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Abstract
Interval-valued data, characterized by intrinsic measurement imprecision, uncertainty, and variability, are common in real-
world applications. This study introduces a novel spatial autoregressive model tailored for interval-valued data, unifying and
generalizing several existing frameworks. To address the limitations of interval representations, we develop a joint quasi-
maximum likelihood estimation method that holistically incorporates complete interval information through both center and
radius parameters. Crucially, we introduce a novel L2-type distance metric to quantify interval variance, which systematically
captures richer intra-interval information compared to classical Euclidean interval distance metric. The asymptotic properties
of the estimators under regularity conditions are established, ensuring statistical robustness. Numerical experiments on syn-
thetic datasets demonstrate the superiority of the proposed method over conventional approaches in prediction accuracy and
information retention. Empirical validation on real spatial interval datasets-urban house price domain-confirms the efficiency
of the parameter estimation framework and the operational viability of the proposed model.

Keywords Spatial autoregressive model · Interval-valued data · Joint quasi-maximum likelihood estimation

1 Introduction

In statistics and econometrics, it is not uncommon for obser-
vations to be recorded as interval-valued data rather than
as single point-valued data. One reason is that imprecise
observations of quantities result in the measured values
being transformed into an interval of possible values, and
interval-valued data capture the radius of possible values
and uncertainties, providing a more comprehensive descrip-
tion. Another reason is that the resulting classifications of
observations invariably involve intervals when observations
in large data sets are aggregated into smaller and more man-
ageable data sizes (Billard and Diday 2000). Interval-valued
data fully represent the complexity and variability of the real
world.

With interval-valued data becoming increasingly signifi-
cant in statistics and econometrics, Moore (1979) introduces
interval operations: interval addition, subtraction, prod-
uct, scalar multiplication, and division. The most common
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interval-valued regression methods are established using the
centre (CM) (Billard and Diday 2000), the upper and lower
bounds (Minmax) (Billard and Diday 2002), and the centre
and radius (CRM) (Billard and Diday 2002) of interval-
valued variables. The CRM method incorporates the richer
utilization of interval data, often outperforming Minmax
(Sinova and Aelst 2018; Li et al. 2025). Souza et al. (2017)
later proposed a parametricmethod (PM) to enhance theMin-
max method. The linear correlation between the lower and
upper bounds of intervals, both serving as predictor vari-
ables in PM,may introducemulticollinearity issues.With the
advancement of networks, the collection of interval-valued
data has become more convenient. Therefore, it is important
to develop more methods for analyzing interval-valued data.

Spatial interval-valued data, integrating interval-valued
informationwith spatial dependencies, have become increas-
ingly prevalent in real-world applications. This reflects an
essential characteristic: variations in phenomena within spe-
cific geographical regions inevitably induce changes in
adjacent areas. Such spatial interdependencies are commonly
observed across diverse domains including environmental
monitoring (air quality), financial markets (stock fluctua-
tions), and real estate (housing price dynamics). Existing
research has focused on median estimation (Sinova and
Aelst 2018), fuzzy clustering (D’Urso et al. 2023), and auto-
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correlation index analysis (Freitas et al. 2022) for spatial
interval-valued data. Recent methodological advancements
include linear autoregressive models: Minmax-based and
CRM-based spatial error models (ISER) (Freitas et al.
2024), CRM-based spatial Durbinmodels with t-distribution
assumptions (Huang 2024), and PM-based fixed effects spa-
tial interval-valued panel models (Li et al. 2025). These
developments establish a robust analytical framework for
handling inherent uncertainty and spatial variability in com-
plex datasets, enhancing capabilities for spatial pattern
recognition and decision support. Later, (Li et al. 2025) pro-
posed time-varying spatial panel models.

The increasing availability of spatially correlated interval-
valued data underscores the importance of spatial interval
analyticalmethods for informeddecision-making. This paper
proposes a novel spatial autoregressive model for interval-
valued data (ISAR). The CRM-basedmethod are introduced,
avoiding collinearity issues as PM-based method (Li et al.
2025). To estimate the coefficients, in the traditional SAR lit-
erature, theQMLEhas beenwidely studied since Lee (2004).
We follow the traditionQMLE, so that the extreme estimators
obeygood asymptotic properties. ThedirectQMLEapproach
is first proposed, where the spatial interval-valued data for
centre and radius are independent of each other is assumed.
When the relationship between centre and radius is not inde-
pendent, we discussed that it might have a poor performance.
To address the loss of some interval information, a L2 type Dk

metric (briefly, Dk metric) with respect to the support func-
tion is adopted to represent the variance of interval-valued
data. The Dk metric proposed by Näther (2006) is a gener-
alized distance measure of dw metric, measuring distances
between two intervals, as discussed in Li et al. (2023); Sun
et al. (2018, 2019) and Han et al. (2016). A joint QMLE
approach based on the L2 type Dk metric is then proposed,
resulting in estimateswith all interval information.One antic-
ipate expect the estimates from the direct QMLE approach
are special cases of the joint QMLE approach based on the
Dk metric is demonstrated.

Compared with the existing interval-valued models lit-
erature, our proposed approach has a number of appealing
features. First, we extend conventional constant spatial
interval-valued error (ISE) model proposed by Freitas et al.
(2024) to spatial autoregressive model, achieving higher pre-
dictive accuracy. In particular, we propose a novel ISAR
model approach by adding spatial endogenous lags of
response variables rather than independence between indi-
viduals. The ISAR binary spatial weights selected by our
method are allowed to describe the variability of the latitude
and longitude coordinates inside of districts, which is consis-
tent with spatial relationships. Second, we also consider the
full interval information in terms of the joint QMLE method
with weighted matrices and add the relationships between
centers and ranges according to the definition of covariances

of errors, avoiding a potentially loss of interval information.
Third, we propose three ISARmodels, fusing the SARmodel
with the CRM, Minmax and PM methods. As a result, the
CRM, Minmax and PM methods can be seen as a special
case.

The paper is organized as follows. Section 2 establishes a
spatial autoregressive (SAR) model for interval-valued data
and develops the joint quasi-maximum likelihood estima-
tion (QMLE) methodology using the Dk metric. Section 3
investigates the asymptotic properties of the proposed Dk-
based joint QMLE approach. Section 4 demonstrates that
several existing models emerge as special cases of our pro-
posed model. Section 5 presents Monte Carlo simulations
evaluating the finite-sample performance of our estimator
and compares it with alternatives to direct QMLE and pre-
vious methods. Section 6 applies the proposed methodology
to analyze Shanghai housing price dynamics. Concluding
remarks appear in Section 7. Proofs of theorems are con-
tained in Appendix.

2 Model setting and estimation

2.1 Model

Let Yn = (y1n, y2n, · · · , ynn)′ be the n × 1 vector consist-
ing of one observation on the dependent variable for units
in the sample, all yin may potentially be statistically cor-
related, Xn = (X1n, X2n, · · · , Xnn)

′ be the n × p matrix
of interval exogenous explanatory variables with Xin =
(xi1n, xi2n, · · · , xipn)′ for i = 1, 2, · · · , n. The classical
SAR for single point-valued data is defined by

Yn = λWnYn + Xnβ + Vn (1)

where n is the total number of spatial units, λ is the SAR
coefficient, Wn is a nonnegative n × n spatial weight matrix
describing the spatial configuration or arrangement of the
units in the samples, λwi Yn represents the spillover effect
of neighboring spatial units’ behavior on spatial unit i ,
β = (β1, β2, · · · , βp)

′ is a p × 1 coefficient vector, Vn is
an n × 1 vector of disturbance terms, in which each element
is assumed to be independently and identically distributed
with zero mean and variance σ 2.

For a SAR model for interval-valued data, the depen-
dent vector Yn and independent matrix Xn are observed
in interval form, respectively, i.e., y Iin = [yl,in, yu,in] and
x Ii jn = [xl,i jn, xu,i jn] for i = 1, 2, · · · , n; j = 1, 2, · · · , p.
The subscripts l and u denote the lower and upper bounds
of intervals. Generally, for interval-valued data, the lower
bound is smaller than the upper bound. By taking the dif-
ference between the lower and upper bounds of Eq.(1), we

123



Statistics and Computing (2025) 35 :154 Page 3 of 23 154

obtain the following SAR for the radius of Yn :

Yr ,n = λWnYr ,n + Xr ,nβ + Vr ,n (2)

where Yr ,n = (Yu,n − Yl,n)/2 and Xr ,n = (Xu,n − Xl,n)/2,
Vr ,n denotes the radius of Vn , where Vn = [Vl,n, Vu,n], Vl,n
denotes an n × 1 vector of disturbance terms from Yl,n and
Vu,n denotes an n× 1 vector of disturbance terms from Yu,n ,
Vr ,n = (Vu,n − Vl,n)/2. Similarly, we can obtain the follow-
ing SAR for the center of Yn :

Yc,n = λWnYc,n + Xc,nβ + Vc,n (3)

where Yc,n = (Yu,n + Yl,n)/2 and Xc,n = (Xu,n + Xl,n)/2.
Vc,n denotes the center of Vn , Vc,n = (Vu,n + Vl,n)/2.

The idea of established model (Eqs.(2) and (3)) is found
in literature Han et al. (2012) and Han et al. (2016): (i) The
full interval information is converted into center and radius;
(ii) The established SAR for interval-valued data (Eqs.(2)
and (3)) are used same unknown parameters λ,Wn, β, and
σ 2. The implication of (ii) is that the endogenous interaction
effects among Yr ,n is same as the endogenous interaction
effects among Yc,n , and the effect of Xr ,n on Yr ,n is the same
as the effect of Xc,n onYc,n . Eqs.(2) and (3) can be considered
a reasonable and valid approximation when dealing with the
specific issue of linear interval-valued data and spatial corre-
lated interval response variables. From another prospective,
ISARmodel is a generalization of the interval-valued regres-
sion model (CRM) to cross-sectional spatial interval-valued
data. However, there exists a drawback for models (2) and
(3). For example, the highest house price in a city may influ-
ence the highest house price in a neighboring city, but this
influence may not be the same as the influence of the lowest
house price in that city on the lowest price in the neighboring
city.

To relax these restrictions, we impose the coefficients of
the center and radius regressions (Eqs.(2) and (3)) to be differ-
ent, which is similar to the interval-valued regressionmodels,
see Lima Neto and de Carvalho (2008); Lima Neto and
de Carvalho (2017) and Giordani (2015). The ISAR model
takes the following form:

Yr ,n = λrWr ,nYr ,n + Xr ,nβr + Vr ,n (4)

Yc,n = λcWc,nYc,n + Xc,nβc + Vc,n (5)

where the coefficient λr (λc) measures the strength of
dependence between Yr ,in and Yr , jn (between Yc,in and
Yc, jn) for i, j = 1, 2, · · · , n, with a value of zero indi-
cating independence between Yr ,in and Yr , jn (between
Yc,in and Yc, jn). βr = (βr ,1, βr ,2, · · · , βr ,p)

′ and βc =
(βc,1, βc,2, · · · , βc,p)

′ are two p×1 coefficient vectors. Vr ,n
and Vc,n are two n × 1 vector of disturbance terms. Each
elements in Vr ,n and Vc,n are assumed to be independently

and identically distributed with zero mean and variance σ 2
r

and σ 2
c , i.e., Vr ,n ∼ (0, �r ,n) and Vc,n ∼ (0, �c,n), with

�r ,n = σ 2
r In and �c,n = σ 2

r In .
Note that a single point-valued data a ∈ R can be viewed

as a special case of interval-valueddata, i.e.,a = [a, a]. Thus,
when the observations of Yn and Xn are the single point-
valued data, the proposed models (4) and (5) degenerate into
a classical SAR model (1), where Yr ,n and Xr ,n to be zero,
while the center regression model (5) is working.

