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Abstract

Interval-valued data, characterized by intrinsic measurement imprecision, uncertainty, and variability, are common in real-
world applications. This study introduces a novel spatial autoregressive model tailored for interval-valued data, unifying and
generalizing several existing frameworks. To address the limitations of interval representations, we develop a joint quasi-
maximum likelihood estimation method that holistically incorporates complete interval information through both center and
radius parameters. Crucially, we introduce a novel L;-type distance metric to quantify interval variance, which systematically
captures richer intra-interval information compared to classical Euclidean interval distance metric. The asymptotic properties
of the estimators under regularity conditions are established, ensuring statistical robustness. Numerical experiments on syn-
thetic datasets demonstrate the superiority of the proposed method over conventional approaches in prediction accuracy and
information retention. Empirical validation on real spatial interval datasets-urban house price domain-confirms the efficiency

of the parameter estimation framework and the operational viability of the proposed model.

Keywords Spatial autoregressive model - Interval-valued data - Joint quasi-maximum likelihood estimation

1 Introduction

In statistics and econometrics, it is not uncommon for obser-
vations to be recorded as interval-valued data rather than
as single point-valued data. One reason is that imprecise
observations of quantities result in the measured values
being transformed into an interval of possible values, and
interval-valued data capture the radius of possible values
and uncertainties, providing a more comprehensive descrip-
tion. Another reason is that the resulting classifications of
observations invariably involve intervals when observations
in large data sets are aggregated into smaller and more man-
ageable data sizes (Billard and Diday 2000). Interval-valued
data fully represent the complexity and variability of the real
world.

With interval-valued data becoming increasingly signifi-
cant in statistics and econometrics, Moore (1979) introduces
interval operations: interval addition, subtraction, prod-
uct, scalar multiplication, and division. The most common
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interval-valued regression methods are established using the
centre (CM) (Billard and Diday 2000), the upper and lower
bounds (Minmax) (Billard and Diday 2002), and the centre
and radius (CRM) (Billard and Diday 2002) of interval-
valued variables. The CRM method incorporates the richer
utilization of interval data, often outperforming Minmax
(Sinova and Aelst 2018; Li et al. 2025). Souza et al. (2017)
later proposed a parametric method (PM) to enhance the Min-
max method. The linear correlation between the lower and
upper bounds of intervals, both serving as predictor vari-
ables in PM, may introduce multicollinearity issues. With the
advancement of networks, the collection of interval-valued
data has become more convenient. Therefore, it is important
to develop more methods for analyzing interval-valued data.

Spatial interval-valued data, integrating interval-valued
information with spatial dependencies, have become increas-
ingly prevalent in real-world applications. This reflects an
essential characteristic: variations in phenomena within spe-
cific geographical regions inevitably induce changes in
adjacent areas. Such spatial interdependencies are commonly
observed across diverse domains including environmental
monitoring (air quality), financial markets (stock fluctua-
tions), and real estate (housing price dynamics). Existing
research has focused on median estimation (Sinova and
Aelst 2018), fuzzy clustering (D’Urso et al. 2023), and auto-
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correlation index analysis (Freitas et al. 2022) for spatial
interval-valued data. Recent methodological advancements
include linear autoregressive models: Minmax-based and
CRM-based spatial error models (ISER) (Freitas et al.
2024), CRM-based spatial Durbin models with 7-distribution
assumptions (Huang 2024), and PM-based fixed effects spa-
tial interval-valued panel models (Li et al. 2025). These
developments establish a robust analytical framework for
handling inherent uncertainty and spatial variability in com-
plex datasets, enhancing capabilities for spatial pattern
recognition and decision support. Later, (Li et al. 2025) pro-
posed time-varying spatial panel models.

The increasing availability of spatially correlated interval-
valued data underscores the importance of spatial interval
analytical methods for informed decision-making. This paper
proposes a novel spatial autoregressive model for interval-
valued data (ISAR). The CRM-based method are introduced,
avoiding collinearity issues as PM-based method (Li et al.
2025). To estimate the coefficients, in the traditional SAR lit-
erature, the QMLE has been widely studied since Lee (2004).
We follow the tradition QMLE, so that the extreme estimators
obey good asymptotic properties. The direct QMLE approach
is first proposed, where the spatial interval-valued data for
centre and radius are independent of each other is assumed.
When the relationship between centre and radius is not inde-
pendent, we discussed that it might have a poor performance.
To address the loss of some interval information, a L, type Dy
metric (briefly, Dy metric) with respect to the support func-
tion is adopted to represent the variance of interval-valued
data. The Dy metric proposed by Nither (2006) is a gener-
alized distance measure of d,, metric, measuring distances
between two intervals, as discussed in Li et al. (2023); Sun
et al. (2018, 2019) and Han et al. (2016). A joint QMLE
approach based on the L type Dy metric is then proposed,
resulting in estimates with all interval information. One antic-
ipate expect the estimates from the direct QMLE approach
are special cases of the joint QMLE approach based on the
Dy, metric is demonstrated.

Compared with the existing interval-valued models lit-
erature, our proposed approach has a number of appealing
features. First, we extend conventional constant spatial
interval-valued error (ISE) model proposed by Freitas et al.
(2024) to spatial autoregressive model, achieving higher pre-
dictive accuracy. In particular, we propose a novel ISAR
model approach by adding spatial endogenous lags of
response variables rather than independence between indi-
viduals. The ISAR binary spatial weights selected by our
method are allowed to describe the variability of the latitude
and longitude coordinates inside of districts, which is consis-
tent with spatial relationships. Second, we also consider the
full interval information in terms of the joint QMLE method
with weighted matrices and add the relationships between
centers and ranges according to the definition of covariances
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of errors, avoiding a potentially loss of interval information.
Third, we propose three ISAR models, fusing the SAR model
with the CRM, Minmax and PM methods. As a result, the
CRM, Minmax and PM methods can be seen as a special
case.

The paper is organized as follows. Section 2 establishes a
spatial autoregressive (SAR) model for interval-valued data
and develops the joint quasi-maximum likelihood estima-
tion (QMLE) methodology using the Dy metric. Section 3
investigates the asymptotic properties of the proposed Di-
based joint QMLE approach. Section 4 demonstrates that
several existing models emerge as special cases of our pro-
posed model. Section 5 presents Monte Carlo simulations
evaluating the finite-sample performance of our estimator
and compares it with alternatives to direct QMLE and pre-
vious methods. Section 6 applies the proposed methodology
to analyze Shanghai housing price dynamics. Concluding
remarks appear in Section 7. Proofs of theorems are con-
tained in Appendix.

2 Model setting and estimation

2.1 Model

Let Y, = (Vin» Y2u, -+ » yun) be the n x 1 vector consist-
ing of one observation on the dependent variable for units
in the sample, all y;, may potentially be statistically cor-

related, X, = (X1, Xon, -+, Xun)' be the n x p matrix
of interval exogenous explanatory variables with X;, =
(Xitn, Xi2n, - -+, Xipn)' for i = 1,2,---,n. The classical

SAR for single point-valued data is defined by
Yn:)‘«WnYn"l‘Xnﬂ'i'Vn (D

where n is the total number of spatial units, A is the SAR
coefficient, W, is a nonnegative n x n spatial weight matrix
describing the spatial configuration or arrangement of the
units in the samples, Aw;Y, represents the spillover effect
of neighboring spatial units’ behavior on spatial unit i,
B = (B1.B2,---,Bp) is a p x 1 coefficient vector, V), is
an n x 1 vector of disturbance terms, in which each element
is assumed to be independently and identically distributed
with zero mean and variance 2.

For a SAR model for interval-valued data, the depen-
dent vector Y, and independent matrix X, are observed
in interval form, respectively, i.e., yiln = [Y.in> Yu.in] and
xl.ljn = [x,ijn» Xuijnl fori =1,2,--- ,n; j=1,2,---, p.
The subscripts [ and u denote the lower and upper bounds
of intervals. Generally, for interval-valued data, the lower
bound is smaller than the upper bound. By taking the dif-
ference between the lower and upper bounds of Eq.(1), we
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obtain the following SAR for the radius of Y;,:
Yr,n = )LWnYr,n + Xr,n,B + Vr,n ()

where Y,y = (Yyn — Yi0)/2 and Xy = (Xyn — X1.0)/2,
Vy.n denotes the radius of V,,, where V,, = [V/,,, Vynl, Vin
denotes an n x 1 vector of disturbance terms from Y; , and
Vu.n denotes an n x 1 vector of disturbance terms from Y, ,,
Vi = (Vu.n — Vi.»)/2. Similarly, we can obtain the follow-
ing SAR for the center of Y),:

Yc,n = )LWnYc,n + Xc,nlg + Vc,n (3)

where Yo = (Yyn + Yin)/2and Xep = (Xun + Xi1.0)/2.
V..n denotes the center of V,, Ve, = (Vyn + Vi) /2.

The idea of established model (Egs.(2) and (3)) is found
in literature Han et al. (2012) and Han et al. (2016): (i) The
full interval information is converted into center and radius;
(i1) The established SAR for interval-valued data (Eqs.(2)
and (3)) are used same unknown parameters A, W,,, 8, and
o2. The implication of (ii) is that the endogenous interaction
effects among Y, , is same as the endogenous interaction
effects among Y, ,,, and the effect of X, , on Y, , is the same
astheeffectof X , onY, ,.Eqs.(2) and (3) can be considered
areasonable and valid approximation when dealing with the
specific issue of linear interval-valued data and spatial corre-
lated interval response variables. From another prospective,
ISAR model is a generalization of the interval-valued regres-
sion model (CRM) to cross-sectional spatial interval-valued
data. However, there exists a drawback for models (2) and
(3). For example, the highest house price in a city may influ-
ence the highest house price in a neighboring city, but this
influence may not be the same as the influence of the lowest
house price in that city on the lowest price in the neighboring
city.

