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A B S T R A C T

This paper studies the biomass–coal co-firing (BCC) production planning problem under the carbon emission
quota allocation (CEQA) mechanism. However, carbon emission parameters are uncertain due to many factors,
such as the type of power units and coal quality. To address this challenge issue, this paper proposes a new
globalized robust bi-level optimization model, where the uncertain parameters are characterized by a pair of
uncertainty sets. In the proposed model, the upper government as the leader decides the CEQA mechanism,
while the lower power plants as the followers develop the production planning according to the given CEQA
mechanism. Moreover, based on the Lagrange duality theory and Karush–Kuhn–Tucker (KKT) conditions,
the proposed model is equivalently converted into a computationally tractable single-level model. Finally,
a practical case study in Shandong Province demonstrates that compared with the nominal bi-level and robust
bi-level models, the proposed optimization model can not only effectively resist parameter uncertainty, but
also be less conservative.
1. Introduction

As the process of global industrialization accelerates, the energy
consumption increases sharply, and the excessive greenhouse gas emis-
sions cause an irreversible impact on the environment. The total global
primary energy consumed by fuel increased to 595 exajoules in 2021,
of which the coal played an important role and the total consump-
tion reached 160 exajoules, accounting for 26.9% (Global, 2021). In
the power generation sector, the coal plays an important role in the
power plant fuel, accounting for 36% in 2021, owing to its low price
and abundant production compared to other fuels. The 2021 global
energy review of the CO2 emissions reported that the global CO2
emissions reached a critical point in 2021, with emissions from the
industrial combustion rebounding to the highest level, reaching 36.3
gigatonnes (Global Energy Review, 2021). However, one of the prime
reasons that the carbon emissions are so high is the coal power gen-
eration, which has led to the global warming and threatened human
health globally (Oberschelp et al., 2019). In this situation, reducing the
carbon emissions from the power plants becomes important. Research
has shown that BCC power generation can effectively reduce the carbon
emissions (Khademi and Ekşioğlu, 2021).
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In addition, according to the structural characteristics of the biomass
fuel, its high volatile content can improve the combustion efficiency,
and thus improve the net thermal efficiency of the power plants (Fu-
jishima et al., 2011). At present, the co-firing technology has been
widely promoted, among which there are mainly three co-firing modes:
(1) direct co-firing: it has lower requirements on the existing equipment
of the power plant, but the biomass utilization efficiency is low; (2)
indirect co-firing: its power generation efficiency is higher than the
direct co-firing, and the existing coal-fired boiler equipment can be
slightly modified for practical production; and (3) parallel co-firing:
its fuel efficiency is higher than the above two modes, but it requires
higher equipment (Sun et al., 2021). Therefore, the indirect co-firing is
a relatively effective measure for the rectification of the existing power
plants.

Notably, under the constraints of the carbon emission control,
there is a hierarchical relationship between the government and power
plants. As a public infrastructure, the power plants should be responsi-
ble for the impact of the economic sustainability and the social welfare
under the supervision of the government (Zhu et al., 2020). Without
government regulation, the power plants would not be responsible
for their carbon emissions, which negatively impact the economic
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sustainability, and would only seek to maximize their profits (Jones
et al., 2013). As a result, the objectives of the government and the
power plants are conflicting. This motivates us to employ a bi-level
optimization method to address this hierarchical relationship. As a
leader, the government first allocates the carbon emission quotas to the
power plants. Then, based on government decisions, the power plants
develop their production plans.

In the past few years, research on the BCC models has attracted the
attention of many scholars (Ekşioğlu et al., 2016; Cutz et al., 2019). In
this respect, Ooi et al. (2022) proposed a mathematical model to study
the optimal biofuel supply chain. A multi-objective mixed-integer linear
programming model was constructed for the existing sugar factories
that used the sugarcane bagasse for power generation (Varshney et al.,
2019). Nevertheless, they did not consider the uncertainties in the
power generation process of BCC.

The carbon emissions of the power plants are affected by various
factors, which are unfavorable for decision-makers to obtain the exact
values of the carbon emission parameters. Wang et al. (2022) studied
the data of 30 provinces in China to develop some carbon emission
reduction policies for the power generation industry, and identified
the factors of the regional differences and driving factors. During the
BCC power generation, the carbon emission parameters are mainly
affected by the unit type, the coal burning quality and the operating
load, so it is difficult for us to obtain the exact values of the carbon
emission parameters. How should the decision-makers respond to this
uncertainty?

In this paper, to handle uncertain carbon emission parameters, we
use a pair of uncertainty sets to characterize the uncertain parameters.
Accordingly, a globalized robust bi-level BCC model is formulated. In
our model, the government, as the leader, decides the CEQA mecha-
nism under the local socioeconomic and environmental conditions. The
power plants, as the followers, develop the production plan according
to the CEQA mechanism decided by the government. The contributions
of this paper can be summarized in the following three aspects:

• Model: A new globalized robust bi-level optimization model is
developed for the BCC planning problem under the carbon emis-
sion quota, where the uncertain carbon emission parameters are
characterized by inner–outer uncertainty sets. The uncertain car-
bon emission parameters are contained in the lower level model,
which pose a challenge in its solution method.

• Solvability: The proposed globalized robust bi-level BCC model is
transformed into a computationally tractable system. Specifically,
using Lagrange duality theory, the globalized robust constraint is
converted to a convex constraint system. Furthermore, by replac-
ing the lower-level model with its KKT conditions, we can obtain
a single-level model which can be solved by commercial software.

• Application: The proposed model is applied to a real case about
co-firing power plants in Shandong Province, China. The compu-
tational results lead to the conclusion that the globalized robust
optimization (GRO) method can not only resist parameter un-
certainty but also pay a lower price of robustness than robust
optimization (RO) method.

The rest of paper is organized as follows: Section 2 presents the liter-
ture review. Section 3 further outlines the research problem in detail,
roposes a globalized robust bi-level BCC optimization model under
he CEQA mechanism. Section 4 converts the semi-infinite constraint
nto a finite system of convex constraints, and finally transforms the
i-level model into a single-level model. A case study about three power
lants in Shandong Province is provided to verify the effectiveness and
racticability of the globalized robust bi-level BCC optimization model
n Section 5. Finally, Section 6 presents the conclusions.

. Literature review

The literature review and the research gaps of this study are focused
n in this section. The relevant literature review includes two aspects:
he CEQA problem and uncertain BCC optimization models.
2

2.1. CEQA problem

The regional CEQA policy is considered to be an effective sustain-
able development policy to reduce the carbon emissions and increase
the fiscal revenue (Zhou and Wang, 2016). For example, Yang and
Lee (2022) proposed a CEQA mechanism, and the experimental results
showed that the allocation mechanism played an important role in
China’s sustainable development, in which the carbon intensity was
reduced by 6.69% and the economy was increased by 7026 billion
RMB. Studies have shown that the carbon emission allowances are
important to the regional economic growth and that the misallocation
of the carbon allowances can have a negative impact on productivity
and carbon performance.

In some areas, several studies have shown that the CEQA mecha-
nism is an effective measure to reduce the carbon emissions. In the
power industry, Zhang et al. (2018) proposed a general equilibrium
model, and applied their model to practical cases, where the computa-
tional results showed that different carbon emission quota allocations
can affect the price of electricity. When a CEQA scheme is implemented,
there are usually two or more decision-makers. Based on the equilib-
rium strategy of the CEQA mechanism, a fuzzy optimization method
was proposed to seek the tradeoff between the carbon emissions and
the economy in the construction industry, and the method was applied
to real cases (Zhao et al., 2018).

Both the free CEQA and taxable CEQA are discussed in this paper.
According to Zhou et al. (2009) and Feng et al. (2018), the free CEQA
refers to the carbon emission quota allocated by the government to
power plants to keep them operating normally, while the taxable CEQA
refers to the portion of carbon emissions that power plants apply to the
government for additional quota over and above the free CEQA.

2.2. Uncertain BCC optimization models

There are many uncertain factors in the actual utilization of the
biomass fuel. To address the uncertainty about the heating value and
moisture content of biomass in the biomass supply chain, Shabani
and Sowlati (2016) applied stochastic robust optimization to a multi-
stage model, and the results showed that their method could prevent
the adverse fluctuations caused by data uncertainty. For the biomass
supply chain, Kim et al. (2011) presented an optimal design model
of a biomass supply chain network under stochastic uncertainty. In
addition, some researchers have studied the biomass supply chain in an
uncertain environment (Samani and Hosseini-Motlagh, 2021; Awudu
and Zhang, 2012; Soren and Shastri, 2019).

Generally, uncertain optimization methods include RO (Bertsimas
and Sim, 2004; Ben-Tal et al., 2009), fuzzy optimization (FO), and
stochastic optimization (SO). The FO method is applied to uncertain
BCC optimization models, where the uncertain model parameters are
characterized by possibility distributions. For instance, in an uncertain
environment, Huang and Xu (2020) applied FO method to construct a
bi-level multi-objective model for the sludge and coal co-firing power
generation, which fully reflected the influence of fuzzy parameters
on the modeling process. Due to the uncertainty of biomass supply
prices, Chen and Liu (2023b) proposed a distributionally robust fuzzy
location optimization model for biomass power plants. In addition,
there are some other interesting work to use FO method to model BCC
problem (Xu et al., 2018; Aviso et al., 2020; Lima et al., 2021).

In addition, many researchers have applied RO method to uncertain
BCC optimization models. A RO model is presented to design the
efficient biomass co-firing networks and determine the appropriate
co-firing configurations and fuel mixtures (San Juan and Sy, 2022).
To deal with uncertainties in biomass productivity and product sales
prices, Theozzo and dos Santos (2023) proposed a RO model that allows
for control of its conservatism. Chen and Liu (2023a) applied the GRO
method to the biomass energy supply chain problem and demonstrated
its superiority through practical cases.
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Table 1
A review of the literature on uncertainty models.

Researches Model structure Uncertain parameters Optimization method

Single-level Bi-level Carbon emissions Others RO FO SO GRO

Gebreslassie et al.
(2012)

✓ ✓ ✓

Xu et al. (2018) ✓ ✓ ✓

Huang and Xu
(2020)

✓ ✓ ✓ ✓

Aviso et al. (2020) ✓ ✓ ✓

Karimi et al. (2021) ✓ ✓ ✓

San Juan and Sy
(2022)

✓ ✓ ✓

Aranguren and
Castillo-Villar
(2022)

✓ ✓ ✓

Theozzo and dos
Santos (2023)

✓ ✓ ✓

This study ✓ ✓ ✓
The SO method also has many applications. In this respect, Karimi
t al. (2021) took into account the uncertain emission factors in the pro-
ess of the biomass–coal co-combustion power generation, and adopted
he chance constraint to model uncertainty. Under uncertain supply and
emand conditions, a multi-period, bi-criterion, stochastic mixed inte-
er linear programming model was proposed to solve the optimization
esign and planning of the hydrocarbon biorefining supply chain (Ge-
reslassie et al., 2012). In addition, some researchers have applied SO
ethod to uncertain biomass optimization problems (Aranguren and
astillo-Villar, 2022; Allman et al., 2021).

.3. Research gaps

To illustrate the difference between this study and the existing liter-
ture, the literature related to the uncertain BCC optimization models
s divided into three categories: model structure, uncertain parameters,
nd optimization methods, which are provided in Table 1, and the last
ine in the table shows the characteristics of our study.

In summary, the method proposed in this study is different from
he existing literature, and the differences include the following three
spects:

• There are few studies that consider the hierarchical relationship
between the government and power plants, and most existing
literature use a single-level optimization model. In this paper, the
CEQA mechanism is adopted and a bi-level optimization model is
constructed considering the hierarchical relationship between the
government and power plants.

• In the literature on bi-level models, FO methods are applied to
address the uncertainty of the carbon emission parameters in the
process of BCC power generation, while few studies apply GRO
method to address the studied problem.

• In the existing robust bi-level optimization method, the uncertain
parameters all present in the upper level model. However, in our
study the uncertain carbon emission parameters are in the lower
level model, which pose a challenge to model analysis.

The three aspects mentioned above demonstrate the originality and
cientific merit in current study by comparing the related literature in
he BCC problem.

. Methodology

This section first introduces the BCC problem under the CEQA
echanism and then proposes a globalized robust bi-level optimization
ethod for BCC problem.
3

3.1. Problem description

In the BCC problem under the CEQA mechanism, the government
sets the CEQA at the upper level, and the power plants at the lower
level determine their production plans according to the quotas set by
the government. The government, as a representative of the public,
is responsible for the sustainable development. The government not
only controls the carbon emissions but also keeps the power plants
running. Considering the social welfare and environmental protection,
the government divides the CEQA into two parts. One part is the free
CEQA, and second part is the taxable CEQA, which is paid to the
government in the form of tax for the ecological compensation. To
maximize the fiscal revenue, the government determines the CEQA to
the power plants under the reducing carbon emission target, while the
power plants create the production plan according to the government’s
CEQA and aim to maximize their profits.

Through the above analysis, the carbon emission quota plays a crux
role in model construction. However, in the actual production process
of the power plant, the carbon emission parameters are affected by
many factors, including the type of power units, the quality of coal,
and the operating load. These factors have a direct impact on the
carbon emissions of the power plants, which in turn affects the excess
carbon tax they pay to the government. Therefore, this paper considers
uncertain carbon emission parameters and discusses the impacts of
uncertainty on solution quality.

To clarify the research scope, some necessary assumptions involved
in this paper are given as follows:

• Indirect co-firing is adopted in our BCC problem;
• Biomass and coal can be completely burned in a boiler;
• The production plan of the power plant is based on a one-year

cycle.

To describe this model in detail, its associated notations and defini-
tion are given in Table A.1.