LetYb,n = (Y ′
r ,n,Y

′
c,n)

′ .Vb,n are similarly defined asYb,n ,
βb = (β ′

r , β
′
c)

′, Xb,n and Wb,n are the block diagonal matri-
ces, Xb,n = diag

{
Xr ,n, Xc,n

}
, Wb,n = diag

{
Wr ,n,Wc,n

}

and λb = diag {λr , λc}. Then, models (4) and (5) are equiv-
alent to the following bivariate model by converting the
interval to a center and radius vector.

Yb,n = λb ⊗ InWb,nYb,n + Xb,nβb + Vb,n (6)

where ′⊗′ denotes the Kronecker product and In is the iden-
tity matrix of order n. Define Sb,n(λb) = I2n − λb ⊗ InWb,n

for any λb. At the true parameters λb,0, Sb,n = Sb,n(λb,0)
Then, presuming Sb,n is invertible, the bivariate model (6)
can be rewritten as

Yb,n = S−1
b,n Xb,nβb + S−1

b,nVb,n (7)

where Vb,n ∼ (0, �b) with �b = σ 2
b ⊗ In , where σ 2

b is
2×2 matrix whose diagonal elements are σ 2

r and σ 2
c and off-

diagonal elements are zero. The goal of the proposed models
is to construct consistent estimator for unknown parameters:
the spatial coefficient λb, the coefficient vector βb, and the
variance σ 2

b .

2.2 Joint quasi-maximum likelihood estimation

To establish the maximum likelihood function of SAR
model for interval-valued data, the variance of center and
radius regression models, �b,n , can be used. The quasi log-
likelihood function of models (4) and (5) is:

ln Lb,n(θb) = −n ln(2π) − 1

2
ln |�b,n|

+ ln |Sb,n(λb)| − 1

2
V ′
b,n(δb)�

−1
b,nVb,n(δb) (8)

where θb = (θ ′
r , θ

′
c)

′, θr = (β ′
r , λr , σ

2
r )′ and θc =

(β ′
c, λc, σ

2
c )′. δb = (δr , δc) where δr = (βr , λr ) and δc =

(βc, λc). Because the off-diagonal elements of �b,n , Wb,n ,
Sb,n and are zero matrices, Eq.(8) cen be separated into two
parts and each parts includes different unknown parameters
θc and θr , i.e.,

ln Lb,n(θr ) = n

2
ln(2π) − n

2
ln σ 2

r + ln |Sr ,n|
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− 1

2σ 2
r
V ′
r ,n(δr )Vr ,n(δr ) (9)

ln Lb,n(θc) = n

2
ln(2π) − n

2
ln σ 2

c + ln |Sc,n|

− 1

2σ 2
c
V ′
c,n(δc)Vc,n(δc) (10)

Eqs.(9) and (10) are the single point-valued quasi log-
likelihood functions of models (4) and (5), respectively.

However, this treatments not considers the correlation
between center and radius. The essence of this result lies
in the last term of Eq.(8). Ignoring variance �−1

b,n , V
′
b,nVb,n

is the Euclidean distance for point-valued data (Yr ,n and
λrWr ,nYr ,n + Xr ,nβr , and Yc,n and λcWc,nYc,n + Xc,nβc),
which does not reflect the interval-valued nature. Without
creating correlation coefficient between center and radius,
the Dk distance function for intervals is introduced as a sub-
stitute for theEuclidean distance between single point-valued
data in quasi log-likelihood function (8).

Denote by KC(R) or K the collection of all non-empty
bounded closed intervals in R. The Dk metric

D2
k (A, B) =

∑

(u,v)∈S0×S0

(sA(u) − sB(u))(sA(v)

− sB(v))K (u, v) (11)

where K is a symmetric positive definite kernel function
on unit space S0 = {u ∈ R, |u| = 1} = {1,−1}, sA(u)

is a support function of the interval A, i.e., sA(u) =
supa∈A 〈u, a〉 , u ∈ R. sB(u), sA(v), and sB(v) are similarly
defined as sA(u). It can be equivalently represented by the
lower and upper bounds as

D2
k (A, B) =K (1, 1)(Al − Bl)

2 + K (−1,−1)(Au − Bu)
2

− (Al − Bl)(Au − Bu)(K (1,−1)+K (−1, 1))

or equivalently by the center and radius as

D2
k (A, B) = A11(Ar − Br )

2 + A22(Au − Bu)
2

+ 2A12(Al − Bl)(Au − Bu)

where

A11 = K (1, 1) + K (−1,−1) − (K (1,−1) + K (−1, 1))

A22 = K (1, 1) + K (−1,−1) + (K (1,−1) + K (−1, 1))

A12 = A21 = K (1, 1) − K (−1,−1)

Then, the joint quasi log-likelihood function of (6) is

ln Lb,n(θb) = −n ln(2π) − 1

2
ln |�b,n| + ln |Sb,n(λb)|

− 1

2
V ′
b,n(δb)L

′
2n�

−1
b,nL2nVb,n(δb) (12)

where L2n is composed of eigenvalues and eigenvectors of
K2n , K2n is a 2n × 2n symmetric kernel matrix in the form
as

K2n =
(
A11 In A12 In
A21 In A22 In

)

θb = (β ′
b, λ

′
b, �b,n), and�b,n is the variance for bivariate dis-

turbance terms (interval-valued data), i.e., Var([Vl,n, Vu,n])
= E(V ′

b,nK2,nVb,n) = �b,n . However, in general, it is a dif-

ficult task that setting up all elements of σ 2
b are unknown.

Thus, similarly to Xu and Qin (2023), we suppose that the
covariance matrix is partial unknown, i.e., �b,n = �2nσ

2,
where the matrix �2n is known but the scale σ is unknown.
Thus, the joint quasi log-likelihood function (12) is equiva-
lent to

ln Lb,n(θb) = −n ln(2π) − 1

2
ln |�2n| − n ln σ 2

+ ln |Sb,n(λb)| − 1

2σ 2 V
′
b,n(δb)W2nVb,n(δb)

(13)

where W2n = L′
2n�2nL2n .

Note that, ignoring thevariance�2n , numerically, although
the last term on the right-hand side of Eq.(12)

Vb,n(δb)L′
2nL2nVb,n(δb) = V ′

b,nK2nVb,n

= A11V
′
r ,n(δr )Vr ,n(δr ) + A22V

′
c,n(δc)Vc,n(δc)

+ (A12 + A21)V
′
r ,n(δr )Vc,n(δc) (14)

is an alternate representation of the distance between inter-
vals Yb,n and Xb,nβb in terms of the center and range
information of intervals, it is the Dk distance between inter-
vals Yn and Xnβ. Dk distance is in essence an integral over
the distances between all pairs of points in intervals Yb,n
and Xb,nβb by the choice of the kernel function K . In other
words, the joint quasi log-likelihood function consider the
full interval information to fit the SAR models (4) and (5)
using the Dk distance between intervals Yb,n and Xb,nβb. Dk

distance proposed by Körner (1997) and Körner and Näther
(2002) is measure two sets of arbitrary dimension, which
includes intervals as a special case. Recently, it is widely used
in regression for fuzzy random data and interval-valued time
series, seeNäther (2006); Trutschnig et al. (2009);Bertoluzza
et al. (1995); Li et al. (2023); Sinova et al. (2014); Han et al.
(2012); Sun et al. (2018, 2019); Han et al. (2016), but not
in a SAR for interval-valued data. Based on the operation of
the interval bounds with the center and radius of the interval,
Eq.(14) is equivalent to

Vb,nL′
2nL2nVb,n = V ′

b,nK2nVb,n

= K (1, 1)V ′
l,nVl,n + K (−1,−1)V ′

u,nVu,n
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− (K (1,−1) + K (−1, 1))V ′
l,nVu,n

where Vl,n and Vu,n are similarly defined as Vr ,n and Vc,n
but using the lower and upper bounds of interval variables.
The joint QMLE θ̂b is the extremum estimator derived from
the maximization of (12). From the log-likelihood function
(12), given λ, the joint QMLE of βb is

β̂(λ) = (X ′
b,nW2n Xb,n)

−1X ′
b,nW2n Sb,n(λb)Yb,n (15)

and the joint QMLE σ̂ 2 of σ 2 is

σ̂ 2(λb) = 1

2n

[
Sb,n(λb)Yb,n − Xb,nβ̂b(λb)

]′ W2n
[
Sb,n(λb)Yb,n − Xb,nβ̂b(λb)

]

= 1

2n
Y ′
b,n S

′
b,n(λb)Mb,n Sb,n(λb)Yb,n

where Mb,n = (I2n − Rb,n))
′W2n(I2n − Rb,n) with Rb,n =

Xb,n(X ′
b,nW2n Xb,n)

−1X ′
b,nW2n . The concentrated log-

likelihood function of λb is

ln Lb,n(λb) = −n(ln(2π) + 1) − 1

2
ln |�2n|

− n ln σ̂ 2
b (λb) + ln |Sb,n(λb)| (16)

The joint QMLE λ̂b of λb maximizes the concentrated log-
likelihood (16). The QMLEs of βb and σ 2 are, respectively,
β̂b,n(λ̂b) and σ̂ 2(λ̂b).

Remark 1 When K (1,−1) = K (−1, 1) = 0 or A12 =
A21 = 0, the joint quasi log-likelihood function (12) degen-
erates two separated quasi log-likelihood functions (9) and
(10) which do not consider the correlation between center
and radius,i.e., the direct QMLE approach is a spacial case
of joint QMLE approach.

3 Assumptions and asymptotic properties

To provide a rigious analysis of the QMLE, we make some
regularity conditions.

Assumption 1 The disturbances
{
vb,in

}
in Vb,n = (vb,1n,

vb,2n, · · · , vb,un), for all i = 1, 2, · · · , n, are i.i.d. across
all i and t . The odd-order moments E([Vl,n, Vu,n]s) =
E(vsb,in|Xb,in) = 0 where s is an arbitrary infinity odd. The

second moments E([Vl,n, Vu,n]2) = E(v′
b,ink2nvb,in|Xb,in,

Xc,in) = σ 2 and the even-order momentE([Vl,n, Vu,n]t ) =
E((v′

b,ink2nvb,in)
t |Xb,in, Xc,in) = μt where t is an arbi-

trary infinity enve number greater than 2. For some γb > 0 ,
E(v

4+γr
b,in |Xb,in) exists.

