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ABSTRACT
This article studies the response problem of an emergency logistics
network with a decision hierarchy relationship under uncertainty.
To account for the partial distribution information about uncertain
demand and transportation costs, we construct a moment-based
ambiguity set based on limited historical data, where the pivot
variable method is employed to determine the confidence inter-
val of the mean value. Based on the constructed ambiguity set, we
develop a novel distributionally robust bi-level post-disaster emer-
gency logistics location-routeing model. By exploiting the structural
characteristic, chance-constrained models under box-ellipsoid and
budget perturbation sets are reformulated as bi-level mixed-integer
conic programming models. To accelerate the solution procedure,
the bi-level models are further converted into single-level ones via
Karush-Kuhn-Tucker condition, which can be directly solved to opti-
mality using CPLEX software. Supply risk value for each supplier is
obtained by applying analytic hierarchy process. We conduct exten-
sive experiments using the Iranian flood as the case study to address
the computational performance of our proposed optimisation
method.
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1. Introduction

Disasters can leave thousands of people homeless and cause massive loss of life and neg-
ative socio-economic impacts. Natural disasters have become increasingly common (Kara
and Savaşer 2017; Kovács and Falagara Sigala 2021). For example, in 2016, 1.4 million peo-
ple (12% of Haiti’s population) required assistance because of Hurricane Matthew. And in
2018, 315 major natural disasters occurred worldwide, causing $131.7 billion in economic
damage and affecting 68.5 million people, who were in need of basic survival supplies and
essential services (Guha-Sapir 2019). The devastating loss of life caused by major disasters
highlights the importance of devising an effective post-disaster emergency management
scheme (Noham and Tzur 2018; Zhang et al. 2022a). Under such circumstances, exploring
the development of an appropriate emergency logistics network is critical to mitigate the
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impact of disasters and save lives. The response phase is one of the four critical phases of
disaster emergencymanagement. It begins after a disaster, usually lasts several weeks, and
involves several activities (Shokr, Jolai, and Bozorgi-Amiri 2022). For instance, it is necessary
to establish distribution centres at optimal locations for the efficient storage and transfer
of relief items. The dispatching of vehicles and the meticulous planning of their routes are
crucial elements in the transportation of items fromdistribution centres to disaster-stricken
areas (Chenget al. 2022). Additionally, the risks associatedwithpurchasing relief items from
suppliers need to be considered to effectively provide victims with what is required (Chen
et al. 2022).

When designing an emergency logistics network, decisions regarding operational mat-
ters aremade at two distinct levels. The Disaster Management Organization (DMO) and the
International Federation of Red Cross (IFRC) act as decision makers at the upper and lower
level, respectively. For emergency logistics to function optimally, decision makers should
be able to optimise their respective objectives independently and cooperate with each
other (Haeri et al. 2020). DMO dispatches vehicles, plans their routes, and determines the
appropriate amount of supplies to be transported to cater to the requisites of the impacted
regions (Jobe 2011). The IFRC is responsible for purchasing goods from suppliers and sup-
plying relief items through public donations (Chen et al. 2022). It makes sense to set up the
emergency response problem as a structure with the hierarchical relationship.

One of the main challenges in developing an efficient emergency logistics plan lies in
managing uncertainties. When a disaster strikes, the transportation infrastructure is at risk
of damage, and transportation costs become uncertain (Wang, Liu, and Pei 2023; Ye, Jiao,
and Yan 2020). Despite the availability of disaster prediction systems, accurate assessment
of damage remains a complex task, leading to uncertainty in demand (Eftekhar, Jeannette
Song, and Webster 2022; Sabouhi et al. 2019). The robust optimisation (RO) approach is
a reasonable choice when faced with uncertainty and lack of information about demand
and transportation cost distributions, and is generally referred to as an overly conserva-
tive solution. In recent years, the distributionally robust optimisation (DRO) method has
received attention as a powerful decision-making tool under uncertainty if supported by
available data to avoid an overly conservative solution (Ghosal and Wiesemann 2020;
Shang et al. 2021; Yin, Liu, and Chen 2023). Moment information on uncertain parameters,
such as demand and transportation costs, can be estimated using statistical techniques to
aid decision makers in optimising the rescue of victims. Therefore, we address the uncer-
tainties regarding demand and transportation costs in emergency logistics problems and
construct ambiguity sets using partial distribution information.

The above considerations encourage us to explore the following questions. How can
a post-disaster location-routeing model that integrates the hierarchical relationship and
uncertainties in demand and transportation costs be proposed? How can ambiguity sets
be constructed when only limited historical data is available? How can the supply risk
parameter be quantified? What are the effects of uncertainty on optimal decision making?

To address these research questions, we present a distributionally robust bi-level
post-disaster emergency logistics location-routeing (PELL) model with ambiguous chance
constraints, where only partial distribution information is available regarding the dis-
tributions of uncertain demand and transportation costs. The upper-level objective is
to minimise transportation time, while the lower-level objective is to minimise supply
risk. Due to the non-convexity of the chance-constrained model, we approximate it as
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mixed-integer second-order conic andmixed-integer linear programmingmodels utilising
partial distribution information. Analytic hierarchy process (AHP) is employed to quan-
tify the level of supply risk. Moreover, comparative analyses are carried out to verify the
performance of the DRO model. The main contributions of this study are summarised as
follows.

• We focus on addressing the multi-supplier, multi-centre, multi-period emergency logis-
tics problem under transportation cost and demand uncertainties, where the hierar-
chical decision relationships are established between DMO and IFRC. Based on partial
moment information on random transportation cost anddemand, a newdistributionally
robust bi-level model is developed to ensure the timely delivery of emergency supplies
to disaster areas.

• According to limited historical data, the pivot variable method is employed to estimate
the confidence interval when constructing the ambiguity set of the mean value. Com-
putationally tractable forms about the ambiguous chance constraints are derived under
box ∩ ellipsoid perturbation set and budget perturbation set. We then reformulate the
bi-levelmodel into a single-levelmixed-integer second-order conic/linear programming
model by Karush-Kuhn-Tucker (KKT) condition.

• The validity of the proposedmethod is verified through a case study of the Iranian flood.
The computational results indicate that higher budget levels lead to increased inventory
at the distribution centre, consequently reducing shipping time. Additionally, compara-
tive analyses are carried out between the decision schemes of the DRO model and the
ROmodel, as well as stochastic optimisation (SO) model. Numerical results demonstrate
that DROmodel reduces conservativeness compared to the ROmodel. In contrast to SO
model, our DROmodel can hedge against distribution ambiguity.

The remainder of this paper is organised as follows. Section 2 provides a literature review
of relevant studies on emergency logistics problems. Section 3 outlines the new distribu-
tionally robust bi-level PELL model. Section 4 details the process for obtaining the safe
approximation of the DRO model. Section 5 presents the numerical results of the pro-
posed model and provides insights for management decision-making. Finally, conclusions
and prospects for future research are discussed in Section 6. All proofs are relegated
to Appendix 1.

2. Literature review

This study is associated with emergency logistics location-routeing and allocation prob-
lem, and methodologies for dealing with uncertainty in emergency logistics. Thus, these
problems are reviewed in the following subsections.

2.1. Emergency logistics location-routeing and allocation problem

The importance of emergency logistics location-routeing and allocation problem has been
recognised by both researchers and practitioners (Kundu, Sheu, and Kuo 2022). Related
research has been based on a single-level modelling framework. For example, Knott (1987)
was among the first to study emergency logistics problem and proposed amodel to reduce
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demand loss using limited supply and different vehicles. Sheu (2007) proposed a hybrid
fuzzy clustering optimisation common distribution method for solving the problem of
emergency logistics distribution to meet the urgent needs of disaster areas. Huang, Kim,
andMenezes (2010) explored the location problem for emergency logistics and developed
an algorithm to recognise locations for the relief chain. Sheu (2010) developed a model
for relief need prediction and allocation under incomplete information for large-scale
emergency logistics operation problems. Huang, Smilowitz, and Balcik (2012) proposed
a routeing-allocation model in emergency logistics considering three key elements: effi-
ciency, efficacy, and fairness. Rath andGutjahr (2014) considered a location-routeingmodel
in emergency logistics systems and applied math-heuristic technique to solve the model.
More recently, Vahdani et al. (2018) presented a multi-objective, multi-commodity, and
multi-period formulation to improve the safety of rescuers, the possibility of on-time vehi-
cle arrival, and uninterrupted road repair. Sabouhi et al. (2019) examined a multi-objective
programming model for locating interchange points and shelters to solve the problem of
transporting the injured to hospitals and evacuating people to shelters. Yu et al. (2019)
presented a nonlinear integer programming model and developed a rollout algorithm to
address the issues of efficiency, effectiveness, and fairness in emergency logistics. Ghaffari
et al. (2020) considered a supply chain network consisting of suppliers, distribution centres
and demand points and proposed a mixed-integer programming model in which a parti-
cle swarm optimisation algorithm was designed to solve the large-scale problem. Akbari
and Shiri (2022) conducted research on the relief distribution problem aiming to minimise
delays at critical nodes following road network damage caused by a disaster. In addition,
some researchers have studieddemand forecasting and central site reliability in emergency
management. For example, Ghasemi and Babaeinesami (2019) used a fuzzy inference sys-
tem to predict the demand for relief supplies under different scenarios, which was tested
in a case study of Tehran city. Ahmadi Choukolaei et al. (2021) evaluated the location of
affected areas and the optimal points proposed by the Geographic Information System
based on 18 criteria, which were weighted by applying the triangular fuzzy aggregation
method. Hosseini et al. (2022) evaluated the performance of emergency centres based
on health protocols with criteria that considered emergency centres prevention and vehi-
cle operation, in which the criteria were weighted using the triangular fuzzy aggregation
method. Choukolaei, Ghasemi, and Goodarzian (2023) assessed the efficiency and sustain-
ability of disaster management centres in the disaster response phase, using fuzzy Delphi
method to classify research criteria and triangular fuzzy aggregation method to classify
weight criteria.

