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A B S T R A C T

In case of supply chain disruption following severe disasters, many supply chains tend to collapse and take
a long time to recover. Resilient supply chain network design (RSCND) is an important research problem in
supply chain management, which means that the supply chain can maintain continuous supply and quickly
restore the supply capability in part destruction. Based on the limited distribution information of uncertain
demand, a two-stage distributionally robust optimization (DRO) model with ambiguous chance constraint
(ACC) is proposed to solve the RSCND problem under demand uncertainty and disruption scenario to provide
decision support for planning the supply chain network. Finally, to verify the effectiveness and practicability
of the proposed DRO model, we apply the method to a real case study in Wuhan, China, about designing a
resilient RSC network to withstand disruption. By comparison and sensitivity analysis in numerical experiments,
some management insights of industry decision-makers are obtained.
1. Introduction

With the frequent occurrence of global destructive emergencies,
the supply chain network faces more and more risks in production
operations. Supply chain network design is an important part of supply
chain management, and resilience is a key element of the supply chain
network, which is the ability to protect the supply chain and quickly
recover from the adverse effects of disruption events (Sazvar et al.,
2021). Disruptions caused by disasters, while relatively rare, can have
devastating long-term consequences, and the recovery process may not
be quick. In recent years, since COVID-19 has caused severe impacts
on the supply chains around the world, it is necessary to optimize the
operation of the manufacturing industry supply chain network timely.
Today, the retail supply chain (RSC) management industry is facing
more financial expenses and challenges than ever before Drofenik
et al. (2023). For example, cooperation between European and some
Middle Eastern countries ceased in 2020 during COVID-19, and the
companies face challenges in ensuring sustainability across the supply
chain Yılmaz et al. (2021). Then, from a RSC perspective, single or more
stages of a RSC are greatly influenced by its design complexity and the
difficulty of ripple effects (Ivanov and Keskin, 2023).

The supply chain disruption problem that appeared in this epidemic
exposes the short board of enterprise’s resilient supply chain construc-
tion, which also reveals the shortcomings of existing research on the
RSCND problem (Sawik, 2022). A challenging issue in supply chain
disruption is the uncertainty of product demand.

∗ Corresponding author.
E-mail address: yanjuchen@hbu.cn (Y. Chen).

In most traditional related decision-making environments, the im-
portant parameters in the supply chain network, such as the demands
of retailers were considered to be deterministic (De and Giri, 2020).
However, in actual decision-making process, the demand of some sup-
ply chains is uncertain and changes with the severity of the disruption
scenario. Especially in the environment of supply chain disruption,
the demand for daily necessities is also uncertain due to the panic
of residents caused by disasters. Accordingly, research on the RSCND
based on demand uncertainty and disruption scenario has significant
theoretical importance and practical implications, and it is becom-
ing a popular issue in modern operation management. The alleged
uncertainty refers to those uncertain parameters that are difficult to
be described with probability or frequency, especially in the case of
rare data or the absence of data. Even based on big data, the true
distribution function of demand may not be known. This uncertainty
poses many challenges to the establishment of the model and the search
for the optimal solution for the supply chain network design problem.
As a result, RSC needs effective optimization techniques to improve its
performance.

In the real world, decision-makers may face a worse scenario,
that is, the actual probability distribution of uncertain parameters is
unknown, or at most can only obtain partial information about the
probability distribution. This may lead to a serious inaccurate solution
for decision-maker. In addition, facility or transportation disruptions,
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especially some caused by natural disasters, are highly impossible or
difficult to predict. For this reason, the pre-disaster phase and post-
disaster phase will be considered separately. Therefore, we adopt a
two-stage DRO method to model the problem. The brief innovations
of this study that distinguish our paper from the existing literature are
as follows:

• Considering the uncertainty of product demand under different
disruption scenarios.

• Designing a resilient RSC network under two types of uncertainty
by a two-stage DRO method.

• The proposed two-stage DRO model with ACC is transformed into
MISOCP and MILP, respectively.

• Studying a real case via the new resilient RSC network design
method.

To facilitate the understanding of this study, the remainder of
his article is shown as follows. Section 2 is dedicated to the litera-
ure review, and introduces the contributions of the article. Section 3
escribes the demand uncertainty with an ambiguity set and pro-
oses a two-stage distributionally robust RSCND model. Section 4
erives the safe approximations of ACC in the proposed model. In
ection 5, a practical application is introduced, and the effectiveness
f our optimization method is illustrated via experimental results.
ection 6 presents some managerial observations. The concluding sec-
ion discusses the theoretical and practical significance of the research
esults.

. Literature review

This study takes three independent but complementary flows of lit-
rature including demand uncertainty, the DRO method, and managing
he supply chain under disruptions. Then, we provide an overview of
he literature in these flows.

.1. Demand uncertainty

In the pre-disaster phase and the post-disaster phase of the supply
hain, many uncertain factors directly affect the designing of a resilient
upply chain network. The most common uncertainty factor in supply
hain research is uncertain demand Tabandeh et al. (2022). In the pre-
isaster phase, Alizadeh and Karimi (2023) proposed a bi-objective
ixed-integer linear model, which took the resilience measures as

he optimization tool, used the adjustable possibilistic programming,
hance-constrained programming, scenario-based programming, and p-
obust optimization method to deal with the uncertainty before the
isruption. Clavijo-Buritica et al. (2022) studied the sustainability and
esilience of the agri-food supply chain, used the simulation of de-
tructive events and the mathematical programming to find resilient
esigns to solve problems, the application of the framework in the
olombian coffee supply chain was assessed. Ni et al. (2022) studied a
ystematic supply chain resilience evaluation method to deal with the
ncertainty of demand, production and inventory, presented different
cenarios in the pre-disaster phase and put forward inventory strategy
o build model. In the post-disaster phase, Salehi et al. (2022) proposed

MILP model to design a resilient and sustainable biomass supply
hain network and used robust possibility programming methods to
eal with the bioenergy demand uncertainty. Alikhani et al. (2021)
epicted demand uncertainty in supply chain networks through dif-
erent scenarios and used scenario simplification methods to simulate
he original uncertainty distribution. Jalal et al. (2023) studied the
ocation-transportation problem under demand uncertainty, and used
obust counterpart method to solve it, and proposed a solution method
ased on repair and optimization heuristics. Other uncertainties, such
s variable costs, supply, and transportation times have also been
onsidered in some literature. The relevant data of the uncertain pa-
2

ameters in the literature is directly given (Tabandeh et al., 2022), or
some professional and different company questionnaires (Sturm et al.,
2023) and distribution information obtained through different methods
is extracted from official websites. In the RSCND problem, there are few
literature that directly uses real data for research and verification.

Therefore, the research gap prompted us to conduct further study
on the RSCND problem based on demand uncertainty and disruption
scenario. This paper is different from the existing literature by using
real data, which makes our method more appropriate to solve practical
decision-making problems.

2.2. DRO method

Due to the demand uncertainty in the post-disaster phase, the
structure and inventory allocation of RSC networks may be affected.
The main challenge in addressing RSCND problems is how to deal with
the inherent uncertainties.

Traditionally, the stochastic optimization method is a common
method to deal with uncertainty, which requires accurate knowledge
of the probability distribution of uncertain parameters (Gabrel et al.,
2014). Yılmaz et al. (2021) proposed a mixed integer stochastic op-
timization model to design resilient RSC networks in the presence of
ripple effects. Ahmadvand and Sowlati (2022) presented uncertainties
in energy demand, used robust optimization methods to develop tac-
tical supply chain optimization models for forest Gasification. Mandal
et al. (2020) established a vehicle speed optimization model that min-
imized supply chain cost under uncertain demand through stochastic
optimization method. However, the stochastic optimization method
does not apply to all RSCND problems. Decision-makers are unlikely
to predict the exact post-disaster conditions, which is very difficult
for managers to get precise distribution functions. In recent years,
great progress has been made in the study of DRO (Gong and You,
2017). Compared with traditional robust optimization methods, the
DRO method has a less conservative solution (Jiang and Guan, 2015).
Due to the limited information on the known probability distribution,
now research literature mainly aims to provide better approxima-
tions or algorithms to deal with uncertainty. In addition, due to its
computational tractability and the advantages described above, the
DRO method has played an important role in various fields, such as
portfolio optimization (Aldrighetti et al., 2023), hybrid vehicle routing
problem (Yin and Zhao, 2022), lane reservation problem (Han et al.,
2022), capacity sizing problem (Xie et al., 2023), multi-item inventory
allocation problem (Ren and Bidkhori, 2022) and location and sizing
problem (Yuan et al., 2023). Yin and Zhao (2022) proposed a DRO
method that utilized the central limit theorem to build ambiguity sets
to solve nonlinear hybrid vehicle routing problems. Xie et al. (2023)
considered the capacity scale issue during the transition to a low-
carbon power system. A DRO method based on the Wasserstein metric
is proposed to capture uncertain renewable energy output.

At present, there is no research on the two-stage DRO model with
ACC to the RSCND problem based on demand uncertainty and disrup-
tion scenario. In this paper, we propose a two-stage DRO model with
ACC for a resilient RSC network problem. The aim is to optimize the
total expected cost in the pre-disaster stage and post-disaster stage.
The corresponding optimal RSC network satisfies ACC. That is to say,
it satisfies the probability constraint under the worst-case scenario of
probability distribution.

2.3. Managing supply chain under disruptions

In recent years, researchers have increasingly focused on supply
chain disruption risk and operational risk (Sazvar et al., 2021). In
addition to the enormous loss of life and economy, how to absorb
the impact of supply chain disruption and restore the inherent ability
after the damage has become an important research topic (Abimbola
and Khan, 2019). Regarding the RSCND problem, scholars have car-
ried out relevant research work from different perspectives. Foroozesh
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et al. (2022) designed a resilient and green supply chain network
under epistemic uncertainties and disruption risks, their model used a
variety of resilience strategies, including capacity utilization strategy,
multiple sourcing strategy, coverage strategy and path strategy to
respond quickly to disruption events and reduce impacts in the food
supply chain. Yavari and Zaker (2020) adopted four resilience strategies
to deal with supply chain disruption, and in order to minimize the
expected total network cost and expected total carbon emissions, a
resilient green closed-loop supply chain network is designed. Namdar
et al. (2017) used the purchasing strategy to realize supply chain
resilience in the case of disruption. The strategies used include backup
suppliers, single and multiple sourcing, on-site purchasing, and so on.

As the managing supply chain under disruptions has recently be-
come a hot topic, the disruption of the COVID-19 pandemic has also
emerged as a new challenge, different from any previously seen chal-
lenges (Singh et al., 2021). In the past, the disasters that caused supply
chain disruption usually had the characteristics of great damage, short
duration, and low recurrence rate (Lim et al., 2013), such as torna-
does, earthquakes, extreme weather (Ni et al., 2022) etc. However,
the epidemic characteristics of the COVID-19 pandemic were great
damage (Cordeiro et al., 2022), long duration, and high recurrence
rate (Gkiotsalitis and Cats, 2020).

