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 a b s t r a c t

In this paper, we investigate a delayed reaction-diffusion-advection Nicholson’s blowfly model 
under the influence of predation. By analyzing the principal eigenvalue of the elliptic operator, 
we establish the stability of the positive steady state solution and the existence of a Hopf bifur-
cation. Furthermore, employing normal form theory and center manifold theory, we examine the 
stability and direction of the periodic solutions arising from the Hopf bifurcation. In addition, 
numerical simulations are conducted to validate our theoretical results. The numerical findings 
indicate that population density decreases with increasing advection rate, saturation predation 
rate, and mortality rate. Moreover, Hopf bifurcation induced by time delay is more likely to occur 
when these parameters are relatively low. Conversely, population density increases with the half-
saturation constant, and Hopf bifurcation is more likely to arise when the half-saturation constant 
is small.

1.  Introduction

Mathematical biology is an interdisciplinary field combining biology and mathematics. Using mathematical tools, it explores and 
reveals the underlying principles of biological systems, holding significant theoretical and practical value. In recent years, mathemati-
cal biology has become one of the most active research directions in applied mathematics. The research in this field typically involves 
two aspects: on the one hand, mathematical models are established and analyzed to understand and predict the intrinsic mechanisms 
of biological processes; on the other hand, population models not only help discover new mathematical problems but also promote the 
development of related fields. For example, in epidemic modeling, mathematical analysis can be used to optimize control strategies; 
in resource competition and population dynamics research, mathematical models can reveal novel dynamic behaviors.

Early population models were primarily based on ordinary differential equations to describe changes in individual numbers over 
time. In studying Nicholson’s blowfly model, Nicholson[1] suggested that the primary cause of oscillations was the time delay between 
density-dependent responses and their effects. In 1976, May [2] used a delayed logistic model to simulate Nicholson’s experiments 
and inferred that the development time from egg to adult was 9 days. However, this differed significantly from Nicholson’s observed 
value of approximately 15 days. To address this discrepancy, in 1990, Gurney et al. [3] proposed the following delay differential 
equation to describe the dynamics of Nicholson’s blowfly population:

d𝑢
d𝑡

= −𝛿𝑢(𝑡) + 𝑝𝑢(𝑡 − 𝜏)𝑒−𝑎𝑢(𝑡−𝜏),
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where 𝑝 is the maximum per capita egg-laying rate per day, 1
𝑎  represents the population size at which the Nicholson’s blowfly 

reproduces at its maximum rate, 𝛿 is the average adult mortality rate per day, and 𝜏 denotes the maturation time.
Although this model effectively describes the population fluctuations of Nicholson’s blowflies, its fundamental assumption is that 

the population is spatially homogeneous, meaning that interactions among individuals are global and do not account for spatial 
diffusion or migration. However, in real ecological systems, biological individuals are often not uniformly distributed, and spatial 
structure may lead to encountering frequencies differing from the homogeneous assumption.

To address this issue, in 1998, So and Yang[4], building upon the model of Gurney, introduced a diffusion term and formulated 
the following delayed reaction-diffusion model for Nicholson’s blowfly population: 

𝜕𝑢
𝜕𝑡

= 𝑑Δ𝑢(𝑥, 𝑡) − 𝛿𝑢(𝑥, 𝑡) + 𝑝𝑢(𝑥, 𝑡 − 𝜏)𝑒−𝑢(𝑥,𝑡−𝜏).

This model is defined on a finite domain with homogeneous Neumann boundary conditions. It analyzed the effect of the non-
monotonicity of the delay term on system stability under Dirichlet boundary conditions and established a novel mathematical ap-
proach to study the global attractivity of equilibrium states.

In 2000, So et al. [5] conducted numerical simulations of this model, exploring the Hopf bifurcation phenomenon. In 2016, Guo 
and Ma[6] applied the Lyapunov-Schmidt reduction method to investigate the existence of spatially nonhomogeneous steady-state 
solutions. By analyzing the distribution of eigenvalues, they derived conditions for the existence of Hopf bifurcation at these steady 
states. Using normal form theory and center manifold reduction, they further examined the direction of the Hopf bifurcation and the 
stability of the bifurcating periodic solutions.

Although the above model incorporates diffusion effects, it still assumes that individual movement is directionless, meaning that 
diffusion is random. However, in real ecological systems, individual movement is often influenced by environmental gradients, such as 
water currents, wind direction, or heterogeneous resource distribution. Therefore, in recent years, researchers have further introduced 
advection terms into population diffusion models to more accurately describe migration patterns under environmental gradients or 
external disturbances.

Reaction-diffusion-advection models effectively describe population movement patterns and biological processes, making them 
a powerful tool for studying spatial population dynamics. A significant problem in spatial ecology is understanding the impact of 
spatially heterogeneous environments on species invasion. A heterogeneous environment refers to the spatially varying distribution 
of environmental conditions. For example, phytoplankton in oceans or lakes require light, whose intensity varies with depth in the 
vertical direction. In such heterogeneous environments, species movement involves not only random diffusion but also advection.

To address the above, in 2022, Zhang and Wei[7] studied the following delayed reaction-diffusion-advection population model:
⎧

⎪

⎨

⎪

⎩

𝜕𝑢
𝜕𝑡

= 𝑑Δ𝑢 − 𝛼∇ ⋅ (𝑢∇𝑚) + 𝑢(𝑥, 𝑡 − 𝜏)𝑓 (𝑢(𝑥, 𝑡 − 𝜏)) − 𝛿𝑢, 𝑥 ∈ Ω, 𝑡 > 0,

𝑑𝜕𝑛𝑢 − 𝛼𝑢𝜕𝑛𝑚 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

where 𝜏 represents the maturation time, 𝛿 denotes the mortality rate, and the advection term 𝛼∇ ⋅ (𝑢∇𝑚) describes population move-
ment biased along resource gradients or advection due to water flow with velocity 𝛼𝑚(𝑥). The parameters 𝑑, 𝛼, 𝜏, 𝛿 are positive 
constants, and 𝑚(𝑥) ∈ 𝐶2(Ω̄). The study results indicate that delay-induced Hopf bifurcation is more likely to occur at lower advection 
rates. The impact of advection on the spatial distribution of general competitive populations has been investigated in previous studies 
[8–11].

In this paper, we further consider additional factors that inhibit population growth, such as low mating rates, artificial harvesting, 
and predation by potential predators. Compared to previous models, our study incorporates the effects of time delay, spatial diffusion, 
advection, and predation, providing a more realistic representation of population dynamics in ecosystems.

By analyzing the steady state solutions, stability, and delay-induced bifurcations of the model, we explore the effects of preda-
tion, time delay, and environmental gradients on population dynamics, offering theoretical support for ecosystem management and 
conservation.  In this paper, we study the following reaction-diffusion-advection model of the Nicholson’s blowfly population under 
predation effects: 

{

𝜕𝑢(𝑥,𝑡)
𝜕𝑡 = 𝑑1Δ𝑢(𝑥, 𝑡) − ∇ ⋅

[

𝛼1𝑢∇𝑚(𝑥)
]

− 𝑏𝑢2(𝑥,𝑡)
𝑐2+𝑢2(𝑥,𝑡) − 𝛿𝑢(𝑥, 𝑡) + 𝑝𝑢(𝑥, 𝑡 − 𝜏)𝑒

−𝑎𝑢(𝑥,𝑡−𝜏), 𝑥 ∈ Ω, 𝑡 > 0,
𝑑𝜕𝑛𝑢 − 𝛼𝑢𝜕𝑛𝑚 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.

(1)

where 𝑢(𝑥, 𝑡) represents the population density at location 𝑥 and time 𝑡, 𝑑1 is the random diffusion rate, 𝑏 is the saturation predation 
rate, representing the maximum predation capacity at high prey density, and 𝑐 is the half-saturation constant, representing the 
prey population density at which the predation rate reaches half of its maximum value. The function 𝑚(𝑥) describes the resource 
distribution, and 𝛼1 is the advection rate describing population movement along the gradient of 𝑚(𝑥).

The domain Ω is a bounded region with a smooth boundary 𝜕Ω, and 𝑛 is the outward unit normal vector on 𝜕Ω. The no-flux 
boundary condition implies that no individuals pass through the boundary.

Let 𝑢̂(𝑥, 𝑡) = 𝑒(−𝛼1∕𝑑1)𝑚(𝑥)𝑢(𝑥, 𝑡), 𝑡 = 𝑑1𝑡, and 𝜏 = 𝑑1𝜏. Defining 𝜆 = 1
𝑑1

 and 𝛼 = 𝛼1
𝑑1
, we omit the hat notation for simplicity. Conse-

quently, system Eq. (1) is transformed into the following form:
{

𝜕𝑢(𝑥,𝑡)
𝜕𝑡 = 𝑒−𝛼𝑚(𝑥)∇ ⋅

[

𝑒𝛼𝑚(𝑥)∇𝑢(𝑥, 𝑡)
]

− 𝜆𝑏𝑒𝛼𝑚(𝑥)𝑢2(𝑥,𝑡)
𝑐2+𝑒2𝛼𝑚(𝑥)𝑢2(𝑥,𝑡) − 𝜆𝛿𝑢(𝑥, 𝑡) + 𝜆𝑝𝑢(𝑥, 𝑡 − 𝜏)𝑒

−𝑎𝑒𝛼𝑚(𝑥)𝑢(𝑥,𝑡−𝜏), 𝑥 ∈ Ω, 𝑡 > 0,
𝜕𝑛𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.

(2)
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In this paper, we assume that 𝑚(𝑥) satisfies the following condition:
(𝐇1)𝑚(𝑥) ∈ 𝐶2(Ω̄) and 𝑚(𝑥) ≥ 0, 𝑚(𝑥) ≢ 0.

The rest of this paper is organized as follows: Section 2 studies the existence of positive steady state solutions. Section 3 investigates 
the corresponding eigenvalue problem and the existence of Hopf bifurcations. Section 4 analyzes the direction of Hopf bifurcations and 
the stability of bifurcating periodic solutions using normal form theory and center manifold reduction. Section 5 provides numerical 
simulations and discusses the impact of parameters on Hopf bifurcations.

According to the literature [12,13], we define the following spaces as
𝑋 =

{

𝑢 ∈ 𝐻2(Ω) ∶ 𝜕𝑛𝑢 = 0, 𝑥 ∈ 𝜕Ω
}

, 𝑌 = 𝐿2(Ω), 𝐶 = 𝐶([−𝜏, 0], 𝑌 ),

and  = 𝐶([−1, 0], 𝑌 ). The complexification of the linear space 𝑍 is defined as
𝑍ℂ ∶= 𝑍 + i𝑍 = {𝑎 + i𝑏 ∶ 𝑎, 𝑏 ∈ 𝑍}.

For a linear operator 𝑇 , we define its domain as (𝑇 ), its kernel as  (𝑇 ), and its range as (𝑇 ). Furthermore, for the Hilbert space 
𝑌ℂ, the standard inner product is

⟨𝑢, 𝑣⟩ = ∫Ω
𝑢̄(𝑥)𝑣(𝑥) 𝑑𝑥.

2.  Existence of positive steady state solution

This section focuses on the existence of positive steady state solutions for model (2), which satisfies the following elliptic
equation:

{

∇ ⋅
[

𝑒𝛼𝑚(𝑥)∇𝑢
]

+ 𝜆𝑢𝑒𝛼𝑚(𝑥)
(

− 𝑏𝑒𝛼𝑚(𝑥)𝑢
𝑐2+𝑒2𝛼𝑚(𝑥)𝑢2 − 𝛿 + 𝑝𝑒−𝑎𝑒𝛼𝑚(𝑥)𝑢

)

= 0, 𝑥 ∈ Ω,
𝜕𝑛𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(3)

Define the operator
𝑃0 ∶= ∇ ⋅

[

𝑒𝛼𝑚(𝑥)∇
]

,

and assume that it satisfies the homogeneous Neumann boundary condition. According to Belgacem and Cosner[14], Lou and 
Zhou[15] , the principal eigenvalue of the operator −𝑃0 under the homogeneous Neumann boundary condition is 𝜆1 = 0, and the 
corresponding eigenfunction 𝜙 can be chosen as a constant. For simplicity, we take 𝜙 = 1.

It is easy to verify that 𝑃0 is a self-adjoint Fredholm operator from space 𝑋 to 𝑌 . Therefore, the spaces 𝑋 and 𝑌  can be decomposed 
as follows:

𝑋 = 
(

𝑃0
)

⊕𝑋1, 𝑌 = 
(

𝑃0
)

⊕ 𝑌1,

where 


(

𝑃0
)

= span{𝜙} = span{1}, 𝑋1 =
{

𝑦 ∈ 𝑋 ∶ ∫Ω
𝑦(𝑥) 𝑑𝑥 = 0

}

,

𝑌1 = 
(

𝑃0
)

=
{

𝑦 ∈ 𝑌 ∶ ∫Ω
𝑦(𝑥) 𝑑𝑥 = 0

}

.

By an argument similar to Theorem 2.1 in Cantrell et al. [16], we obtain the following existence result for positive steady-state 
solutions.