3.2. Model formulation

3.2.1. Upper level model
For the sustainable development of the region, the government

not only considers the long-term development of the economy but
also takes responsibility for the environmental damage caused by the
development process, and pays much attention to the carbon emissions
which are mainly responsible for the greenhouse effect.

Objective of the government: Maximizing tax revenue
The government’s potential fiscal revenue from the power plants

mainly consists of two parts: the value-added tax and the tax revenue
that exceeds the free CEQA. The value-added tax is 𝜌∑𝑀 ∑𝑁 [𝑃𝑃𝐶
𝑚=1 𝑛=1 𝑚𝑛
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(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛. Due to the excess carbon emissions, the tax
evenue for the power plant is 𝑤

∑𝑀
𝑚=1 𝑦𝑚. Combining these two parts,

the objective function about the government tax revenue is:

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛 +𝑤

𝑀
∑

𝑚=1
𝑦𝑚.

Carbon intensity constraints: The government proposes the car-
bon intensity constraints for all industries to achieve the sustainable
development. The government achieves the carbon intensity constraints
by restricting the allocation of the carbon emissions for the BCC power
plants. The carbon emissions of the power plants divided by the elec-
tricity output provide the feedback on the carbon intensity indicators
to the government. The coal-fired power plant’s carbon intensity is
𝐶𝐼 =

∑𝑀
𝑚=1(𝑥𝑚+𝑦𝑚)

∑𝑀
𝑚=1

∑𝑁
𝑛=1 𝑃𝐶𝑚𝑛𝑧𝑚𝑛

. To control the carbon emissions, the carbon

intensity should be less than a certain value 𝑟, i.e.,

𝐶𝐼 ⩽ 𝑟. (1)

Free carbon emission quota allocation proportion constraints:
On May 13, 2021, the Air Pollutant Emission Standard for Thermal
Power Plants was reviewed and approved in principle at the executive
meeting of the Ministry of Environmental Protection. The new stan-
dard has greatly improved the pollutant emission standard, which will
further increase the cost pressure on the power plants, including the
co-firing power plants. Consequently, the government should set the
right proportion of the free carbon emissions to ensure the interests
of the power plants and promote the ability of the power plants to
improve their cleaner production. The free CEQA level can be expressed
as 𝐹𝑃 = 𝑥𝑚

(𝑥𝑚+𝑦𝑚)
. Let 𝜇 be the free CEQA level in conformity with

he government’s comprehensive decision
o
n the economy and society.

hen the free CEQA proportion constraints can be shown as follows,

𝑃 ⩾ 𝜇. (2)

The total carbon emissions constraint: The government needs to
et the carbon emissions cap to achieve the carbon reduction targets.
he total CEQA constraint is represented as follows:
𝑀
∑

=1
(𝑥𝑚 + 𝑦𝑚) ⩽ 𝛽 𝑇𝐸𝐶, (3)

here ∑𝑀
𝑚=1(𝑥𝑚 + 𝑦𝑚) denotes the total CEQA. As can be seen from the

ighthand of the total CEQA constraint, when the parameter TEC or 𝛽
ncreases, the total CEQA always increases.
Operational requirements: When formulating the carbon emission

llocations, the government should ensure the basic operation of the
ower-level power plants. In the meantime, the total CEQA cannot
xceed the maximum full-load production for each power plant, which
s represented as,

𝑄𝑚𝑖𝑛
𝑚 ⩽ 𝑥𝑚 + 𝑦𝑚 ⩽ 𝐴𝑄𝑚𝑎𝑥

𝑚 ,∀𝑚 ∈ . (4)

.2.2. Lower level model
The lower power plants need to decide the production plan ac-

ording to the government’s carbon emission allocation mechanism
nd their aim to maximize profits. The lower level model will be
onstructed in the following.
Objectives of the power plant: Maximizing profits
The profit of the power plant comes from the electricity sold to

he power supply enterprise. The cost of the power plant is mainly
omposed of four parts, the fuel cost, the garbage disposal cost, the tax
ost, and the excess carbon emission cost. Therefore, the power plant
rofits are as follows:

ax PB𝑚 =𝑃
𝑁
∑

𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛)𝑧𝑚𝑛 −
𝑁
∑

𝑢𝑚𝑛𝑧𝑚𝑛
4

𝑛=1 𝑛=1
−
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘𝑧𝑚𝑛−

𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛 −𝑤

𝑀
∑

𝑚=1
𝑦𝑚 − 𝑂𝐶𝑚.

Uncertain carbon emissions amount constraints: From the
ower plant’s point of view, it cannot exceed the total carbon emissions
et by the government. However, in the process of the co-firing power
eneration, the carbon emission parameters are mainly affected by the
nit type, the coal combustion quality, and operating load. In this case,
t is difficult to obtain the exact values about the carbon emission
arameters. To overcome this difficulty, we will adopt the globalized
obust counterpart constraint (5) to model this uncertainty:
𝑁
∑

𝑛=1
𝐶𝑚𝑛𝑧𝑚𝑛 − 𝑥𝑚 − 𝑦𝑚 ⩽ min

𝑪′
𝑚∈1

𝜙(𝑪𝑚,𝑪 ′
𝑚), ∀𝑪𝑚 ∈ 2, 𝑚 ∈ , (5)

here the distance function 𝜙(𝑪𝑚,𝑪 ′
𝑚) = 𝛼(‖𝑪𝑚 − 𝑪 ′

𝑚‖1) with 𝛼(𝑡) = 𝜃𝑡,
⩾ 0, 𝜃 ⩾ 0 is the global sensitivity parameter.

emark 1. If 𝑪𝑚 ∈ 1, then obviously min𝑪′
𝑚∈1

𝜙(𝑪𝑚,𝑪 ′
𝑚) = 0 holds,

nd constraint (5) simplifies into the uncertain constraint ∑𝑁
𝑛=1 𝐶𝑚𝑛𝑧𝑚𝑛−

𝑥𝑚 − 𝑦𝑚 ⩽ 0. That is to say, the GRO method requires full feasibility for
all parameter values in the inner uncertainty set 1. However, for 𝑪𝑚 ∈

2∖1, the violation of uncertain constraint ∑𝑁
𝑛=1 𝐶𝑚𝑛𝑧𝑚𝑛 −𝑥𝑚 − 𝑦𝑚 ⩽ 0

s allowed, which is controlled by the distance min𝑪′
𝑚∈1

𝜙(𝑪𝑚,𝑪 ′
𝑚) of

𝑚 to 1. In other words, infeasibilities are allowed for the parameter
alues in set 2∖1, where the violation is controlled by the distance
f the parameter value from the inner uncertainty set.

In addition, the value of the global sensitivity parameter 𝜃 directly
ffects the value of distance function 𝜙(𝑪𝑚,𝑪 ′

𝑚), while the value of
he distance function 𝜙(𝑪𝑚,𝑪 ′

𝑚) reflects the degree to which uncertain
onstraint can be violated. If 𝜃 = 0, then 𝜙 = 0, that is, the uncertain
onstraint cannot be violated; if 𝜃 > 0, then the uncertain constraint can
e violated to some extent. Therefore, the greater the 𝜃, the greater the
egree to which the constraint can be violated, the larger the feasible
omain of the BCC model, and the less conservative the government
ax revenue objective.

Demand constraints: When the owners of the power plants make
ecisions, they have the obligation and responsibility to take into
ccount the basic electricity demand of the society. This demand con-
traint is represented as,
𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚)𝑧𝑚𝑛 −𝐷𝑚 ⩾ 0,∀𝑚 ∈ . (6)

Fuel amount constraints: In practice, each power plant has a
ifferent fuel storage capacity. In addition, the decision variable 𝑧𝑚𝑛
hould also satisfy the non-negative constraint. Thus, we have the
ollowing constraints:

⩽ 𝑧𝑚𝑛 ⩽ 𝐹𝐴𝑚𝑛,∀𝑚 ∈ , 𝑛 ∈  . (7)

Fuel quality constraints: Because the chemical composition and
he physical structure of the biomass fuel are different from those of
he coal fuel, there are different equipment requirements in the co-
iring process. If the mixed fuel cannot meet the requirements of the
quipment, serious safety incidents will occur. To ensure the long-term
ustainable production of power plants, their characteristics need to
e constrained. The fuel quality is mainly considered in five aspects:
olatile matter content, heat rate, ash content, moisture content, and
ulfur content. In this case, the following constraints are required:

𝐵𝐿
𝑚𝑞 ⩽

∑𝑁𝑎
𝑛=1 𝐹𝑛𝑞𝑧𝑚𝑛
∑𝑁𝑎

𝑛=1 𝑧𝑚𝑛
⩽ 𝑄𝐵𝑈

𝑚𝑞 ,∀𝑚 ∈ , 𝑞 ∈ , (8)

𝑄𝐶𝐿
𝑚𝑞 ⩽

∑𝑁
𝑛=𝑁𝑎+1

𝐹𝑛𝑞𝑧𝑚𝑛
∑𝑁 ⩽ 𝑄𝐶𝑈

𝑚𝑞 ,∀𝑚 ∈ , 𝑞 ∈ . (9)

𝑛=𝑁𝑎+1

𝑧𝑚𝑛
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Fig. 1. Structure of the GRC bi-level BCC model.
Proportion constraints: The degree of burnout of the coal fuels
is determined by the type of fuel and the proportion of biomass in-
corporated. In a coal-fired furnace, the BCC is easier to ignite than
pure coal because of the high volatile content of the biomass. However,
if the biomass–coal fuel combustion is insufficient, it will lead to the
emission of the carbon-polluting gases such as the carbon monoxide
and methane. Therefore, to ensure that the fuel is fully burned, the pro-
portion of the biomass fuel needs to be controlled. Then the proportion
of the biomass fuel is constrained as follows:
∑𝑁𝑎

𝑛=1 𝑧𝑚𝑛
∑𝑁

𝑛=1 𝑧𝑚𝑛
⩽ 𝐵𝑚,∀𝑚 ∈ . (10)

Finally, our model structure is shown in Fig. 1. The GRC bi-level
BCC model is as follows:

GRC bi-level BCC model

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛𝑧𝑚𝑛] +𝑤

𝑀
∑

𝑚=1
𝑦𝑚

s.t. Constraints (1)–(4),

max PB𝑚 = 𝑃
𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛)𝑧𝑚𝑛 −

𝑁
∑

𝑛=1
𝑢𝑚𝑛𝑧𝑚𝑛

−
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘𝑧𝑚𝑛−

𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛

−𝑤
𝑀
∑

𝑚=1
𝑦𝑚 − 𝑂𝐶𝑚,

s.t. Constraints (5)–(10).

(11)

It can be seen that the GRC bi-level BCC model can resist un-
certainty. Nevertheless, Eq. (5) is a semi-infinite constraint, thus the
solution of the bi-level model is difficult. In the next section, we will
5

turn semi-infinite constraint (5) into a finite convex constraint system,
then reformulate the bi-level model as a single-level mixed-integer
programming model.

4. Main results about the GRC bi-level BCC model

This section is dedicated to obtaining the computationally tractable
systems of the GRC bi-level BCC model. The main difficulties in solving
the model lie in the following three aspects:

(1) The solution about the bi-level BCC problem is faced with a chal-
lenge, because (5) is a semi-infinite constraint, that is, the lower
optimization model has a linear objective subject to infinite
constraints.

(2) The existing studies show that the bi-level optimization prob-
lem is often difficult to solve. Therefore, even the semi-infinite
constraint problem is turned in a finite system, our BCC bi-level
optimization problem is still a difficult optimization problem.

(3) Since the complementary slackness constraints are formulated by
the transformation from a bi-level model to a single-level model,
the solution of our model is also confronted with nonlinear
constraints.

To overcome the above difficulties, this section proceeds in three
steps. First, we convert semi-infinite constraint (5) to a finite convex
constraint system. Second, we convert the bi-level BCC model into a
single-level model by using the KKT conditions. Third, we transform
the nonlinear complementary tightness constraints into their equivalent
linear constraints.

4.1. Reformation of the semi-infinite constraint

In this section, inner–outer uncertainty sets are discussed first,
which can characterize the uncertain carbon emission parameters.
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Then, semi-infinite constraint (5) is converted to a finite convex con-
straint system.

The uncertain carbon emission parameters 𝐶𝑚𝑛 in constraint (5) vary
in inner–outer uncertainty sets (1,2) which are parameterized in the
ollowing affine form:

1(2) = {𝑪𝑚 = 𝑪0
𝑚 +

𝐿
∑

𝑙=1
𝑪 𝑙
𝑚𝜁

𝑙
|𝜻 ∈ 1(2)},

here 𝑪0
𝑚 is the nominal value, 𝑪 𝑙

𝑚 is the basic shift, 𝜻 = [𝜁1, 𝜁2,… , 𝜁𝐿]
s the perturbation vector and  is the perturbation set.

According to the structure of uncertainty inner–outer sets (1,2),
he uncertainty sets are determined by the inner–outer perturbation sets
1,2). The structure of the inner–outer perturbation sets (1,2) will
e given as,

1 = {𝜻 ∈ 𝑅𝐿 ∶ ‖𝜻‖∞ ⩽ 1, ‖𝜻‖1 ⩽ 𝜏}, 1 ⩽ 𝜏 ⩽ 𝐿,

and

2 = {𝜻 ∈ 𝑅𝐿 ∶ ‖𝜻‖∞ ⩽ 1}.

Based on the above uncertainty sets, the next step is to convert
constraint (5) into a finite convex system. The equivalent form of
semi-infinite constraint (5) is summarized in the following theorem.

