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ABSTRACT
This paper studies the supplier selection and order allocation (SS&OA) problem, where risks include
a series of disruption scenarios with uncertain probability of occurrence. It is a challenge for indus-
try decision-makers to balance the average cost and the level of risk under the ambiguity set for
probabilities. To address this challenge, a two-stage distributionally robust (DR) Mean-CVaR model
is presented for the SS&OA problem. A procedure is developed for constructing the ambiguity set,
and Polyhedral and Box ambiguity sets are constructed to characterise the uncertain probabilities.
The worst-case Mean-CVaR criterion is employed for the second-stage cost within the ambiguity
set to trade off the expected cost and CVaR value. Three measures are incorporated to increase the
resilience of the supply chain. The proposed robust model is reformulated into two mixed-integer
linear programming models. A real case of the Huawei cell phone manufacturer is used to illustrate
the validity of the proposed approach in numerical settings. Experimental results show that the new
optimising approach can provide a robust SS&OA solution to immunise against the influence caused
by uncertain probabilities. By comparative analyses, some management insights are obtained for
industry decision-makers.
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1. Introduction

The SS&OA problem plays an important role in global
supply chain management and is becoming more pro-
found (Saputro, Figueira, and Almada-Lobo 2021). With
globalisation and the emergence of the extended enter-
prise of interdependent organisations, a new business
strategy, i.e. outsourcing, has been widely accepted by
large manufacturers (Dolgui and Proth 2013; Wu et al.
2013). For example, Boeing, the world’s largest aircraft
manufacturer, makes only the cockpit and wingtips and
outsources other components to different enterprises. By
outsourcing, manufacturers can reposition themselves,
save costs, elevate their competitive capabilities, and real-
locate various resources to focus on areas that best reflect
their relative strengths (Harland et al. 2005; Moghad-
dam 2015). However, before manufacturers proceed with
outsourcing, they must determine the best supplier port-
folio and allocate the optimal order quantity among the
selected suppliers, i.e. address the SS&OA problem. In
this context, it is crucial to deal with the SS&OA problem
effectively. Recently, the SS&OA problem has attracted
the attention of many scholars, including Bodaghi, Jolai,
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and Rabbani (2018) andMohammed, Harris, andGovin-
dan (2019).

It is necessary to incorporate the disruption risk
faced by the manufacturer into the SS&OA problem.
The COVID-19 outbreak has affected global and local
economies on a large scale. It has brought significant
risks of disruption of the manufacturer’s supply chain
(Ivanov and Dolgui 2021a). In addition, among Fortune
1000 companies, 94% reported that COVID-19 resulted
in supply chain disruptions (Fortune 2020). Disruption
risks can potentially bring significant downsides to the
supply chain (Dolgui and Ivanov 2021). In general, supply
chain risks are classified into two categories: operational
risks and disruption risks (Tang 2006). Operational risks
refer to those inherent uncertainties of demand, cost,
capacity, the absence of key personnel and power out-
ages. The features of operational risks are that they are
caused by usual events with medium to high probability
of occurrence, with low impact, andwith only short-term
negative effects (Hosseini and Barker 2016). Compared
with operational risks, disruption risks are usually caused
by major disruptive events, such as natural disasters or
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human-made threats with a low likelihood of occur-
rence (Hosseini, Ivanov, and Dolgui 2019a). However,
it is worth noting that once a disruption occurs, it may
have long-term negative impacts on supply chain opera-
tions (Ivanov 2021). With the studied SS&OA problem,
the disruption risks are taken into account and a series of
disruption scenarios are used to describe them.

In the existing research, the probability of occurrence
of disruption scenarios are assumed to be deterministic,
such as Sawik (2013b), Torabi, Baghersad, and Mansouri
(2015), Ni, Howell, and Sharkey (2018). In this case,
the classical stochastic optimisation (SO) method can be
used to model the SS&OA problem. However, regarding
the probability estimation of occurrences for disruption
scenarios, there are the following two difficulties: (i) suf-
ficient historical data related to rare events are difficult to
obtain, and (ii) the available historical data usually can-
not fully reflect reality (Aldrighetti et al. 2021). Therefore,
it is usually unrealistic to assume that the probabilities
of occurrence for disruption scenarios are determinis-
tic. How should the decision-maker optimise the SS&OA
problem if they face uncertain probabilities of occurrence
for disruption scenarios? This is a critical and interesting
issue to be resolved. The recently developed distribu-
tionally robust optimisation (DRO)method, an attractive
optimisation method to deal with uncertain probabil-
ity, provides a useful optimisation framework in which
decision-makers do not require precise distributions and
only use partial distribution information (Zhang et al.
2022). In the DRO method, a so-called ambiguity set is
employed to characterise the uncertain probabilities of
occurrence for disruption scenarios. The optimisation is
based on the worst-case distribution within the ambi-
guity set (Delage and Ye 2010). In this paper, we use
the DRO method to address the uncertain probabilities
of occurrence for disruption scenarios and further cope
with disruption risks in the SS&OA problem.

Under the uncertain probabilities of occurrences for
disruption scenarios, the worst-case Mean-CVaR crite-
rion is more suitable for risk-averse SS&OA decision-
makers. There are three common decision criteria, i.e.
expected (Mean), value-at-risk (VaR), and conditional
value-at-risk (CVaR), for decision-making in the pro-
duction research literature. Among them, CVaR, which
is defined based on VaR, satisfies the following axioms:
convexity, monotonicity, translation invariance, and pos-
itive homogeneity, and usually performs better than
VaR (Rockafellar and Uryasev 2000). However, the risk-
averse decision-maker may need to balance the aver-
age cost with the level of risk. To address this issue,
based on the uncertain probabilities of occurrence for
disruption scenarios, this paper develops the worst-case
Mean-CVaR criterion to seek the trade-off between the

expected cost and CVaR value about the post-disruption
cost.

Currently, the supply chain is facing an increasing
number of disruptive events (e.g. the COVID-19 out-
break, climate extremes). To make the supply chain more
efficient and effective in this changing environment, some
advanced ideas have been proposed as a guide in the
recent literature. For example, viability is the ability of
the supply chain to maintain itself and survive in a
changing environment through the redesigning of struc-
tures and replanning of performance with long-term
impacts (Ivanov and Dolgui 2020). A viable supply chain
is a dynamically adaptable and structurally changeable,
a value-added network that is able to (i) react agilely
to positive changes, (ii) be resilient in absorbing nega-
tive events and recover after disruptions, and (iii) sur-
vive in times of long-term global disruptions (Ivanov
2020). A reconfigurable supply chain (the X-network)
expresses a network designed in a cost-efficient, respon-
sive, sustainable, and resilient manner that is increasingly
data-driven and dynamically adaptable and capable for
rapid structural changes in both physical and cyber space
(Dolgui, Ivanov, and Sokolov 2020b). A reconfigurable
supply chain exhibits four distinctive features, resilience,
leagility, sustainability, and digitalisation, whichmutually
enhance each other. Resilience plays an essential role in
both viability and reconfigurability (Ivanov 2021; Ivanov
and Dolgui 2021b).

It is necessary to incorporate resilience measures
into the SS&OA problem. The vulnerability of supply
chain networks has increased due to globalisation of
trade (Dixit, Seshadrinath, and Tiwari 2016) and unex-
pected natural disasters (Torabi, Baghersad, and Man-
souri 2015). In this background, resilience in the supply
chain is widely concerned against unexpected disruption
risks. The following two famous examples also verify the
significance of resilience. Philips, a semiconductor sup-
plier located inMexico, supplies semiconductors toman-
ufacturers, including Nokia and Ericsson. Philip’s supply
was disrupted due to a sudden large fire, and because of
the disruption, Ericsson lost $400 million, while Nokia
suffered less because of cooperation with a backup sup-
plier (Latour 2001). After a magnitude nine earthquake
and tsunami that struck Japan in 2011, Toyota andNissan
tried to cooperate with suppliers who were geographi-
cally dispersed rather than those who were in a shorter
distance zone (Hosseini et al. 2019b). Inspired by these
scenarios, this paper adds three resilience measures that
increase the resilience of the supply chain in the SS&OA
problem.

Motivated by the above research, this paper addresses
the following questions related to the resilient SS&OA
problem: (i) How can the uncertain probabilities of
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occurrence be addressed for disruption scenarios?
(ii) How can the average cost and the level of risk be bal-
anced? (iii) Do the uncertain probabilities have a larger
effect on the optimal SS&OA solution? To resolve the
above questions, a two-stage DR Mean-CVaR model is
proposed for the resilient SS&OA problem under disrup-
tion risks tominimise the trade-off between the expected
cost and CVaR value. To the best of our knowledge, this
work is the first to address the uncertain probabilities of
occurrence for disruption scenarios in the SS&OA prob-
lem. The contributions of this paper to the production
system can be summarised as follows:

• First, this paper uses a series of disruption scenar-
ios to describe disruption risks and finds the opti-
mal SS&OA scheme under uncertain probabilities of
occurrence for disruption scenarios. A new procedure
for constructing an ambiguity set and polyhedral and
box ambiguity sets are developed for characterising
the uncertain probabilities. To the best of our knowl-
edge, this paper is the first to study the SS&OA prob-
lembased on the uncertain probabilities of occurrence
for disruption scenarios.

• Second, this paper develops a novel decision aidmodel
for the SS&OA problem in production systems. The
worst-case Mean-CVaR criterion of the second-stage
cost over the ambiguity set is utilised to help the man-
ufacturer trade off the expected cost and CVaR value.
More importantly, by employing the Lagrange and
linear duality theories, the developed model is refor-
mulated into MILP forms for the convenience of a
large audience in production research.

• Third, this paper discusses the real-life application
of the proposed optimisation approach in produc-
tion systems. Themanufacturer of Huawei cell phones
in Changsha acts as a case study to demonstrate
the validity of the proposed optimisation approach.
Experimental results show that the proposed optimi-
sation approach is feasible and effective for the SS&OA
problem under uncertain probabilities of occurrence
for disruption scenarios.

The rest of this paper is organised as follows. Section 2
briefly reviews the related literature. Section 3 gives the
problem statement in detail and develops a new two-
stage DR Mean-CVaR model for the resilient SS&OA
problem. Section 4 analyses and reformulates the pro-
posed model, constructs two different ambiguity sets,
and reformulates the computationally tractable robust
counterpart of the original model. In Section 5, the
case study used to demonstrate the validity of the pro-
posed optimisation approach is explored. In Section 6,
a few management insights for decision-makers in the

industry are reviewed, and the conclusion is given in
Section 7.

2. Literature review

This section presents the literature review, shows the
existing research gaps, and highlights the contributions.
The literature review focuses on the uncertainty and
decision criteria in the SS&OA problem.