Theorem 2.1. Assume that condition (𝐇1) holds and the following conditions are satisfied: (𝐻2) 𝑝 > 𝛿, 0 < 𝛽𝑒𝛼𝑚(𝑥) ≤ 𝑐. Then, there exists 
𝜆∗ > 0 and a continuously differentiable mapping 𝜆 ↦ 𝑢𝜆 from the interval [0, 𝜆∗] into 𝑋, such that for 𝜆 ∈ (0, 𝜆∗], 𝑢𝜆 is a positive steady state 
solution of Eq. (3). Moreover,

lim
𝜆→0

𝑢𝜆 = 𝛽0,

where 𝛽0 is the unique solution of the following equation:

∫Ω
𝑝𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽𝑑𝑥 − ∫Ω
𝑏𝑒2𝛼𝑚(𝑥)𝛽

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
𝑑𝑥 − 𝛿 ∫Ω

𝑒𝛼𝑚(𝑥)𝑑𝑥 = 0. (4)

Proof.  The positive steady-state solutions of model (2) satisfy Eq. (3). Now, we define the mapping 𝐻 ∶ ℝ ×𝑋1 ×ℝ ↦ 𝑌 :

𝐻(𝛽, 𝜂, 𝜆) =𝑃0𝜂 + 𝜆𝑝(𝛽 + 𝜂)𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒
𝛼𝑚(𝑥)(𝛽+𝜂)

−𝜆
𝑏𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)2

𝑐2 + 𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)2
− 𝜆𝛿𝑒𝛼𝑚(𝑥)(𝛽 + 𝜂).

Let 𝑢 = 𝛽 + 𝜂, where 𝛽 ∈ ℝ, 𝜂 ∈ 𝑋1. Substituting it into Eq. (3), we see that Eq. (3) has a solution (𝑢, 𝜆) with 𝑢 ∈ 𝑋 and 𝜆 > 0 if and 
only if there exist some 𝛽 ∈ ℝ and 𝜂 ∈ 𝑋1, along with 𝜆 > 0, such that the equation 𝐻(𝛽, 𝜂, 𝜆) = 0 is solvable.
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Clearly, for any 𝛽 ∈ ℝ, we have 𝐻(𝛽, 0, 0) = 0. We compute the Fréchet derivative of 𝐻(𝛽, 𝜂, 𝜆) with respect to (𝜂, 𝜆):

𝐷(𝜂,𝜆)𝐻(𝛽, 𝜂, 𝜆)[𝜗, 𝜎] = 𝑃0𝜗 + 𝑝(𝛽 + 𝜂)𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒
𝛼𝑚(𝑥)(𝛽+𝜂)

𝜎 −
𝑏𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)2

𝑐2 + 𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)2
𝜎 − 𝛿𝑒𝛼𝑚(𝑥)(𝛽 + 𝜂)𝜎

− 𝜆
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)(𝛽 + 𝜂)2
)2
𝜗 − 𝜆𝛿𝑒𝛼𝑚(𝑥)𝜗 + 𝜆𝑝𝑒𝛼𝑚(𝑥)(𝛽 + 𝜂)𝑒−𝑎𝑒

𝛼𝑚(𝑥)(𝛽+𝜂)𝜗 − 𝜆𝑎𝑝(𝛽 + 𝜂)2𝑒2𝛼𝑚(𝑥)𝑒−𝑎𝑒
𝛼𝑚(𝑥)(𝛽+𝜂)𝜗.

Then

𝐷(𝜂,𝜆)𝐻(𝛽, 0, 0)[𝜗, 𝜎] = 𝑃0𝜗 + 𝛽𝑒𝛼𝑚(𝑥)𝜎
(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽
)

.

Noting that

−𝛽0𝑒𝛼𝑚(𝑥)𝜎

(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽0

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽0

)

∈ 𝑌1 = (𝑇 ),

there exists a unique 𝜗∗ ∈ 𝑋1 satisfying

𝑃0𝜗∗ = −𝛽0𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽0

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽0

)

,

thus


(

𝐷(𝜂,𝜆)𝐻
(

𝛽0, 0, 0
))

=
{(

𝑠𝜗∗, 𝑠
)

∶ 𝑠 ∈ ℝ
}

.

Further computation gives

𝐷𝛽𝐷(𝜂,𝜆)𝐻
(

𝛽0, 0, 0
)[

𝜗∗, 1
]

=𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽
)

−
𝑏𝑒2𝛼𝑚(𝑥)(𝑐2 − 𝛽2𝑒2𝛼𝑚(𝑥))

(𝑐2 + 𝛽2𝑒2𝛼𝑚(𝑥))2
− 𝑎𝑝𝑒2𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽 ,

where 𝐷𝛽𝐷(𝜂,𝜆)𝐻(𝛽0, 0, 0) is the Fréchet derivative of 𝐷(𝜂,𝜆)𝐻(𝛽, 𝜂, 𝜆) with respect to 𝛽 at (𝛽0, 0, 0). We claim that

𝐷𝛽𝐷(𝜂,𝜆)𝐻
(

𝛽0, 0, 0
)[

𝜂∗, 1
]

∉ 
(

𝐷(𝜂,𝜆)𝐻
(

𝛽0, 0, 0
))

.

Assume that the statement is false. Then, there exists 
(

𝜗, 𝜎
)

 such that

𝐷(𝜂,𝜆)𝐻(𝛽0, 0, 0)[𝜗, 𝜎] = 𝑃0𝜗 −
𝑏𝑒2𝛼𝑚(𝑥)𝛽2

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
𝜎 − 𝛿𝛽𝑒𝛼𝑚(𝑥)𝜎 + 𝑝𝛽𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽𝜎

= 𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽
)

+ 𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)(𝑐2 − 𝛽2𝑒2𝛼𝑚(𝑥))

(𝑐2 + 𝛽2𝑒2𝛼𝑚(𝑥))2
− 𝑎𝑝𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽

)

,

which implies that

𝐴(𝑥) =𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)𝛽

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽2
− 𝛿 + 𝑝𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽
)

+ 𝑒𝛼𝑚(𝑥)
(

−
𝑏𝑒𝛼𝑚(𝑥)(𝑐2 − 𝛽2𝑒2𝛼𝑚(𝑥))

(𝑐2 + 𝛽2𝑒2𝛼𝑚(𝑥))2
− 𝑎𝑝𝑒𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽

)

∈ (𝑇 ).

By direct computation, we obtain

∫Ω
𝐴(𝑥)𝑑𝑥 = −𝛽0 ∫Ω

𝑏𝑒2𝛼𝑚(𝑥)(𝑐2 − 𝑒2𝛼𝑚(𝑥)𝛽20 )

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )
2

𝑑𝑥 − 𝑎𝑝𝛽0 ∫Ω
𝑒2𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝑐0𝑑𝑥

≠ 0.

This leads to a contradiction, and hence the above statement holds.
Using the Crandall-Rabinowitz [17] bifurcation theorem, the solutions of 𝐻(𝛽, 𝜂, 𝜆) = 0 near (𝛽0, 0, 0) form the curve {(𝛽, 0, 0) ∶ 𝛽 ∈

ℝ} and

{(𝛽(𝑠), 𝜂(𝑠), 𝜆(𝑠)) ∶ 𝑠 ∈ (−𝜖, 𝜖)},

here, 𝛽(𝑠), 𝜂(𝑠), and 𝜆(𝑠) are continuously differentiable, satisfying 𝛽(0) = 𝛽0, 𝜂(0) = 0, 𝜆(0) = 0, 𝜂′(0) = 𝜂∗, and 𝜆′(0) = 1. Thus, 𝜆(𝑠) has 
an inverse 𝑠(𝜆) near zero. Since 𝛽0 > 0, there exists 𝜆∗ > 0 such that Eq. (3) has a positive solution 𝑢𝜆 = 𝛽(𝑠(𝜆)) + 𝜂(𝑠(𝜆)) for 𝜆 ∈ (0, 𝜆∗). 
Moreover,

𝑢0 = 𝛽(𝑠(0)) + 𝜂(𝑠(0)) = 𝛽(0) + 𝜂(0) = 𝛽0.

This completes the proof. ∎
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3.  Hopf bifurcation analysis

This section considers the eigenvalue problem associated with the positive steady-state solution of (2). Linearizing system (2) at 
𝑢𝜆, we obtain

⎧

⎪

⎨

⎪

⎩

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= 𝑒−𝛼𝑚(𝑥)∇ ⋅
[

𝑒𝛼𝑚(𝑥)∇𝑢(𝑥, 𝑡)
]

−
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆𝑢(𝑥, 𝑡)
(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

− 𝜆𝛿𝑢(𝑥, 𝑡) + 𝜆𝐵1(𝜆, 𝑥)𝑢(𝑥, 𝑡 − 𝜏), 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑛𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(5)

where

𝐵1(𝜆, 𝑥) = 𝑝
(

1 − 𝑎𝑢𝜆𝑒𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝑢𝜆 , 𝐵1(𝑥) = 𝑝

(

1 − 𝑎𝛽0𝑒𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝛽0 .

According to Wu[18], the solution semigroup of Eq. (5) has an infinitesimal generator 𝜏,𝜆 satisfying
𝜏,𝜆𝜓 = 𝜓̇ ,

for 𝜓 ∈ (𝜏,𝜆), where
(𝜏,𝜆) = {𝜓 ∈  ∣ 𝜓(0) ∈ 𝑋, 𝜓̇(0) = 𝜏,𝜆𝜓},

and

𝜏,𝜆𝜓 =
⎛

⎜

⎜

⎝

𝑒−𝛼𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

− 𝜆𝛿
⎞

⎟

⎟

⎠

𝜓(0) + 𝜆𝐵1(𝜆, 𝑥)𝜓(−𝜏),

where 𝐶1
ℂ = 𝐶1([−𝜏, 0], 𝑌ℂ

)

. The complex number 𝜇 is an eigenvalue of 𝜏,𝜆 if and only if
𝜇 ∈ 𝜎(𝜏,𝜆) = {𝜇 ∈ ℂ ∣ Δ(𝜆, 𝜇, 𝜏)𝜓 = 0, 𝜓 ∈ 𝑋ℂ∖{0}},

where

Δ(𝜆, 𝜇, 𝜏)𝜓 ∶=
⎛

⎜

⎜

⎝

𝑒−𝛼𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

− 𝜆𝛿
⎞

⎟

⎟

⎠

𝜓 + 𝜆𝐵1(𝜆, 𝑥)𝑒−𝜇𝜏𝜓 − 𝜇𝜓.

Lemma 3.1. Suppose that (𝜇𝜆, 𝜏𝜆, 𝜓𝜆
) is a solution of Δ(𝜆, 𝜇, 𝜏)𝜓 = 0, where Re𝜇𝜆 ≥ 0, 𝜏𝜆 ≥ 0, and 𝜓𝜆(≠ 0) ∈ 𝑋ℂ. Then, ||

|

𝜇𝜆
𝜆
|

|

|

 is bounded 
for 𝜆 ∈ (0, 𝜆∗].

Proof.  Multiplying both sides of Δ(𝜆, 𝜇𝜆, 𝜏𝜆
)

𝜓𝜆 = 0 by 𝑒𝛼𝑚(𝑥)𝜓̄𝜆 and integrating over Ω, we obtain

⟨𝜓𝜆, 𝑃0𝜓𝜆⟩ + 𝜆𝑒−𝜇𝜆𝜏𝜆 ∫Ω
𝑒𝛼𝑚(𝑥)𝐵1(𝜆, 𝑥)||𝜓𝜆||

2 𝑑𝑥 − 𝜇𝜆 ∫Ω
𝑒𝛼𝑚(𝑥)|

|

𝜓𝜆||
2 𝑑𝑥 − 2𝜆𝑏𝑐2 ∫Ω

𝑒2𝛼𝑚(𝑥)𝑢𝜆
(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2
𝑑𝑥 − 𝜆𝛿 ∫Ω

𝑒𝛼𝑚(𝑥)|
|

𝜓𝜆||
2 𝑑𝑥 = 0.

Noting that

⟨𝜓𝜆, 𝑃0𝜓𝜆⟩ = −∫Ω
𝑒𝛼𝑚(𝑥)|

|

∇𝜓𝜆||
2 𝑑𝑥 ≤ 0,

and since Re𝜇𝜆 ≥ 0, 𝜏𝜆 ≥ 0, we have

Re
(𝜇𝜆
𝜆

)

≤
Re

(

𝑒−𝜇𝜆𝜏𝜆 ∫Ω 𝑒
𝛼𝑚(𝑥)𝐵1(𝜆, 𝑥)||𝜓𝜆||

2 𝑑𝑥
)

∫Ω 𝑒𝛼𝑚(𝑥)||𝜓𝜆||
2 𝑑𝑥

≤ ‖

‖

𝐵1(𝜆, 𝑥)‖‖∞,

and

|

|

|

|

Im
(𝜇𝜆
𝜆

)

|

|

|

|

≤
Im

(

𝑒−𝜇𝜆𝜏𝜆 ∫Ω 𝑒
𝛼𝑚(𝑥)𝐵1(𝜆, 𝑥)||𝜓𝜆||

2 𝑑𝑥
)

∫Ω 𝑒𝛼𝑚(𝑥)||𝜓𝜆||
2 𝑑𝑥

≤ ‖

‖

𝐵1(𝜆, 𝑥)‖‖∞.