Theorem 1. Given a pair of uncertainty sets (1,2), vector 𝒛𝑚 ∈ 𝑅𝑁

satisfies semi-infinite constraint (5) if and only if there exists 𝒗𝑚 ∈ 𝑅𝑁 ,
𝜞𝑚 ∈ 𝑅𝐿, 𝜼𝑚 ∈ 𝑅𝐿 such that the following finite convex constraints hold,

(𝑪0
𝑚)

T𝑧𝑚 + ‖(𝑨T
𝑚)(𝒛𝑚 − 𝒗𝑚)‖1 + ‖𝜼𝑚‖1 + 𝜏‖𝜞𝑚‖∞ ⩽ 𝑥𝑚 + 𝑦𝑚,∀𝑚 ∈ ,

(12a)

𝜼𝑚 + 𝜞𝑚 = 𝑨T
𝑚𝒗𝑚,∀𝑚 ∈ , (12b)

‖𝒗𝑚‖∞ ⩽ 𝜃,∀𝑚 ∈ . (12c)

where 𝑨𝑚 = [𝐶1
𝑚, 𝐶

2
𝑚,… , 𝐶𝐿

𝑚 ]𝑁×𝐿, and 𝒛𝑚 = (𝑧𝑚𝑛)𝑛∈ .

Proof. The proof of Theorem 1 is in Appendix B. □

Theorem 1 converts semi-infinite constraint (5) into a finite convex
constraint system. As a result, the GRC bi-level BCC model can be
transformed into a deterministic bi-level BCC model.

4.2. Transforming bi-level BCC model into a single-level BCC model

Some constraints in the system (12) are nonlinear, which are not
easy to handle. In the following, we linearize nonlinear constraints.
By introducing the auxiliary variables 𝜉𝑙𝑚1, 𝜉

𝑙
𝑚2, 𝜉𝑚3 and 𝜉𝑚4, constraint

system (12) is equivalent to the following linear system:
𝑁
∑

𝑛=1
𝐶0
𝑚𝑛𝑧𝑚𝑛 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚1 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚2 + 𝜏𝜉𝑚3 ⩽ 𝑥𝑚 + 𝑦𝑚,∀𝑚 ∈ , (13a)

𝜉𝑚4 ⩽ 𝜃,∀𝑚 ∈ , (13b)

𝜂𝑙𝑚 + 𝛤 𝑙
𝑚 =

𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛𝑣𝑚𝑛,∀𝑚 ∈ , (13c)

− 𝜉𝑙𝑚1 ⩽
𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛(𝑧𝑚𝑛 − 𝑣𝑚𝑛) ⩽ 𝜉𝑙𝑚1,∀𝑚 ∈ , (13d)

− 𝜉𝑙𝑚2 ⩽ 𝜂𝑙𝑚2 ⩽ 𝜉𝑙𝑚2,∀𝑚 ∈ , (13e)

− 𝜉𝑚3 ⩽ 𝛤 𝑙
𝑚 ⩽ 𝜉𝑚3,∀𝑚 ∈ , (13f)

− 𝜉𝑚4 ⩽ 𝑣𝑚𝑛 ⩽ 𝜉𝑚4,∀𝑚 ∈ . (13g)
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As a consequence, the GRC bi-level BCC model is equivalent to the
following linear bi-level programming model,

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛𝑧𝑚𝑛] +𝑤

𝑀
∑

𝑚=1
𝑦𝑚

s.t. Constraints (1)–(4),

max PB𝑚 = 𝑃
𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛)𝑧𝑚𝑛 −

𝑁
∑

𝑛=1
𝑢𝑚𝑛𝑧𝑚𝑛

−
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘𝑧𝑚𝑛−

𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛

−𝑤
𝑀
∑

𝑚=1
𝑦𝑚 − 𝑂𝐶𝑚,

s.t. Constraints (6)–(10) 𝑎𝑛𝑑 (13a)–(13g).

This bi-level linear programming model establishes the connection
between the upper level of the government and the lower level of
the power plants. However, it is well-known that solving the bi-level
model is a difficult task, the uncertain lower-level problem becomes
even harder to solve. Some methods have been used to compute the bi-
level model, one of which is the KKT method. Replacing the lower-level
problem with its KKT condition, the bi-level model is then transformed
into a single-level optimization problem (Sinha et al., 2017). The KKT
conditions for the lower-level problem are stated in the following
proposition.

Proposition 1. The KKT conditions for the production planning of the
lower-level power plants are composed of four aspects: Lagrangian station-
arity, complementary slackness, dual feasibility, and primal feasibility. The
four aspects are as follows,
Lagrangian stationarity:

𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛 −
𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘 − 𝜌[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]+

𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝜆1𝑚𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝜆8𝑚(𝐵𝑚 − 1) + 𝜆9𝑚𝐶
0
𝑚𝑛 + 𝜆11𝑚𝑙𝐶

𝑙
𝑚𝑛−

𝑄
∑

𝑞=1
𝜆5𝑚𝑞(𝑄𝐵𝑈

𝑚𝑞 − 𝐹𝑛𝑞) −
𝑄
∑

𝑞=1
𝜆4𝑚𝑞(𝑄𝐵𝑚𝑞 − 𝐹𝑛𝑞)

= 0,∀𝑚 ∈ ,∀𝑛 ∈ {1,… , 𝑁𝑎}. (14a)

𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛 −
𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘 − 𝜌[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]+

𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝜆1𝑚𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝜆8𝑚𝐵𝑚 + 𝜆9𝑚𝐶
0
𝑚𝑛 + 𝜆11𝑚𝑙𝐶

𝑙
𝑚𝑛−

𝑄
∑

𝑞=1
𝜆7𝑚𝑞(𝑄𝐵𝑈

𝑚𝑞 − 𝐹𝑛𝑞) −
𝑄
∑

𝑞=1
𝜆6𝑚𝑞(𝑄𝐵𝑚𝑞 − 𝐹𝑛𝑞)

= 0,∀𝑚 ∈ ,∀𝑛 ∈ {𝑁𝑎+1,… , 𝑁}. (14b)

Complementary slackness:

𝜆1𝑚(
𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚)𝑧𝑚𝑛 −𝐷𝑚) = 0, (15a)

𝜆2𝑚𝑛(𝑧𝑚𝑛) = 0, (15b)

𝜆3𝑚𝑛(𝐹𝐴𝑚𝑛 − 𝑧𝑚𝑛) = 0, (15c)

𝜆4𝑚𝑞(
𝑁𝑎
∑

𝑛=1
𝐹𝑛𝑞𝑧𝑚𝑛 −𝑄𝐵𝐿

𝑚𝑞

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛) = 0, (15d)

𝜆5𝑚𝑞(𝑄𝐵𝑈
𝑚𝑞

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛 −

𝑁𝑎
∑

𝑛=1
𝐹𝑛𝑞𝑧𝑚𝑛) = 0, (15e)

𝜆6𝑚𝑞(
𝑁
∑

𝐹𝑛𝑞𝑧𝑚𝑛 −𝑄𝐶𝐿
𝑚𝑞

𝑁
∑

𝑧𝑚𝑛) = 0, (15f)

𝑛=𝑁𝑎+1 𝑛=𝑁𝑎+1
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𝜆

𝜆

𝜆
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𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

𝜆

D

𝜆

P

(

t

m

(
i

P
l
(

{

{

⎧

⎪

⎨

⎪

⎩

⎧

⎪

⎨

⎪

⎩

𝜆7𝑚𝑞(𝑄𝐶𝑈
𝑚𝑞

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛 −

𝑁
∑

𝑛=𝑁𝑎+1

𝐹𝑛𝑞𝑧𝑚𝑛) = 0, (15g)

8
𝑚(𝐵𝑚

𝑁
∑

𝑛=1
𝑧𝑚𝑛 −

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛) = 0, (15h)

9
𝑚(𝑥𝑚 + 𝑦𝑚 − (

𝑁
∑

𝑛=1
𝐶0
𝑚𝑛𝑧𝑚𝑛 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚1 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚2 + 𝜏𝜉𝑚3)) = 0, (15i)

10
𝑚 (𝜃 − 𝜉𝑚4) = 0, (15j)

11
𝑚𝑙(𝜂

𝑙
𝑚 + 𝛤 𝑙

𝑚 −
𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛𝑣𝑚𝑛) = 0, (15k)

12
𝑚𝑙(𝜉

𝑙
𝑚1 +

𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛(𝑧𝑚𝑛 − 𝑣𝑚𝑛)) = 0, (15l)

13
𝑚𝑙(𝜉

𝑙
𝑚1 −

𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛(𝑧𝑚𝑛 − 𝑣𝑚𝑛)) = 0, (15m)

14
𝑚𝑙(𝜉

𝑙
𝑚2 + 𝜂𝑙𝑚2) = 0, (15n)

15
𝑚𝑙(𝜉

𝑙
𝑚2 − 𝜂𝑙𝑚2) = 0, (15o)

16
𝑚𝑙(𝜉𝑚3 − 𝛤 𝑙

𝑚) = 0, (15p)
17
𝑚𝑙(𝜉𝑚3 + 𝛤 𝑙

𝑚) = 0, (15q)
18
𝑚 (𝜉𝑚4 + 𝑣𝑚𝑛) = 0, (15r)
19
𝑚 (𝜉𝑚4 − 𝑣𝑚𝑛) = 0. (15s)

ual feasibility:
𝑖 ⩾ 0, 𝑖 ∈ {1,… , 19}. (16)

rimal feasibility:

6)–(10), (13a)–(13g). (17)

In light of Proposition 1, the following single-level model is ob-
ained:

ax GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛 +𝑤

𝑀
∑

𝑚=1
𝑦𝑚

s.t. Constraints (1)–(4), (14)–(17).

(18)

Noting that constraints (15a)–(15s) in resulting single-level model
18) are nonlinear, thus they should be linearized, the results are stated
n the following proposition.

roposition 2. By introducing auxiliary variables 𝜇𝑖 and a sufficiently
arge number M, the nonlinear complementary slackness constraints (15a)–
15s) are respectively equivalent to the following linear constraints,

⎧

⎪

⎨

⎪

⎩

𝜆1𝑚 ⩽ 𝑀 ∗ 𝜇1
𝑚,∀𝑚 ∈ ,

𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚)𝑧𝑚𝑛 −𝐷𝑚 ⩽ 𝑀 ∗ (1 − 𝜇1

𝑚),∀𝑚 ∈ .
(19a)

𝜆2𝑚𝑛 ⩽ 𝑀 ∗ 𝜇2
𝑚𝑛,∀𝑚 ∈ ,∀𝑛 ∈  ,

𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇2
𝑚𝑛),∀𝑚 ∈ ,∀𝑛 ∈  .

(19b)

𝜆3𝑚𝑛 ⩽ 𝑀 ∗ 𝜇3
𝑚𝑛,∀𝑚 ∈ ,∀𝑛 ∈  ,

𝐹𝐴𝑚𝑛 − 𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇3
𝑚𝑛),∀𝑚 ∈ ,∀𝑛 ∈  .

(19c)

⎧

⎪

⎨

⎪

⎩

𝜆4𝑚𝑞 ⩽ 𝑀 ∗ 𝜇4
𝑚𝑞 ,∀𝑚 ∈ ,∀𝑞 ∈ ,

𝑁𝑎
∑

𝑛=1
𝐹𝑛𝑞𝑧𝑚𝑛 −𝑄𝐵𝐿

𝑚𝑞

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇4

𝑚𝑞),∀𝑚 ∈ ,∀𝑞 ∈ .
(19d)

⎧

⎪

⎨

⎪

𝜆5𝑚𝑞 ⩽ 𝑀 ∗ 𝜇5
𝑚𝑞 ,∀𝑚 ∈ ,∀𝑞 ∈ ,

𝑄𝐵𝑈
𝑚𝑞

𝑁𝑎
∑

𝑧𝑚𝑛 −
𝑁𝑎
∑

𝐹𝑛𝑞𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇5
𝑚𝑞),∀𝑚 ∈ ,∀𝑞 ∈ .

(19e)
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⎩ 𝑛=1 𝑛=1
𝜆6𝑚𝑞 ⩽ 𝑀 ∗ 𝜇6
𝑚𝑞 ,∀𝑚 ∈ ,∀𝑞 ∈ ,

𝑁
∑

𝑛=𝑁𝑎+1

𝐹𝑛𝑞𝑧𝑚𝑛 −𝑄𝐶𝐿
𝑚𝑞

𝑁
∑

𝑛=𝑁𝑎+1

𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇6
𝑚𝑞),∀𝑚 ∈ ,∀𝑞 ∈ .

(19f)

𝜆7𝑚𝑞 ⩽ 𝑀 ∗ 𝜇7
𝑚𝑞 ,∀𝑚 ∈ ,∀𝑞 ∈ ,

𝑄𝐶𝑈
𝑚𝑞

𝑁
∑

𝑛=𝑁𝑎+1

𝑧𝑚𝑛 −
𝑁
∑

𝑛=𝑁𝑎+1

𝐹𝑛𝑞𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇7
𝑚𝑞),∀𝑚 ∈ ,∀𝑞 ∈ .

(19g)

⎧

⎪

⎨

⎪

⎩

𝜆8𝑚 ⩽ 𝑀 ∗ 𝜇8
𝑚,∀𝑚 ∈ ,

𝐵𝑚

𝑁
∑

𝑛=1
𝑧𝑚𝑛 −

𝑁𝑎
∑

𝑛=1
𝑧𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇8

𝑚),∀𝑚 ∈ .
(19h)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜆9𝑚 ⩽ 𝑀 ∗ 𝜇9
𝑚,∀𝑚 ∈ ,

𝑥𝑚 + 𝑦𝑚 − (
𝑁
∑

𝑛=1
𝐶0
𝑚𝑛𝑧𝑚𝑛 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚1 +

𝐿
∑

𝑙=1
𝜉𝑙𝑚2 + 𝜏𝜉𝑚3)

⩽ 𝑀 ∗ (1 − 𝜇9
𝑚),∀𝑚 ∈ .

