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A B S T R A C T

The utilization of renewable energy sources to produce electricity is capable of relieving the pressure of
limited natural resources and achieving the sustainability of future energy. This paper addresses a multi-
period multi-feedstock multi-technology biomass-based power generation supply chain planning problem with
parameter uncertainty, balancing economic, environmental, and social objectives simultaneously. However, the
main challenges in optimizing this problem are correlated with multiple conflicting objectives and uncertain
parameters. This study proposes a novel globalized robust goal programming model with goal constraints to
balance three conflicting objectives using priority levels and characterize the uncertainty of unit emissions and
social scores by inner–outer uncertainty sets. After transforming globalized robust environmental and social
goal constraints into their equivalent forms, the tractable counterpart of the proposed model is obtained,
which is mixed-integer linear programming (MILP). Finally, the effectiveness of the proposed model is
demonstrated through a case study about the design of a sustainable biomass-based power generation supply
chain (SBPSC) network in Hubei Province, China. Computational results reveal that by adjusting several
parameters, environmental and social aspired goals consistently can achieve, whereas the economic objective
is vulnerable to being influenced. Comparative studies with nominal goal programming model and robust goal
programming model indicate that the proposed model is uncertainty-immunized and less conservative. Under
investigated circumstances, the realized economic profit by the proposed model is approximately 42.5% higher
than that of the robust goal programming model on average.
1. Introduction

The growth of population, changes in lifestyle, and the improvement
of people’s living standards have collectively resulted in a significant
increase in global energy demand through decades, particularly in
industrialized countries. According to BP (2022), primary energy con-
sumption grew by 5.8% in 2021, exceeding the levels reported in 2019
by 1.3%, whilst oil demand rose by 5.3 million barrels per day, natural
gas demand increased by 5.3%, and coal demand increased by more
than 6%, which is a little higher than the levels observed in 2019 and
represents the highest point since 2014. Given the prevailing trend, it
is evident that non-renewable sources of energy cannot single-handedly
cope with the mounting pressure, thereby highlighting the requirement
for alternative energy sources to supplement energy demands (Cambero
and Sowlati, 2014). Intergovernmental Panel on Climate Change asserts
a reality that global warming is caused by greenhouse gas emission,
which primarily results from the utilization of fossil energy (Intergov-
ernmental Panel on Climate Change, 2018). To assure future energy
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sustainability and address the environmental issues with global warm-
ing, several countries are now turning to renewable sources for their
energy production needs.

The renewable electricity sector has grown rapidly over the years
with an annual growth rate of approximately 5% from 2000 to 2019
(Global Bioenergy Statistics, 2021). In 2019, the power produced from
renewable energy was 7311 TWh, where hydro, wind, and biomass,
respectively, were ranked the first, second, and third largest renewable
power generation sources (See Fig. 1). Hydropower is a power gen-
eration technology that is both clean and efficient, while also being
hassle-free; however, the initial cost is very high and can potentially
lead to serious environmental consequences, such as flood, water pol-
lution, and damage to marine life (Singh and Singal, 2017). Wind
energy is clean, low cost, and environmentally friendly; however, its
fluctuating output caused by wind direction, temperature, pressure, and
humidity poses a significant challenge (Mittal et al., 2016). Biomass is
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Fig. 1. Renewable electricity generation in 2000–2019.

globally available due to the diverse range of sources it encompasses,
including agricultural and forest residues, energy crops, animal fats,
municipal wastes (Miret et al., 2016). In addition, biomass energy
possesses a distinctive superiority over other renewable energy sources
as it can be transported, stored, and utilized in locations away from its
source (Simon et al., 2021). Furthermore, biomass energy production
offers new sources of income for farmers and helps to reduce landfill
waste (Tillman, 2000). Despite these benefits, the utilization of biomass
energy still presents certain challenges, including low energy density,
low calorific value, and high logistic costs (Cambero and Sowlati,
2014).

Based on the characteristics of biomass energy, first-generation
biomass typically refers to crops like corn and sugarcane that compete
with the food industry (Hombach et al., 2016). For alleviating the
situation, second-generation biomass is receiving increasing develop-
ment, which primarily involves perennial grasses, organic residues, and
wastes (Miret et al., 2016). These sources generate less greenhouse
gas emissions, and the environmental impact of waste disposal can
be reduced when organic residues and wastes are utilized for produc-
tion (Miret et al., 2016). In China, the Work Plan for the Construction of
Biomass Power Generation Projects in 2021 was issued to promote the
steady and healthy development of agricultural and forestry biomass
and waste power generation industries. Data from the National En-
ergy Administration reveal that in 2021, China produced 8.08 million
kWh of biomass power generation. In this study, given that forestry,
agriculture, and animal husbandry are among the most significant
economic activities in Hubei, China, second-generation biomass, par-
ticularly forestry and agricultural residues and animal waste, are taken
into account as potential feedstocks for power generation.

The challenge of low energy density and high logistic costs of
biomass energy requires the development of transportation plans and
storage settings for biomass production (Ahmadvand and Sowlati,
2022). To optimize the biomass power generation system, various
decisions must be taken, such as biomass purchasing quantities, trans-
portation quantities, inventory level, the location of storage facilities,
and power generation technology selection, which highlights the im-
portance of overall system planning (Zandi Atashbar et al., 2018).
In general, the overall system diagram of optimizing biomass power
generation supply chain is displayed in Fig. 2. Several studies (e.g.,
Evans et al., 2010; Ruiz et al., 2013) have explored the performances
of different power generation technologies on the economic objective,
environmental damage, and social impact. Furthermore, Yang et al.
(2020) studied the importance of environmental-social-economic di-
mensions to sustainable development from the perspective of footprint
calculation. Hence, a biomass-based power generation system that si-
multaneously considers environmental, social, and economic objectives
should be investigated for sustainable planning. However, there are
2

several uncertainties caused by limited historical data availability, such
as unit emissions and social scores, which complicate the sustainable
biomass power generation system.

When designing the SBPSC network, the unit emissions of harmful
substances cannot be accurately determined by the influence of biomass
quality and power generation environment amongst others. Similarly,
the scores of each power generation technology on a certain social
factor are difficult to obtain precisely owing to epistemic uncertainty
and measurement errors. These uncertainties are closely associated
with environmental and social objectives and therefore should be con-
sidered in sustainable biomass power generation systems. The above
discussions raise the following questions that need to be addressed:

(1) What type of uncertainty-immunized optimization model should
be developed for this sustainable biomass-based power generation sys-
tem considering environmental-social-economic dimensions?

(2) How does the setting of environmental and social goals impact
the achievement of economic goal?

(3) What are the advantages of our proposed model in terms of
achieving the three conflicting goals?

To address these questions, the first task is to characterize the
uncertain parameters. Given the limited data available, only a general
value range of uncertain parameters can be acquired. This situation
suggests globalized robust optimization (GRO) method (Ben-Tal et al.,
2017), which extends the robust optimization method (Ben-Tal et al.,
2009). The motivation for using the GRO method is that the optimal
solution obtained by GRO method can not only hedge against multiple
uncertainties, can also be less conservative. The second task involves
solving a multi-objective problem in which the desired environmental,
social, and economic goals are known in advance, according to quotas
and requirements of the environmental protection and human resources
departments, as well as the power plant’s development. The realization
of each goal has varying degrees of importance for the decision-maker,
leading to the selection of the goal programming method to prioritize
and achieve the objectives (Charnes and Cooper, 1961).

Thus, this study proposes a novel globalized robust goal program-
ming method to handle parameter uncertainties and prioritize en-
vironmental, social, and economic objectives. Specifically, the main
contributions are as follows:

∙ We study the SBPSC network design problem and propose a
new globalized robust goal programming model from a different
optimization perspective. Distinct from relevant literature, this
study incorporates the parameter uncertainty and the preference
of decision-makers into the proposed model, which are character-
ized by the uncertainty set and priority level, respectively.

∙ We derive a tractable counterpart form of the proposed globalized
robust goal programming SBPSC model with goal constraints,
which is a MILP model. By introducing the inner–outer uncer-
tainty set to describe the uncertain unit emissions and social
scores, this study formulated the globalized robust environmen-
tal and social goal constraints and then transformed them into
equivalent forms.

∙ We demonstrate the effectiveness of the proposed model through
a case study of the SBPSC network design problem. The re-
sults indicate that environmental and social goals can always be
achieved, whilst the economic goal is susceptible to the varia-
tion of parameters. Compared to the nominal and robust goal
programming models, the proposed model is not only uncertainty-
immunized but also less conservative.

The rest of this paper is organized as follows. Section 2 reviews
the related literature. Section 3 states the studied SBPSC problem.
Section 4 proposes a globalized robust goal programming SBPSC model.
Section 5 presents the derivation of the tractable counterpart form of
the proposed model. In Section 6, a case study is narrated. Section 7
reported the numerical and managerial results, and Section 8 concludes
the study.
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Fig. 2. Overall diagram of biomass-based power generation supply chain.
2. Literature review

This section reviews the related literature about biomass supply
chain from the following aspects: the considerations of environmental
and social impacts, the network designs and uncertain optimizations of
the mentioned supply chain, and then highlights the identified research
gap.

2.1. Considerations of environmental and social impacts

Lake et al. (2015) proposed a standardized instrument, i.e., life cycle
assessment (LCA) approach, to calculate the environmental effects of
products from inception to final disposal. The LCA approach has been
employed in various research fields (e.g. Acquaye et al., 2017; Smith
et al., 2018; Mena and Schoenherr, 2020) to reduce negative impact
on the environment and create a green system. Only a limited number
of studies (e.g. Fattahi et al., 2021) have considered the impact of
not only greenhouse gas emissions but also air pollutants and toxic
emissions on the environmental performance in supply chain network
design. This research differs from most existing literature by evaluating
the environmental impact of biomass-based power generation supply
chains regarding not only CO2 emissions but also hazardous emissions
and air pollutants.

Evans et al. (2010) evaluated the wide societal implications of
power generation technology and biomass types derived from biomass
energy production. Following that, some articles (e.g. Almeida et al.,
2013; Barbosa-Póvoa et al., 2018) assessed several social factors usually
addressed in the supply chain network design problems, such as job
creation, social approval and annual turnover. To determine the social
impact of goods and create a framework for addressing critical social in-
dicators, Andrews (2009) developed a well-known methodology Social
Life Cycle Assessment (S-LCA), which has been applied in the bioenergy
supply chain problem (Fattahi et al., 2021; Habib et al., 2020). Unlike
most existing literature, the social impact of biomass supply chains
is identified through annual turnover, worker harm, job creation, and
social acceptance in this paper.

2.2. Biomass supply chain network design

The biomass supply chain planning and network design is currently
popular among academics and practitioners owing to the utilization
of biomass to produce bioenergy in some countries. Traditionally,
proposed models for optimizing biomass supply chains focused on the
economic objective in literature. For instance, Mirhashemi et al. (2018)
formulated a MILP model based on these locations selected through
the CWDEA approach to optimize the M.oleifera-based biodiesel supply
3

chain network design problem. Wu et al. (2022) presented a MILP
model that aims to decrease feedstock supply costs and minimize the
total cost by utilizing economies of scale in biomass supply chain
networks. In contrast, Kwon et al. (2022) proposed a multi-period MILP
model that takes long-term variations of waste usage and biodiesel
demand into account, with the objective of minimizing the average
annual cost of the whole supply chain network. A long-term design of
renewable fuel supply chains was studied by Wolff et al. (2023), and the
seasonal availability of various biomass resources was considered in the
proposed mathematical model. Tesfamichael et al. (2021) developed
an optimization model that aims to minimize the investment cost and
maximize the profit to solve the problem of high initial investment costs
and less economic attractiveness of the biomass-to-biofuel supply chain.

With the impact of global warming becoming more apparent, en-
vironmental issues related to carbon emissions from biomass supply
chains are receiving increasing attention. Rahmani Mokarrari et al.
(2023) investigated the techno-economic feasibility of building a bio-
fuel production facility and discovered that only taking the impacts of
GHG emission reduction into account makes biofuel production eco-
nomically feasible. Considering carbon emissions and time-dependent
market quotas, Hombach et al. (2016) presented a MILP model to
optimize the second-generation biofuel supply chain with the aim
of net present value maximization. Fernández-Puratich et al. (2021)
presented a bi-objective optimization model that minimizes total cost
and carbon emissions to access the economic and environmental values
of different kinds of biomass for power production and heating. To
minimize the total cost and GHG emissions of the biomass-to-electricity
supply chain, Nandimandalam et al. (2022) developed a multi-objective
mathematical model to determine power plant locations, biomass sup-
plier allocations, and other various decisions. García-Velásquez et al.
(2022) proposed a bi-objective optimization model that considers eco-
nomic and environmental criteria for designing biobased supply chain
networks. Several studies have aimed to optimize sustainable biomass
supply chains by minimizing total cost while considering environmental
impacts as a constraint (e.g. Basile et al., 2022).

There is limited literature incorporating social impacts in the sus-
tainable biomass supply chain network design to the best of the au-
thors’ knowledge. Considering the economic, environmental, and social
dimensions of the sustainable development, Miret et al. (2016) for-
mulated a MILP model to design a green bioethanol supply chain, in
which the social aspect is evaluated by the overall number of locally
increased jobs as well as competition between energy and food. Singh
et al. (2022) developed a multi-objective optimization model with the
aim of total cost and environmental impact minimization and social
impact maximization in planning waste animal fat to biodiesel supply
chains. Meanwhile, Cambero and Sowlati (2014) and Sun and Fan
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(2020) provided a review of recent research on the evaluation and
optimization of biomass supply chains, including modeling techniques,
solution methods, and possible research directions for the future.

Uncertainty is one of the main challenges in biomass supply chain
planning, as various sources of uncertainties exist due to unpredictable
weather patterns, unstable economic conditions, and advancements in
biomass power production technologies. However, the studies men-
tioned earlier have not taken into account these uncertainties.

2.3. Uncertain optimization in biomass supply chain network design

Given the complex network structure and changeable external en-
vironment, the biomass supply chain is subject to significant degrees
of uncertainties. Previous studies have primarily focused on uncertain
parameters, including transportation costs, demand for bioenergy, and
biomass feedstock supply in biomass supply chains. To address such
uncertainties, stochastic programming, fuzzy programming, and robust
optimization have been widely used as effective modeling tools.

