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A B S T R A C T

Data envelopment analysis (DEA) is a crucial method for assessing the efficiency of decision-making units
(DMUs). In practice, it is common to encounter situations where the performance of a DMU at a certain stage
is evaluated, especially in policy effect evaluation. The key to stage performance evaluation is to eliminate the
influence of pre-stage inputs (outputs) on stage performance. This paper proposes stage ratio DEA models that
consider two types of inputs and outputs: accurate ratio data and interval ratio data. The first form considers
the evaluation of stage efficiency when accurate ratios of inputs and outputs are used at the beginning and end
of the stage. The second form assesses stage efficiency using interval ratio data for interval inputs and outputs.
To verify the validity of the proposed models, the numerical example validates the first form of stage ratio
DEA models. And the second form is applied to evaluate the sustainable efficiency of 14 energy saving and
environmental protection clean enterprises (ESEPCEs). The empirical results demonstrate that the proposed
models provide a more accurate assessment of stage efficiency compared to the traditional DEA-CCR model.
1. Introduction

DEA is an important non-parametric performance evaluation
method for evaluating the relative efficiency of multi-input and multi-
output production systems (Ripoll-Zarraga & Lozano, 2020; Topcu &
Triantis, 2022). Since its first introduction in 1978 (Charnes et al.,
1978), DEA has been quickly recognized as a powerful efficiency anal-
ysis tool (Dehnokhalaji et al., 2022; Omrani et al., 2022; Wanke et al.,
2023). This approach can achieve two goals of efficiency evaluation:
understanding past efficiency and planning to become more efficient
in the future (Cordero et al., 2021; Li et al., 2018; Tone, 2001).

The traditional DEA models assume that the inputs–outputs are
deterministic. However, in practice, inputs–outputs have many uncer-
tainties because some data may be known only within specified bounds
and ordinal relations. The problem of imprecise data has attracted
the attention of many scholars. Cooper et al. (1999) proposed the
imprecise DEA (IDEA) model, which allows for situations where there
is both imprecise and exactly known data in which the IDEA models are
transformed into linear programming problems. Therefore, the interval
DEA model, as one of the IDEA models, has also attracted the attention
of many scholars and conducted a lot of research.

Interval DEA is generated to solve the problem of interval inputs–
outputs. Despotis and Smirlis (2002) proposed an approach that treated
interval DEA as a peculiar case of accurate DEA. They defined lower
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and upper bounds for interval efficiency scores and further discrimi-
nated DMUs into fully efficient, efficient, and inefficient units. After
identifying efficient and inefficient DMUs using interval DEA, one can
wonder how sensitive these identifications are to data variances. Jahan-
shahloo et al. (2004) focused on the sensitivity and stability of interval
DEA. Arabmaldar et al. (2021) formulated a new robust worst-practice
frontier interval DEA model. An et al. (2022) proposed an interval
DEA model based on slacks-based measures. This model addressed
uncertainty based on the estimated farthest and closest distances of
the DMU to the projected point on the Pareto efficient frontier. The
above literature suggested a unified production frontier and corrected
the distance measure efficiency scores of the former.

After discussing the frontier and stability issues of the interval DEA
model, some scholars have expanded the interval DEA model from
the perspective of interval inputs–outputs. For example, Arana-Jiménez
et al. (2021) proposed a novel integer interval DEA model under fuzzy
integer intervals. Younesi et al. (2023) proposed an inverse DEA model
based on the non-radial slacks model to solve the input–output problem
under integer and continuous interval data with uncertainty. Santos-
Arteaga et al. (2023) considered changes in efficiency to be determined
through increases or decreases based on potential inputs and outputs
and the number of DMUs. As for the interval input–output in the form
of a ratio, there are two main forms. One is that inputs–outputs are
expressed in terms of ratios. Entani et al. (2002) proposed two new
957-4174/© 2023 Elsevier Ltd. All rights reserved.
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models: general and multiplicative non-parametric ratio models for
DEA problems with interval data. The ratios of the two models refer
to the form of indicators of inputs and outputs. Amin and Hajjami
(2016) used the interval DEA model to select high-quality stocks by
analyzing financial ratio indicators. The other form is that inputs–
outputs are expressed in terms of interval scale data. Nasrabadi et al.
(2019) presented a model for efficiency analysis that incorporates
interval scale data in addition to ratio scale data. They considered
the input–output expressed in interval ratios in DEA, which solved
the problem of not being suitable or difficult to model with accurate
values. Then, Nasrabadi et al. (2022) further examined the robustness
of efficiency scores within the context of DEA with interval-scale data.
The inputs–outputs of the above models are almost developed from
accurate values to interval values. Similarly, this paper also generalizes
from accurate ratio inputs–outputs to interval ratio inputs–outputs.
But the form of ratio used in this paper is different from the above
literature. The ratio of inputs (outputs) in this paper refers to the ratio
between the end and the beginning of the evaluated stage.