Assumption 2 The elements
{
wr ,i jn

}
of Wr ,n for i, j =

1, 2, · · · , n are of most of order h−1
r ,n , denoted by O(1/hr ,n),

uniformly in all i and j , where the rate sequence
{
hr ,n

}
can

be bounded or divergent. As a normalization, wr ,i jn = 0 for
all i . The properties of Wc,n is assumed as that of Wr ,n .

Assumption 3 The ratios hr ,n/h, hc,n/h → 0, as n goes to
infinity.

Assumption 4 The matrices Sr ,n and Sc,n are nonsingular.

Assumption 5 The sequences of matrices Wr ,n , Wc,n , S−1
r ,n ,

and S−1
c,n are uniformly bounded in both row and column

sums.

Assumption 6 The regressors Xr ,in and Xc,in for i =
1, 2, · · · , n are vectors of constants and are uniformly
bounded.The limits limn→∞ 1

n X
′
r ,n Xr ,n , limn→∞ 1

n X
′
c,n Xc,n ,

limn→∞ 1
n X

′
r ,n Xc,n , and limn→∞ 1

n X
′
c,n Xr ,n exist and all

are nonsingular.

Assumption 7 The regressors Xr ,in and Xc,in for i =
1, 2, · · · , n are vectors of constants and are uniformly
bounded.The limits limn→∞ 1

n X
′
r ,n Xr ,n , limn→∞ 1

n X
′
c,n Xc,n ,

limn→∞ 1
n X

′
r ,n Xc,n , and limn→∞ 1

n X
′
c,n Xr ,n exist and all

are nonsingular.

Assumption 8 The kernel K (u, v) is a symmetric positive
function such that for u, v ∈ S0 = {−1, 1}, K (1, 1) >

0, K (1, 1)K (−1,−1) > K (1,−1)2, and K (1,−1) =
K (−1, 1). K (1, 1) > 0, K (−1,−1), and K (1,−1) are uni-
formly bounded.

Assumption 9 (i) Theparameter space
 is afinite-dimensional
compact space ofRm , wherem = 2×2+2×2+2p. (ii) θb,n0
is an interior point in 
, where θb,n0 =

{
β ′
b,0, λ

′
b,0, σ

2
b,0

}
is

the true parameter vector value given in bivariate model 6.

Assumption 10 limn→∞ 1
2n (G2,n X2,nβb)

′W2n(G2,n X2,nβb)

exist and is nonsingular.

Assumption 10 is a condition for the identification of λb,0,
which is similar to Assumption 8 in Lee (2004); Liang et al.
(2021). This assumption is a sufficient condition for global
identification of θb,n0.

Theorem 1 Under Assumptions 1-10, θb,n0 is a globally
identifiable and θ̂b,n is consistent estimator of θb,n0, i.e.,

θ̂b,n
p−→ θb,n0 (17)

Intuitively, the statistics 1
2n ln Lb,n(θb,n) converges in prob-

ability E( 1
2n ln Lb,n(θb,n)) uniformly in 
 as n → ∞.

Furthermore, the true parameter θb,n0 is the uniqueminimizer
of E(ln Lb,n(θb,n)). It then follows from the extremum esti-

mator theorem (see, Anselin (1988)) that θ̂b,n
p−→ θb,n0 as

n → ∞.
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Theorem 2 Under Assumptions 1-10,
√
n(θ̂b,n − θb,n0)

d−→
N (0, �−1

θb
+�−1

θb
�θb�

−1
θb

), where�θb = limn→∞ �θb,n and

�θb = lim
n→∞ −E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)

,

where

�θb,n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗ ∗ ∗
μ3

2nσ 4
0

∑n
i=1 G̃

1
b,i in Xb,in �θb,22n ∗ ∗

μ3

2nσ 4
0

∑n
i=1 G̃

2
b,i in Xb,in 0 �θb,33n ∗

μ3

4nσ 6
0

l2n�
1
2L2n Xb,n

μ3

4nσ 6
0

l2nG̃b,in Xb,nβb,0 + μ3

4nσ 6
0

tr(Gb,n)
μ4 − 3σ 4

0

8nσ 8
0

1

2σ 4
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

− E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2nσ 2
0

X ′
b,nW2n Xb,n ∗ ∗ ∗

1

2nσ 2
0

(Xb,nβb,0)
′G ′

b,n � e1W2n Xb,n T22,1 ∗ ∗
1

2nσ 2
0

(Xb,nβb,0)
′G ′

b,ne2 � W2n Xb,n 0 T22,2 ∗

0
1

2nσ 2
0 tr(G

′
b,n � e1)

1

2nσ 2
0 tr(G

′
b,n � e2)

1

2σ 4
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

where

�θb,22n = 2μ3

2nσ 4
0

n∑

i=1

G̃1
b,i in G̃

1
b,in Xb,nβb + μ4 − 3σ 4

0

2nσ 4
0

n∑

i=1

G̃1
b,i in

�θb,33n = 2μ3

2nσ 4
0

n∑

i=1

G̃2
b,i in G̃

2
b,in Xb,nβb + μ4 − 3σ 4

0

2nσ 4
0

n∑

i=1

G̃2
b,i in

T22,1 = 1

2nσ 2
b,0

(Xb,nβb,0)
′G′

b,n � e1W2ne1 � Gb,n(Xb,nβb,0)

+ 1

2n
[tr(e1 � G′

b,ne1 � Gb,n)

+ tr(e1 � Gb,ne1 � Gb,n)]
T22,2 = 1

2nσ 2
b,0

(Xb,nβb,0)
′G′

b,n � e2W2ne2 � Gb,n(Xb,nβb,0)

+ 1

2n
[tr(e2 � G′

b,ne2 � Gb,n)

+ tr(e2 � Gb,ne2 � Gb,n)]

with G̃1
b,n = �

1
2L2nGb,n � e1 and G̃2

b,n = �
1
2L2nGb,n �

e2. Besides, −E

(
1
2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)
is the average Hessian

matrix which is nonsingular due to Assumption 10.

4 Several interval SARmodels and binary
spatial weight matrices

The above model (Eqs.(4) and (5)) is established by integrat-
ing the SAR model and the CRM method. Furthermore, a
method of fusing the SAR model with the Minmax method
and the PMmethod can be adopted. The constructing steps of
the model (Eqs.(4) and (5)) provides useful reference ideas

and methods for the construction of other models.
CASE I. Using the bounds of interval variables, themodel

fusing SAR model and Minmax method is

Yl,n = λlWl,nYl,n + Xl,nβr + Vl,n (18)

Yu,n = λuWu,nYu,n + Xu,nβc + Vu,n (19)

CASE II. Using the bounds of interval variables and con-
sidering the lower and upper correlation, the model fusing
SAR model and PM method is

Yl,n = λlWl,nYl,n + Xl,nβl + Xu,nγl + Vl,n (20)

Yu,n = λuWu,nYu,n + Xl,nβu + Xu,nγu + Vu,n (21)

The parameters of themodels (Eqs. 18 and 19, Eqs. 20 and
21) can be solved by the direct QMLE method and the joint
QMLE method. The detailed steps for solving are described
in in Section 2.2.

The binary spatialweightmatrices (Wl,n ,Wu,n) and (Wc,n ,
Wr ,n) are computed based on distance criterion. The the
corresponding location of the interval-valued house prices
in each district D can be identified as a bivariate interval
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([la, lb], {ga, gb]) that describes the variability of the lati-
tude and longitude coordinates inside of D, where l and g
represent the latitude and longitude, respectively. The sub-
scripts a and b indicates the lower and upper house prices,
respectively. Let the vectors vs = ([las, lbs], [gas, gbs]) and
v f = ([la f , lb f ], [ga f , gbf ]) represent the districts Ds and
D f , the elements of spatial weight matrices is given by

w
s f
z,n =

{
1, dz(vs, v f ) < d;
0, otherwise.

(22)

where z = l, u, c, r , d is a critical value, dz(vs, v f ) is the
distance between Ds and D f and computes by the metric of
symbolic data analysis: the City block distance (CBD) and
the squared Euclidean distance (SED).

The CBD for interval-valued data is defined as:

CBD: dz(vs, v f ) = |lzs − lz f | + |gzs − gz f |. (23)

The SED for interval-valued data is defined as:

SED: dz(vs, v f ) = (lzs − lz f )
2 + (gzs − gz f )

2. (24)

5 Simulation

This section presents a study of Monte Carlo on the Dk dis-
tance. We present two different data sets in order to estimate
the parameters of the spatial regression model for interval-
valued data, and evaluate the performance of the model.
All response variables are required to be independent and
normally distributed. We make the column vector of the
explanatory variable matrix X of dimension p = 5 and set
center and range for the interval-valued data and their coef-
ficients, respectively. Then we have:

Y (r)
n = λrW

(r)
n Y (r)

n + X (r)
n βr + V (r)

n

Y (c)
n = λcW

(c)
n Y (c)

n + X (c)
n βc + V (c)

n

where V (r)
n and V (c)

n represents each element of Vr ,n and
Vc,n , and so do the others.

In addition to this, each element of the upper and lower
bounds of the error term V is required to follow a normal
distribution, i.e. V (r)

n ∼ N (0, σ 2
r ) and V (c)

n ∼ N (0, σ 2
c ). So

we set our parameter vector

θ = (λr , λc, βr1, βr2, βr3, βr4, βr5, βc1, βc2,

× βc3, βc4, βc5, σ
2
r , σ 2

c )

and make them equal to (0.4, 0.2, 10, 0.5, 0.1, 1, 5, 0,−0.5,
5,−1, 10, 0.3, 0.4) respectively. We varied the number of

individuals N = 50, 100, 250, 500 to see how the parameter
estimation performs at different numbers of individuals.

Several simulationswith different kernel K are performed.
The following gives different kernel settings for the covari-
ance between the error vectors, respectively. In the simulation
test, two types of data are respectively proposed for the cor-
relation between error term V (r)

n and V (c)
n :

Setting 1: Range error term V (r)
n is not related to center error

term V (c)
n , i.e., cov(V (r)

n , V (c)
n ) = 0

Setting 2: Range error term V (r)
n is related to center error

term V (c)
n , i.e., cov(V (r)

n , V (c)
n ) = 1

There are two different estimation methods proposed,
direct QMLE and joint QMLE, to estimate the coefficient
vector θ . The two estimates represent the two ways the
nuclear matrix is set up. Direct QMLE means K (1, 1) =
K (−1,−1) = 1 and K (1,−1) = K (−1, 1) = 0 and joint
QMLE means K (1, 1) = 1, K (−1,−1) = 4, K (1,−1) =
2, K (−1, 1) = 3.

