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Abstract: This article deals with elliptic systems of the form

n F) N n
"L w2 2% 0 w002 X = 100, a=1,..N.

Under ellipticity conditions of the diagonal coefficients and proportional conditions of the off-diagonal coeffi-
cients, we derive local and global boundedness results. Under ellipticity of all the coefficients and “butterfly”
support of off-diagonal coefficients, we derive a global boundedness result. This article also considers regu-
larizing effect of a lower-order term.
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1 Introduction

Letn > 2, N 2 2 be integers and Q an open bounded subset of R". We consider quasilinear elliptic systems
involving N equations of the form

N n
ZZai',’fﬁ( u()) 2 ’ fix), a=1..,N, (%)
B=1j=1

where a is the equation index and u(x) = W'(x), ...,u¥(x)) : Q € R® = RY. Denote

oub(x) oub(x)
Dub(x) = , B=1..,N,
0 [ ox 0Xn B
which is the fth row of the matrix
1<p<N
ouP(x
Du(x) = ) € RN
ox; |
1<i<n

We consider the following two sets of assumptions on the coefficients a,-ilj’ﬁ x,y),i,j €41, ..,n},a,B €11, ..,N}.

* Corresponding author: Gao Hongya, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China,
e-mail: ghy@hbu.cn

Fang Mi: College of Mathematics and Information Science, Hebei University, Baoding, 071002, China, e-mail: suke@hbu.edu.cn

Xia Liuye: College of Mathematics and Information Science, Hebei University, Baoding, 071002, China, e-mail: shuangliang@hbu.edu.cn
Han Yingxiao: College of Mathematics and Information Science, Hebei University, Baoding, 071002, China,

e-mail: mahongyan@hbu.edu.cn

@ Open Access. © 2025 the author(s), published by De Gruyter. [(cO IX2NBMM| This work is licensed under the Creative Commons Attribution 4.0
International License.

3



2 — Fang Mi et al. DE GRUYTER

The first set of assumptions is denoted by (A): for alli,j € {1, ...,n} and all a, B € {1, ...,N}, we consider
that ai‘fj’ﬁ (x,y) : Q x RY - R satisfying the following conditions:

(A1) (Carathéodory condition) x — a{j’ﬁ (x,y) is measurable for all y € RN and y - ai‘j’ﬁ (x,y) is contin-
uous for almost all x € Q;

(A3 (Boundedness of all the coefficients) there exists a positive constant ¢ such that for almost all x € Q
and all y € RV,

laiP ooyl < &

(A3) (Ellipticity of the diagonal coefficients) there exists a positive constant ¢, such that for almost all
x€Q,all y e RN and all A € R",

n
S ai oo A
ij=1

(A4 (Proportional condition of the off-diagonal coefficients) there exist constants ref a, B €{l, ...N},
such that for almost all x € @ and all y € RY,

ail,zjﬁ(xay) = ra’BaiI,‘Sj’B(Xay):

the constants r*#, a, B €11, ...,N}, be such that r** =1 and

1 r2 op3 N1

rt2 1 p32 | rhN2
detR =det| 13 p23 1 . pN3[#0.

riN pZN p3N 1

The second set of assumptions is denoted by (A Y:foralli,j € {1, ...,n}and alla, B € {1, ...,N}, we consider
that ai‘f;ﬁ (x,y): Q x R¥ - R satisfying (A,), (A,), and the following:

(A3 (ellipticity of all the coefficients) there exists a positive constant ¢, such that for almost all x € Q, all
y € RN and all £ € R¥*?,

N n
Gl s Y Y ailooyEe;
a,B=1i=1
(A4)" (“butterfly” support of off-diagonal coefficients) there exists Q, € (0, +) such that for all Q > Q,,
when a # f5,
(af;’ﬁ(x,y) #0 and |y*|> Q)= [yf|>0Q.

For the figure of “butterfly support,” see [25, Figure 1].
The following example gives the coefficients a,f’]-’ﬁ x,y):QxR¥ =R with i,j€{l,..,n} and
a, B € {1, ...,N}, which satisfy the set of assumptions (A).

Example 1.1. We let §; be the Kronecker symbol and Q = B;(0), the unit ball in R". For i,j € {1, ...,n} and

a, B €{l, ...,N}, we define aifljfﬁ(x,y) as follows: for a € {1, ...,N},

aa _ e
af'(6Gy) =1+ x| + T+ b9 Sij»

and fora, B € {1, ...,N} with a # §,

b’

afj’B(Xy)’) = r“vﬁaiﬁ’ﬁ(x,y) = reh T+ pf|

1+ x| + Sij, (1.2)
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where the real numbers r®# are such that detR = det(r@#) # 0; thus, the condition (A 4) holds true naturally;

moreover, the condition (A;,) is satisfied because x ~ af;-’ﬁ (x,y) is measurable and y ~ aig}’ﬁ (x,y) is contin-

uous; we note from (1.2) that |a (X )| < 3|r%A| for x € By(0), thus, the condition (A,) is satisfied with

1/2
¢ =3|R| = 3[22{ ﬁ:llr“’ﬁlz] ; the condition (A3) is satisfied with ¢, = 1 since

n

n
Y ab oy =Y

ij=1 i=1

1+ + 7 > AP

W“Il B

We note that in this article, we consider the case N 2 2, i.e.,, we deal with elliptic systems. For the case N = 1,
(1.1) is only one single equation, existence and regularity results of distributional solutionsu : @ C R¥ — R have
been deeply studied, we refer the reader to [5,6,9,10,12,16,34] for existence results and [4,8,14,23,30-33] for regularity
results.