The above DEA models discuss the overall performance based on a
group of DMUs. However, understanding performance at a certain stage
is more common in practice. For example, the effectiveness evaluation
of "double first-class’’ construction in Chinese universities is the stage
performance evaluation of the construction cycle. Stage performance
evaluation is a conclusive evaluation of the DMUs’ stage performance.
The purpose of stage performance evaluation is to help the DMUs
recognize their own strengths and weaknesses in the current stage and
correct their present stage problems for better performance in the next
stage. Therefore, stage evaluation methods have attracted the attention
of many scholars.

DEA-Malmquist index models are often used to evaluate changes
in stage performance. Fare et al. (1994) proposed the DEA-Malmquist
index models to study productivity change in Swedish hospitals during
the period from 1970–1985. Based on this, some scholars have fur-
ther extended the DEA-Malmquist model according to different issues.
Dorri and Rostamy-Malkhalifeh (2017) developed the DEA-Malmquist
index model, aiming to determine the progress of the DMUs under
evaluation in the presence of ratio data. Ding et al. (2020) extended
Malmquist index based on cooperative game network DEA to evaluate
industrial circular economy performance and its dynamic evaluation
over 2012–2017. The interval DEA-Malmquist index has also attracted
the attention of scholars. Huang et al. (2021) proposed a novel global
Malmquist–Luenberger index with the interval slacks-based measure
to evaluate the provincial green total factor productivity in China
from 2000–2018. Bansal (2023) built an interval sequential Malmquist–
Luenberger index model to measure productivity change intervals for
21 banks from 2011–2018. Although the DEA-Malmquist model evalu-
ates changes in stage performance, the evaluation results are actually
affected by the performance of the previous stage, thus affecting the
true situation of the evaluated stage. But the existing DEA-Malmquist
index models cannot solve this stage evaluation problem. Therefore,
one of the tasks of this paper is to eliminate the influence of the
performance of the previous stage and put forward the corresponding
stage performance evaluation models.

The purpose of this paper is to study stage performance evaluation.
As discussed above, stage efficiency obtained using existing models in-
cludes the impact of previous stage performance. Therefore, this paper
uses the stage ratio data of input (output) as the input–output data for
stage performance evaluation to eliminate the influence of pre-stage
input–output on stage performance. Meanwhile, this paper proposes
stage ratio DEA models that consider two types of inputs–outputs:
accurate ratio data and interval ratio data. Numerical example and
practical application verify the effectiveness of the proposed models,
respectively. The specific work of this paper is as follows:

• Using the ratio data of inputs and outputs of the evaluated stage,
i.e., (stage end)/(stage beginning), can eliminate the influence of
2

the previous stage’s efficiency.
• This paper first proposes stage ratio DEA models under accurate
ratio data of inputs–outputs and gives its theorems.

• Based on the proposed stage accurate ratio DEA model, the ac-
curate ratio inputs–outputs are further expanded to the interval
ratio inputs–outputs, and the stage interval ratio DEA model is
proposed.

• To validate the proposed stage ratio DEA models, a numerical
example is provided to validate the first form of the stage ratio
DEA model. The second form is conducted to evaluate the sustain-
able efficiency of 14 ESEPCEs in China during the green transition
stage.