For each experiment we set the middle term of the weight
matrix to be equal to 0, and the rest of the elements to
belong to the weight values from 0 to 1, which indicates
that the observed values account for their own prediction
weights ranging from 0 to 1. We will repeat each experiment
1000 times, and therefore the actual mean, standard devia-
tion, bias and RMSE of the estimated parameters of θ will
be given in Tables (1)-(2), where the MAE(θ̂i ) is calculated
as 1

1000

∑1000
m=1 |θ̂ (m)

i − θ̂
(0)
i | and the RMSE(θ̂i ) is calculated

as
√

1
1000

∑1000
m=1(θ̂

(m)
i − θ̂

(0)
i )2. The weight matrix will be

repeated 1000 times during the run.
It can be seen from Tables (1)-(2) that after 1000 experi-

ments, the estimated values of each coefficient in setting 1 are
very close to the preset values, and the calculated MAE and
RMSEare also very small. This shows that both directQMLE
and joint QMLE can estimate the value of each parameter
well when there is no correlation between the error terms.
In setting 2, when there is correlation between the covari-
ances, it can be seen from Tables (3)-(4) that joint QMLE
can give better estimates of various parameters than direct
QMLE, which is consistent with our conclusion. By using
joint QMLE, our proposed model can effectively solve the
problem that the error terms are correlated and the covariance
is not equal to 0 according to kernel function. In general, the
results show that the model can well analyze and process the
center and radius characteristics of the interval value data
and make predictions. In addition, it can be found that as N
increases, the estimated value is closer to the preset value,
and the error term gradually decreases. This shows that our
proposed model is more suitable for scenarios with large N .
When the number of individuals N in various economic prob-
lems is large, this model can be well used to solve such issues
with accurate prediction and excellent performance.
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Table 1 Indicator estimates for each parameter obtained by direct QMLE in Setting 1

Mean Std(10(−1)) MAE(10(−1)) RMSE(10(−2))
N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

λr = 0.4 0.3806 0.3812 0.3854 0.0802 0.0632 0.0432 0.1964 0.1983 0.2056 0.1223 0.1698 0.2101

λc = 0.2 0.1947 0.1948 0.1946 0.0555 0.0378 0.0285 0.0637 0.0544 0.0549 0.0443 0.0523 0.0612

βr1 = 10 9.8498 9.8520 9.8430 1.5087 1.2331 0.7992 1.7552 0.1571 1.5931 1.2281 1.5710 1.7602

βr2 = 0.5 0.4702 0.4902 0.4893 1.0941 0.8093 0.6025 0.9078 0.0663 0.4678 0.6537 0.6635 0.6090

βr3 = 0.1 0.0873 0.0897 0.0833 1.1270 0.8435 0.5665 0.9080 0.0692 0.4719 0.6537 0.6915 0.5880

βr4 = 1 0.9759 0.9673 0.9695 1.2568 0.7894 0.5534 1.0054 0.0696 0.5014 0.7377 0.6958 0.6293

βr5 = 5 4.9394 4.9245 4.9138 1.2885 0.9489 0.6552 1.1534 0.0988 0.9205 0.8210 0.9881 1.0812

βc1 = 0 -0.0260 -0.0093 -0.0128 1.3826 0.9548 0.7226 1.1255 0.0781 0.5770 0.8110 0.7806 0.7303

βc2 = −0.5 -0.5107 -0.5043 -0.5062 1.3804 0.9758 0.6241 1.1067 0.0795 0.5127 0.7980 0.7948 0.6240

βc3 = 5 4.9724 4.9521 4.9613 1.5781 1.1607 0.7056 1.2783 0.1022 0.6473 0.9234 1.0222 0.8018

βc4 = −1 -1.0136 -1.0026 -1.0164 1.3586 0.9701 0.6840 1.0965 0.0790 0.5517 0.7870 0.7897 0.7000

βc5 = 10 9.9445 9.9496 9.9459 1.7827 1.1194 0.8975 1.5137 0.0999 0.8919 1.0764 0.9994 1.0441

σ 2 0.3801 0.3939 0.3857 0.4192 0.3068 0.3176 0.3211 0.2444 0.2188 0.2344 0.2496 0.2473

Table 2 Indicator estimates for each parameter obtained by joint QMLE in Setting 1

Mean Std(10(−1)) MAE(10(−1)) RMSE(10(−2))
N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

λr = 0.4 0.3846 0.3840 0.3831 0.0984 0.0559 0.0620 0.1599 0.1605 0.1687 0.1818 0.1695 0.1796

λc = 0.2 0.1904 0.1916 0.1902 0.0960 0.0551 0.0485 0.1160 0.0877 0.0985 0.1356 0.1000 0.1088

βr1 = 10 9.9046 9.8930 9.8878 1.6708 1.2285 1.0071 1.5424 1.3169 1.2602 1.9167 1.6247 1.5039

βr2 = 0.5 0.5031 0.5093 0.5071 1.3859 0.8264 0.9529 1.1097 0.6385 0.7543 1.3793 0.8275 0.9508

βr3 = 0.1 0.1197 0.1173 0.1137 1.3469 0.7219 0.7737 1.0979 0.5845 0.6182 1.3727 0.7389 0.7821

βr4 = 1 1.0069 1.0064 0.9998 1.2687 0.7083 0.8209 0.9538 0.5471 0.6367 1.2642 0.7076 0.8168

βr5 = 5 4.9681 4.9621 4.9489 1.4768 0.8921 0.8611 1.2036 0.7553 0.7961 1.5037 0.9653 0.9970

βc1 = 0 -0.0370 -0.0537 -0.0689 1.4606 1.3923 1.3456 1.8953 1.1721 1.2494 1.4761 1.4156 1.5061

βc2 = −0.5 -0.5310 -0.5208 -0.5107 1.4966 1.3733 1.3517 1.1339 1.3261 1.1469 1.6128 1.5955 1.4374

βc3 = 5 4.9079 4.9328 4.9062 1.6603 1.6258 1.5087 1.3174 1.4761 1.3866 1.8027 1.7515 1.7699

βc4 = −1 -1.0821 -1.0526 -1.0756 1.4795 1.2780 1.2101 1.9603 1.2434 1.1078 1.2412 1.5619 1.4217

βc5 = 10 9.8406 9.8704 9.8566 1.9723 1.8999 1.5391 1.6423 1.3951 1.1716 1.3359 1.2915 1.0975

σ 2 0.3935 0.3906 0.3802 1.0787 0.7460 0.2297 0.8151 0.5759 0.1908 1.0732 0.7422 0.4286

In order to verify the necessity of using interval-valued
data, a comparison ismade in this paper.Without considering
the radius of interval-valued data, it is considered as single-
point data and predicted by the spatial autoregressive model.
Fig.1 reports a box plot and plotting the RMSE of between
interval and single point data of SAR. It shows the results
of comparing different N in the two settings. It can be seen
that the RMSE of our proposed model is obviously smaller
than that of SVR-SP, which indicates that when the interval-
valued data is considered as a scalar for prediction, the feature
information of the data will be lost and the prediction results
will be inaccurate.

6 Empirical Application

In modern economies, housing comprises a large segment
of aggregate demand, as well as a large segment of personal
investment. Therefore, housing values play a critical role in
the stability of national economies and financial markets. At
the same time, housing price is one of the most dynamic
and unpredictable variables in the economy. The interaction
of housing, financial and economic activities, political inter-
ventions and geospatial information all contribute to changes
in housing values. Typically, on the one hand, housing prices
exhibit spatial pattern (Guo and Qu 2019). An increase of the
housing values in one neighborhood in a district may affect
the housing values in surrounding neighborhoods. While the
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Table 3 Indicator estimates for each parameter obtained by direct QMLE in Setting 2

Mean Std(10(−1)) MAE(10(−1)) RMSE(10(−2))
N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

λr = 0.4 0.3779 0.3821 0.3830 0.1232 0.0715 0.0503 0.2675 0.1581 0.1692 0.1993 0.1734 0.1765

λc = 0.2 0.1858 0.1906 0.1914 0.0972 0.0561 0.0407 0.1151 0.0876 0.0961 0.1361 0.1010 0.1042

βr1 = 10 10.0769 9.9019 9.8838 2.3876 1.5075 1.0316 2.1575 1.4026 1.2510 2.5879 1.8050 1.5261

βr2 = 0.5 0.6120 0.4060 0.4797 1.6353 1.0781 0.7055 1.7790 1.5550 0.5574 1.6271 1.0752 0.7034

βr3 = 0.1 0.1428 0.1245 0.1226 1.7331 1.0424 0.7354 1.3750 0.8402 0.5954 1.7422 1.0493 0.7521

βr4 = 1 1.0980 1.0277 0.9809 1.8112 0.9655 0.7435 1.4373 0.7468 0.6027 1.8052 0.9608 0.7433

βr5 = 5 4.8698 5.1120 4.9596 2.0364 1.1059 0.7319 1.6637 0.9030 0.6723 2.0650 1.1396 0.8323

βc1 = 0 -0.1284 -0.1182 -0.0840 2.4481 1.3839 1.1789 1.9332 1.5893 0.9963 2.4785 1.4620 1.3032

βc2 = −0.5 -0.4709 -0.6097 -0.5875 2.5571 1.6798 1.1208 2.1740 1.4185 1.1564 2.6538 1.7057 1.4175

βc3 = 5 4.8635 5.0331 4.7215 2.6745 1.6358 1.2081 2.4034 1.4727 1.1559 2.8105 1.7588 1.4905

βc4 = −1 -1.2685 -1.2565 -0.9416 2.3248 1.4849 1.2084 1.9944 1.5011 1.0482 2.4455 1.5755 1.3035

βc5 = 10 9.9005 9.7490 9.8660 2.9340 1.9227 1.3648 2.6923 1.8566 1.5472 3.3071 2.3259 1.9077

σ 2 0.4191 0.4002 0.4007 0.5537 0.3699 0.2667 0.4161 0.2846 0.2189 0.5509 0.3681 0.2653

Table 4 Indicator estimates for each parameter obtained by joint QMLE in Setting 2

Mean Std(10(−1)) MAE(10(−1)) RMSE(10(−2))
N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

λr = 0.4 0.3804 0.3854 0.3903 0.1061 0.0689 0.0488 0.2003 0.1967 0.1967 0.1285 0.1700 0.2034

λc = 0.2 0.1946 0.1941 0.1951 0.0595 0.0361 0.0250 0.0655 0.0599 0.0593 0.0463 0.0561 0.6405

βr1 = 10 9.8513 9.8471 9.8652 2.0917 1.2025 0.8981 2.0884 1.6714 1.3820 1.4799 1.5862 1.6169

βr2 = 0.5 0.4781 0.4882 0.4836 1.5245 0.9681 0.6030 1.2429 0.7670 0.5011 0.8877 0.7937 0.6221

βr3 = 0.1 0.0898 0.0929 0.0952 1.4483 0.9303 0.6861 1.1666 0.7137 0.5481 0.8368 0.7592 0.6844

βr4 = 1 0.9746 0.9927 0.9731 1.5699 1.0482 0.6880 1.2556 0.8489 0.5449 0.9167 0.8549 0.7353

βr5 = 5 4.9302 4.9119 4.9236 1.7067 1.1472 0.7043 1.4514 0.1171 0.8930 1.5631 1.1785 1.0367

βc1 = 0 -0.0274 -0.0265 -0.0147 1.5153 1.0089 0.7153 1.2378 0.8397 0.5713 1.3877 0.8489 0.7268

βc2 = −0.5 -0.5113 -0.5213 -0.5292 1.4952 0.9928 0.6671 1.1933 0.8165 0.5899 1.4643 0.8264 0.7255

βc3 = 5 4.9704 4.9596 4.9640 1.7447 1.1791 0.7075 1.4132 1.0999 0.5931 1.7201 1.0146 0.7905

βc4 = −1 -1.0132 -1.0148 -1.0152 1.4891 0.9656 0.7448 1.1711 0.7817 0.6239 1.2617 0.7951 0.7565

βc5 = 10 9.9421 9.9425 9.9352 1.8854 1.0996 0.8574 1.5963 0.9788 0.8854 1.5369 1.0103 1.0712

σ 2 0.3804 0.3860 0.3898 0.4263 0.2804 0.2103 0.3334 0.2223 0.1707 0.2561 0.2345 0.2092

building materials of the house itself are not relevant, some
unobservable factors may be spatially relevant (e.g., living
environment). On the other hand, the house prices in a region
are presented as a range of due to the uneven distribution
of supporting facilities. Usually, if the surrounding facil-
ities, such as commercial centers and hospitals, are more
upscale, the housing price will be on the higher end; con-
versely, the housing price will be on the lower end. D’Urso
et al. (2023) applied the spatial fuzzy clustering method the
interval-valued rental values of housing price.