For N = 2, one cannot expect, due to De Giorgi’s counterexample, see [17], that weak solutions of (1.1) are
locally and globally bounded if no additional assumptions are proposed. Quasilinear elliptic system (1.1) with
the set of assumptions (A) has been studied in [28, Theorem 2], where the authors considered the special case
N = 2. The general case N 2 2 may be found in [19, Theorem 2.1]. Quasilinear elliptic system (1.1) with the set of
assumptions (A Y has been studied in [25], where the authors give a local boundedness result. We refer the
readers to [20,24,28,29] for some regularity results and estimates related to quasilinear elliptic systems under
some staircase support conditions of the coefficients, [15,21] for some results related to nonlinear elliptic
systems, and [18] for some local boundedness under nonstandard growth conditions.

In the next two sections, we shall give some boundedness results related to system (1.1) under the
conditions (A) or (A)". In the sequel, we shall denote by ¢ a generic constant, whose value, depending on
the data, may vary from one line to another.

2 Boundedness under (A)

This section deals with local and global boundedness for solutions to elliptic systems (1.1) under the set of
assumptions (A).

2.1 Local boundedness result

In this section, we consider (1.1), i.e.,

n F) N n
Z;—zz )P < ey, a=1,.,N. @1
Let
f: (fl fN) = LI(Z*)'(Q. [RN) (2*)/ — 2n ) 2.2)
bl ). ocC y k] n + 2
We give the following:
Definition 2.1. A function u € Wi A(®; RY) is a local solution to (2.1) if
N n N
[3 Y e, b eoDgecod = [ ¥ f200pedx 23)

Qa,ﬁ=1i,j=1 Q(I:l

holds true for all ¢ € W' 2(Q; RY) with compact support.
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We note that (2.2) is added in order to make finite the right-hand integral in (2.3).
The main result of this section is the following theorem.

Theorem 2.1. Let u € Wi 2(Q; RY) be a local solution to (2.1). Under the set of assumptions (A), if
fE€LMQ RY), m> 7, thenuis locally bounded in Q.

In order to prove Theorem 2.1, we need the following Caccioppoli inequality.

Lemma 2.1. Letu € Wloc (Q; RY) be a local solution to (2.1) under the set of assumptions (A). Let Br(Xo) € Q be
the ball centered at x, € Q with radius R, |Bp(xo)| < 1. Fork 2 0,0 < s < t £ R, denote

={xeQ: [P >k}, Af, = Af 0 B(x).

If f € Lip(Q; RYN), m > (2%), then

N N
> [owiecs ey | [ k- ]dx+|Akt|9 @4
ﬁ=1Alfs /3=1 Akt

where c is a constant depending upon n, N, m, ||f||Lm(BR), é coand r*f, a,B =1,.., N, and

<2*) ) E] -

Proof. Letu € W10c (Q; RY) be a local solution to (2.1). Let Br(xg) € Q with |Br(xo)| < 1 (which implies R < 1).
For 0 < s <t <R, let us consider a smooth cut-off function n € C;’(B«(xo)) satisfying

0<np<1l n=1, in Byxy) and |Dp|=
Let us take ¢ = (¢!, ...,p") with
N
0« =Y CN*Gyw), a€fl,..,N} (2.5)
y=1

here and in what follows, for s € R,

Gi(s) =s - Tx(s) = s — min

1, L]s (2.6)
|s]

and CJ, a,y € {1, ...,N}, are the real constants to be chosen later. (2.5) yields

N
Dip® = ) Cln2Da + 2nDinGi(w)x A 1=1.,m,
y=1
where, for a set E, yp(x) is the characteristic function of the set E, ie., y;(x) =1if x € E and y;(x) =0
otherwise. Such a function ¢ is admissible for Definition 2.1 since it is obvious that ¢ € W' 2(Q; R") and
suppg@ € Q. We use such a ¢ in (2.3), and we have

I Z z aP(x, wDjuP Z CAn* D + 2nDinGr(u)]x oy dx = IZf“ z CIn*Gr(u)dx,
qa.p=1ij=1 oa=1 y=1
from which we derive

n
Z P (x, u)Djub ZCVr]zD Wy 4y dx
a,p=1ij=1 y=1

N n N N N
--[> 2 aff 'l 3 CLonDGwyx + [ 3703 cinGraax.
o a.B=1ij=1 y=1 ga=1 y=1

2.7)
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For the left-hand side of (2.7), we use the proportional condition (A4) and we have