The remainder of this paper unfolds as follows. Section 2 introduces
the relevant preliminaries. Section 3 describes stage ratio DEA models
under two kinds of inputs–outputs and gives the related definitions and
theorems. Section 4 applies a numerical example and application to
verify the performance of two kinds of stage ratio DEA models. Finally,
Section 5 provides the concluding remarks.

2. Preliminaries

This section reviews the traditional DEA-CCR model, interval DEA
model, interval data and their arithmetic.

2.1. DEA-CCR model

Assume that we have 𝑛 DMUs (𝐷𝑀𝑈𝑗 , 𝑗 = 1,… , 𝑛), each asso-
ciates with 𝑚 inputs 𝑋𝑗 =

(

𝑥1𝑗 , 𝑥2𝑗 ,… , 𝑥𝑚𝑗
)𝑇 and 𝑠 outputs 𝑌𝑗 =

(

𝑦1𝑗 , 𝑦2𝑗 ,… , 𝑦𝑠𝑗
)𝑇 , 𝑗 = 1,… , 𝑛. The production possibility set 𝑇 can be

represented in an algebraic form:

𝑇 =

{

(𝑋, 𝑌 )|𝑋 ≥
𝑛
∑

𝑗=1
𝜆𝑗𝑋𝑗 , 𝑌 ≤

𝑛
∑

𝑗=1
𝜆𝑗𝑌𝑗 , 𝜆𝑗 > 0, 𝑗 = 1,… , 𝑛

}

(1)

Charnes et al. (1978) proposed the following DEA-CCR model to
measure the relative efficiency of DMUs:

max 𝜃0 =
𝑠
∑

𝑟=1
𝜇𝑟𝑦𝑟0

𝑠.𝑡. (2)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑠
∑

𝑟=1
𝜇𝑟𝑦𝑟𝑗−

𝑚
∑

𝑖=1
𝜔𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1,… , 𝑛,

𝑚
∑

𝑖=1
𝜔𝑖𝑥𝑖0 = 1,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

where the subscript 0 indicates the DMU under evaluation, 𝜔𝑖(𝑖 =
1,… , 𝑚) and 𝜇𝑟(𝑟 = 1,… , 𝑠) are decision variables.

Definition 2.1. If the optimization model (2) has optimal solutions
𝜇∗
𝑟 , 𝜔

∗
𝑖 , such that the efficiency 𝜃∗0 =

∑𝑠
𝑟=1 𝜇

∗
𝑟 𝑦𝑟0 = 1, and 𝜇∗

𝑟 > 0, 𝜔∗
𝑖 > 0,

then 𝐷𝑀𝑈𝑗0 is defined as DEA efficient.

2.2. Interval DEA model

2.2.1. Interval data and their arithmetic
The statistical treatment of interval data is developed by considering

them as elements that belong to the space 𝐾𝑐 (𝑅) =
{[𝑎, 𝑏] |𝑎 ≤ 𝑏, 𝑎, 𝑏 ∈ 𝑅}. Each compact interval 𝐴 ∈ 𝐾𝑐 (𝑅) can be ex-
pressed using its [inf, sup] representation, ie. 𝐴 =

[

inf 𝐴, sup𝐴
]

, where
inf 𝐴 ≤ sup𝐴.

To manage the intervals, natural arithmetic is defined for 𝐾𝑐 (𝑅)
using the Minkowski addition 𝐴 + 𝐵 =

{

𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵
}

and
the product using scalars 𝜆𝐴 = {𝜆𝑎 ∶ 𝑎 ∈ 𝐴}, for any 𝐴,𝐵 ∈ 𝐾𝑐 (𝑅)

( )
and 𝜆 ∈ 𝑅. The space 𝐾𝑐 (𝑅) ,+, ⋅ is not linear but semi-linear due
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to the lack of symmetric elements, which are based on addition. The
operations for two intervals 𝐴 =

[

𝑎−, 𝑎+
]

and 𝐵 =
[

𝑏−, 𝑏+
]

in 𝐾𝑐 (𝑅) are
as follows:

• Addition: 𝐴 + 𝐵 =
[

𝑎− + 𝑏−, 𝑎+ + 𝑏+
]

• Subtraction: 𝐴 − 𝐵 = 𝐴 + (−𝐵) =
[

𝑎− − 𝑏+, 𝑎+ − 𝑏−
]

• Multiplication: For 𝜆 ∈ 𝑅,

𝜆𝐵 =

{
[

𝜆𝑏−, 𝜆𝑏+
]

, 𝜆 ≥ 0,
[

𝜆𝑏+, 𝜆𝑏−
]

, 𝜆 < 0.