Since the mapping 𝜆 ↦ ‖

‖

𝑢𝜆‖‖∞ is continuous, we conclude that ||
|

𝜇𝜆
𝜆
|

|

|

 is bounded. This completes the proof. ∎

Lemma 3.2. Suppose 𝑧 ∈ (

𝑋1
)

ℂ. Then
|

|

⟨𝑃0𝑧, 𝑧⟩|| ≥ 𝜆2‖𝑧‖
2
𝑌ℂ
,

where 𝜆2 is the second eigenvalue of the operator −𝑃0 under homogeneous Neumann boundary conditions.
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Proof.  It is well known that the operator −𝑃0 on the domain Ω with zero Neumann boundary conditions has a sequence of eigenvalues 
{

𝜆𝑛
}∞
𝑛=1 satisfying
0 = 𝜆1 < 𝜆2 ≤ 𝜆3 ≤ ⋯ , lim

𝑛→∞
𝜆𝑛 = ∞,

and the corresponding eigenfunctions {𝜙𝑛
}∞
𝑛=1 form an orthogonal basis of 𝑌𝑐 , Moreover, 𝜙1 = 1. In particular, for each 𝑣 ∈ 𝑋𝑐

satisfying ⟨𝑣, 1⟩ = 0, there exists a sequence of real numbers {𝑐𝑛
}∞
𝑛=2 such that

𝑣 =
∞
∑

𝑛=2
𝑐𝑛𝜙𝑛.

Thus

𝑃0𝑣 =
∞
∑

𝑛=2
𝑐𝑛𝑃0𝜙𝑛 =

∞
∑

𝑛=2
𝑐𝑛𝜆𝑛𝜙𝑛.

From the above equation, we obtain

|⟨𝑃0𝑣, 𝑣⟩| =
∞
∑

𝑛=2
𝑐2𝑛𝜆𝑛‖‖𝜙𝑛‖‖

2
𝐿2 ≥ 𝜆2

∞
∑

𝑛=2
𝑐2𝑛‖‖𝜙𝑛‖‖

2
𝑌ℂ

= 𝜆2‖𝑣‖
2
𝑌ℂ
.

This completes the proof. ∎
Theorem 3.3. If 𝐿0 < 0, then there exists 𝜆∗ such that

𝜎
(

𝐴𝜏,𝜆
)

⊂ {𝑥 + i𝑦 ∶ 𝑥, 𝑦 ∈ ℝ, 𝑥 < 0}

for 𝜆 ∈ (0, 𝜆∗] and 𝜏 ≥ 0, where

𝐿0 = ∫Ω

[

𝑝𝑎𝛽0𝑒
2𝛼𝑚(𝑥)𝑒−𝑎𝑒

𝛼𝑚(𝑥)𝛽0 − 2

(

2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20

+ 𝛿𝑒𝛼𝑚(𝑥)
)]

𝑑𝑥.

Proof.  If the contrary, then there exists a positive sequence {(𝜆𝑛, 𝜇𝑛, 𝜏𝑛, 𝜓𝑛
)}∞

𝑛=1 such that lim𝑛→∞ 𝜆𝑛 = 0, and for 𝑛 ≥ 1, 𝜆𝑛 > 0, satis-
fying

Δ
(

𝜆𝑛, 𝜇𝑛, 𝜏𝑛
)

𝜓𝑛 = 0,

with Re (𝜇𝑛
)

≥ 0, 𝜏𝑛 ≥ 0, and 𝜓𝑛(≠ 0) ∈ 𝑋ℂ. Ignoring a scalar factor, suppose 𝜇𝑛 = 𝜆𝑛ℎ𝑛 and express 𝜓𝑛 as
𝜓𝑛 = 𝑟𝑛𝛽0 + 𝜆𝑛𝑧𝑛, 𝑧𝑛 ∈

(

𝑋1
)

ℂ, 𝑟𝑛 ≥ 0,

‖

‖

𝜓𝑛‖‖
2
𝑌ℂ

= 𝑟2𝑛𝛽
2
0 |Ω| + 𝜆

2
𝑛
‖

‖

𝑧𝑛‖‖
2
𝑌ℂ

= 𝛽20 |Ω|.
(6)

Substituting 𝜇𝑛 = 𝜆𝑛ℎ𝑛 and (6) into Δ
(

𝜆𝑛, 𝜇𝑛, 𝜏𝑛
)

𝜓𝑛 = 0, we obtain

𝐻1
(

𝑧𝑛, 𝑟𝑛, ℎ𝑛, 𝜏𝑛, 𝜆𝑛
)

= 𝑃0𝑧𝑛 + 𝑒−𝜆𝑛ℎ𝑛𝜏𝑛𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)
(

𝑟𝑛𝛽0 + 𝜆𝑛𝑧𝑛
)

−
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
2

(

𝑟𝑛𝛽0 + 𝜆𝑛𝑧𝑛
)

−
(

𝛿𝑒𝛼𝑚(𝑥) + ℎ𝑛𝑒𝛼𝑚(𝑥)
)(

𝑟𝑛𝛽0 + 𝜆𝑛𝑧𝑛
)

= 0,

𝐻2
(

𝑧𝑛, 𝑟𝑛, 𝜆𝑛
)

=
(

𝑟2𝑛 − 1
)

𝛽20 |Ω| + 𝜆
2
𝑛
‖

‖

𝑧𝑛‖‖
2
𝑌ℂ

= 0.

By Lemma 3.1, we obtain that for 𝜆 ∈ (0, 𝜆∗], |
|

ℎ𝑛|| is bounded, and ||𝑟𝑛|| ≤ 1. By Lemma 3.2, there exist constants 𝑀1,𝑀2 > 0 such that

𝜆2‖‖𝑧𝑛‖‖
2
𝑌ℂ

≤ |

|

⟨𝑃0𝑧𝑛, 𝑧𝑛⟩|| ≤𝑀1
‖

‖

𝑧𝑛‖‖𝑌ℂ +𝑀2𝜆𝑛‖‖𝑧𝑛‖‖
2
𝑌ℂ
.

Thus, for 𝜆 ∈ (0, 𝜆∗], {𝑧𝑛
}∞
𝑛=1 is bounded in 𝑌ℂ. Since the operator

𝑃0 ∶
(

𝑋1
)

ℂ →
(

𝑌1
)

ℂ

has a bounded inverse 𝑃−1
0 , it follows that 𝑃−1

0 𝐻1
(

𝑧𝑛, 𝑟𝑛, ℎ𝑛, 𝜏𝑛, 𝜆𝑛
)

= 0, implying that {𝑧𝑛
}∞
𝑛=1 is bounded in 

(

𝑋1
)

ℂ. Hence, the sequence
{(

𝑧𝑛, 𝑟𝑛, ℎ𝑛, 𝑒
−Re

(

𝜆𝑛𝜏𝑛ℎ𝑛
)

, 𝑒−i Im
(

𝜆𝑛𝜏𝑛ℎ𝑛
)
)}∞

𝑛=1

is bounded. This sequence is precompact in 𝑌ℂ ×ℝ3 × ℂ, so there exists a convergent subsequence
{(

𝑧𝑛𝑘 , 𝑟𝑛𝑘 , ℎ𝑛𝑘 , 𝑒
−Re

(

𝜆𝑛𝑘 𝜏𝑛𝑘ℎ𝑛𝑘
)

, 𝑒−i Im
(

𝜆𝑛𝑘 𝜏𝑛𝑘ℎ𝑛𝑘
))}∞

𝑘=1

with limit (𝑧∗, 𝑟∗, ℎ∗, 𝜎∗, 𝑒−i𝜃∗
)

, where
𝑟∗ = 1, 𝑧∗ ∈ 𝑌ℂ, ℎ∗ ∈ ℂ (Reℎ∗ ≥ 0), 𝜃∗ ∈ [0, 2𝜋), 𝜎∗ ∈ [0, 1].
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Noting that

lim
𝑘→∞

𝑃−1
0 𝐻1

(

𝑧𝑛𝑘 , 𝑟𝑛𝑘 , ℎ𝑛𝑘 , 𝜏𝑛𝑘 , 𝜆𝑛𝑘
)

= 0,

we obtain 𝑧∗ ∈
(

𝑋1
)

ℂ, and 
(

𝑧∗, 𝑟∗, ℎ∗, 𝜎∗, 𝜃∗
) satisfies

𝑃0𝑧∗ −
⎛

⎜

⎜

⎝

2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )

2
+ 𝛿𝑒𝛼𝑚(𝑥) + ℎ∗𝑒𝛼𝑚(𝑥)

⎞

⎟

⎟

⎠

𝛽0 + 𝜎∗𝑒−𝑖𝜃∗𝐵(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝛽0 = 0.

Thus, we obtain
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎∗ cos 𝜃∗ ∫Ω
𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 =Reℎ∗ ∫Ω

𝑒𝛼𝑚(𝑥)𝑑𝑥 + ∫Ω
𝛿𝑒𝛼𝑚(𝑥)𝑑𝑥,+∫Ω

2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑐0
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑐20 )

2
𝑑𝑥

−𝜎∗ sin 𝜃∗ ∫Ω
𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 = Imℎ∗ ∫Ω

𝑒𝛼𝑚(𝑥)𝑑𝑥.

Since Reℎ∗ ≥ 0, we have

𝜎2∗

(

∫Ω
𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥

)2
≥
⎛

⎜

⎜

⎝

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )
2
𝑑𝑥 + ∫Ω

𝛿𝑒𝛼𝑚(𝑥)𝑑𝑥
⎞

⎟

⎟

⎠

2

,

which implies that

𝜎2∗𝐿0 ∫Ω
𝑝𝑎𝛽0𝑒

−𝛼1𝑒𝛼𝑚(𝑥)𝛽0𝑒2𝛼𝑚(𝑥)𝑑𝑥 ≥
⎛

⎜

⎜

⎝

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )
2
𝑑𝑥 + ∫Ω

𝛿𝑒𝛼𝑚(𝑥)𝑑𝑥
⎞

⎟

⎟

⎠

2

. (7)

Noting that 𝐿0 < 0 and 𝜎∗ ∈ [0, 1], it follows from (7) that

0 ≤ 𝜎2∗𝐿0 ∫Ω
𝑝𝑎𝛽0𝑒

−𝛼1𝑒𝛼𝑚(𝑥)𝛽0𝑒2𝛼𝑚(𝑥)𝑑𝑥 < 0.

This contradicts the previous derivation, thus proving the theorem. ∎
According to Theorem 3.3, when 𝐿0 < 0, we can see that all eigenvalues of 𝜏,𝜆 have negative real parts for 𝜆 ∈ (0, 𝜆∗]. The 

following discussion focuses on the case 𝐿0 > 0. Next, we analyze the scenario when 𝜏,𝜆 has a pair of purely imaginary eigenvalues 
𝜇 = ±i𝜔 with 𝜔 > 0.

From the previous arguments, we conclude that if 𝜇 = i𝜔 ∈ 𝜎(𝐴𝜏,𝜆) for some 𝜏 > 0, then the following holds if and only if

Δ(𝜆, i𝜔, 𝜏)𝜓 ∶=

(

𝑒−𝑎𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2+𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2 − 𝜆𝛿

)

𝜓 + 𝜆𝑒−i𝜃𝐵1(𝜆, 𝑥)𝜓 − i𝜔𝜓, (8)

is solvable for some 𝜔 > 0, 𝜃 ∈ [0, 2𝜋), and 𝜓 ∈ 𝑋ℂ(≠ 0), where 𝜃 ∶= 𝜔𝜏.
If (𝜔, 𝜃, 𝜓) satisfies (8), then 𝜓 can be decomposed and normalized as

𝜓 = 𝑟𝛽0 + 𝜆𝑧, 𝑧 ∈
(

𝑋1
)

ℂ, 𝑟 ≥ 0,
‖𝜓‖2𝑌ℂ = 𝑟2𝛽20 |Ω| + 𝜆

2
‖𝑧‖2𝑌ℂ = 𝛽20 |Ω|.

(9)

Substituting Eq. (9) and 𝜔 = 𝜆ℎ into Eq. (8), we obtain the following equivalent system:

𝑔1(𝑧, 𝑟, ℎ, 𝜃, 𝜆) ∶=𝑃0𝑧 +
[

𝑒−i𝜃𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)
](

𝑟𝛽0 + 𝜆𝑧
)

− [
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

+ 𝛿𝑒𝛼𝑚(𝑥) + 𝑖ℎ𝑒𝛼𝑚(𝑥)]
(

𝑟𝛽0 + 𝜆𝑧
)

= 0,

𝑔2(𝑧, 𝑟, 𝜆) ∶=
(

𝑟2 − 1
)

𝛽20 |Ω| + 𝜆
2
‖𝑧‖2𝑌ℂ = 0.

(10)

Define the mapping 𝐺 ∶
(

𝑋1
)

ℂ ×ℝ4 ↦ 𝑌ℂ ×ℝ as

𝐺(𝑧, 𝑟, ℎ, 𝜃, 𝜆) ∶=
(

𝑔1, 𝑔2
)

.

We use the implicit function theorem to analyze the solvability of the equation 𝐺(𝑧, 𝑟, ℎ, 𝜃, 𝜆) = 0 when 𝜆 = 0.