N n N
[ 3 3 affocwpu? 3 chnDuy i
0 @f=1ij=1 y=1

N n N
Iz 2 afi (x, whu Y CYn*Dary ydx  (terms for B = a)
g a=1ij=1 y=1

N N n N
+ Iz > D afj’ﬁ(x, u)Djuf > ngZDiuV)(Akydx (terms forf # a)

o a=1B=1B*aij=1 y=1
N n
= Iz z Ceaii*(x, u)Dju“Diu“)(A;r]zdx (terms fory = B = a)
0 a=1ij=1
N n N
+ IZ 2 af“O, whu® ) CiDwx yyn*dx  (termsfor y # B = a)
o a=1ij=1 y=Ly#a
N N n

+ IZ > > ra’ﬁai’ifﬁ (x, WDUPCLDuPy afn7dx  (termsfor y = B # a)
0 a=1B=1paij=1

N N n N
+ Iz > > r“yﬁaig’ﬁ (x, wbuf Yy ClDuwy a7dx  (terms fory # B, B # a)
0 a=1B=1p*aij=1 y=Ly%B

= Lh+L+ L+,
It is obvious that, recalling that r*? =1 for a € {1, ...,N},

N n
L+L =I > D> r“’ﬁalg’ﬁ (x, wDuPctpuby Akmzdx
0 Gp=1ij=1

-[5 5|5 reres

o B=1ij=1la=1

a,-{j-’ﬁ (x, wDuPDuPy ,pn*dx
and

N n N
L+1I, =I > Y refal P, wpub Yy CIDaly pynPdx

0 a.B=1ij=1 y=Ly#p
N n (N
=J Y Y |>refct|alx, wDubDary ayn7ax.
o By=1p#yij=1la=1

If one can choose
N
Yrefcf=1, for el ..,N},
a=1
and
N
Zra,ﬁcg =0, forpB,yefl,... N}, B#y,
a=1
then the assumption (As3) allows us to estimate

4 N n N
Y= IZ Y alPix, wDuPDuby ,pn*dx = co > qu |Dufdx.
=Y ST =

-_ 5

2.8

(2.9)

(2.10)

(2.11)

Now, we prove that equations (2.9) and (2.10) are valid for appropriate choice of the constants C},

a,y €{1, ...,N}. In fact, (2.9) and (2.10) have the form
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N
> refcy = &, for B,y €{l,..,N} 2.12)
a=1
We note that the aforementioned system has N z equations with N 2 unknowns C}, a,y € {1, ...,N} and can be
rewritten as the form

R 0 .. o)ct)] (et

0 R .. O0fc?| |e

0 R0 e 2.13)

0 0 .. RN [eV

where
Cj
1 p2l p31  pN1 '
rt2 1 p32 . N2 ¢
R=|rp13 p23 1 . pN3| = cfl

LN p2N  p3N y
r r r 1 CI{/

and e/ is the unit vector of RY, j € {1, ...,N}. By assumption (A,), detR # 0; thus, the determinant of the left-
hand side square matrix in (2.13) is nonzero, and noting the right-hand side of system (2.13) is nonzero, then
there exists a unique nonzero solution to (2.13). We choose C} to be the unique nonzero solution to (2.13) and
we have (2.9) and (2.10). Note that the values of C} rely on the values of r*#, a, B=1..,N

We now use (2.12) again, (A;) and the proportional condition of the off-diagonal coefficients in (A4) to
estimate the first term of the right-hand side of (2.7):

n
I Z Y aP(x, wDjub ZCVZnDnGk(uV))(Ade
o ap=1ij=1

N n

I > > r“ﬁa P(x, wDjuP ZCVZnD,qu(uV)XAydx
o a.B=1ij=1 y=1
N
Z refc)

aliP(x, wDuP2nDN G W)y dx

SM=z

-

EO‘ﬁ

=

‘.TM=

_

{O%
it M =

n
> al ' Fix, wDuP2nDinG(ub)y afdx 2.14)
B=1i,j=1

-\..

< 2¢n?