There are also researchers focussing on bi-level models for addressing emergency logis-
tics problems. Kamyabniya et al. (2019) investigated a two-stage mechanism capable of
coordinating two heterogeneous rescue organisations in a network such that their inter-
ests and goals are satisfied, where the first stage is a bi-level mixed-integer linear model. Li
and Teo (2019) demonstrated a bi-level formulation for the repair of road networks and the
dispatchofmaterials in theaftermathof adisaster. Gao (2022)proposedabi-level stochastic
mathematical framework addressing the multi-commodity rebalancing quandary in emer-
gency logistics. This model offered optimal schemes for commodity transport allocation
and vehicle transport quantities. Ghasemi et al. (2022a) designed a secondary blood supply
chain network taking into account the uncertain nature of production costs, transportation
costs, and demand. They developed a two-stage bi-levelmodel with the goal ofminimising
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total costs and maximising donor utility. They used a hybrid planning approach to tackle
uncertainty and validated the model using a real case. The above-mentioned studies focus
on the location of the distribution centre or the vehicle routeing problem, whereas the
current study investigates the twoproblems simultaneously. Additionally,weexplicitly cap-
ture the uncertainties of demand and transportation cost to formulate the PELLmodel, and
the obtained robust optimal solution can immunise against uncertainty when only partial
distribution information is available.

2.2. Methodologies for dealingwith uncertainty in emergency logistics

Two primary techniques, namely SO and RO, have been proposed to tackle uncertainty.
In the context of SO, uncertain parameters are modelled as random variables with known
probability distributions (Alem, Clark, and Moreno 2016; Gharib, Fatemi Ghomi, and
Jolai 2022; Keshvari Fard, Ljubić, and Papier 2022). For example, Elçi and Noyan (2018)
adopted a mean-risk two-stage SO approach to study emergency logistics problems with
uncertainties of demand and transportation network conditions. Noyan, Meraklı, and
Küçükyavuz (2019) conducted a study on the two-stage optimisation problem associated
with managing the last-mile relief distribution process in the face of uncertainties arising
from demand and network-related factors. Oksuz and Satoglu (2020) explored a two-stage
stochastic programming model to tackle the problem of medical centre location while
accounting for uncertainties in demand, casualty type, distance, and hospital capacity.
Ghasemi, Goodarzian, and Abraham (2022) presented a multi-objective stochastic pro-
gramming model for solving an emergency logistics network design problem in the event
of an earthquake. The proposed model was solved using ε-constraint method and three
meta-heuristic algorithms for a case study. Ghasemi et al. (2022b) formulated a two-stage
stochastic programmingmodel for designinga location-routeing-inventoryproblemunder
seismic conditions, in which the contribution was to design a multi-objective stochastic
fractal search algorithm to solve the second stage model. They considered a case study
of the potential earthquake in Tehran and showed that the proposed model accurately
reflected the performance of the actual system. Rodríguez-Espíndola (2023) devised a
stochastic programming model to optimise decision-making options in the emergency
response scenario. This model took into consideration facility location, purchase, preposi-
tioning, and distribution while knowing the probability distribution of stochastic demand.
To address emergency logistics problems, some researchers have introduced RO models,
which confine uncertain parameters to a particular set of uncertainties without any distri-
butional assumptions. For example, Hu, Liu, andHua (2016) studied the emergency logistics
problem by incorporating transportation costs and demand uncertainty into a RO model.
Ni, Shu, and Song (2018) utilised RO framework to investigate the prepositioning of relief
goods and the post-disaster transportation problem, considering uncertainties such as
demand, surplus supplies, and arc capacity. Balcik and Yanıkoǧlu (2020) formulated a post-
disaster needs assessment model considering uncertain travel time restricted in a coaxial
box uncertainty set.

Given the potential tradeoff between stochastic and robust frameworks, DRO has
recently received significant attention. A few studies have considered DRO in emer-
gency logistics because developing computationally tractable solutions is quite challeng-
ing. Zhang et al. (2022b) studied a DRO multi-objective last-mile transportation model
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for emergency logistics and then transformed the DRO model into second-order conic
programming. Zhang et al. (2021) provided a joint chance constraint model for the emer-
gency logistics problem, constructed an ambiguity set under random travel time, and
subsequently developed conic programming utilising worst-case conditional value-at-
risk approximation. Yang et al. (2023) introduced a DRO location-allocation model that
accounts for uncertainty in both contingency demand and resource supply time. The
model constructed an ambiguity set according to information regarding support, means,
and deviations. X. Wang et al. (2021) considered a target-oriented multi-period location-
transportation problem and developed a DRO model to hedge against demand uncer-
tainty. They proposed benders decomposition method to solve the approximate form
of robust counterpart. D. Wang et al. (2023) considered supplier selection and inven-
tory prepositioning as well as procurement and delivery in response. To counteract the
ambiguity of the demand probability distribution, they proposed a two-stage DRO model
to address the emergency response problem. Different from previous studies, our study
utilises the DRO technique to hedge model uncertainty and employs the pivot variable
method to construct ambiguity sets that rely on partial moment distribution of demand
and transportation costs. To the best of our knowledge, very few studies provide a practical
solution to fully support the bi-level emergency logistics location-routeing problem based
on demand and transportation cost moment information ambiguity.

2.3. Research gap

Table 1 summarises the main differences between our research and the existing study.
As shown in Table 1, only a few studies have addressed bi-level multi-period location-
routeing problem. In the context of the emergency logistics network problem, themajority
of existing literature adopts SO and RO tomitigate uncertaintywhile few studies have been
conducted on the utilisation of DRO. Finally, a noteworthy observation is that most stud-
ies address demand uncertainty, whereas none extend their investigation to encompass
uncertainty in both demand and transportation costs and construct ambiguity sets using
the exponentialmoment information of the distribution. To address these gaps, the bi-level
multi-period location-routeing model is proposed for designing an emergency relief logis-
tics network. We apply DRO to hedge against the distributional ambiguity of demand and
transportation costs, thereby avoiding the excessive conservativeness limitation of RO and
the need for precise probability distributions in the SO.

3. Distributionally robust bi-level PELLmodel

The detailedmathematical formulation of the distributionally robust bi-level PELLmodel is
provided in this section. In the beginning, the main notations used are listed in Table 2.

3.1. Problem statement

Natural disasters have thepotential to cause substantial loss of life andextensivedamage to
property. Effectivemanagementof emergency logistics is essential for safeguardinghuman
lives and mitigating the catastrophic aftermath. Thus, at the beginning of the response
phase, suitable routes are arranged, and the network is designed to distribute relief items
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Table 1. Summary of the existing relevant literature.

Uncertain parameter

Reference Bi-level location-routeing Multi-period Demand Transportation cost
Optimisation
method

Huang, Kim, and
Menezes (2010)

× × × × × Deterministic

Elçi and
Noyan (2018)

× × × � � SO

Vahdani
et al. (2018)

× � � × × Deterministic

Li and Teo (2019) � × � × × Deterministic
Balcik and
Yanıkoǧlu (2020)

× × × × × RO

Oksuz and
Satoglu (2020)

× × × � × SO

Zhang
et al. (2022b)

× × × � × DRO

Akbari and
Shiri (2022)

× � × × × Deterministic

Gao (2022) � × × � × SO
Ghasemi
et al. (2022a)

� × � � � Hybrid method

Ghasemi
et al. (2022b)

× � � � × SO

Ghasemi,
Goodarzian,
and Abra-
ham (2022)

× � × � × SO

Yang et al. (2023) × × � � × DRO
This article � � � � � DRO

(RIs) to affected people. To describe the transportation and relief allocation aspects of
emergency logistics clearly, Figure 1 is applied to represent this network.

In Figure 1, the emergency logistics activity from the supplier to the IFRC central ware-
house, later to the distribution centres (DCs) and finally to the need sites (NSs) is considered.
The supplier consists of three components: a central IFRC warehouse, external suppliers
(ESs), and public donations. The IFRC central warehouse is a permanent facility where relief
items can be stored and updated. The IFRC organisation acts as a decision maker and aims
to collect goods from these three sub-warehouses to the IFRC’s warehouse. DCs play a tran-
sit role and are located near the NSs. The endpoint of emergency logistics is NSs, where RIs
are distributed directly to the victims. DMO is responsible for transporting and distributing
RIs to meet the needs of survivors.

In this context, DMO is considered to be the leader and IFRC is the follower. The deci-
sion makers of the upper-level and lower-level optimisation problems correspond to the
leader and follower, respectively. The DMO first makes a decision and, after observing the
DMO’s decision, the IFRC reacts. Thus, the IFRC optimises his/her objective by consider-
ing the decision made by the DMO. In this study, the emergency logistics transportation
and relief distribution problem is described as a bi-level model. More specifically, the DMO
with higher authority decides on the transportation anddistributionoptions for emergency
logistics and is concerned with reducing transportation time. At the lower level, the IFRC
organisation is responsible for supply riskminimisation and decides on the number of relief
items to be provided to the IFRC in emergency logistics by ESs and public donations. In
addition, the general assumptions are summarised as follows.
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Table 2. Notations.