To relax these restrictions, we impose the coefficients of
the center and radius regressions (Eqs.(2) and (3)) to be differ-
ent, which is similar to the interval-valued regression models,
see Lima Neto and de Carvalho (2008); Lima Neto and
de Carvalho (2017) and Giordani (2015). The ISAR model
takes the following form:

Yr,n - )"r Wr,nYr,n + Xr,n,Br + Vr,n (4)
Yc,n = )\ch,n Yc,n + Xc,n,Bc + Vc,n (5)

where the coefficient A, (A.) measures the strength of
dependence between Y, ;, and Y, j, (between Y. ;, and
Yo ju) fori,j = 1,2,---,n, with a value of zero indi-
cating independence between Y, ;, and Y, j, (between
Yein and Yc,jn)- Br = Bra,Bra,-, ,Br,p)/ and B, =
Beas Bezs oo s ﬂc,p)’ are two p x 1 coefficient vectors. V; ,
and V., are two n x 1 vector of disturbance terms. Each
elements in V, , and V, , are assumed to be independently

and identically distributed with zero mean and variance o
and o2, ie., V., ~ (0,%,,) and V., ~ (0, =), with
Yp =02, and B, = 021,

Note that a single point-valued data a € R can be viewed
as aspecial case of interval-valued data, i.e.,a = [a, a]. Thus,
when the observations of Y, and X, are the single point-
valued data, the proposed models (4) and (5) degenerate into
a classical SAR model (1), where Y, , and X, , to be zero,
while the center regression model (5) is working.

LetYp, = (Yr”n, YC’.’n)’ . Vb are similarly defined as Yy, ,,,
By = (B, B.) . Xp» and W, , are the block diagonal matri-
ces, Xp, = diag {Xr,n’ Xc,n}, Wp.n = diag {Wr,nv Wc,n}
and A, = diag {X,, A}. Then, models (4) and (5) are equiv-
alent to the following bivariate model by converting the
interval to a center and radius vector.

Ypu =2 @ LiWp nYpn + XpnBp + Vo (6)

where '®’ denotes the Kronecker product and I, is the iden-
tity matrix of order n. Define Sp, ,(Ap) = oy — Ap @ [, Wp
for any A,. At the true parameters Ap0, Sp.n = Sp,n(Ap,0)
Then, presuming Sj, is invertible, the bivariate model (6)
can be rewritten as

Yo = Sy nXpnBo + Sy Vi ™
where Vp,, ~ (0, Xp) with £, = sz ® I,,, where 0}3 is
2 x 2 matrix whose diagonal elements are o> and 2 and off-
diagonal elements are zero. The goal of the proposed models
is to construct consistent estimator for unknown parameters:
the spatial coefficient A,, the coefficient vector fp, and the

variance obz.

2.2 Joint quasi-maximum likelihood estimation

To establish the maximum likelihood function of SAR
model for interval-valued data, the variance of center and
radius regression models, X ,, can be used. The quasi log-
likelihood function of models (4) and (5) is:

1
InLpn(6p) = —nIn2m) — 2 In|Zp,|
1 -
+In[Sp.n(Ap)] — EVé,n(er)Zb,LVh,n(%) ®)

where 6, = (4.,0, 6, = (B.,A,02) and 6, =
(BLs e, 062)/. 8, = (8,,8;) where §, = (B, A,) and 8.
(Be, Ac). Because the off-diagonal elements of ¥ ,, Wp, ,,
Sp.n and are zero matrices, Eq.(8) cen be separated into two
parts and each parts includes different unknown parameters
6. and 6,, 1.e.,

n n
In Ly, n(6y) = 7 In(2) - E1no,2 + 1S, .|
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1
- 20_2 Vr/,n((sr)vr,n(‘sr) (9)
=

n n
In Ly (0) = 7 In(2r) = > In o2 +1n|S.,|

1
- 20_2V£,n(8c')vc,n ((Sc) (10)
c

Eqs.(9) and (10) are the single point-valued quasi log-
likelihood functions of models (4) and (5), respectively.

However, this treatments not considers the correlation
between center and radius. The essence of this result lies
in the last term of Eq.(8). Ignoring variance E;}q, Vb’ wVb.n
is the Euclidean distance for point-valued data (Yr,;, and
A WenYen + XpnBr, and Yo and A We Yo o + XenBe)s
which does not reflect the interval-valued nature. Without
creating correlation coefficient between center and radius,
the D; distance function for intervals is introduced as a sub-
stitute for the Euclidean distance between single point-valued
data in quasi log-likelihood function (8).

Denote by K¢ (R) or K the collection of all non-empty
bounded closed intervals in R. The Dy metric
DYABY= Y (salw) —sp)(sa(v)

(1,v)eS0% SO

—sp(v) K (u, v) (11)
where K is a symmetric positive definite kernel function
on unit space SO = {u eR, |u| =1} = {1, -1}, sa(u)
is a support function of the interval A, ie., sa(u) =
SUPyeq (U, a),u € R.sp(u), sa(v), and sp(v) are similarly

defined as s4(u). It can be equivalently represented by the
lower and upper bounds as

D (A, B) =K (1, 1)(A; — B))*> + K(—1, —=1)(A, — B,)?
— (A1 — B)(Ay — B)(K(1,—D)+K(—1, 1))

or equivalently by the center and radius as

DZ(A, B) = A11(A, — B,)* + An(A, — B,)?
+2A12(A; — B))(A, — By)

where

An=K({1,)+K(-1,-1)—(K{,—-1)+ K(—1,1))
An =K1, )+ K(-1,-1D)+(K{,—-1)+ K(—1,1))
Ap=An=K({1,1)— K(—1,-1)

Then, the joint quasi log-likelihood function of (6) is

1
InLpn(O) =—nln@m) = S1In[Zpn| +1n]Sp.n(Rs)l

1 _
= 3V n(8)L, 55w Lon Vo (85) (12)
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where Ly, is composed of eigenvalues and eigenvectors of
Ky, Ky, is a 2n x 2n symmetric kernel matrix in the form
as

Ky, = (Auln AIZIn)
" Aol Axnly

0y = (B}, A}, Xp,n),and Xy , is the variance for bivariate dis-
turbance terms (interval-valued data), i.e., Var([Vi », Vi.n1)
= E(Vb”nKz,an,n) = X ». However, in general, it is a dif-
ficult task that setting up all elements of th are unknown.
Thus, similarly to Xu and Qin (2023), we suppose that the
covariance matrix is partial unknown, i.e., ¥, = Son02,
where the matrix X;, is known but the scale o is unknown.
Thus, the joint quasi log-likelihood function (12) is equiva-
lent to

1
InLy,(0p) = —nlnm) — 5 In|25,| — nlno?

1
+1n [Sp,n(Ap)] — 757 Vi (86)W2i Vi (1)
(13)

where W, = L), ¥2,La,.
Note that, ignoring the variance ¥, numerically, although
the last term on the right-hand side of Eq.(12)

Vi.n(8p)L5, Lon Vin (85) = V) . Kon Vo
= All Vr/,n (&')Vr,n(ar) + A22 Vc/,n (86‘) Vc,n (56)
+ (A2 + A2V, (8:) Ven(8e) (14)

is an alternate representation of the distance between inter-
vals Yp, and Xj ,Bp in terms of the center and range
information of intervals, it is the Dj distance between inter-
vals Y, and X, 8. Dy distance is in essence an integral over
the distances between all pairs of points in intervals Y}, ,
and X , Bp by the choice of the kernel function K. In other
words, the joint quasi log-likelihood function consider the
full interval information to fit the SAR models (4) and (5)
using the Dy distance between intervals Y, , and Xp, , Bp. Dy
distance proposed by Korner (1997) and Korner and Néther
(2002) is measure two sets of arbitrary dimension, which
includes intervals as a special case. Recently, it is widely used
in regression for fuzzy random data and interval-valued time
series, see Nither (2006); Trutschnig et al. (2009); Bertoluzza
et al. (1995); Li et al. (2023); Sinova et al. (2014); Han et al.
(2012); Sun et al. (2018, 2019); Han et al. (2016), but not
in a SAR for interval-valued data. Based on the operation of
the interval bounds with the center and radius of the interval,
Eq.(14) is equivalent to

Vb,rlL/anZn Vb,n = Vb/,nKZn Vb,n
=K(1, l)Vll’nVl,n + K(—1, _I)Vu/‘nvu,n
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— (KL, =D+ K(=1,1)V/, Vin

where V; , and V,, , are similarly defined as V, , and V.,
but using the lower and upper bounds of interval variables.
The joint QMLE 6), is the extremum estimator derived from
the maximization of (12). From the log-likelihood function
(12), given A, the joint QMLE of gy, is

B = (X} WanXpn) " X},  WanSo.n (o) Yo (15)

and the joint QMLE 62 of o2 is

i ! PENT
6704 = 5.~ | Sbn ) Vo1 = X By 00) | Wi
n
[Sb,n(?»b)Yh,n - Xh,nﬁh()»b)]

1
=5, Yy 0 SpnAo)Mp 1 Sp.n(Ap) Y 0

where My, , = (12 — Rp,n)) Wan(Ion — Rp.n) with Ry , =
Xp (X, nwz,,xb,,,)—lxg,,nwz,l. The concentrated log-
likelihood function of A is

1
InLp,(Ap) = —n(In@2m) +1) — 3 In | X9, |

— nIn&2(hp) + 1 [Sp. (hp)| (16)

The joint QMLE Ap of A, maximizes the concentrated log-
likelihood (16). The QMLEs of 8, and o2 are, respectively,
Bp.n(hp) and 6% (hp).

Remark1 When K(1,—1) = K(—-1,1) = 0 or Ajp =
As1 = 0, the joint quasi log-likelihood function (12) degen-
erates two separated quasi log-likelihood functions (9) and
(10) which do not consider the correlation between center
and radius,i.e., the direct QMLE approach is a spacial case
of joint QMLE approach.

3 Assumptions and asymptotic properties

To provide a rigious analysis of the QMLE, we make some
regularity conditions.

Assumption 1 The disturbances {v;,,in} in Voo = (Vp1n,
Ub2ns "> Ubun), forall i = 1,2,---  n, are i.i.d. across
all i and ¢. The odd-order moments E([V} ., Viy,n]®) =
E(”;S;,m | Xp.in) = 0 where s is an arbitrary infinity odd. The
second moments E([Vy,n, Vin]?) = E}, ;, k20 Vp,in| Xp.in»
Xcin) = o2 and the even-order momentE ([V; ,, Vy.nl") =
E((v;,mkznvb,m)t|Xb,i,,, Xc.in) = W where ¢ is an arbi-
trary infinity enve number greater than 2. For some y;, > 0,
E(vy 1 | Xp.in) exists.