0O
M=

'm

IDuP|n|Dn|IGk(uP)x 4pdx
=1

|Dn|2|6k<uﬁ)|2]x
&

N
] 3 et put + o
o B1
~21\/ B_kz
2 b 4cn |u]
< &n ZInlDuldx+ : ZI s ,

where we used Young’s inequality
2ab < ea® + b*le, €>0,
and the fact

|G| = [uf| - k, x € Af.
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We next estimate the second term of the right-hand side of (2.7). Sobolev embedding theorem, Young’s and

Holder’s inequalities allow us to obtain

N N
[2re 3 iy

qa=1 y=1
N N
< ¢ [ Y PG uidx
AP a=1 B=1
k,t
ood 1
N N (2*), %y >
sey (| ax| [[ieciubax
p=1 Alft a=1 B,
1
- n
m 1
N N m ey
@y
scy | [|2ve] ax| 1afi | o) [IDGrGuayRax
p=1 Akﬁz a=1 B,

1
2

IA

N

_ 14

ENIIfllema Y. 1AL | [ 120DnGi(uP) + nDufdx
B=1 Al

k,t

1

1
2 2

IA

N
oN||fllzrsy 3 1AL:IE|| [ 120DnGeuPyPax| + | [ In2Duspax
B B

=1
13 Ak,t Ak,t

ol

1
2

IA

e t-s

N Bl — 2
] ol (11 -k
cN||f||Lm<Bf>Z|A£t|z4J[ ]dx +[JAﬁn2 |Duf>’|2dx]
kt
Al

IA

N N | - k 2 N 5
eNlflnao|e 3 J,,* IDuPPx + 4e Y I[—t — ] dx + (@) Y 1AL |
=17kt B=1A'B B=1
t

where € = c(n)Zny:1|CaV| and 6 = 2[% _ %]
Substituting (2.8), (2.11), (2.14), (2.15) into (2.7), and choosing € small enough such that

_ o Co
@NIf ey + Entde = =,

we then derive

% J'|Duﬁ|2dxs c % J'

=18 =178
B Ay, k A,

2 N
uf| - k
el CLEDA A
s =)
S t
where ¢ is a constant depending upon n, N, m, || |1y, €, Co, and . Note that
IDi|uf|| = | D],

then (2.1) reduces to (2.4), completing the proof of Lemma 2.1.

(2.15)
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In the next lemma, we state and prove a general result that holds true for some general vectorial function

v E Wﬁ;f (Q; RY). Eventually, we will use such a result with v = (Ju|, ...,|u¥|) and p = 2. Note that this lemma is
a generalization of [25, Lemma 3.2].

Lemma 2.2. Letv = (V\, ...,vV) € Wﬁ;f(sz; R™) with 1 < p < n. Suppose that there exist constants ¢, > 0, Ly 2 0

and 0 >1 - %, such that

N N B_L P
> J|Dvﬁ|de <qy J'[V ] dx + |4F.1P |, 2.16)
p=1| s t-s
AL,{

L, ;
for every s, t, L, where 0 < s < t, Bi(xp) € Q and L > Ly, where
Aﬁs = {x € By(xg) : vF(x) > L}.

Then, for every B = 1,..., N, vB is locally bounded from above, and for every r, R with 0 < r < R, Br(x,) € Q and
|Br(X0)| <1,

sup v < ¢,
By (x0)

1

where ¢ is a constant depending only upon n, p, 0, ¢, ||, L, Ry and

N
> I max{vP; 0}Pdx.
B=1By(xp)

Remark 2.1. Without loss of generality, we assume 6 < 1 in (2.16) since otherwise,
AL = 1AL AL < 1R AL,
then (2.16) holds true with ¢ replaced by ¢N max{|Q|°~', 1} and 6 replaced by 1.
We shall need the following preliminary lemma in order to prove Lemma 2.2, see [22, Lemma 7.1].
Lemma 2.3. Let a > 1 and let {J;} be a sequence of real positive numbers, such that
Jiua S CBYY,
withC> 0 and B > 1. If
Jo < CEB @,
we have

J; < B,

and hence, in particular, lim;_..«J; = 0.

Proof of Lemma 2.2. Let us consider balls B, (xo) and By,(xo) with 0 < i, <1, < R, Br(Xp) € Q and |Rr(xo)| < 1.
Letn : R® = R be a cut-off function such that

0<n<1, ne C&(BwTrz(xo)), n=1 in B,(xo)) and |Dpn| < s
2N

Then, using Hélder’s inequality, Sobolev embedding theorem, and the properties of the cut-off function 1, one
obtains
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P
p*

[ of - pyaxs| [ @8- preax| jaf i

AP

B
Lrq A

s
P*
[ n# - Dyprax| 14l p-

B
AL W1

P
p*

= I[q max{vf - L; 0}]P* dx |Af:r1|1‘1lek
B,

P
P*

<| | (pmaxivh - L; oy x| |af,

Bry+ry
2

IA
o

[ 1l maxive - L; 031 dx]| 1af, b

Bri+ry
2

=c I | max{v# - L; 0}Dn + nD max{vf - L; O}|P dx |A£,1 ez

Bry+ry
2

=d [ 18 - 1D + nDvEpax| 1af, [

AL ri+ry
> 2

| 18 - DypniPax+ | inpviPax| 1af,p

AL ritry AL ri+ry
> 2 T2

A
o

n-n
AL, rlzrz AL, r1+2-r2

vB- L)
< | [ ]dx+ [ ipveedx|iaf,pr,

where ¢ is a constant depending upon n and p. Now, we sum upon § from 1 to N obtaining