𝐴 × 𝐵 =
[

𝑎−𝑏− ∧ 𝑎−𝑏+ ∧ 𝑎+𝑏− ∧ 𝑎+𝑏+,

𝑎−𝑏− ∨ 𝑎−𝑏+ ∨ 𝑎+𝑏− ∨ 𝑎+𝑏+
]

.

• Division: 𝐴 ÷ 𝐵 = 𝐴 × 1
𝐵 =

[

𝑎−

𝑏+ ,
𝑎+

𝑏−

]

, where 𝐴,𝐵 ∈ 𝐾𝑐
(

𝑅+),
1
𝐵 =

[

1
𝑏+ ,

1
𝑏−

]

.

efinition 2.2 (Ranking Intervals). Given any two intervals 𝐴 =
[

𝑎−, 𝑎+
]

,
=
[

𝑏−, 𝑏+
]

, if 𝑎− < 𝑏− or 𝑎− = 𝑏−, 𝑎+ ≤ 𝑏+, then 𝐴<̃𝐵.

2.2.2. Interval DEA model
Assume that we have 𝑛 DMUs (𝐷𝑀𝑈𝑗 , 𝑗 = 1,… , 𝑛), each associates

with 𝑚 interval-valued inputs 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 ,⋯ , 𝑥𝑚𝑗 )𝑇 and 𝑠 interval-
valued outputs 𝑌𝑗 = (𝑦1𝑗 , 𝑦2𝑗 ,… , 𝑦𝑠𝑗 )𝑇 , 𝑗 = 1,… , 𝑛, where 𝑥𝑖𝑗 = [𝑥𝐿𝑖𝑗 , 𝑥

𝑈
𝑖𝑗 ],

𝑟𝑗 = [𝑦𝐿𝑟𝑗 , 𝑦
𝑈
𝑟𝑗 ] and the lower and upper bounds are positive and

inite values. Therefore, the traditional interval DEA model (Despotis &
mirlis, 2002) for measuring left endpoint of interval-valued efficiency
s as follows:

𝐿
0 = max

𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝐿
𝑟0

𝑠.𝑡. (3)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝑈
𝑖0 = 1,

𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝐿
𝑟0 −

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝑈
𝑖0 ≤ 0,

𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝑈
𝑟𝑗 −

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝐿
𝑖𝑗 ≤ 0, 𝑗 = 1,… , 𝑛; 𝑗 ≠ 0,

𝜔𝑖, 𝜇𝑟 ≥ 0,∀𝑖, 𝑟.

Correspondingly, the model for measuring the right endpoint of
interval-valued efficiency is as follows:

𝜃𝑈0 = max
𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝑈
𝑟0

𝑠.𝑡. (4)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝐿
𝑖0 = 1,

𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝑈
𝑟0 −

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝐿
𝑖0 ≤ 0,

𝑠
∑

𝑟=1
𝜇𝑟𝑦

𝐿
𝑟𝑗 −

𝑚
∑

𝑖=1
𝜔𝑖𝑥

𝑈
𝑖𝑗 ≤ 0, 𝑗 = 1,… , 𝑛; 𝑗 ≠ 0,

𝜔𝑖, 𝜇𝑟 ≥ 0,∀𝑖, 𝑟.