Notations Detailed definitions

Indices and sets
[I] Set of external supplier, i ∈ [I];
[J] Set of IFRC warehouse, j ∈ [J];
[K] Set of distribution centre, k ∈ [K];
[C] Set of need site,m, n ∈ [C];
[R] Set of relief item, r ∈ [R];
[T] Set of time periods, t ∈ [T];
[V] Set of vehicles, v ∈ [V];
[L] Set of dimensions of the perturbation vector ζ , l ∈ [L];
[E] Set of dimensions of the perturbation vector ηmrt , e ∈ [E].
Deterministic parameters
Fk The cost for opening a distribution centre k ∈ [K];
Cirt Procuring cost of relief item r ∈ [R] from external supplier i ∈ [I] in period t ∈ [T];
HRjr Holding inventory cost for a unit relief item r ∈ [R] at IFRC centre j ∈ [J];
HDkr Holding inventory cost for a unit relief item r ∈ [R] at distribution centre k ∈ [K];
t e1ij Transport time from external supplier i ∈ [I] to IFRC centre j ∈ [J];
t e2jk Transport time from IFRC centre j ∈ [J] to distribution centre k ∈ [K];

t e3mn Transport time between need site nodes and between need site and distribution centre
A1irt Capacity of external supplier i ∈ [I] for relief item r ∈ [R] in t ∈ [T];
A2jt Capacity of IFRC centre j ∈ [J] in t ∈ [T];
A3kt distribution centre k ∈ [K] storage capacity in t ∈ [T];
A4 Capacity per vehicle;
f 1ir Risk of external supplier i ∈ [I] for relief item r ∈ [R];
f 2r Public donation risk for relief item r ∈ [R];
Wr Weight of one unit of relief item r ∈ [R];
δr Order of relief item r ∈ [R];
dmn Distance between need sites and distribution centre and between two nodes within need sites;
TDmax Limitations on the number of distribution centres;
B Total funding level;
xl The effectiveness of public donations;
M A big number.
Uncertain parameters
Dmrt Amount of demand for relief item r ∈ [R] in need sitem ∈ [C] in period t ∈ [T]
TC1ijr Transportation cost for a unit relief item r ∈ [R] from external supplier i ∈ [I] to IFRC centre j ∈ [J];
TC2jkr Transportation cost for a unit relief item r ∈ [R] from IFRC’s warehouse j ∈ [J] to distribution centre k ∈ [K];

TC3 Unit transportation cost per vehicle between need site nodes.
upper-level decision variables
LOCk 1, if distribution centre is set at location k; 0, otherwise;
X1jkrt Amount of relief item r ∈ [R] transported from IFRC j ∈ [J] to distribution centre k ∈ [K] in t ∈ [T];

X2mrvt Number of relief item r ∈ [R] transported to need sitem ∈ [M] with vehicle v ∈ [V] in t ∈ [T];
X3jrt Inventory of relief item r ∈ [R] at IFRC j ∈ [J] in t ∈ [T];
X4krt Inventory of relief item r ∈ [R] at distribution centre k ∈ [K] in t ∈ [T];
Q3mnkvt 1, vehicle v ∈ [V] visits need sitem ∈ [C] after visiting need site n ∈ [C] on the route of

distribution centre k ∈ [K], and 0, otherwise,
U1ijt 1, if the relief item is delivered from external supplier i ∈ [I] to IFRC j ∈ [J], and 0, otherwise,
U2jkt 1, if the relief item is transferred from IFRC centre j ∈ [J] to distribution centre k ∈ [K];

Hmkt 1, if need sitem ∈ [C] is assigned to distribution centre k ∈ [K];
Gmvt Auxiliary variable used to eliminate sub-tour.
lower-level decision variables
Y1ijrt Amount of relief item r ∈ [R] transferred from external supplier i to IFRC j ∈ [J] in t ∈ [T];
Y2jrt Amount of public donations of relief item r ∈ [R] to IFRC j ∈ [J] in t ∈ [T].

• The transportation system for sendinghumanitarian aid allows for unlimitedvehiclesbut
is homogeneous with a predetermined capacity. This is an assumption in many emer-
gency rescue problems, because there is a uniform standard for the configuration of
rescue vehicles (Wen et al. 2010).
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Figure 1. The structure of the emergency logistic network.

• Each trip starts and ends at a DC and each NS can only receive relief from one DC during
a trip. This assumption is based on actual situations.

• The distance and time between all points remain constant.
• DCshave limited capacities, whichmay vary for each centre (Khanchehzarrin et al. 2022).
• The fixed cost of setting up DCs differs across centres.
• The ambiguity of information concerning demand and transportation cost distribution

is described by ambiguity sets, where the mean values of demand and transportation
cost are located in the confidence intervals.

3.2. Uncertainty in demand and transportation cost

The needs of affected areas and transportation cost after a disaster are uncertain. This
section focuses on the ambiguity set for randomdemands. The other set for transportation
cost is defined in a similar manner. In practice, the population of the impacted region and
the standardof RIs requiredperpersonare typically utilised togauge the actual needsof the
affected area after a disaster. Although thepoint-estimation approach is easy to implement,
its efficiency remains questionable. If the actual scenario is significantly different from the
predicted one, the quality of the obtained solution may be significantly reduced or even
unacceptable. Here, we suppose that distributions are not perfectly known and consider
the case where only mean information is used to construct ambiguity set.
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Assume that Dmrt is subject to perturbations around their nominal value and belongs to
the uncertainty set U2

mrt .

U2
mrt =

⎧⎨
⎩Dmrt|Dmrt(ηmrt) = D0

mrt +
∑
e∈[E]

ηmrteDmrte

⎫⎬
⎭ ,

where Dmrt(ηmrt) represents the uncertain demand, D0
mrt represents the nominal value,

Dmrte repersents perturbation value, and ηmrt = (ηmrt1, . . . , ηmrtE) is stochastic perturbation
vector.

Specifically, the stochastic perturbation vector ηmrt possesses the following proper-
ties (see, Ben-Tal, El Ghaoui, and Nemirovski 2009):

P.1. ηmrte, e = 1, . . . , E, are mutually independent random variables;
P.2. The distribution Pηmrte

of random variable ηmrte (e = 1, . . . , E) satisfies the following
inequalities:∫

exp tsdPηmrte
(s) ≤ exp

{
max[μ−

mrte,μ
+
mrte] +

1
2
(σmrte)

2t2
}
, ∀t ∈ R,

with the known constants μ−
mrte ≤ μ+

mrte and σmrte ≥ 0. The property P.2 is a
description of the distribution information in which the exponential moment∫
exp tsdPηmrte

(s) of the true distribution is controlled by an upper bound function.
Moreover, we assume that the support set of the probability distribution Pηmrte

is
[−1, 1] and the expectation of the random perturbation variable belongs to [μ−

mrte,
μ+
mrte]. The ambiguity set Pmrte of distribution Pηmrte

takes the following form:

Pmrte =
{

Pηmrte
:

EPηmrte
(ηmrte) ⊆ [μ−

mrte,μ
+
mrte] ⊆ [−1, 1]

Pηmrte
(ηmrte ∈ [−1, 1]) = 1

}
. (1)

To apply the distribution information set characterised by P.1 and P.2, we should
utilise the prior knowledge of distributions of ηmrte to translate into specific values
of the parameters μ−

mrte, μ+
mrte in P.2. In constructing demand ambiguity set, we

use historical data for some regions to count the demand. For other areas where
data are lacking, we estimate demand by assuming demand per affected population
and using historical data. Confidence intervals for the mean of demand can then be
obtained using interval estimation method. More specifically, the parameters μ−

mrte,
μ+
mrte, and σmrte associated with the constructed ambiguity set are estimated in the

following steps.

Step1: Thepivot variablemethod is used to obtain confidence interval formean μ̄mrt of the
demand. When the overall variance is unknown, the pivot variable obeys a t-distribution,
i.e. x̄mrt−μ̄mrt

smrt

√
n ∼ t(n − 1). Based on the upper quantile, we have

Pr
(

−t α
2
(n − 1) ≤ x̄mrt − μ̄mrt

smrt

√
n ≤ t α

2
(n − 1)

)
= 1 − α.

Thus the confidence interval for μ̄mrt with a confidence level 1 − α is

μ̄mrt ∈
[
x̄mrt − smrt√

n
t α
2
(n − 1), x̄mrt + smrt√

n
t α
2
(n − 1)

]
,
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where x̄mrt denotes the sample mean, smrt is the sample standard deviation, and 1 − α is
the confidence level. The confidence interval of the random perturbation variables ηmrte is
then obtained by the above interval.

Step 2: Based on Pmrte, we can determine the value of σmrte in P.2 as follows,

σmrte = max
t̂

√(
2ln(cosh(t̂) + μmrte sinh(t̂)) − 2max[μ−

mrtet̂,μ
+
mrtet̂]

)
/t̂2.

The above equation is derived as follows (see, Nemirovski and Shapiro 2007).
Process 1: According to P.2, parameters μ−

mrte,μ
+
mrte, σmrte satisfy the following inequal-

ities,∫
exp{t̂ηmrte}dP(ηmrte) ≤ exp

{
max[μ−

mrtet̂,μ
+
mrtet̂] +

1
2
(σmrte)

2 t̂2
}
, ∀t̂ ∈ R, e ∈ [E],

where μmrte is the actual mean of Pηmrte
.