Lemma 3.4. Suppose 𝐿0 > 0. Then the following equation
{

𝐺(𝑧, 𝑟, ℎ, 𝜃, 0) = 0,
𝑧 ∈

(

𝑋1
)

ℂ, ℎ > 0, 𝑟 ≥ 0, 𝜃 ∈ [0, 2𝜋],
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has a unique solution (𝑧0, 𝑟0, ℎ0, 𝜃0
)

, where

sin 𝜃0 =
−ℎ0 ∫Ω 𝑒

𝛼𝑚(𝑥)𝑑𝑥

∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
, cos 𝜃0 =

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(𝑐2+𝑒2𝛼𝑚(𝑥)𝛽20 )

2 𝑑𝑥 + 𝛿 ∫Ω 𝑒
𝛼𝑚(𝑥)𝑑𝑥

∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
,

ℎ0 =

⎡

⎢

⎢

⎣

(

∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
)2 −

(

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(𝑐2+𝑒2𝛼𝑚(𝑥)𝛽20 )

2 𝑑𝑥 + 𝛿 ∫Ω 𝑒
𝛼𝑚(𝑥) 𝑑𝑥

)2
⎤

⎥

⎥

⎦

1
2

∫Ω 𝑒𝛼𝑚(𝑥) 𝑑𝑥
> 0,

(11)

and 𝑧0 ∈
(

𝑋1
)

ℂ is the unique solution to the following equation:

𝑃0𝑧 = −𝑒−i𝜃𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝛽0 +
⎡

⎢

⎢

⎣

2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20
)2

+ 𝛿𝑒𝛼𝑚(𝑥) + 𝑖ℎ𝑒𝛼𝑚(𝑥)
⎤

⎥

⎥

⎦

𝛽0.

Proof.  Clearly, when 𝜆 = 0, we have 𝑟 = 𝑟0 = 1, and

𝑔1
(

𝑧, 𝑟0, ℎ, 𝜃, 0
)

=𝑃0𝑧 + 𝑝𝑒−i𝜃𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝛽0 (1 − 𝑎𝛽0𝑒𝛼𝑚(𝑥))𝑒𝛼𝑚(𝑥)𝛽0 − 𝛿𝑒𝛼𝑚(𝑥)𝛽0 −

2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(

1 + 𝑒2𝛼𝑚(𝑥)𝛽20
)2

− iℎ𝑒𝛼𝑚(𝑥)𝛽0,

thus
{

𝑔1
(

𝑧, 𝑟0, ℎ, 𝜃, 0
)

= 0,
𝑧 ∈

(

𝑋1
)

ℂ, ℎ ≥ 0, 𝑟 ≥ 0, 𝜃 ∈ [0, 2𝜋],

is solvable if and only if
⎧

⎪

⎨

⎪

⎩

cos 𝜃 ∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 = ∫Ω
2𝑏𝑐2𝑒2𝑎𝑚(𝑥)𝛽0
(𝑐2+𝑒2𝑎𝑚(𝑥)𝛽20 )

2 𝑑𝑥 + 𝛿 ∫Ω 𝑒
𝛼𝑚(𝑥)𝑑𝑥,

− sin 𝜃 ∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 = ℎ ∫Ω 𝑒
𝛼𝑚(𝑥)𝑑𝑥,

admits a solution (𝜃, ℎ), where ℎ ≥ 0 and 𝜃 ∈ [0, 2𝜋]. According to (4), from 𝐿0 > 0 we obtain

ℎ20 =

(

∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
)2 −

(

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(𝑐2+𝑒2𝛼𝑚(𝑥)𝛽20 )

2 𝑑𝑥 + 𝛿 ∫Ω 𝑒
𝛼𝑚(𝑥) 𝑑𝑥

)2

(

∫Ω 𝑒𝛼𝑚(𝑥) 𝑑𝑥
)2

> 0.

Thus, sin 𝜃0 and cos 𝜃0 satisfy Eq. (11). This completes the proof. ∎
Lemma 3.5. Assume 𝐿0 > 0. Then there exists 𝜆 ∈ (0, 𝜆̃∗] and a continuously differentiable mapping

𝜆↦
(

𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆
)

from [0, 𝜆̃∗] to (𝑋1
)

ℂ ×ℝ3, such that (𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆
) is the unique solution to the equation

𝐺
(

𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆, 𝜆
)

= 0,

where 𝐺 is the mapping defined in Lemma 3.4:
{

𝐺(𝑧, 𝑟, ℎ, 𝜃, 𝜆) = 0,
𝑧 ∈

(

𝑋1
)

ℂ, ℎ > 0, 𝑟 ≥ 0, 𝜃 ∈ [0, 2𝜋).

Proof.  Let 𝑇 =
(

𝑇1, 𝑇2
)

∶
(

𝑋1
)

ℂ ×ℝ3 → 𝑌ℂ ×ℝ be the Fréchet derivative of the mapping 𝐺 with respect to (𝑧, 𝑟, ℎ, 𝜃) at (𝑧0, 𝑟0, ℎ0, 𝜃0
)

. 
Then, for (𝜒, 𝜅, 𝜖, 𝜗) ∈ (

𝑋1
)

ℂ ×ℝ3, we compute

𝑇1[𝜒, 𝜅, 𝜖, 𝜗] =𝑃0𝜒 − i𝛽0𝑒𝛼𝑚(𝑥)𝜖 − i𝑒−i𝜃𝛽0𝐵1(𝑥)𝑒𝛼𝑚(𝑥)𝜗 − iℎ0𝛽0𝑒𝛼𝑚(𝑥)𝜅 +
⎡

⎢

⎢

⎣

𝛽0𝑒
−i𝜃0𝐵1(𝑥)𝑒𝛼𝑚(𝑥)

−2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽20
(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20
)2

− 𝛿𝑒𝛼𝑚(𝑥)𝛽0
⎤

⎥

⎥

⎦

𝜅,

𝑇2[𝜒, 𝜅, 𝜖, 𝜗] =2𝛽20 |Ω|𝜅.

We now prove that 𝑇 ∶
(

𝑋1
)

ℂ ×ℝ3 → 𝑌ℂ ×ℝ is bijective. In fact, 𝑇  is linear with respect to 𝜒, 𝜅, 𝜖, 𝜗, then for any (𝑦, 𝑠) ∈ 𝑌ℂ ×ℝ, 
there exists 𝑣 = (𝜒, 𝜅, 𝜖, 𝜗) such that 𝑇 (𝑣) = (𝑦, 𝑠), this implies that 𝑇  is surjective, in the following it suffices to show that 𝑇  is injective. 
If 𝑇2(𝜒, 𝜅, 𝜖, 𝜗) = 0, then 𝜅 = 0. Substituting 𝜅 = 0 into 𝑇1, we obtain 𝑇1(𝜒, 𝜅, 𝜖, 𝜗) = 0, which implies 𝜒 = 𝜖 = 𝜗 = 0. Thus, 𝑇  is injective. 
By the implicit function theorem, there exists 𝜆 > 0 and a continuously differentiable mapping 𝜆 ↦

(

𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆
) defined on [0, 𝜆̃∗]

with values in (𝑋1
)

ℂ ×ℝ3, satisfying 𝐺(𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆, 𝜆
)

= 0. We now prove uniqueness. It suffices to show that if 𝐺(𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆) = 0, 
where 𝑧𝜆 ∈ (

𝑋1
)

ℂ, ℎ
𝜆 > 0, 𝑟𝜆 ≥ 0, and 𝜃𝜆 ∈ [0, 2𝜋), then

(

𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆
)

→
(

𝑧0, 𝑟0, ℎ0, 𝜃0
)

=
(

𝑧0, 1, ℎ0, 𝜃0
)

,
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as 𝜆 → 0 , in the norm of (𝑋1
)

ℂ ×ℝ3, By Lemma 3.1, the sequences {ℎ𝜆}, {𝑟𝜆}, and {𝜃𝜆} are bounded for 𝜆 ∈ [0, 𝜆̃∗]. Multiplying the 
first equation in Eq. (10) by 𝑧̄𝜆 and integrating over Ω, we obtain the existence of constants 𝑀1,𝑀2 > 0 such that

𝜆2
‖

‖

‖

𝑧𝜆‖‖
‖

2

𝑌ℂ
≤ |

|

|

⟨

𝐿0𝑧
𝜆, 𝑧𝜆

⟩

|

|

|

≤𝑀1
‖

‖

‖

𝑧𝜆‖‖
‖𝑌ℂ

+𝑀2𝜆
‖

‖

‖

𝑧𝜆‖‖
‖

2

𝑌ℂ
,

which implies that {𝑧𝜆} is bounded in 𝑌ℂ for sufficiently small 𝜆. Since 𝑃−1
0  exists and is a bounded mapping from (𝑌1

)

ℂ to 
(

𝑋1
)

ℂ, 
it follows that {𝑧𝜆} is bounded in 𝑋ℂ. Therefore, 

{(

𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆
)

∶ 𝜆 ∈ (0, 𝜆̃]
} is precompact in 𝑌ℂ ×ℝ3.

Consequently, there exists a subsequence {(𝑧𝜆𝑛 , 𝑟𝜆𝑛 , ℎ𝜆𝑛 , 𝜃𝜆𝑛)} such that
(

𝑧𝜆𝑛 , 𝑟𝜆𝑛 , ℎ𝜆𝑛 , 𝜃𝜆𝑛
)

→
(

𝑧0, 𝑟0, ℎ0, 𝜃0
) in 𝑌ℂ ×ℝ3, 𝜆𝑛 → 0 as 𝑛→ ∞.

Taking the limit of the equation 𝑃−1
0 𝑔1

(

𝑧𝜆𝑛 , 𝑟𝜆𝑛 , ℎ𝜆𝑛 , 𝜃𝜆𝑛
)

= 0, as 𝑛→ ∞, we obtain
(

𝑧𝜆𝑛 , 𝑟𝜆𝑛 , ℎ𝜆𝑛 , 𝜃𝜆𝑛
)

→
(

𝑧0, 𝑟0, ℎ0, 𝜃0
) in 𝑋ℂ ×ℝ3,  as 𝑛 → ∞,

and 𝐺(𝑧0, 𝑟0, ℎ0, 𝜃0, 0) = 0. By Lemma 3.4, we conclude that
(

𝑧0, 𝑟0, ℎ0, 𝜃0
)

=
(

𝑧0, 𝑟0, ℎ0, 𝜃0
)

.

This completes the proof. ∎
The following theorem follows directly from Lemma 3.5.

Theorem 3.6. Assume that 𝐿0 > 0, for 𝜆 ∈ (0, 𝜆̃∗], the following eigenvalue problem
Δ(𝜆, i𝜔, 𝜏)𝜓 = 0, 𝜔 > 0, 𝜏 ≥ 0, 𝜓(≠ 0) ∈ 𝑋ℂ

has a solution (𝜔, 𝜏, 𝜓) if and only if the following conditions are satisfied:

𝜔 = 𝜔𝜆 = 𝜆ℎ𝜆, 𝜓 = 𝑐𝜓𝜆, 𝜏 = 𝜏𝑛 =
𝜃𝜆 + 2𝑛𝜋
𝜔𝜆

, 𝑛 = 0, 1, 2,… ,

where 𝜓 = 𝑘𝜓𝜆 = 𝑘(𝑟𝜆𝛽0 + 𝜆𝑧𝜆), 𝑘 is a nonzero constant, and 𝑧𝜆, 𝑟𝜆, ℎ𝜆, 𝜃𝜆 are defined according to Lemma 3.5.
To prove that i𝜔 is a simple eigenvalue and satisfies the transversality condition, we provide the following estimates.

Lemma 3.7. Assume that 𝐿0 > 0 and define

𝑆𝑛(𝜆) ∶= ∫Ω
𝜓2
𝜆 𝑑𝑥 + 𝜆𝜏𝑛𝑒

−i𝜃𝜆
∫Ω

𝐵(𝜆, 𝑥)𝜓2
𝜆𝑑𝑥,

where 𝜓𝜆, 𝜏𝑛, and 𝜃𝜆 are given as in Theorem 3.6. Then, for 𝑛 = 0, 1, 2,…, we have
lim
𝑟→0

𝑆𝑛(𝜆) ≠ 0.

Proof.  According to Theorem 3.6, we have

lim
𝜆→0

Re𝑆𝑛(𝜆) = lim
𝜆→0∫Ω

𝜓2
𝜆𝑑𝑥 + 𝜆𝜏𝑛 cos 𝜃𝜆 ∫Ω

𝐵1(𝜆, 𝑥)𝜓2
𝜆𝑑𝑥

= 𝛽20 |Ω| +
𝜃0 + 2𝑛𝜋
ℎ0

𝛽20
⎛

⎜

⎜

⎝

∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )
2
𝑑𝑥 + 𝛿|Ω|

⎞

⎟

⎟

⎠

≠ 0,

lim
𝜆→0

Im𝑆𝑛(𝜆) = lim
𝜆→0

−𝜆𝜏𝑛 sin 𝜃𝜆 ∫Ω
𝐵1(𝑥)𝜓2

𝜆𝑑𝑥

= lim
𝜆→0

𝜆
𝜃𝜆 + 2𝑛𝜋
𝜆ℎ𝜆

ℎ|Ω|

= 𝛽20
(

𝜃0 + 2𝑛𝜋
)

|Ω| ≠ 0,

thus, we have
lim
𝑟→0

𝑆𝑛(𝜆) ≠ 0.