In this paper, we consider the risk of disruption caused by a disaster
with the same or similar characteristics as the COVID-19 pandemic
when designing RSC networks under disruption scenario, while adding
a safe inventory strategy and reserved capacity strategy, which is
different significantly from previous studies in this point.

2.4. Research gaps and contributions

Taking into account the research of the above literature, a summary
of the studies on modeling method, uncertain parameters, and solution
approach is provided in Table 1. Based on this, we summarize the
following three research gaps:

The first is related to the uncertainty sets. Despite more attention
being paid to the research of parameter uncertainty, most are based
on exact distribution. Besides, the existing literature always makes
simplified assumptions for uncertainty. Secondly, about the research
on the resilient supply chain, uncertainty, and DRO method, until now,
few references have used the DRO method for the RSCND problem
under demand uncertainty and disruption scenario. Thirdly, from the
discussion above, the impact of disasters on facilities is one of the most
significant problems in most countries. To be more realistic, generating
and solving these problems in new cases are more beneficial studies.
So far, very few papers might have used real cases to study the RSCND
problem based on demand uncertainty and disruption scenario.

Therefore, this paper aims to build a two-stage DRO method to
study the decision of facility level construction, inventory allocation,
transportation planning, and other decisions under multiple resilience
strategies to the supply chain disruption. In general, the contributions
of this paper, compared to its peers, are described as:

From the theoretical perspective, this research first thoroughly ex-
pounds the reasons that supply chain resilience and demand uncer-
tainty need to be reflected comprehensively in RSCND. From this, we
propose a new two-stage DRO model with ACC, which can simulta-
neously deal with distribution uncertainty of demand and improve
supply chain resilience. The robust counterpart approximation of the
DRO model is a semi-infinite programming model belonging to the
family of hard optimization problems. We transform the robust coun-
terpart approximation of ACC into computationally tractable forms
under Budget and Box-Ball perturbation sets. And then the proposed
model can be transformed into a deterministic MILP model or a deter-
ministic MISOCP model that can be solved with commercial software,
respectively.

From the practical implementation perspective, we address a real
3

case of RSC network design in Wuhan to verify the effectiveness of f
our model. The calculation results show that the DRO method is not
only feasible, but also effective to resist the uncertainty of probability
distribution.

Finally, this paper is the first one that adopts a two-stage DRO
method with ACC to solve the RSCND problem based on demand uncer-
tainty and disruption scenario. We investigate the impact of several key
parameters on the optimal cost, transportation planning, and facility
level construction decisions in the resilient supply chain.

3. Problem description and model formulation

3.1. RSCND problem description

Since the twenty-first century, major public health emergencies such
as SARS, Ebola, and COVID-19 have erupted frequently in the world,
which has brought great challenges to the supply chain (Raj et al.,
2022). Especially, COVID-19 has exposed the fragility of RSC systems to
a certain extent, which threatens the supply of daily necessities (Duan
et al., 2020). The closure of production during the Spring Festival, the
shortage of raw materials, and the increase in isolation protection de-
mand resulted in the shortage of daily necessities1. In the early stage of
major public health emergencies, a sufficient supply of daily necessities
is particularly important for epidemic prevention and control (Shafiee
et al., 2022). We need to build a complete and reliable RSC network
to deal with the above disruptions. In contrast with the only slight
fluctuations in consumer demand for products before the outbreak,
in the early stage of the outbreak, there exist sudden great changes
in demand since consumers tend to hoard several daily necessities.
Since resilient supply chain network is durable inherent, ignoring the
influence of decision environment uncertainty that can be reflected in
some parameters may seriously affect the network design decision.

We consider the RSCND problem related to the pre-disaster and
post-disaster stages. This multi-level RSC network includes suppliers,
distribution centers (DC), and retail stores that provide products to
customers in different regions, which is illustrated in Fig. 1. Notably,
the choice of suppliers, opening of major DCs and retailers, and opening
a pathway are the decisions that have been considered in the pre-
disaster stage. After the disruption scenario occurs, several decision
variables are determined, including the path of the vehicle and the
location–allocation of facility. Also, the path and quantity of trucks
transported products will be determined so that each customer’s need
is met.

3.2. Notations

In this section, we introduce the notations which will be used to
build our RSCND model.

Sets:

𝑄 Candidate supplier, 𝑄 = {𝑞|𝑞 = 1, 2,… , |𝑄|}.

𝑊 Candidate DC, 𝑊 = {𝑤|𝑤 = 1, 2,… , |𝑊 |}.

𝐸 Candidate retail store, 𝐸 = {𝑒|𝑒 = 1, 2,… , |𝐸|}.

𝐹 Customer area, 𝐹 = {𝑓 |𝑓 = 1, 2,… , |𝐹 |}.

𝑃 Product type, 𝑃 = {𝑝|𝑝 = 1, 2,… , |𝑃 |}.

𝑋 Facility level, 𝑋 = {𝑥|𝑥 = 1, 2,… , |𝑋|}.

𝑆 Post-disaster disruption scenario, 𝑆 = {𝑠|𝑠 = 1, 2,… , |𝑆|}.

1 https://baijiahao.baidu.com/s?id=1657444920714618053&wfr=spider&
or=pc

https://baijiahao.baidu.com/s?id=1657444920714618053&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1657444920714618053&wfr=spider&for=pc
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Table 1
Literature review of relevant works.
Reference Modeling method Uncertain parameters and variables Solution approach Disruption Comparison between

DRO Stochastic Supply Demand Inventory CPLEX Other concept/model solution methods

Schmitt and Singh (2012) ✓ ✓ ✓

Lim et al. (2013) ✓

Jabbarzadeh et al. (2016) ✓ ✓ ✓

Rezapour et al. (2017) ✓

Fattahi et al. (2017) ✓ ✓

Namdar et al. (2017) ✓ ✓ ✓ ✓ ✓

Cavalcante et al. (2019) ✓ ✓ ✓ ✓

Mandal et al. (2020) ✓ ✓ ✓

Singh et al. (2021) ✓ ✓ ✓

Hajiagha et al. (2021) ✓ ✓ ✓ ✓ ✓

Salehi et al. (2022) ✓ ✓ ✓

Feng et al. (2022) ✓ ✓ ✓ ✓ ✓

Fan and Xie (2022) ✓ ✓ ✓ ✓ ✓

This study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fig. 1. The network structure.
𝐴𝑟𝑐 Transport pathway between node 𝑖 and node 𝑗, 𝐴𝑟𝑐 = {(𝑖, 𝑗)|(𝑖 ∈
(𝑄 ∪𝑊 ∪ 𝐸), 𝑗 ∈ (𝑊 ∪ 𝐸 ∪ 𝐹 ))}.

Decision variables:

𝑦𝑞𝑥𝑞 Binary variables, 1, if supplier 𝑞 with level 𝑥 is chosen; and 0,
otherwise.

𝑦𝑤𝑥
𝑤 Binary variables, 1, if DC 𝑤 with level 𝑥 is chosen; and 0,

otherwise.

𝑦𝑒𝑥𝑒 Binary variables, 1, if retail store 𝑒 with level 𝑥 is chosen; and 0,
otherwise.

𝑙𝑖𝑛𝑝𝑖𝑗 Binary variables, 1, if node 𝑖 is connected with node 𝑗 for product
type 𝑝; and 0, otherwise.

𝑡𝑝𝑠𝑖𝑗 The quantity of products type 𝑝 transported via arc (𝑖, 𝑗) under
disruption scenario 𝑠.

𝑖𝑛𝑣𝑝𝑤 The quantity of inventory product type 𝑝 in DC 𝑤.

𝑖𝑛𝑣′𝑝𝑠𝑤 The quantity of unused inventory product type 𝑝 in DC 𝑤 under
disruption scenario 𝑠.

𝑖𝑛𝑣′
𝑝𝑠
𝑤 The quantity of unused inventory product type 𝑝 in DC 𝑤 under

disruption scenario 𝑠 for colleague RSC.

𝜚𝑝𝑠𝑒 Unused capacity for product type 𝑝 under disruption scenario 𝑠 in
node 𝑒.
4

𝑠ℎ𝑝𝑠𝑓 Shortage quantity, represents the quantity of unmet demand for
product type 𝑝 in each customer area 𝑓 under disruption sce-
nario 𝑠.

𝑠ℎ
𝑝𝑠
𝑓 Shortage quantity, represents the quantity of unmet demand for

product type 𝑝 in each customer area 𝑓 from colleague RSC
under disruption scenario 𝑠.

𝑇 𝑝𝑝𝑠𝑤 Transshipment quantity, represents the quantity of additional
product type 𝑝 purchased from colleague RSC’s DC 𝑤 under
disruption scenario 𝑠, when the quantity of product type 𝑝 trans-
ported in the supply chain is insufficient to support customer
demand.

𝑇 𝑝
𝑝𝑠
𝑤 Transshipment quantity, represents the quantity of additional

product type 𝑝 purchased from our RSC’s DC 𝑤 when the sup-
plier’s supply capacity of colleague RSC under disruption sce-
nario 𝑠 is insufficient.

Deterministic parameters:

𝑐𝑞𝑥𝑞 Fixed cost of the selected supplier node 𝑞 with facility level 𝑥.

𝑐𝑤𝑥
𝑤 Fixed cost of the selected DC 𝑤 with facility level 𝑥.

𝑐𝑒𝑥𝑒 Fixed cost of the selected retail store 𝑒 with facility level 𝑥.

𝑎𝑟𝑐𝑖𝑗 Fixed cost of the selected path between node 𝑖 and node 𝑗, 𝑖 ∈
(𝑄 ∪𝑊 ∪ 𝐸), 𝑗 ∈ (𝑊 ∪ 𝐸 ∪ 𝐹 ).
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𝑐𝑎𝑝𝑝𝑤 Capacity of DC 𝑤 for product type 𝑝.

𝑚𝑝
𝑤 Unit purchasing cost of product type 𝑝 in DC 𝑤.

𝑛𝑝𝑗 Minimum cover number of node 𝑗 for product 𝑝.

𝑝
𝑖𝑗 Maximum quantity of shipped product type 𝑝 in arc (𝑖, 𝑗).

𝑡𝑟𝑝𝑖𝑗 Cost of transported unit product type 𝑝 in the arc (𝑖, 𝑗).

𝑔𝑝𝑤 Inventory cost of holding unit product type 𝑝 in DC 𝑤.

ℎ𝑝𝑤 Inventory cost of processing unit product type 𝑝 in DC 𝑤.

𝑝𝑒𝑓 𝑝
𝑓 Penalty cost of unmet demand for product type 𝑝 in customer area

𝑓 .

𝑝𝑒𝑒𝑝𝑒 Penalty cost of idle capacity in node 𝑒 for product type 𝑝.

ℑ𝑝
𝑤 Purchasing cost of unit product type 𝑝 between retailers in DC 𝑤.

𝑠𝑎𝑙𝑝𝑤 Salvage value of an unused product type 𝑝 in DC 𝑤.