Process 2: Consider the function,

�(ηmrte) = exp{t̂ηmrte} − sinh(t̂)ηmrte,−1 ≤ ηmrte ≤ 1.

When t is given, it is convex on [−1, 1] and reaches a maximum at one of the endpoints of
the segment. Because �(−1) = �(1) = cosh(t̂), the following inequality holds:∫

exp{t̂ηmrte}dP(ηmrte) =
∫

�(ηmrte)dP(ηmrte) + μmrte sinh(t̂)

≤ max
−1≤ηe≤1

�(ηmrte) + μmrte sinh(t̂) = cosh(t̂) + μmrte sinh(t̂).

Process 3: By calculation, one has

sup
Pηmrte

∈Pmrte

{∫
exp{t̂ηmrte}dP(ηmrte)

}
= cosh(t̂) + μmrte sinh(t̂)

≤ exp
{
max[μ−

mrtet̂,μ
+
mrtet̂] +

1
2
(σmrte)

2 t̂2
}
.

It follows that

σmrte = max
t̂

√(
2ln(cosh(t̂) + μmrte sinh(t̂)) − 2max[μ−

mrtet̂,μ
+
mrtet̂]

)
/t̂2.

Similarly, for transportation cost TC1ijr , TC
2
jkr , and TC3, the distribution information set char-

acterised by P̄.1 and P̄.2 is represented as follows:

P̄.1. ζl , l = 1, . . . , L, are mutually independent random variables;
P̄.2. The distribution Pζl of random variable ζl (l = 1, . . . , L) satisfies the following inequal-

ities: ∫
exp tsdPζl

(s) ≤ exp
{
max[μ−

l ,μ
+
l ] +

1
2
(σl)

2t2
}
, ∀t ∈ R,
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with known constants μ−
l ≤ μ+

l and σl ≥ 0. Moreover, we assume that the sup-
port of the probability distribution Pζl

is [−1, 1] and the expectation of the random

perturbation variable belongs to [μ−
l ,μ

+
l ]. The ambiguity setPl is defined as follows.

Pl =
{

Pζl
:

EPζl
(ζl) ⊆ [μ−

l ,μ
+
l ] ⊆ [−1, 1]

Pζl
(ζl ∈ [−1, 1]) = 1

}
. (2)

3.3. Formulation of upper-level location-routeing problem

3.3.1. Objective function
According to notations, the objective of effectiveness is to minimise the following overall
transportation time:∑

i,j,t

t e1ijU
1
ijt +

∑
j,k,t

t e2jkU
2
jkt +

∑
m,n∈[C]∪{0}

∑
k,v,t

t e3mnQ
3
mnkvt , (3)

where the first term represents the cumulative transportation time from ES i to IFRC centre
j, the second term represents the cumulative transportation time from IFRC centre j to DC
k, and the third term is the sum of transportation time of goods from DC to NS.

3.3.2. Deterministic constraints
Constraints (4) indicate the balance in DC. The capacity limits of DCs are represented
by constraints (5). Constraint (6) takes into account the maximum number of DCs. Con-
straints (7) provide that if the DC is established, it sends RIs to the NS; otherwise, it does
not. Constraints (8) guarantee that each customer is assigned to just one DC.∑

j

X1jkrt + X4kr(t−1) =
∑
m,v

X2mrvt + X4krt , ∀k, r, t, (4)

∑
j,r

X1jkrt +
∑
r

X4kr(t−1) ≤ A3ktLOCk , ∀k, t, (5)

∑
k

LOCk ≤ TDmax, (6)

∑
m,t

Hmkt ≤ M ∗ LOCk , ∀ k, (7)

∑
k

Hmkt = 1, ∀ m, t. (8)

Constraints (9) are related to the route continuity. Constraints (10) ensure that if customer
n is allocated to DC k, it will be served by DC k. Constraints (11) are designed to remove
sub-tours. Constraints (12) state that if a vehicle does not travel to the NS, then the vehicle
should not ship RIs to the NS. Otherwise, the RIs are delivered to the NS. Constraints (13)
are associated with vehicle capacity. Constraints (14) make sure that vehicle can be used at
most once. Constraints (15)–(18) denote the route usage. The decision variables of upper-
level problem are defined by constraints (19)–(20).∑

m∈[C]∪{0}
Q3
mnkvt =

∑
m∈[C]∪{0}

Q3
nmkvt , ∀ k, v, n ∈ [C] ∪ {0}, t, (9)
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∑
m∈[C]∪{0}

∑
v

Q3
mnkvt ≤ M ∗ Hnkt , ∀ n, k, t, (10)

Gnvt − Gmvt + A4
∑
k

Q3
nmkvt ≤ A4 − 1, ∀ m, n, v, t, (11)

X2mrvt ≤ M
∑

n∈[C]∪{0}

∑
k

Q3
nmkvt , ∀ m, v, r, t, (12)

∑
r,m

WrX
2
mrvt ≤ A4, ∀ v, t, (13)

∑
m

∑
k

Q1
0mkvt ≤ 1, ∀ v, t, (14)

U1
ijt ≤ M

∑
r

Y1ijrt , ∀ i, j, t, (15)

U1
ijt ≥

∑
r Y

1
ijrt

M
, ∀ i, j, t, (16)

U2
jkt ≤ M

∑
r

X1jkrt , ∀ j, k, t, (17)

U2
jkt ≥

∑
r X

1
jkrt

M
, ∀ j, k, t, (18)

X1jkrt , X
2
mrvt are non − negative integer variables, ∀ j, k, r,m, v, t, (19)

Q3
mnkvt ,U

1
ijt ,U

2
jkt ,Hmkt ∈ {0, 1},Gmvt ≥ 0, ∀ i, j, k,m, n, v, t. (20)

3.3.3. Ambiguous chance constraints
Disasters can disrupt transportation networks and the transportation cost on the path is
uncertain. We assume that the stochastic perturbation variable ζl obeys probability distri-
bution Pζl

. For this, constraints (21) ensure that the total cost can bemaintained within the
available funding level with a certain probability 1 − ε:

Pζl

⎧⎨
⎩CO + CP +

∑
i,k,r,t

TC1ijr(ζ )Y1ijrt +
∑
j,k,r,t

TC2jkr(ζ )X1jkrt

+
∑

m,n∈[C]∪{0}

∑
k,v,t

TC3(ζ )dmnQ
3
mnkvt + CH ≤ B

⎫⎬
⎭ ≥ 1 − ε, ∀Pζl

∈ Pl ,

(21)

where ε is the probability that the cost exceeds the funding level, CO = ∑
k LOCkFk is the

cost of opening DCs, CP = ∑
i,j,r,t CirtY

1
ijrt represents the purchasing cost, the three items

with uncertain parameters are transportation cost, and CH = ∑
j,r,t HRjrX

3
jrt + ∑

k,r,t HDkrX4krt
represents the cost of holding inventory.

The perturbation variable ηmrte obeys probability distribution Pηmrte
. Constraints (22)

denote that the probability that all demands at the need site can be fully satisfied
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exceeds 1 − εmrt :

Pηmrte

{∑
v

X2mrvt ≥ Dmrt(ηmrt)

}
≥ 1 − εmrt , ∀m, r, t, ∀Pηmrte

∈ Pmrte. (22)

3.4. Formulation of lower-level supply problem

The lower-level formulation is describedby Equations (23)–(28). Equation (23) describes the
objective function of the lower-level problem as theminimisation of supply risk of both ESs
and public donations. Constraints (24) indicate that the total efficacy of public donations
satisfies a certain level. Constraints (25) denote the balance constraints at the IFRC centre.
Constraints (26) consider the supply ability of RI r by ES i. Constraints (27) are relevant to the
storage capacity of the IFRC centre. Constraints (28) define decision variables of the lower
level.

min
∑
i,j,r,t

f1ir Y
1
ijrt +

∑
j,r,t

f2r Y
2
jrt (23)

s.t.
∑
r,j,t

δrY
2
jrt ≥ xl, (24)

∑
i

Y1ijrt + X3jr(t−1) + Y2jrt =
∑
k

X1jkrt + X3jrt , ∀ j, r, t, (25)

∑
j

Y1ijrt ≤ A1irt , ∀ i, r, t, (26)

∑
i,r

Y1ijrt +
∑
r

Y2jrt +
∑
r

X3jr(t−1) ≤ A2jt , ∀ j, t, (27)

Y1ijrt , Y
2
jrt ≥ 0, ∀ i, j, r, t. (28)

3.5. Distributionally robust bi-level mixed-integer programmingmodel
formulation

The following distributionally robust bi-level model is formally built under the premise of
the presented upper-level and lower-level problems:

min (3)
s.t. (4) − (22)

Y1ijrt , Y
2
jrt ∈ argmin

⎧⎨
⎩
∑
i,j,r,t

f1ir Y
1
ijrt +

∑
j,r,t

f2r Y
2
jrt : (24) − (28)

⎫⎬
⎭ .

(29)

The proposed model is a bi-level semi-infinite programmingmodel, which leads to serious
computational difficulties. Hence, we will discuss how to reformulate the distributionally
robust bi-level PELL model into a tractable formulation in the next section.
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4. Solution strategies for distributionally robust bi-level PELLmodel

To effectively solve the presented model, robust counterpart approximation (RCA) is
applied to reformulate the model into safe approximation formulation. KKT condition is
employed to reformulate the presented model into a single-level one.

