
Knowledge-Based Systems 300 (2024) 112226

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Locally linear method for fixed effects panel interval-valued data model
Jinjin Zhang, Aibing Ji ∗
College of Mathematics and Information Science, Hebei University, Baoding 071002, China

A R T I C L E I N F O

Keywords:
Fixed effects
Panel interval-valued data
Nonparametric model
Profile least squares framework
Locally linear method

A B S T R A C T

The literature on fixed effects panel interval-valued data models has been established. However, less attention
has been given to models that simultaneously, consider the interval information of panel data and explore
the nonlinear relationship between interval variables. To deal with this issue, this paper formulates a
nonparametric fixed effects panel interval-valued data model. To estimate the fixed effects and nonparametric
component, we propose a locally linear method based on the profile least squares framework. Later, experiment
results on synthetic and real data sets illustrate the advantages of our proposed model.
1. Introduction

Panel data, also known as longitudinal data or cross-sectional time
series data, refers to a type of data that is collected over a period of
time on the same observational units. An excellent overview of panel
data analysis can be found in [1–3]. One of the most important tools
for analyzing this kind of data is the fixed effects panel data model.
This model is designed to control for individual or unit-specific effects
(fixed effects) and to analyze the impact of time-related factors. It
is particularly useful when there is a concern that the observation
might be influenced by factors that do not change over the period
of study. For instance, in the field of economics, researchers might
employ this model to investigate the economic policies’ impact on
economic growth, while controlling for fixed country-specific factors
like geography or culture [4]. Similarly, in medicine, it could be used
to study the effect of a new treatment on patient health outcomes, while
accounting for individual patient characteristics that do not change
over time [5–7].

While fixed effects panel data models have been extensively ex-
plored, few address panel data with measurement error that could
bias predictive responses [8–10]. To solve this problem, Ji et al. [11]
introduced a class of fixed effects panel interval-valued data models: the
center model (P-CM), the Minmax model (P-Minmax), and the center
and range model (P-CRM). In these models, the measurement error is
converted to the radius of the interval, and the center of the interval
represents the observation. However, the limitation of the P-CM, P-
Minmax, and P-CRM models is reached when the interval variables
have a complex nonlinear relationship.

In this paper, we establish a fixed effects panel interval-valued
data model based on nonparametric specifications and interval-valued
data analysis. The objectives of this paper are (1) to represent the
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uncertainty and volatility information of panel data in the form of panel
interval-valued data, (2) to take into account the nonlinear relationship
of interval variables. To get a consistent estimator of the nonparametric
component, this paper proposes a locally linear method (P-LM) based
on the profile least squares framework. Later, the experimental results
on synthetic and real datasets demonstrate that our proposed model
performs well compared with existing models.

The contributions of our proposed model and estimation method are
listed as follows.

∙ Our proposed model is suitable for nonlinear panel interval-
valued data, as it combines the strengths from both the interval-
valued data analysis and nonparametric panel data models.

∙ We extend a locally linear method to our proposed model based
on the profile least squares framework. The unknown nonpara-
metric component can be estimated based on the kernel-based
weighted residual sum of squares (as shown in Eq. (23)).

∙ The proposed method has no restriction on the form of the
regression function. The proposed estimator is consistent and has
a limiting normal distribution.

∙ Our proposed method is also suitable if the fixed effects panel
interval-valued data model is linear.

The remainder of this paper is organized as follows. Section 2
provides a review of relevant literature. The current fixed effects panel
interval-valued data models are introduced in Section 3. In Section 4,
we first formulate a fixed effects panel interval-valued data model
and then propose a locally linear method for the model. Later, we
show the asymptotic properties of the proposed estimator. Sections 5
and 6 present the experimental results of synthetic and real data sets,
respectively. Later, concluding remarks are provided in Section 7.
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2. Literature review

In this section, we provide a review of relevant literature: fixed
effects panel data models; interval-valued data analysis. We identify the
strengths of existing works, and present the motivation and the details
of our proposed model and estimation method.

2.1. Fixed effects panel data models

There has been much research on the estimation method of fixed
effects panel data models in econometrics [1–3]. According to the
treatment form of fixed effects, these methods can be classified into
two main categories. One is firstly to remove the fixed effects by data
transformation and then to estimate the nonparametric/semiparametric
component through kernel-based methods (see, for example, [12,13]).
It is worth noting that employing data transformation may alter the
structure of the nonparametric/semiparametric component. Moreover,
another way based on the profile least squares framework does not
alter the structure of the nonparametric/semiparametric component.
For instance, under the profile least squares framework, Gao and Li [14]
proposed an intuitive Nadaraya–Watson kernel method of fixed effects
panel data model (NWM). Lee et al. [15] offered the local-within-
transformation to replace the fixed effects and presented a locally linear
method for fixed effects panel data model (LLM). Many variations to
the kernel-based estimation method have also been proposed over time
to estimate fixed effects panel data models; see, for example [16–
20]. Although these works are not specialized in the fixed effects
panel interval-valued data models, they provide a theoretical basis for
exploring these models.

2.2. Interval-valued data analysis

Interval-valued data, as a kind of symbolic data, was proposed by
Moore [21]. The observations are not represented as single points but
rather as intervals, ranges, or sets of possible values. This type of
data is particularly useful when there is uncertainty or imprecision
in the measurements, and it allows for a more flexible representation
of the uncertain information [22]. Interval-valued data has garnered
significant attention in different statistical problems, such as time series
analysis [23–25], regression analysis [26–28], clustering [29–32], op-
timization [33–35], hypothesis testing [36], feature selection [37,38].

In the interval-valued regression analysis, the response variable
(dependent variable) and the explanatory variables (independent vari-
ables) are represented as intervals [39]. The objective is to model
the relationship between interval explanatory variables and interval
response variable, allowing for a more realistic representation of the
variability in the data. The first discussion on the regression model for
interval-valued data was introduced by Billard and Diday [39], who
proposed the center model (CM). This approach utilizes the midpoints
of intervals to fit the regression model. Following this, Billard and
Diday [40] introduced the Minmax model (Minmax), which relies on
the lower and upper bounds of intervals. Later, based on the center and
range of intervals, Lima Neto and de Carvalho [41] proposed the center
and range model (CRM). The CRM model has received considerable at-
tention for its effective representation of full interval information [42–
44]. Recently, researchers have developed the kernel-based methods
for interval-valued regression models [45,46]. To capture the nonlinear
relationship between interval variables, Fagundes et al. [47] proposed
a kernel method based on kernel smoothing approaches, while Sun
et al. [4] and Kong et al. [48] presented a locally linear model for cross-
sectional interval-valued data regression models. In conclusion, there
exists much literature on the cross-sectional interval-valued regression
analysis, but few develop more complex panel interval-valued data
models.

In this paper, we specifically focus our attention on a locally linear
method presented by Su and Ullah [49], who investigated the partially
2

linear fixed effects panel data model (panel point-valued data). Un-
der the profile least squares framework, the locally linear method is
extended to estimate the nonparametric fixed effects panel interval-
valued data model. Specifically, fixed effects are firstly treated as
unknown parameters, and the nonparametric component is estimated
by minimizing the kernel-based weighted residual sum of squares, as
shown in Eq. (23). In this way, the estimated nonparametric component
is only related to fixed effects. Then, plugging the estimated nonpara-
metric component into the residual sum of squares, fixed effects can be
estimated based on the least squares method. Later, the nonparametric
component is estimated based on the estimated fixed effects.

3. Current fixed effects panel interval-valued data model

Consider the panel interval-valued data set
{

(𝑥𝑖𝑡, 𝑦𝑖𝑡) ∶ 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇
}

(1)

where 𝑥𝑖𝑡 = (𝑥𝑖𝑡1, 𝑥𝑖𝑡2,… , 𝑥𝑖𝑡𝑝)′ are a 𝑝-dimensional vector of interval ex-
planatory variables and 𝑦𝑖𝑡 is an interval response variable. 𝐴′ denotes
the transpose of matrix or vector 𝐴. The subscript 𝑖 typically denotes
individual units, such as people, households, firms, countries, or any
other entities that are repeatedly observed over time; the subscript 𝑡
represents time periods or the chronological sequence of observations.
It could be days, months, years, etc., depending on the frequency of
data collection. The observations of 𝑥𝑖𝑡𝑗 and 𝑦𝑖𝑡 are two interval-valued
data for 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 ; 𝑗 = 1, 2,… , 𝑝, 𝑥𝑖𝑡𝑗 = [𝑥𝑙𝑖𝑡𝑗 , 𝑥

𝑢
𝑖𝑡𝑗 ] with

𝑥𝑙𝑖𝑡𝑗 ≤ 𝑥𝑢𝑖𝑡𝑗 , and 𝑦𝑖𝑡 = [𝑦𝑙𝑖𝑡, 𝑦
𝑢
𝑖𝑡] with 𝑦𝑙𝑖𝑡 ≤ 𝑦𝑢𝑖𝑡, where superscripts 𝑙 and 𝑢 de-

note the lower and upper bounds of the interval. Alternatively, each in-
terval can be represented equivalently by its midpoint and range [41],
that is, 𝑥𝑖𝑡𝑗 = [𝑥𝑐𝑖𝑡𝑗 − 𝑥𝑟𝑖𝑡𝑗 , 𝑥

𝑐
𝑖𝑡𝑗 + 𝑥𝑟𝑖𝑡𝑗 ] and 𝑦𝑖𝑡 = [𝑦𝑐𝑖𝑡 − 𝑦𝑟𝑖𝑡, 𝑦

𝑐
𝑖𝑡 + 𝑦𝑟𝑖𝑡], where

𝑥𝑐𝑖𝑡𝑗 =
1
2
(𝑥𝑙𝑖𝑡𝑗 + 𝑥𝑢𝑖𝑡𝑗 ), 𝑥𝑟𝑖𝑡𝑗 =

1
2
(𝑥𝑢𝑖𝑡𝑗 − 𝑥𝑙𝑖𝑡𝑗 )

𝑦𝑐𝑖𝑡 =
1
2
(𝑦𝑙𝑖𝑡 + 𝑦𝑢𝑖𝑡), 𝑦𝑟𝑖𝑡𝑗 =

1
2
(𝑦𝑢𝑖𝑡 − 𝑦𝑙𝑖𝑡)

Remark 1. If 𝑥𝑙𝑖𝑡 and 𝑥𝑢𝑖𝑡 are independent, identically distributed
random variables across 𝑖th index, then 𝑥𝑐𝑖𝑡 and 𝑥𝑟𝑖𝑡 are independent,
identically distributed random variables across 𝑖th index.

In the following section, we introduce three fixed effects panel
interval-valued models (P-CM, P-Minmax, P-CRM) proposed by [11].

3.1. Center model for panel interval-valued data (P-CM)

In the P-CM model, suppose that 𝑦𝑙𝑖𝑡 and 𝑦𝑢𝑖𝑡 can be independently
explained by 𝑥𝑙𝑖𝑡 and 𝑥𝑢𝑖𝑡, and they follow the same regression model

𝑦𝑙𝑖𝑡 = 𝜇𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑙𝑖𝑡𝑗𝛽

𝑐
𝑗 + 𝜀𝑙𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (2)

𝑦𝑢𝑖𝑡 = 𝜇𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑢𝑖𝑡𝑗𝛽

𝑐
𝑗 + 𝜀𝑢𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (3)

where 𝛽𝑐1 , 𝛽
𝑐
2 ,… , 𝛽𝑐𝑝 are the unknown parameters, 𝜇𝑐

𝑖 is the fixed effect
related to 𝑥𝑐𝑖𝑡𝑗 for all 𝑡 = 1, 2,… , 𝑇 ; 𝑗 = 1, 2,… , 𝑝. Eqs. (2) and (3) are
equivalent to the following equation:

𝑦𝑐𝑖𝑡 = 𝜇𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑐𝑖𝑡𝑗𝛽

𝑐
𝑗 + 𝜀𝑐𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (4)

where 𝜀𝑐𝑖𝑡 = 1
2 (𝜀

𝑙
𝑖𝑡 + 𝜀𝑢𝑖𝑡). Define 𝛽𝑐 = (𝛽𝑐1 , 𝛽

𝑐
2 ,… , 𝛽𝑐𝑝 )

′. The estimator
f 𝛽𝑐 can be obtained based on least squares dummy variable (LSDV)
pproach [1].