Amongst the existing techniques for dealing with uncertainty,
stochastic programming is one of the most widely used techniques
in optimizing the biomass supply chain. Under the uncertainty of
power demand, biomass quality, and availability, Saghaei et al. (2020)
proposed a two-stage stochastic programming model with chance con-
straints to minimize the overall cost. Aim for the profit of bio-energy
supply chain maximization, Memisoǧlu and Üster (2021) presented a
two-stage stochastic programming model considering the uncertainty
of biomass yield and price and designed an L-shaped-based algorithm
to solve the model efficiently. Aranguren et al. (2021) developed a
stochastic hub-and-spoke network model to minimize logistical costs
and designed an efficient solution scheme that is achieved by using
Simulated Annealing. Guo et al. (2022) proposed a multiperiod stochas-
tic programming model under the uncertainty of corn stover supply
and farmer participation rates. Computational results indicate that the
stochastic programming model obtains significantly higher cost savings
than the deterministic programming model in the validation period.

Some literature integrates environmental or social dimensions into
the modeling of biomass supply chains and utilizes stochastic program-
ming to cope with the uncertainty. Díaz-Trujillo et al. (2020) proposed
a multi-objective stochastic programming model to explore the effects
of uncertain stock availability and biogas demand on the economic and
environmental objectives in biomass supply chains. Mohtashami et al.
(2021) introduced a multi-objective model aiming at cost minimization,
social benefit, and environmental impact maximization. Aranguren and
Castillo-Villar (2022) proposed a bi-objective model, which is solved by
applying the 𝜖-constraint method and metaheuristic method to obtain
Pareto frontier approximations. Aboytes-Ojeda et al. (2022) devel-
oped a two-stage stochastic optimization model that aims to minimize
expected total cost and CVaR simultaneously and is solved using a
hybrid method associated with the Simulated Annealing algorithm.
To hedge against the risk originating from uncertainties, Díaz-Trujillo
et al. (2020), Fattahi et al. (2021), and Khezerlou et al. (2021) also
incorporated various risk conceptions caused by multiple uncertainties
in the modeling of biomass supply chains.

The applications of simulation methods in designing supply chain
networks were reviewed by Tordecilla et al. (2021). Additionally,
they grouped the existing approaches according to their methodology,
level of uncertainty, and risk factors. Lo et al. (2021) adopted the
Monte Carlo simulation method for measuring the techno-economic
feasibility of biomass gasification processes under various uncertainties.
To analyze biomass supply chains in terms of the environmental and
economic performances, Karimi et al. (2021) proposed a bi-objective
stochastic optimization model where chance constraints are solved
by the sample average approximation method. Simon et al. (2021)
estimated the feasibility of technology and operating costs of wood
biomass production more precisely by using the simulation approach
4

and indicated the available quantity of woody biomass and the range
of extraction costs in simulation results. According to the recursive
optimization-simulation approach, Akhtari and Sowlati (2020) com-
bined an optimization model and a simulation model to develop a
hybrid model, which can determine strategic and tactical decisions and
measure the variations at the operational level at the same time.

Fuzzy or possibility programming is another common technique
to handel uncertainty in biomass supply chain optimizing problems,
which is usually used to characterize epistemic uncertainty (Habib
et al., 2020). For instance, Ghaderi et al. (2018) presented a multi-
objective possibility programming model for designing the bioethanol
supply chain network under the epistemic uncertainty in the data with
the simultaneous considerations of environmental, economic, and so-
cial objectives. Habib et al. (2020) optimized a waste-biodiesel supply
chain using a modified robust possibilistic chance-constrained pro-
gramming methodology to minimize total cost while minimizing en-
vironmental impact and maximizing social welfare. With the uncertain
demand for bioenergy and the disruption in biorefinery, Salehi et al.
(2022) presented a robust possibility programming model for design-
ing biomass supply chain networks for maximizing profitability and
customer satisfaction. To minimize unfulfilled demand, potential en-
vironmental risks, and emergency expenses on the upper level while
maximizing survivor satisfaction on the lower level, Cao et al. (2021)
presented a fuzzy tri-objective bi-level programming model.

Robust optimization methodology has been applied in biomass sup-
ply chain studies, where the uncertain parameter is distribution-free,
and captured by an uncertainty set containing probable realization
values of the uncertain parameter. Delkhosh and Sadjadi (2020) intro-
duced a bi-objective robust optimization model considering economic
and environmental aspects. Compared with the deterministic optimiza-
tion model, it is demonstrated that the robust optimization model
outperforms the deterministic model under all circumstances. Gumte
et al. (2021a) introduced a data-driven robust optimization model
to perform technological, environmental, and economic analyses for
the biomass supply chains. In the proposed model, the uncertainty
in bioenergy demand, price, and bio-waste supply is addressed using
a data-driven robust optimization strategy. To handel the parameter
uncertainty, Razm et al. (2021) proposed a robust optimization model
for bioenergy supply chain planning. Computational results show that
the robust solution is immune to inaccurate input data, which remains
optimal, even if the parameters change slightly. Accounting for multiple
uncertainties in the syngas supply chain based on forest biomass, Ah-
madvand and Sowlati (2022) proposed a robust optimization model to
obtain optimal decisions at the tactical level.

To clarify the differences between this study and the above litera-
ture, the related literature is classified in Table 1.

2.4. Research gap

Table 1 categorizes the related literature according to criteria of
biomass type, product, sustainability, uncertain parameters, uncer-
tainty modeling approach, and multi-objective solution method to
determine the research gaps of current studies on the design of biomass
supply chain networks. As shown in Table 1, previous literature has
examined this issue using a deterministic optimization method; how-
ever, most studies are conducted in uncertain settings owing to the
pervasiveness of uncertainty. Furthermore, in these uncertain studies,
only the economic objective or both economic and environmental
dimensions are considered. There are also a few relevant studies that
consider environmental, social, and economic dimensions simultane-
ously. However, to the best of the authors’ knowledge, there has been
no research to date that takes the priority structure of environmental,
social, and economic objectives into account in sustainable biomass
supply chain planning and designed under the uncertainties associated
with environmental and social impacts.

Specifically, the differences between the proposed optimization
method in this paper and the existing literature are summarized as

follows:
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Table 1
Literature comparison related to this paper.

Literature Biomass type Product Sustainability Uncertain parameters Uncertainty
modeling
approach

Multi-objective
solution method

Economic Environmen-
tal

Social Unit
emis-
sion

Social
score

Others

Tesfamichael
et al. (2021)

biomass Biofuel * DP

Wu et al.
(2022)

Agri-biomas Bioenergy * DP

Kwon et al.
(2022)

Organic
waste

Biodiesel * DP

Hombach
et al. (2016)

Second-
generation

Biodiesel * * DP

Mirhashemi
et al. (2018)

Moringa
oleifera

Biodiesel * * DP

Nandiman-
dalam et al.
(2022)

Renewable
biomass

Electricity * * DP Augmented
𝜖-constraint

Fernández-
Puratich
et al. (2021)

Agro-
industrial
wastes

Heat,power * * DP 𝜖-constraint

Singh et al.
(2022)

Waste animal
fat

Biodiesel * * * DP Augmented
𝜖-constraint

Miret et al.
(2016)

Corn,wood Bioethanol * * * DP Goal
programming

Habib et al.
(2020)

Waste animal
fat

Biodiesel * * * * RPP 𝜖-constraint

Gilani et al.
(2020)

Sugarcane Bioethanol * * * * RPP Fuzzy
multi-objective
method

Salehi et al.
(2022)

Waste Electricity * * * * RPP

Díaz-Trujillo
et al. (2020)

Cow manure,
Organ-
icwastes,
Wastewater

Biogas * * * SP

Karimi et al.
(2021)

Solid biomass Power * * * SP 𝜖-constraint

Aranguren
et al. (2021)

Agricultural
biomass

Power * * SP

Guo et al.
(2022)

Biomass Bioenergy * * SP

Lo et al.
(2021)

Biomass Biogas * * * MC

Simon et al.
(2021)

Wood Bioenergy * * SM

Ahmadvand
and Sowlati
(2022)

Forest-based
biomass

Syngas * * RO

Razm et al.
(2021)

Forest
residues,
agricultural
waste

Bioenergy * * RO

Gumte et al.
(2021a)

Bio-waste Bioenergy * * * RO 𝜖-constraint

This paper Agricultural
straws, forest
residues,
livestock
manures

Power * * * * * GRO Goal
programming

DP: deterministic programming, RPP: robust possibilistic programming, SP: stochastic programming, RO: robust optimization, GRO: globalized robust optimization, SM: simulation
method, MC: Monte Carlo.
∙ Sustainability: In addition to standard carbon emissions, environ-
mental variables including noxious gases and heavy metals are
considered. Social variables including annual turnover, worker
harm, and social acceptance are considered in addition to the typ-
ical job creation. In view of the worldwide concern for sustainable
development, environmental, social, and economic objectives are
separately considered as the first, second, and third priority levels,
embodied in the proposed goal programming method.

∙ Uncertainty: Owing to the effects of the changeable environment
5

and the cognitive level of decision-makers, both unit emissions
and social scores are uncertain, which are characterized as a
pair of uncertainty sets, respectively. Subsequently, the globalized
robust optimization method is developed to model uncertain pa-
rameters because it is not only resistant to parameter uncertainty
but also less conservative.

3. Problem statement

In this study, the SBPSC network, which is designed from the point

of view of a green energy development company, consists of biomass
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supply sites, storage facilities, power generation plants, and demand
zones, as shown in Fig. 2. To capture the effects of seasonality on
biomass supply capacity, this study considers the SBPSC network design
problem in a one-year planning horizon with twelve periods, i.e., one
period per month. Different types of biomass, containing agricultural
straws, forest residues, and livestock manures, are transported from
supply sites to storage facilities and then to biomass power generation
plants or directly to them. Storage facilities will incur some additional
construction costs and storage costs to maintain inventories, but ensure
a stable supply of biomass feedstock for these power generation plants
during a planning horizon. At each power generation plant, a specific
technology with a certain level of capability, such as LFGRS, Incinera-
tor, AD, and ATT, needs to be built for a certain type of biomass, but at
most one capability level of power generation technology for a given
biomass can be selected.

Several decisions to be made in the SBPSC network include the
following groups: locations of power plants and storage facilities, se-
lections of power generation technologies in located power plants,
biomass inventory level in each period, transportation quantities among
biomass supply chain members in each period, as well as the quantities
of biomass processed, electricity generated, and electricity allocated to
demand zones in each period. Additionally, to achieve the sustainability
of a biomass-based power generation supply chain network, three con-
flicting objectives of economy, environment, and society are considered
simultaneously. Furthermore, the goal programming approach with a
priority structure is employed to balance three conflicting objectives in
this paper.

Table 2 provides notations and descriptions of the SBPSC network
design problem, in which the considered uncertain parameters include
unit emission and social score, and they are identified and selected
by checking the impact of the uncertainty of multiple influencing
parameters on the determinate model outputs using a local sensitivity
analysis (LSA) approach (Ahmadvand and Sowlati, 2022). Refer to Ap-
pendix C for details. In what follows, several assumptions are described
to formulate the SBPSC network design problem.

(A.1) All the electricity generated is acquired by a specialized power
company at a predetermined price and then distributed to the areas in
need. Therefore, the costs associated with power distribution are not
considered.

(A.2) The processing of various types of biomass cannot be done
using a single established technology, while it may be possible for a
single type of biomass.

(A.3) If there is an overflow of biomass supply in the SBPSC net-
work, then the excess biomass can be sold to other markets.

4. Globalized robust goal programming SBPSC model

To handle the uncertainty of unit emission and social score and
consider economic, environmental, and social impacts, a globalized
robust goal programming SBPSC model is formulated in this section.

4.1. General constraints

4.1.1. Capacity constraints
Constraint (1) assures that at most one power generation technology

be built for processing a type of biomass at location 𝑗.
∑

𝑘∈[𝐾]

∑

𝑟∈[𝑅]
𝑋𝑗𝑘𝑚𝑟 ≤ 1, ∀𝑗 ∈ [𝐽 ], 𝑚 ∈ [𝑀]. (1)

In each period, the biomass supply must not be greater than the
supply capacity, which is represented by constraint (2).
∑

𝐹𝑠𝑖𝑚𝑡 +
∑

𝐹𝑠𝑗𝑚𝑡 ≤ 𝜂𝑚𝑠𝑡, ∀𝑠 ∈ [𝑆], 𝑚 ∈ [𝑀], 𝑡 ∈ [𝑇 ]. (2)
6

𝑖∈[𝐼] 𝑗∈[𝐽 ]
Constraints (3) and (4) show that the amounts of biomass holding
and handling should not exceed the holding and handling capacities of
the opened storage facilities, respectively.
∑

𝑚∈[𝑀]
𝑒𝑚𝐻𝑖𝑚𝑡 ≤ 𝑐𝑎𝑝ℎ𝑖𝑌𝑖, ∀𝑖 ∈ [𝐼], 𝑡 ∈ [𝑇 ]. (3)

∑

𝑚∈[𝑀]

∑

𝑗∈[𝐽 ]
𝐹𝑖𝑗𝑚𝑡 ≤ 𝑐𝑎𝑝𝑓𝑖𝑌𝑖, ∀𝑖 ∈ [𝐼], 𝑡 ∈ [𝑇 ]. (4)

Constraint (5) reveals the power generation capacity of all technolo-
gies is limited.

𝑉𝑗𝑘𝑚𝑡 ≤
∑

𝑟∈[𝑅]
𝑐𝑎𝑝𝑡𝑘𝑟𝑋𝑗𝑘𝑚𝑟, ∀𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾], 𝑚 ∈ [𝑀], 𝑡 ∈ [𝑇 ]. (5)

Constraint (6) indicates that the sum of electricity supplied by
power generation plant 𝑗 to all demand zones is less than the total
amount of electricity generated.
∑

𝑛∈[𝑁]
𝑍𝑗𝑛𝑡 ≤ 𝑄𝑗𝑡, ∀𝑗 ∈ [𝐽 ], 𝑡 ∈ [𝑇 ]. (6)

Constraint (7) ensures that the sum of electricity provided by all
power plants to demand zone 𝑛 is more than the demand.
∑

𝑗∈[𝐽 ]
𝑍𝑗𝑛𝑡 ≥ 𝜉𝑛𝑡, ∀𝑛 ∈ [𝑁], 𝑡 ∈ [𝑇 ]. (7)

.1.2. Constraints of flow balance
According to constraint (8), the biomass transported to power plant

must meet the amount used. Constraint (9) calculates the electricity
eneration of power plant 𝑗.