4.1. Approximation formulations of ambiguous chance constraints

The model with chance constraints (21) and (22) is computationally difficult to implement
owing to its non-convexity and the requirement for a substantial number of samples to
achieve good performance. Nevertheless, the distribution of random cost and demand is
usually not completely known. To address these challenges, we use RCA to represent the
chance-constrained model as a bi-level mixed-integer second-order conic and linear pro-
gramming, respectively, which exploits partial distributional information. We now discuss
suitable computable methods to solve the PELL problem.
The RCA under box ∩ ellipsoid perturbation set:

To enhance clarity in the presentation, additional variables are introduced.

TC0 =
∑
i,j,r

TC10ijr Y
1
ijr +

∑
j,k,r

TC20jkrX
1
jkr +

∑
m,n∈[L]∪{0}

∑
k,v

TC30dmnQ
3
mnkr ,

TCl =
∑
i,j,r

TC1ijrlY
1
ijr +

∑
j,k,r

TC2jkrlX
1
jkr +

∑
m,n∈[C]∪{0}

∑
k,v

TC3l dmnQ
3
mnkr .

Theorem 4.1 provides a safe approximation result for constraints (21).

Theorem 4.1: For ambiguous chance constraints (21), assume that the uncertain transporta-
tion cost TC1ijr(ζ ) is represented by the affine sum of perturbation variables, i.e. TC1ijr(ζ ) =
TC10ijr + ∑

l∈[L] ζlTC
1
ijrl . If the probability distribution of random variables ζl belongs to ambigu-

ity set (2), then the following convex algebraic system is a robust counterpart approximation of
ambiguous chance constraints (21),

TC0 +
∑
k

FkLOCk +
∑
i,j,r

CirY
1
ijr +

∑
j,r,t

HRjrX
3
jrt +

∑
k,r,t

HDkrX
4
krt − B = u0 + z0,

TCl = ul + zl , ∀ l ∈ [L],

u0 +
∑
l∈[L]

|ul| ≤ 0,

z0 +
∑
l∈[L]

max[μ−
l zl ,μ

+
l zl] +

√
2ln(1/ε)

√∑
l∈[L]

(σl)
2(zl)

2 ≤ 0,

(30)

where

σl = max
t

√(
2ln(cosh(t) + μl sinh(t)) − 2max[μ−

l t,μ
+
l t]

)
/t2. (31)

Next, we provide the computationally tractable formulations of ambiguous chance
constraints (22).
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Theorem 4.2: For ambiguous chance constraints (22) on demand satisfaction, assume that
the uncertain demand Dmrt(ηmrt) is represented by the affine sum of perturbation variables
ηmrte, i.e. Dmrt(ηmrt) = D0

mrt + ∑
e∈[E] ηmrteDmrte. If the probability distribution of random per-

turbation variables ηmrte belongs to the ambiguity set (1), then the following convex algebraic
system is a robust counterpart approximation of ambiguous chance constraints (22),

D0
mrt −

∑
v

X2mrvt = u0mrt + z0mrt , ∀m, r, t,

Dmrte = umrte + zmrte, ∀ e ∈ [E],m, r, t,

u0mrt +
∑
e∈[E]

|umrte| ≤ 0, ∀m, r, t,

z0mrt +
∑
e∈[E]

max[μ−
mrtezmrte,μ

+
mrtezmrte] +

√
2ln(1/ε)

√∑
e∈[E]

(σmrte)
2(zmrte)

2 ≤ 0, ∀m, r, t,

(32)
where

σmrte = max
t̂

√(
2ln(cosh(t̂) + μmrte sinh(t̂)) − 2max[μ−

mrtet̂,μ
+
mrtet̂]

)
/t̂2. (33)

The RCA under budget perturbation set:
We obtain the following results by analysing the relationship between budget perturba-

tion set and box ∩ ellipsoid perturbation set.

Theorem 4.3: For ambiguous chance constraints (21), assume that the uncertain transporta-
tion cost TC1ijr(ζ ) is represented by the affine sum of perturbation variables, i.e. TC1ijr(ζ ) =
TC10ijr + ∑

l∈[L] ζlTC
1
ijrl . If theprobability distributionof randomperturbation variables ζl belongs

to ambiguity set (2), then vectors Y1
ijr , X

1
jkr , andQ

3
mnkr satisfy (21) if there exists (κ , ν) such that

(Y1
ijr ,X

1
jkr ,Q

3
mnkr , κ , ν) satisfies the following linear system:

TC0 +
∑
k

FkLOCk +
∑
i,j,r

CirY
1
ijr +

∑
j,r,t

HRjrX
3
jrt +

∑
k,r,t

HDkrX
4
krt − B = κ0 + ν0,

TCl = κl + νl , ∀ l ∈ [L],

κ0 +
∑
l∈[L]

|κl| ≤ 0,

ν0 +
∑
l∈[L]

max[μ−
l νl ,μ

+
l νl] +

√
L
√
2ln(1/ε) max

1≤l≤L
σlνl ≤ 0,

(34)

where

σ l = max
t

√(
2ln(cosh(t) + μl sinh(t)) − 2max[μ−

l t,μ
+
l t]

)
/t2. (35)

Computationally tractable formulations of constraints (22) are providedby the following
Theorem 4.4.

Theorem 4.4: For ambiguous chance constraints (22) on demand satisfaction, assume that
the uncertain demand Dmrt(ηmrt) is represented by the affine sum of perturbation variables,
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i.e. Dmrt(ηmrt) = D0
mrt + ∑

e∈[E] ηmrteDmrte. If the probability distribution of random perturba-
tion variables ηmrte belongs to ambiguity set (1), then vector X2

mrvt satisfies (22) if there exists
(κmrt , νmrt) such that (X2

mrvt , κmrt , νmrt) satisfies the following linear system:

D0
mrt −

∑
v

X2mrvt = κ0
mrt + ν0mrt , ∀m, r, t,

Dmrte = κmrte + νmrte, ∀ e ∈ [E],m, r, t,

κ0
mrt +

∑
e∈[E]

|κmrte| ≤ 0, ∀m, r, t,

ν0mrt +
∑
e∈[E]

max[μ−
mrteνmrte,μ

+
mrteνmrte] +

√
E
√
2ln(1/ε) max

1≤e≤E
σmrteνmrte ≤ 0, ∀m, r, t,

(36)
where

σmrte = max
t̂

√(
2ln(cosh(t̂) + μmrte sinh(t̂)) − 2max[μ−

mrtet̂,μ
+
mrtet̂]

)
/t̂2. (37)

Remark 4.1: The proofs of Theorems 4.3 and 4.4 show that the budget robust counterpart
(RC) ismore conservative than thebox∩ ellipsoid RC. However, thebudget RC is formulated
by a linear constraint system. In contrast, the box ∩ ellipsoid RC results in a conic quadratic
formulation, which requires high computability.

4.2. Transformation of bi-level PELLmodel

The dual expression of the lower-level model is formulated in the following expression.

max xl ∗ ω1 +
∑
j,r,t

(∑
k

X1jkrt + X3jrt − X3jr(t−1)

)
ω2
jrt

+
∑
i,r,t

A1irtω
3
irt +

∑
j,t

(
A2jt −

∑
r

X3jr(t−1)

)
ω4
jt (38)

s.t. ω2
jrt + ω3

irt + ω4
jt ≤ f1ir , ∀ i, j, r, t, (39)

δrω
1 + ω2

jrt + ω4
jt ≤ f2r , ∀ j, r, t, (40)

ω1 ≥ 0,ω3
irt ,ω

4
jt ≤ 0,ω2

jrt is free, ∀ i, j, r, t. (41)

According to KKT condition, the model under box ∩ ellipsoid perturbation set is trans-
formed into an equivalent single-level non-linear formulation.

min (3) (42)

s.t. Y1ijrt(ω
2
jrt + ω3

irt + ω4
jt − f1ir ) = 0, ∀ i, j, r, t, (43)

Y2jrt(δrω
1 + ω2

jrt + ω4
jt − f2r ) = 0, ∀ j, r, t, (44)

ω1

⎛
⎝∑

r,j,t

δrY
2
jrt − xl

⎞
⎠ = 0, (45)
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ω3
irt

⎛
⎝∑

j

Y1ijrt − A1irt

⎞
⎠ = 0, ∀ i, r, t, (46)

ω4
jt

⎛
⎝∑

i,r

Y1ijrt +
∑
r

Y2jrt +
∑
r

X3jr(t−1) − A2jt

⎞
⎠ = 0, ∀ j, t, (47)

(4)−(20), (24)−(28), (30), (32), (39)−(41). (48)

To solve the nonlinearity mentioned in the single-level nonlinear model (42)–(48), auxil-
iary variables are introduced into linearising constraints (43)–(47). Variables γ 1

ijrt ∈ {0, 1} are
added and constraints (43) are replaced with the following constraints:

Y1ijrt ≤ M(1 − γ 1
ijrt), ∀i, j, r, t, (49)

ω2
jrt + ω3

irt + ω4
jt − f1ir ≥ Mγ 1

ijrt , ∀ i, j, r, t. (50)

Similarly, γ 2
jrt ∈ {0, 1} is used as an auxiliary variable to handle the nonlinear problem

with constraint (44). By combining Y2jrt ≥ 0 and constraints (40), the linear constraints
corresponding to constraints (44) are represented as follows:

Y2jrt ≤ M(1 − γ 2
jrt), ∀j, r, t, (51)

δrω
1 + ω2

jrt + ω4
jt − f2r ≥ Mγ 2

jrt , ∀ j, r, t. (52)

Linearise constraints (45) with the definition of zero-one variable γ 3.