̂𝑐 = ((𝑋𝑐 )′𝛺𝑐𝑋𝑐 )−1(𝑋𝑐 )′𝛺𝑐𝑌 𝑐 (5)

here 𝑋𝑐 = (𝑥𝑐1, 𝑥
𝑐
2,… , 𝑥𝑐𝑛)

′ is an 𝑛𝑇×𝑝 matrix with 𝑥𝑐𝑖 = (𝑥𝑐𝑖1, 𝑥
𝑐
𝑖2,… , 𝑥𝑐𝑖𝑇 )

or 𝑖 = 1, 2,… , 𝑛. Each element of 𝑥𝑐𝑖𝑡 is an 1 × 𝑝 vector and denoted
as 𝑥𝑐 = (𝑥𝑐 , 𝑥𝑐 ,… , 𝑥𝑐 ) for 𝑡 = 1, 2,… , 𝑇 . 𝑌 𝑐 = (𝑦𝑐 , 𝑦𝑐 ,… , 𝑦𝑐 )′ with
𝑖𝑡 𝑖𝑡1 𝑖𝑡2 𝑖𝑡𝑝 1 2 𝑛
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𝑦𝑐𝑖 = (𝑦𝑐𝑖1, 𝑦
𝑐
𝑖2,… , 𝑦𝑐𝑖𝑇 ). 𝛺𝑐 = 𝐼𝑛𝑇 − 𝐷0(𝐷′

0𝐷0)−1𝐷′
0, 𝐷0 = 𝐼 ′𝑛 ⊗ 𝑙𝑇 , the

operator ⊗ denotes the Kronecker product, 𝐼𝑛 denotes an 𝑛× 𝑛 identity
matrix, 𝑙𝑇 is an 𝑇 dimensional vector with all elements equal to one.
Because the intercept term 𝜇𝑐

𝑖 is a constant independent of time, the
corresponding estimator of 𝜇𝑐 can be obtained by

̂𝑐𝑖 = 𝑦𝑐𝑖⋅ − 𝑥𝑐𝑖⋅𝛽
𝑐 (6)

where 𝑦𝑐𝑖⋅ = 𝑇 −1 ∑𝑛
𝑖=1 𝑦

𝑐
𝑖𝑡 and 𝑥𝑐𝑖⋅ = 𝑇 −1 ∑𝑛

𝑖=1 𝑥
𝑐
𝑖𝑡. Thus, the lower and

upper bounds of predictive response by P-CM are given by

�̂�𝑙𝑖𝑡 = �̂�𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑙𝑖𝑡𝑗𝛽

𝑐
𝑗 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (7)

�̂�𝑢𝑖𝑡 = �̂�𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑢𝑖𝑡𝑗𝛽

𝑐
𝑗 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (8)

One limitation of P-CM model is that it only considers the center
information of intervals in the estimation procedure, and thereby the
predictive response may be biased.

3.2. Minmax model for panel interval-valued data (P-Minmax)

P-Minmax model supposes that 𝑦𝑙𝑖𝑡 and 𝑦𝑢𝑖𝑡 can be independently
explained by 𝑥𝑙𝑖𝑡 and 𝑥𝑢𝑖𝑡, that is,

𝑦𝑙𝑖𝑡 = 𝜇𝑙
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑙𝑖𝑡𝑗𝛽

𝑙
𝑗 + 𝜀𝑙𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (9)

𝑦𝑢𝑖𝑡 = 𝜇𝑢
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑢𝑖𝑡𝑗𝛽

𝑢
𝑗 + 𝜀𝑢𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (10)

Based on LSDV approach, we can obtain the estimators of 𝛽𝑙, 𝛽𝑢, 𝜇𝑙
𝑖 ,

and 𝜇𝑢
𝑖 . Thus, the predictive response �̂�𝑖𝑡 = [�̂�𝑙𝑖𝑡, �̂�

𝑢
𝑖𝑡] is given by

�̂�𝑙𝑖𝑡 = �̂�𝑙
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑙𝑖𝑡𝑗𝛽

𝑙
𝑗 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (11)

̂𝑢𝑖𝑡 = �̂�𝑢
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑢𝑖𝑡𝑗𝛽

𝑢
𝑗 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (12)

P-Minmax model uses the interval bound information to obtain the
predictive response �̂�𝑖𝑡. However, it also may lead to a biased predictive
response since it omits the interval center and range information.

3.3. Center and range model for panel interval-valued data (P-CRM)

P-CRM model supposes that 𝑦𝑐𝑖𝑡 and 𝑦𝑟𝑖𝑡 can be independently ex-
plained by 𝑥𝑐𝑖𝑡 and 𝑥𝑟𝑖𝑡, that is,

𝑦𝑐𝑖𝑡 = 𝜇𝑐
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑐𝑖𝑡𝑗𝛽

𝑐
𝑗 + 𝜀𝑐𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (13)

𝑦𝑟𝑖𝑡 = 𝜇𝑟
𝑖 +

𝑝
∑

𝑗=1
𝑥𝑟𝑖𝑡𝑗𝛽

𝑟
𝑗 + 𝜀𝑟𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (14)

Using the same procedure, we can obtain the estimators of 𝛽𝑐 , 𝛽𝑟,
𝜇𝑐
𝑖 , and 𝜇𝑟

𝑖 . Further, according to (13) and (14), we can obtain the
center and range of predictive response �̂�𝑐𝑖𝑡 and �̂�𝑟𝑖𝑡. Then, the predictive
response �̂�𝑖𝑡 = [�̂�𝑙𝑖𝑡, �̂�

𝑢
𝑖𝑡] is given by

̂𝑙𝑖𝑡 = �̂�𝑐𝑖𝑡 − �̂�𝑟𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (15)

̂𝑙𝑖𝑡 = �̂�𝑐𝑖𝑡 + �̂�𝑟𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (16)

The P-CRM model performs better than the P-CM model since
it uses more interval information. However, this improvement only
occurs when there is a linear dependency between the response and
3

explanatory variables.
4. Fixed effects panel interval-valued data model

In this section, we establish a nonlinear fixed effects panel interval-
valued data model, and propose the P-LM estimation method for this
model. Section 4.1 provides the model specification, and the P-LM es-
timation method is proposed in detail in Section 4.2. Later, Section 4.3
discusses the asymptotic results of the proposed estimators.

4.1. Model specification

In this section, we assume that 𝑥𝑐𝑖𝑡 and 𝑥𝑟𝑖𝑡 are independently related
to 𝑦𝑐𝑖𝑡 and 𝑦𝑟𝑖𝑡, and we relax the assumptions on the form of the re-
gression function, that is, there exist two sufficient smooth (i.e., twice-
differentiable) multivariate functions 𝑚1(⋅) and 𝑚2(⋅) satisfying the fol-
lowing relationships

𝑦𝑐𝑖𝑡 = 𝑚1(𝑥𝑐𝑖𝑡) + 𝜇𝑐
𝑖 + 𝜀𝑐𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (17)

𝑦𝑟𝑖𝑡 = 𝑚2(𝑥𝑟𝑖𝑡) + 𝜇𝑟
𝑖 + 𝜀𝑟𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (18)

where 𝑥𝑐𝑖𝑡 = (𝑥𝑐𝑖𝑡1, 𝑥
𝑐
𝑖𝑡2,… , 𝑥𝑐𝑖𝑡𝑝)

′ and 𝑥𝑟𝑖𝑡 = (𝑥𝑟𝑖𝑡1, 𝑥
𝑟
𝑖𝑡2,… , 𝑥𝑟𝑖𝑡𝑝)

′ are two 𝑝× 1
dimensional vectors. 𝜇𝑐

𝑖 and 𝜇𝑟
𝑖 are the unobserved fixed effects. 𝜀𝑐𝑖𝑡 and

𝜀𝑟𝑖𝑡 are the random disturbances. For identification purpose, we assume
that ∑𝑛

𝑖=1 𝜇
𝑐
𝑖 = 0 and ∑𝑛

𝑖=1 𝜇
𝑟
𝑖 = 0 [14,49,50]. Rewriting models (17)

and (18) in a matrix form yields

𝑌 𝑐 = 𝑚1(𝑋𝑐 ) +𝐷𝜇𝑐 + 𝜀𝑐 (19)

𝑌 𝑟 = 𝑚2(𝑋𝑟) +𝐷𝜇𝑟 + 𝜀𝑟 (20)

where 𝑚1(𝑋𝑐 ) = (𝑚1(𝑥𝑐1), 𝑚1(𝑥𝑐2),… , 𝑚1(𝑥𝑐𝑛))
′ is an 𝑛𝑇 × 1 vector with

𝑚1(𝑥𝑐𝑖 ) = (𝑚1(𝑥𝑐𝑖1), 𝑚1(𝑥𝑐𝑖2),… , 𝑚1(𝑥𝑐𝑖𝑇 ))
′ for 𝑖 = 1, 2,… , 𝑛. 𝑌 𝑐 , 𝜀𝑐 , 𝑌 𝑟, 𝑚2

(𝑋𝑐 ), and 𝜀𝑟 are similarly defined. 𝜇𝑐 = (𝜇𝑐
2, 𝜇

𝑐
3,… , 𝜇𝑐

𝑛)
′ and 𝜇𝑟 =

(𝜇𝑟
2, 𝜇

𝑟
3,… , 𝜇𝑟

𝑛)
′ are two 𝑛−1 dimensional vectors. 𝐷 = [−𝑙𝑛−1, 𝐼𝑛−1]′⊗𝑙𝑇 ,

the operator ⊗ denotes the Kronecker product, 𝐼𝑛 denotes an 𝑛 × 𝑛
identity matrix, 𝑙𝑛−1 is an 𝑛 − 1 dimensional vector with all elements
equal to one, and 𝑙𝑇 is an 𝑇 dimensional vector with all elements equal
to one.