𝑚𝑞′𝑝𝑞 Purchasing cost of unit product type 𝑝 in supplier 𝑞 in post-
disaster phase.

𝑚𝑤′𝑝
𝑤 Purchasing cost of unit product type 𝑝 in DC 𝑤 in post-disaster

phase.

𝑀 Proportion parameter, represents the proportion relationship be-
tween the product quantity flowing into and out of DC. (It
measures the multiple that the product quantity flowing into DC
should be greater than the product quantity flowing out of DC
on the basis of the balance of the inflow and outflow at DC via
constraint (6).)

𝜛 Proportion parameter, represents the proportion relationship be-
tween the quantity of shortage and the transshipment quantity
of product from colleague RSC under disruption scenario 𝑠.
(When the transported products are not sufficient to support cus-
tomer demand, the products purchased from the colleague RSC
should be greater than a certain proportion 𝜛 of the shortage
quantity.)

ℏ Proportion parameter, represents the proportion relationship be-
tween the product quantity delivered by suppliers and the varia-
tion of inventory product quantity. (It can be adjusted according
to the preferences of different enterprises in the supply chain,
for example, increasing the transportation quantity of supplier
or consuming the existing inventory as soon as possible.)

𝜌𝑠 The probability that disruption scenario 𝑠 happens.

Uncertain parameters:

𝑐𝑞′𝑥𝑠𝑞 Destruction cost in supplier 𝑞 with facility level 𝑥 under disrup-
tion scenario 𝑠.

𝑐𝑤′𝑥𝑠
𝑤 Destruction cost in DC 𝑤 with facility level 𝑥 under disruption

scenario 𝑠.

𝑐𝑒′𝑥𝑠𝑒 Destruction cost of retail store 𝑒 with facility level 𝑥 under
disruption scenario 𝑠.

𝑑𝑝𝑠𝑓 The demand in customer area 𝑓 for product type 𝑝 under disruption
scenario 𝑠.

𝛯𝑝𝑠
𝑖𝑗 Maximum quantity of shipped product type 𝑝 on arc (𝑖, 𝑗) under

disruption scenario 𝑠.

ð𝑝𝑠 The actual sale quantity of product type 𝑝 in RSC under disruption
scenario 𝑠.

𝑐𝑎𝑝′𝑝𝑥𝑠𝑖 Remaining capacity in node 𝑖 with facility level 𝑥 of product
5

type 𝑝 under disruption scenario 𝑠.
3.3. A two-stage DRO model

3.3.1. Post-disaster stage
Constraints
Constraint (1) confirms that the transported (i.e. purchased) prod-

ucts and the required shortage meet the actual demand for each cus-
tomer area 𝑓 under scenario 𝑠.

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 ≥ 𝑑𝑝𝑠𝑓 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑓 ∈ 𝐹 . (1)

Under scenario 𝑠, due to the demand uncertainty, constraint (1) does
not always hold with probability 1. Let

𝑑𝑝𝑠𝑓 = 𝑑0𝑓 + 𝜁𝑓𝑑
𝑝𝑠
𝑓 ,

here 𝑑0𝑓 is nominal value of demand, 𝑑𝑝𝑠𝑓 symbolizes basic shift, and
= [𝜁1, 𝜁2,… , 𝜁𝐹 ] is random variable.

In general, it is difficult for decision-makers to get an accurate
robability distribution function of uncertain demand through histor-
cal data, that is, the distribution function is not precisely known,
t belongs to an ambiguity set that satisfies certain conditions. This
ection assumes that only the following distribution information of 𝜁
s obtained: the support set, the mean value, and the components of 𝜁
re independent of each other. Based on the above partial distribution
nformation of 𝜁 , the following ambiguity set is constructed:

= {𝐴 ∣ 𝜁 ∼ 𝐴,𝐸[𝜁𝑗 ] = 0 & |𝜁𝑗 | ≤ 1,

𝑗 = 1,… , 𝐹 & {𝜁𝑗}𝐹𝑗=1𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠}.
(2)

The ambiguity set includes some known distribution information:
supported on [−1, 1], the mean value is zero, and the random variables
are independent of each other.

Then, the ACC related to demand takes the following form:

𝑖𝑛𝑓𝐴∈𝒜𝑃𝑟𝑜𝑏𝜁𝑓∼𝐴{
∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 ≥ 𝑑𝑝𝑠𝑓 = 𝑑0𝑓 + 𝜁𝑓𝑑

𝑝𝑠
𝑓 } ≥ 1 − 𝜖,

∀𝑝 ∈ 𝑃 , 𝑓 ∈ 𝐹 , 𝑠 ∈ 𝑆.
(3)

Constraint (3) ensures that, under scenario 𝑠, the required daily
necessities from a retailer node to the consumer area should meet
the demand of consumers with a certain probability 1 − 𝜖 for any
istribution 𝐴. That is to say, the worst-case probability is at least
− 𝜖 ∈ (0, 1).

Constraints (4)–(6) control service levels in the post-disaster stage.
Constraint (4) indicates that the total sales are the sum of the inventory
that has been used and the quantity of products issued by the supplier.

∑

𝑤∈𝑊
𝑖𝑛𝑣𝑝𝑤−

∑

𝑤∈𝑊
𝑖𝑛𝑣′𝑝𝑠𝑤 +

∑

(𝑞,𝑗)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑞𝑗 = ð𝑝𝑠, ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑗 ∈ (𝑊 ∪𝐸).

(4)

Constraint (5) controls the proportion between the quantity of
remaining inventory and the quantity of transported products from
the supplier in the decision-making process. The parameter ℏ is used
to reflect the proportion relationship between the quantity of the
remaining inventory and the quantity of the transported products from
the supplier.

∑

(𝑞,𝑗)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑞𝑗 ≥ ℏ

∑

𝑤∈𝑊
(𝑖𝑛𝑣𝑝𝑤 − 𝑖𝑛𝑣′𝑝𝑠𝑤 ), ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑗 ∈ (𝑊 ∪ 𝐸). (5)

Constraint (6) represents the proportion relationship between the
uantity of products that are transported into the DC and the quantity
f products that are shipped out of the DC. The proportion parameter

makes it easy for decision-makers to control the quantity of products
tored in DC. This proportion parameter can measure the multiple that
he quantity of products entering the DC should be larger than the
uantity of products flowing out of the DC.
∑

𝑡𝑝𝑠𝑞𝑤 ≥ 𝑀
∑

𝑡𝑝𝑠𝑤𝑒, ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊 . (6)

𝑞∈𝑄 𝑒∈𝐸
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Constraint (7) is the flow balance constraint, which ensures the
inflow and outflow balance of DC.

∑

(𝑞,𝑤)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑞𝑤+𝑖𝑛𝑣

𝑝
𝑤−𝑖𝑛𝑣

′𝑝𝑠
𝑤+𝑇 𝑝𝑝𝑠𝑤 =

∑

(𝑤,𝑒)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑤𝑒, ∀𝑤 ∈ 𝑊 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 .

(7)

Constraint (8) is capacity limit constraint, which means that the
uantity of transported products cannot exceed the capacity of the
orresponding node itself.
∑

(𝑤,𝑒)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑤𝑒 ≤

∑

𝑥∈𝑋
𝑐𝑎𝑝′𝑝𝑥𝑠𝑤 𝑦𝑤𝑥

𝑤, ∀𝑤 ∈ 𝑊 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸. (8)

It is similar to constraints (7)–(8), we have the following flow bal-
nce constraint (9) for each retailer store and capacity limit constraints
10)–(12) for other links.
∑

(𝑖,𝑒)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑖𝑒 =

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸, 𝑖 ∈ (𝑄 ∪𝑊 ). (9)

∑

(𝑞,𝑗)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑞𝑗 ≤

∑

𝑥∈𝑋
𝑐𝑎𝑝′𝑝𝑥𝑠𝑞 𝑦𝑞𝑥𝑞 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑞 ∈ 𝑄, 𝑗 ∈ (𝑊 ∪ 𝐸). (10)

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 ≤

∑

𝑥∈𝑋
𝑐𝑎𝑝′𝑝𝑥𝑠𝑒 𝑦𝑒𝑥𝑒 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑓 ∈ 𝐹 , 𝑒 ∈ 𝐸. (11)

∑

(𝑖,𝑒)∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑖𝑒 + 𝜚𝑝𝑠𝑒 ≤

∑

𝑥∈𝑋
𝑐𝑎𝑝′𝑝𝑥𝑠𝑒 𝑦𝑒𝑥𝑒 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸, 𝑖 ∈ (𝑄 ∪𝑊 ).

(12)

Supply chain transportation commonsensible constraints are re-
uired. They include three types: transportation quantity cannot exceed
he maximum limit, DC transshipment quantity are not more than the
urchase quantity, the relationship between the quantity of shortage
nd the quantity of transported products, and so on. The proportion
arameter 𝜛 is used to control the quantity of products purchased from
he colleague RSC, which measures the product shortage proportion
hat the decision-maker can accept to reduce the high cost of products
rom the colleague RSC.
𝑝𝑠
𝑖𝑗 ≤ 𝑙𝑖𝑛𝑝𝑖𝑗𝑇

𝑝
𝑖𝑗 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, 𝑖 ∈ (𝑄 ∪𝑊 ∪ 𝐸), 𝑗 ∈ (𝑊 ∪ 𝐸 ∪ 𝐹 ). (13)

𝑝𝑠
𝑖𝑗 ≤ 𝛯𝑝𝑠

𝑖𝑗 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆, (𝑖, 𝑗) ∈ 𝐴𝑟𝑐. (14)

𝑝𝑝𝑠𝑤 ≤ 𝑖𝑛𝑣′𝑝𝑠𝑤 , ∀𝑤 ∈ 𝑊 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 . (15)

�̂�
𝑝𝑠
𝑤 ≤ 𝑖𝑛𝑣′

𝑝𝑠
𝑤 , ∀𝑤 ∈ 𝑊 , 𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 . (16)

∑

𝑤∈𝑊
𝑇 𝑝𝑝𝑠𝑤 ≤

∑

𝑓∈𝐹
𝑠ℎ

𝑝𝑠
𝑓 , ∀𝑠 ∈ 𝑆, 𝑝 ∈ 𝑃 . (17)

∑

𝑤∈𝑊
𝑇 𝑝𝑝𝑠𝑤 ≥ 𝜛

∑

𝑓∈𝐹
𝑠ℎ𝑝𝑠𝑓 , ∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆. (18)

Constraint (19) is non-negativity constraint.
𝑝𝑠
𝑖𝑗 , 𝑖𝑛𝑣

′𝑝𝑠
𝑤 , 𝑖𝑛𝑣′

𝑝𝑠
𝑤 , 𝑠ℎ𝑝𝑠𝑓 , 𝑠ℎ

𝑝𝑠
𝑓 , 𝑇 𝑝𝑝𝑠𝑤 , 𝑇 𝑝

𝑝𝑠
𝑤 , 𝜚𝑝𝑠𝑒 ≥ 0,

∀𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊 ,𝑓 ∈ 𝐹 , 𝑒 ∈ 𝐸.
(19)

emark 1. Referring to Alikhani et al. (2021), transshipment quantity
nd shortage quantity are also used in our model. To adjust the product
ransportation structure and the cost of the supply chain, we introduce
hree new types of proportion parameters into our RSCND model. The
alue of the proportion parameter can be set flexibly according to the
ctual situation of enterprises. Under the preset value, our method
an find the robust optimal resilient supply chain network for the
6

ecision-maker.
The objective function
Before setting up the objective function, we define the total cost

f the post-disaster stage under disruption scenario 𝑠, which includes
ive terms. The first term is the destruction cost of open facilities
nder disruption scenario 𝑠. When the supply chain is disrupted, each
ode may be damaged to varying degrees, then destruction cost occur.
estruction cost 𝑂𝐶𝑠 is one part of the total costs and represents the

otal destruction cost of the open suppliers, DCs and retail stores under
cenario 𝑠. The expression is

𝐶𝑠 =
∑

𝑞∈𝑄

∑

𝑥∈𝑋
𝑐𝑞′𝑥𝑠𝑞 𝑦𝑞𝑥𝑞 +

∑

𝑤∈𝑊

∑

𝑥∈𝑋
𝑐𝑤′𝑥𝑠

𝑤 𝑦𝑤𝑥
𝑤 +

∑

𝑒∈𝐸

∑

𝑥∈𝑋
𝑐𝑒′𝑥𝑠𝑒 𝑦𝑒𝑥𝑒 .