(19i)

{

𝜆10𝑚 ⩽ 𝑀 ∗ 𝜇10
𝑚 ,∀𝑚 ∈ ,

𝜃 − 𝜉𝑚4 ⩽ 𝑀 ∗ (1 − 𝜇10
𝑚 ),∀𝑚 ∈ .

(19j)

⎧

⎪

⎨

⎪

⎩

𝜆11𝑚𝑙 ⩽ 𝑀 ∗ 𝜇11
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜂𝑙𝑚 + 𝛤 𝑙
𝑚 −

𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛𝑣𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇11

𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .
(19k)

⎧

⎪

⎨

⎪

⎩

𝜆12𝑚𝑙 ⩽ 𝑀 ∗ 𝜇12
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑙𝑚1 +
𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛(𝑧𝑚𝑛 − 𝑣𝑚𝑛) ⩽ 𝑀 ∗ (1 − 𝜇12

𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .
(19l)

⎧

⎪

⎨

⎪

⎩

𝜆13𝑚𝑙 ⩽ 𝑀 ∗ 𝜇13
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑙𝑚1 −
𝑁
∑

𝑛=1
𝐶 𝑙
𝑚𝑛(𝑧𝑚𝑛 − 𝑣𝑚𝑛) ⩽ 𝑀 ∗ (1 − 𝜇13

𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .
(19m)

{

𝜆14𝑚𝑙 ⩽ 𝑀 ∗ 𝜇14
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑙𝑚2 + 𝜂𝑙𝑚2 ⩽ 𝑀 ∗ (1 − 𝜇14
𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .

(19n)
{

𝜆15𝑚𝑙 ⩽ 𝑀 ∗ 𝜇15
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑙𝑚2 − 𝜂𝑙𝑚2 ⩽ 𝑀 ∗ (1 − 𝜇15
𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .

(19o)
{

𝜆16𝑚𝑙 ⩽ 𝑀 ∗ 𝜇16
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑚3 − 𝛤 𝑙
𝑚 ⩽ 𝑀 ∗ (1 − 𝜇16

𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .
(19p)

{

𝜆17𝑚𝑙 ⩽ 𝑀 ∗ 𝜇17
𝑚𝑙 ,∀𝑚 ∈ ,∀𝑙 ∈ ,

𝜉𝑚3 + 𝛤 𝑙
𝑚 ⩽ 𝑀 ∗ (1 − 𝜇17

𝑚𝑙),∀𝑚 ∈ ,∀𝑙 ∈ .
(19q)

{

𝜆18𝑚 ⩽ 𝑀 ∗ 𝜇18
𝑚 ,∀𝑚 ∈ ,

𝜉𝑚4 + 𝑣𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇18
𝑚 ),∀𝑚 ∈ .

(19r)
{

𝜆19𝑚 ⩽ 𝑀 ∗ 𝜇19
𝑚 ,∀𝑚 ∈ ,

𝜉𝑚4 − 𝑣𝑚𝑛 ⩽ 𝑀 ∗ (1 − 𝜇19
𝑚 ),∀𝑚 ∈ .

(19s)

Finally, the overall structure of the computationally tractable pro-
cess is shown in Fig. 2. The computationally tractable system of GRC
bi-level BCC model (11) is reformulated as follows,

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛 +𝑤

𝑀
∑

𝑚=1
𝑦𝑚

s.t. 𝜇𝑖 ∈ {0, 1}, 𝑖 ∈ {1,… , 19},

Constraints (1)–(4), (6)–(10),
(14), (16)–(17), (19).

(20)

In summary, semi-infinite constraint (5) is first transformed into

a finite convex constraint system, then the lower-level power plant
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Fig. 2. The transformation of GRC bi-level BCC model into a single-level deterministic model.
Table 2
Fuel quality requirements.

Fuel Quality Linyi Shiliquan Shanxian

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

Coal

Volatile matter (%) 8.53 43.49 9.31 34.9 9.01 40.7
Heat rate (GJ/tonne) 20.19 16.57 18.67
Ash content (%) 26.3 25.2 28.9
Moisture content (%) 11.3 12.6 10.7
Sulfur content (%) 0.63 0.59 0.58

Biomass
Volatile matter (%) 22.13 73.21 20.15 69.47 21.77 75.42
Ash content (%) 13.65 12.71 12.96
Moisture content (%) 12.07 10.57 10.21
Table 3
Parameters for each power plant.

Parameters Power plants

Linyi Shiliquan Shanxian

Operating costs (108 CNY) 1.61 0.82 1.31
Minimum allocation quotas (106 tonnes) 2.38 0.97 2.29
Maximum allocation quotas (106 tonnes) 8.21 4.93 5.34
Electricity consumption rates (%) 9.4 8.7 10.4
Upper biomass proportions (%) 27 29 27

production planning problem is replaced with its KKT conditions. Af-
ter that, the complementary slackness conditions are linearized. As a
consequence, our GRC bi-level BCC model (11) can be transformed
into a computationally tractable single-level model (20), which can be
computed efficiently by commercial optimization solver.

5. Method implementation in a real case

We address a real case about the power plants in Shandong Province
China. In this section, to illustrate the validity and practicality of
our optimization method, the numerical experiment consists of the
following four parts. First, the computational results of our GRC bi-
level BCC model are reported. Second, the validity of the proposed
model is shown by comparing it with the nominal model and the RC
model. Third, a sensitivity analysis about the global sensitivity param-
eter 𝜃, and the size of the inner uncertainty set is performed. Finally,
several management insights are offered to managers. All numerical
experiments are solved by CPLEX(12.8.0) on a personal computer.
8

5.1. Case description and data source

On 22 September 2020, China set out a dual carbon goal, aiming
to peak its carbon dioxide emissions by 2030 and achieve carbon
neutrality by 2060. According to these goals, the power sector’s car-
bon emissions need to be given some attention. Based on statistics,
approximately 45% of China’s CO2 emissions come from the power
sector. In the important stage of the sustainable development, reducing
the carbon emissions of the power industry is important, and finding
a balance between the economy and the carbon emissions is also
important.

Over the past years, overreliance on the fossil fuels has led to a
significant reduction in the number of the fossil fuels. Meanwhile, the
burning of the fossil fuels has created serious environmental problems.
For the sake of sustainability, industries are looking for alternatives to
coal to alleviate the shortage of non-renewable energy. In addition, due
to the impact of COVID-19, the economic recovery is facing serious
challenges. Based on the situation described above, the power plants
need to change their paths to achieve a sustainable transformation. In
the power sector, the BCC for power generation will not only reduce
the amount of coal used but also reduce the carbon emissions.

As a large agricultural province, Shandong has an abundance of
the agricultural waste such as peanut shells, corn straw, wheat straw,
and cotton straw. This not only provides the biomass fuel for the BCC
power generation but also increases the income of the local farm-
ers (Li et al., 2023). In this case study, three BCC power plants using
wood waste, straw, and coal in Shandong Province are selected in our
case: Shanxian Power Plant, Shiliquan Power Plant, and Linyi Power
Plant; the locations are presented in Fig. 3. The Shandong Province
Government determines the CEQA to the power plants based on the
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Fig. 3. Locations of the power plants.
Fig. 4. Government tax revenue and total CEQA under different 𝛽.
local socioeconomic conditions. The power plant then formulates its
production plan based on the CEQA set by the government to achieve
the objective of maximizing profits.

The data used in our case and its source are given below. First,
the upper and lower bound requirements for the volatile matter and
heat rate of the coal fuel and biomass fuel for each power plant are
given in Table 2. Other parameters related to the power plants are
given in Tables 3 and 4. Second, the volatile matter and the heat
rate of the biomass fuel and coal fuel are obtained from paper (Nuss-
baumer, 2003), and the data are presented in Table 5. For example,
the fuel prices and pollution treatment costs in Table 6 are derived
from the website of the Ministry of Ecology and Environment of the
Peoples Republic of China. Finally, according to the Chinese National
Development and Reform Commission, the electric power price is 0.45
CNY/kWh, the value-added tax rate is 0.17, and the excess carbon
9

emission tax rate is 22.704 CNY/tonne. From Shandong Provinces
2021 Statistical Yearbook, the total basic power demand of Linyi City,
Shiliquan City and Shanxian City is 4.98 ×1010 kWh, 1.73 ×1010 kWh
and 2.56 ×1010 kWh. In this case, 10% of the total basic power demand
is selected. The total CEQA is 12.56 ×106 tonnes. In addition, for
uncertain carbon emission parameters, the basic shift 𝐶 𝑙

𝑚𝑛 is assumed to
be 0.5% of the nominal value. In the following numerical experiment,
K represents 105.

5.2. Computational results

In this section, to demonstrate the effectiveness of the proposed GRC
bi-level BCC model, the results are presented in two cases. In Case 1,
the parameters are set as: 𝜇 = 0.8, 𝑟 = 0.78, and 𝛽 is changing from
0.85 to 1. In Case 2, the parameters are set as: 𝜇 = 0.8, 𝛽 = 0.92, and
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Fig. 5. Carbon emissions quota allocation for each power plant.
Fig. 6. Profit of each power plant under different models.
Fig. 7. Comparison of government tax revenue under different models.
Table 4
Parameters for each power plant.

Power conversion (kWh/ton) Carbon emissions (kg/ton)

Straw Wood Coal 1 Coal 2 Coal 1 Coal 2

Linyi 1610 1780 2380 2490 2420 2230
Shiliquan 1600 1670 2400 2240 2530 2240
Shanxian 1510 1720 2470 2460 2460 2310

𝑟 is changing from 0.77 to 0.82. In both cases, the parameters related
to the inner–outer uncertainty sets are set as: 𝜃 = 1.2 K, 𝜌 = 1.5. The
results report the government decisions and the production planning of
the power plants in two cases.

Table 7 presents the government decisions and the power plant pro-
duction plans under Case 1. We first analyze the government decisions.
10
Table 7 shows that as the carbon emission control parameter 𝛽 increases
from 0.85 to 1, the government tax revenue sharply increases from
346,753 × 103 CNY to 410,829 × 103 CNY. In terms of the carbon
emission quota allocation, we find that both the free and the taxable
carbon emission quota allocation of the power plants in Linyi and
Shanxian show a downward trend. For instance, the free CEQA for the
Shanxian power plant increases from 3.051 × 105 tonnes to 4.272 ×
105 tonnes, and the taxable CEQA increases from 0.763 × 105 tonnes
to 1.068 × 105 tonnes. In addition, there are no changes in the carbon
emission quota allocated to the Shiliquan power plant.

We next analyze the production plans of the three power plants.
From the surface data in Table 7, as parameter 𝛽 increases from 0.85
to 1, the profit of the Linyi power plant increases initially, followed
by a decrease, but then again increases. However, the profit of the
Shanxian power plant sharply increases. With a 15% increase in the
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Table 5
Parameters for each fule.

Straw Wood waste Coal 1 Coal 2

Fuel properties

Volatile matter (% weight) 60.72 69.96 24.69 34.32
Heat rate (GJ/tonne) 19.50 20.10 23.61 30.11
Ash content (% weight) 12.20 8.90 11.21 9.67
Moisture content (% weight) 6.01 12.70 7.70 5.60
Sulfur content (% weight) 0.21 0.14 0.63 0.36

Pollutant emissions SO2 (kg/ton) 4.14 2.11 4.71 4.81
NOx (kg/ton) 4.32 1.27 8.96 7.97
Table 6
Price parameters.

Price of fuel (CNY/ton) Pollutions cost (CNY/ton)

Straw Wood Coal 1 Coal 2 SO2 NOx

Linyi 743 781 621 678 2.31 14.96
Shiliquan 727 828 602 678 1.92 14.43
Shanxian 731 771 562 682 2.14 14.81

carbon emission control parameter, the profit of the Shanxian power
plant increases by 49%. In addition, under different carbon emission
control parameters 𝛽, the fuel consumption of the power plants varies
significantly. For example, when 𝛽 changes from 0.97 to 0.94, the wood
fuel in the Shanxian power plant directly changes from 4.82 × 105

tonnes to 0. This also means that the power plants need to develop
corresponding production plans based on different carbon emission
control parameters 𝛽.

Table 8 shows the computational results under different value of
parameter TEC with fixed parameter 𝛽 = 0.9. From this result, we find
that with the increase of parameter TEC, the government tax revenue
also increases. Therefore, in addition to the carbon emission control
parameter 𝛽, the parameter TEC also has a positive impact on the
government tax revenue.

Therefore, both the carbon emission control parameter 𝛽 and pa-
rameter TEC have positive impacts on the government tax revenue.

Table 9 presents the government decisions and production plans for
the power plants in Case 2. For government decisions, as 𝑟 increases
from 0.77 to 0.82, the government tax revenue first rises to 379,135 ×
03 CNY and then remains steady. For the carbon emission allowances,
hen 𝑟 grows from 0.77 to 0.82, the carbon emission quota allocation

or the Linyi power plant and Shanxian power plant also shows a trend
f rising first and then remaining steady. Only when 𝑟 is 0.77 does the
arbon emission quota allocated to the Shiliquan power plant change.

From Table 9, it can be concluded that different carbon intensity
ontrol parameters 𝑟 also have an impact on the fuel consumption of
he power plants. For example, when 𝑟 changes from 0.8 to 0.78, the
oal 2 fuel consumption of the Linyi power plant changes from 0 to
.581 × 105 tonnes. This indicates that when parameter 𝑟 changes,
he production plan of the power plant also needs to be adjusted
ccordingly. Under different values of parameter 𝑟, the profit of each
ower plant also varies.