4.2. Estimation procedure

In this section, we divide the problem that estimates the response
𝑦𝑖𝑡 = [𝑦𝑙𝑖𝑡, 𝑦

𝑢
𝑖𝑡] in three parts: (1) the estimators of 𝑚1(⋅) and 𝑚2(⋅)

with unknown parameters 𝜇𝑐 and 𝜇𝑟, as shown in Eqs. (24) and (25),
respectively; (2) the parameter estimators �̂�𝑐 and �̂�𝑟, as shown in
Eqs. (27) and (28), respectively; (3) the estimators of 𝑚1(⋅) and 𝑚2(⋅)
with known parameters 𝜇𝑐 and 𝜇𝑟, as shown in Eqs. (29) and (30),
respectively; (4) the predictive response �̂�𝑖𝑡 = [�̂�𝑙𝑖𝑡, �̂�

𝑢
𝑖𝑡], as shown in

Eqs. (31) and (32).
Let 𝑥 be a given panel interval-valued data with center 𝑥𝑐 and range

𝑥𝑟. We assume that the function 𝑚1(⋅) has continuous derivative in the
neighborhood of 𝑥𝑐 and function 𝑚2(⋅) has continuous derivative in
the neighborhood of 𝑥𝑟. Now by Taylor’s theorem [47], for 𝑥𝑐𝑖𝑡 in the
neighborhood of 𝑥𝑐 ,

𝑚1(𝑥𝑐𝑖𝑡) ≈ 𝑚1(𝑥𝑐 ) + 𝑚′
1,𝑥(𝑥

𝑐
𝑖𝑡 − 𝑥𝑐 ) ≡ 𝛽𝑐0 + (𝛽𝑐1 )

′(𝑥𝑐𝑖𝑡 − 𝑥𝑐 ) (21)

where 𝑚1,𝑥 =
𝜕𝑚1(𝑥𝑐 )
𝜕𝑥𝑐

, 𝛽𝑐0 = 𝑚1(𝑥𝑐 ), 𝛽𝑐1 = 𝑚1,𝑥. Similarly, for 𝑥𝑟𝑖𝑡 in the
neighborhood of 𝑥𝑟,

𝑚2(𝑥𝑟𝑖𝑡) ≈ 𝑚2(𝑥𝑟) + 𝑚′
2,𝑥(𝑥

𝑟
𝑖𝑡 − 𝑥𝑟) ≡ 𝛽𝑟0 + (𝛽𝑟1)

′(𝑥𝑟𝑖𝑡 − 𝑥𝑟) (22)

where 𝑚2,𝑥 =
𝜕𝑚1(𝑥𝑟)
𝜕𝑥𝑟

, 𝛽𝑟0 = 𝑚1(𝑥𝑟), 𝛽𝑟1 = 𝑚2,𝑥. According to Taylor’s
theorem, much of our attention will be devoted to the estimators of
𝑚1(⋅) and 𝑚2(⋅), i.e., 𝛽𝑐0 and 𝛽𝑟0.

Define 𝛽𝑐 = (𝛽𝑐0 , (𝛽
𝑐
1 )

′)′ and 𝛽𝑟 = (𝛽𝑟0, (𝛽
𝑟
1)

′)′. Based on the weighted
east squares theory [1,2], the estimators of 𝛽𝑐 and 𝛽𝑟 can be obtained
y solving the following optimization problem

min
𝑐 ,𝛽𝑟 ,𝜇𝑐 ,𝜇𝑟

{

[𝑌 𝑐 −𝐷𝜇𝑐 − �̃�𝑐𝛽𝑐 ]′𝑊1(𝑥𝑐 )[𝑌 𝑐 −𝐷𝜇𝑐 − �̃�𝑐𝛽𝑐 ]
𝑟 𝑟 𝑟 𝑟 ′ 𝑟 𝑟 𝑟 𝑟 𝑟 }

(23)

+[𝑌 −𝐷𝜇 − �̃� 𝛽 ] 𝑊1(𝑥 )[𝑌 −𝐷𝜇 − �̃� 𝛽 ]
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𝜇

𝜇
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e
w

where �̃�𝑐 = (𝑙𝑛𝑇 , 𝑋𝑐−𝑙𝑛𝑇 𝑥𝑐 ), �̃�𝑟 = (𝑙𝑛𝑇 , 𝑋𝑟−𝑙𝑛𝑇 𝑥𝑟), 𝑙𝑛𝑇 is an 𝑛𝑇×1 dimen-
sional vector with all elements equal to one. 𝑊1(𝑥𝑐 ) and 𝑊1(𝑥𝑟) are two
𝑛𝑇 ×𝑛𝑇 diagonal matrixes, 𝑊1(𝑥𝑐 ) = diag{𝐾𝐻 (𝑥𝑐1, 𝑥

𝑐 ), 𝐾𝐻 (𝑥𝑐2, 𝑥
𝑐 ),… , 𝐾𝐻

(𝑥𝑐𝑛, 𝑥
𝑐 )}. The diagonal element 𝐾𝐻 (𝑥𝑐𝑖 , 𝑥

𝑐 ) = diag
{

𝐾𝐻 (𝑥𝑐𝑖1, 𝑥
𝑐 ),

𝐾𝐻 (𝑥𝑐𝑖2, 𝑥
𝑐 ),… , 𝐾𝐻 (𝑥𝑐𝑖𝑇 , 𝑥

𝑐 )
}

of which 𝐾𝐻 (𝑥𝑐𝑖𝑡, 𝑥
𝑐 ) = |𝐻|

−1 𝐾(𝐻−1(𝑥𝑐𝑖𝑡,
𝑥𝑐 )) for 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 , where 𝐾 denotes the multivariate
kernel function, 𝐻 is the bandwidth matrix, and in general 𝐻 =
diag(ℎ1, ℎ2,… , ℎ𝑝). The definition of 𝑊1(𝑥𝑟) is the same definition as
𝑊1(𝑥𝑐 )

Taking the first-order partial derivative of the objective function of
the optimization problem (23) with respect to 𝛽𝑐 and 𝛽𝑟, respectively,
and equaling they to zero, we have

𝛽𝑐 = [(�̃�𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )(𝑌 𝑐 −𝐷𝜇𝑐 )

𝛽𝑟 = [(�̃�𝑟)′𝑊1(𝑥𝑟)�̃�𝑟]−1(�̃�𝑟)′𝑊1(𝑥𝑟)(𝑌 𝑟 −𝐷𝜇𝑟)

Let 𝑒𝑖 be a 𝑝 + 1 dimensional vector of which the first element equals
to 1 and all other equals to 0, we have

𝛽𝑐0 = 𝑒′𝑖[(�̃�
𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )(𝑌 𝑐 −𝐷𝜇𝑐 ) (24)

𝛽𝑟0 = 𝑒′𝑖[(�̃�
𝑟)′𝑊1(𝑥𝑟)�̃�𝑟]−1(�̃�𝑟)′𝑊1(𝑥𝑟)(𝑌 𝑟 −𝐷𝜇𝑟) (25)

Note that 𝛽𝑐0 and 𝛽𝑟0 are the function of the unknown parameters 𝜇𝑐

and 𝜇𝑟, respectively. Replacing 𝑚1(𝑥𝑐𝑖𝑡) and 𝑚2(𝑥𝑐𝑖𝑡) in models (17) and
(18) by 𝛽𝑐0 and 𝛽𝑟0, respectively, and then on the basis of least squares
method, we have

min
𝜇𝑐 ,𝜇𝑟

{

[𝑌 𝑐 −𝐷𝜇𝑐 ]′𝐺𝑐
𝐻 [𝑌 𝑐 −𝐷𝜇𝑐 ] + [𝑌 𝑟 −𝐷𝜇𝑟]′𝐺𝑟

𝐻 [𝑌 𝑟 −𝐷𝜇𝑟]
}

(26)

where 𝐺𝑐
𝐻 = [𝐼𝑛𝑇 − 𝑆𝑐

𝐻 ]′[𝐼𝑛𝑇 − 𝑆𝑐
𝐻 ] with 𝑆𝑐

𝐻 = (𝑠𝑐ℎ(𝑥
𝑐
11), 𝑠

𝑐
ℎ(𝑥

𝑐
12),… , 𝑠𝑐ℎ

(𝑥𝑐𝑛𝑇 ))
′ being an 𝑛𝑇 × 𝑛𝑇 matrix. The element 𝑠𝑐ℎ(𝑥

𝑐 )′ = 𝑒′1[(�̃�
𝑐 )′𝑊1(𝑥𝑐 )

�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 ). 𝐺𝑟
𝐻 is similarly defined as 𝐺𝑐

𝐻 . Taking the first-order
partial derivative of the objective function of the optimization problem
(26) with respect to 𝜇𝑐 and 𝜇𝑟, respectively, and equaling they to zero,
we have

̂𝑐 = (𝐷′𝐺𝑐𝐷)𝐷′𝐺𝑐𝑌 𝑐 (27)

̂𝑟 = (𝐷′𝐺𝑟𝐷)𝐷′𝐺𝑟𝑌 𝑟 (28)

Now, replacing 𝜇𝑐 and 𝜇𝑟 in Eqs. (24) and (25) with �̂�𝑐 and �̂�𝑟, we can
directly obtain the estimators of 𝑚1(𝑥𝑐 ) and 𝑚2(𝑥𝑟).

�̂�1(𝑥𝑐 ) = 𝛽𝑐0 = 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝑌 𝑐 (29)

�̂�2(𝑥𝑟) = 𝛽𝑟0 = 𝑠𝑟ℎ(𝑥
𝑟)′𝑀𝑟𝑌 𝑟 (30)

where 𝑀𝑐 = 𝐼 − 𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′𝐺𝑐 and 𝑀𝑟 = 𝐼 − 𝐷[𝐷′𝐺𝑟𝐷]−1𝐷′𝐺𝑟.
Then, we have

�̂�𝑐𝑖𝑡 = �̂�1(𝑥𝑐 ) + �̂�𝑐
𝑖 =

{

𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐 + 𝑒′𝑖[𝐷

′𝐺𝑐𝐷]−1𝐷′𝐺𝑐} 𝑌 𝑐

�̂�𝑟𝑖𝑡 = �̂�2(𝑥𝑟) + �̂�𝑟
𝑖 =

{

𝑠𝑟ℎ(𝑥
𝑟)′𝑀𝑟 + 𝑒′𝑖[𝐷

′𝐺𝑟𝐷]−1𝐷′𝐺𝑟} 𝑌 𝑟

Further, the predictive response �̂�𝑖𝑡 = [�̂�𝑙𝑖𝑡, �̂�
𝑢
𝑖𝑡] can be written as

�̂�𝑙𝑖𝑡 = �̂�𝑐𝑖𝑡 − �̂�𝑟𝑖𝑡 (31)

�̂�𝑢𝑖𝑡 = �̂�𝑐𝑖𝑡 + �̂�𝑟𝑖𝑡 (32)

When the predicted response interval violates the definition of the
standard interval, that is, �̂�𝑙𝑖𝑡 ≥ �̂�𝑢𝑖𝑡, we employ a transformation form
below which is presented in [11]

�̂�𝑖𝑡 =

{

[�̂�𝑙𝑖𝑡, �̂�
𝑢
𝑖𝑡] for �̂�𝑙𝑖𝑡 < �̂�𝑢𝑖𝑡

[ 12 (�̂�
𝑙
𝑖𝑡 + �̂�𝑢𝑖𝑡),

1
2 (�̂�

𝑙
𝑖𝑡 + �̂�𝑢𝑖𝑡)] for �̂�𝑙𝑖𝑡 ≥ �̂�𝑢𝑖𝑡

(33)

emark 2. The proposed model (see, Eqs. (17) and (18)) is an
xtension of the P-CRM model (see, Eqs. (13) and (14)). We can also
stablish the models based on the P-CM and P-Minmax models. Below,
4

e provide a brief description of the extended models.
(i) When 𝑥𝑐𝑖𝑡 is related to 𝑦𝑐𝑖𝑡, we can establish the nonparametric
fixed effects panel interval-valued data model as follows:

𝑦𝑐𝑖𝑡 = 𝑚(𝑥𝑐𝑖𝑡) + 𝜇𝑐
𝑖 + 𝜀𝑐𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (34)

where 𝜇𝑐
𝑖 , 𝑚(⋅), and 𝜀𝑐𝑖𝑡 are similarly defined as Section 4.1.