Literature that incorporates uncertainty into the
SS&OA problem includes Nazari-Shirkouhi et al. (2013),
who developed an interactive two-phase fuzzy multi-
objective linear programming method for solving the
SS&OA problem. They considered the fuzzy degree of
satisfaction of each objective function for the decision-
maker and specified a piecewise linear membership
function for each objective function. When Moheb-
Alizadeh and Handfield (2018) studied the sustainable
SS&OA problem, they considered the stochastic log-
normal demands and developed a stochastic sustainable
SS&OA model with chance constraints. They converted
the stochastic constraints into their deterministic equiv-
alents for the predetermined confidence levels via the
inverse of the cumulative distribution function. Babbar
and Amin (2018) proposed a multi-objective SS&OA
model, where uncertainty appears in two areas. One
area concerns the unit cost and demand, which are con-
sidered uncertain parameters based on finite stochastic
scenarios. Another area concerns the importance lev-
els among supplier evaluation criteria, which are mod-
elled as trapezoidal fuzzy numbers in applying the QFD
method to select suppliers. Mirzaee, Naderi, and Pasan-
dideh (2018) studied a bi-objective generalised SS&OA
problem, regarded the satisfaction level of each objective
as a fuzzy parameter, assigned a linear membership func-
tion for each objective, and developed an effective pre-
emptive fuzzy goal programming approach to solve this
bi-objective model. Bodaghi, Jolai, and Rabbani (2018)
developed a multi-objective model for the SS&OA prob-
lem, assigned a fuzzy linear affiliation function to each
objective, and used the fuzzy analytic network process
(FANP) method to transform the multi-objective model
into a single-objective model. In addition, in the process
of estimating model parameters, they assumed demand
obeys stochastic Gaussian distribution (given the expec-
tation and standard deviation) and used the expected
demand quantity reduction penalty (EDQRP) method to
estimate the contracted ordering intervals and ordering
capacity intervals of suppliers. Mohammed, Harris, and
Govindan (2019) established a multi-objective optimisa-
tionmodel for a sustainable SS&OA problem, considered
the importance levels among supplier evaluation crite-
ria (conventional, green, and social) as triangular fuzzy
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numbers, and proposed an integrated fuzzy AHP-fuzzy
TOPSIS to assess and rank suppliers. Jia, Liu, and Bai
(2020) studied the sustainable SS&OA problem based on
uncertain unit cost, CO2 emissions, demand, and sup-
ply capacity, where only partial distribution information
is known. They developed a distributionally robust sus-
tainable SS&OA goal programming model. Firouzi and
Jadidi (2021) considered uncertain parameters, such as
demand, fixed ordering cost, defective and late deliv-
ery rates, and supply capacity. These uncertain param-
eters are identified with triangular or trapezoidal fuzzy
numbers. Based on fuzzy set theory, they developed a
fuzzy multi-objective model for the SS&OA problem. A
multi-objective multistage programmingmodel was pro-
posed for sustainable SS&OA problems, and fuzzy set
theory was utilised to capture the relative importance of
decision-makers who take part in the decision-making
team (Wu, Gao, and Barnes 2022). There are still numer-
ous researchers who have studied uncertainty in the
SS&OA problem, such as Kannan et al. (2013), Supra-
songsin, Yenradee, and Huynh (2020), and Nasr et al.
(2021), but this literature is not going to be reviewed here.
The above literature that addresses parameter uncer-
tainty in the SS&OA problem is based on the following
assumption, i.e. the true distribution of uncertain param-
eters must be known or estimated exactly and does not
fully capture the probability uncertainty of occurrence for
disruption scenarios. However, it is usually difficult for
decision-makers in industry to estimate the true distri-
bution. This is the main limitation of the above literature
in handling the parameter uncertainty of the SS&OA
problem.

In the literature, multiple different criteria are set as
objective functions tomake the optimal SS&OAdecision.
Jia, Liu, and Bai (2020) set four objectives, one of which
is to minimise the total cost, and used goal programming
to solve the multi-objective SS&OA problem. Addition-
ally, there are a large number of scholars who employ the
expected cost criterion to make SS&OA decisions. Based
on multiple disruption scenarios, Hosseini et al. (2019b)
developed a bi-objective mixed integer linear program-
ming (MILP) model, where one objective is to minimise
the total expected cost. Torabi, Baghersad, andMansouri
(2015) and Khalili, Jolai, and Torabi (2017) considered
some critical parameters (such as demands and costs) as
fuzzy numbers in response to operational risks and set
the expected cost and CVaR based on finite disruption
scenarios as the objective functions to make decisions.
When Vahidi, Torabi, and Ramezankhani (2018) stud-
ied the sustainable SS&OA problem, they established a
bi-objective two-stagemixed possibilistic-stochastic pro-
grammingmodel under operational and disruption risks.
In their model, the first objective is to minimise the total

sustainability and resilience scores of the selected sup-
pliers, the demand is treated as a fuzzy parameter to
mitigate operational risks, and the second objective is
to use scenario-based expected costs to control disrup-
tion risks. Jabbarzadeh, Fahimnia, and Sabouhi (2018)
also used the expected cost criterion to make decisions,
investigated resilient and sustainable supply chain design
under disruption scenarios, and developed a bi-objective
optimisation model. Their first objective minimises the
expected total costs of the supply chain, and the second
objective maximises the aggregate weighted sustainabil-
ity scores of all selected suppliers under different sce-
narios. When Sanci et al. (2021) investigated how to
choose the best mitigation strategy against supply dis-
ruption risk, they randomly generated some disruption
scenarios by using a scenario tree, estimated the prob-
ability of each scenario occurring, and set an objective
function that minimises the expected cost. Alternatively,
some scholars have employed the mean-risk criterion
for making decisions. For instance, Sawik (2013a) built
two SS&OA models based on disruption risks to min-
imise the expected cost for risk-neutral performance and
the CVaR performance for risk-averse decision-makers.
Under conditions of risk-neutral and risk-averse, Sawik
(2013b) built three different SS&OAmodels to minimise
the expected cost, CVaR, and Mean-CvaR, where the
third model can be used to balance the expected cost and
risk tolerance. In the reviewed literature, except Sawik
(2013b), most studies used only one criterion (Mean,
VaR, or CVaR) as an objective function to make the
optimal SS&OA decision. Although Sawik (2013b) used
Mean-CVaR, the proposedmodelwas based on the deter-
ministic probabilities of occurrences for disruption sce-
narios. These approaches do not balance the average cost
and the level of risk under uncertain probabilities for the
risk-averse decision-maker. This is the second limitation
of the reviewed literature.

To identify the research gaps of the existing studies
and to clarify the innovations of this paper, the related
literature is classified in Table 1, which summarises the
following three research gaps: (i) there is no literature that
investigates the SS&OA problem under uncertain prob-
abilities of occurrence for disruption scenarios hitherto;
(ii) no literature applies the worst-caseMean-CVaR crite-
rion to the SS&OA problem for the risk-averse decision-
maker until now; (iii) there is only very sparse litera-
ture on optimising the SS&OA problem with the DRO
method. To address these gaps, this paper considers the
uncertain probabilities of occurrence for disruption sce-
narios and presents a two-stage DR Mean-CVaR model
under disruption risks. In summary, this study departs
significantly from previous studies and is a step forward
in solving the SS&OA problem.
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Table 1. A review of relevant works in the literature.

Uncertainty Resilience
Optimisation
method

Reference Disruption risks PDSO Other BS GS Other SO FO DRO Decision criterion

Kannan et al. (2013)
√ √

Total cost
Nazari-Shirkouhi et al. (2013)

√ √
Total cost

Sawik (2013a)
√ √ √

Expected cost, CVaR
Sawik (2013b)

√ √ √ √ √
Expected cost, CVaR

Torabi, Baghersad, and Mansouri (2015)
√ √ √ √ √

Expected cost
Khalili, Jolai, and Torabi (2017)

√ √ √ √ √ √
CVaR

Moheb-Alizadeh and Handfield (2018)
√ √

Total cost
Mirzaee, Naderi, and Pasandideh (2018)

√ √
Total cost

Babbar and Amin (2018)
√ √

Total cost
Ni, Howell, and Sharkey (2018)

√ √ √ √
Expected cost

Jabbarzadeh, Fahimnia, and Sabouhi (2018)
√ √ √ √ √ √

Expected cost
Vahidi, Torabi, and Ramezankhani (2018)

√ √ √ √ √
Expected cost

Bodaghi, Jolai, and Rabbani (2018)
√ √ √

Total cost
Mohammed, Harris, and Govindan (2019)

√ √
Total cost

Hosseini et al. (2019b)
√ √ √ √ √

Expected cost
Suprasongsin, Yenradee, and Huynh (2020)

√ √
Total cost

Jia, Liu, and Bai (2020)
√ √

Total cost
Nasr et al. (2021)

√ √
Total cost

Firouzi and Jadidi (2021)
√ √

Total cost
Sanci et al. (2021)

√ √ √ √
Expected cost

Wu, Gao, and Barnes (2022)
√ √

Expected cost
This research

√ √ √ √ √ √
Worst-Case Mean-CVaR

Note: BS, GS, PDSO, and FO denote backup supplier, geographical segregation, probability of occurrence for disruption scenario, and fuzzy optimisation,
respectively.

3. Model development

In this section, the SS&OA problem is described, the
objective and resilience constraints are constructed,
and a new two-stage DR mean-CVaR model is
developed.

3.1. Problem statement

The manufacturer usually outsources its production to a
set of preidentified suppliers, including the two groups
of main and backup suppliers. These suppliers are often
exposed to many disruptive events, such as floods, earth-
quakes, and hurricanes. Once one supplier regularly faces
disruptive events, this supplier may continue or fail to
operate (disrupted). Therefore, the manufacturer faces a
range of disruption scenarios, and each scenario contains
two groups of suppliers: continuously operational suppli-
ers and disrupted suppliers. In addition, the probability of
occurrence for each disruption scenario is usually uncer-
tain. Themanufacturer needs to take variousmeasures to
increase supply chain resilience and to hedge against dis-
ruptions. Moosavi and Hosseini (2021) pointed out that
cooperatingwith a backup supplier is a valuable resilience
and response strategy during supply chain disruption.
Inspired by this, the first resilience measure is to coop-
erate with both main and backup suppliers. Aldrighetti
et al. (2021)mentioned that it is important to ask formore

products than agreed upon from regular contracted sup-
pliers (i.e. surplus supply from non-disrupted main sup-
pliers). Therefore, the second resilience measure is that
the non-disrupted main suppliers can provide the sur-
plus supply to the manufacturer. Motivated by Hosseini
et al. (2019b), the third measure is to set the shortest seg-
regation distance between any two selected suppliers and
the total distance of all selected suppliers. Figure 1 facil-
itates the reader’s understanding of the resilient SS&OA
problem.

In Figure 1, the example of a manufacturer cooperat-
ing with six suppliers is used to demonstrate the network
structure of the SS&OA problem. From Figure 1, the
manufacturer cooperates with two main suppliers and
two backup suppliers in the pre-disruption stage. The
actual distances between any two selected suppliers are
not less than the required, least the segregation distance.
Only these two main suppliers produce and distribute
the products before the disruption. In the post-disruption
stage, main supplier-2 reduces the production and dis-
tribution quantities of products. For main supplier-1, in
addition to completing specified quantities, it also pro-
duces surplus product for supply. Backup supplier-1 pro-
duces and distributes some products. Backup supplier-2
still does not produce the products.