In addition to the tax economy, this section also analyzes the total
arbon emission quota to obtain the environmental impact. From Fig. 4,
t can be seen that with the relaxation of the carbon emission con-
traints, both the government tax revenue and the total CEQA increase.
hen the carbon emission control parameter 𝛽 takes values 0.85, 0.88,

.91, 0.94, 0.97, and 1, the government tax revenue will increase by
5, 779 × 103 CNY, 12, 452 × 103 CNY, 8, 559 × 103 CNY, 16, 346 × 103

NY, and 10, 949 × 103, respectively.
In summary, the computational results in Case 1 and Case 2 could

rovide advice for the government to set the carbon emission quota
llocations and the power plants to develop production plans.
11
5.3. Comparative studies

The following comparative analysis is divided into two parts. First,
the solutions of the GRC bi-level BCC model (GRC) and the nominal
bi-level BCC model (NO) are compared. Second, we compare the GRC
bi-level BCC model with the robust bi-level BCC model (RC) in terms
of conservatism. In the NO model, the carbon emission parameter is
deterministic and assumed to be its nominal value. In the RC model,
the uncertain carbon emission parameter varies within the outer un-
certainty set 2, which means that the solution is completely feasible
for the uncertainty set 2. The adjustable parameter settings in this
section are: 𝜇 = 0.8, 𝑟 = 0.78, 𝛽 = 0.9, 𝜃 = 10 K, and 𝜌 = 1.5.

5.3.1. Comparison of the solutions obtained from different models
The carbon emission quota allocation decisions for three models are

shown in Fig. 5. For example, in Fig. 5, sub Fig. 5(c) shows that the
free carbon emission quota allocation decided by the government for
the Shiliquan power plant under the GRC model, RC model and NO
model are 34.19 × 105 tonnes, 34.10 × 105 tonnes, 34.36 × 105 tonnes
respectively. The taxable carbon emission quota allocations under the
three different optimization models are 8.55 × 105 tonnes, 8.52 × 105

tonnes, and 8.58 × 105 tonnes.
In addition, the production plans of the three power plants are

presented in Table 10. For instance, the amount of straw consumed by
the Shiliquan power plant is 1.117 × 105 tonnes, 1.125 × 105 tonnes
and 1.108 × 105 tonnes under the GRC model, RC model and NO model,
respectively. Fig. 6 shows the profit of three power plants, and it can
be observed that compared to the NO model, the profit of each power
plant under the GRC model and RC model has changed. For example,
from the Fig. 6(a), the profit of the Linyi Power Plant is 158,614 × 103

CNY under the NO model, while under the GRC and RC models, the
profit of the Linyi Power Plant is 158,468 × 103 CNY and 154,694 ×
103 CNY, respectively.

It can be observed that compared to the NO model with fixed carbon
emission parameter, the carbon emission quota allocation of the uncer-
tain RC model and GRC model have completely changed. That is, when
the determined value of carbon emission parameter cannot be obtained,
the solution of the NO model is no longer the optimal solution, and even
the solution is no longer a feasible solution. Therefore, the uncertainty
of carbon emission parameter poses a challenge to the stability of
the NO model. Unlike the NO model, the GRC and RC models can
effectively resist the impact of uncertain carbon emission parameters.
However, the conservatism of government tax revenue in the GRC and
RC models still needs further analysis.

5.3.2. Comparing the conservatism about different models
To further illustrate the superiority of our GRC model, this section

provides a comparison about the robustness price of the GRC and RC
models.

As mentioned above, the GRC model and RC model can effectively
resist the influence of uncertain parameters. However, Fig. 7 shows that
the government tax revenue in the NO model is larger than that in the
GRC model and RC model. The part where the government tax revenue
in the GRC and RC models are lower than those in the NO model is a
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Table 7
Computational results under different value of 𝛽.
𝛽 Government CEQA Power Profit Free Taxable Fules

tax revenue plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (106 tonnes) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

1 410,829 11.760 Linyi 169,427 3.560 0.890 0.806 6.105 12.971 5.715
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 311,126 4.272 1.068 3.014 4.975 17.600 4.000

0.97 399,889 11.407 Linyi 154,174 3.409 0.852 0.765 5.793 14.328 3.406
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 297,570 4.140 1.035 2.921 4.822 17.061 3.877

0.94 383,543 11.054 Linyi 148,081 3.337 0.834 0.765 5.799 9.363 8.386
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 270,772 3.930 0.982 7.351 0.000 16.194 3.681

0.91 374,984 10.702 Linyi 155,384 3.423 0.855 0.765 5.793 15.314 2.416
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 237,725 3.562 0.890 2.513 4.149 14.678 3.336

0.88 362,532 10.349 Linyi 155,990 3.430 0.858 0.765 5.792 15.807 1.922
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 207,803 3.273 0.818 2.309 3.812 13.487 3.065

0.85 346,753 9.996 Linyi 150.842 3.369 0.842 0.766 5.797 11.613 6.129
Shiliquan 58.945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 157.684 3.051 0.763 5.708 0.000 12.575 2.858
Table 8
Computational results under different value of parameter TEC.

TEC Government CEQA Power Profit Free Taxable Fules

tax revenue plant CEQA CEQA Straw Wood Coal 1 Coal 2

106 (tonnes) (103 CNY) (106 tonnes) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

11 343,415 9.900 Linyi 155,988 3.430 0.857 0.765 5.792 15.806 1.923
Shiliquan 76,713 1.576 0.394 1.110 2.331 7.178 1.248
Shanxian 207,904 2.971 0.742 5.558 0.000 12.246 2.783

11.5 362,574 1.035 Linyi 151,092 3.372 0.843 0.765 5.796 11.817 5.924
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 150,147 3.273 0.818 2.310 3.813 13.491 3.066

12 378,458 1.080 Linyi 155,216 3.421 0.855 0.765 5.793 15.177 2.554
Shiliquan 76,713 1.576 0.394 1.110 2.331 7.178 1.248
Shanxian 246,071 3.642 0.910 2.570 4.243 15.010 3.411

12.5 390,342 1.125 Linyi 147,571 3.331 0.832 0.765 5.799 8.948 8.803
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 256,127 4.092 1.023 7.654 0.000 16.863 3.832

13 390,342 1.170 Linyi 164,715 3.512 0.878 0.795 6.023 12.753 5.684
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 311,126 4.272 1.068 3.0144 4.975 17.600 4.000

13.5 426,056 1.215 Linyi 155,679 3.426 0.856 0.765 5.792 15.554 2.175
Shiliquan 121,471 2.021 0.505 1.424 2.988 9.202 1.600
Shanxian 311,126 4.272 1.068 3.0144 4.975 17.600 4.000
0
r
a
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o

price paid to resist uncertainty. The robustness price of the GRC (RC)
model is defined as follows:

PRGRC = NO∗ − GRC∗

NO∗ × 100%,

PRRC = NO∗ − RC∗

NO∗ × 100%,

here (⋅)∗ represents the optimal government tax revenue.
Fig. 7 demonstrates that the government tax revenues under the

RC model, RC model and NO model are 372,878,182 CNY, 370,446,
80 CNY and 375,340,555 CNY, respectively. The robustness price of
he GRC model and the RC model are 0.66% and 1.30%, respectively.
esides, compared with the RC model, the government tax revenue of
he GRC model is 2, 431, 402 CNY more, and the robustness price is

0.64% less.
This illustrates that, compared with the RC model, the GRC model

pays a lower price to immunize against the effect of uncertain carbon
emission parameters. Consequently, the government tax revenue objec-
tive in the RC model is more conservative than in the GRC model. In
terms of the price of resisting uncertainty, the GRO method applied in
12
this paper has advantages over the RO method. In short, the GRC model
can not only resist the influence of uncertain parameters, but also be
less conservative.

5.4. Sensitivity analysis

In this section, we analyze the influence of the global sensitivity
parameter 𝜃 and the parameter 𝜏 on government tax revenue, and profit
of each power plant in the GRC bi-level BCC model. The adjustable
parameter settings in this section are: 𝜇 = 0.8, 𝑟 = 0.78, and 𝛽 =
.9. This set of adjustable parameters is selected from their reasonable
anges. In addition, we have explored the other two sets of sensitivity
nalysis in Appendix C.

.4.1. The effects of parameter 𝜃
In this section, the changes in government tax revenue and profit

f each power plant under different global sensitivity parameters 𝜃 are
analyzed.

The government tax revenue objective is given in Fig. 8. When
the global sensitivity parameter 𝜃 increases from 5K to 12K, the
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Fig. 8. The government tax revenue under different 𝜃.
Table 9
Computational results under different value of 𝑟.

r Government CEQA Power Profit Free Taxable Fules

tax revenue plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (106 tonnes) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

0.82 379,140 10.819 Linyi 158,341 3.459 0.864 0.765 5.790 17.723 0.000
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 243,854 3.621 0.905 2.556 4.218 14.922 3.391

0.81 379,140 10.819 Linyi 158,341 3.459 0.864 0.765 5.790 17.723 0.000
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 243,854 3.621 0.905 2.556 4.218 14.922 3.391

0.8 379,141 10.819 Linyi 158,341 3.458 0.864 0.765 5.790 17.723 0.000
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 243,854 3.621 0.905 2.556 4.218 14.922 3.391

0.79 379,140 10.819 Linyi 158,341 3.459 0.864 0.765 5.790 17.723 0.000
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 243,854 3.621 0.905 2.556 4.218 14.922 3.391

0.78 379,135 10.819 Linyi 155,183 3.421 0.855 0.765 5.793 15.150 2.581
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 247,699 3.659 0.915 2.582 4.261 15.075 3.426

0.77 377,698 10.819 Linyi 142,751 3.264 0.816 0.782 5.922 0.000 18.125
Shiliquan 58,945 1.576 0.394 3.442 0.000 7.178 1.248
Shanxian 263,709 3.815 0.954 2.692 4.444 15.721 3.573
government tax revenue increases from 372,028 ×103 CNY to 372,878
×103 CNY. When the sensitivity parameter increases to a certain extent,
the government tax revenue no longer increases. The carbon emission
quota allocation for each power plant is presented in Table 11.

Therefore, a conclusion can be obtained: As the global sensitivity
parameter 𝜃 increases, the conservatism of the government tax revenue
obtained under the bi-level BCC model decreases. This confirms that the
global sensitivity parameter controls the distance from the uncertain
parameter 𝐶𝑚 to the inner uncertain set, which means that the require-
ment of a completely feasible constraint is reduced and the infeasible
requirement is relaxed for the solution obtained by considering the
uncertain carbon emission parameters 𝐶𝑚. The global sensitivity param-
eter 𝜃, therefore, controls the degree to which constraint violations are
allowed. With the increase in 𝜃, the greater the degree of an allowable
13
constraint violation, the greater the scope of allowable infeasibility,
and the lower the conservativeness of the solution. However, when
the parameter 𝜃 increases to a certain degree, the solution no longer
changes.

From Fig. 9, it can be concluded that with the increase in parameter
𝜃, the profit of the Shiliquan power plant first increased from 104,112
×103 CNY to 172,686 ×103 CNY and then decreased to 77,610 ×103
CNY. In contrast, the profit of the Shanxian power plant first decreased
from 199,616 ×103 CNY to 149,182 ×103 CNY and then increased to
229,140 ×103 CNY. In addition, the profit change of the Linyi power
plant is relatively small. The largest change is in the Shiliquan power
plant, with the highest profit being 55% higher than the lowest profit.
When 𝜃 increases to 10K, the profit of each power plant no longer
changes.
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Fig. 9. The profit of each power plant under different 𝜃.
Table 10
Fuel consumption of each power plant under different models.

Power Fule (105tonnes)

Plant Straw Wood Coal 1 Coal 2

GRC
Linyi 0.765 5.793 17.723 0.000
Shiliquan 1.117 2.344 7.216 1.255
Shanxian 2.454 4.051 14.331 3.257

NO
Linyi 0.765 5.793 17.723 0.000
Shiliquan 1.125 2.361 7.271 1.264
Shanxian 2.491 4.112 14.546 3.306

RC
Linyi 0.765 5.793 14.767 2.966
Shiliquan 1.108 2.326 7.163 1.246
Shanxian 2.448 4.041 14.296 3.249

5.4.2. The effects of parameter 𝜏
As shown in Fig. 10, as 𝜏 increases from 1.5 to 2.2, the government

tax revenue decreases from 372,303 ×103 CNY to 371,402 ×103 CNY.
The carbon emission quota allocation for each power plant is presented
in Table 12. The carbon emission quota allocation of each power plant
is presented in Table 12.

Therefore, a conclusion can be obtained: As the parameter 𝜏 in-
creases, the conservatism of the decision government tax revenue ob-
tained under the bi-level BCC model increases. The reduction in gov-
ernment tax revenue is reasonable. Parameter 𝜏 controls the size of
the inner uncertainty set. With the increase in parameter 𝜏, the pertur-
bation range of carbon emission parameters is larger and the feasible
region is smaller, so the decision is more conservative. Therefore, the
government tax revenue has decreased.

The profits for each power plant as the parameter 𝜏 varies are given
in Fig. 11. As 𝜏 increases, the profits for each power plant decrease.
For example, if 𝜏 changes from 1.5 to 2.2, the profit for the Linyi
power plant decreases from 158,416 ×103 CNY to 158,372 ×103 CNY, a
reduction of 0.2%. The largest change is for the Shanxian power plant,
where the minimum return is reduced by 2417 ×103 CNY compared to
the maximum return, a 1.5% reduction.