This completes the proof. ∎
Next, we prove that i𝜔𝜆 is a simple eigenvalue.

Theorem 3.8. Assume that 𝐿0 > 0. Then 𝜇 = i𝜔𝜆 is a simple eigenvalue of 𝜏𝑛 ,𝜆 for 𝜆 ∈ (0, 𝜆̃∗] and 𝑛 = 0, 1, 2,…. 
Proof.  We know that


[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

= span
{

𝑒i𝜔𝜆𝑠𝜓𝜆
}

,
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where 𝑠 ∈ [

−𝜏𝑛, 0
]

. Suppose that 𝜙1 ∈ 
[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]2
, then

[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

𝜙1 ∈ 
[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

= span
{

𝑒i𝜔𝜆𝑠𝜓𝜆
}

.

Thus, there exists a constant 𝑎 such that
[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

𝜙1 = 𝑎𝑒i𝜔𝜆𝑠𝜓𝜆.

Therefore,

𝜙̇1(𝑠) = i𝜔𝜆𝜙1(𝑠) + 𝑎𝑒i𝜔𝜆𝑠𝜓𝜆, 𝑠 ∈
[

−𝜏𝑛, 0
]

,

𝜙̇1(0) =
⎛

⎜

⎜

⎝

𝑒−𝑎𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

− 𝜆𝛿
⎞

⎟

⎟

⎠

𝜙(0) + 𝜆𝐵(𝜆, 𝑥)𝜙
(

−𝜏𝑛
)

.
(12)

From the first equation in Eq. (12), we obtain

𝜙1(𝑠) = 𝜙1(0)𝑒i𝜔𝜆𝑠 + 𝑎𝑠𝑒i𝜔𝜆𝑠𝜓𝜆,

𝜙̇1(0) = i𝜔𝜆𝜙1(0) + 𝑎𝜓𝜆.
(13)

From the second equations in Eq. (12) and Eq. (13), we get

Δ
(

𝜆, i𝜔𝜆, 𝜏𝑛
)

𝜙1(0) =
⎛

⎜

⎜

⎝

𝑒−𝛼𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

− 𝜆𝛿
⎞

⎟

⎟

⎠

𝜙1(0) + 𝜆𝑒−i𝜔𝜆𝜏𝑛𝐵1(𝜆, 𝑥)𝜙1(0) − i𝜔𝜆𝑒𝛼𝑚(𝑥)𝜙1(0)

=𝑎𝑒𝛼𝑚(𝑥)
[

𝜓𝜆 + 𝜆𝜏𝑛𝑒−i𝜔𝜆𝜏𝑛𝐵1(𝜆, 𝑥)𝜓𝜆
]

.

Noting that Δ(𝜆,−i𝜔𝜆, 𝜏𝑛
)

𝜓̄𝜆 = 0, it follows that

𝑎𝑆𝑛(𝜆) = 𝑎
(

∫Ω
𝑒𝛼𝑚(𝑥)𝜓2

𝜆 𝑑𝑥 + 𝜆𝜏𝑛𝑒
−i𝜃𝜆

∫Ω
𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 𝑑𝑥
)

=
⟨

𝑒𝛼𝑚(𝑥)Δ
(

𝜆,−i𝜔𝜆, 𝜏𝑛
)

𝜓̄𝜆, 𝜙(0)
⟩

=
⟨

𝜓̄𝜆, 𝑒
𝛼𝑚(𝑥)Δ

(

𝜆, i𝜔𝜆, 𝜏𝑛
)

𝜙(0)
⟩

= 0.

By Lemma 3.7, for 𝜆 ∈ (0, 𝜆̃∗], it follows that 𝑎 = 0. Therefore, 𝜙1 ∈ 
[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

. By induction, we obtain


[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]𝑗

= 
[

𝜏𝑛 ,𝜆 − i𝜔𝜆
]

, 𝑗 = 2, 3, 4,… , 𝑛 = 0, 1, 2,… .

This completes the proof. ∎
Since 𝜇 = i𝜔𝜆 is a simple eigenvalue of 𝜏𝑛 ,𝜆, the implicit function theorem implies that there exists a neighborhood 𝑂𝑛 ×𝐷𝑛 ×𝐻𝑛 ⊂

ℝ × ℂ ×𝑋ℂ, containing the point 
(

𝜏𝑛, i𝜔𝜆, 𝜓𝜆
)

, and a continuously differentiable mapping (𝜇(𝜏), 𝜓(𝜏)) ∶ 𝑂𝑛 ↦ 𝐷𝑛 ×𝐻𝑛, such that for 
each 𝜏 ∈ 𝑂𝑛, 𝜇(𝜏) is the unique eigenvalue of 𝜏,𝜆 in 𝐷𝑛, satisfying

Δ(𝜆, 𝜇(𝜏), 𝜏)𝜓(𝜏) =
⎛

⎜

⎜

⎝

𝑒−𝛼𝑚(𝑥)𝑃0 −
2𝜆𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
2
− 𝜆𝛿

⎞

⎟

⎟

⎠

𝜓(𝜏) + 𝜆𝑒−𝜇(𝜏)𝜏𝐵1(𝜆, 𝑥)𝜓(𝜏) − 𝜇(𝜏)𝜓(𝜏) = 0. (14)

where 𝜓(𝜏𝑛) = 𝜓𝜆. Now, we verify the transversality condition for the Hopf bifurcation.

Theorem 3.9. Suppose 𝐿0 > 0. Then, for 𝜆 ∈ (0, 𝜆̃∗], we have
d
d𝜏

Re
[

𝜇
(

𝜏𝑛
)]

> 0, 𝑛 = 0, 1, 2,… .

Proof.  Differentiating Eq. (14) with respect to 𝜏 at 𝜏 = 𝜏𝑛, we obtain

d𝜇
(

𝜏𝑛
)

d𝜏
[

𝜆𝜏𝑛𝑒
−𝑖𝜃𝜆𝐵1(𝜆, 𝑥)𝜓𝜆 + 𝜓𝜆

]

= Δ
(

𝜆, 𝑖𝜔𝜆, 𝜏𝑛
)d𝜓

(

𝜏𝑛
)

d𝜏
− 𝑖𝜔𝜆𝜆𝑒−𝑖𝜃𝜆𝐵1(𝜆, 𝑥)𝜓𝜆. (15)

Noting that
⟨

𝜓̄𝜆,Δ
(

𝜆, 𝑖𝜔𝜆, 𝜏𝑛
)d𝜓

(

𝜏𝑛
)

d𝜏

⟩

=

⟨

Δ
(

𝜆,−𝑖𝜔𝜆, 𝜏𝑛
)

𝜓̄𝜆,
d𝜓

(

𝜏𝑛
)

d𝜏

⟩

= 0,
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multiplying both sides of Eq. (15) by 𝜓𝜆 and integrating over Ω, we obtain
d𝜇

(

𝜏𝑛
)

d𝜏
=

−𝑖𝜔𝜆𝑒−𝑖𝜃𝜆 ∫Ω 𝐵1(𝜆, 𝑥)𝜓2
𝜆 𝑑𝑥

∫Ω 𝜓
2
𝜆 𝑑𝑥 + 𝑟𝜏𝑛𝑒

−𝑖𝜃𝜆 ∫Ω 𝐵1(𝜆, 𝑥)𝜓2
𝜆 𝑑𝑥

=
−𝑖𝜔𝜆𝑒−𝑖𝜃𝜆 ∫Ω 𝐵1(𝜆, 𝑥)𝜓2

𝜆 𝑑𝑥
[

∫Ω 𝜓
2
𝜆 𝑑𝑥 + 𝑟𝜏𝑛𝑒

−𝑖𝜃𝜆 ∫Ω 𝐵1(𝜆, 𝑥)𝜓2
𝜆 𝑑𝑥

]

|

|

𝑆𝑛(𝜆)||
2

= − 1
|

|

𝑆𝑛(𝜆)||
2

[

𝑖𝜔𝜆𝑒−𝑖𝜃𝜆 ∫Ω
𝜓2
𝜆 𝑑𝑥∫Ω

𝐵1(𝜆, 𝑥)𝜓2
𝜆 𝑑𝑥

]

− 1
|

|

𝑆𝑛(𝜆)||
2

[

𝑖𝜔𝜏𝑛𝜆
2𝑒−𝑖𝜃𝜆

(

∫Ω
𝐵1(𝜆, 𝑥)𝜓2

𝜆 𝑑𝑥
)2

]

.

Since 𝑒−𝑖𝜃𝜆 = cos 𝜃𝜆 − 𝑖 sin 𝜃𝜆, we obtain

Re
d𝜇

(

𝜏𝑛
)

d𝜏
= − 1

|

|

𝑆𝑛(𝜆)||
2

(

sin 𝜃𝜆𝜔𝜆∫Ω
𝜓2
𝜆 𝑑𝑥∫Ω

𝐵1(𝜆, 𝑥)𝜓2
𝜆 𝑑𝑥

)

.

Thus, we get

lim
𝜆→0

1
𝜆2

d
d𝜏

Re
[

𝜇
(

𝜏𝑛
)]

= 1
lim𝜆→0

|

|

𝑆𝑛(𝜆)||
2
ℎ20 > 0.

This completes the proof. ∎
Theorem 3.10. Suppose 𝛽0 > 0. Then model Eq. (2) has a unique positive steady state solution 𝑢𝜆. Moreover, for any 𝜆 ∈ (0, 𝜆̃∗], where 
0 < 𝜆̃∗ ≪ 1, the following conclusions hold:

(i) If 𝐿0 < 0, then 𝑢𝜆 is locally asymptotically stable for 𝜏 ∈ [0,+∞);
(ii) If 𝐿0 > 0, then there exists a sequence {𝜏𝑛

}∞
𝑛=0 (given by Theorem 3.6), such that: when 𝜏 < 𝜏0, 𝑢𝜆 is locally asymptotically stable; when 

𝜏 > 𝜏0, 𝑢𝜆 is unstable; when 𝜏 = 𝜏𝑛 (i.e., 𝑛 = 0, 1,…), model (2) undergoes a Hopf bifurcation.

4.  The direction of the Hopf bifurcation

This section adopts the method from to study the direction of the Hopf bifurcation [19,20] for model Eq. (2). Let 𝑈 (𝑡) = 𝑢(⋅, 𝑡) − 𝑢𝜆, 
where 𝑡 = 𝜏𝑡 and 𝜏 = 𝜏𝑛 + 𝜚. To simplify notation, we omit the tilde symbol, thus transforming system Eq. (2) into the following form:

d𝑈 (𝑡)
d𝑡

= 𝜏𝑛𝑒
−𝛼𝑚(𝑥)𝑃0𝑈 (𝑡) + 𝜏𝑛𝑃1(𝑈𝑡) + 𝐽 (𝑈𝑡, 𝜚), (16)

where 𝑈𝑡 = 𝑈 (𝑡 + 𝑠) ∈ 𝐶 = 𝐶([−1, 0], 𝑌 ), and

𝑃1(𝑈𝑡) = −𝜆
2𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2
𝑈 (𝑡) − 𝜆𝛿(𝑥)𝑈 (𝑡) + 𝜆𝐵1(𝜆, 𝑥)𝑈 (𝑡 − 1),

𝐽 (𝑈𝑡, 𝜚) =𝜚𝑒−𝛼𝑚(𝑥)𝑃0𝑈 (𝑡) + 𝜚𝑃1(𝑈𝑡)

+ 𝜆(𝜚 + 𝜏𝑛) ×
[

𝐵2(𝜆, 𝑥)
2

𝑈2(𝑡 − 1)
]

+ 𝜆(𝜚 + 𝜏𝑛) ×
[

𝐵3(𝜆, 𝑥)
6

𝑈3(𝑡)𝑈3(𝑡 − 1) + 𝑂(𝑈4(𝑡 − 1))
]

− 𝜆(𝜚 + 𝜏𝑛) ×
[

𝐶2(𝜆, 𝑥)
2

𝑈2(𝑡) +
𝐶3(𝜆, 𝑥)

6
𝑈3(𝑡) + 𝑂(𝑈4(𝑡))

]

,

where

𝐵2(𝜆, 𝑥) = 𝑝
(

2𝑎𝑒𝛼𝑚(𝑥) + 𝑎2𝑢𝜆𝑒2𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝑢𝜆 ,

𝐵2(𝑥) = 𝑝
(

2𝑎𝑒𝛼𝑚(𝑥) + 𝑎2𝛽0𝑒2𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝛽0 ,

𝐵3(𝜆, 𝑥) = 𝑝
(

3𝑎2𝑒2𝛼𝑚(𝑥) − 𝑎3𝑢𝜆𝑒3𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝑢𝜆 ,

𝐵3(𝑥) = 𝑝
(

3𝑎2𝑒2𝛼𝑚(𝑥) − 𝑎3𝛽0𝑒3𝛼𝑚(𝑥)
)