The SS&OA problem with a series of disruption sce-
narios is a classical two-stage problem. These two stages
refer to pre-disruption and post-disruption, respectively.
The decision-maker determines the decisions of
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Figure 1. Structure of the SS&OA problem studied.

pre-disruption before knowing the realised scenario
while determines the decisions of post-disruption after
knowing the realised scenario to compensate for the
decisions made at pre-disruption. Therefore, we need to
establish a two-stage optimisation model. The decision-
maker needs to make the following two-stage decisions
to minimise the objective. In the first stage, i.e. pre-
disruption, it is required to identify (i) which suppli-
ers are selected as main suppliers; (ii) which suppli-
ers are selected as backup suppliers; and (iii) the order
quantity at each main supplier. In the second stage, i.e.
post-disruption, it is required to determine (i) the prod-
uct quantity received from the disrupted main suppli-
ers; (ii) the product quantity received from the non-
disrupted backup suppliers; and (iii) the surplus prod-
uct quantity received from the non-disrupted main sup-
pliers. The surplus product quantity is the additional
product quantity from the non-disrupted main suppli-
ers in addition to the order quantity specified in the first
stage.

The notations and their definitions used in our opti-
misation model are as follows:

Sets and indices:

I: Set of suppliers, indexes i, j ∈ I;
S: Set of disruption scenarios, index s ∈ S;

Is: Set of suppliers that are non-disrupted under
scenario s;

Īs: Set of suppliers that are disrupted under scenario s;
Ei: Set of possible disruptive events that supplier i(i ∈

I) may face. For example, for supplier i, Ei might
be Tsunamis (ei1), Floods (ei2), Earthquakes (ei3),
Hurricane (ei4);

ein: A certain disruptive event at supplier i, ein ∈ Ei, n ∈
[|Ei|], where |Ei| is the cardinality of the set Ei.

Parameters:

dij: The distance between suppliers i and j;
Sd: Least segregation distance between every pair of sup-

pliers;
TD: Least total segregation distance among all selected

suppliers;
D: Manufacturer’s demand;
Ci: Fixed cost of contracting with supplier i as a main

supplier;
C′
i: Fixed cost of contracting with supplier i as a backup

supplier (C′
i ≥ Ci);

Li: Purchasing and transportation (P&T) cost per prod-
uct from main supplier i;

L′
i: P&T cost per product from backup supplier i;

L′′
i : P&T cost per surpass product from non-disrupted

main supplier i(L′′
i ≥ L′

i ≥ Li);
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Figure 2. Decision variables in the first and second stages.

Cai: Production capacity of supplier i under normal (i.e.
working) conditions;

θis: The percentage of normal capacity of supplier i(i ∈ Īs)
under disruption scenario s;

πein : Occurrence likelihood of disruptive event ein(ein ∈
Ei, n ∈ [|Ei|]) that supplier imay face;

πi: Disruption probability of supplier i;
Ps: The probability of occurrence for disruption

scenario s;
R: Maximum number of main suppliers allowed to be

contracted in the normal situation;
M: A very large constant.

First stage (pre-disruption) decision variables:

xi: Binary variables, 1 if supplier i(i ∈ I) is selected as the
main supplier, and 0, otherwise;

x′
i: Binary variables, 1 if supplier i(i ∈ I) is selected as

backup supplier, and 0, otherwise;
qi: Order quantity from the main supplier i(i ∈ I) at the

stage of pre-disruption.

Second stage (post-disruption) decision variables:

qis: Quantity that the manufacturer will receive from
main supplier i(i ∈ I) at the stage of post-disruption
under scenario s;

q′
is: Quantity that the manufacturer will receive from

backup supplier i(i ∈ I) at the stage of post-
disruption under scenario s;

zis: Surplus quantity that the manufacturer will receive
from the non-disruptedmain supplier i(i ∈ I) at the
post-disruption under scenario s.

The relationships between decision variables in these two
stages are shown in Figure 2.

3.2. Objective function

The objective includes two parts. The first part, which
corresponds to the first stage, is built as

TC1(x, x′, q1) =
∑
i∈I

Cixi +
∑
i∈I

Liqi +
∑
i∈I

C′
ix

′
i,

where x = (xi)i∈I , x′ = (x′
i)i∈I , q1 = (qi)i∈I . The first

item of TC1(x, x′, q1) is the cost of contracting with the
main suppliers. The second item is the cost of contract-
ing with the backup suppliers. The third item is the P&T
cost.

The second part is the worst-case Mean-CVaR value
of the second-stage cost. In the real world, which is full
of uncertainty, obtaining an exact probability distribu-
tion is a very difficult task. It is logical to assume that
the probabilities of occurrence for disruption scenarios
are uncertain and belong to an ambiguity set P . Here,
setting P = (Ps)s∈S, the discrete probability distribution
P ∈ P is obtained. In this context, to help the decision-
maker balance the average cost and the level of risk, the
following worst-case Mean-CVaR criterion is developed:

max
P∈P

{αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)CVaRε,P[TC2(q2(s), q3(s), z(s))]},

where q2 = (qis)i∈I,s∈S, q3 = (q′
is)i∈I,s∈S, z = (zis)i∈I,s∈S,

α is the trade-off parameter, ε is the confidence level
parameter, and TC2 (q2(s), q3(s), z(s))s∈S is the value
function of the second-stage problem.

As a consequence, the objective is formulated as:

TC1(x, x′, q1)

+ max
P∈P

{αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)CVaRε,P[TC2(q2(s), q3(s), z(s))]}.

3.3. Resilience constraints

To increase the resilience of the supply chain, two types
of resilience constraints are constructed. First, the sum
of the distances among all selected suppliers for coopera-
tion is not less than the shortest total segregation distance
TD. The sum of the distances between the main sup-
pliers can be measured by

∑
i∈I

∑
j∈I,i<j

xixjdij. Similarly, the

sum of the distances between the main suppliers and
backup suppliers and the sum of the distances between
the backup suppliers can be represented by

∑
i∈I

∑
j∈I

xix′
jdij



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 6363

and
∑
i∈I

∑
j∈I,i<j

x′
ix′

jdij, respectively. Using the above for-

mulas, the following constraint is built:

TD ≤
∑
i∈I

∑
j∈I,i<j

xixjdij+
∑
i∈I

∑
j∈I

xix′
jdij

+
∑
i∈I

∑
j∈I,i<j

x′
ix′

jdij. (1)

Second, the distance between any two selected suppliers
is greater than or equal to the least segregation distance
Sd, which is represented as the following constraints:

Sd ≤ dij + M(2 − xi − xj), ∀i, j ∈ I, i �= j, (2)

Sd ≤ dij + M(2 − xi − x′
j), ∀i, j ∈ I, i �= j, (3)

Sd ≤ dij + M(2 − x′
i − x′

j), ∀i, j ∈ I, i �= j. (4)

For convenience,TD and Sd are referred to collectively
as the resilience distances.

3.4. Two-stage DRMean-CVaRmodel for resilient
SS&OA problem

Based on the analysis in the above subsections, the two-
stage DR Mean-CVaR model is formally developed as
follows:

min TC1(x, x′, q1)

+ max
P∈P

{αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)CVaRε,P[TC2(q2(s), q3(s), z(s))]}

s.t.
∑
i∈I

qi = D, (5)

∑
i∈I

xi ≤ R, (6)

xi + x′
i ≤ 1,∀i ∈ I, (7)

0 ≤ qi ≤ xiCai, xi, x′
i ∈ {0, 1}, ∀i ∈ I, (8)

Constraints(1) − (4).

Constraint (5) guarantees satisfying the manufac-
turer’s demand at the first stage. Constraint (6) indicates
that the number of selected main suppliers for coopera-
tion in the pre-disruption stage should not be more than
R. Constraint (7) means that no supplier can be selected
as both themain supplier and backup supplier at the same
time. Constraint (8) limits the range of decision variables
at the first stage. The order quantity qi from themain sup-
plier i should be greater than or equal to 0 and less than or
equal to production capacity Cai. Given i, both xi and x′

i

are Boolean. TC2(q2(s), q3(s), z(s)) in the objective is the
optimal value of the second stage programming model:

min
∑
i∈Is

L′
iq

′
is −

∑
i∈Īs

Li(qi − qis) +
∑
i∈Is

zisL′′
i

s.t.
∑
i∈Is

(qi + q′
is) +

∑
i∈Īs

qis +
∑
i∈Is

zis = D,∀s ∈ S, (9)

qis + zis ≤ Caixi,∀i ∈ Is, s ∈ S, (10)

q′
is ≤ Caix′

i,∀i ∈ Is, s ∈ S, (11)

qis ≤ θisCaixi,∀i ∈ Īs, s ∈ S, (12)

qis ≤ qi,∀i ∈ Īs, s ∈ S, (13)

qi = qis,∀i ∈ Is, s ∈ S, (14)

q′
is = 0,∀i ∈ Īs, s ∈ S, (15)

qis, q′
is, zis ≥ 0,∀i ∈ I, s ∈ S. (16)

The objective is to minimise the sum of P&T costs∑
i∈Is

L′
iq′

is,
∑
i∈Īs

Li(qis − qi), and
∑
i∈Is

zisL′′
i after the dis-

ruption scenario occurs. Constraint (9) means that
the manufacturer’s demand should be satisfied under
each scenario. Constraint (10) implies that the deliv-
ery quantity from each non-disrupted main supplier is
not more than the supplier’s production capacity. Con-
straint (11) implies that the delivery quantity from each
non-disrupted backup supplier is not more than the sup-
plier’s production capacity. Constraint (12) denotes that
the delivery quantity from each selected disrupted main
supplier should not be more than the supplier’s produc-
tion capacity. Constraint (13) indicates that the quantity
of products delivered by the disrupted main supplier at
the post-disruption stage should be less than or equal to
the quantity of products contracted at the pre-disruption
stage. Constraint (14) means that the quantity of prod-
ucts delivered by the non-disrupted main supplier at the
post-disruption stage should be equal to the quantity of
products contracted at the pre-disruption stage. Con-
straint (15) means that the disrupted suppliers cannot be
used as backup suppliers under each scenario. Constraint
(16) denotes the types of decision variables at the second
stage.

Remark 3.1: Following the idea of Vahidi, Torabi, and
Ramezankhani (2018), we set equality constraint (9). The
established model avoids the case where the disruption
event destroys somuch capacity that the suppliers cannot
fulfil the demand D by choosing the number of suppli-
ers to cooperate with. This is mainly because as long as
there are enough candidate suppliers, a sufficient num-
ber of suppliers can be selected for cooperation to meet
demand D.
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According to Aldrighetti et al. (2021), who systemati-
cally analysed the costs involved in the supply chain net-
work design with disruption risks, the costs of the model
could be divided into two categories: cooperation costs
(i.e.