N —
> [or- Drdxscy | ["B L]dx+ [ \pvepax| jaf, e
B

- n-n
P 1AL,r1 A1 AfrrTrz A jatec!
1-7%
N vB-L) !
<Y | dx+z _[ IDVAPdx Z|A“1
ﬁ=1Aﬁ n—-n

r1+r2 A r1+ry
L=5= L—5=

In order to control the second term in the aforementioned bracket, we use our assumption (2.16) with s =

and t = r,. From the aforementioned inequality, one obtains

9

rntr
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1-p%
vE-L y vk - ’
j(vﬁ L)de<cz j [ - ] ZJ[ - ]dx+Z|Aer|" Y 1AL
B=1,5 B=1 h—n B=1, n-n o1
L,rq r1+rz \ry
(2.17)
N N 17 N N -7
<dy | DXL I DAV DTN I
B=1,8 B=1 B=1 B=1
L,ry
where c is a constant depending upon n, p, and q.
We are able to estimate |A£r1| and |A£,2| by means ofJ s (vﬁ - E)de, where L > I > L. In fact,
APl SIAf ) = (L - DPlAL ) = e J (L - Dyvdx
i (L - Eyp 2w - L)P
. i 2.18)
<— v - Dypdx £ ———— vF - DyPdx.
(L—L)P‘!( ) L - L)PI( )
L,ry er
In the mean time,
B — 1) B —T)p B — [y
I(v L)Pdx < J(v Lypdx < J(v )Pdx. 219
ALﬁrz ALﬁrZ ALﬁrz
Substituting (2.18) and (2.19) into (2.17), and noting that 1 - ﬁ = %, we then arrive at
N
Z _[ (vB - L)Pdx
%
N N
2 | WP -Lydx|| Y | - Lyrdx
L,ry Ly
0 u
c N N
- [ Y B — )P
t LD 2 [ @~ Dyax 2 [ @ - Dyax 2.20)
A1 Affrz ﬁ_lAl%;rz
1+5

(r, = m)P(L - E)pp/nlﬁ=1Aﬂ_
L

c

' (L - Dywime| £ Z J(vﬁ )pdx

er

Now, we fix 0 < r < R, with Bg(Xy) € Q and |Br(xp)| < 1, and we take the following sequence of radii:
R-r
20

p; =T+ i=012..,

then p, = R and
R-r
pi‘pi+1=W>0’

so p; strictly decreases and r < p; < R. Let us fix a level d > max{Lo, 1} and we take the following sequence of
levels:



DE GRUYTER Boundedness of solutions to quasilinear elliptic systems = 11

1 ,
ki = Zd[l - F], i=012..,

then ko = d and kj+q — k; = 2”1 > 0, so k; strictly increases and Ly < d < k; < 2d. We can use (2.20) with levels
L=ki>k=Landradiin = p,, <p =n:

P

1+5 o+5
N i N i N
2+ Dp+p/n) 2+ D(pp/n+po)
> | o kerexs G 2 [ o —lorax| -+ e 3 [ of -k 020
leAkﬁ- 1Pi+1 kp - ’f'l"
Let us set

N

Z [ o -kpax, i=0,1.2...
p=1 ﬁ

k

Since

Jur = I(W Kivr)Pdx
p=1

kHl Pi+1

IA
M=

[ oF - kopax

B
Aki,Pi+1

1

=™
n

IA
M=

1

=™
n

| @8 = kenrax

IA
M=

1

=™
n

[ wf - kopax =,
Aﬁ
ki>pi

{J:} is a decreasing sequence. Note that d > Lo = 0, so when v# > d, we have v# - d < vf = max{v#; 0}; then

Z J(vﬁ ~ d)Pdx < Z _[(max{vb’ )P dx < Z | maxive; o = 7. 2.22)

1
Ad X Ad R B=1B4(x0)

We use the aforementioned number T, and we keep in mind that® <1, R - r <1 and d > 1, then (2.21) yields

i i
C 1+Ep 1 C E+9p 0+£
S @ |2 dpp/n+pe[2 BRE VA
<;21+%P ,+nT1—9+;21+ﬁpl?ﬁ
~ (R - r)pgprin Ji (R - r)paper/n Ji
i
I 14 14
<@t TP

where ¢ is a constant depending upon n, N, p, 0, ¢, |Q|, and T. We would like to use Lemma 2.3 to obtain

}11'2 Ji = (2.23)

this is true provided that

S s

>1 (2.24)

and
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]OS[(R—r)Pde/n] [2 p][ :

(2.24) is easy since 6 > 1 - %. Let us try to check (2.25). Since J; < T by (2.22), we obtain the following sufficient
condition when checking (2.25):

1+p

(2.25)

N
> I max{vP; 0}Pdx < [
B=1B4(x0)

(R - )Pdpp/" " 2.26)