In conclusion, the sensitivity analysis shows that the global sensi-
tivity parameter 𝜃 not only has a significant impact on the government
tax revenue compared to parameter 𝜏, but also has a greater impact on
14
the power plant profits. There is a 55% difference between the highest
and lowest profits for the Shiliquan power plant under different value
of global sensitivity parameters. The difference between the highest
and lowest returns for power plants under different values of 𝜏 is not
as large. Different parameter settings result in different government
tax revenues and different profits for the power plant, and decision-
makers can choose the parameters that suit their situation to make their
decisions.

5.5. Management insights

This case study indicates that our GRC bi-level BCC model has
practical guiding significance for the government decision-making and
the power plant production planning. Based on the analysis of computa-
tional results and sensitivity parameters, several management insights
are obtained as follows:

• When decision-makers want to address both the economic objec-
tives of the tax and the impact of environmental damage, the
GRC bi-level BCC model can provide some useful instructions. The
computational results show that the larger the carbon emission
control parameter is, the higher the carbon emissions and the
higher the government tax revenue. Therefore, faced with two
conflicting objectives, the government policy-makers can choose
the appropriate carbon emission control parameters and different
value of the carbon intensity control parameters according to
different socioeconomic situations.

• Different value of the carbon emission control parameters and
the carbon emission intensity parameters have an impact on the
decision-making of each power plant. With the reduction of the
carbon emission control parameter, the Shanxian power plant
is most affected, and its profit decreases the most. Therefore,
depending on the government’s carbon emission control, power
plants are required to change their production plan at any time.

• Compared with the NO model, our GRC bi-level BCC model can
effectively resist the influence of uncertain parameters. Even if the
determined carbon emission parameters cannot be obtained in the
actual production of the power plants, the GRC model can still ob-
tain the optimal solution, and then provide some suggestions for
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Table 11
Computational results under different value of 𝜃.
𝜃 Government Power Profit Free Taxable Fules

tax revenue plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

5 372,028 Linyi 158,401 3.447 0.862 0.764 5.790 17.723 0.000
Shiliquan 104,112 1.838 0.459 1.302 2.732 8.415 1.463
Shanxian 199,616 3.182 0.795 2.253 3.719 13.159 2.990

6 372,304 Linyi 158,416 3.444 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,334 2.205 0.551 1.562 3.279 10.098 1.756
Shanxian 162,210 2.817 0.704 1.998 3.298 11.669 0.265

7 372,465 Linyi 144,440 3.264 0.816 0.785 5.950 0.000 18.215
Shiliquan 172,686 2.514 0.628 1.782 3.739 11.515 2.003
Shanxian 189,208 3.072 0.768 2.182 3.601 12.742 2.896

8 372,617 Linyi 144,732 3.264 0.8167 0.786 5.965 0.000 18.230
Shiliquan 133,790 2.131 0.532 1.509 3.168 9.756 1.696
Shanxian 189,208 3.072 0.768 2.182 3.601 12.742 2.896

9 372,856 Linyi 151,368 0.838 0.838 0.766 5.796 11.941 5.800
Shiliquan 76,713 1.576 0.394 1.111 2.331 7.178 1.248
Shanxian 229,234 3.457 0.864 2.454 4.052 14.335 3.258

10 372,878 Linyi 158,467 3.435 0.858 0.764 5.790 17.723 0.000
Shiliquan 77,610 1.576 0.394 1.116 2.343 7.216 1.255
Shanxian 229,140 3.455 0.863 2.454 4.051 14.331 3.257

11 372,878 Linyi 158,467 3.435 0.858 0.764 5.790 17.723 0.000
Shiliquan 77,610 1.576 0.394 1.116 2.343 7.216 1.255
Shanxian 229,140 3.455 0.863 2.454 4.051 14.331 3.257

12 372,878 Linyi 158,467 3.435 0.858 0.764 5.790 17.723 0.000
Shiliquan 77,610 1.576 0.394 1.116 2.343 7.216 1.255
Shanxian 229,140 3.455 0.863 2.454 4.051 14.331 3.257
Fig. 10. The government tax revenue under different 𝜏.
decision-makers. Compared with the RC model, the GRC bi-level
BCC model pays a lower robustness price and is less conservative.
Therefore, the GRC model can provide relatively less conservative
advice to decision-makers when the determined carbon emission
parameters cannot be obtained.
15
• Sensitivity analysis illustrated that the larger value of the global
sensitivity parameter 𝜃, the less conservative the results, i.e., the
more the government tax revenue. In addition, the larger the in-
ner uncertainty set parameter 𝜏, the more conservative the results
are, i.e., the smaller the government tax revenue. In practice, both
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Fig. 11. The profit of each power plant under different 𝜏.
Table 12
Computational results under different value of 𝜏.
𝜏 Government Power Profit Free Taxable Fules

tax revenue plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

1.5 372,303 Linyi 158,416 3.444 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,334 2.205 0.551 1.562 3.279 10.098 1.756
Shanxian 162,210 2.817 0.704 1.998 3.298 11.669 2.652

1.6 372,174 Linyi 158,410 3.446 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,328 2.206 0.551 1.562 3.279 10.098 1.756
Shanxian 161,857 2.815 0.703 1,996 3.284 11 655 2.648

1.7 372,046 Linyi 158,404 3.447 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,322 2.207 0.551 1.562 3.279 10.098 1.756
Shanxian 161,504 2.813 0.703 1.993 3.286 11.627 2.642

1.8 371,917 Linyi 158,391 3.447 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,322 2.207 0.551 1.562 3.279 10.098 1.756
Shanxian 161,504 2.810 0.702 1.991 3.286 11.627 2.642

1.9 371,788 Linyi 158,391 3.447 0.861 0.764 5.790 17.723 0.000
Shiliquan 141,309 2.209 0.552 1.562 3.279 10.098 1.756
Shanxian 160,445 2.808 0.702 1.988 3.282 11.614 2.639

2.0 371,659 Linyi 158,385 3.450 0.862 0.764 5.790 17.723 0.000
Shiliquan 141.303 2.210 0.552 1.562 3.279 10.098 1.756
Shanxian 160.445 2.808 0.701 1.986 3.278 11.600 2.636

2.1 371,530 Linyi 158,379 3.451 0.862 0.764 5.790 17.723 0.000
Shiliquan 141,297 2.211 0.552 1.562 3.279 10.098 1.756
Shanxian 160.092 2.804 0.701 1.984 3.275 11,586 2.633

2.2 371,401 Linyi 158,372 3.452 0.863 0.764 5.790 17.723 0.000
Shiliquan 141,291 2.212 0.553 1.562 3.279 10.098 1.756
Shanxian 159,739 2.802 0.700 1.981 3.271 11.572 2.630
of the parameters can be chosen and adjusted by decision-makers
based on their conservatism attitudes, robustness requirements
for solutions, and some other presumable information about un-
certain parameters.

6. Conclusions

This paper investigated the problem of BCC production planning
for power plants based on robust carbon emission mechanism. In our
problem, the objectives of the government and the power plant are
16
conflicting. The government sought to maximize tax revenue within the
limits of the carbon emission control, while the power plant maximized
its profit. In addition, during the production process, the power plants
were faced with uncertainties, which prompts managers to address new
method to deal with these uncertainties.

Based on the questions raised, this paper proposed a GRC bi-level
BCC method under robust carbon emission mechanism, where uncer-
tain carbon emission parameters are at the lower level. In our GRC
bi-level BCC model, there are two conflicting objectives, this paper
adopted a bi-level optimization method to address the hierarchical
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relationship between the government and the power plant. In the
face of uncertainty, this paper employed the budget and box uncer-
tainty sets as inner–outer uncertainty sets to characterize robust carbon
emission parameters. Then, using the Lagrangian duality theory, the
semi-infinite constraint was transformed into a finite convex constraint
system. Finally, the lower-level model was replaced with its equivalent
KKT conditions to obtain the single-level biomass–coal co-firing model,
which can be solved by convenient solvers like CPLEX.

To demonstrate the effectiveness of the GRC method, the GRC bi-
level BCC model was applied to a practical case in Shandong Province
China. The computational results demonstrated the credibility of the
proposed method in the following aspects:

• The results showed that the increase in carbon emission control
parameter 𝛽 leads to an increase in both the government tax
revenue and the total carbon emission quota allocation.

• The GRC bi-level BCC model proposed in this paper can effec-
tively resist the influence of uncertain parameters.

• The proposed GRC model is less conservative. The government tax
revenue obtained from the GRC model is 2,431,402 CNY higher
than that under the RC model.

• With the increase in the global sensitivity parameter 𝜃, the gov-
ernment tax revenue increases.

• As the inner uncertainty set parameter 𝜏 increases, the govern-
ment tax revenue decreases.

The following aspect can be considered in future research. If the
probability distribution information of uncertain parameters is partially
known, the distributionally robust optimization method can be used to
model our BCC problem, and then decide the CEQA mechanism and the
production plan of the power plant.
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Appendix A. Notation and definition of the model.
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Notation and definition of the model are shown in this section. (
Appendix B. Proof of Theorem 1

Proof. Semi-infinite constraint (5) is equivalently converted to 𝐹 (𝒛𝑚) ⩽
𝑚 + 𝑦𝑚,∀𝑚 ∈  with

(𝒛𝑚) ≡ sup
𝑪𝑚∈𝑈2

{𝑪𝑇
𝑚𝒛𝑚 − min

𝑪′
𝑚∈𝑈1

𝜙(𝑪𝑚,𝑪 ′
𝑚)},∀𝑚 ∈ .

Since the proof is consistent for any 𝑚 ∈ , the following proof
ill omit 𝑚 in order to facilitate the representation,

(𝒛) ≡ sup
𝑪∈𝑈2

{𝑪𝑇 𝒛 − min
𝑪′∈𝑈1

𝜙(𝑪 ,𝑪 ′
)}

= sup
𝑪′∈𝑈1 ,𝑪∈𝑈2 ,𝒂,𝒃

{𝑪𝑇 𝒛 − 𝜙(𝒂, 𝒃)|𝒂 = 𝑪 , 𝒃 = 𝑪 ′
}.

Based on Lagrange duality, we have

(𝒛) = min
𝒗,𝒅

sup
𝑪′∈𝑈1 ,𝑪∈𝑈2 ,𝒂,𝒃

{𝑪𝑇 𝒛 − 𝜙(𝒂, 𝒃) − 𝒗𝑇 (𝒃 − 𝑪 ′
) − 𝒅𝑇 (𝒂 − 𝑪)}

= min
𝒗,𝒅

{ sup
𝑪∈𝑈2

{𝑪𝑇 𝒛 + 𝒅𝑇𝑪} + sup
𝒂,𝒃

{−𝜙(𝒂, 𝒃) − 𝒗𝑇 𝒃 − 𝒅𝑇 𝒂}

+ sup
𝑪′∈𝑈1

{𝒗𝑇𝑪 ′
}}.

Dividing 𝐹 (𝒛) into three parts, we have 𝐹 (𝒛) = min𝒗,𝒅 {ℎ1(𝒅, 𝒛) +
2(𝒗,𝒅) + ℎ3(𝒗)} with

1(𝒅, 𝒛) = sup
𝑪∈𝑈2

{𝑪𝑇 𝒛 + 𝒅𝑇𝑪},

2(𝒗,𝒅) = sup
𝒂,𝒃

{−𝜙(𝒂, 𝒃) − 𝒗𝑇 𝒃 − 𝒅𝑇 𝒂},

3(𝒗) = sup
𝑪′∈𝑈1

{𝒗𝑇𝑪 ′
}.

Rewriting the first part yields

1(𝒅, 𝒛) = sup
𝑪∈𝑈2

{𝑪𝑇 𝒛 + 𝒅𝑇𝑪}

= sup
𝑪∈𝑈2

{𝑪𝑇 𝒛 + 𝒅𝑇𝑪 − 𝛿(𝑪|𝑈2)},

here 𝛿(𝑪|𝑈2) is the indicator function of set 𝑈2. Based on Fenchel
uality, we have

1(𝒅, 𝒛) = min
𝒆

{𝛿∗(𝒆|𝑈2) − [𝑓 (𝒆, 𝒛) + 𝒅𝑇𝑪]∗},

here 𝑓 (𝑪 , 𝒛) = 𝑪𝑇 𝒛, 𝛿∗(𝒆|𝑈2) = sup𝑪∈𝑈2
𝑪𝑇 𝒆 = is the conjugate

unction of 𝛿(𝑪|𝑈2).

According to the relationship between 𝑈2 and 𝛹2, we obtain 𝛿∗

𝒆|𝑈2) = (𝑪0)𝑇 𝒆 + 𝛿∗(𝑨𝑇 𝒆|𝛹2) with 𝑨 = [𝑪1,𝑪2,… ,𝑪𝐿] is obtained.
esides, related to the variable 𝒆, the concave conjugate of the second
erm in ℎ1 can be derived as follows,

1(𝒅, 𝒛) = min
𝒆

{(𝑪0)𝑇 𝒆 + 𝛿∗(𝑨𝑇 𝒆|𝛹2) − 𝑓∗(𝒆 − 𝒅, 𝒛)}.

The second term ℎ2 in 𝐹 (𝒛) is simplified

2(𝒗,𝒅) = sup
𝒂,𝒃

{−𝜙(𝒂, 𝒃) − 𝒗𝑇 𝒃 − 𝒅𝑇 𝒂}

= 𝜙∗∗(−𝒅,−𝒗).

inally, the third term ℎ3 is rewritten as,

3(𝒗) = sup
𝑪′∈𝑈1

{𝒗𝑇𝑪 ′} = 𝛿∗(𝒗|𝑈1) = (𝑪0)𝑇 𝒗 + 𝛿∗(𝑨𝑇 𝒗|𝛹1).