∑
i∈I

Cixi and
∑
i∈I

C′
ix′

i) and P&T costs (i.e.
∑
i∈I

Liqi,∑
i∈Is

L′
iq′

is,
∑
i∈Īs

Li(qi − qis) and
∑
i∈Is

zisL′′
i). Among them,∑

i∈I
C′

ix′
i,

∑
i∈Is

L′
iq′

is, and
∑
i∈Is

zisL′′
i belong to resilience

costs.

4. Model analysis

In this section, the objective function is reformulated, the
procedure for constructing ambiguity sets is developed,
robust counterparts are derived, and the computationally
tractable form of the two-stage DRMean-CVaRmodel is
presented.

4.1. Reformulating objective function

To find the computationally tractable form of the pro-
posed two-stage DR model, next the second part of the
objective function is reformulated.

First, in light of the definition of CVaRε,P (Rockafel-
lar and Uryasev 2000), the CVaR value of the second-
stage cost, CVaRε,P[TC2(q2(s), q3(s), z(s))], can be rep-
resented as

min
φ∈R

{
φ + 1

1 − ε
EP[max{TC2(q2(s), q3(s), z(s)) − φ, 0}]

}
,

where ε ∈ (0, 1) is a confidence level parameter and
reflects the probability that TC2(q2(s), q3(s), z(s)) is
lower than VaRε,P . Meanwhile, ε also measures the risk
preferences of the decision-maker. The larger ε is, the
more risk-averse the decision-maker is.

According to the above definition, there exist the fol-
lowing equivalent transformations:

max
P∈P

{αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)CVaRε,P[TC2(q2(s), q3(s), z(s))]}

= max
P∈P

{
αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)min
φ∈R

{
φ + 1

1 − ε
EP[max{TC2(q2(s),

q3(s), z(s)) − φ, 0}]
}}

.

Second, according to Corollary 37.3.2 from Rockafellar
(1970), the order of max

P∈P
andmin

φ∈R

can be changed. There-

fore, the above formula is reformulated equivalently as:

min
φ∈R

max
P∈P

{
αEP[TC2(q2(s), q3(s), z(s))]

+ (1 − α)

{
φ + 1

1 − ε
EP[max{TC2(q2(s),

q3(s), z(s)) − φ, 0}]
}}

.

Given a disruption scenario s ∈ S, we denote TC2(q2(s),
q3(s), z(s)) as TC2,s(q2(s), q3(s), z(s)) and introduce
auxiliary variables ts to represent max{TC2,s(q2(s),
q3(s), z(s)) − φ, 0}. Because the probability of occur-
rence for disruption scenario s is Ps, the second part of the
objective function is reformulated as the following form:

min
q2,q3,z,φ

max
P∈P

{
α

∑
s∈S

PsTC2,s(q2(s), q3(s), z(s))

+ (1 − α)

{
φ + 1

1 − ε

∑
s∈S

Psts

}}

s.t.
∑
i∈Is

L′
iq

′
is −

∑
i∈Īs

Li(qi − qis) +
∑
i∈Is

zisL′′
i − φ ≤ ts,

∀s ∈ S, (17)

0 ≤ ts, ∀s ∈ S. (18)

After reformulating the objective function, the pro-
posed original model is equivalently represented as the
following model:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
min

ϕ

TC1(x, x′, q1)

+max
P∈P

{
α

∑
s∈S

PsTC2,s(q2(s), q3(s), z(s))

+(1 − α)

{
φ + 1

1 − ε

∑
s∈S

Psts
}}

s.t. Constraints(1) − (18),
(19)

where ϕ = (x, x′, q1, q2, q3, z, r, t,φ).

4.2. Constructing ambiguity sets based on
disruption scenarios

The probability distribution of disruption scenario
occurrence is discrete and uncertain. In this section, in
accordance with Qiu and Shang (2014), limited histori-
cal data and expert knowledge are utilised to construct
Polyhedral and Box ambiguity sets to characterise the
uncertain discrete probability distribution.
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Figure 3. The procedure for constructing the Polyhedral and Box
ambiguity sets.

The form of the polyhedral ambiguity set is:

PPolyhedral = {P|P = P0 + Aξ , eTAξ ≥ 0, ||ξ ||1 ≤ 1},
(20)

where P0 denotes the nominal distribution, which is the
most likely distribution of the disruption scenario occur-
rence,A ∈ R

|S|×|S| is the scalingmatrix of the polyhedral,
ξ denotes the uncertain parameter vector, and e denotes
the unit column vector.

The form of the Box ambiguity set is:

PBox = {P|P = P0 + ξ , eTξ = 0, ξL ≤ ξ ≤ ξU}, (21)

where [ξL, ξU] denotes the support set of ξ .
One can first estimate the nominal distribution based

on the limited information of the disruption scenario
occurrence. The uncertain disturbance can then be added
to describe the true distribution. For convenience, the
procedure (see Figure 3) to construct the Polyhedral and
Box ambiguity sets mentioned above is developed.

In the following, the details about each step of the
above procedure are described.

Step 1: Calculate the disruption probability of each
supplier. The noisy-OR technique can be exploited to
quantify the probability of occurrence of disruption sce-
narios. The number of disruption states faced by supplier
i is 2|Ei|. Let uil, l ∈ {1, · · ·, 2|Ei|}, be the lth state faced
by supplier i. We use π(uil) to denote the probability of
state uil, and π(Hi|uil) to represent the probability that
supplier i fails to operate in state uil. These probabilities
(π(uil), π(Hi|uil)) are usually obtained through histori-
cal data, expert knowledge, or a combination thereof. The

disruption probability πi of supplier i is equal to the sum
of π(Hi|uil)π(uil) for all states. That is,

πi =
∑
uil

π(Hi|uil)π(uil). (22)

Here, the case in which supplier i (denoted Hi) faces two
disruption events (ei1, ei2) is used as an example to show
the state. If a disruption occurs at supplier i, it corre-
sponds to one of the following four states: (i) both events
ei1 and ei2 do not occur; (ii) event ei1 occurs, and event ei2
does not occur; (iii) event ei1 does not occur, and event
ei2 occurs; and (iv) both events ei1 and ei2 occur. These
four states are shown in Table 2.

Readers who are interested in using the noisy-OR
technique to quantify the probability of occurrence of
disruption scenarios can further refer to Hosseini and
Ivanov (2019), Hosseini and Ivanov (2020), andHosseini,
Ivanov, and Blackhurst (2020).

Step 2: Calculate the nominal probability of occur-
rence for disruption scenario s. In scenario s, each sup-
plier can either continue to operate or fail, and the set
of all suppliers consists of two parts: the set of suppliers
that continue to operate and the set of suppliers that fail
to operate (i.e. disrupt). In scenario s, Is ∪ Īs = I. There-
fore, the nominal probability of occurrence of disruption
scenario s can be calculated via the following equation:

P0s =
∏
i∈Is

(1 − πi) ×
∏
i∈Īs

πi, (23)

where P0s denotes the nominal probability of occurrence
for disruption scenario s.

Step 3: Select the first N scenarios with the highest
likelihoods. According to the above process, there are 2|I|
possible disruption scenarios. Therefore, when the cardi-
nality of the set I is large, the number of scenarios is large.
In this paper, the scenario reductionmethod is employed
to select the first N scenarios with the highest likelihood
of scenarios of interest.

Remark 4.1: The decision-maker can also directly select
the scenarios that he or she is more concerned about
without depending on these probabilities. For example,
the scenarios in which the probability of occurrence is
small but the capacity of the provider drops significantly
can also be selected by the decision-maker. In this paper,
decision-makers are more concerned about those sce-
narios that have a comparatively higher probability of
occurrence, and they rank these scenarios according to
their probability of occurrence.

Step 4: Probability normalisation. The sum of the
probabilities of the firstN scenarios with the highest like-
lihoods is not 1. To solve this issue, we normalise this set



6366 Y. FENG ET AL.

Table 2. Disruption states faced by supplier i.

Disruption events State ul π(Hi|u) π(u)

ei1 u1 = {ēi1, ēi2} π(Hi) (1 − πei1 ) · (1 − πei2 )

u2 = {ēi1, ei2} 1 − (1 − π(Hi)) · (1 − π(Hi|ei2)) (1 − πei1 ) · πei2
ei2 u3 = {ei1, ēi2} 1 − (1 − π(Hi)) · (1 − π(Hi|ei1)) πei1 · (1 − πei2 )

u4 = {ei1, ei2} 1 − (1 − π(Hi)) · (1 − π(Hi|ei1)) · (1 − π(Hi|ei2)) πei1 · πei2

Note: {ei1, ēi2} denotes that event ei1 occurs and event ei2 doesn’t occur. π (Hi) represents the probability that supplier i
is disrupted but not due to ei1 and ei2. π (Hi|ein) expresses the probability that disruptive event eincauses disruption at
supplier i.

of probabilities via the following normalisation equation:

P0s = P0s∑N
s=1 P0s

, (24)

where P0s denotes the final nominal probability of the
selected sth scenario.

Step 5: Determine appropriate scales of ambiguity
sets. We set A = δ · UM (UM denotes unit matrix) in
the Polyhedral ambiguity set and set ξU = −ξL = σ · P0
in the Box ambiguity set. In general, δ and σ take val-
ues from (0, 1). When the scale parameters δ, σ → 1, the
range of ambiguity sets becomes larger. The decision-
maker can flexibly control the range of ambiguity sets by
adjusting δ and σ according to his or her preferences. As
a result, the developed Polyhedral and Box ambiguity sets
have flexible structures.

In this subsection, two ambiguity sets have been
demonstrated and a procedure is developed to construct
them. In the next subsection, the computable form of
Model (19) based on the constructed ambiguity sets is
searched for.

4.3. Deriving the tractable robust counterparts

Thus far, we have shown how to construct the Polyhedral
and Box ambiguity sets to characterise the uncertainty.
The question is now how to derive the computable form
of Model (19) based on the constructed ambiguity sets.
For this purpose, we need to derive the computable form
of the following maximisation problem:

max
P∈P

{
α

∑
s∈S

PsTC2,s(q2(s), q3(s), z(s))

+ (1 − α)

{
φ + 1

1 − ε

∑
s∈S

Psts

}}

= max
P∈P

{
α TCT

2 P

+ (1 − α)

{
φ + 1

1 − ε
tTP

}}
, (25)

where TC2 = (TC2,s(q2(s), q3(s), z(s)))s∈S and t =
(ts)s∈S.

On the one hand, under Polyhedral ambiguity set
(20), the computationally tractable form of Model (19)
is derived by the following theorems.

Theorem 4.1: Under ambiguity set (20), maximisation
problem (25) is equivalent to the following minimisation
problem:

min α(TCT
2 P0 + PT0� + θ)

+ (1 − α)

{
φ + tTP0 + PT0 �̂ + θ̂

1 − ε

}

s.t. ||AT TC2 +AT� − ATeμ||∗ ≤ θ , (26)

� ≥ 0, θ ≥ 0, (27)

||ATt + AT�̂ − ATeμ̂||∗ ≤ θ̂ , (28)

�̂ ≥ 0, θ̂ ≥ 0, (29)

where θ , �, μ, θ̂ , �̂, and μ̂ are decision variables, and
|| · ||∗ = || · ||∞ is the dual of || · ||1.
Proof: The proof of Theorem 1 is in Appendix 2.