Assumption 2 The elements {w, ;jn} of W, , for i, j =
1,2, -, nare of most of order h,‘}l, denoted by O(1/h, ),
uniformly in all i and j, where the rate sequence {h r, ,,} can
be bounded or divergent. As a normalization, w; ;;, = 0 for

all i. The properties of W, , is assumed as that of W, .

Assumption 3 The ratios h, ,,/h, he n/h — 0, as n goes to
infinity.

Assumption 4 The matrices S, , and S, , are nonsingular.

Assumption 5 The sequences of matrices W, ,,, W, p, S,_,i
and S; 1 are uniformly bounded in both row and column

sums.

Assumption 6 The regressors X, ;, and X.;, for i =
1,2,---,n are vectors of constants and are uniformly
bounded. The limits lim,— o £ X , Xy n,limy 00 2 X, Xc o,
limy, 00 %X;,nXC,,,, and lim,,_, oo %Xé’nX,,n exist and all

are nonsingular.

Assumption 7 The regressors X, i, and X.;, for i =
1,2,---,n are vectors of constants and are uniformly
bounded. The limits lim,,_, oo %X;)an,n,limn_)oo %Xé’an,,,,
lim, s o %X;anc,n, and lim,_, o %Xé’an,n exist and all
are nonsingular.

Assumption 8 The kernel K (u, v) is a symmetric positive
function such that for u,v € §° = {—1,1}, K(1,1) >
0, K(I, DK(=1,—-1) > K(1,—1)%, and K(1,-1) =
K(-1,1).K(1,1) >0, K(—1,—1),and K (1, —1) are uni-
formly bounded.

Assumption 9 (i) The parameter space ® is a finite-dimensional
compact space of R™, where m = 2x242x2+2p. (ii) 0p 0
is an interior point in ®, where 6 ,0 = {ﬂlly,o’ )»2)70, 0[3’0} is
the true parameter vector value given in bivariate model 6.

Assumption 10 1im,— o 5- (G20 X2.186) Wan (G 2.0 X2.1Bb)
exist and is nonsingular.

Assumption 10 is a condition for the identification of A}, o,
which is similar to Assumption 8 in Lee (2004); Liang et al.
(2021). This assumption is a sufficient condition for global
identification of 6 no.

Theorem 1 Under Assumptions 1-10, 0y n0 is a globally
identifiable and 6y, ,, is consistent estimator of Op o, i.e.,

O —2> .m0 (17)

Intuitively, the statistics % In Lp »(6p.n) converges in prob-
ability E(% InLp,(6p ) uniformly in ® as n — oo.
Furthermore, the true parameter 6, 0 is the unique minimizer
of E(In Ly ,(6p.,)). It then follows from the extremum esti-
mator theorem (see, Anselin (1988)) that éb,n BN Ob.n0 as
n— oo.
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Theorem 2 UnderAssumptions 1-10, \/ﬁ(éb)n —0p.n0) LN
(O +29b Q, zgh]), where Qg, = lim,_ o0 Q, , and

1 921n Lp 5 (0p.n0)
Yy, = lim —FE _— ],
Op = nl>ngo <2n 89;,,”39};’”

4 Several interval SAR models and binary
spatial weight matrices

The above model (Egs.(4) and (5)) is established by integrat-
ing the SAR model and the CRM method. Furthermore, a
method of fusing the SAR model with the Minmax method
and the PM method can be adopted. The constructing steps of

where the model (Egs.(4) and (5)) provides useful reference ideas
0 * * *
Zn 4 Zz 1 Gb iinXb.in Q6 52, * *
er-’l 2}’1 4 Z =1 Gb unXb’in 0 er,33n * ’
M3 = U3 ua — 3o 1
l2nE2L2nXb n 120 GbinXpnBpo + ——¢tr(Gpn) 2 —
nao 4noy 4noy 8no 20,
and
2007 Xb WWonXp.n * * *
1
1 8210 Ly, Gp.n0) W(Xb,nﬁb,o)/G;,’n O etWyXpn T, * *
B\ a0 )T ’
" b.n %% n 5 (Xb,n85,0)'G), €2 © WanXp.n 0 T2, *
2noy
0 1 1 1

2nootr(Gbn®el) 2nc702tr(G Oe) g(‘)‘

where

0 Z b,iin
0 Z b,iin

F(Xb,nﬁb,o)/%,n ©eWaner © Gp n(Xp.nBp,0)
5,0

er,zzn =2n Z Gb ztnGb mXb nPb +
% i=1
n

Gb ztnGb mXb nPb +

A 4
2n60 !

1
+5lir(e © G}, €1 © Gpp)

+tr(e; © Gp pe1 © Gp )l

1
T2 =7— (Xb.1Bb.0) Gy, © €2W2ne2 © G n(Xp.nBb,0)

noj o
1
+ 5[17(92 O] G;,,neZ O Gp,n)

+ir(ex © Gppe2 © Gp )l

~ 1 ~ 1
with G, = £2L2,Gp, © €1 and G}, = 7L, Gpp ©
1 9210 L (Op.n0)

€. Besides, —E <ﬂ 905,00,

) is the average Hessian

matrix which is nonsingular due to Assumption 10.
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and methods for the construction of other models.
CASE I Using the bounds of interval variables, the model
fusing SAR model and Minmax method is

Yin =M WinYin +XinBr +Vin
Yu,n = )\uWu,nYu,n + Xu,nﬂc + an

(13)
(19)

CASE II. Using the bounds of interval variables and con-
sidering the lower and upper correlation, the model fusing
SAR model and PM method is

Yin =MWinYin + XinBi + Xunvi + Vi
Yu,n = )\u Wu,nYu,n + Xl,nﬂu + Xu,nyu + Vu,n

(20)
2n

The parameters of the models (Egs. 18 and 19, Egs. 20 and
21) can be solved by the direct QMLE method and the joint
QMLE method. The detailed steps for solving are described
in in Section 2.2.

The binary spatial weight matrices (W; ,,, W, ) and (W, 5,
W, n) are computed based on distance criterion. The the
corresponding location of the interval-valued house prices
in each district D can be identified as a bivariate interval
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([la, Ip], {ga, g»]) that describes the variability of the lati-
tude and longitude coordinates inside of D, where [ and g
represent the latitude and longitude, respectively. The sub-
scripts a and b indicates the lower and upper house prices,
respectively. Let the vectors vy = ([lus, Ips], [gas» €bs]) and
vr = (laf, Ibrl, [8af, gbr]) represent the districts Dy and
D, the elements of spatial weight matrices is given by

(22)

Wzn = .
0, otherwise.

o { 1,  d*(vs,vy) < d;
where z = [, u, ¢, r, d is a critical value, d*(vy, vy) is the
distance between Dy and Dy and computes by the metric of
symbolic data analysis: the City block distance (CBD) and
the squared Euclidean distance (SED).

The CBD for interval-valued data is defined as:

CBD: d*(vy, vf) = |lzs _lzfl + 1825 _ngl- (23)
The SED for interval-valued data is defined as:

SED: d*(vs, vy) = (os — Lop)* + (825 — 82f)° (24)

5 Simulation

This section presents a study of Monte Carlo on the Dy dis-
tance. We present two different data sets in order to estimate
the parameters of the spatial regression model for interval-
valued data, and evaluate the performance of the model.
All response variables are required to be independent and
normally distributed. We make the column vector of the
explanatory variable matrix X of dimension p = 5 and set
center and range for the interval-valued data and their coef-
ficients, respectively. Then we have:

YO =0, WY 4 X0B, + v

YO =AWV + XB. + VO

where Vn(r) and V,,(C) represents each element of V, , and
Ve.n» and so do the others.

In addition to this, each element of the upper and lower
bounds of the error term V is required to follow a normal
distribution, i.c. V") ~ N(0, o2) and V,) ~ N(0,62). So
we set our parameter vector

0 = (Ar, e, ﬂrlv ,3er ,3r3’ ,3r4, IBrSv ﬁcl: IBL'Z,

2 2
X ,3637 ﬁC4s ,36‘57 Gr ’ GC)

and make them equal to (0.4, 0.2, 10, 0.5, 0.1, 1, 5,0, —0.5,
5, —1, 10, 0.3, 0.4) respectively. We varied the number of

individuals N = 50, 100, 250, 500 to see how the parameter
estimation performs at different numbers of individuals.

Several simulations with different kernel K are performed.
The following gives different kernel settings for the covari-
ance between the error vectors, respectively. In the simulation
test, two types of data are respectively proposed for the cor-
relation between error term Vn(r) and Vn(c):

Setting 1: Range error term Vn(r) is not related to center error
term V.9, i.e., cov(V,", V) =0
Setting 2: Range error term Vn(r) is related to center error
term V9, ice., cov(V", V) = 1

There are two different estimation methods proposed,
direct QMLE and joint QMLE, to estimate the coefficient
vector f. The two estimates represent the two ways the
nuclear matrix is set up. Direct QMLE means K (1, 1) =
K(-1,—-1) = land K(1, —1) = K(—1, 1) = 0 and joint
QMLE means K(1,1) = 1, K(—-1,—-1) =4, K(1,-1) =
2,K(—1,1) =3.

For each experiment we set the middle term of the weight
matrix to be equal to 0, and the rest of the elements to
belong to the weight values from 0 to 1, which indicates
that the observed values account for their own prediction
weights ranging from O to 1. We will repeat each experiment
1000 times, and therefore the actual mean, standard devia-
tion, bias and RMSE of the estimated parameters of 6 will
be given in Tables (1)-(2), where the MAE(éi) is calculated
as ﬁ Z:,?ﬁ? |éi(m) — éi(0)| and the RMSE(#;) is calculated

as \/ ﬁ S0 (él.(m) - éi(O))z_ The weight matrix will be
repeated 1000 times during the run.