The estimation procedure of 𝜇𝑐
𝑖 , 𝑚(⋅), and 𝜀𝑐𝑖𝑡 are similar to Sec-

tion 4.2. The predictive responses �̂�𝑙 and �̂�𝑢 can be derived from

�̂�𝑙𝑖𝑡 = �̂�(𝑥𝑙𝑖𝑡) + �̂�𝑐
𝑖 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (35)

�̂�𝑢𝑖𝑡 = �̂�(𝑥𝑢𝑖𝑡) + �̂�𝑐
𝑖 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (36)

(ii) When 𝑥𝑙𝑖𝑡 and 𝑥𝑢𝑖𝑡 are independently related to 𝑦𝑙𝑖𝑡 and 𝑦𝑢𝑖𝑡, we can
establish the nonparametric fixed effects panel interval-valued
data model as follows:

𝑦𝑙𝑖𝑡 = 𝑚1(𝑥𝑙𝑖𝑡) + 𝜇𝑙
𝑖 + 𝜀𝑙𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (37)

𝑦𝑢𝑖𝑡 = 𝑚2(𝑥𝑢𝑖𝑡) + 𝜇𝑢
𝑖 + 𝜀𝑢𝑖𝑡 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (38)

where 𝜇𝑙
𝑖 , 𝜇𝑢

𝑖 , 𝑚1(⋅), 𝑚2(⋅), 𝜀𝑙𝑖𝑡, and 𝜀𝑢𝑖𝑡 are similarly defined as
Section 4.1. The estimation procedure of 𝜇𝑙

𝑖 , 𝜇
𝑢
𝑖 , 𝑚1(⋅), 𝑚2(⋅), 𝜀𝑙𝑖𝑡,

and 𝜀𝑢𝑖𝑡 are similar to Section 4.2. The predictive responses �̂�𝑙 and
�̂�𝑢 can be derived from

�̂�𝑙𝑖𝑡 = �̂�1(𝑥𝑙𝑖𝑡) + �̂�𝑙
𝑖 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (39)

�̂�𝑢𝑖𝑡 = �̂�2(𝑥𝑢𝑖𝑡) + �̂�𝑢
𝑖 𝑖 = 1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 (40)

It is worth noting that, before applying the model, we should
capture the location of the fixed regression reference points within
the interval. Otherwise, the prediction performance by our model and
estimation method be decreased. For example, the proposed model (see,
Eqs. (17) and (18)) can be selected if and only if 𝑥𝑐𝑖𝑡 and 𝑥𝑟𝑖𝑡 are indepen-
dently correlated with 𝑦𝑐𝑖𝑡 and 𝑦𝑟𝑖𝑡. When the interval variables satisfy
the conditions of Remark 1, the extension of P-CRM (see, Eqs. (17)
and (18)) is equivalent to the extension of P-Minmax (see, Eqs. (37)
and (38)). A similar discussion is represented in Section 5, when the P-
CM, P-CRM, and P-Minmax models fit the linear panel interval-valued
dataset (𝑥𝑐𝑖𝑡 and 𝑥𝑟𝑖𝑡 are independently correlated with 𝑦𝑐𝑖𝑡 and 𝑦𝑟𝑖𝑡), the
P-CRM and P-Minmax models perform best.

4.3. Asymptotic results

In this section, the asymptotic distributions of 𝑚1(𝑥𝑐 ) and 𝑚2(𝑥𝑟) are
derived under the following assumptions:

(A1) The continuous random variables (𝑦𝑐𝑖𝑡, 𝑥𝑐𝑖𝑡) and (𝑦𝑟𝑖𝑡, 𝑥𝑟𝑖𝑡) are in-
dependently and identically distributed (i.i.d) across the 𝑖 indi-
vidual, respectively. 𝑥𝑐𝑖𝑡 is a strictly stationary 𝛼-mixing process

with mixing coefficients 𝛼 = 𝑂(𝑘−(𝛿+2)∕𝛿), E(‖‖
‖

𝑥𝑐𝑖𝑡
‖

‖

‖

2+𝛿′
≤ ∞), for

𝛿′ ≥ 𝛿 ≥ 0. 𝑥𝑐𝑖𝑡 has common continuous density function 𝑓1(𝑥𝑐 )
with compact support 𝑆 ⊆ R𝑞 . 𝑥𝑐 is the interior point of 𝑆. Also,
𝑓1(𝑥𝑐 ) > 0 holds, 𝑓1(𝑥𝑐 ) is continuously twice differentiable,
and the second-order derivatives of 𝑚1(𝑥𝑐 ) are continuous. The
assumption of 𝑥𝑟𝑖𝑡 is similarly defined.

(A2) The unobserved fixed effects
{

𝜇𝑐
𝑖
}

and
{

𝜇𝑟
𝑖
}

are i.i.d. for 𝑖 =
1, 2,… , 𝑛; 𝑡 = 1, 2,… , 𝑇 .

E(𝜇𝑐
𝑖 ) = 0, E[(𝜇𝑐

𝑖 )
2] = 𝜎2𝜇𝑐 , and E[(𝜇𝑐

𝑖 |𝑥
𝑐
𝑖𝑡)] ≠ 0

E(𝜇𝑟
𝑖 ) = 0, E[(𝜇𝑟

𝑖 )
2] = 𝜎2𝜇𝑟 , and E[(𝜇𝑟

𝑖 |𝑥
𝑟
𝑖𝑡)] ≠ 0

The idiosyncratic errors
{

𝜀𝑐𝑖𝑡
}

and
{

𝜀𝑟𝑖𝑡
}

are i.i.d. for 𝑖 = 1, 2,… ,
𝑛; 𝑡 = 1, 2,… , 𝑇 .

E(𝜀𝑐𝑖𝑡|𝜇
𝑐
𝑖 , 𝑥

𝑐
𝑖𝑡) = 0 and E[(𝜀𝑐𝑖𝑡)

2
|𝜇𝑐

𝑖 , 𝑥
𝑐
𝑖𝑡] = 𝜎2𝜀𝑐

E(𝜀𝑟𝑖𝑡|𝜇
𝑟
𝑖 , 𝑥

𝑟
𝑖𝑡) = 0 and E[(𝜀𝑟𝑖𝑡)

2
|𝜇𝑟

𝑖 , 𝑥
𝑟
𝑖𝑡] = 𝜎2𝜀𝑟

(A3) 𝐾(𝑢) =
∏𝑞

𝑗=0 𝑘(𝑢𝑠) is a product kernel of which 𝑘(⋅) is a bounded,
symmetric univariate kernel function with compact support
on R, and such that ∫ 𝐾(𝑢)𝑑𝑢 = 0, ∫ 𝐾(𝑢)2𝑑𝑢 = 𝜍0, and
∫ ′
𝑢 𝑢𝐾(𝑢)𝑑𝑢 = 𝜅2𝐼𝑞 , where 𝐼𝑞 is a 𝑞 × 𝑞 identity matrix.
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(A4) Let 𝐻 = diag
{

ℎ1, ℎ2,… , ℎ𝑞
}

, |𝐻| = ℎ1, ℎ2,… , ℎ𝑞 and ‖𝐻‖ =
√

∑𝑞
𝑗=1 ℎ

2
𝑗 . As 𝑛 → ∞ and 𝑇 → ∞, we assume ℎ𝑗 → 0 for

𝑗 = 1, 2,… , 𝑝; 𝑛𝑇 |𝐻| → ∞; 𝑛𝑇 |𝐻|‖𝐻‖

4 → 𝑂(1).

Assumptions (A1), (A3), and (A4) are common in the literature of
kernel-type nonparametric regression [14,49,50]. In Assumption (A2),
E[(𝜇𝑐

𝑖 |𝑥
𝑐
𝑖𝑡)] ≠ 0 and E[(𝜇𝑟

𝑖 |𝑥
𝑟
𝑖𝑡)] ≠ 0 imply that the models (17) and (18)

are the fixed effects panel data models, respectively. Also, E(𝜀𝑐𝑖𝑡|𝜇
𝑐
𝑖 , 𝑥

𝑐
𝑖𝑡)

= 0 and E(𝜀𝑟𝑖𝑡|𝜇
𝑟
𝑖 , 𝑥

𝑟
𝑖𝑡) = 0 mean that the strict exogeneity assumptions for

models with fixed effects E(𝑦𝑐𝑖𝑡|𝜇
𝑐
𝑖 , 𝑥

𝑐
𝑖𝑡) = 𝑚1(𝑥𝑐𝑖𝑡) + 𝜇𝑐

𝑖 and E(𝑦𝑟𝑖𝑡|𝜇
𝑟
𝑖 , 𝑥

𝑟
𝑖𝑡) =

𝑚2(𝑥𝑟𝑖𝑡) + 𝜇𝑟
𝑖 hold, respectively.

Theorem 1. Under Assumptions (𝐴1) − (𝐴4),
√

𝑛𝑇ℎ1ℎ2 ⋯ℎ𝑞(�̂�1(𝑥𝑐 ) − 𝑚1(𝑥𝑐 ) −
1
2
𝜅2𝑡𝑟

{

𝐻𝑚1,𝑥𝑥𝐻
}

)
𝑑

⟶ (0,
𝜍0𝜎2𝜀𝑐
𝑓 (𝑥𝑐 )

)

(41)
√

𝑛𝑇ℎ1ℎ2 ⋯ℎ𝑞(�̂�2(𝑥𝑟) − 𝑚2(𝑥𝑟) −
1
2
𝜅2𝑡𝑟

{

𝐻𝑚2,𝑥𝑥𝐻
}

)
𝑑

⟶ (0,
𝜍0𝜎2𝜀𝑟
𝑓 (𝑥𝑟)

) (42)

Moreover, the bias is zero if function 𝑚1(𝑥𝑐 ) (𝑚1(𝑥𝑟)) is linear.

The proof is provided in Appendix.

Theorem 2. Under Assumptions (𝐴1) − (𝐴4), when 𝐻 = ℎ𝐼𝑞 , the mean
integrated square error (MISE) will be

MISE = ℎ4
𝜅2
2
4

{

∫ 𝑚1,𝑥𝑥𝑚
′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚
′
2,𝑥𝑥𝑑𝑥

𝑟
}

+
𝜍0

𝑛𝑇ℎ𝑞

{

𝜎2𝜀𝑐 ∫ (𝑓 (𝑥𝑐 ))−1𝑑𝑥𝑐 + 𝜎2𝜀𝑟 ∫ (𝑓 (𝑥𝑟))−1𝑑𝑥𝑟
}

+ 𝑂𝑝(ℎ4) + 𝑂𝑝((𝑛𝑇 )
− 1

2 ℎ1−
𝑞
2 ) + 𝑂((𝑛𝑇 )−1ℎ−𝑞+1)

where

ℎ4
𝜅2
2
4

{

∫ 𝑚1,𝑥𝑥𝑚
′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚
′
2,𝑥𝑥𝑑𝑥

𝑟
}

+

𝜍0
𝑛𝑇ℎ𝑞

{

𝜎2𝜀𝑐 ∫ (𝑓 (𝑥𝑐 ))−1𝑑𝑥𝑐 + 𝜎2𝜀𝑟 ∫ (𝑓 (𝑥𝑟))−1𝑑𝑥𝑟
}

s called the asymptotical mean integrated square error (AMISE). The
ptimal smoothing bandwidth is chosen by minimizing AMISE. Namely,

𝑜𝑝𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑞
𝑛𝑇

⋅

{

𝜎2𝜀𝑐 ∫ (𝑓 (𝑥
𝑐 ))−1𝑑𝑥𝑐 + 𝜎2𝜀𝑟 ∫ (𝑓 (𝑥

𝑟))−1𝑑𝑥𝑟
}

{

∫ 𝑚1,𝑥𝑥𝑚′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚′
2,𝑥𝑥𝑑𝑥

𝑟
}

⎫

⎪

⎬

⎪

⎭

The proof is provided in Appendix.

. Monte Carlo simulations

In this section, we use simulations to assess the performance of
ur proposed model (P-LM) and compare its prediction accuracy with
ther fixed effects models (P-CM [11], P-Minmax [11], P-CRM [11],
WM [14], LLM [15]).