Consequently, by substituting ℎ𝑖 into function 𝐹 (𝒛), inequality 𝐹 (𝒛)
𝑥 + 𝑦 is equivalent to

min
𝒗,𝝈

{min
𝒆

{(𝑪0)𝑇 𝒆 + 𝛿∗(𝑨𝑇 𝒆|𝛹2) − 𝑓∗(𝒆 − 𝒅, 𝒛)} + 𝜙∗∗(−𝒅,−𝒗) + (𝑪0)𝑇 𝒗

+ 𝛿∗(𝑨𝑇 𝒗|𝛹1)} ⩽ 𝑥 + 𝑦.

s a result, 𝐹 (𝒛) ⩽ 𝒙 + 𝒚 if and only if there exist 𝒗, 𝒆 and 𝒅 such that
0 𝑇 ∗ 𝑇 ∗∗ 0 𝑇
𝑪 ) 𝒆 + 𝛿 (𝑨 𝒆|𝛹2) − 𝑓∗(𝒆 − 𝒅, 𝒛) + 𝜙 (−𝒅,−𝒗) + (𝑪 ) 𝒗



Computers and Chemical Engineering 181 (2024) 108548J. Zhao et al.

𝜙

t
h
w

𝑓

Table A.1
Notation and definition.

Notation Definition

Indices

𝑚 Power plant index, 𝑚 ∈  = {1, 2,… , M},

𝑛 Fuel index, 𝑛 ∈  = {1, 2,… , N},
1-𝑁𝑎 represent biomass fuel,
𝑁𝑎+1-𝑁 represent coal fuel,

𝑞 Quality index, 𝑞 ∈  = {1, 2,… , Q},
𝑘 Pollutant index, 𝑘 ∈  = {1, 2,… , 𝐾}.

Decision variables

Upper level decision variables

𝑥𝑚 Free carbon emissions quota allocation for power plant 𝑚,
𝑦𝑚 Taxable carbon emissions quota allocation for power plant 𝑚.

Lower level decision variables

𝑧𝑚𝑛 Amount of fuel 𝑛 used by power plant 𝑚.

Deterministic parameters

GTR Max government tax revenue,
𝜌 Value-added tax rate,
𝑃 Unit price of electric power,
𝑃𝐶𝑚𝑛 Power conversion parameters of fuel n at power plant 𝑚,
𝐸𝐶𝑚 Electricity consumption rate at power plant 𝑚,
𝑢𝑚𝑛 Unit price of fuel 𝑛 for power plant 𝑚,
𝑤 Excess carbon emission tax rate,
𝐸 Total carbon emissions,
𝐶𝐼 Power plant carbon intensity,
𝑟 Maximal carbon intensity degree,
𝐹𝑃𝑚 Free carbon emissions quota level for power plant 𝑚,
𝜇 Maximal free carbon emissions quota degree,
𝑇𝐶𝐸 The cap of carbon emissions,
𝛽 The carbon emission control parameter,
𝐴𝑄𝑚𝑖𝑛

𝑚 Minimum allocation quota for power plant 𝑚,
𝐴𝑄𝑚𝑎𝑥

𝑚 Maximum allocation quota for power plant 𝑚,
𝐷𝑚 Basic power demand for power plant 𝑚,
𝐹𝐴𝑚𝑛 Max obtainable amount of fuel 𝑛 for power plant 𝑚,
𝑄𝐵𝐿

𝑚𝑞 Lower requirements for biomass fuel quality 𝑞 at power plant 𝑚,
𝑄𝐵𝑈

𝑚𝑞 Upper requirements for biomass fuel quality 𝑞 at power plant 𝑚,
𝑄𝐶𝑈

𝑚𝑞 Upper requirements for coal fuel quality at power plant 𝑚,
𝑄𝐶𝐿

𝑚𝑞 Lower requirements for coal fuel quality 𝑞 at power plant 𝑚,
𝐹𝑛𝑞 Property parameters 𝑞 of fuel 𝑛,
𝐵𝑚 The upper biomass blending proportion for power plant 𝑚,
𝐸𝑃𝑛𝑘 Unit emission of pollutant 𝑘 from fuel 𝑛,
𝑇𝑃𝑚𝑘 Unit treatment cost of pollutant 𝑘 at power plant 𝑚,
𝑂𝐶𝑚 Operating cost for power plant 𝑚.

Uncertain parameters

𝐶𝑚𝑛 Carbon emissions parameter of fuel 𝑛 at power plant 𝑚.
𝒆
{

𝛿

‖

𝛿

‖

w

t

⎧

⎪

⎪

⎨

⎪

⎪

+ 𝛿∗(𝑨𝑇 𝒗|𝛹1) ⩽ 𝑥 + 𝑦.

Noting that

∗∗(−𝒅,−𝒗) = max
𝒂,𝒃

{−𝒅𝑇 𝒂 − 𝒗𝑇 𝒃 − 𝜙(𝒂, 𝒃)}

⩾ max
𝒂

{−(𝒅 + 𝒗)𝑇 𝒂 − 𝜙(𝒂,𝒂)}

= max
𝒂

{−(𝒅 + 𝒗)𝑇 𝒂}

=

{

0, 𝑖𝑓 𝒅 = −𝒗,

∞, 𝑖𝑓 𝒅 ≠ −𝒗,

hen we have 𝒅 = −𝒗. By 𝜙(𝑪𝑚,𝑪 ′
𝑚) = 𝛼(‖𝑪𝑚 − 𝑪 ′

𝑚‖), 𝛼(𝑡) = 𝜃𝑡, 𝑡 ⩾ 0, we
ave 𝜙∗∗(𝒗,−𝒗) = 𝛼∗(‖𝒗‖∗1) = 0 (‖ ⋅ ‖∗ denotes the dual norm of ‖ ⋅ ‖),
hen ‖𝒗‖∞ ⩽ 𝜃. Noting that 𝒅 = −𝒗 and 𝑓 (𝒛) = 𝑪𝑇 𝒛, then one has

∗(𝒆 − 𝒅, 𝒛) = 𝑓∗(𝒆 + 𝒗, 𝒛)

= min
𝑪

{𝑪𝑇 (𝒆 + 𝒗) − 𝑪𝑇 𝒛}

=

{

0, 𝑖𝑓 𝒆 + 𝒗 = 𝒛,

− ∞, 𝑖𝑓 𝒆 + 𝒗 ≠ 𝒛.
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⎩

For any 𝑚 ∈ , combined with 𝑓∗(𝒆 − 𝒅, 𝒛) = 𝑓∗(𝒆 + 𝒗, 𝒛) with
+ 𝒗 = 𝒛 and 𝜙∗∗(𝒗,−𝒗) = 0 with ‖𝒗‖∞ ⩽ 𝜃, then (1) reduces to

(𝑪0
𝑚)

𝑇 𝒛𝑚 + 𝛿∗(𝑨𝑇
𝑚(𝒛𝑚 − 𝒗𝑚)|𝛹2) + 𝛿∗(𝑨𝑇

𝑚𝒛𝑚|𝛹1) ⩽ 𝒙𝑚 + 𝒚𝑚,∀𝑚 ∈ ,

‖𝒗𝑚‖ ⩽ 𝜃,∀𝑚 ∈ .

By the structures of perturbation sets (𝛹1, 𝛹2), it follows that
∗(𝑨𝑇

𝑚(𝒛𝑚 − 𝒗𝑚)|𝛹1) = max
𝜻∈𝛹2

{𝜻𝑇𝑨𝑇
𝑚(𝒛𝑚 − 𝒗𝑚)|,

𝜻‖∞ ⩽ 1} = ‖𝑨𝑇
𝑚(𝒛𝑚 − 𝒗𝑚)‖1,

∗(𝑨𝑇
𝑚𝒛𝑚|𝛹1) = max

𝜻 ′∈𝛹1
{(𝜻 ′)𝑇𝑨𝑇

𝑚𝒗𝑚| ‖𝜻 ′‖∞ ⩽ 1,

𝜻 ′‖1 ⩽ 𝜏} = ‖𝜼𝑚‖1 + 𝜏‖𝜞𝑚‖∞,

here 𝜼𝑚 + 𝜞𝑚 = 𝑨𝑇
𝑚𝒗𝑚.

As a consequence, substituting these expressions, GRC (5) reduces
o the system

(𝑪0
𝑚)

T𝑧𝑚 + ‖(𝑨T
𝑚)(𝒛𝑚 − 𝒗𝑚)‖1 + ‖𝜼𝑚‖1 + 𝜏‖𝜞𝑚‖∞

⩽ 𝑥𝑚 + 𝑦𝑚,∀𝑚 ∈ ,

𝜼𝑚 + 𝜞𝑚 = 𝑨T
𝑚𝒗𝑚,∀𝑚 ∈ ,
‖𝒗𝑚‖∞ ⩽ 𝜃,∀𝑚 ∈ .
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Table C.1
Sensitivity analysis of global sensitivity parameter 𝜃 under 𝜇 = 0.82, 𝑟 = 0.77, 𝛽 = 0.92.
𝜃 GTR Power Profit Free Taxable Fules

plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

5 368,424
Linyi 156,444 3.361 0.948 0.764 5.790 17.723 0.000
Shiliquan 103,069 1.791 0.505 1.302 2.732 8.414 1.463
Shanxian 178,459 2.919 0.823 2.120 3.500 12.384 2.814

6 368,700
Linyi 156,229 3.355 0.946 0.764 5.790 17.533 0.190
Shiliquan 140,082 2.150 0.606 1.562 3.279 10.098 1.756
Shanxian 141,543 2.566 0.723 1.867 3.082 10.906 2.478

7 368,914
Linyi 141,479 3.182 0.897 0.766 5.803 5.419 12.343
Shiliquan 152,309 2.268 0.639 1.648 3.459 10.653 1.852
Shanxian 147,656 2.621 0.739 1.909 3.151 11.150 2.534

8 369,070
Linyi 141,731 3.182 0.897 0.766 5.803 5.612 12.150
Shiliquan 113,632 1.894 0.534 1.376 2.888 8.894 1.546
Shanxian 187,464 2.995 0.844 2.182 3.601 12.742 2.896

9 369,209
Linyi 149,465 3.268 0.921 0.765 5.796 11.941 5.800
Shiliquan 76,715 1.536 0.433 1.116 2.343 7.216 1.255
Shanxian 216,268 3.266 0.921 2.379 3.927 13.895 3.157

10 369,221
Linyi 156,517 3.349 0.944 0.764 5.790 17.723 0.000
Shiliquan 76,716 1.536 0.433 1.116 2.343 7.216 1.255
Shanxian 207,675 3.185 0.898 2.320 3.830 13.551 3.079

11 369,221
Linyi 156,517 3.349 0.944 0.764 5.790 17.723 0.000
Shiliquan 76,716 1.536 0.433 1.116 2.343 7.216 1.255
Shanxian 207,675 3.185 0.898 2.320 3.830 13.551 3.079

12 369,221
Linyi 156,517 3.349 0.944 0.764 5.790 17.723 0.000
Shiliquan 76,716 1.536 0.433 1.116 2.343 7.216 1.255
Shanxian 207,675 3.185 0.898 2.320 3.830 13.551 3.079
Table C.2
Sensitivity analysis of inner uncertainty set parameter 𝜏 under 𝜇 = 0.82, 𝑟 = 0.77, 𝛽 = 0.92.
𝜏 GTR Power Profit Free Taxable Fules

plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

1.5 368,700
Linyi 156,229 3.355 0.946 0.764 5.790 17.533 0.190
Shiliquan 140,082 2.150 0.606 1.562 3.279 10.098 1.756
Shanxian 141,543 2.566 0.723 1.867 3.082 10.906 2.478

1.6 368,571
Linyi 156,036 3.354 0.946 0.764 5.790 17.380 0.343
Shiliquan 140,076 2.151 0.606 1.562 3.279 10.098 1.756
Shanxian 141,418 2.566 0.723 1.867 3.081 10.901 2.477

1.7 368,442
Linyi 156,447 3.360 0.947 0.764 5.790 17.723 0.000
Shiliquan 139,348 2.145 0.605 1.557 3.268 10.065 1.750
Shanxian 141,293 2.566 0.723 1.866 3.080 10.896 2.476

1.8 368,313
Linyi 156,440 3.361 0.948 0.764 5.790 17.723 0.000
Shiliquan 139,120 2.144 0.604 1.555 3.265 10.055 1.748
Shanxian 141,169 2.566 0.723 1.865 3.078 10.891 2.475

1.9 368,184
Linyi 156,433 3.362 0.948 0.764 5.790 17.723 0.000
Shiliquan 138,892 2.143 0.604 1.554 3.261 10.045 1.746
Shanxian 141,044 2.566 0.723 1.864 3.077 10.887 2.474

2.0 368,055
Linyi 156,427 3.363 0.948 0.764 5.790 17.723 0.000
Shiliquan 138,664 2.142 0.604 1.552 3.258 10.035 1.745
Shanxian 140,919 2.566 0.723 1.863 3.076 10.887 2.473

2.1 367,926
Linyi 156,420 3.365 0.949 0.764 5.790 17.723 0.000
Shiliquan 138,436 2.140 0.603 1.551 3.255 10.025 1.743
Shanxian 140,794 2.566 0.723 1.862 3.074 10.887 2.473

2.2 367,798
Linyi 156,413 3.366 0.949 0.764 5.790 17.723 0.000
Shiliquan 138,209 2.139 0.603 1.549 3.252 10.015 1.741
Shanxian 140,670 2.566 0.723 1.862 3.074 10.873 2.471
Appendix C. Additional sensitivity analysis

C.1. Sensitivity analysis under 𝜇 = 0.82, 𝑟 = 0.77, 𝛽 = 0.92

Tables C.1 and C.2 show the sensitivity analyses about the global
ensitivity parameter 𝜃 and the inner uncertainty set parameter 𝜏 under
𝜇 = 0.82, 𝑟 = 0.77, 𝛽 = 0.92, respectively. From Table C.1, we can find
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that with the increase of global sensitivity parameter 𝜃, there is a non-
decreasing trend in the government tax revenue. From Table C.2, the
government tax revenue gradually decreases with the increase of the
inner uncertainty set parameter 𝜏.