1 − 𝜖𝑚)(
∑

𝑠∈[𝑆]
𝐹𝑠𝑗𝑚𝑡 +

∑

𝑖∈[𝐼]
𝐹𝑖𝑗𝑚𝑡) =

∑

𝑘∈[𝐾]
𝑉𝑗𝑘𝑚𝑡, ∀𝑗 ∈ [𝐽 ], 𝑚 ∈ [𝑀], 𝑡 ∈ [𝑇 ].

(8)

𝑗𝑡 =
∑

𝑘∈[𝐾]

∑

𝑚∈[𝑀]
𝜆𝑘𝑚𝑉𝑗𝑘𝑚𝑡, ∀𝑗 ∈ [𝐽 ], 𝑡 ∈ [𝑇 ]. (9)

.1.3. Inventory constraints
Constraints (10) and (11) ensure that the inventory level of biomass

n period 𝑡 is the sum of the remaining inventory after a deterioration
n the preceding period and the input flow of biomass.

𝑖𝑚𝑡 =
∑

𝑠∈[𝑆]
𝐹𝑠𝑖𝑚𝑡 −

∑

𝑗∈[𝐽 ]
𝐹𝑖𝑗𝑚𝑡, ∀𝑚 ∈ [𝑀], 𝑖 ∈ [𝐼], 𝑡 = 1. (10)

𝑖𝑚𝑡 = (1 − 𝛾𝑚)𝐻𝑖𝑚(𝑡−1) +
∑

𝑠∈[𝑆]
𝐹𝑠𝑖𝑚𝑡 −

∑

𝑗∈[𝐽 ]
𝐹𝑖𝑗𝑚𝑡,

∀𝑚 ∈ [𝑀], 𝑖 ∈ [𝐼], 𝑡 ∈ [𝑇 ]∖{1}. (11)

.1.4. Decision variable constraints
Eq. (12) is the binary constraint, and (13) is the nonnegative con-

traint.

𝑗𝑘𝑚𝑟, 𝑌𝑖 ∈ {0, 1}, ∀𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾], 𝑟 ∈ [𝑅], 𝑚 ∈ [𝑀], (12)

𝑠𝑖𝑚𝑡, 𝐹𝑠𝑗𝑚𝑡, 𝐹𝑖𝑗𝑚𝑡,𝐻𝑖𝑚𝑡, 𝑉𝑗𝑘𝑚𝑡, 𝑄𝑗𝑡, 𝑍𝑗𝑛𝑡 ≥ 0,∀𝑠 ∈ [𝑆], 𝑖 ∈ [𝐼], 𝑚 ∈ [𝑀],

𝑗 ∈ [𝐽 ], 𝑘 ∈ [𝐾], 𝑛 ∈ [𝑁], 𝑡 ∈ [𝑇 ]. (13)

.2. Globalized robust environmental goal constraint

The environmental impact of the SBPSC network is mainly assessed
n terms of emissions and air pollution from biomass transportation
nd power production, including CO2, VOC emissions, NO𝑥, and heavy
etals. Since the unit costs of eliminating various pollutants are dis-

inct, the total cost, rather than the total amount, is used to measure
nvironmental impact, as shown in (14).

1(𝝁,𝑽 ) = 𝐸𝑚𝑖𝑡𝑟𝑎+
∑

𝑐∈[𝐶]

∑

𝑘∈[𝐾]

∑

𝑡∈[𝑇 ]

∑

𝑚∈[𝑀]

∑

𝑗∈[𝐽 ]
𝛼𝑐𝜇𝑐𝑘𝑉𝑗𝑘𝑚𝑡 = 𝐸𝑚𝑖𝑡𝑟𝑎+𝝁𝑇 𝑽 ,

(14)
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Table 2
Notations and descriptions.

Notations Descriptions

Index sets:
[𝑆] Set of biomass supply sites, 𝑠 ∈ [𝑆] = {1,… , 𝑆},
[𝐼] Set of potential storage facilities, 𝑖 ∈ [𝐼] = {1,… , 𝐼},
[𝐽 ] Set of potential biomass power generation plants, 𝑗 ∈ [𝐽 ] = {1,… , 𝐽},
[𝑀] Set of biomass types, 𝑚 ∈ [𝑀] = {1,… ,𝑀},
[𝑁] Set of demand zones, 𝑛 ∈ [𝑁] = {1,… , 𝑁},
[𝐾] Set of candidate power generation technologies, 𝑘 ∈ [𝐾] = {1,… , 𝐾},
[𝑅] Set of capacity options of power generation technologies, 𝑟 ∈ [𝑅] = {1,… , 𝑅},
[𝑇 ] Set of periods, 𝑡 ∈ [𝑇 ] = {1,… , 𝑇 },
[𝐺] Set of social factors, 𝑔 ∈ [𝐺] = {1,… , 𝐺},
[𝐶] Set of emission types, 𝑐 ∈ [𝐶] = {1,… , 𝐶},
[𝐿] Set of perturbation terms, 𝑙 ∈ [𝐿] = {1,… , 𝐿}.
Parameters:
𝛽𝑖 Fixed annual cost of opening a storage facility at site 𝑖 ($),
𝜓𝑗𝑘𝑟 Fixed annual cost of establishing technology 𝑘 with capacity level 𝑟 at site 𝑗 ($),
𝑢𝑏𝑚 Unit purchasing cost of biomass 𝑚 ($/ton),
𝑢𝑝𝑘 Unit operating cost using technology 𝑘 ($/ton),
𝑢ℎ𝑚 Unit holding cost of biomass 𝑚 in a period ($/ton),
𝑑𝑖𝑠𝑠𝑖 The distance between supply site 𝑠 and storage facility 𝑖 (km),
𝑑𝑖𝑠𝑠𝑗 The distance between supply site 𝑠 and biomass power plant 𝑗 (km),
𝑑𝑖𝑠𝑖𝑗 The distance between storage facility 𝑖 and biomass power plant 𝑗 (km),
𝑑𝑖𝑠𝑢𝑐 Unit transportation cost ($/km/ton),
𝜂𝑚𝑠𝑡 The amount of biomass 𝑚 provided by supply site 𝑠 in period 𝑡 (ton),
𝑐𝑎𝑝ℎ𝑖 Capacity of storage facility 𝑖 to hold biomass at each period (ton),
𝑐𝑎𝑝𝑓𝑖 Capacity of storage facility 𝑖 in forwarding biomass to power plants in a period (ton),
𝑐𝑎𝑝𝑡𝑘𝑟 Capacity of processing biomass by the technology 𝑘 with level 𝑟 in a period (ton),
𝑢𝑒 Unit price of electricity generated from biomass ($/kWh),
𝑒𝑚 Capacity utilization coefficient, i.e., the space needed for unit biomass 𝑚 in storage

facilities,
𝜖𝑚 Moisture content associated with biomass 𝑚,
𝜆𝑘𝑚 Conversion rate of power generation technology 𝑘 from biomass 𝑚 (kWh/ton),
𝛾𝑚 Deterioration rate of biomass 𝑚 in storage facilities at each period,
𝜅𝑐 Unit emission of type 𝑐 during transport process (kg/ton/km),
𝛼𝑐 Unit cost of eliminating 𝑐 ($/kg),
𝑤𝑔 The weight of social indicator 𝑔,
𝜉𝑛𝑡 The electricity needed by demand zone 𝑛 in period 𝑡 (kWh).
Uncertain parameters:
𝜌𝑔𝑘𝑟 The score on social indicator 𝑔 of established technology 𝑘 with capacity level 𝑟,
𝜇𝑐𝑘 Unit emission of type 𝑐 from processing biomass by technology 𝑘 (kg/ton).
Decision variables:
𝑋𝑗𝑘𝑚𝑟 Binary variable, if technology 𝑘 with level 𝑟 for processing biomass 𝑚 is established

at site 𝑗, it is 1; otherwise 0,
𝑌𝑖 Binary variable, if the storage facility is located at site 𝑖, it is 1; otherwise 0,
𝐹𝑠𝑖𝑚𝑡 Quantity of biomass 𝑚 from supply site 𝑠 to storage facility 𝑖 in period 𝑡,
𝐹𝑠𝑗𝑚𝑡 Quantity of biomass 𝑚 from supply site 𝑠 to power plant 𝑗 in period 𝑡,
𝐹𝑖𝑗𝑚𝑡 Quantity of biomass 𝑚 from storage facility 𝑖 to power plant 𝑗 in period 𝑡,
𝐻𝑖𝑚𝑡 Quantity of biomass 𝑚 holding at storage facility 𝑖 in period 𝑡,
𝑉𝑗𝑘𝑚𝑡 Quantity of biomass 𝑚 processing at power plant 𝑗 using technology 𝑘 in period 𝑡,
𝑄𝑗𝑡 Quantity of electricity generated from power plant 𝑗 in period 𝑡,
𝑍𝑗𝑛𝑡 Quantity of electricity provided by power plant 𝑗 to demand zone 𝑛 in period 𝑡.
𝝁

where 𝐸𝑚𝑖𝑡𝑟𝑎 =
∑

𝑐∈[𝐶] 𝛼𝑐𝜅𝑐
(
∑

𝑡∈[𝑇 ]
∑

𝑚∈[𝑀]
∑

𝑠∈[𝑆]
∑

𝑖∈[𝐼] 𝑑𝑖𝑠𝑠𝑖𝐹𝑠𝑖𝑚𝑡 +
∑

𝑡∈[𝑇 ]
∑

𝑚∈[𝑀]
∑

𝑠∈[𝑆]
∑

𝑗∈[𝐽 ] 𝑑𝑖𝑠𝑠𝑗𝐹𝑠𝑗𝑚𝑡 +
∑

𝑡∈[𝑇 ]
∑

𝑚∈[𝑀]
∑

𝑖∈[𝐼]
∑

𝑗∈[𝐽 ]
𝑖𝑠𝑖𝑗𝐹𝑖𝑗𝑚𝑡

)

that denotes emissions during transportation, 𝝁 =
𝜇𝑐𝑘)𝑐∈[𝐶],𝑘∈[𝐾], and 𝑽 = (𝛼𝑐

∑

𝑡∈[𝑇 ]
∑

𝑚∈[𝑀]
∑

𝑗∈[𝐽 ] 𝑉𝑗𝑘𝑚𝑡)𝑐∈[𝐶],𝑘∈[𝐾].
Decision-makers often expect the total cost of eliminating various

pollutants to be as low as possible. Following the idea of the goal
programming method, given an aspired goal 𝑔1, the total cost 𝛱1 is
expected not to exceed 𝑔1 as far as possible. If 𝛱1 is greater than 𝑔1,
the segment exceeding 𝑔1 should be minimized. Hence, decision-makers
focus on the part in excess of 𝑔1 and introduce the positive deviation
𝑑+1 . Consequently, the environment objective (14) is formulated as a
goal constraint (15),

𝛱1(𝝁,𝑽 ) − 𝑑+1 ≤ 𝑔1. (15)

In reality, a number of relevant factors, such as the quality of
biomass, the energy production environment and the operational level
of workers, contribute to the uncertainty of unit emissions. Acquiring
accurate values of uncertain unit emissions is usually difficult, and the
problem may worsen if little historical data is available. Therefore, the
unit emission vector 𝝁 is modeled under uncertainty and formulated
7

i

as an affine function of perturbation vector 𝜻𝜇 , that is, 𝝁(𝜻𝜇) = 𝝁0 +
∑

𝑙∈[𝐿] 𝝁𝑙𝜁
𝜇
𝑙 , where 𝝁0 is the nominal vector, 𝝁𝑙 is a basic shift vector, 𝜻𝜇

is the perturbation vector. This formulation means that the uncertainty
of 𝝁 is caused by 𝜻𝜇 , the dimension 𝐿 of which is determined by the
number of influence factors.

However, the crucial issue that how to characterize 𝝁 has not been
clear and should be addressed. The GRO method is a common tool
to handle optimization problems which are influenced by parameter
uncertainty. In the GRO method, the parameter uncertainty is char-
acterized by an inter-outer uncertainty set. The key idea of the GRO
method is that the feasibility must be met for the uncertain parameter
values that belong to the inner uncertainty set analogous to the robust
optimization, while the feasibility requirements are permitted to be
violated but in a controlled way for the parameter values that are
unlikely to occur.

Based on the above discussion, we consider two convex uncertainty
sets  ′

𝜇 and 𝜇 with  ′
𝜇 ⊂ 𝜇 . For the realization of uncertain vector

∈ 𝜇∖ ′
𝜇 , the constraint violation is allowed, but for the realization

′
n 𝜇 , the constraint must be satisfied. Therefore, the globalized robust
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environmental goal constraint is formulated as follows:

𝛱1(𝝁,𝑽 ) − 𝑑+1 ≤ 𝑔1 + min
𝝁′∈ ′

𝜇
𝜙(𝝁,𝝁′), ∀𝝁 ∈ 𝜇 , (16)

where 𝜙(𝝁,𝝁′) is the distance between 𝝁 and 𝝁′. If 𝝁 ∈  ′
𝜇 , then

obviously 𝜙(𝝁,𝝁′) = 0. For 𝝁 ∈ 𝜇∖ ′
𝜇 , then 𝜙(𝝁,𝝁′) > 0, which means

violation of inequality (15) is allowed.

Remark 1. Constraint (16) is the globalized robust counterpart of
the original uncertain constraint (15). While in the robust optimization
method, it is required that uncertain constraint (15) holds for all vectors
𝝁 in the outer uncertainty set 𝜇 , i.e.,

𝛱1(𝝁,𝑽 ) − 𝑑+1 ≤ 𝑔1, ∀𝝁 ∈ 𝜇 , (17)

which is called robust environmental goal constraint. From a theoret-
ical point of view, a solution that satisfies constraint (16) does not
necessarily satisfy the constraint (17), which means that the feasible
region of (16) includes that of (17). Therefore, the globalized robust
optimization method can obtain a less conservative solution compared
to the robust optimization method.