On the other hand, under Box ambiguity set (21), the
computationally tractable form of Model (19) is derived
by the following theorem. �

Theorem4.2: Based on ambiguity set (21), maximisation
problem (25) is equivalent to the following minimisation
problem:

min α(TCT
2 P0 + ξTUπ − ξTLγ )

+ (1 − α)

{
φ + tTP0 + ξTU π̂ − ξTL γ̂

1 − ε

}

s.t. eτ + π − γ = TC2, (30)

π ≥ 0, γ ≥ 0, (31)

eτ̂ + π̂ − γ̂ = t, (32)

π̂ ≥ 0, γ̂ ≥ 0, (33)

where τ , π , γ , τ̂ , π̂ , and γ̂ are decision variables.
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Proof: The proof of Theorem 2 is in Appendix 3. �

4.4. Computationally tractable reformulations for
Model (19)

First, the multiplications of two binary variables defined
in constraint (1), e.g.xixj, are nonlinear. Proposition 1 and
Corollary 1, which are presented in Appendix 1, linearise
constraint (1) to constraints (A1)–(A11).

Second, by applying Theorem 1, Model (19) is repre-
sented as

Polyhedral :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
ϕ′

TC1(x, x′, q1) + α(TCT
2 P0

+PT0� + θ)

+(1 − α)

{
φ + tTP0 + PT0 �̂ + θ̂

1 − ε

}

s.t. Constraints (2)-(18),(26)-(29),
(A1)-(A11),

where ϕ′ = (ϕ, θ ,� ,μ, θ̂ , �̂ , μ̂).
Third, by applying Theorem 2, Model (19) is repre-

sented as

Box :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
ϕ′′

TC1(x, x′, q1)
+α(TCT

2 P0 + ξTUπ − ξTLγ )

+(1 − α)

{
φ + tTP0 + ξTU π̂ − ξTL γ̂

1 − ε

}

s.t. Constraints (2)-(18), (30)-(33),
(A1)-(A11),

where ϕ′′ = (ϕ, τ ,π , γ , τ̂ , π̂ , γ̂ ).
The above Polyhedral and Boxmodels are determinis-

ticMILPs, which can be solved efficiently by general com-
mercial software. In the following section, we will illus-
trate the validity of the proposed optimisation approach
via a case study.

5. Case study

A case study is used to conduct some numerical exper-
iments to show the feasibility and effectiveness of the
proposed two-stage DRMean-CVaR model. All numeri-
cal experiments are solved by CPLEX 12.8.0 optimisation
software on an Inter(R) Core(TM) i7-6500U 2.50GHz
personal computer with 8GB RAM operating under
Windows 10 (64 bit).

5.1. Problem background and data source

Huawei is a famous technology company that manu-
factures electronic devices. Its head office is located in

Shenzhen, Guangdong Province, China. Because of the
huge market demand for Huawei’s equipment, its own
production lines are not up to the tremendous produc-
tion task. As a result, Huawei outsources many of its
cell phone assembly tasks to other plants, such as the
enterprise BYD, which is located in Changsha, Hunan
Province. To date,mostHuawei cell phones on themarket
have been assembled by BYD1. Typically, the compo-
nents of Huawei cell phones are provided by multiple
suppliers. By doing so, it can satisfy the huge demand
in a short period and can also increase the resilience
of the supply chain. Taking the memory chip of cell
phones, Huawei has established cooperative relationships
with three suppliers: Samsung (located in Xian), Micron
(located in Xian), and Hynix (located in Wuxi). At the
same time, Huawei also has connections with Beijing-
Xicheng (located in Beijing), GigaDevice (located in
Shanghai), Yangtze (located in Wuhan), and CXMT
(located in Hefei)2.

The memory chip of Huawei cell phones is used as
the product for this case and Hynix (H1), Micron (H2),
GigaDevice (H3), Yangtze (H4) and CXMT (H5) are
considered as potential suppliers. The Changsha BYD
(Huawei’s assembly base) is the manufacturer. The loca-
tions of the suppliers and manufacturer are shown in
Figure 4. In the BYD assembly plants, the memory chips
of these cell phones may come from several of these
five suppliers. After these cell phones are processed at
BYD, they are shipped to warehouses across the coun-
try and then sold to customers. The decision-maker
needs to identify the main suppliers, the backup sup-
pliers, as well as the quantity of products from these
suppliers.

According to the IDC Worldwide Quarterly Mobile
Phone Tracker3, the shipment quantity of Huawei cell
phones is approximately 21, 700, 000 in 2020Q4. Here,
we take this shipment quantity as demand. Therefore,
D = 21, 700, 000 We set the allowed maximum number
ofmain suppliers R = 2. SinceC′

i ≥ Ci and L′′
i ≥ L′

i ≥ Li,
without loss of generality, we letC′

i equalCi+Uniform(5 ·
105, 10 · 105), L′

i equal Li+ Uniform(3, 5), and L′′
i equal

Li+ Uniform(1, 3). In addition, according to the actual
situation, we first set the least segregation distance Sd =
300 km and the least total segregation distance TD =
2000 km. In the experiments, the sensitivity analysis for
Sd and TD is performed. Regarding the costs in Table 3,
we refer to the mentioned websites and some relevant
literature (e.g. Torabi, Baghersad, and Mansouri (2015),
Vahidi, Torabi, and Ramezankhani (2018)) and then rea-
sonably set the values of these parameters. The locations
and all distances (see Table 4) are obtained via Baidu
Maps4. The percentages θis, ∀i ∈ I, s ∈ S are uniformly
generated from the interval (0.6, 0.8).
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Figure 4. The locations of the suppliers and the manufacturer.

Table 3. The values of some parameters and their generation ranges.

Parameter H1 H2 H3 H4 H5 Generation range

Ci 2,370,705 2,559,845 2,973,594 2,845,478 2,733,249 Uniform (2 · 106, 3 · 106)
C′
i 2,969,846 3,346,248 3,656,969 3,372,341 3,290,102 Ci+Uniform (5 · 105, 10 · 105)
Li 17.4 17.6 18.1 17.9 15.5 Uniform (15, 20)
L′i 21 21.8 21.7 21.5 20 Li+Uniform (3, 5)
L′′i 18.5 18.7 19.6 19.6 18.1 Li+Uniform (1, 3)
Cai 15,256,617 14,570,328 9,237,704 15,053,244 11,023,838 Uniform (9 · 106, 1.6 · 107)

Table 4. The distances (km) between suppliers.

H1 H2 H3 H4 H5

H1 0 1116.9 120.4 564.3 321.4
H2 1116.9 0 1237.3 680.2 801
H3 120.4 1237.3 0 673 441.3
H4 564.3 680.2 673 0 284.6
H5 321.4 801 441.3 284.6 0

5.2. Constructing ambiguity sets

Now, the Polyhedral and Box ambiguity sets are con-
structed based on the procedure proposed in subsection
4.2. In this case study, there are 5 suppliers and 32 scenar-
ios. It is assumed that each supplier faces two disruption
events. The sets Ei for H1, H2, and H5 are Fire, Earth-
quake, and the sets Ei for H3 and H4 are Hurricane,
Flood. In the first step to construct the ambiguity set,
we obtain that disruption probabilities (πi)i∈[5] of sup-
pliers are 0.268, 0.242, 0.19, 0.187, and 0.274. Based on
(πi)i∈[5], we directly calculate P

0
s by the second step.Here,

the following 5 groups of scenarios are selected: N = 12,
N = 15, N = 18, N = 21 and N = 24. After probabil-
ity normalisation, the obtained nominal probabilities of
occurrence for the selected scenarios are listed in Table 5.
In addition, without loss of generality, we set δ = 0.2 and
σ = 0.3.

After constructing the Polyhedral and Box ambiguity
sets for our case study, the following experiments are first
carried out based on N = 15. The effect of changing the
number of selected scenarios on the results of the models
is explored.

5.3. Computational results of the proposedmodel

In this subsection, the computational results for the Poly-
hedral and Box models are reported.

The optimal value determined by the Polyhedral
model with δ = 0.2,α = 0.5, ε = 0.9 is 376512212.51.
The Polyhedral model selects 3 suppliers to cooperate
with. They are H1, H2 and H5, where H2 and H5 are cho-
sen as themain suppliers andH1 is selected as the backup
supplier. The total distance among all selected suppliers
is 2239.3km. The optimal order allocation strategy is as
follows. In the first stage, the quantity of products con-
tracted with H2 is 1.122 · 107 and with H5 is 1.048 · 107.
In the second stage, H1 delivers products to themanufac-
turer in some scenarios, such as the quantity of delivering
products is 2.949 · 105 in the second scenario; the main
suppliers H2 and H5 deliver surplus products in some
scenarios, such as the surplus quantity of H2 is 2.323 ·
106 in the seventh scenario, and the surplus quantity of
H5 is 1.457 · 105 in the ninth scenario. Table 6 shows
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Table 5. Normalised nominal probabilities for the selected scenarios.

Scenario s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

Nominal probability P0 N = 12 0.3160 0.1193 0.1157 0.1009 0.0741 0.0727 0.0437 0.0381 0.0369 0.0280 0.0274 0.0271
N = 15 0.2944 0.1111 0.1078 0.0940 0.0691 0.0677 0.0407 0.0355 0.0344 0.0261 0.0256 0.0253
N = 18 0.2835 0.1070 0.1038 0.0905 0.0665 0.0652 0.0392 0.0342 0.0331 0.0251 0.0246 0.0243
N = 21 0.2766 0.1044 0.1013 0.0883 0.0649 0.0636 0.0382 0.0333 0.0323 0.0245 0.0240 0.0238
N = 24 0.2710 0.1023 0.0992 0.0865 0.0636 0.0623 0.0375 0.0327 0.0317 0.0240 0.0235 0.0233

Scenario s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24

Nominal probability P0 N = 12 — — — — — — — — — — — —
N = 15 0.0248 0.0220 0.0216 — — — — — — — — —
N = 18 0.0239 0.0212 0.0208 0.0153 0.0125 0.0092 — — — — — —
N = 21 0.0233 0.0207 0.0203 0.0149 0.0122 0.0090 0.0088 0.0078 0.0077 — — —
N = 24 0.0228 0.0203 0.0199 0.0146 0.0120 0.0088 0.0086 0.0077 0.0075 0.0074 0.0073 0.0055

the optimal SS&OA scheme provided by the Polyhedral
model.