𝑒−𝑎𝑒
𝛼𝑚(𝑥)𝛽0 ,

𝐶2(𝜆, 𝑥) =
2𝑏𝑐2(𝑐2 − 3𝑒2𝛼𝑚(𝑥)𝑢2𝜆)

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
3

, 𝐶3(𝜆, 𝑥) =
24𝑏𝑐2𝑒5𝛼𝑚(𝑥)𝑢3𝜆
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)

4
,

𝐶2(𝑥) =
2𝑏𝑐2(𝑐2 − 3𝑒2𝛼𝑚(𝑥)𝛽20 )

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )
3

, 𝐶3(𝑥) =
24𝑏𝑐2𝑒5𝛼𝑚(𝑥)𝛽30
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝛽20 )

4
.
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Clearly, when 𝜚 = 0, model Eq. (18) undergoes a Hopf bifurcation at the zero equilibrium. For 𝜚 = 0, the linearized equation of 
(18) at 𝑈𝑡 = 0 is given by

d𝑈 (𝑡)
d𝑡

= 𝜏𝑛𝑒
−𝛼𝑚(𝑥)𝑃0𝑈 (𝑡) + 𝜏𝑛𝑃1𝑈𝑡. (17)

Let 𝜏𝑛  be the infinitesimal generator of the solution semigroup of Eq. (17). Crandall and Rabinowitz[17] proved that for all Ψ ∈
(𝜏𝑛 ), we have

𝜏𝑛Ψ = Ψ̇,

(𝜏𝑛 ) =

{

Ψ ∈ ℂ ∩ 1
ℂ ∶ Ψ(0) ∈ 𝑋ℂ, Ψ̇(0) = 𝜏𝑛𝑒

−𝛼𝑚(𝑥)𝑃0Ψ(0) − 𝜆𝜏𝑛(𝛿 +
2𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

)Ψ(0) + 𝜆𝜏𝑛𝐵(𝜆, 𝑥)Ψ(−1)

}

,

where 1
ℂ = 𝐶1([−1, 0], 𝑌ℂ). Then Eq. (18) can be rewritten in an abstract form as
d𝑈𝑡
d𝑡

= 𝜏𝑛𝑈𝑡 +𝑋0𝐽 (𝑈𝑡, 𝜚), (18)

where

𝑋0(𝜃) =
{

0, 𝜃 ∈ [−1, 0),
𝐼, 𝜃 = 0.

From the previous discussion, 𝜏𝑛  has only one pair of purely imaginary eigenvalues ±𝑖𝜔𝜆𝜏𝑛, which are simple. The corresponding 
eigenfunctions are 𝜚(𝑠) = 𝜓𝜆𝑒𝑖𝜔𝜆𝜏𝑛𝑠 and 𝜚̄(𝑠) = 𝜓̄𝜆𝑒−𝑖𝜔𝜆𝜏𝑛𝑠 for 𝑠 ∈ [−1, 0], where 𝜓𝜆 is defined as in Theorem 3.6.

Since advection is present, the standard inner product on 𝑌ℂ is unsuitate for computing the normal form.
Following Chen et al. [21] , we introduce the following weighted inner product on 𝑌ℂ:

⟨𝑢, 𝑣⟩1 = ∫Ω
𝑒𝛼𝑚(𝑥)𝑢̄(𝑥)𝑣(𝑥) 𝑑𝑥, for 𝑢, 𝑣 ∈ 𝑌ℂ.

Since 𝑚(𝑥) is bounded in Ω and 𝑒𝛼𝑚(𝑥) is positive, we verify that 𝑌ℂ remains a Hilbert space under this inner product.
Lemma 4.1. The formal adjoint operator ∗

𝜏𝑛
 of 𝜏𝑛  is defined as

∗
𝜏𝑛
Ψ̃(𝑠) = − ̇̃Ψ(𝑠)

with the domain

(∗
𝜏𝑛
) =

{

Ψ̃ ∈ ∗
ℂ ∩

(

∗
ℂ
)1 ∶ Ψ̃(0) ∈ 𝑋ℂ,−

̇̃Ψ(0) = 𝜏𝑛𝑒
−𝛼𝑚(𝑥)𝑃0Ψ̃(0) − 𝜆𝜏𝑛

⎛

⎜

⎜

⎝

𝛿 +
2𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆

(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

⎞

⎟

⎟

⎠

Ψ̃(0) + 𝜆𝜏𝑛𝐵1(𝜆, 𝑥)Ψ̃(1)

}

,

where (∗
ℂ
)1 = 𝐶1([0, 1], 𝑌ℂ

)

. Then, 𝜏𝑛  and ∗
𝜏𝑛
 satisfy

⟨⟨

∗
𝜏𝑛
Ψ̃,Ψ

⟩⟩

=
⟨⟨

Ψ̃,𝜏𝑛Ψ
⟩⟩

.

Proof.  For Ψ ∈ (𝜏𝑛 ) and Ψ̃ ∈ (∗
𝜏𝑛
), we have

⟨⟨

Ψ̃,𝜏𝑛Ψ
⟩⟩

=
⟨

Ψ̃(0),
(

𝜏𝑛Ψ
)

(0)
⟩

1
+ 𝜆𝜏𝑛 ∫

0

−1

⟨

Ψ̃(𝑠 + 1), 𝐵1(𝜆, 𝑥)Ψ̇(𝑠)(𝑦)
⟩

1𝑑𝑠

=
⟨

Ψ̃(0), 𝜏𝑛𝑒−𝛼𝑚(𝑥)𝑃0Ψ(0)
⟩

1 + 𝜆𝜏𝑛
⟨

Ψ̃(0), 𝐵1(𝜆, 𝑥)Ψ(−1)
⟩

1

− 𝜆𝜏𝑛

⟨

Ψ̃(0),
⎛

⎜

⎜

⎝

2𝑏𝑐2𝑒𝛼𝑚(𝑥)𝑢𝜆
(

𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆
)2

+ 𝛿
⎞

⎟

⎟

⎠

Ψ(0)

⟩

1

+ 𝑟𝜏𝑛
[⟨

Ψ̃(𝑠 + 1), 𝐵1(𝜆, 𝑥)Ψ(𝑠)
⟩

1
]0
−1

− 𝜆𝜏𝑛 ∫

0

−1

⟨

̇̃Ψ(𝑠 + 1), 𝐵1(𝜆, 𝑥)Ψ(𝑠)
⟩

1
𝑑𝑠

=
⟨(

∗
𝜏𝑛
Ψ̃
)

(0),Ψ(0)
⟩

1
+ 𝜆𝜏𝑛 ∫

0

−1

⟨

− ̇̃Ψ(𝑠 + 1), 𝐵1(𝜆, 𝑥)Ψ(𝑠)
⟩

1
𝑑𝑠

=
⟨⟨

∗
𝜏𝑛
Ψ̃,Ψ

⟩⟩

.

This completes the proof. ∎

Communications in Nonlinear Science and Numerical Simulation 152 (2026) 109205 

12 



J. Cao et al.

Similarly, we know that ∗
𝜏𝑛
 has only one pair of purely imaginary eigenvalues ±𝑖𝜔𝜆𝜏𝑛, and they are simple. The eigenfunctions 

associated with 𝑖𝜔𝜆𝜏𝑛 ( −𝑖𝜔𝜆𝜏𝑛) are
𝑞(𝑠̃) = 𝜓𝜆𝑒

−𝑖𝜔𝜆𝜏𝑛 𝑠̃
(

𝑞(𝑠̃) = 𝜓̄𝜆𝑒
𝑖𝜔𝜆𝜏𝑛 𝑠̃

)

for 𝑠̃ ∈ [0, 1], where 𝜓𝜆 is defined as in Theorem 3.6. The center subspace of Eq. (18) is 𝑃 = span{𝑝(𝑠), 𝑝̄(𝑠)}. Moreover, the basis of 
the eigenfunction space of the adjoint operator ∗

𝜏𝑛
 associated with the eigenvalues ±𝑖𝜔𝜆𝜏𝑛 is

𝑃 ∗ = span{𝑞(𝑠̃), 𝑞(𝑠̃)}.

Furthermore, the formal adjoint subspace of 𝑃  is 𝑃 ∗. As usual, ℂ can be decomposed as
ℂ = 𝑃 ⊕𝑄,  where 𝑄 =

{

𝜓 ∈ ℂ ∣ ⟨⟨𝜓̂ , 𝜓⟩⟩ = 0, ∀𝜓̂ ∈ 𝑃 ∗}.

Define
Φ𝑝 = (𝑝(𝑠), 𝑝̄(𝑠)),  for 𝑠 ∈ [−1, 0],
Ψ𝑝 =

(

𝑞(𝑠̃)
𝑆̄𝑛(𝜆)

, 𝑞(𝑠̃)
𝑆𝑛(𝜆)

)

,  for 𝑠̃ ∈ [0, 1].

It can be easily verified that
⟨⟨

Φ𝑝,Ψ𝑝
⟩⟩

= 𝐼,

where 𝐼 is the identity matrix in ℝ2×2. Since the bifurcation direction and stability formula we will study next are only related to 
𝜚 = 0, we set 𝜚 = 0 in the system Eq. (18) and define

𝑧(𝑡) = 1
𝑆𝑛(𝜆)

⟨⟨𝑞, 𝑈𝑡⟩⟩.

Let

𝑊 (𝑧, 𝑧̄)(𝑠) = 𝑊20(𝑠)
𝑧2

2
+𝑊11(𝑠)𝑧𝑧̄ +𝑊02(𝑠)

𝑧̄2

2
+⋯ ,

be the center manifold with range in 𝑄. Then the flow on the center manifold for Eq. (18) can be written as

𝑈𝑡 = Φ𝑝 ⋅
(

𝑧(𝑡)
𝑧̄(𝑡)

)

+𝑊 (𝑧(𝑡), 𝑧̄(𝑡)).

Since 𝜚 = 0, we obtain

𝑧̇(𝑡) = 1
𝑆𝑛(𝜆)

𝑑⟨⟨𝑞, 𝑈𝑡⟩⟩
𝑑𝑡

= 𝑖𝜔𝜆𝜏𝑛𝑧(𝑡) + 𝑔(𝑧(𝑡), 𝑧̄(𝑡)), (19)

where

𝑔(𝑧(𝑡), 𝑧̄(𝑡)) = 1
𝑆𝑛(𝜆)

⟨

𝑞(0), 𝐹
(

𝑈𝑡, 0
)⟩

1

= 1
𝑆𝑛(𝜆)

⟨

𝑞(0), 𝐹
(

Φ𝑝 ⋅
(

𝑧(𝑡)
𝑧̄(𝑡)

)

+𝑊 (𝑧(𝑡), 𝑧̄(𝑡)), 0
)⟩

1

= 𝑔20
𝑧2

2
+ 𝑔11𝑧𝑧̄ + 𝑔02

𝑧̄2

2
+ 𝑔21

𝑧2𝑧̄
2

+⋯ .

Clearly, simple calculations yield

𝑔20 = −
𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓3
𝜆𝑑𝑥 +

𝜆𝜏𝑛
𝑆𝑛(𝜆)

𝑒−2i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓3

𝜆𝑑𝑥,

𝑔11 = −
𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓𝜆||𝜓𝜆||
2𝑑𝑥 +

𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓𝜆||𝜓𝜆||
2𝑑𝑥,

𝑔02 = −
𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓𝜆𝜓̄2
𝜆𝑑𝑥 +

𝜆𝜏𝑛
𝑆𝑛(𝜆)

𝑒2i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓𝜆𝜓̄2

𝜆𝑑𝑥,

𝑔21 = −
2𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2
𝜆𝑤11(0)𝑑𝑥 +

2𝜆𝜏𝑛
𝑆𝑛(𝜆)

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆𝑤11(−1)𝑑𝑥 −
𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)||𝜓𝜆||
2𝑤20(0)𝑑𝑥

+
𝜆𝜏𝑛
𝑆𝑛(𝜆)

𝑒i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)||𝜓𝜆||

2𝑤20(−1)𝑑𝑥 −
𝜆𝜏𝑛

3𝑆𝑛(𝜆) ∫Ω
𝐶3(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆
|

|

𝜓𝜆||
2𝑑𝑥

+
𝜆𝜏𝑛

3𝑆𝑛(𝜆)
𝑒i𝜔𝜆𝜏𝑛 ∫Ω

𝐵3(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2
𝜆
|

|

𝜓𝜆||
2𝑑𝑥 −

𝜆𝜏𝑛
𝑆𝑛(𝜆) ∫Ω

𝐶3(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2
𝜆
|

|

𝜓𝜆||
2𝑑𝑥

+
𝜆𝜏𝑛
𝑆𝑛(𝜆)

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆
|

|

𝜓𝜆||
2𝑑𝑥.

Now, only 𝑊20(𝑠) and 𝑊11(𝑠) remain to be computed in 𝑔21.

𝑊̇ =
{

𝜏𝑛𝑊 − 𝑔𝑝(𝑠) − 𝑔𝑝(𝑠), 𝑠 ∈ [−1, 0),
𝜏𝑛𝑊 − 𝑔𝑝(0) − 𝑔𝑝(0) + 𝐽 (2 Re{𝑧(𝑡)𝑝} +𝑊 (𝑧(𝑡), 𝑧̄(𝑡)), 0), 𝑠 = 0.