9+—1[2[1+_

Then, we fix d verifying (2.26) and d > max{Lo, 1}; then, (2.25) is satisfied and (2.23) holds true. It is obvious that
such a constant d depends upon n, N, p, 6, ¢, |2|, L, ﬁ, and T.
We keep in mind that r < p; and k; < 2d, so we can use (219) withr, =r < p;, L = 2d, and L=k

J' (VB - 2d)Pdx < j (W8 - kp)Pdx < J' WP - kyPdx,

2.27)
Azdr Akl Akl pi
so that
N
0< Y [ @ -2dpdx < Z [ @b - kpax = 1.
'B=1A2€i,r B 1Aklpl
Since (2.23) holds true, we have, by Lemma 2.3, lim;.J; = 0, so
Z J’ (WP - 2d)Pdx = 0,
B=1,F
d
this mean that |A£1,r| = 0, so that
vP<2d, ae.in B(xp).
This completes the proof of Lemma 2.2. O

Proof of Theorem 2.1. Caccioppoli inequality proved in Lemma 2.1 with v# = |uf] and p = 2 allows us to use

297
of a implies that u is locally bounded in Q. O

Lemma 2.2 to derive local boundedness of u* (note that 6 = 2[ m] >1- % since m > %). The arbitrariness

2.2 Global boundedness result

Letn > 2, N 2 2 be integers and Q an open bounded subset of R™. Consider Dirichlet problem of the following
quasilinear elliptic systems involving N equations:

¢ 0 N of oub (x) . .
25 BZUZlal, L uC)— =[=f'0, in Q 228)
u(x) =0, on 0Q.

where a € {1, 2, ...,N} is the equation index.
We let the coefficients af}’ﬁ x,y),i,j €11, ...,n},a, B € {1, ...,N}, satisfying the set of assumptions (A) and

FOO = (F00, o fN(0) € INQRY), m = (2%, (2.29)
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Definition 2.2. A function u € Wy %(Q; RY) is a global solution to (2.28), if

| Z Z P (x, uC))DEP()Dige(x)dx = IZ FH0P00)dx 2.30)

o a.B=1ij=1 ga=1

holds true for all ¢ € Wy %(Q; RM).

Next we prove that if the right-hand side function f is good enough, then the global solution to (2.28) is
globally bounded.

Theorem 2.2. Suppose that u is a weak solution of (2.28). Under the set of assumptions (A), if f € L"(Q; RY),
m > —, then any global solution u € Wy 4(Q; RY) to (2.28) is globally bounded.

Proof. We take for any k > 0, ¢ = (¢, ...,p") with

N
0= Y ClGW), @€l ...N},
y=1
where Gy(s) is defined in (2.6), and C}, a, y € {1, ...,N}, are the real constants satisfying (2.12). It is obvious that

N
Dip* = ZC,{DiuV)(Aky, i=1,..,n.
y=1

Such a function ¢ is admissible for Definition 2.2 since it belongs to Wy %(Q; RY). We use ¢ in (2.30) and we have

| Z 5 a &P, u())DuP (x) Z CuDawy ydx = | Z fa Z CLGi(w)dx. (2.31)
qa.p=1ij=1 oa=1 y=1
We compare the left-hand side of (2.31) with the left-hand side of (2.7), and we find that the only difference
between them is a function n2. We use the method from (2.8) to (2.11) and we have that

N n
y g 2.32
J > z alPx, u(x))D; uﬁ(x)ZCVD W,y dx = co Z I|Duﬁ| dx. (2.32)
Q@p=1ij=1 B=1,p

In order to estimate the right-hand side of (2.31), we use Holder’s inequality and Sobolev embedding theorem
to derive

[ 370 3 cleuunax <z [ 3 1ol 3 1Gubiax
ga=1 y=1 ga=1 p=1

1 1
(2*), Q@ 2

rei| - ax| | J1Giun ax 2.33)

IA
]
M=
—
iM=

®

-
S

=

@y |*
Fer| x| | [ 1Duipdx|

IA
o
M=
—
M=

a=1

[l
—-
S
[ah=Y

where C/, a,y = 1,..., N, are solutions to (2.13) and ¢ = Zﬁ{},:ﬂcg | is a constant.
Substituting (2.32) and (2.33) into (2.31), we arrive at

2
N @ |
IlDuﬁlzdx <c Z dx

1,8 B=1| 4 8la
ﬁA k
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Holder’s inequality gives

2
*y

@ (&
m 22
" ﬁl_(Z_*)l N B @
dx| JACm Y 1AL
B=1

N
Z Ife| (2.34)

a=1

<cC

)

N N
> IlDuﬁlzdx <cy J
B=1,p

=1 B
B AF

where ¢ is a constant depending upon n, N, m, ¢y, ¢, || f||zmq) and r%#, a, B = 1,..., N. The left-hand side of the
aforementioned inequality can be estimated by Sobolev embedding theorem, for any L > k,

N N
Y [ipufpdx = Y [IDGiub)Pdx

B=1,f B=1g
2
o 2%
N 2 N
¢ Y ([l ax| = 3| [1Gi@h)F dx (2.35)
F=1{q B=1| a$
2
>l - k2 Y AP = c@ - kY Y |1AF)
B=1 B=1
(2.34) and (2.35) merge into
N c N (ﬁ‘%)ZT
2 1AL ———-1 Y |Af] ,
p=1 L - k)| 45

for every L, k with L > k > 0. We let

N N
w(t) = Y 1P = Y [{wPl .
B=1 p=1
We use the following Stampacchia Lemma, see [35, Lemma 4.1], which we provide below for the convenience
of the reader.