6.1 Data description

In this study, we apply the analysis to examine house price
ranges in sixteen districts in Shanghai, China: Qingpu,
Yangpu, Minhang, Baoshan, Jiading, Pudong New, Jinshan,
Fengxian, Putuo, Jing’an, Changning, Xuhui, Huangpu,
Songjiang, Chongming andHongkou (ordained 1, 2, · · · , 16
in Fig.2, respectively). This study uses two data sources. The
first is the housing prices (HP) data of Shanghai provided
by the China Real Estate Index System. There are more than
1.7 million rows of records with 16 districts, and the data
approximately cover the most urban areas of Shanghai. As
show in Fig.2, the spatial coverage of the house prices is
quit comprehensive, including 16 districts and reflecting the
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Fig. 1 Compare the RMSE of SAR of single point (SP) and interval-valued (IV) data for N = 100, N = 250 and N = 500 in two settings,
respectively

range of house prices for each district. In addition, for each
house, the dataset provides floor area ratio (FSR), completion
date (CD). The second data source is the 16 districts data set
collected from National Bureau of Statistics. For each dis-
trict, the dataset provides the per capita GDP (PCGDP), and
land use data (LUD). It should be emphasized that the land
use data here are the sum of high-grade hospitals, high-grade
commercial centers (as show in Figs.3 and 4)and transporta-
tion hubs. This kind of substitution is common when specific
land use data are not precisely known (Ni et al. 2018). In
each district, the variables FP, GCR, FSR, CD is the standard
interval variables, the variables TP and LUD is the trivial
interval variables. The first 12 districts data are applied to
model training and the residual 4 districts data are reserved
for modeling testing. The two data sources are online and
integrated into ArcGis. Part of the dataset is presented in
Table 5.

The dataset S = [X I
i jn, y

I
in], i = 1, 2, · · · , 16, y Iin =

[yl,in, yu,in] is the dependent variable denoting the HP (in
order to reduce the absolute value of the data for convenient
calculation, let y Iin = [yl,in, yu,in] = [logHPl,i , logHPu,i ]);
X I
i jn = [Xl,i jn, Xu,i jn] is considered to be the independent

variables, which represents FSR, GCR, CD, TP, and LUD,
respectively.

6.2 Model formulation

For simplicity, we give abbreviations to the interval-valued
regression models and spatial interval-valued autoregressive
models:

(1) Minmax: the regression model proposed by Billard and
Diday (2002);

(2) D-SAR-Minmax: the proposed spatial autoregressive
model based on the bounds of intervals; the parameter
estimators is obtained by direct QMLE method;

(3) J-SAR-Minmax: the proposed spatial autoregressive
model based on the bounds of intervals; the parameter
estimators is obtained by joint QMLE method;

(4) CRM: the regression model proposed by Neto and Car-
valho (2008);

(5) D-SAR-CRM: the proposed spatial autoregressivemodel
based on the center and range; and the parameter estima-
tors is obtained by direct QMLE method;

(6) J-SAR-CRM: the proposed spatial autoregressive model
based on the center and range, and the parameter estima-
tors is obtained by joint QMLE method;

(7) PM: the regression model proposed by Souza et al.
(2017);

(8) D-SAR-PM: the proposed spatial autoregressive model
based on the upper and lower bounds; and the parameter
estimators is obtained by direct QMLE method.

(9) J-SAR-PM: the proposed spatial autoregressive model
based on the upper and lower bounds; and the parameter
estimators is obtained by joint QMLE method.

ForD-SAR-Minmax, J-SAR-Minmaxmodels,D-SAR-CRM,
J-SAR-CRM,D-SAR-PMand J-SAR-PM, the spatial weight
matrices is computed by CBD and SEDmetrics, as described
in Section 4. We utilize these models, CRM, Minmanx,
D-SAR-Minmax, J-SAR-Minmax, D-SAR-CRM, J-SAR-
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Fig. 2 The interval-valued
house prices between 16
districts of Shanghai, China

Fig. 3 Distributions of facilities in Shanghai, China
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Fig. 4 Urban public transport
network in Shanghai, China

Table 5 Housing prices related
data

Districts HP (103) FSR (% ·10−2) LUD(10−3) PCGDP(10−5)
[min, max] [min, max] [min, max] [min, max]

1 [7.82, 112.87] [0.27, 4.00] [1.35, 1.35] [1.03, 1.13]

2 [12.82, 144.00] [0.35, 7.20] [0.39, 0.39] [1.69, 1.85]

3 [9.12 240.43] [0.29, 6.53] [1.56, 1.56] [1.08, 1.12]

4 [10.00 197.60] [0.30, 4.30] [0.86, 0.86] [0.79, 0.80]

5 [9.13 146.78] [0.40, 6.70] [1.11, 1.11] [1.49, 1.50]

6 [8.20 219.59] [0.30, 6.80] [3.91, 3.91] [2.78, 2.89]

7 [6.67 142.50] [0.50, 3.40] [1.48, 1.48] [1.37, 1.37]

8 [8.15 144.44] [0.30,4.00] [1.33, 1.33] [1.20, 1.26]

· · · · · · · · · · · · · · ·

CRM to investigate both intra- and inter-district ranges of
housing prices.

6.3 Experimental results

The main objective is to evaluate housing prices assessment
fromdifferent perspectives. The examinationof experimental
results is segmented into four facets: the spatial correla-
tion, interval inner correlation, the fitting and predicting
performances. The proposed spatial autoregressive models,
which includes J-SAR-Minmax, J-SAR-CRM, J-SAR-PM,
D-SAR-Minmax, D-SAR-CRM, D-SAR-PM, and the linear

regression models, which include Minmax, CRM, PM, are
used to analyze the aforementioned housing prices.

The experimental results of these models with weight
matrices WCBD and W SED are summarized in Tables 6 and
7. Fig.5 displays the fitting and prediction results of housing
prices with weight matrix W CBD.Three main results are
listed as follows.

1) Housing prices exhibit spatial correlation across 16
regions. As shown in Tables 6 and 7, the values of all
error evaluation indexes show that the fitting and predic-
tion performances of our proposed spatial autoregressive
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Table 6 Evaluation indexes of models Minmax, D-SAR-Minmax, J-SAR-Minmax, CRM, D-SAR-CRM, J-SAR-CRM, PM, D-SAR-PM, J-SAR-
PM using weight matrix WCBD

Weight Models (a, b, c) Fitting Prediction
Matrix RMSE MAE MMER MSE RMSE MAE MMER MSE

WCBD Minmax – 0.5022 0.5604 0.1564 3.6758 1.1537 1.0456 0.2548 7.1069

D-SAR-Minmax – 0.2794 0.3007 0.0991 1.1388 1.0470 1.1144 0.3231 4.3923

J-SAR-Minmax (5, 2, 5) 0.2668 0.2948 0.0974 1.0194 0.5568 0.6601 0.2012 1.7602

(3, 4, 7) 0.2825 0.2959 0.0953 1.3704 0.8407 0.8885 0.2592 3.0883

(5, 1, 5) 0.2675 0.2931 0.1006 1.0007 0.5304 0.6134 0.1818 1.7185

(2,−1, 1) 0.2869 0.3582 0.1211 0.5700 0.618 0.6835 0.2047 0.8591

(10, 6, 10) 0.2701 0.2836 0.0895 1.1219 0.6255 0.711 0.2173 1.9705

(10, 8, 16) 0.2645 0.2835 0.0907 1.0793 0.6406 0.7347 0.2247 2.0325

(aopt , bopt , copt ) 0.2666 0.2936 0.0996 0.9232 0.5699 0.6534 0.2048 1.5973

CRM – 0.3325 0.3707 0.1642 0.4379 0.4800 0.5540 0.2975 0.2768

D-SAR-CRM – 0.1739 0.1842 0.0863 0.3755 0.3323 0.3984 0.2136 0.2096

J-SAR-CRM (5, 2, 5) 0.1653 0.1759 0.0861 0.3678 0.2661 0.3398 0.1759 0.1446

(3, 4, 7) 0.1684 0.1773 0.0868 0.3026 0.1958 0.2249 0.1117 0.0164

(5, 1, 5) 0.1671 0.1758 0.0809 0.3868 0.2770 0.3503 0.1797 0.1749

(2,−1, 1) 0.2172 0.2438 0.1304 0.3255 0.4788 0.5676 0.3454 0.1275

(10, 6, 10) 0.1613 0.1744 0.0836 0.3365 0.2047 0.2721 0.1364 0.0876

(10, 8, 16) 0.2317 0.2451 0.1318 0.8391 0.2377 0.2937 0.1468 0.3092

(aopt , bopt , copt ) 0.1675 0.1769 0.087 0.3862 0.2865 0.3061 0.1895 0.2141

PM – 0.2807 0.2921 0.1606 1.2048 1.4224 0.5540 0.2917 1.7067

D-SAR-PM – 0.2586 0.2404 0.0785 0.6785 1.0470 1.1144 0.3231 4.3923

J-SAR-PM (5, 2, 5) 0.2786 0.2557 0.0837 0.8777 0.5568 0.6601 0.2012 1.7602

(3, 4, 7) 0.3146 0.2778 0.0912 1.1268 0.8407 0.8885 0.2592 3.0883

(5, 1, 5) 0.2846 0.2531 0.0821 0.8491 1.4224 1.3049 0.2917 1.7067

(2,−1, 1) 0.2520 0.2251 0.0745 0.5225 0.6180 0.6835 0.2047 0.8591

(10, 6, 10) 0.2678 0.2471 0.0812 0.8031 0.6255 0.7110 0.2173 1.9705

(10, 8, 16) 0.2619 0.2465 0.0822 0.8128 0.6406 0.7347 0.2247 2.0325

(aopt , bopt , copt ) 0.2771 0.26 0.0849 0.9034 0.5699 0.6534 0.2048 1.5973

models for interval-valueddata (J-SAR-Minmax, J-SAR-
CRM, J-SAR-PM, D-SAR-Minmax, D-SAR-CRM, D-
SAR-PM) outperform these of the corresponding pre-
vious linear regression models (Minmax, CRM, PM)
significantly. Since the error evaluation indexes and these
model with different matrices have the familiar perfor-
mances, we take the RMSE and weight matrixWCBD as
an example. For example, when using matrixWCBD , the
RMSE of Minmax, D-SAR-Minmax, J-SAR-Minmax
are 0.5022, 0.2794 (-0.2228), at around 0.2721 (-0.2300)
(The numbers in parentheses represent the gap between
the model Minmax and the corresponding proposed spa-
tial autoregressive models for interval-valued data). The
RMSE of CRM, D-SAR-CRM, J-SAR-CRM are 0.3325,
0.1739 (-0.1586), at around 0.1826 (-0.1499) (The num-
bers in parentheses represent the gap between the model
CRMand the corresponding proposed spatial autoregres-
sivemodels). TheRMSEof PM,D-SAR-PM, J-SAR-PM

are 0.2807, 0.2586 (-0.0221), at around 0.2767 (-0.0040)
(The numbers in parentheses represent the gap between
the model PM and the corresponding proposed spatial
autoregressive models for interval-valued data ). These
findings underscore the robustness and reliability of spa-
tial autoregressive models for interval-valued data in
capturing the nuanced variations across different regions
in Shanghai.