3. Model formulation

For the convenience of later description, suppose 𝑡0 is the beginning
point of the evaluated stage, 𝑙 is the length of this stage, and we define
the period from 𝑡0 to 𝑡0 + 𝑙 as the stage 𝑡0. This section proposes two
forms of stage ratio DEA models to evaluate the efficiency of stage 𝑡0
and give related definitions and theorems.
3

3.1. Stage ratio DEA model with accurate ratio inputs–outputs

𝑆 =
{(

𝑋𝑡
𝑗 , 𝑌

𝑡
𝑗

)

|𝑖 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇
}

is a panel production possi-

bility set, where 𝑋𝑡
𝑗 =

(

𝑥𝑡1𝑗 , 𝑥
𝑡
2𝑗 ,… , 𝑥𝑡𝑚𝑗

)𝑇
, 𝑌 𝑡

𝑗 =
(

𝑦𝑡1𝑗 , 𝑦
𝑡
2𝑗 ,… , 𝑦𝑡𝑠𝑗

)𝑇
, 𝑋𝑡

𝑗 >
0, 𝑌 𝑡

𝑗 > 0. To better assess the efficiency of stage 𝑡0, we use ratio data for

each input–output,
𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
,
𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
(𝑡0 ≤ 𝑡0+ 𝑙 ≤ 𝑇 ), in stage ratio DEA model.

If 𝑥𝑡0𝑖𝑗 , 𝑦
𝑡0
𝑟𝑗 = 0, the non-Archimedean quantity 𝜀 > 0 is introduced. The

atio of inputs–outputs uses
𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗 +𝜀
,
𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗+𝜀
. For simplicity, we assume the

𝑡0
𝑖𝑗 > 0, 𝑦𝑡0𝑟𝑗 > 0 in the following.

The production possibility set 𝑆𝑡0 of stage 𝑡0 is:

𝑡0 =

⎧

⎪

⎨

⎪

⎩

(𝑋, 𝑌 )|
𝑛
∑

𝑗=1
𝜆𝑗

𝑥𝑡0+𝑙𝑗

𝑥𝑡0𝑗
≤ 𝑋,

𝑛
∑

𝑗=1
𝜆𝑗

𝑦𝑡0+𝑙𝑗

𝑦𝑡0𝑗
≥ 𝑌 , 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛

⎫

⎪

⎬

⎪

⎭

It is easy to prove that the 𝑆𝑡0 satisfies the basic axioms of the
production possibility set.

The efficiency of evaluated 𝐷𝑀𝑈0 in stage 𝑡0 can be evaluated by
the following optimization model:

max 𝜃0(𝑥, 𝑦) =
𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
𝑠.𝑡. (5)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
−

𝑚
∑

𝑖=1
𝜔𝑖

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 0, 𝑗 = 1,… , 𝑛,

𝑚
∑

𝑖=1
𝜔𝑖

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
= 1,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

where 𝑡0, 𝑡0 + 𝑙 are the beginning and end periods of stage 𝑡0, respec-

tively, and 𝑙 is the stage length.
𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
,

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
are the ratios of 𝑖𝑡ℎ inputs

and 𝑟𝑡ℎ outputs of 𝐷𝑀𝑈𝑗 in stage 𝑡0, respectively, and 𝜇𝑟, 𝜔𝑖 are weight
ectors.

Using Lagrange multiplier method, the dual form of model (5) can
e obtained as follows:

min 𝜃0

𝑠.𝑡. (6)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑛
∑

𝑗=1
𝜆𝑗

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 𝜃0

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
, 𝑖 = 1,… , 𝑚,

𝑛
∑

𝑗=1
𝜆𝑗

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
≥

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
, 𝑟 = 1,… , 𝑠,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

Models (5) and (6) calculate efficiency values 𝜃0 ∈ [0, 1]. When
0 = 1, the DMU is efficient in the stage 𝑡0; otherwise, it is inefficient.
he above models use inputs (outputs) ratio data from the beginning
𝑡0) and end (𝑡0+𝑙) of the stage 𝑡0 to study the stage efficiency of 𝐷𝑀𝑈0.

heorem 3.1. Model (5) is always feasible.

roof . According to the conditions in model (5), there exists a certain

, such that
𝑦𝑡0+𝑙𝑘𝑗

𝑡0
> 0,

𝑥𝑡0+𝑙𝑘𝑗
𝑡0

> 0.