Lemma 2.4. Let Y(k) : [kg, +) — [0, +) be decreasing. We assume that there exists ¢, a € (0, +») and
B € (1, +=) such that
c

L>k2ko=>zp(L)s(L_k)a

[YOP.

Then, it results that Y(ky + d) = 0, where

ap @
d= [c(w(ko»ﬁ-lzﬁ-ll :

. oo 2 2 |2
Since m > % implies S = [W - H]? > 1, we use Lemma 2.4 and we have

N
Y lufeol>d}| = o,
B=1

almost everywhere in Q, which implies the desired result [uf(x)| < d, a.e. , BE{l, .. N} O

3 Boundedness under (A)

This section deals with global boundedness for solutions to elliptic systems (1.1) under the set of assumptions
(A). We also consider regularizing effect of a lower-order term.
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3.1 Global boundedness result

In this section, we also consider Dirichlet problem of quasilinear elliptic systems involving N equations of the
form (2.28). We let the coefficients ai‘fj’ﬁ x,y),i,j€1{1, ..,n},a, B €1, ..N}, satisfying the set of assumptions

(A) and [ satisfying (2.29). The definition for a global solution u € Wy {9; RY) to (2.28) is the same as
Definition 2.2.

Next we prove that, if the right-hand side function f is good enough, then the global solution to (2.28) is
globally bounded.

Theorem 3.1. Suppose that u € Wy %(Q; RY) is a weak solution of (2.28). Under the set of assumptions (A)', if
=" .. fYel™Q; R, m> % then any global solution u € Wy (Q; RY) to (2.28) is globally bounded.

Proof. Let u € Wy (Q; RV) be a global solution to (2.28). For every L > Q,, we define ¢ = (¢!, ...,o") with
¢ = G (u"),
then
Dip® = DiuY pa-

Such a ¢ is admissible for Definition 2.2 since ¢ € W(} %(Q; RN). We use ¢ in (2.30) and we have

N n N
I > > ai'j’ﬁ(x, WDUP (DU yadx = I > feGL(u)dx.

o a.p=1ij=1 g a=1
Now, assumption (A4)" guarantees that
aif(x, WY e = af(x, WX agX af
when B # a and L 2 Q,. It is worthwhile to note that (3.1) holds true when a = 8 as well; then,
N n N
I > > afj’ﬁ(x, w)Djuby yp DY yadx = IZf“GL(u“)dx.
o a.B=1ij=1 ga=1

Now, we can use ellipticity assumption (As3)” with & = Ducy s« and we obtain

N N
&Y [IDuspdx < [ 3 feGundx. 31

a=1AL(1 qa=1

In order to estimate the right-hand side of (3.1), we use Holder’s inequality and Sobolev embedding theorem to
derive

N N
[ re6iumax < 3 [irelGuaoidx

Q a=1 a=19
a
N %) >
< Y| fira®ax| |[iGuarax
a=1 AL(I 0
. & : (32)
<cY|[ir® ax| |[iDuspax
| i

1
@y 2

_['fa |(2*)’dx % I|Duﬁ|2dX .
B

A B=1,f

IA
o
M=

i~3
n

=

-
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Substituting (3.2) into (3.1), we arrive at

2
@y

N N
)3 IlDu“Fdx <cy I|f“ @ dx

a=1ALﬂ a=1 ALH
Hoélder’s inequality gives
2
@y @Y
m 2 _2
N N @y @y m
Y [eaxscy | Jierax jagit| s S| (33)
a= ALH a=1 ALH a=1

where ¢ is a constant depending upon n, N, ¢, and ||f||zm@). The left-hand side of the aforementioned
inequality can be estimated by Sobolev embedding theorem: for any £, > L,

N N

Y [1puspdx = ¥ [IDGwo)Pdx

a=1ALa a=lg

2 Z

2 N 2
IIGL(u“)IZ*dx] 2cy J'|GL(ua)|2*dx (3.4)

a=1| 4@
Q Af

\%

)

a=1

2
o

v

N
2 AL

a=1

N
¢ - LY JALE 2 o - L)?
a=1

(3.3) and (3.4) merge into

2 _2
@y m

[ty

a=1 (L L)Z

for every L, L with L > L = Q,. We let

N N
Yo = YA = 2 Hlueol > 8.