2) The spatial autoregressive models for interval-valued
data using the spatial weight matrixW SED are suitable in
the current research on the degree of influence of explana-
tory variables on house prices. Comparing Tables 6 and 7,
it can be seen that the values ofRMSE,MAE,MMERand
MSE of the spatial autoregressive models for interval-
valued data using the spatial weight matrix W SED are
smaller compared to these of using the spatial WCBD

in most fitting cases. It means that the spatial autore-
gressive models for interval-valued data using the spatial
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Table 7 Evaluation indexes of models Minmax, D-SAR-Minmax, J-SAR-Minmax, CRM, D-SAR-CRM, J-SAR-CRM, PM, D-SAR-PM, J-SAR-
PM using weight matrix W SED

Weight Models (a, b, c) Fitting Prediction
Matrix RMSE MAE MMER MSE RMSE MAE MMER MSE

WSED Minmax – 0.5022 0.5604 0.1564 3.6758 1.1537 1.0456 0.2548 7.1069

D-SAR-Minmax – 0.2965 0.3455 0.1229 1.0831 0.797 0.9313 0.2540 4.525

J-SAR-Minmax (5, 2, 5) 0.2660 0.3082 0.1064 1.0583 0.9256 1.1070 0.2992 6.3107

(3, 4, 7) 0.2680 0.3161 0.1079 0.9239 0.8663 1.0749 0.2942 5.7319

(5, 1, 5) 0.2343 0.2668 0.0889 0.9427 1.0089 1.3193 0.3725 7.6275

(2,−1, 1) 0.3190 0.3918 0.1312 0.7136 0.5587 0.5263 0.1656 1.2214

(10, 6, 10) 0.2492 0.2900 0.0964 0.9607 1.0661 1.4154 0.3952 8.8360

(10, 8, 16) 0.2429 0.2823 0.0947 0.8870 0.9323 1.2149 0.3401 6.6888

(aopt , bopt , copt ) 0.2311 0.2664 0.0870 0.8783 1.1746 1.568 0.4331 10.355

CRM – 0.3325 0.3707 0.1642 0.4379 0.48 0.554 0.2975 0.2768

D-SAR-CRM – 0.1528 0.1646 0.0869 0.2748 0.468 0.4278 0.2897 0.1394

J-SAR-CRM (5, 2, 5) 0.1584 0.1740 0.0861 0.3788 0.3782 0.3418 0.2353 0.2241

(3, 4, 7) 0.1527 0.1748 0.0865 0.3374 0.4009 0.3746 0.2561 0.2415

(5, 1, 5) 0.1694 0.2018 0.1049 0.2775 0.6010 0.6033 0.3426 0.0977

(2,−1, 1) 0.1826 0.1953 0.1032 0.2676 0.8693 1.0044 0.5215 1.5960

(10, 6, 10) 0.1549 0.1741 0.0877 0.3632 0.3850 0.3619 0.2474 0.1975

(10, 8, 16) 0.1490 0.1681 0.0892 0.2911 0.4649 0.4610 0.2873 0.1689

(aopt , bopt , copt ) 0.1803 0.1916 0.1029 0.5178 0.3849 0.4309 0.2933 0.2396

PM – 0.2807 0.2921 0.1606 1.2048 1.4224 0.5540 0.2917 1.7067

D-SAR-PM – 0.2112 0.2066 0.0659 0.5398 0.797 0.9313 0.2540 2.5250

J-SAR-PM (5, 2, 5) 0.1874 0.1939 0.0646 0.3775 0.9256 1.1070 0.2992 2.3107

(3, 4, 7) 0.2043 0.2042 0.0656 0.4273 0.8663 1.0749 0.2942 2.7319

(5, 1, 5) 0.2175 0.2087 0.0663 0.6207 1.0089 1.3193 0.3725 2.6275

(2,−1, 1) 0.1964 0.2155 0.0709 0.3841 0.5587 0.5263 0.1656 1.2214

(10, 6, 10) 0.2223 0.2200 0.0708 0.6819 1.0661 1.4154 0.3952 2.836

(10, 8, 16) 0.2284 0.2108 0.0683 0.5468 0.9323 1.2149 0.3401 2.6888

(aopt , bopt , copt ) 0.2311 0.2339 0.0786 0.5110 1.1746 1.568 0.4331 2.355

weight matrix W SED are suitable in the current research
on the degree of influence of explanatory variables on
house prices. It cen be utilized for deeply analyzing
the complex internal and spatial relationships between
numerous explanatory variables such as FSR, GCR, TP,
LUD, PCGOP and house price fluctuations. For exam-
ple, by using models J-SAR-Minmax, J-SAR-CRM and
J-SAR-PM with spatial weight matrix W SED, the coef-
ficients of various factors influencing house prices can
be accurately quantified. As shown in Table 8, the fac-
tor LUD that plays a positive and significant effects in
driving up house prices. This finding is consistent with
the conclusions from numerous previous studies,which
all indicated the positive connection between the LUD
and housing prices (Yii et al. 2022; Li et al. 2025). As
for the government departments, these results provide
strong support for more targeted real estate regulatory
policies to be introduced, so that house prices can be

more effectively stabilized, and the healthy and stable
development of the real estate market can be effectively
ensured. Furthermore, the spatial autoregressive models
for interval-valued data using the spatial weight matrix
WCBD are suitable for forecasting the future housing
price fluctuations based on current urban design. Com-
paring Tables 6 and 7, it can be seen that the prediction
performances of J-SAR-Minmax, J-SAR-CRM and J-
SAR-CRM using spatial weight matrix WCBD is better
than these of using spatial weight matrix W SED.

3) The values of all error evaluation indexes show that the
interval housing prices of Shanghai have interval inner
correlation. In the linear regression models, the model
PM has the best fitting and prediction experiments com-
pared with Minmax and CRM. In the spatial autoregres-
sive models, the models J-SAR-Minmax, J-SAR-CRM
and J-SAR-PM are better than the models D-SAR-
Minmax, D-SAR-CRM and D-SAR-PM, regardless of
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Fig. 5 The fitting and prediction results of housing prices with weight
matrix WCBD. Note: In each figure, ‘+’ indicates the bounds of the
true interval-valued data; the red lines show the experimental results of
response variables of the model J-SAR-CRM with different (a, b, c);

the green and blue lines show the experimental results of response vari-
ables of the models CRM and D-SAR-CRM, respectively. The magenta
line is used to represent the model corresponding to the optimal fitting
or prediction results

the weight matrices WCBD or WSED . Actually, from
the perspective of model construction, the interval inner
correlation of interval-valued data is considered in these
models PM, J-SAR-Minmax, J-SAR-CRM and J-SAR-
PM. In PM, the explanatory variables corresponding to
the upper and lower bounds of the predictor variables
are consistent. In J-SAR-Minmax and J-SAR-CRM, the
interval inner correlation of the predictor variable is
adjusted by the valuesa, b and c. The J-SAR-PM model
not only contains the adjustment form of J-SAR-Minmax
and J-SAR-CRM, but also the model itself incorporates
interaction linear terms between Xr ,n and Xc,n . However,
as shown in Tables 6 and 7, the error evaluation values of
J-SAR-CRM are smaller than those of D-SAR-PM and
J-SAR-PM. The reason may be as mentioned in Xu and

Qin (2023), the application of the PM expansion models
may be affected by collinearity.

4) The values of all error evaluation indexes show that
the models J-SAR-CRM and D-SAR-CRM with W SED

have the best fitting and prediction performances, in
comparison with all rest other models. For example,
as shown in Tables 6 and 7, J-SAR-CRM with W SED

and (a, b, c) = (10, 8, 16) has the lowest RMSE, at
around 1.490, followed by J-SAR-CRM with W SED and
(a, b, c) = (3, 4, 7), D-SAR-CRM, J-SAR-CRM with
W SED and rest cases of (a, b, c). CRM has a relatively
higher error,at around 0.3325.
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7 Conclusions and prospects

This paper attempts to model spatial interval-valued data
regression, considering all inner information of intervals.
We introduce a new SAR model for interval-valued data. To
estimate the estimators, We have derived a QMLE approach
based on L2 type Dk metric. Note that it is appealing that the
L2 type Dk metric as a generalization of the direct QMLE
approach preserving the asymptotic properties of classical
QMLE approach (Lee 2004). The simple expression of the
Dk metric in QMLE approach than these of Euclidean met-
ric lies in the fact that Dk metric measures the distance
between each pair of points in intervals in terms of the support
function with respect to kernel functions. Through Monte
Carlo simulations, we present the finite sample properties of
the proposed estimation method. The results report that the
QMLE approach based on L2 type Dk metric fit the interval-
valued data more adeptly compared to the QMLE approach
for point-valued data. When applied to real datasets related
to house prices of Shanghai, China for fitting and forecasting,
the proposed models demonstrate best results, highlighting
their excellent performance. Thus, the proposed models pro-
vide effective solutions to practical challenges associated
with interval-valued data that exhibit spatial correlation.