The optimal value determined by the Box model
with σ = 0.3,α = 0.5, ε = 0.9 is 376, 358, 734.37, which
is slightly lower than the optimal objective provided by
the Polyhedral model. Similarly, the Box model selects
H1, H2 and H5 to cooperate with, where H2 and H5 are
selected as the main suppliers and H1 is selected as the
backup supplier. The optimal order allocation tactic is
as follows. In the first stage, the quantity of orders con-
tracted with H2 is 1.107 · 107 and with H5 is 1.063 · 107.
In the second stage, H1 delivers products to the man-
ufacturer in some scenarios. For example, the quantity
of delivering products is 2.028 · 106 in the eighth sce-
nario; H2 and H5 deliver surplus products in some sce-
narios. For example, the surplus quantity of H2 is 3.24 ·
106 in the eleventh scenario, and the surplus quantity of
H5 is 3.973 · 105 in the fifteenth scenario. The optimal
SS&OA strategy identified by the Box model is shown in
Table 7.

5.4. Comparisonwith the nominal model

When Sawik (2013b), Torabi, Baghersad, and Mansouri
(2015), Ni, Howell, and Sharkey (2018), and Hosseini
et al. (2019b) studied the SS&OA problem, they all
assumed that the probabilities of occurrences for dis-
ruption scenarios are deterministic. Now, we ignore the
probability uncertainty of occurrence for disruption sce-
narios, i.e. these probabilities take their nominal values.
In this case, the proposed two-stage DR Mean-CVaR
model degenerates into a two-stage stochastic Mean-
CVaR model, which is our nominal model. The solu-
tion provided by the nominal model tends to yield a
weak robust SS&OA scheme because it ignores the uncer-
tainties of the probabilities. The following experimental
results of the nominal model support these arguments.

The optimal value identified by the nominal model
withα = 0.5, ε = 0.9 is 375, 786, 400.44, which is slightly
lower than the optimal objectives provided by the

Polyhedral and Box models. The nominal model also
selects three suppliers H1, H2 and H5 to cooperate with.
Different from the Polyhedral and Box models, suppli-
ers H1 and H5 are selected as the main suppliers, and
H2 is selected as the backup supplier by the nominal
model. In the first stage, the quantity of products con-
tracted with H1 is 1.068 · 107 and with H5 is 1.102 · 107.
In the second stage, H2 delivers products to the manu-
facturer in some scenarios. For example, the quantity of
delivering products is 1.217 · 106 in the third scenario.H1
delivers surplus products in some scenarios. For example,
the surplus quantity is 4.189 · 106 in the second scenario.
However, the main supplier H5 does not deliver surplus
products in all scenarios. Table 8 displays in detail the
optimal SS&OA scheme offered by the nominal model.

By comparing the experimental results of the Poly-
hedral model, Box model, and nominal model, it can
be concluded that the uncertainties of the probabilities
of occurrence for disruption scenarios have an obvi-
ous impact on the optimal SS&OA scheme. To further
compare the two-stage DR Mean-CVaR model with its
nominal model, following the idea of Ma, Liu, and Liu
(2020), we introduce the distributionally robust price
(PDR),

PDR = (DR)∗ − (Nominal)∗,

where (·)∗ denotes the optimal cost.
The PDR represents the extra cost of the optimal

scheme provided by the DR model to immunise the
influence caused by the uncertain probabilities of dis-
ruption scenario occurrence compared with the nomi-
nal model. After calculation, the PDR of the Polyhedral
model with δ = 0.2,α = 0.5, ε = 0.9 is 725, 812.07, and
the PDR of the Boxmodel with σ = 0.3,α = 0.5, ε = 0.9
is 572, 342.93. The former is higher than the latter. That is,
the extra cost corresponding to the Polyhedral model to
resist the uncertainty of probabilities is higher than that
corresponding to the Box model.
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Table 6. The optimal SS&OA scheme identified by the Polyhedral model with δ = 0.2,α = 0.5, ε = 0.9.

Obj 376,512,212.51

Main supplier H2 q2: 1.122K1

q2,1 q2,2 q2,3 q2,4 q2,5 q2,6 q2,7 q2,8 q2,9 q2,10 q2,11 q2,12 q2,13 q2,14 q2,15
1.122K1 1.122K1 1.122K1 9.762K2 1.122K1 1.122K1 1.122K1 1.122K1 1.122K1 1.122K1 1.122K1 1.122K1 1.122K1 9.033K2 9.325K2
z2,1 z2,2 z2,3 z2,4 z2,5 z2,6 z2,7 z2,8 z2,9 z2,10 z2,11 z2,12 z2,13 z2,14 z2,15
0 3.512K2 0 0 0 0 2.323K2 0 0 2.984K2 3.095K2 0 0 0 0

H5 q5: 1.048K1

q5,1 q5,2 q5,3 q5,4 q5,5 q5,6 q5,7 q5,8 q5,9 q5,10 q5,11 q5,12 q5,13 q5,14 q5,15
1.048K1 6.835K2 1.048K1 1.048K1 1.048K1 1.048K1 8.157K2 8.598K2 1.048K1 7.496K2 7.386K2 1.048K1 1.048K1 1.048K1 1.048K1
z5,1 z5,2 z5,3 z5,4 z5,5 z5,6 z5,7 z5,8 z5,9 z5,10 z5,11 z5,12 z5,13 z5,14 z5,15
0 0 0 5.43K3 0 0 0 0 1.457K3 0 0 0 0 5.43K3 5.43K3

Backup supplier H1

q′
1,1 q′

1,2 q′
1,3 q′

1,4 q′
1,5 q′

1,6 q′
1,7 q′

1,8 q′
1,9 q′

1,10 q′
1,11 q′

1,12 q′
1,13 q′

1,14 q′
1,15

0 2.949K3 0 9.14K3 0 0 0 1.882K2 0 0 0 0 0 1.6426K2 1.3512K2

Note: Obj denotes objective, K1 denotes 107, K2 denotes 106, K3 denotes 105.

Table 7. The optimal SS&OA scheme identified by the Box model with σ = 0.3,α = 0.5, ε = 0.9.

Obj 376,358,734.37

Main supplier H2 q2: 1.107K1

q2,1 q2,2 q2,3 q2,4 q2,5 q2,6 q2,7 q2,8 q2,9 q2,10 q2,11 q2,12 q2,13 q2,14 q2,15
1.107K1 1.107K1 1.107K1 9.762K2 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 9.033K2 9.325K2
z2,1 z2,2 z2,3 z2,4 z2,5 z2,6 z2,7 z2,8 z2,9 z2,10 z2,11 z2,12 z2,13 z2,14 z2,15
0 3.497K2 0 0 0 0 2.469K2 0 0 3.13K2 3.24K2 0 0 0 0

H5 q5: 1.063K1

q5,1 q5,2 q5,3 q5,4 q5,5 q5,6 q5,7 q5,8 q5,9 q5,10 q5,11 q5,12 q5,13 q5,14 q5,15
1.063K1 6.835K2 1.063K1 1.063K1 1.063K1 1.063K1 8.157K2 8.598K2 1.063K1 7.496K2 7.386K2 1.063K1 1.063K1 1.063K1 1.063K1
z5,1 z5,2 z5,3 z5,4 z5,5 z5,6 z5,7 z5,8 z5,9 z5,10 z5,11 z5,12 z5,13 z5,14 z5,15
0 0 0 3.973K3 0 0 0 0 0 0 0 0 0 3.973K3 3.973K3

Backup supplier H1

q′
1,1 q′

1,2 q′
1,3 q′

1,4 q′
1,5 q′

1,6 q′
1,7 q′

1,8 q′
1,9 q′

1,10 q′
1,11 q′

1,12 q′
1,13 q′

1,14 q′
1,15

0 2.949K3 0 9.14K3 0 0 0 2.028K2 0 0 0 0 0 1.6426K2 1.3512K2

Note: Obj denotes objective, K1 denotes 107, K2 denotes 106, K3 denotes 105.
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5.5. Effects about trade-off and confidence level
parameters

In this subsection, to explore the effect of the changes
in the trade-off parameter α and the confidence level
parameter ε on the optimal objective and PDR, sensi-
tivity analyses of α and ε are conducted. We set δ = 0.1
for the Polyhedral model, σ = 0.3 for the Box model,
α takes values from 0.2 to 0.8 in intervals of 0.1, and ε

takes values from 0.75 to 0.95 in intervals of 0.05. Other
parameters remain unchanged. The experimental results
are displayed in Figures 5 and 6.

From Figure 5(a), when ε is fixed, the optimal value
of the Polyhedral model decreases as α increases because
the proportion of Mean increases and the proportion of
CVaR decreases in the objective function. When α is
fixed, the optimal value of the Polyhedralmodel increases
as ε increases. According to Figure 5(b), when ε is
stationary, the PDR of the Polyhedral model increases
as α increases. That is, although the optimal objective
decreases if α increases, the price increases. When α is
fixed, the PDR of the Polyhedral model decreases as ε

increases.
FromFigure 6(a), when ε is stationary, we observe that

the optimal objective of the Box model decreases as α

increases. The reasons for this are the same as in the Poly-
hedral model case. According to Figure 6(b), when ε is
fixed, the PDR of the Box model increases with α. When
α is fixed, as ε increases, the optimal objective of the Box
model increases, and the PDR decreases.

5.6. Effects about sizes of ambiguity sets

In this subsection, sensitivity analyses of δ and σ are
conducted to explore the effect of the sizes of ambiguity
sets on the optimal value and PDR. We set α = 0.5, ε =
0.9 for the Polyhedral and Box models, δ takes values
from 0.05 to 0.35 in intervals of 0.05, and σ takes values
from 0.2 to 0.5 in intervals of 0.05. Other parameters
remain unchanged. For the Polyhedral ambiguity set, if δ
progressively increases, the size of the Polyhedral ambi-
guity set also increases. Similarly, as σ becomes larger,
the size of the Box ambiguity set becomes larger. The
experimental results are shown in Figure 7.

From Figure 7, it can be observed that the optimal
objectives of the Polyhedral and Box models increase
with δ and σ , respectively. At the same time, the increase
in the optimal objectives of the above models leads to the
increase in the PDRs of the Polyhedral and Box models.
This phenomenon is rational. The reason is that as the
sizes of the Polyhedral and Box ambiguity sets become
progressively larger, the Polyhedral and Box models
need more extra costs to immunise against the influence
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Figure 5. The objective and PDR of the Polyhedral model with δ = 0.1 under different α and ε. (a) Objective (b) PDR.

Figure 6. The objective and PDR of the Box model with σ = 0.3 under different α and ε. (a) Objective (b) PDR.

caused by the uncertain probability of occurrence for
disruption scenarios. Therefore, the optimal objectives
and PDRs of the Polyhedral and Box models increase
with the size of the corresponding ambiguity set.

5.7. Effects about the number of selected scenarios

In this subsection, the effect of the number (N) of selected
scenarios on the objectives of the Polyhedral and Box
models is explored. We set N to the following values:
12, 15, 18, 21, and 24. The other parameters are set as

in the previous subsection. The experimental results are
reported in Figure 8 and Table 9.

From Figure 8, it can be observed that the optimal
objectives of the Polyhedral and Box models increase
with N. The more disruption scenarios the decision-
maker selected mean that the optimal SS&OA schemes
generated by the Polyhedral and Box models need to
take into account more scenarios. From this observation,
the objectives of the Polyhedral and Box models increase
with N.