The first item is the destruction cost of the established supplier
acilities with various facility level 𝑥 under scenario 𝑠. Similarly, the
econd item is the destruction cost for the established DC facilities,
nd the third item is the destruction cost for the established retail store
acilities.

The second term is holding cost and processing cost in DC:

𝐷𝑠 =
∑

𝑤∈𝑊

∑

𝑝∈𝑃
𝑔𝑝𝑤𝑖𝑛𝑣

′𝑝𝑠
𝑤 +

∑

𝑤∈𝑊

∑

(𝑤,𝑗)∈𝐴𝑟𝑐

∑

𝑝∈𝑃
ℎ𝑝𝑤𝑡

𝑝𝑠
𝑤𝑗 .

The third term is transportation cost:

𝑇 𝑠 =
∑

(𝑖,𝑗)∈𝐴𝑟𝑐

∑

𝑝∈𝑃
𝑡𝑟𝑝𝑖𝑗 𝑡

𝑝𝑠
𝑖𝑗 .

The fourth term is penalty cost:

𝑃 𝑠 =
∑

𝑓∈𝐹

∑

𝑝∈𝑃
𝑝𝑒𝑓 𝑝

𝑓 𝑠ℎ
𝑝𝑠
𝑓 +

∑

𝑒∈𝐸

∑

𝑝∈𝑃
𝑝𝑒𝑒𝑝𝑒𝜚

𝑝𝑠
𝑒 .

The fifth term is the cost of purchasing products from different
hannels after disruption:

𝑃𝑃 𝑠 =
∑

𝑞∈𝑄

∑

(𝑞,𝑤)∈𝐴𝑟𝑐

∑

𝑝∈𝑃
𝑚𝑞′𝑝𝑞𝑡

𝑝𝑠
𝑞𝑤 +

∑

𝑞∈𝑄

∑

(𝑞,𝑒)∈𝐴𝑟𝑐

∑

𝑝∈𝑃
𝑚𝑞′𝑝𝑞𝑡

𝑝𝑠
𝑞𝑒

+
∑

𝑤∈𝑊

∑

𝑝∈𝑃
(𝑚𝑤′𝑝

𝑤 +ℑ𝑝
𝑤)𝑇 𝑝

𝑝𝑠
𝑤 +

∑

𝑤∈𝑊

∑

𝑝∈𝑃
(𝑚𝑝

𝑤 − 𝑠𝑎𝑙𝑝𝑤)𝑖𝑛𝑣
′𝑝𝑠
𝑤 .

According to the above notations, the total expected cost in the
ost-disaster stage is as follows:

𝑜𝑠𝑡′ =
∑

𝑠∈𝑆
𝜌𝑠(𝑂𝐶𝑠 + 𝑂𝐷𝑠 + 𝑂𝑇 𝑠 + 𝑂𝑃 𝑠 + 𝑂𝑃𝑃 𝑠).

.3.2. Pre-disaster stage
Constraints
Constraint (20) ensures that DC node 𝑤 ∈ 𝑊 of the supply chain is

inked by at least 𝑛𝑝𝑒 upper nodes during the transportation of product
. This is a method based on multi-set coverage strategy.
∑

𝑤∈𝑊
𝑙𝑖𝑛𝑝𝑤𝑒 ≥ 𝑛𝑝𝑒 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸. (20)

Constraint (21) ensures that each established node selects at most
ne facility level.
∑

𝑥∈𝑋
𝑦𝑤𝑥

𝑤 ≤ 1, ∀𝑤 ∈ 𝑊 . (21)

Constraint (22) means that two nodes of the connecting path should
irst be open nodes. To be precise, the flow between overlay nodes 𝑤
nd 𝑒 means that both nodes 𝑤 and 𝑒 should be selected.

𝑖𝑛𝑝𝑤𝑒 ≤
∑

𝑥∈𝑋
𝑦𝑒𝑥𝑒 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸,𝑤 ∈ 𝑊 . (22)

𝑖𝑛𝑝𝑤𝑒 ≤
∑

𝑥∈𝑋
𝑦𝑤𝑥

𝑤, ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸,𝑤 ∈ 𝑊 . (23)

Constraint (24) means the capacity limit of inventory holding and
rocessing of DC.

𝑛𝑣𝑝𝑤 ≤ 𝑐𝑎𝑝𝑝𝑤 ×
∑

𝑦𝑤𝑥
𝑤, ∀𝑝 ∈ 𝑃 ,𝑤 ∈ 𝑊 . (24)
𝑥∈𝑋
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Constraints (25)–(26) are binary and non-negativity constraint for
decisions, respectively.

𝑦𝑞𝑥𝑞 , 𝑦𝑤
𝑥
𝑤, 𝑦𝑒

𝑥
𝑒 , 𝑙𝑖𝑛

𝑝
𝑖𝑗 ∈ {0, 1},

∀𝑝 ∈ 𝑃 ,𝑤 ∈ 𝑊 ,𝑥 ∈ 𝑋, 𝑞 ∈ 𝑄, 𝑒 ∈ 𝐸, 𝑖 ∈ 𝑄 ∪𝑊 ∪ 𝐸, 𝑗 ∈ 𝑊 ∪ 𝐸 ∪ 𝐹 .

(25)

𝑖𝑛𝑣𝑝𝑤 ≥ 0, ∀𝑝 ∈ 𝑃 ,𝑤 ∈ 𝑊 . (26)

For any consumer area, selected retail store, and selected DC, the
following constraints (27)–(29) can be explained similarly to constraint
(20) just for different types of upper nodes.
∑

𝑒∈𝐸
𝑙𝑖𝑛𝑝𝑒𝑓 ≥ 𝑛𝑝𝑓 , ∀𝑝 ∈ 𝑃 , 𝑓 ∈ 𝐹 . (27)

∑

𝑞∈𝑄
𝑙𝑖𝑛𝑝𝑞𝑒 ≥ 𝑛𝑝𝑒 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸. (28)

∑

𝑞∈𝑄
𝑙𝑖𝑛𝑝𝑞𝑤 ≥ 𝑛𝑝𝑤, ∀𝑝 ∈ 𝑃 ,𝑤 ∈ 𝑊 . (29)

The following constraints (30)–(31) are similar to constraint (21)
for any selected supplier and retail store.
∑

𝑥∈𝑋
𝑦𝑞𝑥𝑞 ≤ 1, ∀𝑞 ∈ 𝑄. (30)

∑

𝑥∈𝑋
𝑦𝑒𝑥𝑒 ≤ 1, ∀𝑒 ∈ 𝐸. (31)

For any flow in other connecting paths, similar to constraints (22)–
(23), we have the following constraints (32)–(36).

𝑙𝑖𝑛𝑝𝑒𝑓 ≤
∑

𝑥∈𝑋
𝑦𝑒𝑥𝑒 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹 . (32)

𝑙𝑖𝑛𝑝𝑞𝑒 ≤
∑

𝑥∈𝑋
𝑦𝑒𝑥𝑒 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸, 𝑞 ∈ 𝑄. (33)

𝑙𝑖𝑛𝑝𝑞𝑒 ≤
∑

𝑥∈𝑋
𝑦𝑞𝑥𝑞 , ∀𝑝 ∈ 𝑃 , 𝑒 ∈ 𝐸, 𝑞 ∈ 𝑄. (34)

𝑙𝑖𝑛𝑝𝑞𝑤 ≤
∑

𝑥∈𝑋
𝑦𝑤𝑥

𝑤, ∀𝑝 ∈ 𝑃 , 𝑞 ∈ 𝑄,𝑤 ∈ 𝑊 . (35)

𝑙𝑖𝑛𝑝𝑞𝑤 ≤
∑

𝑥∈𝑋
𝑦𝑞𝑥𝑞 , ∀𝑝 ∈ 𝑃 , 𝑞 ∈ 𝑄,𝑤 ∈ 𝑊 . (36)

Remark 2. Referring to Jabbarzadeh et al. (2016), facility level refers
to the facility strength if the node facility is established, higher level
means higher facility strength while lower level means lower facility
strength. The facility level is a resilience strategy, meaning that the
disruption risks are reduced by establishing protective measures (such
as installing structural reinforcement, retaining standby emergency
equipment, preventive monitoring, and so on).

The objective function
The total cost in the pre-disaster stage is described as function (37),

the first item is the cost of the selected supplier, the second item is the
construction cost of DC, the third item is the construction cost of retail
stores, the fourth item is the cost of opening up the path, and the fifth
item is the inventory cost.

𝐶𝑜𝑠𝑡 =
∑

𝑞∈𝑄

∑

𝑥∈𝑋
𝑐𝑞𝑥𝑞 𝑦𝑞

𝑥
𝑞 +

∑

𝑤∈𝑊

∑

𝑥∈𝑋
𝑐𝑤𝑥

𝑤𝑦𝑤
𝑥
𝑤 +

∑

𝑒∈𝐸

∑

𝑥∈𝑋
𝑐𝑒𝑥𝑒𝑦𝑒

𝑥
𝑒

+
∑ ∑

𝑎𝑟𝑐𝑖𝑗 𝑙𝑖𝑛
𝑝
𝑖𝑗 +

∑ ∑

𝑚𝑝
𝑤𝑖𝑛𝑣

𝑝
𝑤.