This paper focuses exclusively on ISAR models with lin-
ear assumption, which is the trade-off between simplicity and
interpretability. Here we highlight the potential limitations
of the proposed model and several future research directions
as follows. Firstly, dealing with the nonlinear or more com-
plex interval-valued variation is essential; however, the ISAR
model occasionally seems too rigid to do this during com-
putation. Future work could adopt an integrated perspective,
incorporating time-dimensional dynamics and time-varying
coefficients (as referenced by Liang et al. (2021) and Zhao
et al. (2025)) to directly process time-varying interval-
valued data. Alternatively, graph neural networks (Dawn
and Bandyopadhyay 2023) could be adapted for spatial
interval-valued analysis. Secondly, developing estimators
resistant to anomalous data is critical. This requires designing
appropriate weight functions during estimation to mitigate
outlier influence. As the current model lacks such mecha-
nisms. Therefore, future research could focus on developing
robust ISAR models. Thirdly, to address real-world finan-
cial issues with spatial correlations, such as cross-market
contagion effects, geographical risk spillovers, and spatial
dependence in high-frequency order flows, it is crucial to
partition the state space into discrete regimes and capture
nonlinear dynamics. Specifically, it involves studying exoge-
nous and endogenous thresholds, but the proposed ISAR
model is inapplicable to the datasets exhibiting discrete
regimes and nonlinear dynamic features. Therefore, future
research could focus on developing threshold ISAR models.

Our current ISAR-based approach is a solid foundation and
baseline for future researchers.

Appendix

A Proofs of Theorem 1.

In the following, the idea for prove the consistency and identi-
fication of θ̂b,n is similar toLee (2004) andLiang et al. (2021).
Define Qb,n(λb) = maxβb,n ,σ

2 E(ln(θb,n)). The consistency

of θ̂b,n will follow from

1

2n
[ln Lb,n(λb) − Qb,n(λb)] p−→ 0 uniformly on 
b,

(A1)

and the uniqueness identification condition is

lim
n→∞ sup

{
max

λb∈Nc
ε (λb,0)

1

2n
(Qb,n(λb) − Qb,n(λb,0))

}

< 0 for any ε, (A2)

where Nc
ε (λb,0) is the complement of an open neighbourhood

of 
b of diameter ε.
(1) Proof of (A1). Since

Qb,n(λb) = max
βb,σ

2
E(ln Lb,n(θb,n))

= −n(ln(2π) + 1) − 1

2
ln |�2n| − n ln σ 2∗

b (λb)

+ ln(K2n Sb,n(λb)).

Thus, the optimal solutions of Qb,n(λb) are

β∗
b (λb) = (X ′

b,nW2n Xb,n)X
′
b,nW2n Sb,n(λb)S

−1
b,n Xb,nβb,0,

σ 2∗
b (λb) = 1

2n
E

{[Sb,n(λb)Yb,n
−Xb,nβ

∗
b (λb)]′W2n[Sb,n(λb)Yb,n − Xb,nβ

∗
b (λb)]

}

= 1

2n
E[(Gb,n Xb,nβb)

′(λb,0 − λb)
′

⊗ lnMb,n(λb,0 − λb) ⊗ ln(Gb,n Xb,nβb)]
+ 1

n
E[(Xb,nβb)

′Mb,n(λb,0 − λb) ⊗ ln(Gb,n Xb,nβb)]

+ 1

2n
E[(Xb,nβb)

′Mb,n(Xb,nβb)]

+ σ 2

2n
E[S′−1

b,n S
′
b,n(λb)Sb,n(λb)S

−1
b,n].
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Then,
1

2n
[ln Lb,n(λb) − Qb,n(λb)] = −1

2
[ln σ̂ 2(λb) −

ln σ 2∗
b (λb)], where

σ̂ 2(λb) = 1

2n
Y ′
b,n S

′
b,n(λb)Mb,n Sb,n(λb)Yb,n

= 1

2n
(Gb,n Xb,nβb)

′(λb,0 − λb)
′ ⊗ lnMb,n

× (λb,0 − λb) ⊗ ln(Gb,n Xb,nβb)

+ 1

n
(Xb,nβb)

′Mb,n(λb,0 − λb) ⊗ ln(Gb,n Xb,nβb)

+ 1

2n
(Xb,nβb)

′Mb,n(Xb,nβb)

+ 1

2n
V ′
b,n S

′−1
b,n S

′
b,nW2,n Sb,n(λb)S

−1
b,nVb,n

+ 1

n
(Xb,nβb)

′Mb,n Sb,n(λb)S
−1
b,nVb,n

+ 1

n
(Gb,n Xb,nβb)

′(λb,0 − λb)
′

× ⊗lnMb,n Sb,n(λb)S
−1
b,nVb,n .

According to Lee (2004),

1

n
(Gb,n Xb,nβb)

′Mb,n Sb,n(λb)S
−1
b,nVb,n

= op(1); 1

n
(Xb,nβb)

′Mb,n(Gb,n Xb,nβb) = op(1),

1

2n
V ′
b,n S

′−1
b,n S

′
b,nW2,n Sb,n(λb)S

−1
b,nVb,n

= σ 2

2n
E[S′−1

b,n S
′
b,n(λb)Sb,n(λb)S

−1
b,n] + op(1).

Hence,

σ̂ 2(λb) − σ ∗
b (λb) = op(1) uniformly on 
b, (A3)

and so that (A1) holds.
(2) Proof of (A2). Consider the pure spatial autoregressive

process, i.e., let βb = 0 in Eq.(3), Yb,n = λb⊗lnWb,n +Vb,n ,
andVb,n ∼ N (0, �2nσ

2), where thematrix�2n is knownbut
the scale σ 2 is unknown. Denote the log-likelihood function
of this process as ln L p

b,n(λb, σ
2), it follows that

ln L p
b,n(λb, σ

2) = −n ln(2π) − 1

2
ln |�2n|

− n ln σ 2 + ln |Sb,n(λb)|
− 1

2σ 2 Y
′
b,n S

′
b,n(λb)W2n S

′
b,n(λb)Yb,n

The optimal solution of maxσ 2 ln Lb,n(λb, σ
2) is

σ̃ 2 = σ 2
0

2n
S′−1
b,n S

′
b,n(λb)K2n S

′
b,n(λb)S

−1
b,n (A4)

Let Q̃ p
b,n(λb):=maxσ 2 E(ln L p

b,n(λb, σ
2)) = −n ln(2π +

1) − 1

2
ln |�2n| − n ln σ̃ 2 + ln |Sb,n(λb)|, it follows that

Q̃ p
b,n(λb) ≤ maxλb,σ

2 E(ln L p
b,n(λb, σ

2)) = E(ln L p
b,n(λb,0,

σ 2
0 )) = Q̃ p

b,n(λb,0), and, therefore,

1

2n
(Q̃ p

b,n(λb) − Q̃ p
b,n(λb,0)) ≤ 0 uniformly on 
b, (A5)

As Yb,n = S−1
b,n Xb,nβb,0 + S−1

b,nVb,n , Sb,n(λb) = Sb,n +
(λb,0 − λb) ⊗ lnWb,n , it follows that

Vb,n(δb) =Sb,n(λb)Yb,n − Xb,nβb

=Xb,n(βb,0 − βb) + (λb,0 − λb)

⊗ lnWb,nYb,n + Vb,n,

and

V ′
b,n(δb)W2nVb,n(δb)

= (βb,0 − βb)
′X ′

b,nW2n Xb,n(βb,0 − βb)

+ Y ′
b,nW

′
b,nW̃Wb,nYb,n + V ′

b,nW2nVb,n

+ 2(βb,0 − βb)
′X ′

b,nW2n(λb,0 − λb) ⊗ lnWb,nYb,n

+ 2(βb,0 − βb)
′X ′

b,nW2nVb,n

+ 2Y ′
b,nW

′
b,n(λb,0 − λb)

′ ⊗ lnW2nVb,n

where W̃ = (λb,0 −λb)
′ ⊗ lnW2n(λb,0 −λb)⊗ ln . The term

in (A2) can be rewritten as

1

2n
(Qb,n(λb)−Qb,n(λb,0)) = 1

2n
(Q̃ p

b,n(λb) − Q̃ p
b,n(λb,0))

− 1

2
[ln(σ ∗

b (λb))−ln(σ̂ 2(λb))]
(A6)

From (1) Proof of (A1) and Eq.(A3), σ ∗
b (λb) − σ̂ 2(λb) ≤

0, so that the last term in above equality [ln(σ ∗
b (λb)) −

ln(σ̂ 2(λb))] ≤ 0. Combined with A5, (A2) holds.
If the identification uniqueness condition was not satis-

fied, without loss generality, there would exist a sequence

λb,n converging to λb,+ �= 0 such that lim
n→∞

1

2n
(Qb,n(λb) −

Qb,n(λb,0)) = 0. This would be possible be only if

lim
n→∞[ln(σ ∗

b (λb,n)) − ln(σ̂ 2(λb,n))] = 0 and lim
n→∞

1

2n
(Q̃ p

b,n

(λb,n) − Q̃ p
b,n(λb,0)) = 0. However, it would be generate a

contradiction due to Assumption 10.
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B Proofs of Theorem 2.

The asymptotic distribution of theQMLE θ̂b,n is derived from

the Taylor expansion ∂ ln Lb,n(θ̂b,n)

∂θb,n
= 0.

√
2n(θ̂b,n − θb,n0) = −

{
1

2n

∂2 ln Lb,n(θ̃b,n)

∂θb,n∂θ ′
b,n

}−1

1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n
+ op(1). (A7)

where θ̃b,n lies between θ̂b,n and θb,n0. The asymptotic dis-
tribution of the QMLE θ̂b,n , Theorem 2, holds only if

1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n

d−→ (0, �θb,n + �θb,n ) (A8)

1

2n

∂2 ln Lb,n(θ̃b,n)

∂θb,n∂θ ′
b,n

− E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)
p−→ 0

(A9)

(1) Derivation of (A8). By Lemma C.1 and Lemma
A.10 in Lee (2004), at θb,n0, the first-order derivatives of
the log-likelihood function in (12) only involve both lin-
ear and quadratic functions of Vb,n . Then, using central
limit theorem, the variance matrix of the score vector in
1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n
is

E

(
1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n
· 1√

2n

∂ ln Lb,n(θb,n0)

∂θb,n

)

= −E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)

+ �θb,n ,

where

− E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

2nσ 2
0

X ′
b,nW2n Xb,n ∗ ∗ ∗

1

2nσ 2
0

(Xb,nβb,0)
′G ′

b,n � e1W2n Xb,n T22,1 ∗ ∗
1

2nσ 2
0

(Xb,nβb,0)
′G ′

b,ne2 � W2n Xb,n 0 T22,2 ∗

0
1

2nσ 2
0 tr(G

′
b,n � e1)

1

2nσ 2
0 tr(G

′
b,n � e2)

1

2σ 4
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

where T22,1 = 1

2nσ 2
b,0

(Xb,nβb,0)
′G ′

b,n � e1W2ne1 � Gb,n

(Xb,nβb,0)+ 1

2n
[tr(e1�G ′

b,ne1�Gb,n)+ tr(e1�Gb,ne1�
Gb,n)] and T22,2 = 1

2nσ 2
b,0

(Xb,nβb,0)
′G ′

b,n � e2W2ne2 �

Gb,n(Xb,nβb,0) + 1

2n
[tr(e2 � G ′

b,ne2 � Gb,n) + tr(e2 �
Gb,ne2�Gb,n)], is the average Hessian matrix which is non-
singular due to Assumption 10, and

�θb,n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ∗ ∗ ∗
μ3

2nσ 4
0

∑n
i=1 G̃

1
b,i in Xb,in �θb,22n ∗ ∗

μ3

2nσ 4
0

∑n
i=1 G̃

2
b,i in Xb,in 0 �θb,33n ∗

μ3

4nσ 6
0

l2n�
1
2L2n Xb,n

μ3

4nσ 6
0

l2nG̃b,in Xb,nβb,0 + μ3

4nσ 6
0

tr(Gb,n)
μ4 − 3σ 4

0

8nσ 8
0

1

2σ 4
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

where

�θb,22n = 2μ3

2nσ 4
0

n∑

i=1

G̃1
b,i in G̃

1
b,in Xb,nβb

+ μ4 − 3σ 4
0

2nσ 4
0

n∑

i=1

G̃1
b,i in

�θb,33n = 2μ3

2nσ 4
0

n∑

i=1

G̃2
b,i in G̃

2
b,in Xb,nβb

+ μ4 − 3σ 4
0

2nσ 4
0

n∑

i=1

G̃2
b,i in

with G̃1
b,n = �

1
2L2nGb,n�e1 and G̃2

b,n = �
1
2L2nGb,n�e2.