The number of selected scenarios affects the optimal
SS&OA schemes provided by the Polyhedral and Box
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(a) (b)

Figure 7. The objective and PDR under different δ and σ . (a) Polyhedral model with a = 0.5, ε = 0.9 (b) Box model with a = 0.5,
ε = 0.9.

Figure 8. The objectives of models with α = 0.5, ε = 0.9 under
different N.

models. Table 9 provides the optimal SS&OA schemes
obtained by the Polyhedral model with δ = 0.2, α = 0.5,
ε = 0.9 and Box model with σ = 0.3, α = 0.5, ε = 0.9
under N = 24. From Table 9, it is found that both mod-
els select H2 and H4 as main suppliers and H1 as backup
supplier. Supplier H5 is not selected. In addition, the
optimal order quantities in the pre-disruption and post-
disruption stages also change. The details of the opti-
mal SS&OA schemes identified by these two models are
shown in Table 9.

5.8. Effects about resilience distances

In this subsection, sensitivity analyses of Sd and TD
are performed. We set δ = 0.2,α = 0.5, ε = 0.9 for
the Polyhedral model and σ = 0.3,α = 0.5, ε = 0.9
for the Box model. We let (Sd,TD) take the fol-
lowing values:(200, 2000), (400, 2000), (400, 2500), and

(200, 3000). Other parameters remain unchanged. The
experimental results are provided in Table 10 and
Figure 9.

From Table 10, it is found that as TD increases, the
number of suppliers selected for cooperation increases.
For example, three suppliers are selected for coopera-
tion when TD < 3000, and four suppliers are selected
when TD = 3000. This observed phenomenon is justi-
fied. The decision-maker should cooperate with more
suppliers to meet the resilience distance requirement
when the required least total segregation distance among
all selected suppliers increases. In addition, for Sd and
TD, when one of these two parameters is constant,
the total distance among the selected suppliers (i.e. the
resilience of the supply chain) increases with the other
parameter.

From Figure 9, when Sd is constant, for the Polyhedral
and Boxmodels, the optimal objectives increase withTD.
This is mainly because when TD becomes larger, the total
distance among the selected suppliers becomes larger,
which increases the cooperation cost and product’s trans-
portation cost. When TD is constant, the objectives of
these two models also increase as Sd increases. The rea-
son is mainly that the total distance among the selected
suppliers increases with Sd, which increases the product’s
transportation cost.

6. Managerial insights

Based on the numerical experiments and result analyses,
the following managerial insights for decision-makers in
industry were obtained:

• The SS&OA schemes provided by the proposed two-
stage DR Mean-CVaR model and its nominal model
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Table 9. The optimal SS&OA schemes identified by the Polyhedral and Box models under N = 24.

• Polyhedral model with δ = 0.2,α = 0.5, ε = 0.9 Obj: 399,026,223.39

Main supplier:H2, q2: 1.107K1
(q2,s)s∈[24] 1.107K1 1.107K1 1.107K1 9.762K2 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1 1.107K1

1.107K1 9.034K2 9.325K2 1.107K1 9.034K2 1.107K1 1.107K1 8.742K2 9.908K2 1.064K1 1.107K1 1.107K1

(z2,s)s∈[24] 0 0 0 0 0 2.398K2 0 0 0 0 89279 0
0 0 0 9.925K2 0 0 6.914K2 0 0 0 0 0

Main supplier:H4, q4: 1.063K1

(q4,s)s∈[24] 1.063K1 1.063K1 1.063K1 1.063K1 1.063K1 1.039K1 1.063K1 1.063K1 1.063K1 1.063K1 1.054K1 1.063K1
1.063K1 1.063K1 9.484K2 9.634K2 1.063K1 1.063K1 9.935K2 1.063K1 1.063K1 1.063K1 1.063K1 1.063K1

(z4,s)s∈[24] 0 0 0 1.311K2 0 0 0 0 0 0 0 0
0 2.04K2 0 0 2.04K2 0 0 2.331K2 0 4.371K3 0 0

Backup supplier:H1

(q′
1,s)s∈[24] 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2.891K2 0 0 0 0 0 1.166K2 0 0 0

• Box model with σ = 0.3,α = 0.5, ε = 0.9 Obj: 395,943,902.05

Main supplier:H2, q2: 9.808K2
(q2,s)s∈[24] 9.808K2 9.808K2 9.808K2 9.762K2 9.808K2 9.808K2 9.808K2 9.808K2 9.808K2 9.808K2 9.808K2 9.808K2

9.808K2 9.034K2 9.325K2 9.808K2 9.038K2 9.808K2 9.808K2 8.742K2 9.808K2 9.808K2 9.808K2 9.808K2

(z2,s)s∈[24] 0 0 0 0 0 1.505K2 0 0 0 0 1.355K2 0
7.527K3 0 0 2.258K2 0 0 1.957K2 0 0 0 0 1.204K2

Main supplier:H4, q4: 1.189K1
(q4,s)s∈[24] 1.189K1 1.189K1 1.189K1 1.189K1 1.189K1 1.039K1 1.189K1 1.189K1 1.189K1 1.189K1 1.054K1 1.189K1

1.114K1 1.189K1 9.484K2 9.634K2 1.189K1 1.189K1 9.935K2 1.189K1 1.159K1 1.189K1 1.189K1 1.069K1

(z4,s)s∈[24] 0 0 0 45817 0 0 0 0 0 0 0 0
0 7.743K3 0 0 7.743K3 0 0 1.066K2 0 0 0 0

Backup supplier:H1
(q′

1,s)s∈[24] 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2.891K2 0 0 0 0 0 3.011K3 0 0 0

Note: Obj denotes objective, K1 denotes 107, K2 denotes 106, K3 denotes 105.

(a) (b)

Figure 9. The objectives ofmodels withα = 0.5, ε = 0.9 under different (Sd, TD). (a) Polyhedral model with δ = 0.2 (b) Boxmodel with
σ = 0.3.
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Table 10. Experimental results of the Polyhedral and Boxmodels
under different (Sd, TD).

Supplier Obj

(Sd, TD) Main Backup
Total

distance Polyhedral Box

(200, 2000) H2,H5 H1 2239.3 3.765K4 3.763K4
(400, 2000) H1,H2 H4 2361.4 3.893K4 3.893K4
(400, 2500) H2,H4 H3 2590.5 4.008K4 3.968K4
(200, 3000) H2,H5 H1,H4 3768.4 3.798K4 3.797K4

Note: Obj denotes objective, K4 denotes 108.

are different. This implies that the uncertain probabil-
ities have a significant impact on the optimal SS&OA
scheme. Under the condition that probabilities of
occurrence for disruption scenarios are ambiguous,
the application of the SS&OA scheme provided by the
nominal model may not obtain the ideal result. If the
decision-maker cannot obtain the exact probabilities
of occurrence for disruption scenarios and wants to
immunise against the influence of the uncertain prob-
abilities, he or she can apply the proposed two-stage
DR Mean-CVaR model to make informed decisions.
The robust optimal decision provided by our model
is resistant to the uncertain probabilities at a small
price. The proposed two-stage DRMean-CVaRmodel
is an important enhancement of the methods in the
literature.

• The values of the trade-off parameter and confi-
dence level parameter reflect the risk preference of
the decision-maker and affect the optimal objective
and SS&OA scheme of the two-stage DRMean-CVaR
model. A smaller trade-off parameter indicates that
the decision-maker emphasises the average level at
which the cost exceeds the given VaR value. A higher
confidence level indicates that the decision-maker is
risk averse. If the decision-maker pays more attention
to risk, then he or she should choose a smaller trade-
off parameter and a larger confidence level parameter.
Otherwise, he or she should choose a larger trade-off
parameter and a smaller confidence level parameter.

• By performing the sensitivity analysis of the sizes of
ambiguity sets, it can be concluded that the sizes obvi-
ously affect the optimal SS&OA solution from the
proposed two-stage DR Mean-CVaR model. Differ-
ent scales of ambiguity sets produce different optimal
values and prices to resist uncertainty. A larger ambi-
guity set includes a larger range of probability vector
disturbances. The decision-maker should choose rea-
sonable ambiguity sets according to the enterprise’s
risk tolerance. If he or she wants the optimal deci-
sion to immunise against the influence of the larger
uncertainty, the larger scale of ambiguity sets should
be chosen. This is a key point and is also a new finding.

• From the sensitivity analysis of the number of selected
scenarios, it is a critical step to select scenarios when
constructing the ambiguity sets in the proposed robust
model. This number significantly affects the optimal
SS&OA schemes provided by the Polyhedral and Box
models. An increase in this number implies that the
obtained SS&OA schemes provided by the Polyhe-
dral and Box models are suitable for more scenarios.
However, the cost also increases with respect to this
number. Therefore, the decision-maker should make
a trade-off between the number of selected scenarios
and cost and rationally filter scenarios according to
his or her risk preference. The conservative decision-
maker should choose more scenarios. Otherwise, the
decision-maker can choose fewer scenarios.

• Once a disruption occurs in a supply chain network,
there may be a series of ripple effects (Ivanov 2022a;
Ivanov 2022b; Rozhkov et al. 2022). As mentioned
in the literature (Dolgui, Ivanov, and Rozhkov 2020a;
Ivanov andDolgui 2021a), it is essential to incorporate
resilience strategies (e.g. cooperatingwith backup sup-
pliers, surplus supply from the non-disrupted main
suppliers, setting resilience distances) into the supply
chain to avoid disruptions under multiple disruption
risks. Taking the resilience distances as an example, if
the decision-maker wants to make the robust optimal
SS&OA scheme more resilient, then he or she should
set a larger resilience distance.

7. Conclusions and future research

This paper studied the SS&OA problem under disrup-
tion risks. A series of disruption scenarios was used
to describe disruption risks. Since it is usually unre-
alistic to assume that the probabilities of occurrence
for disruption scenarios are deterministic in our lives,
we addressed that these probabilities are uncertain in
the current study. A novel two-stage DR Mean-CVaR
SS&OA model for risk-averse decision-makers in indus-
try was developed. For this purpose, we incorporated
three resilience measures into the proposed model to
increase the resilience of the supply chain. The main
finding, that the probabilities’ uncertainty indeed has
a significant impact on the optimal SS&OA scheme,
was obtained. For the SS&OA problem with uncertain
probabilities of occurrence for disruption scenarios in
other contexts (e.g. companies, industries, countries),
the developed two-stage DR Mean-CVaR model is also
valid.

The developed method adopts a flexible structure and
has the following merits: (i) the established model can
be applied to the case where the probabilities of occur-
rence for disruption scenarios are uncertain, and (ii)
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the risk-averse decision-maker in industry can apply the
developed model to balance the average cost and the
level of risk. As a consequence, this study has prac-
tical implications and fills gaps in the current litera-
ture. Moreover, since the SS&OA problem was based
on uncertain probabilities of occurrence for disruption
scenarios, it aims to balance the average cost and the
level of risk, which was not addressed in the literature.
From this point of view, this study also has theoretical
implications.