ω1 ≤ M(1 − γ 3), (53)∑
r,j,t

δrY
2
jrt − xl ≤ Mγ 3. (54)

The zero-one variable γ 4
irt is introduced to linearise the constraints (46).

ω3
irt ≥ M(1 − γ 4

irt), ∀i, r, t, (55)∑
j∈[J]

Y1ijrt − A1irt ≥ Mγ 4
irt , ∀i, r, t. (56)

Using 0-1 variable γ 5
jt , we linearise constraints (47).

ω4
jt ≥ M(1 − γ 5

jt ), ∀ j, t, (57)∑
i,r

Y1ijrt +
∑
r

Y2jrt +
∑
r

X3jr(t−1) − A2jt ≥ Mγ 5
jt , ∀ j, t. (58)

An equivalent single-level mixed-integer second-order conic programming (MSCP) model
is illustrated as follows.

min (3) (59)

s.t. γ 1
ijrt , γ

2
jrt , γ

3, γ 4
irt , γ

5
jt ∈ {0, 1}, (60)
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(4)−(20), (24)−(28), (30), (32), (39)−(41), (49)−(58). (61)

Similarly, we obtain the mixed-integer linear programming (MLP) model under budget
perturbation set.

min (3) (62)

s.t. γ 1
ijrt , γ

2
jrt , γ

3, γ 4
irt , γ

5
jt ∈ {0, 1}, (63)

(4)−(20), (24)−(28), (34), (36), (39)−(41), (49)−(58). (64)

5. Case study

In this section, the real case of Sari flood is carried out to demonstrate the validity of
the presented models and insights are derived into the design of emergency logistics
systems. First, we present the computational results based on real flood data in the Sari
region of Iran. Next, we numerically analyse the sensitivity of important model parameters,
including funding level, expectation information, and tolerance level. Finally, in situations
where information regarding the distribution of random variables is only partially known,
the comparison results show the credibility of the proposed DRO approach. All numeri-
cal experiments are performed with the IBM CPLEX 12.6.3 solver on an Inter(R) Core(TM)
i5-8265U1.80GHzpersonal computer runningunderWindows10 (64-bit)with 8GBof RAM.

5.1. Problem description

Based on statistics and survey reports, Iran is one of the most disaster-prone countries
in the world (Ghasemi et al. 2022a). Floods in 2019 affected the northern and north-
eastern regions of Iran, with Mazandaran and Golestan provinces being the most severely
affected (Dodangeh et al. 2020). Therefore, Sari, the capital of Mazandaran Province, is
selected as a case study to demonstrate the performance of the proposed model. In this
study, four villages are considered as need sites. Table 3 reports the affected villages and
the population in need of relief. Two potential sites in Sari are identified as candidates for
DCs. Table 4 illustrates the capacity and cost of the DCs. In addition, two IFRC central ware-
houses are selected as permanent warehouses. Two ESs are considered. Figure 2 presents
the location of the nodes.

The tables below provide the relevant data for the nodes. The input data are estimated
based on data collected from Khanchehzarrin et al. (2022) to closely represent the actual
situation. The capacity of suppliers and the cost of purchasing each RI are shown in Table 5.
Table 6 describes the capacity, initial inventory and unit inventory holding cost at the IFRC
warehouse. The transportation cost, time and distance between SC, IFRC andDC are shown

Table 3. Affected villages and the population at each NS.

Need sites Village name

Number of
people in
need of RI Need sites Village name

Number of
people in
need of RI

NS1 Abmal 576 NS3 Panbeh Chooleh 796
NS2 Marzrud 712 NS4 Esfandan 758
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Table 4. Data about the DC.

Cost of holding inventory

Distribution centre Fixed cost Capacity water food

DC1 330,000,000 58,000 5000 9000
DC2 440,000,000 60,000 6500 11,500

Figure 2. Locations of IFRC centres, possible distribution centres and need sites.

Table 5. Procurement RI cost and ES supply capacity.

Capacity Cost

ES Time period RI1 RI2 RI1 RI2

ES1 T1 10,000 8000 18,000 230,000
T2 9000 7500 19,700 248,000

ES2 T1 6000 4000 20,000 242,000
T2 5500 6500 19,300 236,000

Table 6. Data required for IFRC warehouse.

Cost of holding inventory Capacity Initial inventory

IFRC RI1 RI2 T1 T2 RI1 RI2

IFRC1 8000 13,000 30,000 30,000 1500 1800
IFRC2 7000 14,000 50,000 50,000 4200 1400

in Table 7. The distances and transportation time between the DC and the NS and between
each need site are given in Table 8, which are taken from Google Map. The risk of public
donations to supply relief item r is 0.80. Transportation cost of per vehicle per kilometer is
125235 (Rial/Km). The quantities of water and food required per person are considered to
be 3 kg and 1.18 kg, respectively.
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Table 7. Transportation data between ES, IFRC and DC nodes.

Transportation cost Transportation cost

Water Relief food Travel time Distance Water Relief food Travel time Distance

ES1 IFRC1 300 550 9 1.7 IFRC1 DC1 600 750 20 12.6
IFRC2 400 500 13 7.8 DC2 630 700 22 14.5

ES2 IFRC1 330 470 13 3.9 IFRC2 DC1 660 770 16 13.4
IFRC2 240 280 4 1 DC2 620 800 18 16.1

Table 8. Transportation time and distance between DC and NS.

Abmal Marzrud
Panbeh
Chooleh Esfandan

DC1 Time 12 17 14 15
Dis. 12 17 14 17

DC2 Time 11 15 13 13
Dis. 10 16 13 15

Abmal Time 0 8 6 10
Dis. 0 6 3.5 5.8

Marzrud Time 8 0 6 11
Dis. 6 0 4.3 7.3

Panbeh Chooleh Time 6 6 0 9
Dis. 3.5 4.3 0 4.7

Esfandan Time 10 11 9 0
Dis. 5.8 7.3 4.7 0

5.2. Estimating supply risk

At lower-level, one of themain tasks of the IFRC organisation is to purchase the required RIs
for delivery. RIs from the same supplier vary regarding quality, delivery time, supply flexi-
bility, and reputation. This requires that different risks are assigned to different suppliers. In
this context, the process of assessing supply risk using AHP is described. The rationale is to
decompose the factors relevant to the decision into several levels, such as the target level,
the criteria level, and the solution level, and to calculate and compare the weights of dif-
ferent factors. The relevant description of AHP can be found in Feng, Liu, and Chen (2022).
The process of AHP is summarised in Appendix 2.

5.3. Calculation results of presentedmodels

The computational results of the proposed DROmodels are presented. We conduct experi-
ments by fixing the confidence level as 95%, setting tolerance level as ε = 0.35 and funding
level as B = 1,350,000,000. σl and σmrte are obtained from Equations (31) and (33) as 0.9595
and0.983, respectively. Furthermore, two factors are assumed to cause uncertainty in trans-
portation costs and demand. The contributions of the lth and eth influences to uncertain
transportation costs and demand are represented by the perturbation coefficients TCl and
Dmrte. In particular, the perturbation to uncertainty is considered to be 5% of the normal
value. Moreover, the optimal transportation time for MSCP model and MLP model are 261
min and 269 min, respectively. The best responses of the proposed models are presented
in Figures 3 and 4 and Table 9.

Figure 3 depicts the results of RIs assignment and vehicle paths. In the MSCP model, for
the central warehouse selection, in the first period, IFRC1 and IFRC2 are reopened. This is
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Figure 3. Material assignment and vehicle routeing under DRO models. (a) Material assignment and
vehicle routeing under MSCP model. (b) Material assignment and vehicle routeing under MLP model.
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Figure 4. The optimal quantity of RI to be transported to the NS under DRO models. (a) The optimal
quantity of RI to be transported to the NS under MSCP model T= 1. (b) The optimal quantity of RI to be
transported to the NS under MSCP model T= 2. (c) The optimal quantity of RI to be transported to the
NS under MLP model T= 1 and (d) The optimal quantity of RI to be transported to the NS under MLP
model T= 2.

Table 9. Lower-level decision variables under DROmodels.

Decision
variable ES IFRC DC Commodity Period

Value under
MSCP model

Value under
MLP model

Y1 1 1 – 1 1 8160 –
Y1 1 2 – 1 1 1012 –
Y1 2 1 – 1 1 – 6000
Y1 2 1 – 2 1 – 1263
Y1 2 2 – 2 1 – 232
Y1 2 2 – 1 2 – 2817
Y2 – 1 – 1 2 225 –
Y2 – 1 – 2 1 251 –
Y2 – 1 – 2 2 1532 –
Y2 – 2 – 2 1 132 –
Y2 – 2 – 1 2 – 484
Y2 – 2 – 2 2 – 1526

because the initial inventory of the DC is 0 during the first period, so the central warehouse
is required to transport RIs to the DC. In the second period, no RIs are transported from the
central warehouse to DC2 since DC2 has surplus inventory. Regarding vehicle routes, in the
first period, vehicles travel from DC1 to NS1, 3, 2, and 4, respectively, and finally return to
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Table 10. Computational results for MLP model at different scales.