(20)
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On the other hand, according to the definition of 𝑊 , when the center manifold 𝐶0 approaches the origin,
𝑊̇ =𝑊𝑧𝑧̇ +𝑊𝑧̄ ̇̄𝑧

=
[

𝑊20(𝑠)𝑧 +𝑊11(𝑠)𝑧̄
]

𝑧̇ +
[

𝑊11(𝑠)𝑧 +𝑊02(𝑠)𝑧̄
] ̇̄𝑧 +⋯

=
[

𝑊20(𝑠)𝑧 +𝑊11(𝑠)𝑧̄
](

i𝜃𝑛𝜆𝑧 + 𝑔(𝑧, 𝑧̄)
)

+
[

𝑊11(𝑠)𝑧 +𝑊02(𝑠)𝑧̄
](

−i𝜃𝑛𝜆𝑧̄ + 𝑔̄(𝑧, 𝑧̄)
)

+⋯ .

Combining the above equation with Eq. (20), we obtain

(

2𝑖𝜃𝑛𝜆𝐼 −𝜏𝑛

)

𝑊20(𝑠) =

⎧

⎪

⎨

⎪

⎩

−𝑔20𝑝(𝑠) − 𝑔̄02𝑝̄(𝑠), 𝑠 ∈ [−1, 0),
−𝑔20𝑝(0) − 𝑔̄02𝑝̄(0) − 𝜆𝜏𝑛𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆
+𝜆𝜏𝑛𝑒−2i𝜔𝜆𝜏𝑛𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 , 𝑠 = 0.
(21)

Moreover,

−𝜏𝑛𝑊11(𝑠) =

⎧

⎪

⎨

⎪

⎩

−𝑔11𝑝(𝑠) − 𝑔̄11𝑝̄(𝑠), 𝑠 ∈ [−1, 0),
−𝑔11𝑝(0) − 𝑔̄11𝑝̄(0) − 𝜆𝜏𝑛𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)||𝜓𝜆||

2

+𝜆𝜏𝑛𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)||𝜓𝜆||
2, 𝑠 = 0.

To compute 𝑊20, from Eq. (21), we obtain
𝑊 ′

20(𝑠) = 2i𝜃𝑛𝜆𝑊20(𝑠) + 𝑔20𝑝(𝑠) + 𝑔̄02𝑝̄(𝑠), 𝑠 ∈ [−1, 0).

Noting that 𝑝(𝑠) = 𝜓𝜆𝑒𝑖𝜔𝜆𝜏𝑛𝑠, we derive the following relation:

𝑊20(𝑠) =
i𝑔20
𝜔𝜆𝜏𝑛

𝑝(𝑠) +
i𝑔̄02
3𝜔𝜆𝜏𝑛

𝑝̄(𝑠) + 𝐸𝑒2i𝜔𝜆𝜏𝑛𝑠. (22)

In particular, Eqs. (21) and Eq. (22) indicate:
(

2𝑖𝜔𝜆𝜏𝑛𝐼 −𝜏𝑛

)

𝐸𝑒2i𝜔𝜆𝜏𝑛𝑠||
|𝑠=0

= − 𝜆𝜏𝑛𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2
𝜆 + 𝜆𝜏𝑛𝑒−2i𝜔𝜆𝜏𝑛𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 ,

which is equivalent to
Δ
(

𝜆, 2i𝜔𝜆, 𝜏𝑛
)

𝐸 =𝜆𝜏𝑛𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2
𝜆 − 𝜆𝜏𝑛𝑒−2i𝜔𝜆𝜏𝑛𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 . (23)

Noting that 2i𝜔𝜆 is not an eigenvalue of 𝐴𝜏𝑛 ,𝜆, for 𝜆 ∈ (𝜆∗, 𝜆̃∗], we have:

𝐸 =𝜆Δ
(

𝜆, 2i𝜔𝜆, 𝜏𝑛
)−1𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 − 𝜆𝑒−2i𝜔𝜆𝜏𝑛Δ
(

𝜆, 2i𝜔𝜆, 𝜏𝑛
)−1𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜓2

𝜆 .

Similarly, from Eq. (21), we deduce that for 𝑠 ∈ [−1, 0),

𝑊11(𝑠) = −
i𝑔11
𝜔𝜆𝜏𝑛

𝑝(𝑠) +
i𝑔̄11
𝜔𝜆𝜏𝑛

𝑝̄(𝑠) + 𝐹 .

At 𝑠 = 0, 𝐹  satisfies the following relation:
−𝜏𝐹 = 𝜆𝜏𝑛

(

𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥) − 𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)
)

|

|

𝜓𝜆||
2.

Thus, we obtain

𝐹 = −𝜆Λ
(

𝜆, 0, 𝜏𝑛𝜆
)−1

[

(

𝐵2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥) − 𝐶2(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)
)

|

|

𝜓𝜆||
2
]

. (24)

Lemma 4.2. Assume that 𝜆 ∈ (0, 𝜆̃∗], and let 𝐸𝜆 and 𝐹𝜆 be defined by Eq. (23) and Eq. (24), respectively. Then, we have
𝐸𝜆 = 𝜌𝜆𝛽0 + 𝜂𝜆, 𝐹𝜆 = 𝑘𝜆𝛽0 + 𝜂̃𝜆, (25)

where 𝜂𝜆 and 𝜂̃𝜆 satisfy
𝜂𝜆, 𝜂̃𝜆 ∈ 𝑋1, lim𝜆→0

‖

‖

𝜂𝜆‖‖𝑋ℂ
= 0, lim

𝜆→0
‖

‖

𝜂̃𝜆‖‖𝑋ℂ
= 0,

and the constants 𝜌𝜆 and 𝑘𝜆 satisfy

lim
𝜆→0

𝜌𝜆 =
𝑒−2𝑖𝜃0𝛽0 ∫Ω 𝐵2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥 − 𝛽0 ∫Ω 𝐶2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥

𝐷(𝑥) + 2𝑖ℎ0 ∫Ω 𝑒𝛼𝑚(𝑥) 𝑑𝑥 − 𝑒−2𝑖𝜃0 ∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
,

lim
𝜆→0

𝑘𝜆 =
𝛽0 ∫Ω 𝐵2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥 − 𝛽0 ∫Ω 𝐶2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥

𝐷(𝑥) − ∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
,

where 𝜃0,ℎ0 are defined in Eq. (11), 𝐷(𝑥) = ∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝛽0
(𝑐2+𝑒2𝛼𝑚(𝑥)𝛽20 )

𝑑𝑥 + 𝛿 ∫Ω 𝑒
𝛼𝑚(𝑥)𝑑𝑥.
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Proof.  We only prove the estimate for 𝐸𝜆, as the estimate for 𝐹𝜆 can be obtained similarly. Substituting the expression of 𝐸𝜆 from 
Eq. (25) into Eq. (23), we obtain

𝑃0𝜂𝜆 −

(

2𝜆𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)

2
+ 𝜆𝛿𝑒𝛼𝑚(𝑥) + 2i𝜔𝜆𝜏𝑛

)

(

𝜌𝜆𝛽0 + 𝜂𝜆
)

+ 𝜆𝑒−2i𝜔𝜆𝜏𝑛𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)
(

𝜌𝜆𝛽0 + 𝜂𝜆
)

=𝜆𝐶2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2
𝜆 − 𝜆𝑒−2i𝜔𝜆𝜏𝑛𝐵2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2

𝜆 .

(26)

Integrating Eq. (26) over Ω, we get

𝜌𝜆

(

− 𝜆𝛽0 ∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
2
𝑑𝑥 − 𝜆𝛽0𝛿 ∫Ω

𝑒𝛼𝑚(𝑥) 𝑑𝑥

)

+ 𝜌𝜆

(

−2i𝜔𝜆𝛽0 ∫Ω
𝑒𝛼𝑚(𝑥) 𝑑𝑥 + 𝜆𝛽0𝑒−2i𝜔𝜆𝜏𝑛 ∫Ω

𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
)

=𝜆∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆𝜂𝜆
(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)

2
𝑑𝑥 + 𝜆𝛿 ∫Ω

𝑒𝛼𝑚(𝑥)𝜂𝜆𝑑𝑥 + 2i𝜔𝜆 ∫Ω
𝑒𝛼𝑚(𝑥)𝜂𝜆𝑑𝑥

+ 𝜆∫Ω
𝐶2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2

𝜆 𝑑𝑥 − 𝜆𝑒
−2i𝜔𝜆𝜏𝑛

∫Ω
𝐵2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2

𝜆 𝑑𝑥.

(27)

Since |𝜔𝜆|, ||
|

𝜔𝜆
𝜆
|

|

|

, ‖𝑢𝜆‖∞, ‖𝜓𝜆‖∞, and ‖𝐵2(𝜆, 𝑥)‖∞, ‖𝐶2(𝜆, 𝑥)‖∞ are bounded for 𝜆 ∈ (0, 𝜆̃∗], there exist constants 𝑀0 > 0 and 𝑀1 > 0 such 
that

|𝜌𝜆| ≤𝑀0‖𝜂𝜆‖𝑌ℂ +𝑀1, 𝜆 ∈ (0, 𝜆̃∗].

Multiplying Eq. (26) by 𝜂̄𝜆 and integrating over Ω, we obtain

𝜌𝜆
⎛

⎜

⎜

⎝

−𝜆𝛽0 ∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
2
𝜂̄𝜆𝑑𝑥 − 𝜆𝛽0𝛿 ∫Ω

𝑒𝛼𝑚(𝑥)𝜂̄𝜆𝑑𝑥 − 2i𝜔𝜆𝛽0 ∫Ω
𝑒𝛼𝑚(𝑥)𝜂̄𝜆𝑑𝑥

⎞

⎟

⎟

⎠

+ ⟨𝜂𝜆, 𝑃0𝜂𝜆⟩ + 𝜌𝜆𝜆𝛽0𝑒−2i𝜔𝜆𝜏𝑛 ∫Ω
𝐵1(𝜆, 𝑥)𝑒𝛼𝑚(𝑥)𝜂̄𝜆𝑑𝑥

=𝜆∫Ω
2𝑏𝑐2𝑒2𝛼𝑚(𝑥)𝑢𝜆

(𝑐2 + 𝑒2𝛼𝑚(𝑥)𝑢2𝜆)
2
|𝜂𝜆|

2𝑑𝑥 + 𝜆𝛿 ∫Ω
𝑒𝛼𝑚(𝑥)|𝜂𝜆|

2𝑑𝑥 + 2i𝜔𝜆 ∫Ω
𝑒𝛼𝑚(𝑥)|𝜂𝜆|

2𝑑𝑥

+ 𝜆∫Ω
𝐶2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2

𝜆 𝜂̄𝜆𝑑𝑥 − 𝜆𝑒
−2i𝜔𝜆𝜏𝑛

∫Ω
𝐵2(𝜆, 𝑥)𝑒2𝛼𝑚(𝑥)𝜓2

𝜆 𝜂̄𝜆𝑑𝑥.

(28)

By Lemma 3.2 and Eq. (28), there exist constants 𝑀2 > 0 and 𝑀3 > 0 such that
|𝜆2|‖𝜂𝜆‖

2
𝑌ℂ

≤ 𝜆𝑀2‖𝜂𝜆‖
2
𝑌ℂ

+ 𝜆𝑀3‖𝜂𝜆‖𝑌ℂ , 𝜆 ∈ (0, 𝜆̃∗].

Thus, lim𝜆→0 ‖𝜂𝜆‖𝑌ℂ = 0. Multiplying Eq. (27) by 1𝜆  and taking the limit as 𝜆→ 0, we obtain that 𝜌𝜆 satisfies

lim
𝜆→0

𝜌𝜆 =
𝑒−2𝑖𝜃0𝛽0 ∫Ω 𝐵2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥 − 𝛽0 ∫Ω 𝐶2(𝑥)𝑒2𝛼𝑚(𝑥)𝑑𝑥

𝐷(𝑥) + 2𝑖ℎ0 ∫Ω 𝑒𝛼𝑚(𝑥) 𝑑𝑥 − 𝑒−2𝑖𝜃0 ∫Ω 𝐵1(𝑥)𝑒𝛼𝑚(𝑥) 𝑑𝑥
.

This completes the proof. ∎
Thus, by computing the coefficients 𝑔20, 𝑔11, 𝑔02, and 𝑔21, we obtain the normal form Eq. (19) restricted to the center manifold 𝐂0. 

Define

𝐶1(0) =
𝑖

2𝜃𝑛𝜆

[

𝑔11𝑔20 − 2|𝑔11|2 −
|𝑔02|2

3

]

+
𝑔21
2
.

Then, we have

𝜇2 = −
Re(𝐶1(0))
Re(𝜇′(𝜏𝑛))

,

𝛽2 = 2Re(𝐶1(0)),

𝑇2 = −
Im(𝐶1(0)) + 𝜇2 Im(𝜇′(𝜏𝑛))

𝜏𝑛
.

These quantities determine the properties of the bifurcating periodic solutions at the critical value 𝜏𝑛, namely:

(i) 𝜇2 determines the direction of the Hopf bifurcation: if 𝜇2 > 0 (< 0), then the Hopf bifurcation is forward (backward), and the 
bifurcating periodic solutions exist for 𝜏 > 𝜏𝑛 (𝜏 < 𝜏𝑛).