(37)
7

(𝑖,𝑗)∈𝐴𝑟𝑐 𝑝∈𝑃 𝑤∈𝑊 𝑝∈𝑃
3.3.3. DRO model with ACC
During the operation and management of enterprises, decision-

makers usually hope to increase profits by reducing costs. Under
different disruption scenarios, some decisions are different. Conse-
quently the costs are scenario-dependent. We optimize the total cost
in the pre-disaster stage and post-disaster stage via the expected value
criterion. In view of the probability distribution information of the un-
certain demand is partly known, we adopt the DRO method to resist the
uncertainty of distribution. Our aim is to find a resilient RSC network
that optimizes the cost under the worst-case scenario of probability
distribution about uncertain demand. Therefore, when the distribution
information of the uncertain parameter 𝑑 is partially known under
scenario 𝑠, we present the following two-stage DRO model with ACC

in 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡′

𝑠.𝑡. (3)–(36).
(38)

In model (38), demand 𝑑 is uncertain, so the model has finite
ecision variables and infinite constraints. In fact, handling constraint
3) is not an easy assignment directly. Due to the existence of the
emand uncertainty, constraint (3) is semi-infinite, which increases
he complexity of the model. To get the optimal solution, it is vital
o address constraint (3). One common way is to solve model (38)
ith a computationally tractable approximation form of ACC (3). In

he following section, we will derive robust counterpart approximation
or ACC (3).

emark 3. The ambiguity set 𝒜 is composed of all probability distri-
utions which satisfy the constraint conditions. The support set 𝒵 =

{𝑑|(𝑑 − 𝑑0)𝑇𝛤−1
0 (𝑑 − 𝑑0) ≤ 𝛺2,−𝑙 ≤ 𝑑 ≤ 𝑙} indicates that the demand

ocates in a ball with radius 𝛺 centered on 𝑑0. And the distribution
f each element in 𝒜 has the same mean and variance. For example,
0 = 𝐼, 𝑑 = (𝑑1, 𝑑2), 𝑑0 = (0, 0), and 𝛺 = 1, 𝐼 is an identity matrix, and
= 1. Compliance with the above constraints is available 𝑑21 + 𝑑22 ≤
,−1 ≤ 𝑑1 ≤ 1 and −1 ≤ 𝑑2 ≤ 1. Support set of the solution is
−

√

2
2 ,

√

2
2 ] × [−

√

2
2 ,

√

2
2 ].

4. Tractable form of distributionally robust resilient RSC opti-
mization model

As we know, the safe approximations of chance constraints depend
to a large extent on the selection of the perturbation set. With the
purpose to obtain a computationally tractable form of resilient RSC
optimization model (38), ACC (3) needs to be transformed into an
explicit finite convex constraints system. From the partial distribution
information in the known ambiguity set (2), 𝜁 is a bounded random
variable. Following the idea of Ben-Tal et al. (2009) and Bertsimas and
Sim (2004) to reduce the conservativeness, we choose the budget set
and the intersection of the box set and ball set as two perturbation
sets. We give two safe approximations of ACC under these two dif-
ferent perturbation sets. See Theorems 1–2 in Appendix for detailed
approximation systems.

Suppose the random variable 𝜁 in ACC (3) belongs to ambiguity
set (2). Then, we further derive the probability level at which the
corresponding approximate feasible solution satisfies (3). See Proposi-
tions 1–3 in Appendix for detailed results.

Therefore, under perturbation set 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙, based on Proposition 2,
distributionally robust resilient RSC optimization model (38) with the
Box-Ball robust counterpart approximation (A.1) of ACC (3) is the
following MISOCP model:

min 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡′

𝑠.𝑡. (4)–(36), (A.1).
(39)

Under perturbation set 𝑍𝐵𝑢𝑑𝑔𝑒𝑡, based on Proposition 3, distribu-
tionally robust resilient RSC optimization model (38) with the Budget
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robust counterpart approximation (A.4) of ACC (3) is the following
MILP model:
min 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡′

𝑠.𝑡. (4)–(36), (A.4).
(40)

In conclusion, when the known partial distribution information is
supported on [−1, 1] and the mean value is zero, under perturbation
set 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙 and budget perturbation set 𝑍𝐵𝑢𝑑𝑔𝑒𝑡, ACC (3) is converted
to convex constraint systems (A.1) and (A.4), respectively. Accordingly,
the former safe tractable approximation model (39) is referred to as the
Box-Ball-DRO model, while the latter model (40) is called the Budget-
DRO model. Hence, we can approximate the original DRO model (38)
by (39) and (40) under the intersection of the box and ball 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙,
and the budget perturbation sets 𝑍𝐵𝑢𝑑𝑔𝑒𝑡, respectively.

In this section, we have transformed the DRO model into the ap-
roximate MISOCP model (39) or MILP model (40) through robust
ounterpart approximation, respectively. In the next section, to verify
he applicability and effectiveness of our distributionally robust re-
ilient RSC optimization model, numerical experiments will be used.
he proposed DRO model with uncertain demand will be compared to
stochastic model with deterministic demand, which is shown as model

41).

in 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑠𝑡′

𝑠.𝑡. (1), (4)–(36).
(41)

5. A case study: Retail supply chain in Wuhan

In this section, we use a real RSC network and conduct some
numerical experiments from three aspects to verify our model. First,
the experimental results of the stochastic model (41), the Box-Ball-
DRO model (39), and the Budget-DRO model (40) are given. Second,
from the perspective of cost optimization, the above three models
are analyzed and compared. Finally, sensitivity analysis is applied to
verify the efficiency of the DRO model. All numerical experiments are
conducted with CPLEX 12.6.3 optimization software, installed on a
Ryzen 7 5800H with Radeon Graphics 3.20 GHz PC, running under
Windows 10 (64-bit) 16 GB of memory.

For the stated parameters, the cost unit is CNY (Chinese Yuan),
the product is in kilograms, the distance is in kilometers, and the
quantity of product transported is calculated by product weight. Also,
the distance between any pair of potential locations is estimated using
Baidu Maps. Let node coverage number 𝑛𝑝𝑗 = 2, the uncertain parameter
𝑑 fluctuates by 10%.

5.1. Problem background and data description

Take the RSC network in Wuhan, Hubei Province, China, as an
example, and its main enterprises are three chain supermarkets. In
2020, when the global COVID-19 incident broke out, Wuhan entered
a state of emergency campaign. The supermarket inventory continued
to decrease, and local fruit and vegetable supply was disrupted.2 To
make the living necessity market in Wuhan running stable, the neces-
sary vegetables and fruits for residents were taken as products to be
transported via the supply chain network in the instance. There were
various uncertain factors in the scheduling of Wuhan emergency food.
It was difficult to estimate the exact data about food demand in the
affected area.

On February 2, 2020, the troops stationed in Hubei cooperated with
the three major companies of WuShang, ZhongBai, and ZhongShang
to transport vegetables and fruits from the major DCs in Wuhan to

2 https://data.stats.gov.cn/easyquery.htm?cn=E0104&zb=A0104&reg=
20100&sj=202203
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these three chain supermarkets.3 Due to the high cost of building a
brand new DC, renting the local DCs is only considered. Managers are
concerned about which warehouse should be rented, as well as the best
distribution solution from each leased warehouse to each supermarket.
In Wuhan, the three major supermarkets are mainly distributed in
Jiang’an District, Jianghan District, Qiaokou District, Hanyang District,
Wuchang District, and Qingshan District, as shown in Fig. 2. In the
above considered 6 residential areas, 128 supermarkets are used as
retail stores. In addition, 3 DCs and 4 suppliers are considered. The
locations of suppliers, DCs, and retail stores are obtained from Baidu
Maps.4 Specifically, the partial parameter values used to obtain the case
study results are shown in Tables 2 and 3. We let 𝑋 = {𝑥|𝑥 = 1, 2, 3, 4},

here 𝑥 = 1 implies a facility with the lowest disaster resistance
evel, the lowest construction cost, and the probability that the cor-
esponding facility is damaged due to various disasters is the highest.
ompared with 𝑥 = 1, 𝑥 = 2 means higher facility’s resistance level
nd construction cost, and lower probability that the corresponding
acility is damaged due to various disasters. Compared with 𝑥 = 2,
= 3 means higher facility’s resistance level and construction cost,

nd lower probability that the corresponding facility is damaged due
o various disasters. 𝑥 = 4 implies that the facility is with the highest
isaster resistance level, the construction cost is the highest, and the
robability that the corresponding facility is damaged due to various
isasters is the lowest. The disruptive events are divided into two levels
rom high to low according to the degree of destruction, urgency, and
evelopment trend, namely 𝑆 = {1, 2}. We apply the proposed RSCND
ethod to optimize the supply chain network. Destructive events can

lso be divided into more levels according to their severity and actual
eeds, as different scenarios.

.2. Computational results under the DRO model

This section will conduct some experiments by adjusting tolerance
arameter 𝜖. From Propositions 2 and 3, that is, 𝜖 = 1−𝑒𝑥𝑝{−𝛺2

2 }, 𝛺 ≥ 0

nd 𝜖 = 1 − 𝑒𝑥𝑝{− 𝛾2

2𝐹 }, when parameter 𝜖 changes its value, the values
of the corresponding parameters 𝛺 and 𝛾 will change. We consider two
instances. In the first one, the probabilities of two disruption scenarios
are 0.7 and 0.3, respectively. In the second one, the probabilities are
0.9 and 0.1, respectively. For those numerical experiments, Table 4
shows the computational results of this model. In instance 1, from
the Box-Ball-DRO model, the optimal cost is 367,457,446.9 when 𝜖 =
0.09, 𝛺 = 2.20, and from the Budget-DRO model, the optimal cost is
367,506,650.3 when 𝜖 = 0.09, 𝛾 = 5.38. In instance 2, from the Box-
Ball-DRO model, the optimal cost is 392,080,134.5 when 𝜖 = 0.09, 𝛺 =
2.20, and from the Budget-DRO model, the optimal cost provided by
the Budget-DRO model is 392,170,276.8 when 𝜖 = 0.09, 𝛾 = 5.38.

From Table 4, the inventory quantity in the third DC is always zero
in either instance, which indicates that the retail stores in the vicinity of
this DC do not purchase the products from this DC. This is caused by the
resilience strategy direct-to-store delivery (DSD). The DSD strategy used
means that the supplier’s products can be distributed directly to each
retail store, which saves the holding cost and processing cost of the DC
to some extent, but increases the transportation cost correspondingly.
From the experimental results, the retail stores purchase products di-
rectly from the suppliers, such as ZhongShang supermarket (ZhongNan
store) and ZhongBai supermarket (Oriental Rhine store). Therefore, the
third DC is not put into use under the DSD strategy, which shows the
validity of the DSD strategy.

To analyze the impact of resilience strategy on the optimal trans-
portation path, we first randomly select some retail stores in the
central area of Wuhan, as shown in Fig. 2. Then, we carry out some

3 http://www.mofcom.gov.cn/article/ae/ai/202002/20200202933649.
html

4 https://map.baidu.com/@12728273.29,3561757.28,13z

https://data.stats.gov.cn/easyquery.htm?cn=E0104&zb=A0104&reg=420100&sj=202203
https://data.stats.gov.cn/easyquery.htm?cn=E0104&zb=A0104&reg=420100&sj=202203
http://www.mofcom.gov.cn/article/ae/ai/202002/20200202933649.shtml
http://www.mofcom.gov.cn/article/ae/ai/202002/20200202933649.shtml
https://map.baidu.com/@12728273.29,3561757.28,13z
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Fig. 2. A selection of retail stores in Wuhan.
Table 2
The values of parameters 𝑐𝑞′𝑥𝑠𝑞 , 𝑐𝑤′𝑥𝑠

𝑤 , 𝑐𝑒′𝑥𝑠𝑒 , and 𝑐𝑎𝑝′𝑝𝑥𝑠𝑤 under different facility level.