Size I×J×K×C×R
Objective
value CPU time/s Gap

2×2×2×4×2 269 46.46 2.6%
3×3×2×4×2 242 22.43 4.5%
4×4×4×5×3 657 200.69 8.5%
5×5×4×6×3 728 229.2 8.45%
8×8×4×6×3 738 311.08 6.96%
8×8×5×8×3 1658 3982.97 4.85%
10×10×5×8×3 1767 1428 5.46%
12×12×5×8×3 1927 213.95 3.88%
12×12×10×10×3 9260 716.69 1.69%
12×12×10×11×3 9305 5280.55 2.57%

DC. Unlike MSCPmodel, in the second period of the MLPmodel relief items are transferred
from DC 2 to NS4, 3, 2, and 1.

Figure 4 shows the quantitative characteristics of the transportation. We use different
bar colours to indicate the different RIs transported. In theMSCPmodel, it can be seen from
the first period that the quantity of RI1 transported to NS1 is 715, which is greater than
its demand. In the second period, the number of RI2 transported to NS3 is 428, which is
also the number that meets its demand. This is also in line with the idea that humanitar-
ian relief is people-oriented. In the MLP model, the quantity of RI1 shipped to NS1 in the
first period is greater than that in the MSCP model, with a specific value of 1172. Table 9
shows the number of RIs purchased from ESs and provided by public donations. In the
MSCP model, it is seen that supplier 2 delivers RI1 to central warehouses 1 and 2. RI2 is
provided by public donations. From the MLP model, it is observed that RI1 and RI2 come
from supplier purchases and public donations. And it is seen from Table 9 that supplier
2 provides supplies because supplier 1 has a greater supply risk than supplier 2, which is
consistent with the results. Meanwhile, relief goods in central warehouse 2 are provided
by public donors. With the reported optimal values and optimal solutions, consistent with
intuition, we find that the MSCP model is less conservative than the MLP model. To further
illustrate the performance of the developed DRO model, we utilise CPLEX solver to solve
MLPmodel at various scales with default settings. Table 10 shows the calculation results for
different-sized instances. It can be observed that an increase in instance size is accompa-
niedby a corresponding rise in computation time. In particular, for all test instances, thegap
values reported by CPLEX do not exceed 9%, which indicates that the obtained solutions
are acceptable.

5.4. Sensitivity analysis

The solution may be affected by key model parameters. Here we investigate the effect of
funding level, expectation information, and tolerance on transportation time.

5.4.1. Effect of funding level
Capital is an important limiting factor for planners and the subsection highlights the ensu-
ing sensitivity study. To examine the influence of parameters on the reality of the situation,
the objective is evaluated according to variation in the funding level B. The corresponding
variation of the models is presented in Figure 5.
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Figure 5. The influence of funding level B on the optimal value.

Figure 5 shows the variation of transportation timewith funding level B for MSCPmodel
andMLPmodel. To assess the sensitivity of the objective to funding level, different levels of
funding are tested from 1,100,000,000 to 1,500,000,000. It is evident that the overall ship-
ping time decreases as funds increase. This is because an increase in funding enables more
purchases andmore inventory, resulting in less DC allocation to the central warehouse and
thus less time. For example, in the MSCP model, the transportation time is 269 min for the
funding of 1,200,000,000, and 256min for the funding of 1,380,000,000. In addition, we find
that the total transportation time of MSCP model is less than that of the MLP model when
the values of other parameters are set the same for both models. At this point, managers
can choose the appropriate funding level to enhance the efficiency of PELL according to
the actual situation.

5.4.2. Effect of the expectation information
In this subsection, we examine the effect of the robustness level of the ambiguity set on
target values. Since parameters μ−

mrte, μ
+
mrte, μ

−
l , and μ+

l limit the scale of the ambiguity
set, a sensitivity analysis is performed using the same data from Sections 5.1 and 5.2 with
differentμ−

mrte,μ
+
mrte,μ

−
l , andμ+

l to investigate the influence of ambiguity-control param-
eters on decisionmaking. As previously mentioned, we adjust the confidence level to 90%,
95%, 98%, and 99%. By adjusting the choices of these parameters, we constructmodels that
are robust to different degrees of uncertainty in the distribution parameters. This is because
the critical value of the t-distribution varieswith confidence level, leading to a change in the
size of the ambiguity set. In this experiment, for MSCP and MLP, different funding and tol-
erance levels are chosen as B = 1,200,000,000, ε = 0.35 and B = 1,117,000,000, ε = 0.22,
respectively.
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Figure 6. The influence of expectation information on the optimal value.

Figure 6 depicts how the target value is affected by the variation of confidence level.
When the confidence level increases with constant sample size, the critical value of the
t-distribution increases and the resulting confidence interval becomes larger. Therefore,
the larger the confidence interval of the mean, the wider range of ambiguity that we con-
sider in the unknown distribution about demand and transportation costs and become
more conservative. From Figure 6, it can be observed that as confidence level increases,
the time objective becomes larger and thus, the model becomes increasingly conserva-
tive. As a result, thedistributionally robust approachbecomesmore cautiouswith increased
ambiguity.

5.4.3. Effect of the tolerance level
Here, due to the conservativeness of MLP model, the impact of the tolerance level on the
objective of MSCP model is tested. To evaluate the impact of probability ε, we set B and
confidence level as 1,430,000,000 and 95%, respectively and change the probability 1 − ε

from68% to 99%, as shown in Figure 7. Froma longitudinal perspective, it is intuitively clear
that transportation time decreases with increasing ε. For example, the transportation time
is 248 min at ε = 0.1 and 245 min slightly greater than ε = 0.3. This is because when the
risk of total costs exceeding the funding level and the probability of supply being less than
demand increase, vehicles are deployed on routes with lower transportation cost, which
leads to an increase in transportation time.

According to the sensitivity analyses for ε, different tolerance levels exert certain effects
on the objective value. That is, the target is sensitive to tolerance level. In such a case,
decision-makers can rely on their personal experience and knowledge to confirm the
probability level to rationally select vehicle routeing and deliver supplies to NSs quickly.
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Figure 7. Optimal value of MSCP model with different ε.

5.5. Model comparison

5.5.1. Comparisonwith the ROmodel
Optimal routeing plan and transportation time are compared in two environments, one
with partial demand and transportation cost distribution information, i.e. the MSCP model
and the MLP model, and the other without distribution information. For the second case,
we consider that P1 and P2

mrt contain all distributions on a fixed support set, i.e. the dis-
tribution for uncertain parameters is free, in this case, the proposed DROmodels reduce to
the RO model. The mathematical form of the RO model is provided in Appendix 3. Consis-
tent with Subsection 5.3, we set the funding level to 1,350,000,000. The target value of the
DMO for the bi-level RO model is calculated to be 302 min. The best response is shown in
Figure 8.

From the optimal routeing performance in Figures 3 and 8, we observe that the two
models obtaindifferent routeingunder the sameparameter settings. For example, In Figure
8, in the first period, the vehicles depart fromDC1, reach NS1, 4, 2, and 3 in order, and finally
return to the DC. In addition, unlike Figure 3, in the first period, relief items for DC1 are
provided by central warehouse 1, and central warehouse 2 provides supplies for DC2.

To further compare the DRO models with the RO model, the funding level parameter is
set to the value between 1,350,000,000 and 1,500,000,000 to explore the conservativeness
of the model. The effect of B on its optimal outcome is presented in Figure 9. It is observed
that the DRO models obtain better optimal objectives for the same funding level B from
the representation of the optimal results in Figure 9. Specifically, MSCP model yields lower
transportation time. This indicates thatDROmodels canprovide a less conservative solution
than ROmodel.
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Figure 8. Material assignment and vehicle routeing under RO model.

Figure 9. Comparing the optimal result of RO and DROmodels with different B.
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5.5.2. Comparisonwith SOmodel
In this section, we conduct a comparison study between the DRO model and the sample
average approximation (SAA) model of the SO model. From a decision-making perspec-
tive, the DROmodel optimises location-routeing decisions to achieve robust performance,
where the distributions of demand and transportation costs vary within the constructed
ambiguity sets. The SAA model, on the other hand, makes the optimal location-routeing
decisions according to a number of samples from the specific distributions. In our experi-
ments, the number of samples is set to 50.

The SAA model yields the optimal transportation time of 228 min. The SAA model pro-
vides a detailed scheme illustrated in Figure 10. Specifically, unlike the first period of the
DRO model, the SAA model incorporates a routeing scheme that sequentially transports
relief supplies from DC1 to NS4, 3, 2, 1, and back to DC1. Moreover, we employ the price of
distributional robustness (PODR) to further analyse the distinction between theDROmodel
and SAAmodel. The expression for PODR is as follows:

PODR = (DRO)∗ − (SAA)∗

(SAA)∗
,

where ()∗ represents the optimal time. The MSCP model exhibits a PODR of 14.4% and the
MLPmodel shows a PODR of 18%. This indicates that the MSCPmodel incurs a mere 14.4%
increase in relative costwhen compared to the SAAmodel. In essence, theMSCPmodel pro-
vides the optimal location-routeing scheme that can handle the uncertainties in demand
and transportation costs with only a 14% increase in relative time.

5.6. Managerial insights

The proposed DRO model can address PELL problem along with bi-level and multi-period
and simultaneously cope with related uncertainty. Managerial implications for decision
makers are derived.