.1. Measurements

To evaluate the prediction accuracy of the four models P-LM, P-CM,
-Minmax, P-CRM, we introduce the following three popular evaluation
easurements [11,48].

(1) The root mean square error (RMSE):

RMSE =

√

√

√

√
1

2𝑛𝑇

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1

[

(�̂�𝑙𝑖𝑡 − 𝑦𝑙𝑖𝑡)2 + (�̂�𝑢𝑖𝑡 − 𝑦𝑢𝑖𝑡)2
]

(2) The mean absolute error (MAE):

MAE = 1
𝑛
∑

𝑇
∑

[

|�̂�𝑙𝑖𝑡 − 𝑦𝑙𝑖𝑡| + |�̂�𝑢𝑖𝑡 − 𝑦𝑢𝑖𝑡|
]

5

2𝑛𝑇 𝑖=1 𝑡=1
W

(3) The mean absolute percentage error (MAPE):

MAPE = 1
2𝑛𝑇

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1

[

|�̂�𝑙𝑖𝑡 − 𝑦𝑙𝑖𝑡|

𝑦𝑙𝑖𝑡
+

|�̂�𝑢𝑖𝑡 − 𝑦𝑢𝑖𝑡|
𝑦𝑢𝑖𝑡

]

⋅ 100%

In practice, the classical fixed effects panel data models, i.e., NWM
and LLM, are fitted using the interval midpoint (that is the mean
value of observations), and thereby correspond to the single predictive
response �̂�𝑖𝑡. To evaluate the prediction accuracy of the models NWM
and LLM, we introduce corresponding evaluation measurements RMSE,
MAE, and MAPE.

RMSE =

√

√

√

√
1

2𝑛𝑇

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1

[

(�̂�𝑖𝑡 − 𝑦𝑙𝑖𝑡)2 + (�̂�𝑖𝑡 − 𝑦𝑢𝑖𝑡)2
]

AE = 1
2𝑛𝑇

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1

[

|�̂�𝑖𝑡 − 𝑦𝑙𝑖𝑡| + |�̂�𝑖𝑡 − 𝑦𝑢𝑖𝑡|
]

APE = 1
2𝑛𝑇

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1

[

|�̂�𝑖𝑡 − 𝑦𝑙𝑖𝑡|

𝑦𝑙𝑖𝑡
+

|�̂�𝑖𝑡 − 𝑦𝑢𝑖𝑡|
𝑦𝑢𝑖𝑡

]

⋅ 100%

5.2. Synthetic datasets

We simulate two Data Generation Processes (DGP); one for the
nonlinear relationship (namely, DGPI) and another for the linear re-
lationship (namely, DGPII). In nonlinear cases, the center of response
variable is generated from the models NWM [14], and the range of
response variable is based on the exponential function [48] (guarantee
nonnegative range).

Configuration (Fixed effects panel data model based on center and
range of intervals)

step i. Generate the center and range of explanatory variable, respec-
tively.

𝑥𝑐𝑖𝑡∼ 𝑈 [−1, 1]

𝑥𝑟𝑖𝑡∼ 𝑈 [0, 1]

step ii. Generate the center and range of fixed effects

𝜇𝑐
𝑖 = 𝑣𝑖 + 𝑇 −1

𝑇
∑

𝑖=1
𝑥𝑐𝑖𝑡

𝜇𝑟
𝑖 = 𝑣𝑖 + 𝑇 −1

𝑇
∑

𝑖=1
𝑥𝑟𝑖𝑡

where 𝑣𝑖 is i.i.d. uniform[0, 1].

step iii. Derive the center and range of response variable as

DGPI:
𝑦𝑐𝑖𝑡 = 𝜇𝑐

𝑖 + sin(𝜋𝑥𝑐𝑖𝑡) + 𝜀𝑐𝑖𝑡
𝑦𝑟𝑖𝑡 = 𝜇𝑐

𝑖 + exp(𝑥𝑟𝑖𝑡) + 𝜀𝑟𝑖𝑡

DGPII:
𝑦𝑐𝑖𝑡 = 𝜇𝑐

𝑖 + 𝑥𝑐𝑖𝑡𝛽
𝑐 + 𝜀𝑐𝑖𝑡

𝑦𝑟𝑖𝑡 = 𝜇𝑟
𝑖 + 𝑥𝑟𝑖𝑡𝛽

𝑟 + 𝜀𝑟𝑖𝑡
where the error term 𝜀𝑐𝑖𝑡, 𝜀

𝑟
𝑖𝑡 ∼ 𝑁(0.1).

tep iv. Derive the interval lower and upper bounds of the response
and explanatory variables as

𝑥𝑙𝑖𝑡 = 𝑥𝑐𝑖𝑡 − 𝑥𝑟𝑖𝑡 𝑦𝑙𝑖𝑡 = 𝑦𝑐𝑖𝑡 − 𝑦𝑟𝑖𝑡
𝑥𝑢𝑖𝑡 = 𝑥𝑐𝑖𝑡 + 𝑥𝑟𝑖𝑡 𝑦𝑢𝑖𝑡 = 𝑦𝑐𝑖𝑡 + 𝑦𝑟𝑖𝑡

e take 𝑛 = 50, 60, 80, 110, and 200 and 𝑇 = 3, 4, 5, 10, and 20. We
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employ the Gaussian kernel to fit the nonparametric models P-LM,
NWM, and LLM, and the optimal bandwidth is selected through biased
cross-validation. To ensure sufficient statistical power, the number of
Monte Carlo replications is set to 1000.
6

5.3. Comparison results

The simulation results are reported in Tables 1 and 2. Table 1
reports simulation results for DGPI (panel interval-valued data follows
Table 1
The RMSE, MAE, and MAPE for DGPI.

T n measures P-LM P-CM P-CRM P-Minmax NWM LLM

3

50
RMSE 1.4885 6.4865 4.6428 4.6583 8.5431 8.2460
MAE 0.5094 2.5864 1.7282 1.7061 3.7529 3.7529
MAPE 62.89% 290.72% 251.05% 242.52% 477.24% 521.72%

60
RMSE 1.1315 6.6571 4.6532 4.6177 8.3858 8.0344
MAE 0.3910 2.6038 1.6865 1.6552 3.6806 3.6804
MAPE 57.75% 233.47% 177.54% 504.63% 401.86% 472.64%

80
RMSE 1.0485 6.3658 4.4811 4.4756 8.1655 7.8309
MAE 0.3684 2.5442 1.6146 1.6046 3.5968 3.5964
MAPE 42.96% 244.19% 201.04% 270.33% 729.48% 1123.00%

110
RMSE 0.6129 6.7753 4.7070 4.6536 8.5183 8.1142
MAE 0.2187 2.6741 1.6745 1.6665 3.7312 3.7312
MAPE 30.25% 240.70% 262.57% 394.14% 847.66% 1043.33%

200
RMSE 0.3050 6.6565 4.6826 4.6254 8.5833 8.1799
MAE 0.1056 2.6297 1.7794 1.7143 3.7751 3.7748
MAPE 22.44% 281.76% 223.42% 310.56% 561.79% 7.9771

4

50
RMSE 1.3476 8.7788 6.3774 6.3631 11.0874 10.5588
MAE 0.3549 2.5881 1.7217 1.6918 3.6354 3.6347
MAPE 67.73% 411.74% 399.19% 340.79% 555.02% 666.35%

60
RMSE 0.9575 8.3818 6.4136 6.3557 11.0783 10.5065
MAE 0.2583 2.4837 1.7374 1.6900 3.6442 3.6442
MAPE 52.85% 369.17% 385.83% 427.53% 512.52% 724.59%

80
RMSE 0.9012 9.1751 6.6479 6.4663 11.4770 10.9055
MAE 0.2456 2.7057 1.8493 1.7535 3.7679 3.7679
MAPE 42.75% 493.39% 563.47% 366.48% 668.29% 779.03%

110
RMSE 0.6786 9.0223 6.7077 6.5811 11.5489 10.9196
MAE 0.1794 2.6686 1.8379 1.7598 3.7742 3.7728
MAPE 34.24% 355.19% 315.79% 578.84% 502.77% 665.81%

200
RMSE 0.2339 9.4260 6.8257 6.5914 11.5383 10.9348
MAE 0.0622 2.8121 1.9014 1.8266 3.7849 3.7828
MAPE 25.92% 545.75% 525.67% 3840.41% 721.89% 932.25%

5

50
RMSE 1.3976 11.1335 8.0977 7.9533 14.0285 13.2830
MAE 0.3008 2.6140 1.8020 1.7424 3.6725 3.6724
MAPE 49.38% 279.00% 288.97% 487.88% 340.87% 449.90%

60
RMSE 0.7389 11.4702 8.4991 8.2285 14.1760 13.4179
MAE 0.1583 2.7361 1.9256 1.8176 3.7208 3.7173
MAPE 39.39% 341.03% 289.62% 282.19% 391.73% 515.92%

80
RMSE 0.7176 12.2329 8.5463 8.3889 14.5388 13.8041
MAE 0.1439 2.9031 1.9158 1.8250 3.8240 3.8240
MAPE 27.43% 330.84% 278.25% 730.42% 432.22% 559.53%

110
RMSE 0.5824 11.6102 8.5570 8.3539 14.4113 13.6339
MAE 0.1068 2.7677 1.9434 1.8363 3.7690 3.7685
MAPE 13.57% 264.40% 229.75% 543.45% 312.70% 398.99%

200
RMSE 0.2669 11.0806 8.1079 7.7729 13.8221 13.0660
MAE 0.0456 2.6438 1.8182 1.7094 3.6218 3.6209
MAPE 13.95% 586.85% 576.79% 515.46% 496.98% 807.62%

10

50
RMSE 1.1203 20.2995 15.6622 14.5914 24.7968 22.8664
MAE 0.1023 2.3727 1.7810 1.6260 3.1578 3.1488
MAPE 16.13% 426.58% 1066.80% 313.60% 608.16% 1029.91%

60
RMSE 0.7281 18.7881 15.3222 14.2872 23.5393 21.5348
MAE 0.0634 2.1991 1.7204 1.5959 2.9665 2.9585
MAPE 15.23% 560.06% 498.05% 412.03% 792.66% 1094.93%

80 RMSE 0.5782 20.0287 15.5950 14.4913 24.5732 22.7300
MAE 0.0510 2.3632 1.7720 1.6288 3.1355 3.1303
MAPE 9.08% 493.00% 346.63% 766.65% 504.31% 656.37%

110 RMSE 0.3750 18.9581 15.1083 13.9556 23.7643 21.8498
MAE 0.0303 2.2188 1.7062 1.5569 3.0175 3.0116
MAPE 6.13% 615.14% 689.25% 640.20% 601.42% 1050.15%

200 RMSE 0.1549 17.5049 13.9856 13.0382 22.3069 20.3454
MAE 0.0135 2.0353 1.5784 1.4516 2.8053 2.7961
MAPE 2.80% 644.37% 528.91% 638.41% 496.67% 784.75%
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Table 2
The RMSE and MAE for DGPII.