𝑐𝑒′𝑥1𝑒 𝑐𝑒′𝑥2𝑒 𝑐𝑞′𝑥11 𝑐𝑞′𝑥21 𝑐𝑞′𝑥12 𝑐𝑞′𝑥22 𝑐𝑞′𝑥13 𝑐𝑞′𝑥23 𝑐𝑞′𝑥14 𝑐𝑞′𝑥24
𝑥 = 1 457,470 457,830 381,900 375,216.75 395,220 397,433.232 595,290 595,944.819 425,160 472,522.824
𝑥 = 2 304,980 305,220 254,600 250,144.5 263,480 264,955.488 396,860 397,296.546 283,440 315,015.216
𝑥 = 3 152,490 152,610 127,300 125,072.25 131,740 132,477.744 198,430 198,648.273 141,720 157,507.608
𝑥 = 4 0 0 0 0 0 0 0 0 0 0

𝑐𝑎𝑝′𝑝𝑥1𝑤 𝑐𝑎𝑝′𝑝𝑥2𝑤 𝑐𝑎𝑝′𝑝𝑥1𝑒 𝑐𝑎𝑝′𝑝𝑥2𝑒 𝑐𝑤′𝑥1
1 𝑐𝑤′𝑥2

1 𝑐𝑤′𝑥1
2 𝑐𝑤′𝑥2

2 𝑐𝑤′𝑥1
3 𝑐𝑤′𝑥2

3

𝑥 = 1 500,000 0 4,000 2,500 1,328,490 1,328,490 846,990 845,280 892,935 893,880
𝑥 = 2 800,000 500,000 7,500 5,000 885,660 885,660 564,660 563,520 595,290 595,920
𝑥 = 3 1,000,000 900,000 10,000 12,000 442,830 442,830 282,330 281,760 297,645 297,960
𝑥 = 4 1,500,000 1,200,000 15,000 15,000 0 0 0 0 0 0

𝑐𝑞𝑥1 𝑐𝑞𝑥2 𝑐𝑞𝑥3 𝑐𝑞𝑥4 𝑐𝑤𝑥
1 𝑐𝑤𝑥

2 𝑐𝑤𝑥
3 𝑐𝑒𝑥𝑒

𝑥 = 1 1,273,000 1,317,400 1,984,300 1,417,200 4,428,300 2,823,300 2,976,450 1,524,900
𝑥 = 2 1,400,300 1,449,140 2,182,730 1,558,920 4,871,130 3,105,630 3,274,095 1,677,390
𝑥 = 3 1,540,330 1,594,054 2,401,003 1,714,812 5,358,243 3416193 3,601,504.5 1,845,129
𝑥 = 4 1,694,363 1,753,459.4 2,641,103.3 1,886,293.2 5,894,067.3 3,757,812.3 3,961,654.95 2,029,641.9
Table 3
The value of parameters that are independent of the facility level.
𝑀 𝜛 ℏ 𝑐𝑎𝑝𝑝𝑤 𝑔𝑝𝑤 ℎ𝑝

𝑤 𝑝𝑒𝑓 𝑝
𝑓 𝑝𝑒𝑒𝑝𝑒

0.5 0.9 0.5 1,000,000 0.1 1 50 15,249
ℑ𝑝

𝑤 𝑠𝑎𝑙𝑝𝑤 ð𝑝1 ð𝑝2 𝑚𝑝
𝑤 𝑚𝑞′𝑝𝑞 𝑚𝑤′𝑝

𝑤
9 4 509,804 1,094,000 6.31 5.56 8
experiments about the Box-Ball-DRO model and the Budget-DRO model
when 𝜖 = 0.05. The experimental results are shown in Fig. 3.

Fig. 3 shows the paths of daily fruit and vegetable supply for some
retail stores and residential areas. From Fig. 3, most retail stores use the
proximity principle to transport products. But there is one retail store
that supplies products to multiple residential areas because multi-set
coverage strategy is effective. During the transportation of the product,
it increases supply chain resilience to cover each node by at least two
upper nodes. At the same time, from the experimental results, we can
notice that the facility level of the retail stores changes accordingly
when the transportation paths change, which shows the effectiveness
of the facility defense strategy. For example, Fig. 3(a) shows that, even
if the retail store is close to residential area 6, it transports products to
meet the large demand of residential area 3. However, compared with
Fig. 3(a), in Fig. 3(c) the facility levels of retail stores are improved to
supply products to residential area 3, and retail stores supply products
to residential area 3 and residential area 6 at the same time to meet
the demand of residents. The path distributions provided by the Box-
Ball-DRO model and the Budget-DRO model in instance 2 are similar to
that in Fig. 3(a) and Fig. 3(c), which are shown in Figs. 3(b) and 3(d).
9

This shows that the Box-Ball-DRO model and the Budget-DRO model
provide different optimal paths for transported products.

In summary, no matter using the ambiguity set under the Box-Ball
perturbation set or the ambiguity set under the Budget perturbation set,
the supply chain network given by the distributionally robust model
can not only maintain the supply capacity, but also quickly restore its
operation capacity through resilience strategies.

5.3. Comparison with stochastic model

This subsection compares the Box-Ball-DRO model (39) and the
Budget-DRO model (40) to the stochastic model (41), respectively.

Let 𝜖 = 0.05. The quantity of retail stores at different defense levels
is shown in Table 5. From Table 5, facility defenses are established for
all 128 retail stores via the stochastic model (41), including 38 nodes
with facility defense level 2 are established, 87 nodes with facility
defense level 3 are established, and 3 nodes with facility defense level
4 are established in instance 1, 35 nodes with facility defense level 2
are established, 84 nodes with facility defense level 3 are established,
and 9 nodes with facility defense level 4 are established in instance 2.
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Fig. 3. The path distribution provided by DRO model.
Table 4
Computational results of the Box-Ball-DRO model and Budget-DRO model.

Model 𝜖 𝛺 𝛾 Instance DC (Product quantity (unit: KG)) Total cost

DC 1 DC 2 DC 3 (unit: CNY)

Box-Ball-DRO model

0.05 2.45 – I1 55,000 119,500 0 367,746,430.2
– I2 84,221 157,500 0 392,472,402.5

0.06 2.37 – I1 53,000 117,000 0 367,658,079.1
– I2 85,500 157,500 0 392,365,601.5

0.07 2.31 – I1 52,500 118,500 0 367,584,109.3
– I2 84,358 157,500 0 392,262,067.1

0.08 2.25 – I1 52,954 119,500 0 367,509,318.0
– I2 83,000 157,500 0 392,169,938.7

0.09 2.20 – I1 52,787 117,000 0 367,457,446.9
– I2 84,552 157,500 0 392,080,134.5

Budget-DRO model

0.05 – 6.00 I1 52,866 118,500 0 367,749,475.2
– I2 83,000 157,500 0 392,457,791.7

0.06 – 5.81 I1 51,503 118,500 0 367,661,731.5
– I2 83,000 157,500 0 392,371,394.9

0.07 – 5.65 I1 52,500 116,000 0 367,608,137.7
– I2 84,508 157,500 0 392,294,813.8

0.08 – 5.51 I1 57,500 116,000 0 367,575,787.6
– I2 81,845 157,500 0 392,228,498.8

0.09 – 5.38 I1 51,500 118,500 0 367,506,650.3
– I2 80,500 157,500 0 392,170,276.8

1 Instance 1 is expressed as I1.
2 Instance 2 is expressed as I2.
Table 5
Comparison of resilient strategies from three models.

Resilience strategy
Model The stochastic model Box-Ball-DRO model Budget-DRO model

I1 I2 I1 I2 I1 I2
Facility defense level 1 0 0 0 0 0 0
Facility defense level 2 38 35 41 35 39 34
Facility defense level 3 87 84 85 87 87 89
Facility defense level 4 3 9 2 6 2 5

Multi-set coverage strategy 1 365,011,609.3808 388,663,256.3868 367,746,430.1548 392,472,402.5058 367,749,475.2308 392,457,791.6848
Multi-set coverage strategy 2 366,605,710.8728 390,094,814.4368 369,119,727.8708 393,545,638.2438 369,128,641.1628 393,517,368.761803
Multi-set coverage strategy 3 368,970,264.9884 392,416,659.7006 371,454,074.9842 395,628,319.8736 371,425,299.7174 395,650,299.1536
Multi-set coverage strategy 4 368,970,264.9884 392,416,659.7006 371,436,497.1172 395,648,542.2536 371,433,369.7174 395,627,674.7476

1 Instance 1 is expressed as I1.
2 instance 2 is expressed as I2.
10
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Table 6
The cost of the stochastic and two robust counterparts.

Cost list (unit: CNY) The stochastic model Box-Ball-DRO model Budget-DRO model

I1 I2 I1 I2 I1 I2

Fixed cost (Cost) 246,156,410 248,052,295 245,450,543 247,447,699 245,766,022 247,422,938
Destruction cost (OC) 54,350,445.5 51,903,773.1 55,570,845.5 52,819,073.1 54,960,645.5 52,819,073.1
Inventory cost (OD) 591,233.2 748,232 561,884.2 698,429.3 555,425.2 695,863.2
Transportation cost (OT) 272,807,892 268,090,966 282,695,835 278,101,321 282,673,666 278,137,578
Penalty cost (OP) 0 0 100 50 0 0
Acquisition cost (OPP) 7,435,251.24 7,180,003.94 7,540,566.78 7,341,205.63 7,550,198.86 7,345,156.88
The total costs 365,011,609.3808 388,663,256.3868 367,746,430.1548 392,472,402.5058 367,749,475.2308 392,457,791.6848

1 Instance 1 is expressed as I1.
2 Instance 2 is expressed as I2.
Compared with the stochastic model, the DRO model establishes
fewer high-level facilities in the same instance, which indicates that
the distributionally robust model does not only simply raise the facility
level to resist supply chain disruptions, but also uses different resilience
strategies to improve the robustness and other performance of the
supply chain.

For our numerical experiments, the fixed, destruction, inventory,
transportation, penalty, and acquisition costs are collected in Table 6.
The optimal total cost of the stochastic model is approximately
365,011,609.4 CNY in instance 1, including fixed cost of 246,156,410
CNY, destruction cost of 54,350,445.5 CNY, inventory cost of 591,233.2
CNY, transportation cost of 272,807,892 CNY and acquisition cost of
7,435,251.24 CNY. Similarly, the optimal total cost of the stochastic
model is approximately 388,663,256.4 CNY in instance 2, including
fixed cost of 248,052,295 CNY, destruction cost of 51,903,773.1 CNY,
inventory cost of 748,232 CNY, transportation cost of 268,090,966 CNY
and acquisition cost of 7,180,003.94 CNY.