4.3. Globalized robust social goal constraint

To identify the social impact assessment, the S-LCA approach (An-
drews, 2009) is commonly employed. Refer to the study of Fattahi
et al. (2021), the social impacts of biomass-based power generation
technologies are assessed using four indicators: job creation, social
acceptance, annual turnover, and worker harm. Based on the above
analysis, the social objective that reflects the social responsibility of
the SBPSC network is as follows:

𝛱2(𝝆,𝑿) =
∑

𝑔∈[𝐺]

∑

𝑘∈[𝐾]

∑

𝑟∈[𝑅]

∑

𝑗∈[𝐽 ]

∑

𝑚∈[𝑀]
𝑤𝑔𝜌𝑔𝑘𝑟𝑋𝑗𝑘𝑚𝑟 = 𝝆𝑇𝑿, (18)

where vector 𝝆 = (𝜌𝑘𝑟)𝑘∈[𝐾],𝑟∈[𝑅] is uncertain (denote 𝜌𝑘𝑟 =
∑

𝑔∈[𝐺]𝑤𝑔
𝜌𝑔𝑘𝑟 for convenience), and 𝑿 = (

∑

𝑗∈[𝐽 ]
∑

𝑚∈[𝑀]𝑋𝑗𝑘𝑚𝑟)𝑘∈[𝐾],𝑟∈[𝑅].
Owing to the cognitive level of decision-makers, measurement error,

and other factors, social indicator scores are difficult to determine
exactly. On the principle of the goal programming method, the social
objective is modeled as a globalized robust social goal constraint (19),

𝛱2(𝝆,𝑿) + 𝑑−2 ≥ 𝑔2 − min
𝝆′∈ ′

𝜌
𝜙(𝝆,𝝆′), ∀𝝆 ∈ 𝜌. (19)

where 𝑔2 is the aspired goal value of social objective that means the
total social score should not be less than 𝑔2 as much as possible, and 𝑑−2
denotes the segment of social scores that is smaller than 𝑔2. In addition,
the convex uncertainty sets  ′

𝜌 ⊂ 𝜌. For the realization of 𝝆 in  ′
𝜌 ,

constraint (19) must be satisfied. In contrast, the constraint violation
is all right for the values in 𝜌∖ ′

𝜌 but is controlled by the distance
𝜙(𝝆,𝝆′).

Remark 2. Using the robust optimization method, the social objective
is modeled as a robust social goal constraint as follows:

𝛱2(𝝆,𝑿) + 𝑑−2 ≥ 𝑔2, ∀𝝆 ∈ 𝜌. (20)

From constraints (19) and (20), the globalized robust optimization
method allows controlled constraint violations in the outer uncertainty
set while the robust optimization method requires the inequality holds
for all realizations in the outer uncertainty set, so the globalized
robust optimization method should be less conservative than the robust
8

optimization method.
4.4. Economic goal constraint

The economic objective of the SBPSC network is to maximize profit,
which is calculated as electricity sales revenue minus several general
costs, as shown in (21).

𝛱3 =
∑

𝑗∈[𝐽 ]

∑

𝑡∈[𝑇 ]
𝑄𝑗𝑡𝑢𝑒 −

∑

𝑘∈[𝐾]

∑

𝑗∈[𝐽 ]

∑

𝑚∈[𝑀]

∑

𝑟∈[𝑅]
𝜓𝑗𝑘𝑟𝑋𝑗𝑘𝑚𝑟 −

∑

𝑖∈[𝐼]
𝛽𝑖𝑌𝑖

−
∑

𝑡∈[𝑇 ]

∑

𝑚∈[𝑀]

∑

𝑗∈[𝐽 ]

∑

𝑘∈[𝐾]
𝑢𝑝𝑘𝑉𝑗𝑘𝑚𝑡

−
∑

𝑡∈[𝑇 ]
𝑑𝑖𝑠𝑢𝑐

(

∑

𝑖∈[𝐼]

∑

𝑠∈[𝑆]

∑

𝑚∈[𝑀]
𝑑𝑖𝑠𝑠𝑖𝐹𝑠𝑖𝑚𝑡 +

∑

𝑗∈[𝐽 ]

∑

𝑠∈[𝑆]

∑

𝑚∈[𝑀]
𝑑𝑖𝑠𝑠𝑗𝐹𝑠𝑗𝑚𝑡

+
∑

𝑖∈[𝐼]

∑

𝑗∈[𝐽 ]

∑

𝑚∈[𝑀]
𝑑𝑖𝑠𝑖𝑗𝐹𝑖𝑗𝑚𝑡

)

−
∑

𝑖∈[𝐼]

∑

𝑡∈[𝑇 ]

∑

𝑚∈[𝑇 ]
𝑢ℎ𝑚𝐻𝑖𝑚𝑡 −

∑

𝑡∈[𝑇 ]

(

∑

𝑖∈[𝐼]

∑

𝑠∈[𝑆]

∑

𝑚∈[𝑀]
𝑢𝑏𝑚𝐹𝑠𝑖𝑚𝑡

+
∑

𝑗∈[𝐽 ]

∑

𝑠∈[𝑆]

∑

𝑚∈[𝑀]
𝑢𝑏𝑚𝐹𝑠𝑗𝑚𝑡

)

. (21)

The first part in Eq. (21) expresses the sale revenue of power
enerated in the SBPSC network. The fixed costs of building power
eneration technologies are the second part. The third part is the fixed
osts of building storage facilities. The operational costs for handling
iomass at all power plants throughout the planning period make up
he fourth part. The transportation cost is the fifth part. The inventory
ost is the sixth term. The biomass purchase cost during the planning
hase is the final term.

Based on the idea of goal programming, assuming the aspired goal
alue of the economic objective is 𝑔3, then economic goal constraint is
odeled as follows:

3 + 𝑑−3 − 𝑑+3 = 𝑔3, (22)

here 𝑑−3 is the negative deviation which denotes the segment of profit
ower than 𝑔3, and 𝑑+3 is the positive deviation representing the segment
f profit higher than 𝑔3. Note that economic objective 𝛱3 is expected
o be as big as possible, then 𝑑−3 should be minimized.

Additionally, deviation variables meet the nonnegativity require-
ent,
+
1 ≥ 0, 𝑑−2 ≥ 0, 𝑑+3 ≥ 0, 𝑑−3 ≥ 0. (23)

.5. Globalized robust goal programming SBPSC model

In the context of sustainability, conflicting economic, environmen-
al, and social goals have varying degrees of importance in the minds
f decision-makers and are generally not achievable at the same time.
n this situation, the modeling approach should incorporate a priority
tructure in three conflicting objectives depending on the current state
olicy and preference of decision-makers, thereby considering the goal
rogramming method (Charnes and Cooper, 1961).

Given the growing worldwide environmental concerns, the top pri-
rity among the three conflicting objectives may be the environmental
bjective. Due to the requirements for sustainability, the social impact
ay be considered a higher priority than the economic objective.

n other words, in the context of sustainable development, decision-
akers first ensure that the environmental impact does not exceed the

iven aspired goal, then social responsibility, and finally try their best
o achieve the economic goal value.

Therefore, in the SBPSC problem, the order of priority is environ-
ental impact, social responsibility, and economic profit. Based on the

bove discussion, a globalized robust goal programming model (24)
s developed for the SBPSC problem considering environmental, so-
ial, and economic objectives simultaneously, the objective function of
hich is to minimize the sum of deviations with priority levels,

in P1𝑑
+
1 + P2𝑑

−
2 + P3𝑑

−
3 (24)
𝑠.𝑡. Constraints (1)–(13),(16),(19),(22),(23).
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where P1, P2, and P3 are priority levels indicating the relative im-
portance of environmental, social, and economic objectives, and the
magnitude between them is P1 ≫ P2 ≫ P3.

Note that Eqs. (16) and (19) are all semi-infinite constraints caused
y uncertain parameters. Examining model (24) and finding that solv-
ng the model directly would be difficult due to semi-infinite con-
traints. In Section 5, to overcome this difficulty, model (24) will
e converted into an equivalent form through the Lagrange duality
ethod, which can be solved directly by off-the-shelf software.

. Tractable globalized robust counterpart SBPSC model

In this section, GRO methodology is employed to transform semi-
nfinite constraints (16) and (19) into a finite system of constraints,
espectively, without shrinking the feasible region of the model (24).

.1. Counterpart formulation of environmental goal constraint

As for the unit emission vector 𝝁 in (16), its inner–outer uncertainty
set ( ′

𝜇 ,𝜇) is given as follows:

 ′
𝜇(𝜇) = {𝝁 = 𝝁0 +

∑

𝑙∈[𝐿]
𝝁𝑙𝜁𝑙|𝜻 ∈ ′

𝜇(𝜇)}, (25)

The outer uncertainty set 𝜇 contains all possible values of 𝝁,
here nominal vector 𝝁0 is the center of the set. Shift matrix 𝑨 =
𝝁1 ⋯𝝁𝐿] is constituted of basic shifts. Perturbation vector 𝜻 varies
n the perturbation sets ′

𝜇 = {𝜻|‖𝜻‖1 ≤ 𝛤𝜇 , ‖𝜻‖∞ ≤ 𝜏′𝜇}, and 𝜇 =
𝜻|‖𝜻‖∞ ≤ 𝜏𝜇} with 0 ≤ 𝜏′𝜇 ≤ 𝜏𝜇 , which indicates that ′

𝜇 ⊂ 𝜇 implying
′
𝜇 ⊂ 𝜇 . 𝝁 is fixed at its nominal vector 𝝁0 when 𝜻 = 0.

Due to limited data available, only nominal values and support
nformation about uncertain unit emissions can be obtained. Then the
uter uncertainty set (i.e., a box set) bound can be determined based
n known nominal values and support information. However, the box
s too pessimistic, so the inner uncertainty set (i.e., a budget set) is
ntroduced to reduce the conservatism level of the solution. The inner–
uter uncertainty set falls somewhere in between, which is not only less
onservative but also more flexible in adjusting the robustness of the
ethod against the level of conservatism of the solution. The bounds

f the inner uncertainty set can be chosen and adjusted by decision-
akers based on their conservatism attitudes or some other presumable

nformation about uncertain parameters.

heorem 1. For uncertain unit emission vector 𝝁, let the distance function
(𝝁,𝝁′) = 𝛼(‖𝝁 − 𝝁′

‖∞), with 𝛼(𝑡) = 𝜃𝜇𝑡, where 𝑡 ≥ 0, 𝜃𝜇 ≥ 0. Based
n uncertainty sets  ′

𝜇 and 𝜇 , as indicated in (25), the computationally
ractable formulation of constraint (16) can be expressed as the following
inite system of constraints,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝝁0)𝑇 𝑽 + 𝛤𝜇‖𝒆‖∞ + 𝜏′𝜇‖𝒇‖1 + 𝜏𝜇‖𝑨
𝑇 𝒗‖1 ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎 (a)

𝒆 + 𝒇 = 𝑨𝑇𝒘 (b)
𝒗 +𝒘 = 𝑽 (c)
‖𝒘‖1 ≤ 𝜃𝜇 (d)

(26)

where 𝒆, 𝒇 , 𝒘, and 𝒗 are introduced variables, 𝐸𝑚𝑖𝑡𝑟𝑎 =
∑

𝑐∈[𝐶] 𝛼𝑐𝜅𝑐
(
∑

𝑠∈[𝑆]
∑

𝑖∈[𝐼]
∑

𝑚∈[𝑀]
∑

𝑡∈[𝑇 ] 𝑑𝑖𝑠𝑠𝑖𝐹𝑠𝑖𝑚𝑡 +
∑

𝑠∈[𝑆]
∑

𝑗∈[𝐽 ]
∑

𝑚∈[𝑀]
∑

𝑡∈[𝑇 ]
𝑑𝑖𝑠𝑠𝑗𝐹𝑠𝑗𝑚𝑡 +

∑

𝑖∈[𝐼]
∑

𝑗∈[𝐽 ]
∑

𝑚∈[𝑀]
∑

𝑡∈[𝑇 ] 𝑑𝑖𝑠𝑖𝑗𝐹𝑖𝑗𝑚𝑡).

Proof. Refer to Appendix A for proof. □

Theorem 1 gives the tractable formulation for constraint (16), which
means that replacing constraint (16) in the model (24) with the system
(26) would contribute to the computational tractability of this model.
9

s

5.2. Counterpart formulation of social goal constraint

Regarding uncertain social score vector 𝝆, its inner–outer uncer-
tainty set ( ′

𝜌 ,𝜌) depends on the perturbation set (′
𝜌,𝜌), as shown

in Eq. (27),

 ′
𝜌 (𝜌) = {𝝆 = 𝝆0 +

∑

𝑙∈[𝐿]
𝝆𝑙𝜁𝑙|𝜻 ∈ ′

𝜌(𝜌)}. (27)

The nominal vector 𝝆0 is the center of the uncertainty set. The shift
matrix is consisted of basic shifts, namely B = [𝝆1 ⋯𝝆𝐿]. Perturbation
vector lies in the perturbation sets ′

𝜌 = {𝜻|‖𝜻‖1 ≤ 𝛤𝜌, ‖𝜻‖∞ ≤ 𝜏′𝜌}, and
𝜌 = {𝜻|‖𝜻‖∞ ≤ 𝜏𝜌} with 0 ≤ 𝜏′𝜌 ≤ 𝜏𝜌. Obviously, ′

𝜌 ⊂ 𝜌 implying
 ′
𝜌 ⊂ 𝜌. Particularly, when 𝜻 = 0, 𝝆 is fixed at its nominal vector 𝝆0.

For the selection of perturbation sets, refer to Remark 3.
In general, the uncertain social score vector 𝝆 depends on the

subjective judgment of experts. According to the given nominal values
and support information, the determinations of bounds of the inner and
outer uncertainty sets can refer to the case of 𝝁.