T n measures P-LM P-CM P-CRM P-Minmax NWM LLM

3

50
RMSE 1.6847 6.5357 1.7033 1.7062 11.0164 10.8856
MAE 0.4682 2.6402 0.4624 0.4436 4.9368 4.9369
MAPE 46.37% 217.03% 62.18% 69.89% 251.47% 263.99%

60
RMSE 1.5579 6.6775 1.5547 1.5595 10.9793 10.8463
MAE 0.4313 2.6911 0.4313 0.4084 4.9429 4.9429
MAPE 41.12% 218.47% 62.95% 61.51% 271.70% 288.24%

80
RMSE 1.4352 6.5901 1.5598 1.5520 10.7789 10.6441
MAE 0.3936 2.6580 0.4466 0.4068 4.8512 4.8512
MAPE 38.91% 246.56% 56.37% 54.63% 266.51% 281.29%

110
RMSE 1.5046 6.6675 1.4906 1.4902 10.9434 10.7899
MAE 0.4452 2.7280 0.3935 0.3794 1.8272 4.9189
MAPE 32.55% 229.75% 55.39% 53.46% 289.99% 309.40%

200
RMSE 1.4451 6.6765 1.4416 1.4443 10.9533 10.7829
MAE 0.4554 2.6932 0.3976 0.3795 4.9269 4.9260
MAPE 25.55% 228.67% 50.39% 52.43% 287.38% 365.30%

4

50
RMSE 1.5159 8.6493 2.3411 2.3577 14.4736 14.2641
MAE 0.3864 2.6404 0.4498 0.4212 4.8779 4.8779
MAPE 42.29% 320.94% 69.71% 71.19% 282.39% 371.18%

60
RMSE 1.5214 9.0040 2.3151 2.3122 14.4930 14.2453
MAE 0.4101 2.7071 0.4694 0.4467 4.9002 4.8990
MAPE 37.95% 336.69% 63.57% 65.26% 212.65% 344.26%

80
RMSE 1.3944 8.8546 2.3381 2.3436 14.7135 14.4496
MAE 0.3771 2.7172 0.4621 0.4416 4.9530 4.9530
MAPE 31.54% 382.93% 61.26% 58.72% 285.49% 449.03%

110
RMSE 1.1812 8.8191 2.3524 2.3523 14.6146 14.3075
MAE 0.3227 2.6974 0.4642 0.4597 4.8954 4.8951
MAPE 24.21% 392.94% 59.76% 62.99% 306.96% 522.96%

200
RMSE 0.8801 8.8151 2.2785 2.2791 14.6868 14.3963
MAE 0.2283 2.6818 0.441 0.4316 4.9457 4.9443
MAPE 18.17% 323.18% 54.76% 55.86% 330.88% 385.86%

5

50
RMSE 1.3820 10.7204 3.4341 3.4367 18.1689 17.7923
MAE 0.2835 2.5994 2.6147 0.5398 0.5307 4.9083
MAPE 22.54% 438.27% 62.18% 68.69% 422.70% 504.89%

60
RMSE 1.3524 11.0094 3.3265 3.3225 18.1558 17.7991
MAE 0.2962 2.6815 0.5337 0.5147 4.9007 4.9007
MAPE 22.88% 275.46% 63.51% 58.12% 276.57% 331.28%

80
RMSE 1.2942 11.1237 3.2700 3.2662 18.4882 18.1171
MAE 0.2621 2.7341 0.5368 0.5225 4.9975 4.9959
MAPE 17.84% 251.74% 62.27% 55.43% 262.59% 309.38%

110
RMSE 1.0946 10.9671 3.2403 3.2299 18.1839 17.7603
MAE 0.2210 2.6720 0.5318 0.4956 4.8887 4.8880
MAPE 14.75% 223.46% 51.58% 54.36% 339.59% 405.88%

200
RMSE 0.7475 11.1279 3.2320 3.2322 18.5084 18.0813
MAE 0.1326 2.7102 0.5102 0.5046 4.9741 4.9722
MAPE 9.53% 273.44% 49.65% 48.36% 292.46% 353.00%

10

50
RMSE 1.1828 22.9577 7.9839 7.9793 36.1096 35.3445
MAE 0.1036 2.8142 0.6417 0.6232 4.8968 4.8968
MAPE 6.76% 427.04% 179.89% 174.56% 271.54% 421.42%

60
RMSE 1.1739 22.7227 7.6207 7.6329 34.9582 34.1529
MAE 0.1124 2.7621 0.6114 0.5942 4.7460 4.7460
MAPE 3.17% 432.68% 157.70% 141.16% 291.40% 436.63%

80
RMSE 1.0737 21.5598 7.4378 7.4531 36.8868 36.1311
MAE 0.0996 2.6463 0.6193 0.5906 5.0145 5.0143
MAPE 2.63% 202.20% 95.29% 102.87% 236.03% 260.05%

110
RMSE 0.8497 21.7974 7.2795 7.2758 36.6258 35.8193
MAE 0.0737 2.6567 0.5817 0.5666 4.9731 4.9731
MAPE 1.98% 224.43% 105.43% 120.32% 253.01% 281.34%

200
RMSE 0.4425 22.2898 6.9306 6.9307 36.4988 35.6825
MAE 0.0274 2.7261 0.5416 0.5389 4.9603 4.9603
MAPE 1.69% 267.63% 119.96% 136.54% 281.01% 326.99%
7
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nonlinear relationships). Table 2 report simulation results for DGPII
(panel interval-valued data with linear relationships).

From Table 1, we have the following three findings. (1) The pro-
posed estimator is consistent when dealing with the panel interval-
valued data with nonlinear relationship, since the RMSE, MAE, and
MAPE of the proposed model P-LM decrease as both 𝑛 and 𝑇 grow.
or example, when fixing 𝑇 = 3 and let 𝑛 = 50, 60, 80, 110, and
00, the RMSE of the proposed model are 1.4885, 1.1315 (−0.357),
1.0485 (−0.083), 0.6129 (−0.4356), and 0.3050 (−0.3079), and the MAPE
f the proposed model are 62.89%, 57.75% (−5.14%), 42.96% (−19.93%),
0.25%(−32.64%), 22.44% (−40.45%) (the number in parentheses rep-
esent the gap between current sample size and previous sample
ize). When fixing 𝑛 = 80 and let 𝑇 = 3, 4, 5, 10, the RMSE of the
roposed model are 0.3891, 0.3154 (−0.1473), 0.7176 (−0.1784), and
.5782 (−0.1394), and the MAPE of the proposed model are 42.96%,
2.75% (−0.21%), 27.43% (−15.53%), 9.08% (−33.88%)(the number in
arentheses represent the gap between current sample size and pre-
ious sample size). (2) The estimators derived from P-CM, P-Minmax,
-CRM, NWM, and LLM may be not consistent when dealing with
he nonlinear panel interval-valued data, since the RMSE, MAE, and
APE of the models P-CM, P-Minmax, P-CRM, NWM, and LLM have

o apparent trend of decreasing in most case as 𝑛 or 𝑇 or both 𝑛 and
grow. For the models P-CM, P-Minmax and P-CRM, the reason is

hat they are constructed based on linear specification. For the models
WM and LLM, the reason may be that the features used by these
odels are insufficient to describe the true nature of the interval-valued
ata, that is, the interval range feature is overlooked. (3) For given 𝑛
nd 𝑇 , our proposed model P-LM performs well compared with the
odels P-CM, P-Minmax, P-CRM, NWM, and LLM. For example, when
= 110 and 𝑇 = 10, the MAE of the models P-LM, P-CM, P-Minmax,

-CRM, NWM, and LLM are 0.0303, 2.2188 (+2.1885), 1.7062 (+1.6759),
1.5569 (+1.5266), 3.0175 (+2.9872), and 3.0116 (+2.9812), and the MAPE
of the models P-LM, P-CM, P-Minmax, P-CRM, NWM, and LLM are
6.13%, 615.14% (+609.01%), 689.25% (+683.12%), 640.20% (+634.07%),
601.42% (+595.29%), and 1050.15% (+1044.02%) (the number in paren-
heses represent the gap between the proposed model (P-LM) and the
orresponding model). Moreover, the models P-LM, P-CM, P-Minmax,
-CRM, NWM, and LLM show an ever lower predictive validity. The
ange of MAPE of the models P-LM, P-CM, P-Minmax, P-CRM, NWM,
nd LLM are greater than 100%.

Table 2 displays the RMSE, MAE, and MAPE for DGPII. Four main
indings are listed as follows. (1) The RMSE, MAE, and MAPE of
he models P-LM, P-CRM, P-Minmax decrease in most case as 𝑛 fix

and 𝑇 grow, indicating that the three corresponding estimators are
consistent. For instance, when 𝑇 = 5, 𝑛 = 50, 60, 80, 110, and 200, the

MSE of the model P-LM are 1.3820, 1.3524 (−0.0296), 1.2942 (−0.0582),
1.0946 (−0.1996), and 0.7475 (−0.3471) (the number in parentheses
represent the gap between current sample size and previous sample
size), the RMSE of the model P-CRM are 3.4341, 3.3262 (−0.1079),
3.2700 (−0.0562), 3.2403 (−0.0297), and 3.2320(−0.0083), and the RMSE
f the model P-Minmax are 3.4367, 3.3225 (−0.1135), 3.2662 (−0.0563),

3.2299 (−0.0363), 3.2322 (+0.0023). While, the RMSE and MAE of the
odels P-CM, NWM, and LLM have no apparent trend of increasing or
ecreasing in most case as 𝑛 or 𝑇 or both 𝑛 and 𝑇 grow, indicating that

the estimators may be not consistent when dealing the panel interval-
valued data with linear relationship. (2) The RMSE and MAE of the
model P-LM decrease in most case as 𝑛 or 𝑇 or both 𝑛 and 𝑇 grow,
ndicating that the corresponding estimator is consistent. (3) For given
he small sample 𝑛 and 𝑇 , the models P-LM, P-CRM, P-Minmax can
e outperform the other two models NWM and LLM. For example,
hen 𝑇 = 3, and 𝑛 increases, the prediction accuracy for the models
-LM, P-CRM, P-Minmax have a small gap, and the RMSE and MAE
f the models P-LM, P-CRM, P-Minmax are significantly smaller than
hose of other three models, P-CM, NWM and LLM. The reason for the
imulation result of the models is that the interval range feature for
8

hese models is overlooked. (4) The proposed model P-LM is better than
Table 3
The RMSE and MAE for air quality dataset.

Models RMSE MAE MAPE

P-LM 0.3982 0.3761 2.37%
P-CM 0.9450 1.6544 35.41%
P-CRM 0.4227 0.4359 2.57%
P-Minmax 0.4226 0.4336 2.57%
NWM 1.4370 2.5942 55.32%
LLM 1.4267 2.5942 55.80%

all the other models as 𝑇 increases. For instance, when 𝑇 = 3, and 𝑛
increases, the MAPE range of P-LM is less than 46.37%, but the MAPE
range of the models P-CM, P-CRM, P-Minmax, NWM, and LLM is greater
than or equal to 50.39%, and when 𝑇 = 10, and 𝑛 increases, the MAPE
ange of P-LM is less than 6.76%, but the MAPE range of the models
-CM, P-CRM, P-Minmax, NWM, and LLM is greater than 100%.

. Real data analysis

This section uses two real panel datasets (air quality dataset and
tock price dataset) to compare the models P-LM, P-CM, P-Minmax,
-CRM, NWM, and LLM.

.1. Air quality dataset

Interval-valued observations about air quality are considered in
11]. This dataset collects four cities (Hangzhou, Chongqing, Beijing,
nd Tianjin for the past nine years) over nine years (2014–2022) with
ive variables: the annual air quality index (AQI), particulate matter of
ess than 10 and 2.5 μm in diameter (PM 10 and PM 2.5), sulfur dioxide

(SO2), nitrogen dioxide (NO2). We treat the AQI (𝑦𝑖𝑡) as response
variable, the PM 2.5 (𝑥𝑖𝑡1), PM 10 (𝑥𝑖𝑡2), SO2 (𝑥𝑖𝑡3), and NO2 (𝑥𝑖𝑡4) as
xplanatory variables. All data are normalized for ease of calculation.