The transportation cost given by the DRO model is higher than
that given by the stochastic model, where the transportation delay is
the main obstacle to product distribution. From the comparison of the
above results, we find that the DRO model provides higher costs when
faced with the ambiguous distribution of uncertain demand. This is
reasonable and consistent with the worst-case-oriented criterion.

The stochastic model and DRO model provide different transporta-
tion paths. Fig. 4 shows the paths from the selected retail stores to
residential areas for the daily supply of fruits and vegetables, which is
determined by the stochastic model. From Fig. 3 and Fig. 4, there exist
some differences in the paths for residential area 3 and residential area
4. In the same condition, the DRO model focuses more on transported
products to the remote residential area 3, and opens up more paths for
the retail stores. The stochastic model determines more transportation
paths for residential area 4. This shows that the DRO model obtains a
relatively robust solution in terms of demand perturbation.

The above comparative experiments show that there are signifi-
cant differences in the optimal decisions of the DRO model and the
stochastic model. In comparison to the stochastic model, the total cost
determined via the DRO model is higher. The price of distributionally
robust (PDR) is introduced to further characterize the degree of differ-
ence between the stochastic model and the DRO model with ACC. We
define PDR as follows:

𝑃𝐷𝑅 = 𝑟𝑜𝑏𝑢𝑠𝑡 𝑣𝑎𝑙𝑢𝑒∗ − 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒∗

𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑣𝑎𝑙𝑢𝑒∗
× 100%,

where (⋅)∗ represents the optimal cost.
In the comparison between the stochastic model (41) and the Box-

Ball-DRO model (39), the calculated PDR is 0.7492% in instance 1. In
other words, compared with the stochastic model (41), using the Box-
Ball-DRO model (39), the cost only increases by 0.7492% in exchange
for better resistance to the uncertainty of the demand distribution
function. One has PDR = 0.98% in instance 2. That is to say, using the
Box-Ball-DRO model (39) to resist the uncertainty of the distribution
function about uncertain demand, the cost only increases by 0.98%.
11
Fig. 4. The path distribution provided by stochastic model.

Similarly, in the comparison between the stochastic model (41) and
the Budget-DRO model (40), the calculated PDR is 0.75% in instance
1. So the cost only increases by 0.75% if the Budget-DRO model (40) is
used to find a robust supply chain network. One has PDR = 0.9763%
in instance 2. The same as above, determining a robust supply chain
network via the Budget-DRO model (40), the cost paid only increases
by 0.9763%.

5.4. Sensitivity analysis

The probability level 𝜖 reflects the possibility that the demand is
not met, and the resilience strategy controls the ability of the supply
chain network to maintain a continuous supply. In this subsection,
we conduct sensitivity analyses with respect to probability level 𝜖 and
multi-set coverage strategy to explore their effects on the decisions
about the supply chain network.

5.4.1. Effects of probability level 𝜖 on decisions
Parameters 𝛺 and 𝛾 control the size of perturbation sets and vary

with 𝜖 that takes the following different values: 5%, 6%, 7%, 8%, 9%.
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Fig. 5. The influence of probability level 𝜖 on the optimal cost.
The following series of experiments demonstrate the effects on the
optimal cost and inventory quantity. Here, instance 1 and instance 2
are all considered when we solve the problem.

As can be seen from the experimental results (see Table 4), for in-
stance 1, corresponding to different parameter values 𝜖 = 5%, 7%, 9%,
from the Box-Ball-DRO model, the optimal costs are 367,746,430.2,
367,584,109.3 and 367,457,446.9, from the Budget-DRO model, the
optimal costs are 367,749,475.2, 367,608,137.7 and 367,506,650.3,
respectively. From the Box-Ball-DRO model, the cost decreases with
𝜖, and the optimal inventory fluctuates with 𝜖. From the Budget-DRO
model, the optimal cost decreases with 𝜖. For instance 2, the conclu-
sion is also similar, from the Box-Ball-DRO model, the optimal cost
decreases with 𝜖, and the optimal inventory fluctuates with 𝜖. For the
convenience of observing and comparing the influence of probability
level 𝜖 on the optimal cost, in Fig. 5, we plot curves for 𝜖 vs cost
for the stochastic, Box-Ball, and Budget models. Hence, to reasonably
allocate inventory, the decision maker can set probability level 𝜖 based
on personal experience and knowledge.

5.4.2. Effects of multi-set coverage strategy on decisions
To illustrate the effect of a multi-set coverage strategy on the deci-

sions, we choose four multi-set coverage strategies for the experiment.
The node coverage number of multi-set coverage strategy 1, multi-
set coverage strategy 2, multi-set coverage strategy 3, and multi-set
coverage strategy 4 are represented by 𝑛𝑝1𝑗 , 𝑛𝑝2𝑗 , 𝑛

𝑝
3𝑗 , 𝑛𝑝4𝑗 , where 𝑛𝑝1𝑗 ≤

𝑛𝑝2𝑗 ≤ 𝑛𝑝3𝑗 ≤ 𝑛𝑝4𝑗 ,∀𝑗 ∈ {𝑊 ,𝐸, 𝐹 }, respectively.
Let (𝑛𝑝1𝑤, 𝑛

𝑝
1𝑒, 𝑛

𝑝
1𝑓 ) = (2, 2, 2), (𝑛𝑝2𝑤, 𝑛

𝑝
2𝑒, 𝑛

𝑝
2𝑓 ) = (3, 3, 3), (𝑛𝑝3𝑤, 𝑛

𝑝
3𝑒, 𝑛

𝑝
3𝑓 ) =

(4, 3, 4), (𝑛𝑝4𝑤, 𝑛
𝑝
4𝑒, 𝑛

𝑝
4𝑓 ) = (4, 3, 5). Table 5 shows that the optimal costs of

different models corresponding to different multi-set coverage strate-
gies exhibit great differences. The multi-set coverage strategy with the
larger node coverage number corresponds to more costs. The reason
is that it makes the supply chain establish more paths to improve the
supply chain resilience, which leads to a large increase in fixed cost.
Therefore, the optimal total cost increases.

The above results mean that multi-set coverage strategy greatly
impacts the optimal cost. It is extremely significant for decision-makers
to clarify the suitable multi-set coverage strategy to formulate effective
decisions about the supply chain network.

The sensitivity analysis results show that the optimal inventory
allocation and the realization of the optimal cost are sensitive to the
probability level 𝜖 and multi-set coverage strategy.

6. Managerial insights

Based on a comparative study and sensitivity analysis for the pro-
posed two-stage DRO method, some managerial insights for enterprise
decision-makers are extracted as follows:
12
Firstly, the resilient supply chain networks designed by the pro-
posed two-stage DRO model and its corresponding stochastic model
are different. This implies that the ambiguous probability distributions
of uncertain demand have a significant impact on the optimal RSC
network structure. In the design of a RSC network under different
disruption scenarios, if it is difficult to get precise demand, even
the exact distribution of random demand, through historical data,
the decision-maker can accept the proposed DRO model to design a
resilient RSC network to deal with different disruption scenarios and
ensure the smooth operation and cost reduction of enterprises. In this
case, decision-makers should not use the decision provided by the
stochastic model to design the supply chain network.

Secondly, according to the sensitivity analysis, a multi-set coverage
strategy with fewer nodes will lead to fewer transportation paths estab-
lished in the supply chain network, which may bring more destruction
cost. That is to say, a multi-set coverage strategy with more nodes is
better adequate for emergency situations such as sudden increases in
demand and supply chain disruption caused by natural disasters. Thus,
a multi-set coverage strategy with more nodes can effectively alleviate
the supply shortage caused by supply chain disruption. However, if
the node coverage number is too large, it will lead to a large increase
in fixed cost. Therefore, when there are multiple candidate suppliers,
DCs, and retail stores, the decision-maker should select an appropriate
node coverage number. For example, in the case of natural disasters
with many transmission chains, high speed, and wide range, the node
coverage number should be larger, whereas in the stage after the
corresponding control of the disaster, the node coverage number can
be smaller.

Finally, for RSCND and management problems, the decision-makers
can no longer manage the supply chain network based on only the
experience and intuition. The paper proposes a more scientific math-
ematical optimization method based on DRO to design the optimal
resilient supply chain network. The proposed method can deal with
both different disruption scenarios and demand uncertainty. It can fully
use the historically available data on demand. Our optimization method
can not only avoid the requirement of exact distribution in stochastic
programming, but also provide a less conservative design scheme than
that provided by robust optimization, which includes the construction
of node facilities, inventory allocation, traffic path planning, and so on.

7. Conclusion

This paper proposed a novel two-stage DRO model with ACC for the
RSCND problem. The main conclusions are as follows:

Due to increasingly unpredictable disruptions, adjusting the re-
silience supply chain network to such disruption is an important issue.
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This study suggested a two-stage DRO model with ACC for designing
a RSC network by considering resilience strategies under different dis-
ruption scenarios. With our DRO model, decision-makers can make wise
decisions for designing the resilient RSC network under the ambiguous
probability distribution of uncertain demand.

The robust counterpart approximation of the DRO model with
ACC is generally a difficult optimization issue and computationally
intractable. Under Box-Ball and Budget perturbation sets, the robust
counterpart approximations of our DRO model, and the computation-
ally tractable MISOCP model or MILP model were derived. Conse-
quently, the optimal resilient supply chain network can be attained via
CPLEX software.

We took the supply chain network design of three chain super-
markets in Wuhan as a case and conducted a series of comprehensive
numerical experiments to prove the effectiveness and availability of
our new optimization method. We also compared the DRO model
with ACC and the stochastic model, and conducted sensitivity analysis.
Comparative studies showed the effectiveness of our method from the
optimal cost and the optimal path of RSC transportation. From the
comparison and sensitivity analysis, some management insights were
recommended.

This novel optimization method can provide a supply chain network
that can resist the risk from ambiguous probability distributions of
uncertain demand to some extent. It provides a reliable method for
supply chain operation before and after the disaster. The proposed
optimization method is also applicable to different companies that
are committed to developing resilient RSC networks and responding
aggressively to supply chain disruption.

When designing a resilient RSC network, the minimum node cov-
erage number may vary depending on the different node. So the node
coverage number can be taken as a non-negative integer variable, and
the corresponding extended model can increase supply chain resilience
in terms of arcs. This is an interesting expansion to this study in our
future research.
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Appendix A

Theorem 1. Under scenario 𝑠, if the distribution of random variable 𝜁
changes in ambiguity set (2), then the following convex constraints system
(A.1) is a robust counterpart approximation of ACC (3).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹
∑

𝑓=1
|𝜏𝑓 | +𝛺

√

√

√

√

√

𝐹
∑

𝑓=1
𝜑2
𝑓 ≤

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 − 𝑑0𝑓 ,

𝜏𝑓 + 𝜑𝑓 = −𝑑𝑝𝑠𝑓 , ∀𝑓 ∈ 𝐹 .