Specifically, �θb,n = 0 as Vb,n is normally distributed.
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Hence, combining the central limit theorem for quadratic
forms of double array (Kelejian and Prucha 2001) and Kol-
mogorov’s central limit theorem,

1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n

d−→ (0, �θb,n + �θb,n ) (A10)

where

�θb,n = − lim
n→∞ E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)

and

�θb,n = − lim
n→∞ �θb,n

(2) Derivation of (A9).
For any θ̃b,n which converges in probability to θb,n0,

1

2n

∂2 ln Lb,n(θ̃b,n)

∂θb,n∂θ ′
b,n

− E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)
p−→ 0

(A11)

holds if and only if

1

2n

∂2 ln Lb,n(θ̃b,n)

∂θb,n∂θ ′
b,n

− 1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

p−→ 0 (A12)

1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

− E

(
1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

)
p−→ 0

(A13)

hold.
As K2n and �b,n are two non-stochastic bounded matri-

ces,
X ′
b,nW2n Xb,n

2n
= OP (1),

X ′
b,nW2ne2 � Wb,nYb,n

2n
=

OP (1) and σ̃ 2 p−→ σ 2
0 , By Lemma C.1,

1

2n

∂2 ln Lb,n(θ̃b,n)

∂βb∂β
′
b

− 1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂β
′
b

= (
1

σ 2
0

− 1

σ̃ 2 )
X ′
b,nW2n Xb,n

2n
= op(1).

1

2n

∂2 ln Lb,n(θ̃b,n)

∂βb∂λ′
b

− 1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂λ′
b

= (
1

σ 2
0

− 1

σ̃ 2 )

(
X ′
b,nW2ne1 � Wb,nYb,n

2n

X ′
b,nW2ne2 � Wb,nYb,n

2n

)

= op(1).

1

2n

∂2 ln Lb,n(θ̃b,n)

∂βb∂σ 2 − 1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂σ 2

= (
1

σ 4
0

− 1

σ̃ 4 )
X ′
b,nW2nVb,n

2n
+ 1

2σ̃ 4

X ′
b,nW2n Xb,n

2n

× (β̃b − βb,0) + 1

σ̃ 4

X ′
b,nW2n(λ̃b − λb,0) ⊗ Xb,n

2n
= op(1).

1

2n

∂2 ln Lb,n(θ̃b,n)

∂λb∂λ′
b

− 1

2n

∂2 ln Lb,n(θb,n0)

∂λb∂λ′
b

=

⎛

⎜⎜
⎝

−2
tr(e1G3

b,n(λ̄b))

2n
0

0 −2
tr(e2G3

b,n(λ̄b))

2n

⎞

⎟⎟
⎠ λ′

b

+ (
1

σ 2
0

− 1

σ̃ 2 )

⎛

⎜⎜
⎝

Y ′
b,nW ′

b,n � e1W2ne1 � Wb,nYb,n

2n
0

0
Y ′
b,nW ′

b,n � e2W2ne2 � Wb,nYb,n

2n

⎞

⎟⎟
⎠ = op(1)

1

2n

∂2 ln Lb,n(θ̃b,n)

∂σ 2∂λb
− 1

2n

∂2 ln Lb,n(θb,n0)

∂σ 2∂λb
=

(
Y ′
b,nW

′
b,n ⊗ e1W2n Xb,n

2nσ 4 (β̃b − β̃b0)
Y ′
b,nW

′
b,n ⊗ e2W2n Xb,n

2nσ 4 (β̃b − β̃b0)

)

+
(
Y ′
b,nW

′
b,n ⊗ e1W2n(λ̃b − λ̃b,0) ⊗ Wb,nYb,n

2nσ 4

Y ′
b,nW

′
b,n ⊗ e2W2n(λ̃b − λ̃b,0) ⊗ Wb,nYb,n

2nσ 4

)

+ (
1

σ 4
0

− 1

σ̃ 4 )

(
Y ′
b,nW

′
b,n ⊗ e1W2nVb,n

2nσ 4

Y ′
b,nW

′
b,n ⊗ e2W2nVb,n

2nσ 4

)
= op(1)
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and

1

2n

∂2 ln Lb,n(θ̃b,n)

∂σ 2∂λb
− 1

2n

∂2 ln Lb,n(θb,n0)

∂σ 2∂σ 2

= 1

2
(
1

σ̃ 4 − 1

σ 4
0

) + (
1

σ 6
0

− 1

σ̃ 6 )
V ′
b,nW2,nVb,n

2n
+ oP (1)

= op(1).

Thus, the convergence of (A12) holds. Besides, the equation
(A13) also holds. Because it is straightforward by show-
ing that linear functions and quadratic functions of Vb,n ,

deviated from their means, e.g.,
X ′
b,nGb,n ⊗ e1K2nVb,n

2n
,

X ′
b,nGb,n ⊗ e2K2nVb,n

2n
and

V ′
b,nK2nVb,n

2n
− σ 2

0 (tr(e1�
Gb,n)tr(e2 � Gb,n

)
, are all op(1).

C Main Lemmas and Their Proofs

Lemma C.1 The first order derivative of the joint log-
likelihood function (13) at θb,n0� is

1√
2n

∂ ln Lb,n(θb,n0)

∂θb,n
=

⎛

⎝
H1

H2

H3

⎞

⎠ ,

where

H1 = 1

σ 2
0

√
2n

X ′
b,nW2nVb,n

H2 = 1

σ 2
0

√
2n

(
(e1 � Gb,n Xb,nβb,0)

′W2nVb,n

× (e2 � Gb,n Xb,nβb,0)
′W2nVb,n

) − 1

σ 2
0

√
2n

×
((
V ′
b,nGb,n � e1W2nVb,n V ′

b,nGb,n � e1W2nVb,n
)′

− σ 2
0

(
tr(e1 � Gb,n) tr(e2 � Gb,n)

)′

H3 = 1

2σ 4
0

√
2n

(V ′
b,nW2nVb,n − 2nσ 2

0 ).

Proof Since

∂ ln Vb,n(δb)

βb
= −Xb,n,

∂ ln Vb,n(δb)

λb
= −(e1 � Wb,nYb,n, e2 � Wb,nYb,n),

∂ ln ‖Sb,n(λb)‖
λb

= −(tr(e1 � Wb,n S
−1
b,n(λb)),

tr(e2 � Wb,n S
−1
b,n(λb)))

where e1 is an 2n × 2n block diagonal matrix whose the
first block diagonal element is an n× n dimensional identity
matrix and the second block diagonal element is an n × n
dimensional zero matrix, and e2 is an 2n×2n block diagonal
matrix whose the first block diagonal element is an n × n
dimensional zero matrix, and second block diagonal element
is an n × n dimensional identity matrix.

Hence, the first order derivatives of the joint log-likelihood
function (13) at βb,0, λb,0, and σ 2 are

1√
2n

∂ ln Lb,n(θb,n0)

∂βb
= 1

σ 2
0

√
2n

X ′
b,nW2nVb,n,

1√
2n

∂ ln Lb,n(θb,n0)

∂λb

= 1

σ 2
0

√
2n

(
e1 � Gb,n Xb,nβb,0)

′W2nVb,n

×(e2 � Gb,n Xb,nβb,0)
′W2nVb,n

) − 1

σ 2
0

√
2n

((
V ′
b,nGb,n � e1W2nVb,n V ′

b,nGb,n � e1W2nVb,n
)

−σ 2
0

(
tr(e1 � Gb,n) tr(e2 � Gb,n)

))
,

1√
2n

∂ ln Lb,n(θb,n0)

∂σ 2 = 1

2σ 4
0

√
2n

(V ′
b,nW2nVb,n − 2nσ 2

0 ).

��
Lemma C.2 The second order derivative of the joint log-
likelihood function (13) at θb,n0 is
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1

2n

∂2 ln Lb,n(θb,n0)

∂θb,n∂θ ′
b,n

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1

2nσ 2
0

X ′
b,nW2n Xb,n ∗ ∗ ∗

− 1

2nσ 2
0

Y ′
b,nW

′
b,n � e1W2n Xb,n −T22,1 ∗ ∗

− 1

2nσ 2
0

Y ′
b,nW

′
b,n � e2W2n Xb,n 0 −T22,2 ∗

− 1

2nσ 4
0

V ′
b,nW2n Xb,n − 1

2nσ 4
0

Y ′
b,nW

′
b,n � e1W2nVb,n − 1

2nσ 4
0

Y ′
b,nW

′
b,n � e2W2nVb,n T22,3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

where

T22,1 = 1

2n
tr(e1 � G2

b,n)

+ 1

2nσ 2
0

Y ′
b,nW

′
b,n � e1W2ne1 � Wb,nYb,n

T22,2 = 1

2n
tr(e2 � G2

b,n)

+ 1

2nσ 2
0

Y ′
b,nW

′
b,n � e2W2ne2 � Wb,nYb,n

T22,3 = 1

2σ 4
0

− 1

2nσ 6
0

(V ′
b,nW2nVb,n)

Proof

1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂β
′
b

= − 1

2nσ 2
0

X ′
b,nW2n Xb,n,

1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂λ′
b

=
(

− 1

2nσ 2
0

X ′
b,nW2ne1 � Wb,nYb,n

− 1

2nσ 2
0

X ′
b,nW2ne2 � Wb,nYb,n

)

,

1

2n

∂2 ln Lb,n(θb,n0)

∂βb∂σ 2 = − 1

2nσ 4
0

X ′
b,nW2nVb,n,

1

2n

∂2 ln Lb,n(θb,n0)

∂λb∂λ′
b

= −
(
T22,1 0
0 T22,2

)

1

2n

∂2 ln Lb,n(θb,n0)

∂σ 2∂λb

=
(

− 1

2nσ 4
0

Y ′
b,nW

′
b,n � e1W2nVb,n

− 1

2nσ 4
0

Y ′
b,nW

′
b,n � e2W2nVb,n

)

1

2n

∂2 ln Lb,n(θb,n0)

∂2σ 2 = 1

2σ 4
0

− 1

2nσ 6
0

(V ′
b,nW2nVb,n)
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