We establish our proposed model P-LM and other models P-CM, P-
RM, P-Minmax, NWM, LLM, and we calculate the RMSR, MAE, and
APE for these models. The experiment results are shown in Table 3.

t is clear that our proposed model P-LM has the best performance.
xcept for model P-LM, the models P-CRM and P-Minmax show better
rediction performance than the models P-CM, NWM, LLM. In fact, it
roves once again that ignoring the range inherent in interval-valued
ata can potentially lead to biased predictive responses.

.2. Stock price dataset

This dataset contains the daily highest and lowest stock prices of 35
ransportation companies in the Chinese road transportation industry
rom January 1st, 2021 to January 10th, 2021 (8 trading days). The
atasets can be found at https://vip.stock.finance.sina.com.cn/mkt/.
he highest and lowest prices of a stock serve several purposes in the
tock market, such as trend analysis, support and resistance levels,
nd volatility assessment. They are essential indicators in the stock
arket, offering insights into price movements and market activity and

ssisting investors in making informed investment decisions. We study
he influence of the previous day’s highest and lowest stock prices
n the next day’s highest and lowest prices. Let the previous day’s
ighest and lowest prices as interval explanatory variables (𝑥𝑖𝑡) and the

next day’s highest and lowest prices as interval response variable (𝑦𝑖𝑡),
we construct a first-order lag panel interval-valued data model. Fig. 1
illustrates the stock price dataset.

The comparison results between the models P-LM, P-CM, P-CRM, P-
Minmax, NWM, and LLM for stock price dataset are shown in Table 4.
It presents that our proposed model P-LM exhibits the best prediction
accuracy than other models, since our proposed model P-LM has the
smallest values of RMSE, MAE, and MAPE than other models P-CM,

P-CRM, P-Minmax, NWM, and LLM.

https://vip.stock.finance.sina.com.cn/mkt/
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Fig. 1. Panel interval-valued data plot for stock price.
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Table 4
The RMSE and MAE for stock price dataset.

Models RMSE MAE MAPE

P-LM 0.1252 0.1386 2.16%
P-CM 4.8636 5.7796 104.01%
P-CRM 0.1620 0.1668 2.52%
P-Minmax 0.1725 0.1725 2.60%
NWM 0.2116 0.2245 3.52%
LLM 0.1645 0.1879 3.07%

7. Conclusions

For the observations of panel data that are characterized by inter-
vals rather than single point values, we established a fixed effects panel
interval-valued data model based on the center and range of intervals.
Under the profile least squares framework, we further proposed a
locally linear method for the proposed model. As far as we know,
our proposed model and corresponding estimation method present
the first endeavor to use the full interval information dealing with
panel interval-valued data with the nonlinear relationship. Thus, com-
pared with P-CM, P-Minmax, and P-CRM, our proposed model and
corresponding estimation method allow for more complex relationships
between the response and explanatory variables. In addition, our pro-
posed model does not make any assumptions on the form of a nonlinear
component. Later, experimental results demonstrated that our proposed
model and corresponding estimation method achieve high prediction
and outperform the other models in most case.

Although our proposed estimation method considers the nonnega-
tivity of the range of predictive response, as shown in Eq. (33), the
employing transformation in the last procedure is bunt and thereby may
be leading to a biased predictive response. Following this, our future
work will consider further exploring the nonnegativity of the range of
predictive response, similar to the cross-sectional model for interval-
valued data [51,52], imposing the restriction or adding the nonnegative
constraint on the proposed model.
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Appendix

A.1. Proof of Theorem 1

Considering the estimator of 𝑚1(𝑥𝑐 )

̂ 1(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝑌 𝑐

= 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐 (𝑚1(𝑋𝑐 ) +𝐷𝜇𝑐 + 𝜀)

= 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝑚1(𝑋𝑐 ) + 𝑠𝑐ℎ(𝑥

𝑐 )′𝑀𝑐𝜀

where 𝑠𝑐ℎ(𝑥
𝑐 )′ = 𝑒′1[(�̃�

𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 ) and 𝑀𝑐 = 𝐼 −
𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′𝐺𝑐 . In fact, 𝑀𝑐𝑚1(𝑋𝑐 )𝐷𝜇𝑐 = 0 is used in the third equal-
ty. Define �̂�11(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥

𝑐 )′𝑀𝑐𝑚1(𝑋𝑐 ), and 𝑚12(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝜀. To

erive the asymptotic distribution of 𝑚1(𝑥𝑐 ), we provide the following
emmas 1, 2, and 3, and derive the asymptotic distribution of 𝑚11(𝑥𝑐 )
nd 𝑚12(𝑥𝑐 ).

emma 1. Under Assumptions (𝐴1) − (𝐴4),

𝑛𝑇 )−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐

=
(

𝑓 (𝑥) + 𝑜𝑝(1) 𝜅2𝑚1(𝑥𝑐 )′𝐻2 + 𝑜𝑝(𝐻2𝑙𝑝)
𝜅2𝐻2𝑚1(𝑥𝑐 ) + 𝑜𝑝(𝐻2𝑙𝑝) 𝜅2𝑓 (𝑥𝑐 )𝐻2 + 𝑜𝑝(𝐻2)

)

(A.1)
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(𝐷′𝐺𝑐𝐷)−1 = (𝐷′𝐷)−1 + 𝑂𝑝(𝑐𝑛) (A.2)

where 𝑐𝑛 = ‖𝐻‖

2 +
√

(𝑛𝑇 |𝐻|)−1∕2

Proof. Recall the kernel density estimation

(𝑛𝑇 )−1
𝑛
∑

𝑖=1

𝑇
∑

𝑡=1
𝐾𝐻 (𝑥𝑐𝑖𝑡, 𝑥

𝑐 ) = 𝑓 (𝑥𝑐 ) + 𝑂𝑝(‖𝐻‖

2) + 𝑂𝑝((𝑛𝑇 |𝐻|)−1∕2) (A.3)

Under Assumption (A4), the right-hand side of equality turns into
𝑓 (𝑥𝑐 ) + 𝑜𝑝(1). The detailed proofs of (A.1) and (A.2) can be refer
to [14,15,49]. □

Lemma 2. Under Assumptions (𝐴1) − (𝐴4),

�̂�11(𝑥𝑐 ) = 𝑚1(𝑥𝑐 ) + 𝐵𝐻 (A.4)

where 𝐵𝐻 = 1
2
𝜅2𝑡𝑟

{

𝐻𝑚1,𝑥𝑥𝐻
}

+𝑂𝑝(‖𝐻‖

4) +𝑂𝑝((𝑛𝑇 |𝐻|)−1∕2‖𝐻‖) is the
bias term of �̂�1(𝑥𝑐 ).

Proof. We decompose 𝑚11(𝑥𝑐 ) into two parts below.

�̂�11(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝑚1(𝑋𝑐 )

=𝑠𝑐ℎ(𝑥
𝑐 )′𝑚1(𝑋𝑐 ) − 𝑠𝑐ℎ(𝑥

𝑐 )′𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′𝐺𝑐𝑚1(𝑋𝑐 )

≡�̂�1(𝑥𝑐 ) − �̂�2(𝑥𝑐 )

where �̂�1(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥
𝑐 )′𝑚1(𝑋𝑐 ) and �̂�2(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥

𝑐 )′𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′𝐺𝑐𝑚1
(𝑋𝑐 ). Further,

�̂�1(𝑥𝑐 ) =𝑚1(𝑥𝑐 ) +
1
2
𝜅2𝑡𝑟

{

𝐻𝑚1,𝑥𝑥𝐻
}

+ 𝑂𝑝(‖𝐻‖

4) + 𝑂𝑝((𝑛𝑇 |𝐻|)−1∕2‖𝐻‖)

(A.5)

�̂�2(𝑥𝑐 ) =
1

𝑛2𝑇
(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′

1,𝑥𝐻
2𝑚1,𝑥)

𝑛
∑

𝑖=2

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

− 2 𝑛 − 1
𝑛3𝑇

(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′
1,𝑥𝐻

2𝑚1,𝑥)2
𝑛
∑

𝑖=2

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

+
(𝑛 − 1)2

𝑛4𝑇
(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′

1,𝑥𝐻
2𝑚1,𝑥)3

𝑛
∑

𝑖=2

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

(A.6)

It shows that the expectation of �̂�2(𝑥𝑐 ) converges to 0 as 𝑛 → ∞. We
proof (A.5) and (A.6) below. We first consider �̂�1(𝑥𝑐 ). Using a Taylor
expansion for the function 𝑚1(𝑥𝑐𝑖𝑡) around this point 𝑥𝑐 and converting
into a matrix form, we have

𝑚1(𝑋𝑐 ) =𝑙𝑛𝑇𝑚1(𝑥𝑐 ) + (𝑋𝑐 − 𝑙𝑛𝑇 𝑥
𝑐 )𝑚1,𝑥 +

1
2
𝑄𝑚 + 𝑅𝑚

=�̃�𝑐
[

𝑚1(𝑥𝑐 )
𝑚1,𝑥

]

+ 1
2
𝑄𝑚 + 𝑅𝑚

here 𝑄𝑚 = (𝑋𝑐 − 𝑙𝑛𝑇 𝑥𝑐 )𝑚1,𝑋𝑋 (𝑋𝑐 − 𝑙𝑛𝑇 𝑥𝑐 )′, 𝑚1,𝑋𝑋 is a 𝑝×𝑝 dimensional
diagonal matrix whose diagonal elements are all Hessian matrix 𝑚1(𝑥𝑐 )
evaluated at 𝑥𝑐 and denoted as 𝑚1,𝑥𝑥. 𝑅𝑚 is the Taylor series remainder
terms. Plugging this back to �̂�1(𝑥𝑐 ),

�̂�1(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥
𝑐 )′𝑚1(𝑋𝑐 )

=𝑚1(𝑥𝑐 ) +
1
2
𝑠𝑐ℎ(𝑥

𝑐 )′𝑄𝑚 + 𝑠𝑐ℎ(𝑥
𝑐 )′𝑅𝑚

𝑅𝑚 left multiplied by 𝑒′1[(�̃�
𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 ) is of negligible

order compared to the term 𝑄𝑚 left multiplied by same, and equals to
𝑂(‖𝐻‖

4). Also,

𝑠𝑐ℎ(𝑥
𝑐 )′𝑄𝑚 =𝑒′1[(�̃�

𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )(𝑋𝑐 − 𝑙𝑛𝑇 𝑥
𝑐 )𝑚1,𝑋𝑋 (𝑋𝑐 − 𝑙𝑛𝑇 𝑥

𝑐 )′

=𝑒′1[(𝑛𝑇 )
−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1

[

(𝑛𝑇 )−1
∑𝑛

𝑖=1
∑𝑇

𝑡=1 𝐾𝐻 (𝑥𝑐𝑖𝑡, 𝑥
𝑐 )(𝑥𝑐𝑖𝑡 − 𝑥𝑐 )′𝑚1,𝑥𝑥(𝑥𝑐𝑖𝑡 − 𝑥𝑐 )

−1∑𝑛 ∑𝑇 { 𝑐 𝑐 𝑐 𝑐 ′ 𝑐 𝑐 } 𝑐 𝑐

]
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(𝑛𝑇 ) 𝑖=1 𝑡=1 𝐾𝐻 (𝑥𝑖𝑡, 𝑥 )(𝑥𝑖𝑡 − 𝑥 ) 𝑚1,𝑥𝑥(𝑥𝑖𝑡 − 𝑥 ) (𝑥𝑖𝑡 − 𝑥 )
Using Lemma 1, the expectation of 𝑠𝑐ℎ(𝑥
𝑐 )′𝑄𝑚 is