(A.1)

n other words, (A.1) is the robust counterpart of uncertain inequality
1) with respect to the perturbation set 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙, where 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙 is the
ntersection of box and ball.

roof. The intersection of box and ball is expressed as 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙,
pecifically,

𝐵𝑜𝑥−𝐵𝑎𝑙𝑙 = {𝜁 ∈ 𝑅𝐹 ∶ −1 ≤ 𝜁𝑓 ≤ 1, 𝑓 ∈ 𝐹 ,
√

∑

𝑓
𝜁2𝑓 ≤ 𝛺}, (A.2)

where 𝛺 ≥ 0 and 𝜎 ≥ 0.
Constraint (1), i.e.,

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 ≥ 𝑑𝑝𝑠𝑓

can be rewritten as

−
∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 − 𝑠ℎ𝑝𝑠𝑓 ≤ −𝑑0𝑓 − 𝜁𝑓𝑑

𝑝𝑠
𝑓 .

The perturbation set 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙 has a cone representation as follows

𝑍 = {𝜁 ∈ 𝑅𝐹 ∶ 𝑃1𝜁 + 𝑝1 ∈ 𝐿1, 𝑃2𝜁 + 𝑝2 ∈ 𝐿2}, (A.3)

here 𝑃1𝜁 ≡ [𝜁 ; 0], 𝑝1 = [0𝐹×1; 1] and 𝐿1 = {(𝑧, 𝑡) ∈ 𝑅𝐹 × 𝑅 ∶ 𝑡 ≥ ‖𝑧‖∞},
hen 𝐿1

∗ = {(𝑧, 𝑡) ∈ 𝑅𝐹 × 𝑅 ∶ 𝑡 ≥ ‖𝑧‖1}; 𝑃2𝜁 ≡ [
∑−1 𝜁 ; 0] with

= 𝐷𝑖𝑎𝑔{𝜎1,… , 𝜎𝐹 }, 𝑝2 = [0𝐹×1;𝛺], and 𝐾2 is a Lorentz cone of the
imension of the cone is 𝐿 + 1 (then 𝐿2

∗ = 𝐿2).
Setting 𝑦1 = [𝜂1; 𝜏1], 𝑦2 = [𝜂2; 𝜏2], one-dimensional 𝜏1, 𝜏2 and L-

dimensional 𝜂1, 𝜂2, (A.3) becomes the following constraints (𝑎)–(𝑑) in
ariables 𝜂, 𝑥, 𝜏:

(a) 𝜏1 +𝛺𝜏2 + [𝑎0]𝑇 𝑥 ≤ 𝑏0,
(b) (𝜂1 +

∑−1 𝜂2)𝑓 = 𝑏𝑓 − [𝑎𝑓 ]𝑇 𝑥, 𝑓 = 1,… , 𝐹 ,
(c) ‖𝜂1‖1 ≤ 𝜏1 [⇔ [𝜂1; 𝜏1] ∈ 𝐿1

∗],
(d) ‖𝜂2‖2 ≤ 𝜏2 [⇔ [𝜂2; 𝜏2] ∈ 𝐿2

∗].

For all feasible solutions of above system eliminating 𝜏1, 𝜏2, then
get 𝜏1 ≥ 𝜏1 ≡ ‖𝜂1‖1, 𝜏2 ≥ 𝜏2 ≡ ‖𝜂2‖2. Displacing 𝜏1, 𝜏2 with 𝜏1, 𝜏2, the
obtained solution is feasible still. The system (𝑎) − (𝑑) reads
𝐹
∑

𝑓=1
|𝜏𝑓 | +𝛺

√

∑

𝑓
𝜑2
𝑓 ≤ 𝑏0 − [𝑎0]𝑇 𝑥 =

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 − 𝑑0𝑓 ,

𝜏𝑓 + 𝜑𝑓 = 𝑏𝑓 − [𝑎𝑓 ]𝑇 𝑥 = −𝑑𝑝𝑠𝑓 , 𝑓 = 1,… , 𝐹 .

□

Theorem 2. Under scenario 𝑠, if the distribution of random variable 𝜁
changes in ambiguity set (2), then the following convex constraints system
(A.4) is a robust counterpart approximation of ACC (3).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹
∑

𝑓=1
|𝜆𝑓 | + 𝛾𝑚𝑎𝑥𝑓 |𝑤𝑓 | ≤

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 − 𝑑0𝑓 ,

𝜆𝑓 +𝑤𝑓 = −𝑑𝑝𝑠𝑓 ∀𝑓 ∈ 𝐹 .

(A.4)

n other words, (A.4) is the robust counterpart of uncertain inequality (1)

ith respect to the perturbation set 𝑍𝐵𝑢𝑑𝑔𝑒𝑡.

https://maifile.cn/est/d2516952766555/pdf
https://maifile.cn/est/d2516952766555/pdf
https://maifile.cn/est/d2516952766555/pdf
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Proof. Consider perturbation set

𝑍𝐵𝑢𝑑𝑔𝑒𝑡 = {𝜁 ∈ 𝑅𝐹 ∶ ‖𝜁‖1 ≤ 𝛾, ‖𝜁‖∞ ≤ 1}, (A.5)

where 𝛾 is a given uncertain budget.
Theorem 2 can be obtained with the following constraints system:

𝐹
∑

𝑓=1
|𝜆𝑓 | + 𝛾𝑚𝑎𝑥𝑓 |𝑤𝑓 | ≤ 𝑏0 − [𝑎0]𝑇 𝑥 =

∑

(𝑒,𝑓 )∈𝐴𝑟𝑐
𝑡𝑝𝑠𝑒𝑓 + 𝑠ℎ𝑝𝑠𝑓 − 𝑑0𝑓 ,

𝜆𝑓 +𝑤𝑓 = 𝑏𝑓 − [𝑎𝑓 ]𝑇 𝑥 = −𝑑𝑝𝑠𝑓 , 𝑓 = 1,… , 𝐹 ,

which is equivalent to constraints system (A.4). □

Proposition 1. Let coefficients 𝑧𝑓 , 𝑓 = 1,… , 𝐹 , be deterministic, random
variables 𝜁𝑓 , 𝑓 = 1,… , 𝐹 , be independent, which have zero mean and
belong to [−1, 1]. Then, we get

𝑃𝑟𝑜𝑏{𝜁 ∶
𝐹
∑

𝑓=1
𝑧𝑓 𝜁𝑓 ≥ 𝛺

√

√

√

√

√

𝐹
∑

𝑓=1
𝑧2𝑓 } ≤ 𝑒𝑥𝑝{−𝛺2

2
}

for each 𝛺 ≥ 0.
As an immediate conclusion, based on ambiguity set (2), we get

𝑃𝑟𝑜𝑏{
𝐹
∑

𝑓=1
[𝑎𝑓 ]𝑇 𝑥 − 𝑏𝑓 𝜁𝑓 ≥ 𝛺

√

√

√

√

√

𝐹
∑

𝑓=1
([𝑎𝑓 ]𝑇 𝑥 − 𝑏𝑓 )2} ≤ 𝑒𝑥𝑝{−𝛺2

2
} ∀𝛺 ≥ 0

⟹ 𝑃𝑟𝑜𝑏{
𝐹
∑

𝑓=1
[𝑑𝑝𝑠𝑓 ]𝜁𝑓 ≥ 𝛺

√

√

√

√

√

𝐹
∑

𝑓=1
𝑑𝑝𝑠𝑓

2
} ≤ 𝑒𝑥𝑝{−𝛺2

2
} ∀𝛺 ≥ 0.

Proposition 2. The robust counterpart approximation of ACC (3) under
perturbation set (A.2) is cone quadratic constraints (A.1). When the inde-
pendent random variables 𝜁1, 𝜁2,… , 𝜁𝐹 belong to ambiguity set (2), then
he probability that the feasible solution of cone quadratic constraints (A.1)
satisfies the inequality in ACC (3) is at least 1 − 𝑒𝑥𝑝{−𝛺2

2 }, 𝛺 ≥ 0.

roof. It is a known fact that cone quadratic constraints (A.1) represent
he robust counterpart approximation of ACC (3) under 𝑍𝐵𝑜𝑥−𝐵𝑎𝑙𝑙. Now
e prove that if 𝜁1, 𝜁2,… , 𝜁𝐹 satisfy assumption (2) and 𝑥, 𝜏, 𝜑 are
vailable from (A.1), then 𝑥 is solution for (3) with probability not less
han 1 − 𝑒𝑥𝑝{−𝛺2

2 }, 𝛺 ≥ 0. Indeed, when ‖𝜁‖∞ ≤ 1, we have

𝐹
∑

𝑓=1
[[𝑎𝑓 ]𝑇 𝑥 − 𝑏𝑓 ]𝜁𝑓 > 𝑏0 − [𝑎0]𝑇 𝑥

⟹

𝐹
∑

𝑓=1
[𝜏𝑓 + 𝜑𝑓 ]𝜁𝑓 > 𝑏0 − [𝑎0]𝑇 𝑥

⟹

𝐹
∑

𝑓=1
|𝜏𝑓 | +

𝐹
∑

𝑓=1
𝜑𝑓 𝜁𝑓 > 𝑏0 − [𝑎0]𝑇 𝑥

⟹

𝐹
∑

𝑓=1
|𝜏𝑓 | +

𝐹
∑

𝑓=1
𝜑𝑓 𝜁𝑓 >

𝐹
∑

𝑓=1
|𝜏𝑓 | +𝛺

√

∑

𝑓
𝜑2
𝑓

⟹

𝐹
∑

𝑓=1
𝜑𝑓 𝜁𝑓 > 𝛺

√

∑

𝑓
𝜑2
𝑓 .

Thus, for each distribution 𝐴 that is compatible with (2), we obtain

𝑃𝑟𝑜𝑏𝜁𝑓∼𝐴{𝑥 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑓𝑜𝑟 (37)}

≤ 𝑃𝑟𝑜𝑏𝜁𝑓∼𝐴{
𝐹
∑

𝑓=1
𝜑𝑓 𝜁𝑓 > 𝛺

√

∑

𝑓
𝜑2
𝑓 } ≤ 𝑒𝑥𝑝{−𝛺2

2
},

(A.6)

where the last inequality is due to Proposition 1. □

Proposition 3. The robust counterpart approximation of ACC (3) under
perturbation set (A.5) is cone quadratic constraints (A.4). When the inde-
pendent random variables 𝜁 , 𝜁 ,… , 𝜁 belong to ambiguity set (2), then
14

1 2 𝐹
he probability that the feasible solution of cone quadratic constraints (A.4)
atisfies the inequality in ACC (3) is at least 1 − 𝑒𝑥𝑝{− 𝛾2

2𝐹 }.

Proof. This proof is similar to that of Proposition 2. □

Thus, parameter 𝛾
√

𝐹
in Proposition 3 plays the equal role as 𝛺

plays in Proposition 2.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compchemeng.2023.108428.
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