It can be seen from Tables (1)-(2) that after 1000 experi-
ments, the estimated values of each coefficient in setting 1 are
very close to the preset values, and the calculated MAE and
RMSE are also very small. This shows that both direct QMLE
and joint QMLE can estimate the value of each parameter
well when there is no correlation between the error terms.
In setting 2, when there is correlation between the covari-
ances, it can be seen from Tables (3)-(4) that joint QMLE
can give better estimates of various parameters than direct
QMLE, which is consistent with our conclusion. By using
joint QMLE, our proposed model can effectively solve the
problem that the error terms are correlated and the covariance
is not equal to 0 according to kernel function. In general, the
results show that the model can well analyze and process the
center and radius characteristics of the interval value data
and make predictions. In addition, it can be found that as N
increases, the estimated value is closer to the preset value,
and the error term gradually decreases. This shows that our
proposed model is more suitable for scenarios with large N.
When the number of individuals N in various economic prob-
lems is large, this model can be well used to solve such issues
with accurate prediction and excellent performance.

@ Springer
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Table 1 Indicator estimates for each parameter obtained by direct QMLE in Setting 1

Mean Std(10¢-1) MAE(10¢D) RMSE(10¢-2)

N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500
A =04 0.3806  0.3812  0.3854  0.0802 0.0632 0.0432 0.1964 0.1983 02056 0.1223  0.1698  0.2101
Ae =02 0.1947  0.1948  0.1946  0.0555 0.0378  0.0285 0.0637 0.0544  0.0549  0.0443  0.0523  0.0612
B =10 9.8498  9.8520  9.8430  1.5087 12331 0.7992  1.7552  0.1571 15931 1.2281 15710  1.7602
Br2=0.5 0.4702 04902 04893  1.0941  0.8093  0.6025 0.9078 0.0663 0.4678  0.6537  0.6635  0.6090
B3 =0.1 0.0873  0.0897  0.0833  1.1270  0.8435 0.5665 0.9080  0.0692 0.4719 0.6537 0.6915  0.5880
Bra=1 09759  0.9673  0.9695  1.2568 0.7894  0.5534 1.0054 0.0696 0.5014 0.7377  0.6958  0.6293
Brs=5 49394 49245 49138  1.2885 0.9489  0.6552 1.1534  0.0988  0.9205 0.8210 0.9881  1.0812
Be1 =0 -0.0260  -0.0093  -0.0128  1.3826 09548  0.7226  1.1255 0.0781  0.5770  0.8110  0.7806  0.7303
Beoo=—0.5 -0.5107 -0.5043 -0.5062 1.3804 0.9758 0.6241 1.1067 0.0795 05127 0.7980  0.7948  0.6240
Bz =5 49724 49521 49613  1.5781 1.1607 0.7056  1.2783  0.1022  0.6473 09234  1.0222  0.8018
Bea = —1 -1.0136  -1.0026  -1.0164 1.3586 09701  0.6840  1.0965 0.0790 0.5517 0.7870  0.7897  0.7000
Bes =10 9.9445 99496  9.9459  1.7827 1.1194 0.8975 1.5137 0.0999  0.8919  1.0764  0.9994  1.0441
o? 0.3801  0.3939  0.3857 04192 03068 03176 03211 02444 02188  0.2344 02496  0.2473
Table 2 Indicator estimates for each parameter obtained by joint QMLE in Setting 1

Mean Std(10¢-1) MAE(10¢-D) RMSE(10¢-2)

N=100 N=250 N=500 N=100 N=250 N=500 N=I100 N=250 N=500 N=100 N=250 N=500
dr =04 0.3846  0.3840  0.3831  0.0984  0.0559 0.0620  0.1599  0.1605 0.1687 0.1818  0.1695  0.1796
de =02 0.1904  0.1916  0.1902  0.0960  0.0551  0.0485 0.1160 0.0877 0.0985 0.1356  0.1000  0.1088
B =10 9.9046  9.8930  9.8878  1.6708 12285 1.0071 15424 13169 12602 19167 1.6247 1.5039
Br2=0.5 0.5031  0.5093  0.5071  1.3859  0.8264 09529 1.1097 0.6385 0.7543 13793  0.8275  0.9508
B3 =0.1 0.1197  0.1173  0.1137  1.3469 07219 0.7737 1.0979 0.5845 0.6182 13727 0.7389  0.7821
Bra=1 1.0069  1.0064 09998  1.2687 0.7083  0.8209 09538  0.5471 0.6367 1.2642 0.7076  0.8168
Brs=5 49681 49621 49489  1.4768 0.8921 0.8611 1.2036 0.7553  0.7961  1.5037  0.9653  0.9970
Be1 =0 -0.0370  -0.0537  -0.0689 14606 1.3923  1.3456  1.8953  1.1721  1.2494 14761 14156  1.5061
Beoo=—0.5 -05310 -0.5208 -0.5107 1.4966 13733 13517 1.1339 13261 1.1469 16128 1.5955 1.4374
Bz =5 49079 49328 49062  1.6603  1.6258  1.5087 13174 14761 13866 1.8027 1.7515  1.7699
Bea = —1 -1.0821  -1.0526  -1.0756 14795 12780 12101  1.9603 1.2434 1.1078 1.2412 15619  1.4217
Bes = 10 9.8406  9.8704  9.8566  1.9723  1.8999  1.5391  1.6423 1.3951  1.1716  1.3359  1.2915  1.0975
o? 0.3935  0.3906  0.3802  1.0787  0.7460  0.2297  0.8151  0.5759  0.1908  1.0732  0.7422  0.4286

In order to verify the necessity of using interval-valued
data, a comparison is made in this paper. Without considering
the radius of interval-valued data, it is considered as single-
point data and predicted by the spatial autoregressive model.
Fig.1 reports a box plot and plotting the RMSE of between
interval and single point data of SAR. It shows the results
of comparing different N in the two settings. It can be seen
that the RMSE of our proposed model is obviously smaller
than that of SVR-SP, which indicates that when the interval-
valued data is considered as a scalar for prediction, the feature
information of the data will be lost and the prediction results
will be inaccurate.

@ Springer

6 Empirical Application

In modern economies, housing comprises a large segment
of aggregate demand, as well as a large segment of personal
investment. Therefore, housing values play a critical role in
the stability of national economies and financial markets. At
the same time, housing price is one of the most dynamic
and unpredictable variables in the economy. The interaction
of housing, financial and economic activities, political inter-
ventions and geospatial information all contribute to changes
in housing values. Typically, on the one hand, housing prices
exhibit spatial pattern (Guo and Qu 2019). An increase of the
housing values in one neighborhood in a district may affect
the housing values in surrounding neighborhoods. While the
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Table 3 Indicator estimates for each parameter obtained by direct QMLE in Setting 2

Mean Std(10¢-1) MAE(10D) RMSE(10¢-2)

N=100 N=250 N=500 N=I00 N=250 N=500 N=I00 N=250 N=500 N=I100 N=250 N=500
A =04 03779 03821 03830  0.1232  0.0715 0.0503 02675 0.1581 0.1692  0.1993  0.1734  0.1765
Ae =02 0.1858  0.1906  0.1914  0.0972 0.0561  0.0407 0.1151 0.0876 0.0961 0.1361  0.1010  0.1042
B =10 10.0769  9.9019  9.8838 23876 15075 1.0316 2.1575 14026 12510 25879  1.8050  1.5261
Br2=0.5 0.6120 04060 04797  1.6353 1.0781 0.7055 17790 15550 0.5574 1.6271  1.0752  0.7034
B3 =0.1 0.1428  0.1245  0.1226  1.7331  1.0424 0.7354 13750  0.8402 0.5954 1.7422 1.0493  0.7521
Bra=1 1.0980 1.0277 09809  1.8112 09655 0.7435 14373  0.7468  0.6027 1.8052 0.9608  0.7433
Brs=5 48698 51120 49596  2.0364 1.1059  0.7319  1.6637 09030 0.6723  2.0650 1.1396  0.8323
Be1 =0 -0.1284  -0.1182 -0.0840 24481 1.3839  1.1789  1.9332 1.5893  0.9963 24785 1.4620 1.3032
Beo=—0.5 -04709  -0.6097 -0.5875 25571  1.6798  1.1208  2.1740 1.4185 1.1564 2.6538 1.7057  1.4175
Bz =5 48635 50331 47215 26745 1.6358 12081 24034 14727 1.1559 28105 1.7588  1.4905
Bea = —1 212685  -1.2565 -0.9416  2.3248 14849  1.2084 1.9944 15011  1.0482 2.4455 1.5755 13035
Bes =10 9.9005  9.7490  9.8660  2.9340  1.9227 13648  2.6923 1.8566 1.5472 33071 23259  1.9077
o? 0.4191 0.4002  0.4007  0.5537 03699 02667 04161 02846 02189 0.5509 03681  0.2653
Table 4 Indicator estimates for each parameter obtained by joint QMLE in Setting 2

Mean Std(10¢-1) MAE(10¢-D) RMSE(10¢-2)

N=100 N=250 N=500 N=100 N=250 N=500 N=I100 N=250 N=500 N=100 N=250 N=500
dr =04 0.3804  0.3854  0.3903  0.1061  0.0689  0.0488  0.2003  0.1967 0.1967 0.1285  0.1700  0.2034
de =02 0.1946  0.1941  0.1951  0.0595 0.0361  0.0250  0.0655 0.0599  0.0593  0.0463  0.0561  0.6405
B =10 98513  9.8471  9.8652  2.0917 12025 0.8981 2.0884 1.6714 13820 14799 15862 1.6169
Br2=0.5 0.4781  0.4882 04836  1.5245 09681 0.6030 12429 0.7670  0.5011 0.8877  0.7937  0.6221
B3 =0.1 0.0898  0.0929  0.0952 14483 09303 0.6861 1.1666 0.7137 0.5481 0.8368  0.7592  0.6844
Bra=1 0.9746  0.9927  0.9731  1.5699  1.0482  0.6880  1.2556  0.8489  0.5449  0.9167 0.8549  0.7353
Brs =5 49302 49119 49236  1.7067 1.1472 0.7043 14514 0.1171 0.8930  1.5631  1.1785  1.0367
Be1 =0 -0.0274  -0.0265 -0.0147 1.5153 1.0089  0.7153  1.2378 0.8397 0.5713  1.3877 0.8489  0.7268
B =—0.5 -05113  -0.5213  -0.5292  1.4952  0.9928 0.6671  1.1933  0.8165 0.5899  1.4643  0.8264  0.7255
Bz =5 49704 49596  4.9640  1.7447 1.1791 0.7075 1.4132  1.0999  0.5931  1.7201  1.0146  0.7905
Bea = —1 -1.0132  -1.0148  -1.0152 14891 09656  0.7448 1.1711 07817  0.6239  1.2617  0.7951  0.7565
Bes = 10 99421 99425 99352  1.8854 1.0996 0.8574 1.5963 09788  0.8854 1.5369  1.0103  1.0712
o? 0.3804  0.3860  0.3898 04263 02804 02103 0.3334 02223 0.1707 02561 02345  0.2092

building materials of the house itself are not relevant, some
unobservable factors may be spatially relevant (e.g., living
environment). On the other hand, the house prices in a region
are presented as a range of due to the uneven distribution
of supporting facilities. Usually, if the surrounding facil-
ities, such as commercial centers and hospitals, are more
upscale, the housing price will be on the higher end; con-
versely, the housing price will be on the lower end. D’Urso
et al. (2023) applied the spatial fuzzy clustering method the
interval-valued rental values of housing price.