a=1 a=1

_2
2% m

We use the Stampacchia Lemma 2.4 and we keep in mind that m > - 1mp11es B = [ ]? > 1, then

Z [{luCol > Qg + d}| =0,

a=1

which implies the desired result [u®(x)| < Q, + d, a.e. Q, a € {1, ...,N}. O

Remark 3.1. We note that, in [27], the authors considered the elliptic system (2.28) with f%(x) = 0, a.e. Q,
a =1,..., N.Under the assumptions (Ay), (Ay), (A ) and support of off-diagonal coefficients (see [27, Figure 1]),
the authors derives a local boundedness result by using De Giorgi’s iterative method. We mention that the
support of off-diagonal coefficients in [27] is contained in the “butterfly support” (compare [27, Figure 1] with
[27, Figure 1]); thus, the condition (A) in this article is weaker than the one proposed in [27]. Of course,
generally, dealing with local boundedness requires more skills than global ones. Existence and boundedness
results of weak solutions to some vectorial Dirichlet problems of elliptic systems can be found in the recent
article [13].
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3.2 Regularizing effect

In this section, we concentrate ourselves to regularizing effect of a lower-order term. A good reference in this
field is the article [1] by Arcoya and Boccardo, where the authors studied the regularizing effect of the
interaction between the coefficient of the zero-order term and the datum in some linear, semilinear and
nonlinear Dirichlet problems. For other results related to regularizing effect, we refer to [7, Section 11.8] and
the recent articles [2,3,11].

We next show that there is also regularizing effect of a lower-order term for elliptic systems. More
precisely, let n > 2, N > 2 be integers and Q an open bounded subset of R". We consider quasilinear elliptic
systems involving N equations of the form

n N n
gai gg 6 () + bY)u(x) = fe, in Q, 35)

u(x) on 4R,

where a € {1, 2, ...,N} is the equation index. The difference between (3.5) and (2.28) is that there is a lower-
order term b*(x)u®(x) in the left-hand side of (3.5).

We assume that the coefficients ai‘fj’ﬁ satisfy (A)". For the functions f%(x) and b%(x), a = 1,..., N, we assume
0 < b%(x) € L (Q), (3.6)
[fe00)] < Qb%(x), forsome Q = Q,. 3.7

Definition 3.1. We say that a function u € Wy’ %(Q; RY) is a global solution with respect to (3.5), if
N n N N
[ T 3 a0 uonpufeopgreadx + [ ¥ b0outee) = [ ¥ f200p adx (3.8)
o &.p=1ij=1 ga=1 ga=1

holds true for all p € Wy %(Q; RY).

We remark that conditions (3.6) and (3.7) guarantee integrability of the second and third integrands
in (3.8).
Theorem 3.1 tells us that, in order to guarantee boundedness of solutions to (2.28), we need f € L™(Q),

m > % From (3.6) and (3.7), we know that, f € LZ(Q). The next theorem shows that there is a regularizing effect
of (3.7), which forces global boundedness of solutions to (3.5).

Theorem 3.2. Assume (A), (3.6), and (3.7), then a solution u € WO1 2(Q; RY) of system (3.5) is bounded.
Moreover,

llullz=; rYy < QVN.

Proof. Let u € Wy %(Q; RY) be a global solution of system (3.5). We take a test function ¢ = (¢, ...,¢") with
P* = Go(u*), ae€{l, .., N} (3.9)

Such a function ¢ is admissible for Definition 3.1 since it belongs to W’ 2(Q; RM). We use such a test function in
the weak formulation (3.8) and we have

J Z z a’; ¥ (x u)D; UPD,Go(u)dx + ZIb“u“GQ(u“)dx ZIf“GQ(u“)dx (3.10)

0 a,p=1ij=1 a=1g a=1g

For the first integral in the right-hand side of (3.10), we use (A4)" and (A3)’ to derive
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N n
2 2 af}’ﬁ (x, WDUPD;Gy(u®)dx
B=

-
<
n

-

a’P(x, wDuPDuy agdx

1]
0O
R
"EMZ
M= $M=

N 3.1
= _[ > afj’B(X, u)DjuPy af DUy yadx
o a.p=1i,j=1
N
> ¢y | |Du?Rdx = 0.
a=lya
Q
Using (3.7), we obtain
N N
Y [re0Geadx < 3 [if20oliGousldx
a=lg a=lg
N (3.12)
< Y [ope0olGo(u)ldx.
a=1g
Combining (3.10)-(3.12), and noting u®(x)Go(u®) = [u*(x)||Go(u®)|, one obtains
N
Y [p00lGounIueol - Qdx < o, (313)
a=1lg
from which we derive
[u*x)| < Q, ae. Q,
we thus have derived that u € L*(Q) and
[ull=@ < VN Q.
This completes the proof of Theorem 3.2. O
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