C.2. Sensitivity analysis under 𝜇 = 0.78, 𝑟 = 0.79, 𝛽 = 0.88

Tables C.3 and C.4 display the sensitivity analyses about the global
ensitivity parameter 𝜃 and the inner uncertainty set parameter 𝜏 under
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Table C.3
Sensitivity analysis of global sensitivity parameter 𝜃 under 𝜇 = 0.78, 𝑟 = 0.79, 𝛽 = 0.88.
𝜃 GTR Power Profit Free Taxable Fules

plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

5 375,404
Linyi 151,755 3.430 0.753 0.765 5.797 10.761 6.984
Shiliquan 105,155 1.883 0.413 1.302 2.732 8.414 1.463
Shanxian 231,447 3.557 0.780 2.457 4.055 12.347 3.260

6 375,684
Linyi 154,811 3.464 0.760 0.765 5.795 13.223 4.514
Shiliquan 142,586 2.260 0.496 1.562 3.279 10.098 1.756
Shanxian 190,134 3.147 0.690 2.176 3.593 12.711 2.888

7 375,962
Linyi 156,316 3.479 0.763 0.765 5.793 14.429 3.304
Shiliquan 180,017 2.637 0.578 1.822 3.825 11.780 2.048
Shanxian 150,708 2.755 0.604 1.909 3.151 11.150 2.534

8 376,122
Linyi 155,437 3.345 0.733 0.766 5.803 5.612 12.150
Shiliquan 154,162 2.376 0.521 1.643 3.448 10.618 1.846
Shanxian 190,952 3.149 0.691 2.182 3.601 12.742 2.896

9 376,275
Linyi 153,270 3.436 0.754 0.765 5.796 11.194 3.542
Shiliquan 106,018 1.892 0.415 1.308 2.745 8.453 1.470
Shanxian 231,196 3.542 0.777 2.454 4.052 14.335 3.258

10 376,307
Linyi 152,089 3.422 0.751 0.765 5.797 10.986 6.759
Shiliquan 78,504 1.615 0.354 1.116 2.343 7.216 1.255
Shanxian 260,940 3.833 0.841 2.656 4.384 15.512 3.525

11 376,307
Linyi 152,089 3.422 0.751 0.765 5.797 10.986 6.759
Shiliquan 78,504 1.615 0.354 1.116 2.343 7.216 1.255
Shanxian 260,940 3.833 0.841 2.656 4.384 15.512 3.525

12 376,307
Linyi 152,089 3.422 0.751 0.765 5.797 10.986 6.759
Shiliquan 78,504 1.615 0.354 1.116 2.343 7.216 1.255
Shanxian 260,940 3.833 0.841 2.656 4.384 15.512 3.525
Table C.4
Sensitivity analysis of inner uncertainty set parameter 𝜏 under 𝜇 = 0.78, 𝑟 = 0.79, 𝛽 = 0.88.
𝜏 GTR Power Profit Free Taxable Fules

plant CEQA CEQA Straw Wood Coal 1 Coal 2

(103 CNY) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

1.5 375,684
Linyi 154,811 3.464 0.760 0.765 5.795 13.223 4.514
Shiliquan 142,586 2.260 0.496 1.562 3.279 10.098 1.756
Shanxian 190,134 3.147 0.690 2.176 3.593 12.711 2.888

1.6 375,555
Linyi 154,519 3.461 0.759 0.765 5.795 12.991 4.747
Shiliquan 142,580 2.261 0.496 1.562 3.279 10.098 1.756
Shanxian 190,129 3.148 0.691 2.176 3.593 12.711 2.888

1.7 375,426
Linyi 154,227 3.459 0.759 0.765 5.795 12.759 4.980
Shiliquan 142,575 2.262 0.496 1.562 3.279 10.098 1.756
Shanxian 190,123 3.149 0.691 2.176 3.593 12.711 2.888

1.8 375,297
Linyi 153,935 3.457 0.758 0.765 5.795 12.527 5.212
Shiliquan 142,569 2.263 0.496 1.562 3.279 10.098 1.756
Shanxian 190,117 3.150 0.691 2.176 3.593 12.711 2.888

1.9 375,167
Linyi 153,643 3.454 0.758 0.765 5.795 12.295 5.445
Shiliquan 142,563 2.264 0.497 1.562 3.279 10.098 1.756
Shanxian 190,111 3.152 0.691 2.176 3.593 12.711 2.888

2.0 375,038
Linyi 153,350 3.452 0.757 0.765 5.795 12.063 5.677
Shiliquan 142,558 2.266 0.497 1.562 3.279 10.098 1.756
Shanxian 190,105 3.153 0.692 2.176 3.593 12.711 2.888

2.1 374,909
Linyi 153,058 3.450 0.757 0.765 5.795 11.831 5.910
Shiliquan 142,552 2.267 0.496 1.562 3.279 10.098 1.756
Shanxian 190,099 3.154 0.692 2.176 3.593 12.711 2.888

2.2 374,780
Linyi 152,766 3.448 0.756 0.765 5.796 11.600 6.143
Shiliquan 142,547 2.268 0.497 1.562 3.279 10.098 1.756
Shanxian 190,094 3.155 0.692 2.176 3.593 12.711 2.888
20
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Fig. D.1. The Pareto optimal frontier of the bi-objective GRC bi-level BCC model.
Table D.1
Payoff table.

GTR TC

max GTR GTR∗
𝑚𝑎𝑥 TC∗

𝑚𝑎𝑥

min TC GTR∗
𝑚𝑖𝑛 TC∗

𝑚𝑖𝑛

Table D.2
Payoff table of the bi-objective GRC bi-level BCC model.

GTR (CNY) TC (106 tonnes)

max GTR 611,991,645 17.48
min TC 326,901,964 9.34

Table D.3
Pareto optimal set of the bi-objective GRC bi-level BCC model.
𝑖 GTR (CNY) TC (106 tonnes) 𝑖 GTR (CNY) TC (106 tonnes)

0 326,901,964 9.340 11 481,347,227 13.817
1 339,935,594 9.747 12 495,400,783 14.224
2 354,301,151 10.154 13 513,369,921 14.631
3 366,392,379 10.561 14 527,458,739 15.038
4 384,387,862 10.968 15 541,547,557 15.445
5 398,753,420 11.375 16 555,636,374 15.852
6 411,591,320 11.782 17 569,725,192 16.259
7 427,429,541 12.189 18 583,814,010 16.666
8 441,759,112 12.596 19 597,902,828 17.073
9 456,088,682 13.003 20 611,991,646 17.480
10 467,127,132 13.410

𝜇 = 0.78, 𝑟 = 0.79, 𝛽 = 0.88, respectively. As shown in Table C.3,
with the increase of global sensitivity parameter 𝜃, the government tax
revenue is non-decreasing. From Table C.4, we can find that with the
increase of the inner uncertainty set parameter 𝜏, the government tax
revenue is gradually decreased.

Appendix D. Bi-objective GRC bi-level BCC model

On the basis of the maximizing government tax revenue, the second
objective of minimizing total carbon emissions (TC) is added in the
21
GRC bi-level BCC model (11) in the main text and the bi-objective GRC
bi-level BCC model is constructed, which is as follows:

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛𝑧𝑚𝑛] +𝑤

𝑀
∑

𝑚=1
𝑦𝑚,

min TC =
𝑀
∑

𝑚=1
𝑥𝑚 + 𝑦𝑚,

s.t. Constraints (1)–(2), (4),

max PB𝑚 = 𝑃
𝑁
∑

𝑛=1
𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛)𝑧𝑚𝑛 −

𝑁
∑

𝑛=1
𝑢𝑚𝑛𝑧𝑚𝑛

−
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝐸𝑃𝑛𝑘𝑇𝑃𝑛𝑘𝑧𝑚𝑛−

𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛]𝑧𝑚𝑛

−𝑤
𝑀
∑

𝑚=1
𝑦𝑚 − 𝑂𝐶𝑚,

s.t. Constraints (5)–(10),

(D.1)

where the constraints in the bi-objective GRC bi-level BCC model are
the same as those in the single-objective GRC bi-level BCC model (11)
in the main text.

D.1. Analysis of the bi-objective GRC bi-level BCC model

This section first focuses on transforming model (D.1) into a bi-
objective single-level deterministic optimization model, and then ap-
plying the augmented 𝜀-constraint method to transform the bi-objective
model into a single-objective model.

D.1.1. Transforming model (D.1) into a bi-objective single-level determinis-
tic model

The reformation of the semi-infinite constraint in model (D.1) is the
same as that in Section 4.1. The transformation of the bi-objective bi-
level deterministic optimization model into the bi-objective single-level
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d

P

Table D.4
Computational results of the bi-objective GRC bi-level BCC model in the case of Pareto compromise solution.
𝑖 GTR TC Power Profit Free Taxable Fules

plant CEQA CEQA Straw Wood Coal 1 Coal 2

(CNY) (106 tonnes) (103 CNY) (106 tonnes) (106 tonnes) (105 tonnes) (105 tonnes) (105 tonnes) (105 tonnes)

10 467,127,132 13.410
Linyi 158,341 3.457 0.864 0.764 5.790 17.723 0.000
Shiliquan 251,184 3.736 0.932 8.136 0.000 16.970 2.951
Shanxian 235,409 3.539 0.884 2.497 4.123 14.486 3.315
model can refer to Section 4.2. Eventually, the bi-objective single-level
BCC deterministic optimization model is obtained as follows:

max GTR = 𝜌
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
[𝑃𝑃𝐶𝑚𝑛(1 − 𝐸𝐶𝑚𝑛) − 𝑢𝑚𝑛𝑧𝑚𝑛] +𝑤

𝑀
∑

𝑚=1
𝑦𝑚,

min TC =
𝑀
∑

𝑚=1
𝑥𝑚 + 𝑦𝑚

s.t. 𝜇𝑖 ∈ {0, 1}, 𝑖 ∈ {1,… , 19},

Constraints (1)–(2), (4), (6)–(10),
(14), (16)–(17), (19).

(D.2)

D.1.2. Transforming model (D.2) into a single objective model
In order to solve model (D.2) effectively, we use the augmented

𝜀-constraint method to transform the bi-objective model into a single
objective model in this section. Based on the calculations, a tradeoff
between maximizing government tax revenue and minimizing the total
carbon emissions is performed. The detailed steps are as follows:

Step 1: Choose the government tax revenue (GTR) as the main
objective function.

Step 2: Obtain the payoff table by solving the single objective
optimization problem.

• Taking the first objective GTR without considering the objective
of minimizing total carbon emissions, the optimal value GTR∗

𝑚𝑎𝑥
and the optimal solution is obtained. After substituting the op-
timal solution into the second objective function TC, one gets
TC∗

𝑚𝑎𝑥.
• Taking the second objective TC without considering the max-

imization of the government tax revenue objective, obtain its
optimal value TC∗

𝑚𝑖𝑛 and the optimal solution by solving this
single objective problem. By substituting the optimal solution,
GTR∗

𝑚𝑖𝑛 is obtained.

Therefore, the payoff table is given in Table D.1:
Step 3: From Table D.1, we get the range (TC∗

𝑚𝑖𝑛, TC∗
𝑚𝑎𝑥) of the

carbon emission objective TC. By dividing the range into 𝑞 equal
intervals, we get 𝑞 + 1 demarcation points, from which we get 𝑞 + 1
optimization subproblems as follows:

max
𝒙,𝒚

GTR − 𝜎 × 𝑠
ℎ

s.t. TC − 𝑠 = 𝜀𝑖,

𝑠 ∈ 𝑅+,

Constraints (1)–(4), (6)–(10),
(14), (16)–(17), (19),

(D.3)

where 𝜎 ∈ (10−6, 10−3) is an adequately small positive number; 𝑠 is a
slack variable; ℎ = TC∗

𝑚𝑎𝑥 − TC∗
𝑚𝑖𝑛 is the range of the second objective

TC respectively. In addition, 𝜀𝑖 = TC∗
𝑚𝑎𝑥 −

ℎ
𝑞 × 𝑖 (𝑖 = 0, 1,… , 𝑞) is the 𝑖th

emarcation point of the range (TC∗
𝑚𝑖𝑛, TC

∗
𝑚𝑎𝑥) .

Step 4: By solving the 𝑞 + 1 subproblems in Step 3, we obtain the
areto optimal solution set.
22
D.2. Computational results

Based on the above analysis, we apply the constructed bi-objective
GRC bi-level BCC model to the real case about the power plants in
Shandong Province in the main text, and get the payoff table, as shown
in Table D.2.

In this study, let 𝑞 = 20, and then we get 21 subproblems. By solving
these 21 subproblems, we get the Pareto optimal solutions of the bi-
objective GRC bi-level BCC model as shown in Table D.3. Visualizing
the obtained Pareto optimal solutions, Fig. D.1 displays the Pareto
optimal frontier of the developed bi-objective model. From the results
plotted in Fig. D.1, we can find that with the increase of government tax
revenue, the total carbon emissions also increase, which indicates that
the objectives of maximizing government tax revenue and minimizing
carbon emissions are in conflict with each other.

Furthermore, we choose the compromise solution from all the
Pareto optimal solutions in accordance with the principle of equal
importance of the two conflicting objectives, which is Pareto point
𝑖 = 10. Table D.4 shows in the case of the Pareto compromise solution,
the free CEQA and taxable CEQA allocated by the government to every
power plant, as well as the production planning decisions of each power
plant.
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