6.1 Data description

In this study, we apply the analysis to examine house price
ranges in sixteen districts in Shanghai, China: Qingpu,
Yangpu, Minhang, Baoshan, Jiading, Pudong New, Jinshan,
Fengxian, Putuo, Jing’an, Changning, Xuhui, Huangpu,
Songjiang, Chongming and Hongkou (ordained 1, 2, - - - , 16
in Fig.2, respectively). This study uses two data sources. The
first is the housing prices (HP) data of Shanghai provided
by the China Real Estate Index System. There are more than
1.7 million rows of records with 16 districts, and the data
approximately cover the most urban areas of Shanghai. As
show in Fig.2, the spatial coverage of the house prices is
quit comprehensive, including 16 districts and reflecting the
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Fig. 1 Compare the RMSE of SAR of single point (SP) and interval-valued (IV) data for N = 100, N = 250 and N = 500 in two settings,

respectively

range of house prices for each district. In addition, for each
house, the dataset provides floor area ratio (FSR), completion
date (CD). The second data source is the 16 districts data set
collected from National Bureau of Statistics. For each dis-
trict, the dataset provides the per capita GDP (PCGDP), and
land use data (LUD). It should be emphasized that the land
use data here are the sum of high-grade hospitals, high-grade
commercial centers (as show in Figs.3 and 4)and transporta-
tion hubs. This kind of substitution is common when specific
land use data are not precisely known (Ni et al. 2018). In
each district, the variables FP, GCR, FSR, CD is the standard
interval variables, the variables TP and LUD is the trivial
interval variables. The first 12 districts data are applied to
model training and the residual 4 districts data are reserved
for modeling testing. The two data sources are online and
integrated into ArcGis. Part of the dataset is presented in
Table 5.

The dataset S = [X[, ¥}l i = 1,2,---,16, 3] =
[Vi.in» Yu.in] 1s the dependent variable denoting the HP (in
order to reduce the absolute value of the data for convenient
calculation, let yi[n = [yl,inv yu,in] = [lOg HPl,iv 10g HPu,i]);
Xl.ljn = [Xy,ijn, Xu,ijn] is considered to be the independent
variables, which represents FSR, GCR, CD, TP, and LUD,
respectively.

6.2 Model formulation
For simplicity, we give abbreviations to the interval-valued

regression models and spatial interval-valued autoregressive
models:

@ Springer

(1) Minmax: the regression model proposed by Billard and
Diday (2002);

(2) D-SAR-Minmax: the proposed spatial autoregressive
model based on the bounds of intervals; the parameter
estimators is obtained by direct QMLE method;

(3) J-SAR-Minmax: the proposed spatial autoregressive
model based on the bounds of intervals; the parameter
estimators is obtained by joint QMLE method;

(4) CRM: the regression model proposed by Neto and Car-
valho (2008);

(5) D-SAR-CRM: the proposed spatial autoregressive model
based on the center and range; and the parameter estima-
tors is obtained by direct QMLE method;

(6) J-SAR-CRM: the proposed spatial autoregressive model
based on the center and range, and the parameter estima-
tors is obtained by joint QMLE method;

(7) PM: the regression model proposed by Souza et al.
(2017);

(8) D-SAR-PM: the proposed spatial autoregressive model
based on the upper and lower bounds; and the parameter
estimators is obtained by direct QMLE method.

(9) J-SAR-PM: the proposed spatial autoregressive model
based on the upper and lower bounds; and the parameter
estimators is obtained by joint QMLE method.

For D-SAR-Minmax, J-SAR-Minmax models, D-SAR-CRM,
J-SAR-CRM, D-SAR-PM and J-SAR-PM, the spatial weight
matrices is computed by CBD and SED metrics, as described
in Section 4. We utilize these models, CRM, Minmanx,
D-SAR-Minmax, J-SAR-Minmax, D-SAR-CRM, J-SAR-
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Fig.2 The interval-valued
house prices between 16
districts of Shanghai, China

Interval-Valued House
Price of Shanghai
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(a) High-grade hospitals (b) High-grade commercial centers

Fig.3 Distributions of facilities in Shanghai, China
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Fig.4 Urban public transport
network in Shanghai, China

Bus

Table 5 Housing prices related

data Districts HP (10%) FSR (% -1072) LU.D(10*3) PC.GDP(10*5)

[min, max] [min, max] [min, max] [min, max]
1 [7.82, 112.87] [0.27, 4.00] [1.35, 1.35] [1.03, 1.13]
2 [12.82, 144.00] [0.35, 7.20] [0.39, 0.39] [1.69, 1.85]
3 [9.12 240.43] [0.29, 6.53] [1.56, 1.56] [1.08, 1.12]
4 [10.00 197.60] [0.30, 4.30] [0.86, 0.86] [0.79, 0.80]
5 [9.13 146.78] [0.40, 6.70] [1.11, 1.11] [1.49, 1.50]
6 [8.20 219.59] [0.30, 6.80] [3.91,3.91] [2.78, 2.89]
7 [6.67 142.50] [0.50, 3.40] [1.48,1.48] [1.37,1.37]
8 [8.15 144.44] [0.30,4.00] [1.33, 1.33] [1.20, 1.26]

CRM to investigate both intra- and inter-district ranges of
housing prices.

6.3 Experimental results

The main objective is to evaluate housing prices assessment
from different perspectives. The examination of experimental
results is segmented into four facets: the spatial correla-
tion, interval inner correlation, the fitting and predicting
performances. The proposed spatial autoregressive models,
which includes J-SAR-Minmax, J-SAR-CRM, J-SAR-PM,
D-SAR-Minmax, D-SAR-CRM, D-SAR-PM, and the linear

@ Springer

regression models, which include Minmax, CRM, PM, are
used to analyze the aforementioned housing prices.

The experimental results of these models with weight
matrices WEBP and WSEP are summarized in Tables 6 and
7. Fig.5 displays the fitting and prediction results of housing
prices with weight matrix W CBD.Three main results are
listed as follows.

1) Housing prices exhibit spatial correlation across 16
regions. As shown in Tables 6 and 7, the values of all
error evaluation indexes show that the fitting and predic-
tion performances of our proposed spatial autoregressive
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Table 6 Evaluation indexes of models Minmax, D-SAR-Minmax, J-SAR-Minmax, CRM, D-SAR-CRM, J-SAR-CRM, PM, D-SAR-PM, J-SAR-

PM using weight matrix WCBP

Weight Models (a, b, c) Fitting Prediction
Matrix RMSE MAE MMER MSE RMSE MAE MMER MSE
WCBD Minmax - 0.5022 0.5604 0.1564 3.6758 1.1537 1.0456 0.2548 7.1069
D-SAR-Minmax - 0.2794 0.3007 0.0991 1.1388 1.0470 1.1144 0.3231 4.3923
J-SAR-Minmax (5,2,95) 0.2668 0.2948 0.0974 1.0194 0.5568 0.6601 0.2012 1.7602
3,4,7) 0.2825 0.2959 0.0953 1.3704 0.8407 0.8885 0.2592 3.0883
(5,1,5) 0.2675 0.2931 0.1006 1.0007 0.5304 0.6134 0.1818 1.7185
2,-1,1 0.2869 0.3582 0.1211 0.5700 0.618 0.6835 0.2047 0.8591
(10, 6, 10) 0.2701 0.2836 0.0895 1.1219 0.6255 0.711 0.2173 1.9705
(10, 8, 16) 0.2645 0.2835 0.0907 1.0793 0.6406 0.7347 0.2247 2.0325
(@°P*, boP!, coP") 0.2666 0.2936 0.0996 0.9232 0.5699 0.6534 0.2048 1.5973
CRM - 0.3325 0.3707 0.1642 0.4379 0.4800 0.5540 0.2975 0.2768
D-SAR-CRM - 0.1739 0.1842 0.0863 0.3755 0.3323 0.3984 0.2136 0.2096
J-SAR-CRM (5,2,5) 0.1653 0.1759 0.0861 0.3678 0.2661 0.3398 0.1759 0.1446
3,4,7) 0.1684 0.1773 0.0868 0.3026 0.1958 0.2249 0.1117 0.0164
(5,1,5) 0.1671 0.1758 0.0809 0.3868 0.2770 0.3503 0.1797 0.1749
2,-1,1) 0.2172 0.2438 0.1304 0.3255 0.4788 0.5676 0.3454 0.1275
(10, 6, 10) 0.1613 0.1744 0.0836 0.3365 0.2047 0.2721 0.1364 0.0876
(10, 8, 16) 0.2317 0.2451 0.1318 0.8391 0.2377 0.2937 0.1468 0.3092
(a°Pt, poP", coP") 0.1675 0.1769 0.087 0.3862 0.2865 0.3061 0.1895 0.2141
PM - 0.2807 0.2921 0.1606 1.2048 1.4224 0.5540 0.2917 1.7067
D-SAR-PM - 0.2586 0.2404 0.0785 0.6785 1.0470 1.1144 0.3231 4.3923
J-SAR-PM (5,2,5) 0.2786 0.2557 0.0837 0.8777 0.5568 0.6601 0.2012 1.7602
3,47 0.3146 0.2778 0.0912 1.1268 0.8407 0.8885 0.2592 3.0883
(5,1,5) 0.2846 0.2531 0.0821 0.8491 1.4224 1.3049 0.2917 1.7067
2,-1,1) 0.2520 0.2251 0.0745 0.5225 0.6180 0.6835 0.2047 0.8591
(10, 6, 10) 0.2678 0.2471 0.0812 0.8031 0.6255 0.7110 0.2173 1.9705
(10, 8, 16) 0.2619 0.2465 0.0822 0.8128 0.6406 0.7347 0.2247 2.0325
(@', boP!, coPh) 0.2771 0.26 0.0849 0.9034 0.5699 0.6534 0.2048 1.5973