𝑦𝑘𝑗 𝑥𝑘𝑗
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e

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

T

p
S
p
T

i
a
S
s

3

h
r

𝜃

𝑠

It may be assumed 𝑘 = 1, let �̂� =
(

�̂�1,… , �̂�𝑚
)

=

(

𝑥𝑡01𝑗
𝑥𝑡0+𝑙1𝑗

, 0,… , 0

)

, �̂�

=
(

�̂�1,… , �̂�𝑠
)

=

(

𝑦𝑡01𝑗
𝑦𝑡0+𝑙1𝑗

, 0,… , 0

)

, where �̂�1 =
𝑥𝑡01𝑗
𝑥𝑡0+𝑙1𝑗

, �̂�1
1≤𝑗≤𝑛

= min
𝑦𝑡01𝑗
𝑦𝑡0+𝑙1𝑗

, it

asily to see �̂�, �̂� satisfy

𝑠
∑

𝑟=1
�̂�𝑟

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
−

𝑚
∑

𝑖=1
�̂�𝑖

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 0,

𝑚
∑

𝑖=1
�̂�𝑖

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
= 1,

�̂�𝑖, �̂�𝑟 ≥ 0.

Therefore, the feasible solution for model (5) is then obtained,
which holds for all constrains. □

heorem 3.2. The validity of model (5) is not related to the dimensional
selection of input and output, nor to the multiple growth of input and output
corresponding to DMU.

Proof. There is a multiple change between different dimensions, so
assume that the 𝑖𝑡ℎ input is 𝛼𝑖𝑥𝑖1,… , 𝛼𝑖𝑥𝑖𝑛, 𝑖 = 1, 2,… , 𝑚; (𝛼𝑖 is the
roportion of input increase or decrease, 𝛼𝑖 ≠ 0) in the new dimension.
imilarly, the 𝑟𝑡ℎ output is 𝛽𝑟𝑦𝑟1,… , 𝛽𝑟𝑦𝑟𝑛, 𝑟 = 1, 2,… , 𝑠; (𝛽𝑟 is the
roportion of output increase or decrease, 𝛽𝑟 ≠ 0) in the new dimension.
hen the stage ratio DEA model under the new dimension is:

max �̄�0 =
𝑠
∑

𝑟=1
𝜇𝑟

𝛽𝑟𝑦
𝑡0+𝑙
𝑟0

𝛽𝑟𝑦
𝑡0
𝑟0

𝑠.𝑡. (7)
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑠
∑

𝑟=1
𝜇𝑟

𝛽𝑟𝑦
𝑡0+𝑙
𝑟𝑗

𝛽𝑟𝑦
𝑡0
𝑟𝑗

−
𝑚
∑

𝑖=1
𝜔𝑖

𝛼𝑖𝑥
𝑡0+𝑙
𝑖𝑗

𝛼𝑖𝑥
𝑡0
𝑖𝑗

≤ 0, 𝑗 = 1,… , 𝑛,

𝑚
∑

𝑖=1
𝜔𝑖

𝛼𝑖𝑥
𝑡0+𝑙
𝑖0

𝛼𝑖𝑥
𝑡0
𝑖0

= 1,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

If DMU is efficient before using the new dimensions, that is, there
are optimal solutions 𝜇0, 𝜔0 ≥ 0 for model (5), such that 𝜃0 = 1, then
t can be verified that 𝜇0, 𝜔0 are also optimal solutions for model (7),
nd �̄�0 = 1. Therefore, DMU is also efficient in the new dimension.
imilarly, if the DMU is efficient under the new dimensions, it can be
imilarly proven that it is efficient in original dimensions. □

.2. Stage ratio DEA model with interval ratio inputs–outputs

Suppose that a quantity with a superscript ’^’ indicates that it
as an interval value, and that characters without superscripts are
epresented as real values. 𝑆 =