Theorem 2. For uncertain social scores 𝝆, let the distance function
𝜙(𝝆,𝝆′) = 𝛼(‖𝝆 − 𝝆′

‖∞) with 𝛼(𝑡) = 𝜃𝜌𝑡, where 𝑡 ≥ 0, 𝜃𝜌 ≥ 0. Based on
uncertainty sets  ′

𝜌 and 𝜌, as shown in (27), the computationally tractable
formulation of constraint (19) is expressed as the following finite system of
constraints,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝝆0)𝑇𝑿 − 𝛤𝜌‖𝒄‖∞ − 𝜏′𝜌‖𝒅‖1 − 𝜏𝜌‖𝑩
𝑇𝝋‖1 ≥ 𝑔2 − 𝑑−2 (a)

𝒄 + 𝒅 = 𝑩𝑇 𝝈 (b)
𝝋 + 𝝈 = 𝑿 (c)
‖𝝈‖1 ≤ 𝜃𝜌 (d)

(28)

where 𝒄, 𝒅, 𝝋, and 𝝈 are introduced variables.

roof. Refer to Appendix A for proof. □

Theorem 2 shows the finite system (28) is an equivalently tractable
orm of (19). Hence, the semi-infinite constraint (19) in the model (24)
s replaced by the system (28), allowing off-the-shelf software to di-
ectly solve this model.

emark 3. The reasons for choosing box & budget sets are as
ollows. (1) Due to limited data available, only nominal values and
upport information of uncertain parameters can be obtained. (2) The
udget uncertainty set has computational advantages. (3) The budget
ncertainty set implies a probability guarantee in the case that random
erturbation variables are independent and symmetrically distributed
n [−1,1]. However, if there are plenty of data available, data driven
pproaches (Gumte et al., 2021b; Inapakurthi et al., 2020; Pantula
nd Mitra, 2020; Sharma et al., 2021) have a greater advantage in
ccurately characterizing data uncertainty.

.3. Tractable globalized robust counterpart SBPSC model

In light of Theorems 1 and 2, the tractable counterpart form of the
roposed globalized robust goal programming SBPSC model (24) is as
ollows:
in P1𝑑

+
1 + P2𝑑

−
2 + P3𝑑

−
3

𝑠.𝑡. Constraints (1)–(13),(22),(23),(26),(28).
(29)

In summary, after deriving the counterparts of semi-infinite con-
traints (16) and (19), the computationally intractable model (24) is
quivalently reformulated as model (29), which is a MILP model and
an be solved by off-the-shelf software directly.

. Case study

To confirm the viability and efficacy of the proposed globalized
obust goal programming method, a case study is conducted. In this

ection, the case description and data resources are presented.



Journal of Cleaner Production 413 (2023) 137403A. Chen and Y. Liu

i
p
b
p
d
e
m

6

s
f
r
a
r
o
P
y
c
o

a
s
i
n
f
p
c

o
a
$
r
s
f
r

P
v
o
r
o
r
r
o

6.1. Case description

According to the data from the Ministry of Land and Resources of
China, the cultivated land area in Hubei Province was approximately
5,245.27 thousand hectares, and the actual operating woodland area
was approximately 6260.55 thousand hectares by the end of 2016. As
an agricultural and forestry province in China, Hubei Province is rich
in biomass resources, such as agriculture straws, forest residues, and
livestock manures. However, owing to the low utilization rate, large
amounts of biomass energy are wasted in the fields and forests and
directly buried as fertilizers.

Under the conditions of implementing the new strategy for national
energy security and carbon reduction targets, the Chinese government
and local authorities are always in effect to encourage and promote
biomass-based power generation and provide some preferential poli-
cies. So far, a few biomass-based power plants have been established in
Hubei Province. However, the overall production is low, and the scale
of operations is small. The main hurdle faced by these power plants
is the scarcity of biomass energy. For instance, Laifeng Kaidi Green
Energy Development Co., LTD. engages in biomass power generation,
in which power generation fuel is mainly straw, shrubs, and other fuels.
The current daily consumption is 1000 tons; however, the purchase
amount is only 300 tons, implying that it takes three days to collect
enough fuel to generate electricity for one day.1

In view of the existing issues in the biomass-based power generation
ndustry in Hubei Province, it is necessary to make an overall project
lan. This paper aims to optimize the design of a sustainable biomass-
ased power supply chain network in Hubei Province by proposing
lans for the location of biomass power plants and storage facilities,
etermining transportation amounts, inventory levels, and power gen-
ration. Meanwhile, this case study also verified that the proposed
odel and method are feasible and effective.

.2. Data collection and estimation

This study considers three types of biomass feedstock, agriculture
traws, forest residues, and livestock manures as the primary sources
or power generation. The availabilities of agriculture straws, forest
esidues, and livestock manures are annually around 30 million tons,
bout 4 million tons, and approximately 1.8 million tons produced,
espectively, based on data from the Hubei Provincial Department
f Agriculture and Rural Affairs, Hubei Forestry Bureau, and Hubei
rovincial Statistics Bureau. Note that livestock manures are available
ear around, while agricultural straws and forest residues can only be-
ome available throughout the year except the winter, and the majority
f agricultural residues are primarily obtained in the summer and fall.

In total, 40 feedstock sites with prominent agriculture or forestry
re considered as the biomass suppliers. The locations of 40 feedstock
uppliers and the availability of three types of feedstock are shown
n Fig. 3. Owing to the seasonality of biomass feedstock, there is a
eed to create storage facilities in the biomass supply chain to provide
eedstock for power plants during the off-season. In this case, 12
otential storage facilities, which are also potential power plants, are
onsidered, as shown in Fig. 4.

Without considering the location, the average annualized cost of
pening a storage facility with a holding capacity of 0.8 million tons
nd a forwarding capacity of 1.5 million tons per period is roughly
3.42 million (Fattahi et al., 2021). During storage in a period, the
ates of deterioration for agricultural straws, forest residues, and live-
tock manures are 0.015, 0.03, and 0.04, and the capacity utilization
actors are 1.15, 1.05, and 1.10, respectively. For further information
egarding biomass, see Table B.1.

1 http://tjj.hubei.gov.cn/tjsj/
10
The large-sized truck is chosen as the transportation mode in ac-
cordance with the properties of biomass, and the unit transport cost is
fixed at 0.075 ($/km/ton). The distances between arbitrary two entities
are acquired through Baidu map (api.map.baidu.com), which are listed
in Tables B.2 and B.3. There are four different generation technologies
available for each biomass-based power plant: LFGRS, Incinerator, AD,
and ATT. For each technology, three levels of capacity are considered,
namely large, medium, and small, and their capacities of processing
biomass in a period are 8 × 105, 6 × 105, and 4 × 105 (ton), respectively.
The unit operating costs of LFGRS, Incinerator, AD, and ATT are 5.2,
5.8, 4.3, and 6.0 ($/ton), respectively (Fattahi et al., 2021). For more
information on the technology, see Tables B.4 and B.5. According to
National Development and Reform Commission records, the unit power
price of agricultural and forestry biomass after subsidies is 0.1095
($/kWh).

According to the Hubei Province’s 2021 Statistical Yearbook, the
total amount of electricity consumed in 2020 was 218.4 billion kWh,
with consumptions for agriculture, forestry, animal husbandry and
fishery, wholesale and retail trade, industry, and residents amounting to
approximately 4.2, 35.8, 134.5, and 43.9 billion kWh, respectively. In
this case, about 5% of the electricity consumption of the four industries
is taken as the annual demand, which is randomly allocated to 12
months, as shown in Table B.6.

This study mainly considers four types of emissions, which are NO𝑥,
VOC emissions, CO2, and heavy metals. Referring to Fattahi et al.
(2021), the unit costs of eliminating NO𝑥, VOC emissions, CO2, and
heavy metals are 5.7, 4.4, 0.023, 9121 ($/kg), respectively. The unit
emissions of NO𝑥, VOC emissions, CO2, and heavy metals during trans-
port are in order 0.031, 0.0051 0.2002, 0 (kg/ton/km). In addition, the
unit emissions in the power generation using different technologies are
shown in Table B.7, which are regarded as nominal values. The basic
shifts are assumed as 5% of the corresponding nominal values (Feng
et al., 2022).

To quantify the social impact of various technologies, four social
indicators, such as job creation, annual turnover, social acceptance,
and worker harm, are chosen based on the S-LCA approach. Then, the
fuzzy analytical hierarchy procedure is used to generate the score of
power generation technology 𝑘 with capacity level 𝑟 concerning social
indicator 𝑔 (Fattahi et al., 2021). In more detail, the pairwise matrix
is built for every social indicator based on the judgement of experts,
after which experts choose the linguistic preferences for technologies,
which are expressed as triangular fuzzy numbers, and finally the social
score of technologies on each social indicator is calculated. Table B.5
displays the final outcomes, which are nominal values (

∑

𝑐 𝑤𝑐𝜌𝑐𝑘𝑟)0 of
uncertain social scores. The basic shifts (

∑

𝑐 𝑤𝑐𝜌𝑐𝑘𝑟)𝑙 are all assumed to
be 5% of the nominal values.

7. Computational results and analysis

This section presents numerical results and managerial insights.
All numerical experiments are solved by CPLEX 12.8.0 optimization
software on a computer (Inter(R) Core(TM) i5-10210U, 1.60 GHz and
16 GB RAM) with Windows 10 operating system.

7.1. Computational results

Before computational experiments, assume that the priority levels of
environmental, social, and economic objectives are as follows: P1 = 108,
2 = 1, P3 = 10−8. For more reasonable results, by reference to optimal
alues of corresponding single-objective models, the aspired goal values
f three objectives are set to 𝑔1 = 1.96×109, 𝑔2 = 350, and 𝑔3 = 3.65×108,
espectively. In practice, decision-makers can set aspired goal values
f environmental and social objectives according to the quotas and
equirements of the environmental protection department and human
esources department, and set the aspired goal value of the economic
bjective based on the development of the enterprise itself. In order

http://tjj.hubei.gov.cn/tjsj/
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Fig. 3. The amount of biomass available at each supplier.
Fig. 4. Potential locations of the storage facility and biomass-based power generation
plant.

to facilitate research, the parameters associated with two inner–outer
uncertainty sets are assumed to be the same, that is, 𝜃𝜇 = 𝜃𝜌 = 𝜃,
𝛤𝜇 = 𝛤𝜌 = 𝛤 , 𝜏𝜇 = 𝜏𝜌 = 𝜏, and 𝜏′𝜇 = 𝜏′𝜌 = 𝜏′. Besides, 𝜃 = 1, 𝜏 =
1, 𝜏′ = 0.7, 𝛤 = 1.5.

The optimal value for the proposed globalized robust goal program-
ming SBPSC model is 0.642, with the deviation variables as follows:

𝑑+1 = 0, 𝑑−2 = 0, 𝑑−3 = 6.4157 × 107.

According to the calculation result, the environmental and social
aspired goals have all been met, but the economic goal has not. Actu-
ally, the realization value of the environmental objective is 1.96 × 109,
which does not exceed and equals its aspired goal, the social objective
is 1134.8, which exceeds the given aspired goal, and the economic
objective is 3.0084 × 108, which has not achieved its aspired goal. The
11
reason may be that the economic objective is regarded as having the
lowest priority among the three objectives. Next, the results of location
strategies for storage facilities and biomass-based power plants and
the selection of generation technologies in located power plants are
reported in Table 3. In order to facilitate, agricultural straws, forest
residues, and livestock manures are denoted as biomass 1, 2, and 3,
respectively.

From Table 3, locations 1, 3, 4, 5, 6, 7, 8, 10, and 11 are selected
as storage facilities, and locations 1, 3, 4, 6, 7, 8, 10, 11, and 12 are
chosen to establish power plants. It is found that a storage facility
is built at location 5, but no power plant is built; location 12 does
not have a storage facility, but it is selected as a power plant. The
reason may be that the power plants near location 5 need more biomass
in the off-season of biomass harvesting, so location 5 is established
to provide enough biomass for them. Yet the biomass needed for the
power plant built at location 12 is provided by nearby suppliers and
storage facilities, it is unnecessary to establish a storage facility here.

Besides, the fourth column of Table 3 presents the selection of
generation technologies for each power plant built. It is noted that
technology ATT is the most widely used choice in the power generation
plants. There are only a few power plants that have chosen LFGRS and
Incinerator. None of the power plants select technology AD, however.
It might be because, while having the highest annualized fixed cost and
unit operating cost, technology ATT produces the most electricity per
unit of biomass. Despite having the lowest unit operating cost, AD’s
annual fixed cost is second only to ATT.

According to the computational results, under the given environ-
mental and social aspired goals, the economic objective is 3.0084× 108.
The costs include strategic costs, i.e., the costs of building storage
facilities and power generation technologies, as well as tactical costs,
as shown in Fig. 5. From Fig. 5, the cost of procurement is the most,
approximately 4.11×108, the transportation cost is next, about 2.23×108,
the cost of operation related to power generation technologies is about
1.18× 108, and the inventory cost is the least, approximately 2.32× 107.
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Table 3
Location strategies and selection of technologies.

Potential
locations

Selected storage
facilities

Selected power
plants

Selected technology and its capacity

1 1 1 biomass 1: ATT (large), biomass 3: LFGRS (large)
2 ∼ ∼ ∼
3 3 3 biomass 1: ATT (large)
4 4 4 biomass 3: ATT (large)
5 5 ∼ ∼
6 6 6 biomass 2: ATT (medium), biomass 3: LFGRS (large)
7 7 7 biomass 1: Incinerator (large), biomass 3: ATT (large)
8 8 8 biomass 1: Incinerator (large), biomass 3: Incinerator (large)
9 ∼ ∼ ∼
10 10 10 biomass 3: ATT (small)
11 11 11 biomass 1: ATT (small), biomass 2: ATT (large), biomass 3: Incinerator (medium)
12 ∼ 12 biomass 1: ATT (large), biomass 3: LFGRS (large)
Fig. 5. Division of total tactical costs across the supply chain.

The cost of acquiring biomass makes up around 53% of the total tactical
costs. Additionally, the costs associated with transportation, technology
operation, and inventory are 29%, 15%, and 3%, respectively. It is
found that the network design and logistics planning in the SBPSC
problem are significant.