Combining the emergency logistics location-routeing problem with hierarchical
decision-making relationships and uncertainties in demand and transportation costs is
the first advantage of our developed model. By applying the DRO model, the ability of
managers to decide on the location of DCs and the transportation of relief items will be
improved.

The proposed DROmodel is less conservative than the ROmodel while allowing for the
controlled constraint violation. Decision makers can use it to efficiently design relief net-
works by utilising available distribution information. Compared to the SO model, our DRO
model can hedge against demand and transportation costs ambiguity by achieving opti-
mal decisionmakingwith relative lower costs. Decisionmakers can employ the DROmodel
for problems with partially known distribution information.

In thebi-level PELLmodelwith ambiguous chance constraints, theambiguity set size and
tolerance can influence the optimal decisions. The ambiguity set at different scales gener-
ates different optimal values to immunise against distribution ambiguity. If the decision
maker wants the optimal decision to avoid the effect of large uncertainty, then larger scale
ambiguity set should be defined. Emergency managers should balance total time and effi-
ciency, since a greater tolerance level can decrease the total time, but increase the risk that



30 Q. WANG ET AL.

Figure 10. Material assignment and vehicle routeing under SAA model.

RIs will not be transferred within a funding level and that needs will be met. Thus, the deci-
sion maker can choose a reasonable tolerance level according to risk preference and then
makes the optimal decisions.

6. Conclusions

This study presented a hierarchical decision-making model to solve the PELL problem,
where theDMOaimed to reduce transportation time and the IFRCwanted tominimise sup-
ply risk. Under the assumption that the first-order moments of the random demand and
transportation cost were the only known partial distribution information, a distributionally
robust bi-level programming model with ambiguous chance constraints was developed.
In addition, the moments were estimated by using the pivot variable method based on
the available limited historical data. RCA formulations, i.e. MSCP and MLP models, were
accordingly derived through optimisation theory. Furthermore, the bi-level models were
converted to single-level models through KKT condition, which can be resolved directly
using commercial optimisation solver.

The case experiment illustrated the applicability of the presented distributionally robust
bi-level optimisationmethod in a situationwhere thedistributions of stochastic parameters
were ambiguous. Comparedwith the ROmodel, the advantages of using DROwere further
demonstrated. The computational results demonstrated that our approach achieves better
performance by using partial information about probability distributions rather than just
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supporting information from uncertain demand and transportation cost. In addition, the
sensitivity analysis yielded managerial implications that were useful for decision makers in
emergency logistics network design.

The scientific value of the article lies in the construction of ambiguity set using expo-
nential moment information of demand and transportation costs and the application of
the DROmethod to solve emergency management problems. The applicability is reflected
in the following aspects. First, the distributionally robust PELL model can solve the emer-
gency management problem by providing the optimal distribution and path schemes.
Second, partial information about the probability distribution of random parameters in a
real-world problem can be characterised by ambiguity set. The management problem can
be modelled by DRO method when only partial distribution information of the stochastic
parameters is available. In addition, the key findings are summarised below.

• The proposed distributionally robust bi-level PELL model can provide managers with
optimal allocation schemes as well as routeing planning schemes.

• Compared with the RO model, the proposed DRO model can reduce the conservative-
ness by using partial distribution information of uncertain parameters. The distributions
of random parameters are difficult to obtain, and SO models typically result in compu-
tationally intractable problems. In contrast, the DRO model can be transformed into a
computationally tractable system using dual theory.

• Sensitivity analysis of tolerance level shows that the higher the tolerance level, the lower
the optimal transportation time. Sensitivity analysis of the ambiguity set size reveals that
the larger the ambiguity set size, the more conservative the model.

Future research in this field will encompass the following topics. First, the current study
utilises information about the distribution of random parameters. In future research, sub-
jective uncertainty related to uncertain parameters will be taken into account, and robust
fuzzy optimisation methods will be employed to handle this type of uncertainty (Pei, Li,
and Liu 2022). Second, the current model only considers the emergency location-routeing
and supplyproblem. Future researchmayexpand to incorporatepost-disaster ripple effects
and risk reduction into the emergency relief problem.
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Appendices

Appendix 1. Proofs of Theorems 4.1–4.4

Proof of Theorem 4.1: Based on the Theorem 2.4.4 from Ben-Tal, El Ghaoui, and Nemirovski (2009),
the ambiguous chance constraints

Pζl

⎧⎨
⎩CO + CP +

∑
i,j,r,t

TC1ijr(ζ )Y1ijrt +
∑
j,k,r,t

TC2jkr(ζ )X1jkrt

+
∑

m,n∈[C]∪{0}

∑
k,v,t

TC3(ζ )dmnQ
3
mnkvt + CH ≤ B

⎫⎬
⎭ ≥ 1 − ε, ∀ Pζl

∈ Pl ,

can be approximated by the following system.
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which is the robust counterpart of the uncertain inequality∑
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⎫⎬
⎭ .

The proof of Theorem 4.1 is complete. �

Proof of Theorem 4.2: Based on the Theorem 2.4.4 from Ben-Tal, El Ghaoui, and Nemirovski (2009),
the following system

D0
mrt −
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is a safe approximation to constraints
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which completes the proof of Theorem 4.2. �

Proof of Theorem 4.3: Let (Y1
ijr ,X

1
jkr ,Q

3
mnkr , κ , ν) be feasible for (34). Then we have
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which combines with (34) implying that Y1
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3
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The proof of Theorem 4.3 is complete. �

Proof of Theorem 4.4: Let (X2
mrvt , κmrt , νmrt) be feasible for (36). Then we have
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which combines with (36) implying that X2
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2ln(1/ε). By applying

Theorem 4.2, we can obtain the conclusion below, i.e. in the case of P.1 and P.2, X2
mrvt satisfy∑

v
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with probability ≥ 1 − exp{−ln(1/ε)}.
Furthermore, the system (36) is the robust counterpart of the uncertain inequality
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which completes the proof of Theorem 4.4. �
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Appendix 2. The process of AHP

The process of AHP includes the following four steps:
Step 1: The relationship among various factors is analysed and the recursive hierarchy of the sys-

tem is established. As shown in Figure A1, the problem needs to be decided at three levels, with the
top level being theobjectiveO, selecting the right supplier, thebottom level being theplanP, i.e. three
suppliers S1, S2, S3, and the middle level being the criterion C, including four indicators of quality,
delivery time, supply flexibility, and reputation.

Step 2: A two-by-two comparison of the significance of every element of the same layer relative to
the criteria of the previous layer is performed and a two-by-two judgment matrix (JM) is constructed.
The data in the JM generally adopts the nine-point scale method, which is detailed in Table A1. The
JMO-C between the target level and the criterion level is shown in Table A1, and the JM C-P between
the criterion level and the plan level is presented in Table A2. The data in the JM generally adopts the
nine-point scale method.

Step 3: Based on the JM, we calculate the relative weights of the elements being compared with
respect to that criterion and perform a consistency test. The consistency index (CI) is first calculated,

CI = λmax − n

n − 1
,

where λmax is themaximum eigenvalue of the JM. Eigenvalues can be calculated byMatlab software.
We can find the corresponding average random CI. Finally, the consistency ratio (CR) is calculated,

CR = CI
RandomCI

.

If CR ¡ 0.1, the consistency of the JM can be considered acceptable; otherwise, the consistency of the
JM needs to be corrected.

Figure A1. Hierarchy chart for evaluating suppliers.

Table A1. The nine-point scale and its definition.

Scale bij The definitions

1 Indicates that factor i is equally important compared to factor j;
3 Indicates that factor i is slightly more important than factor j;
5 Indicates that factor i is significantly more important than j compared to factor j;
7 Indicates that factor i is more strongly important than j compared to factor j;
9 Indicates that factor i is extremely more important than j compared to factor j;
2,4,6,8 The scale value of the importance of factor i compared to factor j is between the

above two adjacent levels;
Inverse of scale value Inverse comparison of factor i with factor j: bji = 1/bij .
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Table A1. Judgement matrix O-C.

O C1 C2 C3 C4

C1 1 3 6 7
C2 1/3 1 3 6
C3 1/6 1/3 1 3
C4 1/7 1/6 1/3 1

Table A2. Judgement matrix C-P.

C1 S1 S2 C2 S1 S2

S1 1 3 S1 1 1/4
S2 1/3 1 S1 4 1

C3 S1 S2 C4 S1 S2

S1 1 2 S1 1 3
S2 1/2 1 S2 1/3 1

Table A3. Weight matrix.

Indicator weight S1 S2

C1 0.5758 0.75 0.25
C2 0.2641 0.2 0.8
C3 0.1083 0.6667 0.3333
C4 0.0518 0.75 0.25

Step4: The scorebasedonTableA3 is calculated and ranked. First, themaximumeigenvalueof the
consistency matrix and its eigenvector are found. Second, the eigenvectors are normalised to obtain
the weights.

Appendix 3. The ROmodel used inmodel comparison

min (3)

s.t.
∑
k

FkLOCk +
∑
i,j,r
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1
ijr +

∑
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∑
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4
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∑
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∑
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TC3(ζ )dmnQ
3
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Dmrt(ηmrt) ≤
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v

X2mrvt , ∀ m, r, t, ∀ ηmrt ∈ [−1, 1]E ,

γ 1
ijrt , γ

2
jrt , γ

3, γ 4
irt , γ

5
jt ∈ {0, 1},

(4) − (20), (24) − (28), (39) − (41), (49) − (58).
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