models for interval-valued data (J-SAR-Minmax, J-SAR-
CRM, J-SAR-PM, D-SAR-Minmax, D-SAR-CRM, D-
SAR-PM) outperform these of the corresponding pre-
vious linear regression models (Minmax, CRM, PM)
significantly. Since the error evaluation indexes and these
model with different matrices have the familiar perfor-
mances, we take the RMSE and weight matrix W¢ 2P as
an example. For example, when using matrix WS 82 the
RMSE of Minmax, D-SAR-Minmax, J-SAR-Minmax
are 0.5022, 0.2794 (-0.2228), at around 0.2721 (-0.2300)
(The numbers in parentheses represent the gap between
the model Minmax and the corresponding proposed spa-
tial autoregressive models for interval-valued data). The
RMSE of CRM, D-SAR-CRM, J-SAR-CRM are 0.3325,
0.1739 (-0.1586), at around 0.1826 (-0.1499) (The num-
bers in parentheses represent the gap between the model
CRM and the corresponding proposed spatial autoregres-
sive models). The RMSE of PM, D-SAR-PM, J-SAR-PM

2)

are 0.2807, 0.2586 (-0.0221), at around 0.2767 (-0.0040)
(The numbers in parentheses represent the gap between
the model PM and the corresponding proposed spatial
autoregressive models for interval-valued data ). These
findings underscore the robustness and reliability of spa-
tial autoregressive models for interval-valued data in
capturing the nuanced variations across different regions
in Shanghai.

The spatial autoregressive models for interval-valued
data using the spatial weight matrix WSEP are suitable in
the current research on the degree of influence of explana-
tory variables on house prices. Comparing Tables 6 and 7,
it can be seen that the values of RMSE, MAE, MMER and
MSE of the spatial autoregressive models for interval-
valued data using the spatial weight matrix WSEP are
smaller compared to these of using the spatial WCBP
in most fitting cases. It means that the spatial autore-
gressive models for interval-valued data using the spatial
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Table 7 Evaluation indexes of models Minmax, D-SAR-Minmax, J-SAR-Minmax, CRM, D-SAR-CRM, J-SAR-CRM, PM, D-SAR-PM, J-SAR-

PM using weight matrix WSEP

Weight Models (a, b, c) Fitting Prediction
Matrix RMSE MAE MMER MSE RMSE MAE MMER MSE
WSED Minmax - 0.5022 0.5604 0.1564 3.6758 1.1537 1.0456 0.2548 7.1069
D-SAR-Minmax - 0.2965 0.3455 0.1229 1.0831 0.797 0.9313 0.2540 4.525
J-SAR-Minmax (5.2,5) 0.2660 0.3082 0.1064 1.0583 0.9256 1.1070 0.2992 6.3107
3,4,7) 0.2680 0.3161 0.1079 0.9239 0.8663 1.0749 0.2942 5.7319
(5,1,5) 0.2343 0.2668 0.0889 0.9427 1.0089 1.3193 0.3725 7.6275
2,-1,1) 0.3190 0.3918 0.1312 0.7136 0.5587 0.5263 0.1656 1.2214
(10, 6, 10) 0.2492 0.2900 0.0964 0.9607 1.0661 1.4154 0.3952 8.8360
(10, 8, 16) 0.2429 0.2823 0.0947 0.8870 0.9323 1.2149 0.3401 6.6888
(@°P*, boP!, coP") 0.2311 0.2664 0.0870 0.8783 1.1746 1.568 0.4331 10.355
CRM - 0.3325 0.3707 0.1642 0.4379 0.48 0.554 0.2975 0.2768
D-SAR-CRM - 0.1528 0.1646 0.0869 0.2748 0.468 0.4278 0.2897 0.1394
J-SAR-CRM (5,2,5) 0.1584 0.1740 0.0861 0.3788 0.3782 0.3418 0.2353 0.2241
3,4,7) 0.1527 0.1748 0.0865 0.3374 0.4009 0.3746 0.2561 0.2415
(5,1,5) 0.1694 0.2018 0.1049 0.2775 0.6010 0.6033 0.3426 0.0977
2,-1,1) 0.1826 0.1953 0.1032 0.2676 0.8693 1.0044 0.5215 1.5960
(10, 6, 10) 0.1549 0.1741 0.0877 0.3632 0.3850 0.3619 0.2474 0.1975
(10, 8, 16) 0.1490 0.1681 0.0892 0.2911 0.4649 0.4610 0.2873 0.1689
(a°Pt, poP", coP") 0.1803 0.1916 0.1029 0.5178 0.3849 0.4309 0.2933 0.2396
PM - 0.2807 0.2921 0.1606 1.2048 1.4224 0.5540 0.2917 1.7067
D-SAR-PM - 0.2112 0.2066 0.0659 0.5398 0.797 0.9313 0.2540 2.5250
J-SAR-PM (5,2,5) 0.1874 0.1939 0.0646 0.3775 0.9256 1.1070 0.2992 2.3107
3,47 0.2043 0.2042 0.0656 0.4273 0.8663 1.0749 0.2942 2.7319
(5,1,5) 0.2175 0.2087 0.0663 0.6207 1.0089 1.3193 0.3725 2.6275
2,-1,1) 0.1964 0.2155 0.0709 0.3841 0.5587 0.5263 0.1656 1.2214
(10, 6, 10) 0.2223 0.2200 0.0708 0.6819 1.0661 1.4154 0.3952 2.836
(10, 8, 16) 0.2284 0.2108 0.0683 0.5468 0.9323 1.2149 0.3401 2.6888
(@', boP!, coPh) 0.2311 0.2339 0.0786 0.5110 1.1746 1.568 0.4331 2.355

weight matrix WSEP are suitable in the current research
on the degree of influence of explanatory variables on
house prices. It cen be utilized for deeply analyzing
the complex internal and spatial relationships between
numerous explanatory variables such as FSR, GCR, TP,
LUD, PCGOP and house price fluctuations. For exam-
ple, by using models J-SAR-Minmax, J-SAR-CRM and
J-SAR-PM with spatial weight matrix WSFP | the coef-
ficients of various factors influencing house prices can
be accurately quantified. As shown in Table 8, the fac-
tor LUD that plays a positive and significant effects in
driving up house prices. This finding is consistent with
the conclusions from numerous previous studies,which
all indicated the positive connection between the LUD
and housing prices (Yii et al. 2022; Li et al. 2025). As
for the government departments, these results provide
strong support for more targeted real estate regulatory
policies to be introduced, so that house prices can be

@ Springer

3)

more effectively stabilized, and the healthy and stable
development of the real estate market can be effectively
ensured. Furthermore, the spatial autoregressive models
for interval-valued data using the spatial weight matrix
WEBD are suitable for forecasting the future housing
price fluctuations based on current urban design. Com-
paring Tables 6 and 7, it can be seen that the prediction
performances of J-SAR-Minmax, J-SAR-CRM and J-
SAR-CRM using spatial weight matrix WCBP is better
than these of using spatial weight matrix WSEP.

The values of all error evaluation indexes show that the
interval housing prices of Shanghai have interval inner
correlation. In the linear regression models, the model
PM has the best fitting and prediction experiments com-
pared with Minmax and CRM. In the spatial autoregres-
sive models, the models J-SAR-Minmax, J-SAR-CRM
and J-SAR-PM are better than the models D-SAR-
Minmax, D-SAR-CRM and D-SAR-PM, regardless of
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(c) Lower bound prediction of test data

Fig.5 The fitting and prediction results of housing prices with weight
matrix WEBP. Note: In each figure, ‘+’ indicates the bounds of the
true interval-valued data; the red lines show the experimental results of
response variables of the model J-SAR-CRM with different (a, b, ¢);

the weight matrices WCBP or WSEP | Actually, from
the perspective of model construction, the interval inner
correlation of interval-valued data is considered in these
models PM, J-SAR-Minmax, J-SAR-CRM and J-SAR-
PM. In PM, the explanatory variables corresponding to
the upper and lower bounds of the predictor variables
are consistent. In J-SAR-Minmax and J-SAR-CRM, the
interval inner correlation of the predictor variable is
adjusted by the valuesa, b and c. The J-SAR-PM model
not only contains the adjustment form of J-SAR-Minmax
and J-SAR-CRM, but also the model itself incorporates
interaction linear terms between X, , and X ,. However,
as shown in Tables 6 and 7, the error evaluation values of
J-SAR-CRM are smaller than those of D-SAR-PM and
J-SAR-PM. The reason may be as mentioned in Xu and

@ Springer

5.8 T T T T T T T T T T

Ry
=D SARCRM

< FSAR-CRMS25)

> JSARCRM3AT)

I SARCRMGLS)

[+ SARCRML1)

[+ SARCRM(10610)

= SARCRM(108)

[ J-SAR-CRM b

44 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1" 12

5.8 T T T T T

54

5.2

48 \\_\\ z -+ CRM

|+D-SARCRM
| JSAR-CRM23)
> J-SAR-CRM347)

4.6 -+ LSAR-CRM(S.13) 7
-+ LSAR-CRM(2 L)
-+ ISARCRMI10610)
44+ [+ IsARCRMIOSS) |
-~ JSAR-CRM 0™ b
42 I I I I I
1 15 2 2.5 3 3.5 4

(d) Upper bound prediction of test data

the green and blue lines show the experimental results of response vari-
ables of the models CRM and D-SAR-CRM, respectively. The magenta
line is used to represent the model corresponding to the optimal fitting
or prediction results

Qin (2023), the application of the PM expansion models
may be affected by collinearity.