7.2. The comparisons of different optimization models

7.2.1. Comparative result and analysis
To illustrate the performance of the proposed globalized robust goal

programming model (GRO model), two sets of comparison experiments
with the robust goal programming model (RO model) and the nominal
goal programming model (nominal model) are conducted. In the RO
model, uncertain parameters 𝝁 and 𝝆 belong to the uncertainty sets
𝜇 , and 𝜌, respectively, which are viewed as the outer uncertainty
sets in the context of the GRO method. In the nominal model, 𝝁 and 𝝆
are all known and determinate, which are assumed to be their nominal
values 𝝁0 and 𝝆0, respectively.

We solve GRO, RO, and nominal models under the same priority
levels and aspired goal values as those in Section 7.1 to effectively
compare their performances. Regarding the GRO model, we conduct
three different sets of numerical experiments under different parame-
ters, where the parameters in Case 1: 𝜃 = 1, 𝜏 = 1, 𝜏′ = 0.7, 𝛤 = 1.5; Case
2: 𝜃 = 2, 𝜏 = 1, 𝜏′ = 0.6, 𝛤 = 0.85; and Case 3: 𝜃 = 4, 𝜏 = 1, 𝜏′ = 0.7, 𝛤 =
12
Table 4
Deviation variables and optimal values of different optimization models.

Model Case 𝑑+1 𝑑−2 𝑑−3 Optimal value

Nominal model 0 0 0 0
RO model 0 0 1.5468 × 108 1.547

GRO model
Case 1 0 0 6.4157 × 107 0.642
Case 2 0 0 4.9914 × 107 0.499
Case 3 0 0 8.1707 × 107 0.817

1.5. Optimal values and deviation variables of different optimization
models are shown in Table 4.

Table 4 shows that environmental, social, and economic objectives
all achieve the stated aspired goals by the computation of the nominal
model. However, the current solution will no longer be optimal or
even unfeasible when there is any fluctuation in the data caused by
external factors. The solution of nominal model cannot hedge against
the parameter uncertainty, whereas RO model and GRO model do.
The calculation for the RO model shows that environmental and social
objectives have both achieved the given aspired goals, but the economic
objective has not. The deviation variable of the economic objective is
1.5468 × 108, which indicates that the part realized is only about 60%
of the given aspired goal. Apparently, the solution of the RO model is
uncertainty-immunized, but it is too conservative.

The findings of the GRO model show that environmental and social
objectives always meet the stated aspired goals, and the deviation
variables associated with the economic objective are 6.4157 × 107,
4.9914 × 107, and 8.1707 × 107 in the conditions of Cases 1, 2, and
3, respectively. Under these three cases, the realized economic profit
of the GRO model is approximately 42.5% higher than that of the
RO model on average. In general, the deviation variables obtained
from the GRO model are always less than that from the RO model. In
other words, the GRO model can achieve larger economic objectives
compared with the RO model. Hence, not only can the GRO model
resist data uncertainty, but also is less conservative than the RO model.
Furthermore, the choice of parameters about the uncertainty set will
influence the conservatism degree of the GRO solution. One such
example is the globalized sensitivity parameter 𝜃, which in Case 1 is set
to 1 and in Case 3 is 4, resulting in a larger optimal value (i.e., 0.817)
in Case 3.

Then we continue to present the comparison results about the
location strategies of storage facilities and power generation plants
obtained from nominal, RO, and GRO models, as shown in Fig. 6. From
Fig. 6, the location strategies under various models are different. When
the data are known accurately, the location strategy obtained by the
nominal model is shown in Fig. 6(a), where eight storage facilities
are opened at locations 3, 5, 6, 7, 8, 10, 11, and 12, respectively;
seven power plants are established at locations 1, 2, 3, 4, 7, 8, and
10. However, from Fig. 6(b), the RO model seems to be more cautious
in its siting decisions, with eleven storage facilities and eleven power
plants, including almost all the candidates. The RO model could hedge
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Fig. 6. Location strategies under different optimization models.
against data uncertainty compared to the nominal model, but it is too
conservative.

Moreover, from Fig. 6(c), (d), and (e), we find that the location
strategies solved by the GRO model are always less conservative than
that of the RO model in the situations of Cases 1, 2, and 3 just in
terms of the located site numbers. Considering Case 1, which is shown
in Fig. 6(c). There are nine storage facilities established, which are
locations 1, 3, 4, 5, 6, 7, 8, 10, and 11, respectively; and nine power
generation plants built are located at sites 1, 3, 4, 6, 7, 8, 10, 11, and
12. The details of this set of solutions are reported in Section 7.1.

Fig. 7 shows the monthly power generation obtained from different
optimization models. The GRO model result is presented here in the
situation of Case 1. The monthly power generation under various
models, as shown in Fig. 7, largely mirrors the seasonality of the
biomass supply, with more power generated during harvest season than
during the off-season. Compared with other two models, the monthly
power generation under the RO model is almost the least, which may
be related to the greatest deviation variable of the economic objective
under the RO model. Interestingly, while the deviation variable of
economic objective under the GRO model is greater than that under
the nominal model, the total power generation under the GRO model
is greater than that under the nominal model.

In conclusion, the nominal model is the best choice when the
parameters are known accurately. However, in the complex real world,
affected by many factors, it is difficult to acquire uncertain param-
eters accurately. In this case, RO and GRO models are preferred by
decision-makers due to their characteristics of uncertainty-immunized.
In many cases, the RO approach is too conservative. Therefore, the
GRO approach is a good choice when the parameters are uncertain, and
decision-makers want to obtain a robust SBPSC network structure that
can resist parameter uncertainty without being overly conservative.

7.2.2. Simulation validation and analysis
In this section, the realization-based simulation method is used to

assess the effectiveness and desirability of the proposed GRO model,
which can handle parameter uncertainty while being less conservative
than the RO model.

Taking the uncertain social goal constraint as an example, this study
uses the violation probability (VP) to measure the ability of different
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model solutions to hedge against the parameter uncertainty, which is
as follows:

𝑉 𝑃 = 1
𝑁

∑

𝑛∈𝑁
1(

∑

𝑘∈[𝐾]

∑

𝑟∈[𝑅]

∑

𝑗∈[𝐽 ]

∑

𝑚∈[𝑀]
𝜌𝑛𝑘𝑟𝑋𝑗𝑘𝑚𝑟 + 𝑑−2 < 𝑔2),

where 𝑁 is sample size, 𝜌𝑛𝑘𝑟 is the 𝑛 th sample of uncertain parameter
𝜌𝑘𝑟, 1(⋅) is 1 if the inequality is true, 0 otherwise. See Section 7.2.1 for
solutions 𝑋𝑗𝑘𝑚𝑟 and 𝑑−2 of different models.

Specifically, assuming that the social score 𝜌𝑘𝑟 uniformly changes by
±50% from its nominal value, then 𝑁 simulated cases are sampled from
the uniform distribution [50%𝜌0𝑘𝑟, 150%𝜌

0
𝑘𝑟], where 𝜌0𝑘𝑟 is the nominal

value of 𝜌𝑘𝑟. In this experiment, sample sizes are set to 50, 100, and 200,
respectively. For each case, 20 groups of sample values are uniformly
sampled from the range [50%𝜌0𝑘𝑟, 150%𝜌

0
𝑘𝑟], and the constraint violation

probabilities of these 20 groups of samples under the three optimization
models are programmed and calculated. Furthermore, the maximum,
minimum, average, and standard deviation of these 20 violation prob-
abilities under each optimization model can be acquired. Statistics of
the violation probability under different optimization models are shown
in Table 5.

From Table 5, several matters are observed as follows. (1) The
violation probability of the nominal model is obviously higher than
those of the GRO and RO models. For instance, when 𝑁 = 50, the
average violation probability of the nominal model is 0.5665, while
the average violation probabilities of the GRO and RO models are
0.0363 and 0.0030, respectively. This means that the optimal solution
of the nominal model is no longer feasible when uncertain parameters
fluctuate in most instances. Compared to the nominal model, the lower
violation probability indicates that the GRO and RO methods can resist
parameter uncertainty. (2) However, the RO method appears to be too
conservative because its violation probabilities are almost zeros. It is
really the case that the realized economic goal of the RO model is only
about 60% of the aspired goal value, as shown in Section 7.1. (3) The
average violation probabilities of the GRO model are slightly higher
than the RO model, which means the GRO method is less conservative.
As described in Section 7.1, the GRO model achieves an economic goal
that is 42.5% higher than the RO model on average, confirming the
effectiveness and desirability of the proposed model. (4) Moreover, the
standard deviation of the GRO model decreases with an increase in the
sample size, which verifies the stability of the GRO method.
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Fig. 7. Comparison of monthly power generation under different models.
Table 5
Statistics of the constraint violation probability under different optimization models.

Sample size 𝑁 Model Statistical indicators (VP)

Max. Min. Avg. StD.

50 nominal 0.6600 0.4600 0.5665 0.0485
GRO 0.0800 0.0000 0.0363 0.0209
RO 0.0200 0.0000 0.0030 0.0071

100 nominal 0.5800 0.4900 0.5520 0.0389
GRO 0.0600 0.0100 0.0290 0.0164
RO 0.0100 0.0000 0.0020 0.0040

200 nominal 0.6050 0.5100 0.5570 0.0312
GRO 0.0500 0.0150 0.0300 0.0097
RO 0.0100 0.0000 0.0015 0.0032

In conclusion, the simulation results demonstrate that the proposed
globalized robust goal programming SBPSC model is a superior ap-
proach to handling uncertainty in the presence of data uncertainty
without being overly conservative.

7.3. Effects of some parameters

This section investigates the effects of some significant parameters
on the results of the proposed model. The environmental, social, and
economic objectives still take the priority levels of P1 = 108, P2 = 1,
P3 = 10−8. The parameters associated with the uncertainty set are as
follows: 𝜃 = 1, 𝜏 = 1, 𝜏′ = 1, 𝛤 = 1.5.

7.3.1. Effects of aspired goals
Assuming that fixed social and economic aspired goals are 350 and

3.65 × 108, respectively, the impacts of changing the environmental
aspired goal on the optimal value and realization value of the economic
goal are observed. Then, the environmental and economic aspired goals
are 1.96×109 and 3.65×108, respectively, and the effects of social aspired
goal on the optimal value and realization value of the economic goal
are studied.

As shown in Fig. 8(a), when the environmental goal is increased
from 1.860×109 to 1.869×109, there is a non-increasing monotonic trend
in the optimal value, and the economic profit is not always achieved the
aspired goal value. The corresponding optimal value reflects the portion
which the economic aspired goal is not achieved. In other words, with
the increase of the environmental aspired goal, the realization value
of the economic goal is increasing. The reason may be that the larger
environmental aspired goal means looser limits on total emissions,
thus generating more electricity and greater economic profits. From
Fig. 8(b), the optimal value has a non-decreasing monotonic trend
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with the environmental goal from 420 to 500, and the unachieved
part increases with the increase of the social aspired goal. Thus, the
realization value of the economic goal decreases due to the more
stringent social impact.

In summary, when social and economic aspired goals are fixed,
the environmental goal generally has a positive effect on achieving
economic profit. However, when the environmental and economic goals
are fixed, the social goal usually has a negative effect on the realiza-
tion of the economic goal. Furthermore, optimal decisions, including
location strategies, under different aspired goals are distinct. Hence,
decision-makers need to set accurate aspired goals according to the
practical problem’s requirements.

7.3.2. Effects of biomass supply capacity
This section examines how biomass supply capacity influences the

optimal value and the achievement of the economic goal. All parame-
ters are kept constant as stated at the start of Section 7.3.

Fig. 9 illustrates that the optimal value is monotonically non-
increasing with the biomass supply capacity. In such situations, the
optimal value represents the unachieved part of the economic goal, as
only the economic aspired goal is not always realized in calculating
results. When the biomass supply capacity remains unchanged, the
optimal value is approximately 0.007, implying that the unachieved
part of the economic goal is approximately 0.007 × 108. As the biomass
supply capacity gradually declines, the optimal value increases. In the
extreme case, a 20% reduction in the biomass supply capacity leads to
an optimal value of 3.243, indicating that the economic aspired goal
value, which is 3.65×108, is just achieved by 0.407×108. Conversely, if
the biomass supply increases by 5%, 10%, or 20%, the optimal value
is always 0, implying that the economic goal is always achieved. It can
be seen that sufficient biomass supply contributes to the achievement
of economic aspired goal value.

In conclusion, biomass supply capacity has a crucial influence on the
achievement of aspired goals. Setting appropriate aspired goals based
on the available supply is essential for decision-makers to optimize the
utilization of existing biomass.

7.3.3. Effects of biomass moisture contents
This section analyzes the effects of moisture contents of three types

of biomass feedstock, including agricultural straws, forest residues, and
livestock manures, on the optimal value and the achievement of the
economic goal.

According to Fig. 10, subfigures (a), (b), and (c) show the re-
lationships between the optimal value and the moisture contents of
agricultural straws, forest residues, and livestock manures separately.
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Fig. 8. Optimal values under different environmental and social aspired goals.
Fig. 9. Optimal values under different biomass supply capacity.

The three subfigures have the same trend of change, that is, with the
increase in moisture content, the optimal value becomes larger, and the
unachieved part of the economic goal also gets larger because it is still
only the economic aspired goal has not been completely achieved in
these cases. In other words, the realized value of the economic aspired
goal decreases with the increase in the biomass moisture content.
Taking Fig. 10(a) as an example, the optimal value increases sharply
from 0.007 to 1.779 as the moisture content gradually increases from
0.2 to 0.226, which means the realized value of the economic aspired
goal decreases from 3.643 × 108 to 1.871 × 108. It is possible that the
reason for the smaller achieved value of the economic goal with a larger
moisture content is due to the fact that higher moisture content in
biomass results in less available biomass, which ultimately results in
a decrease in the realized value of the economic goal.

Besides, in the case of different biomass moisture contents, the
optimal network designs are not entirely the same. Therefore, decision-
makers need to have comprehensive knowledge of parameters such as
the moisture contents of various biomass feedstock in decision making.