E(𝑠𝑐ℎ(𝑥
𝑐 )′𝑄𝑚) =𝜅2𝑡𝑟

{

𝐻𝑚1,𝑥𝑥𝐻
}

+ 𝑂(‖𝐻‖

4)

and for the variance, using the same method, it is straightforward to
show that Var(𝑠𝑐ℎ(𝑥

𝑐 )′𝑄𝑚) = 𝑂((𝑛𝑇 |𝐻|)−1‖𝐻‖

2). Hence,

�̂�1(𝑥𝑐 ) = 𝑚1(𝑥𝑐 ) +
1
2
𝜅2𝑡𝑟

{

𝐻𝑚1,𝑥𝑥𝐻
}

+ 𝑂𝑝(‖𝐻‖

4) + 𝑂𝑝((𝑛𝑇 |𝐻|)−1∕2‖𝐻‖)

The proof of (A.5) is complete.
Let us consider �̂�2(𝑥𝑐 ) below,

�̂�2(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′𝐺𝑐𝑚1(𝑋𝑐 )

= 𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐺𝑐𝐷]−1𝐷′[𝐼𝑛𝑇 − 𝑆𝑐

𝐻 ]′[𝐼𝑛𝑇 − 𝑆𝑐
𝐻 ]𝑚1(𝑋𝑐 )

≡ �̂�21(𝑥𝑐 ) − �̂�22(𝑥𝑐 ) − �̂�23(𝑥𝑐 ) + �̂�24(𝑥𝑐 ) + 𝑜𝑝(1)

here

̂21(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′𝑚1(𝑋𝑐 )

̂22(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′(𝑆𝑐

𝐻 )′𝑚1(𝑋𝑐 )
̂23(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥

𝑐 )′𝐷[𝐷′𝐷]−1𝐷′𝑆𝑐
𝐻𝑚1(𝑋𝑐 )

̂24(𝑥𝑐 ) =𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′(𝑆𝑐

𝐻 )′𝑆𝑐
𝐻𝑚1(𝑋𝑐 )

he common matrix 𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′ in estimator �̂�21(𝑥𝑐 ), �̂�22(𝑥𝑐 ),

�̂�23(𝑥𝑐 ), and �̂�24(𝑥𝑐 ) is given by

𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′ = 1

𝑛2𝑇
(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′

1,𝑥𝐻
2𝑚1,𝑥)𝑒′(1 + 𝑐𝑛) (A.7)

where 𝑒 is an 𝑛𝑇 dimensional vector whose the first 𝑇 elements are
zeros and the rest elements are ones. In fact,

𝑠𝑐ℎ(𝑥
𝑐 )′𝐷[𝐷′𝐷]−1𝐷′ = 𝑒′1[(�̃�

𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )𝐷[𝐷′𝐷]−1𝐷′

here the derivation of (𝑛𝑇 )−1(�̃�𝑐 )′𝑊1(𝑥𝑐 ) is given in Box I, and us-
ng Lemma 1, we can obtain (A.7). Thus,

̂21(𝑥𝑐 ) =
1

𝑛2𝑇
(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′

1,𝑥𝐻
2𝑚1,𝑥)

𝑛
∑

𝑖=2

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

�̂�22(𝑥𝑐 ) = �̂�23(𝑥𝑐 ) =
𝑛 − 1
𝑛3𝑇

(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′
1,𝑥𝐻

2𝑚1,𝑥)2

×
𝑛
∑

𝑖=1

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

�̂�24(𝑥𝑐 ) =
(𝑛 − 1)2

𝑛4𝑇
(1 − 𝜅2𝑓 (𝑥𝑐 )−2𝑚′

1,𝑥𝐻
2𝑚1,𝑥)3

𝑛
∑

𝑖=1

𝑇
∑

𝑡=1
𝑚1(𝑥𝑐𝑖𝑡)(1 + 𝑐𝑛)

The proof of (A.6) is complete. □

Lemma 3. Under Assumptions (𝐴1) − (𝐴4),

√

𝑛𝑇 |𝐻|�̂�12(𝑥𝑐 )
𝑑

⟶ 𝑁(0,
𝜍0𝜎2𝜀𝑐
𝑓 (𝑥𝑐 )

) (A.8)

Proof. Since

̂ 12(𝑥𝑐 ) = 𝑠𝑐ℎ(𝑥
𝑐 )′𝑀𝑐𝜀

= 𝑒′1[(�̃�
𝑐 )′𝑊1(𝑥𝑐 )�̃�𝑐 ]−1(�̃�𝑐 )′𝑊1(𝑥𝑐 )𝑀𝑐𝜀

Using the kernel density function, we obtain

E(�̂�12(𝑥𝑐 )) = 0

Var(�̂�12(𝑥𝑐 )) =
𝜍0𝜎2𝜀𝑐
𝑓 (𝑥𝑐 )

+ 𝑂(‖𝐻‖)

Combining Lemmas 1, 2, and 3, we prove Eq. (41) in Theorem 1. Sim-
ilarly, using the same procedure, we can prove Eq. (42) in Theorem 1.
Note that the asymptotic distribution of 𝑚1(𝑥𝑟) can be derived in the
same way as the asymptotic distribution of 𝑚1(𝑥𝑐 ). Then, the proof of
in Theorem 1 is complete. □
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𝑚

E

V

𝑚

T

T

(𝑛𝑇 )−1(�̃�𝑐 )′𝑊1(𝑥𝑐 ) =
[

(𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐11, 𝑥
𝑐 ) (𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐12, 𝑥

𝑐 ) ⋯ (𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐𝑛𝑇 , 𝑥
𝑐 )

(𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐11, 𝑥
𝑐 )(𝑥𝑐11 − 𝑥𝑐 ) (𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐12, 𝑥

𝑐 )(𝑥𝑐12 − 𝑥𝑐 ) ⋯ (𝑛𝑇 )−1𝐾𝐻 (𝑥𝑐𝑛𝑇 , 𝑥
𝑐 )(𝑥𝑐𝑛𝑇 − 𝑥𝑐 )

]

Box I.
R
.2. Proof of Theorem 2

Under Assumptions (𝐴1) − (𝐴4), when 𝐻 = ℎ𝐼𝑞 , by Eqs. (A.5) and
(A.8), we have

E(�̂�1(𝑥𝑐 ) − 𝑚1(𝑥𝑐 )) =
1
2
𝜅2ℎ

2𝑚1,𝑥𝑥 + 𝑂(ℎ4) + 𝑂((𝑛𝑇 )−
1
2 ℎ1−

𝑞
2 )

Var(�̂�1(𝑥𝑐 ) − 𝑚1(𝑥𝑐 )) =
𝜍0𝜎2𝜀𝑐

𝑛𝑇ℎ𝑞𝑓 (𝑥𝑐 )
+ 𝑂((𝑛𝑇 )−1ℎ−𝑞+1)

Using the same method in deriving E(�̂�1(𝑥𝑐 ) −𝑚1(𝑥𝑐 )) and Var(�̂�1(𝑥𝑐 ) −
1(𝑥𝑐 )), we have

(�̂�2(𝑥𝑟) − 𝑚2(𝑥𝑟)) =
1
2
𝜅2ℎ

2𝑚2,𝑥𝑥 + 𝑂(ℎ4) + 𝑂((𝑛𝑇 )−
1
2 ℎ1−

𝑞
2 )

ar(�̂�2(𝑥𝑟) − 𝑚2(𝑥𝑟)) =
𝜍0𝜎2𝜀𝑐

𝑛𝑇ℎ𝑞𝑓 (𝑥𝑐 )
+ 𝑂((𝑛𝑇 )−1ℎ−𝑞+1)

The goodness-of-fit criterion between (𝑚1(𝑥𝑐 ), 𝑚2(𝑥𝑟)) and (�̂�1(𝑥𝑐 ),
�̂�2(𝑥𝑟)) is usual mean integrated square error (MISE),

MISE(�̂�1(𝑥𝑐 ), �̂�2(𝑥𝑟))

= E
{

∫ (𝑚1(𝑥𝑐 ) − �̂�1(𝑥𝑐 ))2𝑑𝑥𝑐 + ∫ (𝑚2(𝑥𝑟) − �̂�2(𝑥𝑟))2𝑑𝑥𝑟
}

By using the Fubini’s theorem, we can show that

MISE(�̂�1(𝑥𝑐 ), �̂�2(𝑥𝑟)) = IV(�̂�1(𝑥𝑐 ))+ IV(�̂�2(𝑥𝑟))+ IBS(�̂�1(𝑥𝑐 ))+ IBS(�̂�2(𝑥𝑟))

where IV(⋅) is the integrated variance and IBS(⋅) is the integrated square
bias.

IV(�̂�1(𝑥𝑐 )) = ∫ Var(�̂�1(𝑥𝑐 ) − 𝑚1(𝑥𝑐 ))𝑑𝑥𝑐

IV(�̂�2(𝑥𝑟)) = ∫ Var(�̂�2(𝑥𝑟) − 𝑚2(𝑥𝑟))𝑑𝑥𝑐

IBS(�̂�1(𝑥𝑐 )) = ∫ (E(�̂�1(𝑥𝑐 )) − 𝑚1(𝑥𝑐 ))2𝑑𝑥𝑐

IBS(�̂�2(𝑥𝑟)) = ∫ (E(�̂�2(𝑥𝑟)) − 𝑚2(𝑥𝑟))2𝑑𝑥𝑟

Now putting both bias and variance together, we obtain the MISE of
̂ 1(𝑥𝑐 ) and �̂�2(𝑥𝑟):

MISE(�̂�1(𝑥𝑐 ), �̂�2(𝑥𝑟)) =
𝜅2
2

4
⋅ ℎ4 ⋅

{

∫ 𝑚1,𝑥𝑥𝑚
′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚
′
2,𝑥𝑥𝑑𝑥

𝑟
}

+
𝜍0

𝑛𝑇ℎ𝑞 ⋅
{

𝜎2
𝜀𝑐 ∫ (𝑓 (𝑥𝑐 ))−1𝑑𝑥𝑐 + 𝜎2

𝜀𝑟 ∫ (𝑓 (𝑥𝑟))−1𝑑𝑥𝑟
}

+ 𝑂𝑝(ℎ4) + 𝑂𝑝((𝑛𝑇 )
− 1

2 ℎ1− 𝑞
2 ) + 𝑂((𝑛𝑇 )−1ℎ−𝑞+1)

he first two term,

𝜅2
2
4

⋅ ℎ4 ⋅
{

∫ 𝑚1,𝑥𝑥𝑚
′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚
′
2,𝑥𝑥𝑑𝑥

𝑟
}

+
𝜍0

𝑛𝑇ℎ𝑞

⋅
{

𝜎2𝜀𝑐 ∫ (𝑓 (𝑥𝑐 ))−1𝑑𝑥𝑐 + 𝜎2𝜀𝑟 ∫ (𝑓 (𝑥𝑟))−1𝑑𝑥𝑟
}

is called the asymptotical mean integrated square error (AMISE). Thus,
the smoothing bandwidth minimizing the AMISE is

ℎ𝑜𝑝𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑞
𝑛𝑇

⋅

{

𝜎2𝜀𝑐 ∫ (𝑓 (𝑥
𝑐 ))−1𝑑𝑥𝑐 + 𝜎2𝜀𝑟 ∫ (𝑓 (𝑥

𝑟))−1𝑑𝑥𝑟
}

{

∫ 𝑚1,𝑥𝑥𝑚′
1,𝑥𝑥𝑑𝑥

𝑐 + ∫ 𝑚2,𝑥𝑥𝑚′
2,𝑥𝑥𝑑𝑥

𝑟
}

⎫

⎪

⎬

⎪

⎭

hus, the proof of Theorem 2 is complete.
11
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