simulations and conclusions

To verify the correctness of the theoretical results in this paper and further explore the impact of key parameters on Nicholson’s
blowfly population dynamics, we conducted a numerical simulation to analyze the proposed predator-affected Nicholson’s blowfly
population delay reaction-diffusion-advection model in depth. First, we verified the impact of the delay parameter = on Nicholson’s
blowfly model population pattern formation through numerical simulations. Additionally, from a biological perspective, we focused
on the effects of the advection rate «, saturation predation rate b, half-saturation constant ¢, and mortality rate 6 on the stability of
Nicholson’s blowfly population. During the numerical simulation, the parameters were selected based on specific observational data
from previous studies, ensuring the mathematical model’s validity.

5.1. Effect of time delay

This section will demonstrate the impact of the delay parameter r. According to Theorem 3.10, when L, > 0, the positive steady
state solution of Eq. (3) is locally asymptotically stable for r € [0, @ ) However, when 7 € ( ), a Hopf bifurcation occurs, and
the positive steady state solution u, loses stability.

The following parameter sets are chosen:

(Pd; =2,a; =2,p=30,a=2,b=0.5,c=1.5,6 =0.5,m(x) =sinx, x € (0, n),

(Py)d; =2,a; =2,p=10,a=2,b=0.5,c =1.5,6 = 0.5, m(x) = sinx, x € (0, ).
Initial conditions are:

(IC) u(x,t)=0.8+0.2sinx, x € Q, t € [-7,0].

Clearly, the parameter set (P,) ensures L, > 0, with §, ~ 2.146 and L, ~ 0.374. The parameter set (P,) ensures L, < 0, with g, ~
1.436 and L ~ —3.957. Under the condition of (P,), the first critical value for Eq. (3) is 7, ~ 1.423.

To illustrate the impact of the delay parameter r, numerical simulation results for - =1 and = = 2 are given. Fig. 1 shows that
when L, > 0: for = = 1, the solution of Eq. (3) converges to a spatially non-uniform positive steady-state solution, while for = = 2,
the solution converges to a time-periodic solution. Fig. 2 shows that when L, < 0, the solutions for both 7 = 1 and = = 2 converge
to a spatially non-uniform positive steady-state solution. These numerical simulation results are consistent with the conclusions of
Theorem 3.10.

5.2. Effect of advection rate

In this section, we will analyze the impact of the convection rate « on the Nicholson fruit fly population. According to the previous
discussion, the positive steady state solution g is affected by the convection rate a. Furthermore, based on Theorems 3.3 and 3.10,
the existence of a Hopf bifurcation is related to the sign of L,. Below, we conduct a numerical analysis of the relationship between
a, Py, and L.
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(a) 7 = 1, uy is locally asymptotically (b) 7 = 2, oscillation periodic solution
stable appears

Fig. 1. Eq. (3) undergoes Hopf bifurcation under parameter (P,) with L, > 0.

(a) wy is locally asymptotically stable (b) uy remains locally asymptotically
at 7 =1 stable at 7 =2

Fig. 2. The solution to Eq. (3) under parameter (P,) with L, < 0.

4.5 T T T T T T T

60 VS a

Fig. 3. (a) Relationship between convection parameter a and f,; (b) Relationship between convection parameter « and L.

Based on the numerical simulation results, as observed from the left graph in Fig. 3, the population density gradually decreases
as « increases. From the right graph, it can be seen that when « is small, L, > 0 satisfies the condition for a Hopf bifurcation.
However, when « is sufficiently large, L, < 0, and u,; becomes locally asymptotically stable. This suggests that in a lower convection
environment, individuals can better utilize resources, while a high convection rate may lead to excessive migration, thereby affecting
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Fig. 5. (a) Relationship between half-saturation constant ¢ and f,; (b) Relationship between half-saturation constant ¢ and L.

population stability. Therefore, a moderate increase in the convection rate can reduce population density and eliminate population
oscillations.

5.3. Effect of reaction term parameters

To investigate the impact of predation, we first conduct numerical simulations in this section to analyze the effects of the saturation
predation rate b and the half-saturation constant ¢ on the fly population. From the left panel of Fig. 4, we observe that as the saturation
predation rate b increases, the population density gradually decreases. When b is relatively small, a lower predation rate leads to an
increase in population density, and the model is more likely to undergo a Hopf bifurcation due to the directed movement of the
population. From the left panel of Fig. 5, we observe that as the half-saturation constant ¢ increases, the population density gradually
increases. From the right panel, we see that when c is small, L, > 0, which satisfies the condition for a Hopf bifurcation to occur.
However, when c is sufficiently large, L, < 0, and u; becomes locally asymptotically stable. Therefore, when c¢ is large, the population
density is higher, and oscillatory behavior no longer occurs.

Subsequently, we analyzed the impact of the mortality rate § on the population’s survival through numerical simulations. As
observed from the left graph in Fig. 6, as the mortality rate § increases, the population density gradually decreases. When 6 is small,
a lower mortality rate increases the population density, and the model becomes more susceptible to a Hopf bifurcation due to the
directional movement of the population. This suggests that populations with lower mortality rates are more likely to undergo periodic
oscillations.

These findings provide theoretical support for ecosystem management. For example, in environments with strong convective effects
(such as rivers or oceans), populations may require higher survival rates or lower predation pressure to remain stable. Furthermore, in
population control or resource management, adjusting predation rates and the half-saturation constant may be significant methods for
influencing population dynamics. Overall, the numerical simulations in this paper not only validate the correctness of the theoretical
analysis but also reveal how key ecological factors affect population stability and cyclic behavior through nonlinear dynamical
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Fig. 6. (a) Relationship between mortality rate 6 and f,; (b) Relationship between mortality rate 6 and L,.

mechanisms. This provides important references for subsequent ecological management, species conservation, and biological invasion
control.
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