7.3.4. Effects of biomass prices
It can be concluded that procurement cost is the largest contributor

to total tactical cost in Section 7.1. Hereto, the effects of biomass prices
on the optimal value and the economic aspired goal achievement are
carried out.

Fig. 11 depicts the change of optimal value with respect to biomass
prices. In general, the optimal value increases as the price of one of
the biomass increases, however, there are exceptions. Note that the
components in (18.0, 15.0, 6.0) denotes the unit prices of agriculture
straws, forest residues, and livestock matures in order, with others
having similar meanings. In these cases, the environmental and social
goals are still all achieved, while the economic goal is sensitive. Thus,
the optimal value is a reflection of the unachieved portion of the
economic goal. As shown in Fig. 11, the optimal value almost always
increases and the corresponding achieved economic goal decreases
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as the price of one biomass increases. Note that the case where the
price is (18.0, 15.0, 7.0) is an exception. Compared with the cases of
(18.0, 15.0, 6.0) and (18.0, 15.0, 6.5), although the price of livestock ma-
ture is higher, the optimal value becomes smaller. However, it does
not take away from the fact that the increasing unit price generally
results in an increased optimal value, thereby decreasing the realized
economic profit. In addition, when the biomass price takes different val-
ues, the optimal network design decision is also different accordingly.
As a result, it is necessary for the network designer to obtain a more
precise biomass price in advance.

7.4. Management insights

According to computational results and analysis, we summarize
several insights for decision-makers to incorporate some serviceable
managements into the SBPSC network design problem.

∙ When multiple conflicting objectives in the SBPSC problem are
not of equal importance to decision-makers, the proposed glob-
alized robust goal programming model is a better alternative to
obtain an optimal decision that meets the preference of decision-
makers. By setting different priorities for different objectives,
the realization sequence of multiple goals that is consistent with
their importance degrees is ensured. In the context of the SBPSC
problem, the environmental impact may be set as the top priority,
the social objective the second, and the economic objective the
last.

∙ Unit emissions and social scores are uncertain owing to the lim-
ited historical data available. In this case, using the nominal
model to solve this problem will lead to a serious consequence,
i.e., the solution obtained is not optimal or not even feasible when
the data fluctuate. Compared with the robust goal programming
model, it is shown that the proposed globalized robust goal
programming model is less conservative. Therefore, the proposed
model is preferable for decision-makers seeking a solution that
can hedge against uncertainty without being overly conservative.

∙ The crucial issue in using the proposed model to make decisions
is to determine the aspired goal values of multiple conflicting
objectives in advance. Regarding this concern, the following sug-
gestions are made for decision-makers. Firstly, each aspired goal
value should be within its reasonable range, which can be referred
to the payoff table obtained by solving the single objective model.
Secondly, the environmental goal has a positive effect on the
realization of the economic goal, while the social goal has a
negative effect. Finally, to optimally utilize biomass resources,
decision-makers need to adjust the size of the aspired goal value
according to the biomass supply.
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Fig. 10. Optimal values under different moisture contents.
Fig. 11. Optimal values under different biomass prices.

∙ Another crucial problem in decision-making using the proposed
model is determining the bounds of the inner and outer uncer-
tainty sets. Due to limited data for uncertain parameters available,
a box is selected as the outer uncertainty set, and the bound can
be determined based on nominal values and support information.
The inner budget set bound is chosen by decision-makers based
on their conservatism attitudes or other presumable information
of uncertain parameters. As a result, the inner–outer uncertainty
set is not only less conservative but also more flexible in adjusting
the robustness of the method against the conservatism level of the
solution.

∙ The effects of some parameters on the optimal value and achieve-
ment of the economic goal are discussed in Sections 7.1 and
7.3. Specifically, the increase in some parameters, such as the
biomass price, moisture content, and global sensitivity parameter,
will result in an increase in the optimal value, a decrease in
the achieved value of the economic goal, and a change in the
optimal decision. Owing to the significant influence on optimal
value and optimal decision, it is critical to implement accurate
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surveys of model parameters for decision-makers to obtain the
preferred decision.

8. Conclusions

This study investigates a multi-objective SBPSC network design
problem in uncertain environments, and proposes a novel globalized
robust goal programming model. The proposed model in this study is
distinct from existing related literature in that it considers the prefer-
ences of decision-makers for conflicting economic, environmental, and
social objectives, as well as parameter uncertainty.

Given the growing emphasis on sustainable development, this study
addresses the need to incorporate decision-makers’ preferences for
conflicting economic, environmental, and social objectives, as well as
parameter uncertainty, into the proposed model. To achieve this, the
environmental and social objectives are given higher priority than the
economic objective. The uncertainty surrounding unit emissions and
social scores has a significant impact on achieving economic goals. To
account for parameter uncertainty, an inner–outer uncertainty set is
introduced, which is used to formulate globalized robust environmental
and social goal constraints. In the resulting globalized robust goal
programming SBPSC model, the priority levels and aspired values of
conflicting objectives are particularly important parameters and subject
to the decision-makers’ preference and judgement. Finally, the tractable
equivalent form of the proposed SBPSC model is derived by converting
environmental and social globalized robust goal constraints into finite
systems of constraints by the Lagrange duality approach.

To demonstrate the effectiveness of the proposed approach, a case
study about the design of a sustainable biomass-based power generation
supply chain (SBPSC) network in Hubei Province is conducted. The
main results are concluded as follows:

∙ The proposed globalized robust goal programming SBPSC model
can hedge against parameter uncertainty and provide a robust
network design decision that is immune to uncertainties.
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∙ The proposed model is less conservative, and achieves a 42.5%
greater realized economic goal than the robust goal programming
model, on average, in the investigated situations.

∙ The economic objective is sensitive to parameter changes, while
the environmental and social objectives can always achieve their
aspired goals.

∙ Varying the aspired goal values for environmental, social, and
economic objectives leads to different optimal values and deci-
sions.

∙ Increasing the environmental aspired value leads to higher eco-
nomic profits, while increasing the social aspired value results in
a lower economic goal achievement.

∙ Optimal values and network design decisions change with ex-
ogenous parameters, including biomass supply capacity, biomass
price, and moisture content.

The globalized robust optimization method is chosen to address
parameter uncertainty owing to the lack of any distribution information
for uncertain parameters. If partial distribution information based on
historical data is available in practical situations, a distributionally ro-
bust optimization method would be a better choice for future research.
Additionally, several other uncertain parameters in the design of the
SBPSC network, including deterioration rate, conversion rate, biomass
supply capacity, and costs, may influence the model’s output and would
be solved in our future research, where the biomass supply uncertainty
could be coped with by incorporating different supply scenarios into
the problem.
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Appendix A. Proofs of main results

Proof of Theorem 1. Note that the constraint (16) is satisfied if and
only if 𝐻(𝑽 ) ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎 with

𝐻(𝑽 ) = sup
𝝁∈𝜇

{

𝝁𝑇 𝑽 − min
𝝁′∈ ′

𝜇
𝜙(𝝁,𝝁′)

}

,

where 𝜙(𝝁,𝝁′) measures the distance between 𝝁 and 𝝁′. The distance
function 𝜙 ∶ R𝐺𝐾 × R𝐺𝐾 → R is assumed to be nonnegative, closed,
identical, and jointly convex. In this paper, the distance function takes
the following form: 𝜙(𝝁,𝝁′) = 𝛼(‖𝝁 − 𝝁′

‖∞), and 𝛼(⋅) is convex, and
nonnegative with 𝛼(0) = 0.
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Table B.1
Parameters about biomass.

Price($/ton) Holding cost in
storage facility
($/ton)

Moisture
content

Agricultural straws 18.0 3.0 0.2
Forest residues 15.0 1.0 0.3
Livestock manures 6.0 2.0 0.6

Let ℎ(𝝁,𝑽 ) = 𝝁𝑇 𝑽 , then

𝐻(𝑽 ) = sup
𝝁∈𝜇 ,𝝁′∈ ′

𝜇 ,𝒕,𝒔

{

ℎ(𝝁,𝑽 ) − 𝜙(𝒕, 𝒔)|𝒕 = 𝝁, 𝒔 = 𝝁′} .

Slater’s condition holds, hence by Lagrange duality it follows that

(𝑽 ) = min
𝒘,𝒛

sup
𝝁∈𝜇 ,𝝁′∈ ′

𝜇 ,𝒕,𝒔

{

ℎ(𝝁,𝑽 ) − 𝜙(𝒕, 𝒔) −𝒘𝑇 (𝒔 − 𝝁′) − 𝒛𝑇 (𝒕 − 𝝁)
}

= min
𝒘,𝒛

{

sup
𝝁∈𝜇

{ℎ(𝝁,𝑽 ) + 𝒛𝑇𝝁} + sup
𝒕,𝒔

{−𝜙(𝒕, 𝒔) − 𝒛𝑇 𝒕 −𝒘𝑇 𝒔}

+ sup
𝝁′∈ ′

𝜇

{𝒘𝑇𝝁′}

}

.

Denote ℎ1(𝒛,𝑽 ) = sup𝝁∈𝜇
{ℎ(𝝁,𝑽 )+𝒛𝑇𝝁}, ℎ2(𝒘, 𝒛) = sup𝒕,𝒔{−𝜙(𝒕, 𝒔)−

𝑇 𝒕−𝒘𝑇 𝒔}, ℎ3(𝒘) = sup𝝁′∈ ′
𝜇
{𝒘𝑇𝝁′}, then𝐻(𝑽 ) is simplified as follows:

(𝑽 ) = min
𝒘,𝒛

{

ℎ1(𝒛,𝑽 ) + ℎ2(𝒘, 𝒛) + ℎ3(𝒘)
}

. (A.1)

Based on the definition of the indicator function 𝛿(𝝁|𝜇), and
enchel duality, the first part is rewritten as follows:

1(𝒛,𝑽 ) = min
𝒗
{𝛿∗(𝒗|𝜇) − [ℎ(𝒗,𝑽 ) + 𝒛𝑇 𝒗]∗},

nd by the relationship between 𝜇 and 𝜇 , it is derived ℎ1(𝒛,𝑽 ) =
in𝒗{(𝝁0)𝑇 𝒗 + 𝛿∗(𝑨𝑇 𝒗|𝜇) − ℎ∗(𝒗 − 𝒛,𝑽 )}.

The second part simplifies as follows:

2(𝒘, 𝒛) = sup
𝒕,𝒔

{−𝜙(𝒕, 𝒔) − 𝒛𝑇 𝒕 −𝒘𝑇 𝒔} = 𝜙∗∗(−𝒛,−𝒘).

And the third part simplifies to

3(𝒘) = sup
𝝁′∈ ′

𝜇

{𝒘𝑇𝝁′} = 𝛿∗(𝒘| ′
𝜇) = (𝝁0)𝑇𝒘 + 𝛿∗(𝑨𝑇𝒘|′

𝜇).

After substituting these formulas in (A.1), the constraint (16) is
quivalently formulated as follows:

min
𝒘,𝒛

{min
𝒗
{(𝝁0)𝑇 𝒗 + 𝛿∗(𝑨𝑇 𝒗|𝜇) − ℎ∗(𝒗 − 𝒛,𝑽 )}

+ 𝜙∗∗(−𝒛,−𝒘) + (𝝁0)𝑇𝒘 + 𝛿∗(𝑨𝑇𝒘|′
𝜇)} ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎.

Consequently, 𝐻(𝑽 ) ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎 when and only when there
re 𝒘, 𝒛, and 𝒗 such that

𝝁0)𝑇 𝒗 + 𝛿∗(𝑨𝑇 𝒗|𝜇) − ℎ∗(𝒗 − 𝒛,𝑽 ) + 𝜙∗∗(−𝒛,−𝒘)

+ (𝝁0)𝑇𝒘 + 𝛿∗(𝑨𝑇𝒘|′
𝜇) ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎. (A.2)

y the definition of the convex conjugate function, 𝜙∗∗(−𝒛,−𝒘) is finite
nly if 𝒛 = −𝒘. And because 𝜙(𝝁,𝝁′) = 𝛼(‖𝝁−𝝁′

‖∞) with 𝛼(𝑥) = 𝜃𝜇𝑥(𝑥 ≥
), then 𝜙∗∗(𝒘,−𝒘) = 0 only if ‖𝒘‖1 ≤ 𝜃𝜇 .

Note that ℎ∗(𝒗 − 𝒛,𝑽 ) = ℎ∗(𝒗 + 𝒘,𝑽 ) due to 𝒛 = −𝒘. And because
(𝝁,𝑽 ) = 𝝁𝑇 𝑽 , we have

∗(𝒗 +𝒘,𝑽 ) = min
𝝁

{𝝁𝑇 (𝒗 +𝒘) − 𝝁𝑇 𝑽 } =

{

0,𝑖𝑓 𝒗 +𝒘 = 𝑽

−∞,𝑖𝑓 𝒗 +𝒘 ≠ 𝑽

Based on the uncertainty sets with perturbation set (′
𝜇 ,𝜇), as

ndicated in Section 5.2, one gets
∗(𝑨𝑇 𝒗|𝜇) = max{𝜻𝑇 (𝑨𝑇 𝒗)} = 𝜏𝜇‖𝑨𝑇 𝒗‖1,
𝜻∈𝜇
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Table B.2
The distances between potential storage facilities and potential power plants (km).

Potential storage facilities Potential power plants

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10 𝑃11 𝑃12
𝑃1 0 62 248 173 159 270 98 232 86 100 276 189
𝑃2 62 0 306 236 219 315 87 258 135 154 337 250
𝑃3 248 306 0 132 91 100 333 363 173 226 61 170
𝑃4 173 236 132 0 72 214 232 231 141 108 124 43
𝑃5 159 219 91 72 0 149 242 287 94 139 118 114
𝑃6 270 315 100 214 149 0 366 435 184 283 159 255
𝑃7 98 87 333 232 242 366 0 179 183 127 350 230
𝑃8 232 258 363 231 287 435 179 0 287 157 348 199
𝑃9 86 135 173 141 94 184 183 287 0 131 211 174
𝑃10 100 154 226 108 139 283 127 157 131 0 231 104
𝑃11 276 337 61 124 118 159 350 348 211 231 0 150
𝑃12 189 250 170 43 114 255 230 199 174 104 150 0
Table B.3
The distances between biomass suppliers and potential power plants (km).