4) The values of all error evaluation indexes show that
the models J-SAR-CRM and D-SAR-CRM with WSEP
have the best fitting and prediction performances, in
comparison with all rest other models. For example,
as shown in Tables 6 and 7, J-SAR-CRM with WSED
and (a,b,c) = (10,8, 16) has the lowest RMSE, at
around 1.490, followed by J-SAR-CRM with WSEP and
(a,b,c) = (3,4,7), D-SAR-CRM, J-SAR-CRM with
WSED and rest cases of (a, b, c). CRM has a relatively
higher error,at around 0.3325.
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7 Conclusions and prospects

This paper attempts to model spatial interval-valued data
regression, considering all inner information of intervals.
We introduce a new SAR model for interval-valued data. To
estimate the estimators, We have derived a QMLE approach
based on L, type Dy metric. Note that it is appealing that the
L, type Dj metric as a generalization of the direct QMLE
approach preserving the asymptotic properties of classical
QMLE approach (Lee 2004). The simple expression of the
Dy metric in QMLE approach than these of Euclidean met-
ric lies in the fact that Dj; metric measures the distance
between each pair of points in intervals in terms of the support
function with respect to kernel functions. Through Monte
Carlo simulations, we present the finite sample properties of
the proposed estimation method. The results report that the
QMLE approach based on L, type Dy metric fit the interval-
valued data more adeptly compared to the QMLE approach
for point-valued data. When applied to real datasets related
to house prices of Shanghai, China for fitting and forecasting,
the proposed models demonstrate best results, highlighting
their excellent performance. Thus, the proposed models pro-
vide effective solutions to practical challenges associated
with interval-valued data that exhibit spatial correlation.
This paper focuses exclusively on ISAR models with lin-
ear assumption, which is the trade-off between simplicity and
interpretability. Here we highlight the potential limitations
of the proposed model and several future research directions
as follows. Firstly, dealing with the nonlinear or more com-
plex interval-valued variation is essential; however, the ISAR
model occasionally seems too rigid to do this during com-
putation. Future work could adopt an integrated perspective,
incorporating time-dimensional dynamics and time-varying
coefficients (as referenced by Liang et al. (2021) and Zhao
et al. (2025)) to directly process time-varying interval-
valued data. Alternatively, graph neural networks (Dawn
and Bandyopadhyay 2023) could be adapted for spatial
interval-valued analysis. Secondly, developing estimators
resistant to anomalous data is critical. This requires designing
appropriate weight functions during estimation to mitigate
outlier influence. As the current model lacks such mecha-
nisms. Therefore, future research could focus on developing
robust ISAR models. Thirdly, to address real-world finan-
cial issues with spatial correlations, such as cross-market
contagion effects, geographical risk spillovers, and spatial
dependence in high-frequency order flows, it is crucial to
partition the state space into discrete regimes and capture
nonlinear dynamics. Specifically, it involves studying exoge-
nous and endogenous thresholds, but the proposed ISAR
model is inapplicable to the datasets exhibiting discrete
regimes and nonlinear dynamic features. Therefore, future
research could focus on developing threshold ISAR models.

Our current ISAR-based approach is a solid foundation and
baseline for future researchers.

Appendix
A Proofs of Theorem 1.

In the following, the idea for prove the consistency and identi-
fication of 0, , is similar to Lee (2004) and Liang etal. (2021).
Define Qp n(Ap) = maxg, 2 E(In(6p,,)). The consistency

of éb,n will follow from

1
500 L (k) = Qpn G1p)] 5 0 uniformly on Ap,
n

(A1)
and the uniqueness identification condition is
. 1
lim supy max ~—(Qpn(ks) — Qbn(1p0))
n— 00 MENE(Mp o) 21
< 0 forany e, (A2)

where N¢(Ap,0) is the complement of an open neighbourhood
of Ap of diameter €.
(1) Proof of (A1). Since

Qpn(Ap) = max E(In Ly ,(0p,n))
Bp.o?

1
= —n(InQ7) + 1) — 3 In|Sy,| — nlno*(Ap)

+ In(K2, Sp,n (A5)).
Thus, the optimal solutions of Qp (1) are

By ) = (X, WanXom) X}, Wan S0 (46)S;,, Xo.nP.0-
2% 1
o, (Ap) = ZE {[Sb.n (M) Y0
—Xpn By )Y WanlSp.n ) Yo — Xin By )1}
1
= EE[(Gb,nXb,nﬂb)/(?»b,o — )
& [nMp n(Ap,0 — Ap) @ Ly (Gp.n Xp.nBp)]

1 ,
+ ;E[(Xb,nﬂb) My (Ap,o — Ap) @ 1y (GpuXpnBp)]

1
+ EE[(Xb,nﬁb)/Mb,n(Xb,n,Bh)]

o’ 1—1 o —1
+ ﬂE[Sby,, Sp.n (A)Spn (Ap) Sy, 1.
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1 1 .
Then, ——{In Ly () = Qpn()] = —E[Inoz(m -

In sz* (Ap)], where

R 1
62(hp) = 2 VoS0 Op) Mo S0 Yo
1
= E(Gb,nxb,nﬂb)/()vb,o — ) LMy,
X ()\b,O - Ab) ® ln(Gb,nXb,n,Bb)

1

+ ;(Xb,nﬂb)/Mb,n()»b,o — ) ® 1 (GpnXpnPp)
1

+ ﬂ(xb,nﬂb)/Mb,n (Xb,nﬂb)

1 _ _
+ 5 VinShn ShaWanSon ) Sy Vi

1 _

+ —(Xb.nB0) M0 Sp.n ) Sy Vi
1

+ ;(Gb,nxb,nﬁb)/()\b,o — )

X ®ly Mp. 1 Sp.n () Spy p V-

According to Lee (2004),

1 _
~(Gi.n Xp.0B0) MbnSh.n(3)S, , Vi
1
= Op(1)§ ;(Xb,nﬂh)/Mh,n(Gb,nXb,nﬁb) = Op(l),

1 _ _
E Vl;,n Sé,nl Sl;,nwzsnsb’”()‘b)sb,r]t Vb’”

2
0’ _ —
= - ELS} 8., 0)S5.0 (08, 1+ 0p (D).

Hence,

62(Ap) — 07 (Ap) = 0,(1) uniformly on Ap, (A3)

and so that (A1) holds.

(2) Proof of (A2). Consider the pure spatial autoregressive
process, i.e., let B, = 0inEq.(3), Yy = Ao QL Wp o+ Vi,
and Vp,, ~ N(0, ¥,,02), where the matrix X, is known but
the scale o2 is unknown. Denote the log-likelihood function
of this process as In Lg’n(kb, o2), it follows that

1
In Ly, G, 0%) = =nIn@m) = —In ||
- nln02 + In |Sb,n()\b)|

1
~ 5,2 Yy 0 Spn A)Wan Sy, (M) Yo

The optimal solution of max,2 In Ly, ,, (Ap, 02) is

2
- o _ _
62 = ﬁs,;’n‘ Spon(A6)K2u S}y, (A5) S (A4)
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Let Q) ,(\p):=max,2 E(In L} ,(Ap,0%) = —nln@2m +
1
1) — Eln|22n| —nlné? + In|Sp.,(Ap)], it follows that

0 ,(hp) < max;, o2 E(An L, (hp,0?) = E(n L, (k0.
o)) = 0} ,(Ab,0), and, therefore,

1 - ~
2—(Q£ﬂ(kb) — an()\.b)())) < 0 uniformly on Ap, (AS)

AS Yo = S, 0 XpnBb.0 + Sy Vo Son(hp) = Spn +
(Ap.0 — Ap) ® Iy Wp.p, it follows that

V,n(06) =Sp.n(Ap)Ypn — Xb 0B
=Xp,u(Bp,0 — Bb) + (Ab,0 — Ab)
® ln Wh,nYh,n + Vb,ny

and

V2 (8)Wai Vi 1 (8p)
= (Bb.0 — B) X}, , Won X0 (B0 — Bp)
+ Y5 Wi W WWon Yo + Vi, Wan Vi
+2(Bb.0 — Bp) X}y ) Wan(hp.0 — 2b) @ LuWp Y.
+2(Bb.0 — Bp) X}y, Wan V.
+2Y;, Wy, (0.0 — A1) @ LuWau Vipn

where W = (Ap.0 — 2p) ® LyWay (hp.o — Ap) ® I, The term
in (A2) can be rewritten as

1 1 - ~
E(Qb‘n()\b)_ Opn(Xp,0)) = Z(Qi,,(kb) - Qf’n()»b,o))

1
—5[1n(a;(xb))—1n(&2(xb)>]
(A6)

From (1) Proof of (Al) and Eq.(A3), og()\h) —62(p) <
0, so that the last term in above equality [ln(ag‘()\h)) —
In(62(xp))] < 0. Combined with A5, (A2) holds.