(ii) 𝛽2 determines the stability of the bifurcating periodic solutions: if 𝛽2 < 0 (> 0), then the periodic solutions are orbitally asymptot-
ically stable (unstable) on the center manifold.

(iii) 𝑇2 determines the period of the bifurcating periodic solutions: if 𝑇2 > 0 (< 0), then the period increases (decreases).
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Theorem 4.3. Assume that 𝐿0 > 0 and 𝜆 ∈ (0, 𝜆̃∗], where 0 < 𝜆̃∗ ≪ 1. Let {𝜏𝑛
}∞
𝑛=0 be the sequence of Hopf bifurcation values. Then, for 

each 𝑛 = 0, 1, 2,… , the Hopf bifurcation at 𝜏𝑛 is forward, and when Re
[

𝐶1(0)
]

< 0, the periodic solution bifurcating from 𝜏 = 𝜏0 is orbitally 
asymptotically stable; when Re [𝐶1(0)

]

> 0, the Hopf bifurcation is backward, and the periodic solution bifurcating from 𝜏 = 𝜏0 is unstable. 
According to the study by Zhang and Wei[7], we know that when convection terms are present and 𝛼 > 0, the sign of Re [𝐶1(0)

]

is unknown. Similarly, we provide an alternative method of calculation here.
Theorem 4.4. It is shown by calculation that

lim
𝜆→0

Re𝐶1(0) = lim
𝜆→0

Re

{

i
2𝜔𝜆𝜏𝑛

[

𝑔11𝑔20 − 2|
|

𝑔11||
2 −

|

|

𝑔02||
2

3

]

+
𝑔21
2

}

= 𝛽30

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)

− 𝛽30

(

∫Ω
𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)

+ 𝛽40

(

𝑒i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

6𝑆𝑛(𝜆)

− 𝛽40

(

∫Ω
𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

6𝑆𝑛(𝜆)

+ 𝛽40

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

− 𝛽40

(

∫Ω
𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)
.

where 𝛽0 is given in Theorem 2.1, and 𝐹𝜆 and 𝐸𝜆 are given in Lemma 4.2.
Proof.  By Lemmas 3.4, 4.2, and Theorem 3.6, we have: 

lim
𝜆→0

𝑢𝜆 = 𝛽0, lim𝜆→0
𝜓𝜆 = 𝛽0, lim𝜆→0

𝜓̄𝜆 = 𝛽0, lim𝜆→0
𝜔𝜆𝜏𝑛 = 𝜃0 + 2𝑛𝜋,

and

lim
𝜆→0

𝑔20 = 𝛽30

(

𝑒−2𝑖𝜃0 ∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

,

lim
𝜆→0

𝑔11 = 𝛽30

(

∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

,

lim
𝜆→0

𝑔02 = 𝛽30

(

𝑒2𝑖𝜃0 ∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

,

lim
𝜆→0

𝑔21 = −𝛽30 ∫Ω
𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

2𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

−
i𝑔11
𝜔𝜆𝜏𝑛

+
i𝑔̄11
𝜔𝜆𝜏𝑛

+
𝐹𝜆
𝛽0

)

+ 𝛽30𝑒
−i𝜃0

∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

2𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

−
i𝑔11
𝜔𝜆𝜏𝑛

𝑒−i𝜔𝜆𝜏𝑛 +
i𝑔̄11
𝜔𝜆𝜏𝑛

𝑒i𝜔𝜆𝜏𝑛
)

+ 𝛽30𝑒
−i𝜃0

∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

2𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

𝐹𝜆
𝛽0

)

− 𝛽30 ∫Ω
𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

i𝑔20
𝜔𝜆𝜏𝑛

+
i𝑔̄02
3𝜔𝜆𝜏𝑛

+
𝐸𝜆
𝛽0

)

+ 𝛽30𝑒
i𝜃0

∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

i𝑔20
𝜔𝜆𝜏𝑛

𝑒−i𝜔𝜆𝜏𝑛 +
i𝑔̄02
3𝜔𝜆𝜏𝑛

𝑒i𝜔𝜆𝜏𝑛
)

+ 𝛽30𝑒
i𝜃0

∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 lim𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

𝐸𝜆
𝛽0
𝑒−2i𝜔𝜆𝜏𝑛

)

+ 𝛽40

(

𝑒i𝜃0 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
3𝑆𝑛(𝜆)

+ 𝛽40

(

𝑒−i𝜃0 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

= lim
𝜆→0

[

−2i𝑔11𝑔20
𝜔𝜆𝜏𝑛

+
2i|
|

𝑔11||
2

𝜔𝜆𝜏𝑛
+

i𝑔11𝑔20
𝜔𝜆𝜏𝑛

+
i|
|

𝑔02||
2

3𝜔𝜆𝜏𝑛

]

+ 𝛽30

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)

− 𝛽30

(

∫Ω
𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)
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+ 𝛽40

(

𝑒i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
3𝑆𝑛(𝜆)

+ 𝛽40

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥 − ∫Ω

𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥
)

lim
𝜆→0

𝜆𝜏𝑛
𝑆𝑛(𝜆)

.

Substituting the above results into the expression for 𝐶1(0), we obtain

lim
𝜆→0

Re𝐶1(0) = lim
𝜆→0

Re

{

i
2𝜔𝜆𝜏𝑛

[

𝑔11𝑔20 − 2|
|

𝑔11||
2 −

|

|

𝑔02||
2

3

]

+
𝑔21
2

}

= 𝛽30

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)

− 𝛽30

(

∫Ω
𝐶2(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

(

2𝐹𝜆
𝛽0

+
𝐸𝜆
𝛽0

)

+ 𝛽40

(

𝑒i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

6𝑆𝑛(𝜆)

− 𝛽40

(

∫Ω
𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

6𝑆𝑛(𝜆)

+ 𝛽40

(

𝑒−i𝜔𝜆𝜏𝑛 ∫Ω
𝐵3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)

− 𝛽40

(

∫Ω
𝐶3(𝑥)𝑒𝛼𝑚(𝑥)𝑑𝑥

)

lim
𝜆→0

Re
𝜆𝜏𝑛

2𝑆𝑛(𝜆)
.

This completes the proof. ∎

5.  Numerical simulations and conclusions

To verify the correctness of the theoretical results in this paper and further explore the impact of key parameters on Nicholson’s 
blowfly population dynamics, we conducted a numerical simulation to analyze the proposed predator-affected Nicholson’s blowfly 
population delay reaction-diffusion-advection model in depth. First, we verified the impact of the delay parameter 𝜏 on Nicholson’s 
blowfly model population pattern formation through numerical simulations. Additionally, from a biological perspective, we focused 
on the effects of the advection rate 𝛼, saturation predation rate 𝑏, half-saturation constant 𝑐, and mortality rate 𝛿 on the stability of 
Nicholson’s blowfly population. During the numerical simulation, the parameters were selected based on specific observational data 
from previous studies, ensuring the mathematical model’s validity.

5.1.  Effect of time delay

This section will demonstrate the impact of the delay parameter 𝜏. According to Theorem 3.10, when 𝐿0 > 0, the positive steady 
state solution of Eq. (3) is locally asymptotically stable for 𝜏 ∈

[

0, 𝜏0𝑑1

)

. However, when 𝜏 ∈
(

𝜏0
𝑑1
,∞

)

, a Hopf bifurcation occurs, and 
the positive steady state solution 𝑢𝜆 loses stability.

The following parameter sets are chosen:
(𝑃1)𝑑1 = 2, 𝛼1 = 2, 𝑝 = 30, 𝑎 = 2, 𝑏 = 0.5, 𝑐 = 1.5, 𝛿 = 0.5, 𝑚(𝑥) = sin 𝑥, 𝑥 ∈ (0, 𝜋),

(𝑃2)𝑑1 = 2, 𝛼1 = 2, 𝑝 = 10, 𝑎 = 2, 𝑏 = 0.5, 𝑐 = 1.5, 𝛿 = 0.5, 𝑚(𝑥) = sin 𝑥, 𝑥 ∈ (0, 𝜋).

Initial conditions are:
(𝐼𝐶) 𝑢(𝑥, 𝑡) = 0.8 + 0.2 sin 𝑥, 𝑥 ∈ Ω, 𝑡 ∈ [−𝜏, 0].

Clearly, the parameter set (𝑃1) ensures 𝐿0 > 0, with 𝛽0 ≈ 2.146 and 𝐿0 ≈ 0.374. The parameter set (𝑃2) ensures 𝐿0 < 0, with 𝛽0 ≈
1.436 and 𝐿0 ≈ −3.957. Under the condition of (𝑃1), the first critical value for Eq. (3) is 𝜏0 ≈ 1.423.

To illustrate the impact of the delay parameter 𝜏, numerical simulation results for 𝜏 = 1 and 𝜏 = 2 are given. Fig. 1 shows that 
when 𝐿0 > 0: for 𝜏 = 1, the solution of Eq. (3) converges to a spatially non-uniform positive steady-state solution, while for 𝜏 = 2, 
the solution converges to a time-periodic solution. Fig. 2 shows that when 𝐿0 < 0, the solutions for both 𝜏 = 1 and 𝜏 = 2 converge 
to a spatially non-uniform positive steady-state solution. These numerical simulation results are consistent with the conclusions of 
Theorem 3.10.

5.2.  Effect of advection rate

In this section, we will analyze the impact of the convection rate 𝛼 on the Nicholson fruit fly population. According to the previous 
discussion, the positive steady state solution 𝛽0 is affected by the convection rate 𝛼. Furthermore, based on Theorems 3.3 and 3.10, 
the existence of a Hopf bifurcation is related to the sign of 𝐿0. Below, we conduct a numerical analysis of the relationship between 
𝛼, 𝛽0, and 𝐿0.
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Fig. 1. Eq. (3) undergoes Hopf bifurcation under parameter (𝑃1) with 𝐿0 > 0.

Fig. 2. The solution to Eq. (3) under parameter (𝑃1) with 𝐿0 < 0.

Fig. 3. (a) Relationship between convection parameter 𝛼 and 𝛽0; (b) Relationship between convection parameter 𝛼 and 𝐿0.

Based on the numerical simulation results, as observed from the left graph in Fig. 3, the population density gradually decreases 
as 𝛼 increases. From the right graph, it can be seen that when 𝛼 is small, 𝐿0 > 0 satisfies the condition for a Hopf bifurcation. 
However, when 𝛼 is sufficiently large, 𝐿0 < 0, and 𝑢𝜆 becomes locally asymptotically stable. This suggests that in a lower convection 
environment, individuals can better utilize resources, while a high convection rate may lead to excessive migration, thereby affecting 
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Fig. 4. (a) Relationship between predation rate 𝑏 and 𝛽0; (b) Relationship between predation rate 𝑏 and 𝐿0.

Fig. 5. (a) Relationship between half-saturation constant 𝑐 and 𝛽0; (b) Relationship between half-saturation constant 𝑐 and 𝐿0.

population stability. Therefore, a moderate increase in the convection rate can reduce population density and eliminate population 
oscillations.

5.3.  Effect of reaction term parameters

To investigate the impact of predation, we first conduct numerical simulations in this section to analyze the effects of the saturation 
predation rate 𝑏 and the half-saturation constant 𝑐 on the fly population. From the left panel of Fig. 4, we observe that as the saturation 
predation rate 𝑏 increases, the population density gradually decreases. When 𝑏 is relatively small, a lower predation rate leads to an 
increase in population density, and the model is more likely to undergo a Hopf bifurcation due to the directed movement of the 
population. From the left panel of Fig. 5, we observe that as the half-saturation constant 𝑐 increases, the population density gradually 
increases. From the right panel, we see that when 𝑐 is small, 𝐿0 > 0, which satisfies the condition for a Hopf bifurcation to occur. 
However, when 𝑐 is sufficiently large, 𝐿0 < 0, and 𝑢𝜆 becomes locally asymptotically stable. Therefore, when 𝑐 is large, the population 
density is higher, and oscillatory behavior no longer occurs.

Subsequently, we analyzed the impact of the mortality rate 𝛿 on the population’s survival through numerical simulations. As 
observed from the left graph in Fig. 6, as the mortality rate 𝛿 increases, the population density gradually decreases. When 𝛿 is small, 
a lower mortality rate increases the population density, and the model becomes more susceptible to a Hopf bifurcation due to the 
directional movement of the population. This suggests that populations with lower mortality rates are more likely to undergo periodic 
oscillations.

These findings provide theoretical support for ecosystem management. For example, in environments with strong convective effects 
(such as rivers or oceans), populations may require higher survival rates or lower predation pressure to remain stable. Furthermore, in 
population control or resource management, adjusting predation rates and the half-saturation constant may be significant methods for 
influencing population dynamics. Overall, the numerical simulations in this paper not only validate the correctness of the theoretical 
analysis but also reveal how key ecological factors affect population stability and cyclic behavior through nonlinear dynamical 
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Fig. 6. (a) Relationship between mortality rate 𝛿 and 𝛽0; (b) Relationship between mortality rate 𝛿 and 𝐿0.

mechanisms. This provides important references for subsequent ecological management, species conservation, and biological invasion 
control.
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