The procedure for constructing the ambiguity set was
developed and the Polyhedral and Box ambiguity sets
were constructed to characterise the uncertain proba-
bilities. The Lagrange and linear duality theories were
adopted to transform the proposed two-stage DR Mean-
CVaR model into two MILP models under the con-
structed ambiguity sets, which can be solved by general
commercial software. Therefore, the proposed two-stage
DR Mean-CVaR model is practical.

The manufacturer of Huawei cell phones located in
Changsha was used as a case to conduct some numerical
experiments and to illustrate the feasibility and effective-
ness of the proposed two-stage DR Mean-CVaR model.
The experimental results show that the proposed two-
stageDRmethod is not only feasible, but can also provide
a robust SS&OA solution to protect against the influence
of the uncertainty of the probabilities. In addition, a series
of sensitivity analyses were performed regarding some
parameters in the proposed model, such as the trade-off
coefficient and the confidence level parameter. According
to the experimental results, some management insights
are summarised for the decision-maker in production
research.

The research had two limitations. The first is that
the types of ambiguity set constructed were not diverse
enough for characterising these uncertain probabilities of
occurrence for disruption scenarios. The second is that
only the uncertainty of the probability vector was dealt
with. In practice, there may be uncertainties in other
model parameters.

There are some suggestions in terms of future
research. The first extension is to add more resilience
strategies (Hosseini et al. 2019b) to the SS&OA model
and then further analyse which strategy has the great-
est impact on the resilience of the supply chain (Moosavi
and Hosseini 2021) under the uncertain probabilities of
occurrence for disruption scenarios. The second inter-
esting extension is to construct other types of ambigu-
ity sets to characterise these uncertain probabilities of
occurrence for disruption scenarios. The third interest-
ing extension is to investigate the SS&OA problem under
other uncertain model parameters, such as demand
and supply capacity. Meanwhile, when distributional

information about these uncertain parameters is par-
tially known, the decision-maker can use fuzzy DRO
method (Liu, Chen, and Liu 2021) or stochastic DRO
method (Delage and Ye 2010) to address the SS&OA
problem.

Notes

1. https://finance.eastmoney.com/a/202106111957465278.
html

2. https://zhuanlan.zhihu.com/p/157520487
3. https://www.idc.com/getdoc.jsp?containerId=prAP4742

4421
4. https://map.baidu.com/
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Appendices

Appendix 1: Handling non-linear constraint

Proposition A.1: Let r1ij ∈ {0, 1},∀i, j ∈ I. Non-linear item
∑
i∈I∑

j∈I,i<j
xixjdij equals linear item

∑
i∈I

∑
j∈I,i<j

r1ijdij, where r1ij, xi, xj

satisfy the following linear constraints:

r1ij ≤ xi, ∀i, j ∈ I, (A1)

r1ij ≤ xj, ∀i, j ∈ I, (A2)

r1ij ≥ xi + xj − 1, ∀i, j ∈ I. (A3)

Proof: From constraints (A1)–(A3), for any given i, j ∈ I, i < j,
it is known that the combination (xi, xj, r1ij) takes values in one
of the following four cases: (i) if xi = 0, xj = 0, then r1ij = 0; (ii)
if xi = 1, xj = 0, then r1ij = 0; (iii) if xi = 0, xj = 1, then r1ij =
0; (iv) if xi = 1, xj = 1, then r1ij = 1. In all four cases, xixjdij =
r1ijdij holds. Hence,

∑
i∈I

∑
j∈I,i<j

xixjdij equals
∑
i∈I

∑
j∈I,i<j

r1ijdij. �

The following Corollary 1 gives the re-representation of non-
linear constraint (1).

Corollary A.1: Non-linear constraint (1) is equivalent to the
following linear constraints:

TD ≤
∑
i∈I

∑
j∈I,i<j

r1ijdij+
∑
i∈I

∑
j∈I

r2ijdij +
∑
i∈I

∑
j∈I,i<j

r3ijdij, (A4)

r2ij ≤ xi, ∀i, j ∈ I, (A5)

r2ij ≤ x′
j, ∀i, j ∈ I, (A6)

r2ij ≥ xi + x′
j − 1, ∀i, j ∈ I, (A7)

r3ij ≤ x′
i, ∀i, j ∈ I, (A8)

r3ij ≤ x′
j, ∀i, j ∈ I, (A9)

r3ij ≥ x′
i + x′

j − 1, ∀i, j ∈ I, (A10)

r1ij, r
2
ij, r

3
ij ∈ {0, 1}, ∀i, j ∈ I, (A11)

Constraints(A1)-(A3).

Proof: According to the proof of Proposition 1, it is known that
xix′

jdij = r2ijdij and x′
ix

′
jdij = r3ijdij, which complete the proof of

the corollary.
For convenience, let r = (r1, r2, r3), r1 = (r1ij)i,j∈I , r2 =

(r2ij)i,j∈I , and r3 = (r3ij)i,j∈I . As a result, the non-linear constraint
(1) can be linearised. �

Appendix 2: The proof of Theorem 1

Proof: We first deal with the first item max
P∈P

α TCT
2 P in (25).

The following relationship can be obtained:

αmax
P∈P

TCT
2 P ⇔ α TCT

2 P0 + αmax
ξ

{TCT
2 Aξ |eTAξ = 0,

P0 + Aξ ≥ 0, ||ξ ||1 ≤ 1}.

We next handle the above inner maximisation problem. It is
known that the following maximisation problem:

max
ξ

{TCT
2 Aξ |eTAξ = 0,P0 + Aξ ≥ 0, ||ξ ||1 ≤ 1}

is equivalent to the minimisation problem

−min
ξ

{−TCT
2 Aξ |eTAξ = 0,P0 + Aξ ≥ 0, ||ξ ||1 ≤ 1}.

The Lagrange function of the aboveminimisation optimisation
problem is as follows:

L(θ ,� ,μ, ξ) = −TCT
2 Aξ + �T(−P0 − Aξ)

+ μeTAξ + θ(||ξ ||1 − 1),

where (θ ,� ,μ) ∈ R × R
|S| × R.

Then the Lagrange dual function is given by

g(θ ,� ,μ) = min
ξ

L(θ ,� ,μ, ξ)

= (−PT0� − θ)

− max
ξ

[(AT TC2 +AT� − ATeμ)
T
ξ − θ ||ξ ||1]

= (−PT0� − θ) − f ∗(AT TC2 +AT� − ATeμ),

where

f ∗(AT TC2 +AT� − ATeμ)

=
{
0, ||AT TC2 +AT� − ATeμ||∞ ≤ θ ,
∞, otherwise,

is the conjugate function of f ∗(ξ) = θ ||ξ || (see Boyd, Boyd,
and Vandenberghe (2004)). Since the Lagrange dual function
yields lower bounds for any � ≥ 0 and θ ≥ 0, we obtain that
max
θ ,� ,μ

g(θ ,� ,μ) is equivalent to the following maximisation

problem:

max
θ ,� ,μ

−PT0� − θ

s.t. ||AT TC2 +AT� − ATeμ||∞ ≤ θ ,
� ≥ 0, θ ≥ 0.

Further, the following equivalent relationships are established:

max
P∈P

α TCT
2 P

⇔ α TCT
2 P0

− α

⎧⎪⎨
⎪⎩
max
θ ,� ,μ

−PT0� − θ

s.t. ||AT TC2 +AT� − ATeμ||∞ ≤ θ ,
� ≥ 0, θ ≥ 0.

⇔

⎧⎪⎨
⎪⎩
min
θ ,� ,μ

α(TCT
2 P0 + PT0� + θ)

s.t. ||AT TC2 +AT� − ATeμ||∞ ≤ θ ,
� ≥ 0, θ ≥ 0.
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Using the similar method, we get the following equivalent
representation:

max
P∈P

(1 − α)

{
φ + 1

1 − ε
tTP

}

⇔ (1 − α)φ + 1 − α

1 − ε
tTP0

− 1 − α

1 − ε

⎧⎪⎪⎨
⎪⎪⎩
max
θ̂ ,�̂ ,μ̂

−PT0 �̂ − θ̂

s.t. ||ATt + AT�̂ − ATeμ̂||∞ ≤ θ̂ ,
�̂ ≥ 0, θ̂ ≥ 0

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
θ̂ ,�̂ ,μ̂

(1 − α)

{
φ + tTP0 + PT0 �̂ + θ̂

1 − ε

}

s.t. ||ATt + AT�̂ − ATeμ̂||∞ ≤ θ̂ ,
�̂ ≥ 0, θ̂ ≥ 0.

The proof of Theorem 1 is complete. �

Appendix 3: the proof of Theorem 2

Proof: We first need to deal with the following equivalent
reformulation:

max
P∈P

α TCT
2 P ⇔ α TCT

2 P0

+ αmax
ξ

{TCT
2 ξ |eTξ = 0, ξL ≤ ξ ≤ ξU}.

For max
ξ

{TCT
2 ξ |eTξ = 0, ξL ≤ ξ ≤ ξU}, according to linear

programming duality theory, its dual programming problem is

min
τ ,γ ,π

ξTUπ − ξTLγ

s.t. eτ + π − γ = TC2,

π ≥ 0,

γ ≥ 0,

where (τ ,π , γ ) ∈ R × R
|S| × R

|S| is the dual variables.
Finally, we get the following equivalent reformulation:

max
P∈P

α TCT
2 P ⇔

⎧⎪⎪⎨
⎪⎪⎩
min
τ ,γ ,π

α(TCT
2 P0 + ξTUπ − ξTLγ )

s.t. eτ + π − γ = TC2,
π ≥ 0,
γ ≥ 0.

Using the similar method, we get the next equivalent
reformulation:

max
P∈P

(1 − α)

{
φ + tTP

1 − ε

}

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
τ̂ ,γ̂ ,π̂

(1 − α)

{
φ + tTP0 + ξTU π̂ − ξTL γ̂

1 − ε

}

s.t. eτ̂ + π̂ − γ̂ = t,
π̂ ≥ 0,
γ̂ ≥ 0.

The proof of Theorem 2 is complete. �


	1. Introduction
	2. Literature review
	3. Model development
	3.1. Problem statement
	3.2. Objective function
	3.3. Resilience constraints
	3.4. Two-stage DR Mean-CVaR model for resilient SS&OA problem

	4. Model analysis
	4.1. Reformulating objective function
	4.2. Constructing ambiguity sets based on disruption scenarios
	4.3. Deriving the tractable robust counterparts
	4.4. Computationally tractable reformulations for Model (19)

	5. Case study
	5.1. Problem background and data source
	5.2. Constructing ambiguity sets
	5.3. Computational results of the proposed model
	5.4. Comparison with the nominal model
	5.5. Effects about trade-off and confidence level parameters
	5.6. Effects about sizes of ambiguity sets
	5.7. Effects about the number of selected scenarios
	5.8. Effects about resilience distances

	6. Managerial insights
	7. Conclusions and future research
	Notes
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [609.704 794.013]
>> setpagedevice