If the identification uniqueness condition was not satis-
fied, without loss generality, there would exist a sequence
Ap.n converging to Ap 4 7~ O such that lim L(Qb n(Ap) —

? ’ n—o0 2n ’
Obn(hp0)) =

1 -
lim [In(o}; (Ap,n)) — In(62(hp.n))] = 0 and lim —(Ql’;n
n—00 ? ? n—oo 2n ’

0. This would be possible be only if

Mp.n) — Q,f’n()»b,o)) = 0. However, it would be generate a
contradiction due to Assumption 10.
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B Proofs of Theorem 2. £ < I 9InLpn@no) 1 0ln Lb,n(9b,no))
. m aeb,n \/ﬂ aeb,n
The asymptotic d1str1b;11tI11(2n0;féthe): QMLE 6y ,, is derived from B 1 92 Li.nBp.n0) o
the Taylor expansion # =0. == EW + 82,
where
207 Xb nWZnXb n * * *
1
1 9%1In Ly, (Op.n0) 2m02 (Xp, n,3b 0)'G},, © etWy Xy, Ty * %
_E 2_80—}1’” - 1
" 000, 5773 Xbnf50) G &2 © Wan Xi 0 T, ¥
0
0 1 1 1
2no? tr(Gb L ©er) 2no ”(GZ,n Oe) 2
- -1 1
5 1 0%1In Ly 5 (Op.n) where Toy 1 = (Xp.nBp,0) G}, © et Wa,er © Gy
V2@ — O o) = — | — L bn o) 1= Xonb0) G, ,
n(Op,n b,n0) {21’! aeb,nagt/,n | nGb’O
1 9dln Ly ,,(6p.n0) to, () A7) (Xb,;1,3h,0)+E[lr(el@G’b’nq@Gb,n)-l-ll’(el@Gb,nel@
op(1).
V2n 90 Gpn)l and Ty o = 5~ (Xb,1n8,0)' G}, ,, © €2 Woner ©

| no, bO
Gp.n(XpnPp,0) + ﬁ[tr(ez © G, ,e O Gpp) +1tr(e O

Gp.ne2® Gy )], is the average Hessian matrix which is non-
singular due to Assumption 10, and

where éb,n lies between éb,n and 6 0. The asymptotic dis-
tribution of the QMLE 6}, ,,, Theorem 2, holds only if

0 * * *
2 4 Zl 1 Gb unXb in ng,ZZn * *
nao,
_ M3
QQb.n - 4 Zl 1 b ”nXb in 0 ng,33n *
I’lUO
ws — 30t 1
l2nE LZnXb n lZnGb inXb, n,BbO"f‘ tr(Gb n) —80 Py
nao 4n 4 8no 20
1 9InLpyOpno) a where
——— — (0, Xy, + Q¢,,,) (A8)
V2n 00p.n . . 23 &
5 _ 10 Al
LI Ly @) (1P Lyn@rn0) | 0 820,200 = 2ol ZGb,ime,inxb,nﬂb
20 905,06, , 20 965,00, ‘=31 '
M4 — 30, ~1
(A9) + “nod > Gl
i=1

(1) Derivation of (A8). By Lemma C.1 and Lemma )
A.10 in Lee (2004), at 6p n0, the first-order derivatives of Qg 33, = fnlasl Z G? .. Gﬁ’inXb,n,Bb

4 b,iin
the log-likelihood function in (12) only involve both lin- 2noy i=1
e.ar.and quadratic func':tions of \./b,n. Then, using centr'al jta — 30, -
limit theorem, the variance matrix of the score vector in ot Z Ghiin
1 91InLpn(6pno) . "% i
is

V2n a917,:1 ~ 1 ~ 1
with G}, = 7Ly, Gy, Oe; and G}, = £7L2, G Qe

Specifically, ¢, , = 0 as Vj, , is normally distributed.
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Hence, combining the central limit theorem for quadratic
forms of double array (Kelejian and Prucha 2001) and Kol-
mogorov’s central limit theorem,

1 dlnLyp,6 d
b,n(Ob,n0) — (0, Egb’n + Q01;,n)

(A10)

hold.

As Ky, and X, , are two non-stochastic bounded matri-

X}, o WonXp.n Xp, Wone2 © Wy Yp
ces, —"—— = 0p(l), —= =
2n 2n

Op(1) and 52 25 o3, By Lemma C.1,

V2n 8917,:1
2 5 2
where 107 InLp,(Opn) 1 97InLpn(0p,n0)
2n 0pyop, 2n 3Bpp;
1 3%InLyp, (6 X, WX
E@hn ——um E[ 2 n b,n(/b,nO) and _ (L _ i bnVV2ndbn —0,(1).
: n—oo\2n 06,06, o o2 2n i’
ngn = — lim ng n
’ n— o0 ’ ~
1 %I Lp @) 1 3%In Ly, (Bpn0)
(2) Derivation of (A9). 2n 3Ppr, 2n 3BpdA,
For any 6}, , which converges in probability to 6,0, _ (i _ L) (Xﬁ,y,,Wznel O WpuYbn X, ,Woer © Wy, Yb,n)
og &2 2n 2n
1 92In Ly 4 (p.n) 1 02InLp,Bpn0)\ » =o0p(D).
———— —E|—————— | —0
2n 86),00; 2n 96p,00)
(A11) ) - 5
107 InLpn(Opn) 1 37InLpn(0p,n0)
holds if and only if 2n  9Bpdo? 2n  9Ppdo?
B = 1 1 X;,’nWZan,n 1 Xl/,,nWZnXb,n
2i82:)I;Lbén9(/9b,n) _ %32 gneLb,;é?b,no) .0 (A12) RCAE m 254 n
" bnb.n " bn%%.n - 1 X}, Wan(p = 1p,0) ® Xp
1 8%1n Ly (0p.n0) (1 32In Ly, (Opn0)\ » 0 x (B = Bo.o) + =3 >
_— = _— H
20 00,.,96;, 20 00,..96;, =0,(1).
(A13)
) ) , ir(e1Gj, ()
1 92InLp,Bpa) 1 0*In Ly a(6p.n0) n 0 ,
P N TV 3 (3 Ap
2n 9rp0A; 2n ArpON], _2tr(esz,n(kb))
2n
Yl;,nWI/;,n ©egWh,e1 O Wy nYp 0
1 1
I 2n —
" (002 52) 0 Yb/,nWl/Ln © esznez © Wb,an,n Op(l)
2n
102 Ly (@) 1 8210 Ly (B.n0) (YW cgw:lvvz,,xb,,,(~ . Y, W, ®e21/\/2,,xb,,,(~ .
2n 3020n 2n  3029Ap Tnot Po = Bro ot Po — Bro
n <Yé,nWb',n ® €W (o — 25,0) @ Wy Yo Yy, Wi, ® €Wy (hp — hp0) @ Wp Yb,n>
2not 2not
n (% _ ;4) (Yb/,nWb/,n ®@eiWanVon Yy, Wy, ® eszan,n) — 0,(1)
o, O 2not 2no4

@ Springer



Statistics and Computing (2025) 35:154

Page210f23 154

and

1 8% Ly,@pn) 1 8%InLy,(Bpn0)

2n 9020r,  2n 902302
Ly L Yo enVon
= —(— — — _———)— — 0
264 o g 60 2n d
=0,(1).

Thus, the convergence of (A12) holds. Besides, the equation
(A13) also holds. Because it is straightforward by show-

ing that linear functions and quadratic functions of Vj 4,

X, Gpn®e1Ko,Vp
deviated from their means, e.g., bn =1 5 nVb,n
n

X/ Gb ®62K2 Vb V/ K2 Vb

P NN and et ol (tr(e1®
2n 2n

Gp)tr(ez © Gp ), are all 0 (1).

il

C Main Lemmas and Their Proofs

Lemma C.1 The first order derivative of the joint log-
likelihood function (13) at O 0O is

H
1 9InLy,@pno) [

H ],
\/2” agb,n H3
where
Hy = \/—anWZann
H, = 1 ((e1 © GpuXp.nBp,0) WanV,
2—0()2@ 1 b,nAb,nPb,0 2nVb,n

1

X (€2 © GpnXp,nPb,0) WonVin) = S5
0 n

((V nGb n ©erWay, Vb n Vl; nGh n ©erWay Vb,n)/

— g (tr(e1 © Gpn) tr(e2 @ Gp))'

1
Hy = ——— (V] WV,
2iy2n "

2n002).

Proof Since

alnVj ,,(6p)

== _Xb, )
Bv "
aIn Vp ,(6p)
)L—bn (eIQanYbnanQanYhn)
9 In[[Sp.n(Ap) |l
+ —(tr(e1 © Wp.uS;  (n)),

1r(e2 © Wp.uS; 0)))

where e is an 2n x 2n block diagonal matrix whose the
first block diagonal element is an n x n dimensional identity
matrix and the second block diagonal element is an n X n
dimensional zero matrix, and e is an 2n x 2n block diagonal
matrix whose the first block diagonal element is an n X n
dimensional zero matrix, and second block diagonal element
is an n x n dimensional identity matrix.

Hence, the first order derivatives of the joint log-likelihood
function (13) at B0, Ap.0, and o2 are

1 9Ly, 1
V2n 9By B crg«/ 2n

1
Xb’nWZn Vb,n,

1 9lnLp,(0pno)
2n oAp

1
——— (1 © GpuXp.nBp,0) Wan Vi,
002\/%( n n nVb,n

x (€2 © GpuXp.nBp,0) WonVin) —

02 2n
((VsnGbn © eWan Vi Vy G © €W, Vip )

—og (tr(e1 © Gpp) tr(es ® Gb,n))) ,

1 9InLp,(Bpno) _ 1
2n do? B 206‘«/ 2n

— 2n0y).

(Vé,n WZn Vb,n

[}

Lemma C.2 The second order derivative of the joint log-
likelihood function (13) at 6y 0 is
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1
X, WXy
2“b,n nab,n
X 2110'0
— 7Y/ W/ @e W X
1 0% 0Ly, @pno) | 2002 P Bn IWanXpn
2 80 nhy Ly W oeWy,X
' ’ T 5, 2 bn"bn 2V V2ndb,n
2n(70
———V) Wi Xp
4 "b,n nab,n
2n00

* k *
=11 * *
0 -T2 *
1 / / 1 / /
7Yb,nwb,n OeWsy, Vb.n _Wyb,nwb,n O exW, Vbn 1223
0

where

1 2
T = —tr(e G
21 =2 r(e; © Gy )

1
+ ==Y, W, ©OetWyer © Wy, Y,
2noy

1 2
Ty, = E”’(ez O Gy )

1
+ _QYZ;,I‘I Wé’n O eyWher © Wy 1Y 5
2noy

1 1
Tn3 = 55‘ - TGS(Vb,nwzan,n)
Proof
1 921 Ly ,6p.n0) 1
~ - / - = - 2X;7nW2nXb,na
2n By0B), 2noy
1 821n Ly, 4 (0p,n0)
2 PR,
1,
= —be,nwznel(bwb,an,n
0
1 /
———5Xp W2 O WpnYpn |,
2noy
1 8210 Ly, (0p.n0) 1
— . : =— X, Won Vi s
2n 8,3[;8(72 2710'6" b,n 2nVb,n

182 LpnOhu0) (T 0
2n drpdn), 0 Txnp

1 9210 Lp 5 (0p.00)

2n 90 29Ap
1
= __4Y};,nW[;,n © elWZan,n
2noy
1
——— Y, Wy, ©eaWa, Vi
2noy
1 8%21n Ly ,(6p.n0) 1 1
— (V] W),V
2}’1 820_2 20‘6‘ 2]’[0‘06( b,n 2n b,l’l)
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