Biomass suppliers Potential storage facilities or power plants

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10 𝑃11 𝑃12
𝑆1 251 211 493 389 402 521 160 256 337 281 509 381
𝑆2 224 224 418 293 331 473 137 104 301 193 417 271
𝑆3 108 99 340 235 248 375 12 170 193 128 354 231
𝑆4 227 255 355 223 279 427 178 8 280 150 340 190
𝑆5 199 239 300 167 226 375 175 64 239 108 284 134
𝑆6 208 257 259 129 196 342 208 115 228 108 237 90
𝑆7 170 201 315 186 233 380 129 62 225 98 308 161
𝑆8 158 200 277 146 197 345 142 90 200 69 268 121
𝑆9 100 154 226 108 139 283 127 157 131 0 231 104
𝑆10 83 125 259 147 169 308 87 151 140 40 268 144
𝑆11 77 95 296 191 205 335 41 164 156 86 310 189
𝑆12 53 113 219 125 127 259 115 200 88 51 237 137
𝑆13 84 56 329 239 239 353 34 212 169 140 352 243
𝑆14 55 51 299 210 209 325 45 207 141 114 322 216
𝑆15 8 60 254 176 165 278 90 226 94 98 281 190
𝑆16 27 44 262 197 176 273 106 255 92 128 294 215
𝑆17 58 118 191 125 102 219 148 244 43 90 219 150
𝑆18 76 109 209 178 134 206 173 300 40 150 250 209
𝑆19 199 257 205 77 148 291 225 169 198 104 181 35
𝑆20 206 267 148 38 106 238 255 226 179 128 123 28
𝑆21 111 173 173 64 86 232 170 203 102 53 181 79
𝑆22 140 202 128 42 44 193 211 243 99 98 140 79
𝑆23 152 212 99 69 8 155 235 280 89 131 125 111
𝑆24 92 154 163 87 72 207 170 235 62 79 185 114
𝑆25 109 164 141 110 59 167 201 281 35 124 177 146
𝑆26 123 164 161 164 102 151 222 328 42 171 209 201
𝑆27 165 206 137 174 104 110 264 361 81 204 192 215
𝑆28 186 222 144 195 123 99 284 384 103 227 202 236
𝑆29 223 264 120 201 129 56 321 407 137 251 181 243
𝑆30 284 331 95 217 155 20 380 442 199 293 150 257
𝑆31 320 368 110 240 184 56 414 468 234 323 155 279
𝑆32 258 308 60 180 120 40 351 406 173 258 119 220
𝑆33 301 353 71 203 154 66 392 433 218 292 113 240
𝑆34 193 248 60 117 50 99 283 337 114 188 110 159
𝑆35 284 339 43 175 131 82 373 406 204 268 84 212
𝑆36 208 269 55 78 50 142 287 309 143 174 68 116
𝑆37 246 305 24 115 87 124 327 346 176 214 42 150
𝑆38 301 359 53 171 142 121 384 400 226 272 57 202
𝑆39 247 308 77 86 96 176 316 309 190 194 39 110
𝑆40 276 337 61 124 118 159 350 348 211 231 0 150
Table B.4
Electricity generation rate of various technologies.

Agricultural straws Forest residues Livestock manures

LFGRS 410 478 398
Incinerator 695 787 648
AD 591 688 538
ATT 758 860 708

and

𝛿∗(𝑨𝑇𝒘|′
𝜇) = max

′
{𝜻𝑇 (𝑨𝑇𝒘)}
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𝜻∈𝜇 T
= 𝛤𝜇‖𝒆‖∞ + 𝜏′𝜇‖𝒇‖1 with 𝒆 + 𝒇 = 𝑨𝑇𝒘.

Finally, substitute these formulas into (A.2), then (A.2) is crystallized
as the following system,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝝁0)𝑇 𝑽 + 𝛤𝜇‖𝒆‖∞ + 𝜏′𝜇‖𝒇‖1 + 𝜏𝜇‖𝑨
𝑇 𝒗‖1 ≤ 𝑑+1 + 𝑔1 − 𝐸𝑚𝑖𝑡𝑟𝑎

𝒆 + 𝒇 = 𝑨𝑇𝒘

𝒗 +𝒘 = 𝑽

‖𝒘‖1 ≤ 𝜃𝜇

he proof of theorem is complete. □



Journal of Cleaner Production 413 (2023) 137403A. Chen and Y. Liu
Table B.5
Fixed costs and final social scores of biomass power production technologies.

Technology LFGRS Incinerator AD ATT

Capacity 1 2 3 1 2 3 1 2 3 1 2 3

Annualized fixed cost (million$) 3.6 5.5 6.0 20.1 27.3 30 29.5 36.5 38.1 31.5 42.8 45.6
Final social score (∑𝑐 w𝑐𝜌𝑐𝑘𝑟) 78 82 88 55 59 64 97 105 110 81 87 94
Table B.6
Monthly electricity consumption (MWh).

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Agriculture 15547 15436 17061 17967 17210 18721 19755 19101 17992 17719 16856 15835
Industry 556389 560163 565971 557998 565123 551952 564240 569001 553067 551908 555420 558527
Transport 150229 155599 152748 145480 155745 143890 149010 148175 142196 148551 148331 147383
Living 173880 179011 162128 159399 158942 180999 192906 199464 153804 154165 177463 177933
Table B.7
Unit emission amounts of various technologies (kg/ton).

𝐶𝑂2 𝑁𝑂𝑥 Heavy metals VOC

LFGRS 300 0.68 0.0000374 0.0064
Incinerator 1000 1.6 0.01253 0.008
AD 227 0.188 0.0027012 2.1
ATT 438 0.78 0.0041359 0.011

Proof of Theorem 2. Constraint (19) is equivalently written as 𝐺(𝑿) ≤
𝑑−2 − 𝑔2 with

𝐺(𝑿) = sup
𝝆∈𝜌

{−𝝆𝑇𝑿 − min
𝝆′∈ ′

𝜌
𝜙(𝝆,𝝆′)},

where 𝝆 = (
∑

𝑔∈[𝐺] 𝜌𝑔𝑘𝑟)𝑘∈[𝐾],𝑟∈[𝑅], and 𝑿 = (
∑

𝑗∈[𝐽 ]
∑

𝑚∈[𝑀]
𝑋𝑗𝑘𝑚𝑟)𝑘∈[𝐾],𝑟∈[𝑅]. The value 𝜙(𝝆,𝝆′) measures the distance between 𝝆
and 𝝆′. Here, the distance function is 𝜙(𝝆,𝝆′) = 𝛼(‖𝝆 − 𝝆′

‖∞), and 𝛼(⋅)
is convex, and nonnegative with 𝛼(0) = 0.

Let 𝑔(𝝆,𝑿) = −𝝆𝑇𝑿, based on Lagrange duality and Slater’s condi-
tion, after introducing auxiliary variables 𝒖, 𝒒, and dual variables 𝝈, 𝒚,
one has

𝐺(𝑿) = min
𝝈,𝒚

{

sup
𝝆∈𝜌

{𝑔(𝝆,𝑿) + 𝒚𝑇 (−𝝆)} + sup
𝒖,𝒒

{−𝜙(𝒖, 𝒒) − 𝒚𝑇 𝒖 − 𝝈𝑇 𝒒}

+ sup
𝝆′∈ ′

𝜌

{𝝈𝑇 (−𝝆′)}

}

.

For the sake of derivation, denote

𝑔1(𝒚,𝑿) = sup
𝝆∈𝜌

{𝑔(𝝆,𝑿) + 𝒚𝑇 (−𝝆)},

𝑔2(𝝈, 𝒚) = sup
𝒖,𝒒

{−𝜙(𝒖, 𝒒) − 𝒚𝑇 𝒖 − 𝝈𝑇 𝒒},

𝑔3(𝝈) = sup
𝝆′∈ ′

𝜌

{𝝈𝑇 (−𝝆′)}.

The first term is calculated as follows:
𝑔1(𝒚,𝑿) = min

𝝋
{𝛿∗(−𝝋|𝜌) − [𝑔(𝝋,𝑿) + 𝒚𝑇 (−𝝋)]∗}

= min
𝝋

{(−𝝆0)𝑇𝝋 + 𝛿∗(−𝑩𝑇𝝋|𝜌) − 𝑔∗(𝝋 − 𝒚,𝑿)}

The second term simplifies to 𝑔2(𝝈, 𝒚) = 𝜙∗∗(−𝝈,−𝒚).
Finally, the third term is as follows:

𝑔3(𝝈) = 𝛿∗(−𝝆′
| ′

𝜌 ) = (−𝝆0)𝑇 𝝈 + 𝛿∗(−𝑩𝑇 𝝈|′
𝜌).

Therefore, the expression 𝐺(𝑿) ≤ 𝑑−2 − 𝑔2 is rewritten as

min
𝝈,𝒚

{

min
𝝋

{(−𝝆0)𝑇𝝋 + 𝛿∗(−𝑩𝑇𝝋|𝜌) − 𝑔∗(𝝋 − 𝒚,𝑿)}

+ 𝜙∗∗(−𝝈,−𝒚) + (−𝝆0)𝑇 𝝈 + 𝛿∗(−𝑩𝑇 𝝈|′
𝜌)
}

≤ 𝑑−2 − 𝑔2,

which holds true when and only when there are 𝝋,𝝈, 𝒚 such that
0 𝑇 ∗ 𝑇 ∗∗
19

(−𝝆 ) 𝝋 + 𝛿 (−𝑩 𝝋|𝜌) − 𝑔∗(𝝋 − 𝒚,𝑿) + 𝜙 (−𝝈,−𝒚)
+ (−𝝆0)𝑇 𝝈 + 𝛿∗(−𝑩𝑇 𝝈|′
𝜌) ≤ 𝑑−2 − 𝑔2, (A.3)

According to the definition of convex conjugate, 𝜙∗∗(−𝝈,−𝒚) is a
finite value only if 𝝈 = 𝒚. Furthermore, 𝜙∗∗(−𝝈,𝝈) = 0 when ‖𝝈‖1 ≤ 𝜃𝜌.
In addition, 𝑔∗(𝝋 − 𝒚,𝑿) = 𝑔∗(𝝋 + 𝝈,𝑿) = 0 only if 𝝋 + 𝝈 = 𝑿.

Based on the perturbation sets (′
𝜌,𝜌), one has

𝛿∗(−𝑩𝑇𝝋|𝜌) = max
𝜻∈𝜌

{𝜻𝑇 (−𝑩𝑇𝝋)} = 𝜏𝜌‖𝑩𝑇𝝋‖1,

and

𝛿∗(−𝑩𝑇 𝝈|′
𝜌) = max

𝜻∈′
𝜌
{𝜻𝑇 (−𝑩𝑇 𝝈)} = 𝛤𝜌‖𝒄‖∞ + 𝜏′𝜌‖𝒅‖1

with 𝒄 + 𝒅 = 𝑩𝑇 𝝈.

As a consequence, substitute these expressions into total-formula (2),
then total-formula (2) is formed as the following system,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝝆0)𝑇𝑿 − 𝛤𝜌‖𝒄‖∞ − 𝜏′𝜌‖𝒅‖1 − 𝜏𝜌‖𝑩
𝑇𝝋‖1 + 𝑑−2 ≥ 𝑔2

𝒄 + 𝒅 = 𝑩𝑇 𝝈

𝝋 + 𝝈 = 𝑿

‖𝝈‖1 ≤ 𝜃𝜌
The proof of theorem is complete. □

Appendix B. Experimental data

See Tables B.1–B.7.

Appendix C. Checking the uncertainty in influencing parameters

To check the uncertainty in the influencing parameters and iden-
tify the most influential parameters in the SBPSC problem, the LSA
approach (Ahmadvand and Sowlati, 2022) is used to analyze the de-
terministic model, i.e., the nominal goal programming model in Sec-
tion 7.2.

According to the calculation results of Section 7.2, the optimal
value of the deterministic model is 0, which indicates that the aspired
goal values of environmental, social, and economic objectives are all
achieved. However, owing to the changeable external environment,
some parameters are prone to vary their values, such as social score,
unit emission, deterioration rate, conversion rate, moisture content,
unit purchasing cost, unit operating cost, unit holding cost, electricity
demand, and biomass supply capacity, and therefore the parameter un-
certainty should be addressed to avoid the infeasibility and inefficiency.
The sensitivity of optimal value to ±50% change of these uncertain
parameters is examined using the LSA approach, in which only one
parameter is varied at a time, and others are set to be their nominal
values (Ahmadvand and Sowlati, 2022), as shown in Table C.1.

From Table C.1, all considered influencing parameters have some
effects on the deterministic model’s optimal value that reflects the un-

realized part of the economic goal as environmental and social goals are
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Table C.1
The sensitivity of optimal value to ±50% change in influencing parameters.

Uncertainty parameters −50% +50% Uncertainty parameters −50% +50%

Social scores 3.048 1.432 Unit purchasing cost 0.000 1.390
Unit emissions 0.000 1.566 Unit operating cost 0.000 0.778
Deterioration rate 0.762 0.000 Unit holding cost 1.491 0.000
Conversion rate Infeasible 0.000 Electricity demand 1.231 Infeasible
Moisture content 0.000 Infeasible Biomass supply capacity Infeasible 0.000
always achieved in these cases. The social score is the most influencing
parameter as a 50% decrease in social score results in an optimal value
of 3.048; while a 50% increase eventuates an optimal value of 1.432.
Next, the optimal value is most sensitive to unit emission as a 50%
increase in unit emission leads to an optimal value of 1.566. When unit
emission has decreased by 50%, the optimal value is still 0, indicating
complete achievements of environmental, social, and economic goals;
with other optimal values of 0 having similar meanings. With the
existing supply available, when a 50% decrease in the conversion rate
occurs, there is no feasible solution since the electricity demand will not
be satisfied. Similarly, other ‘‘infeasible’’ situations are generally caused
indirectly by inadequate supply or unmet demand. Note that unit
costs of purchasing, operating, and holding, biomass supply, electricity
demand, deterioration rate, conversion rate, and moisture content have
relatively less influence. In the context of sustainability, this study
primarily considers the uncertainty of social score and unit emission
in the SBPSC problem.
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