{(

�̂�𝑡
𝑗 , 𝑌

𝑡
𝑗

)

|𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇
}

is

a panel interval production possibility set, where �̂�𝑡
𝑗 =

(

�̂�𝑡1𝑗 ,… , �̂�𝑡𝑚𝑗
)𝑇

with �̂�𝑡𝑖𝑗 =
[

(

𝑥𝑡𝑖𝑗
)𝐿

,
(

𝑥𝑡𝑖𝑗
)𝑈

]

, 𝑖 = 1,… , 𝑚; 𝑌 𝑡
𝑗 =

(

�̂�𝑡1𝑗 ,… , �̂�𝑡𝑠𝑗
)𝑇

with

�̂�𝑡𝑟𝑗 =
[

(

𝑦𝑡𝑟𝑗
)𝐿

,
(

𝑦𝑡𝑟𝑗
)𝑈

]

, 𝑟 = 1,… , 𝑠. In stage 𝑡0, stage interval ratio DEA
model is as follows:

max �̂�0(�̂�, �̂�) =
𝑠
∑

𝑟=1
𝜇𝑟

�̂�𝑡0+𝑙𝑟0

�̂�𝑡0𝑟0
𝑠.𝑡. (8)
4

𝑠

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑠
∑

𝑟=1
𝜇𝑟

�̂�𝑡0+𝑙𝑟𝑗

�̂�𝑡0𝑟𝑗
−

𝑚
∑

𝑖=1
𝜔𝑖

�̂�𝑡0+𝑙𝑖𝑗

�̂�𝑡0𝑖𝑗
≤ 0, 𝑗 = 1,… , 𝑛,

𝑚
∑

𝑖=1
𝜔𝑖

�̂�𝑡0+𝑙𝑖0

�̂�𝑡0𝑖0
= 1,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

For interval optimization problem (8), its objective function value
is an interval. The stage interval ratio DEA model (8) is developed to
generate upper and lower bounds for the interval-valued efficiency of
each DMU:

𝜃𝐿0 = min
(

𝑥𝑡0𝑖𝑗
)𝐿

≤ 𝑥𝑡0𝑖𝑗 ≤
(

𝑥𝑡0𝑖𝑗
)𝑈

(

𝑦𝑡0𝑟𝑗
)𝐿

≤ 𝑦𝑡0𝑟𝑗 ≤
(

𝑦𝑡0𝑟𝑗
)𝑈

(

𝑥𝑡0+𝑙𝑖𝑗

)𝐿
≤ 𝑥𝑡0+𝑙𝑖𝑗 ≤

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿
≤ 𝑦𝑡0+𝑙𝑟𝑗 ≤

(

𝑦𝑡0+𝑙𝑟𝑗

)𝑈

∀𝑖, 𝑟, 𝑗

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
𝑠.𝑡.
𝑚
∑

𝑖=1
𝜔𝑖

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
= 1,

𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
−

𝑚
∑

𝑖=1
𝜔𝑖

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 0, 𝑗 = 1,… , 𝑛,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

(9)

𝑈
0 = max

(

𝑥𝑡0𝑖𝑗
)𝐿

≤ 𝑥𝑡0𝑖𝑗 ≤
(

𝑥𝑡0𝑖𝑗
)𝑈

(

𝑦𝑡0𝑟𝑗
)𝐿

≤ 𝑦𝑡0𝑟𝑗 ≤
(

𝑦𝑡0𝑟𝑗
)𝑈

(

𝑥𝑡0+𝑙𝑖𝑗

)𝐿
≤ 𝑥𝑡0+𝑙𝑖𝑗 ≤

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿
≤ 𝑦𝑡0+𝑙𝑟𝑗 ≤

(

𝑦𝑡0+𝑙𝑟𝑗

)𝑈

∀𝑖, 𝑟, 𝑗

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
𝑠.𝑡.
𝑚
∑

𝑖=1
𝜔𝑖

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
= 1,

𝑠
∑

𝑟=1
𝜇𝑟

𝑦𝑡0+𝑙𝑟𝑗

�̂�𝑡0𝑟𝑗
−

𝑚
∑

𝑖=1
𝜔𝑖

�̂�𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 0, 𝑗 = 1,… , 𝑛,

𝜇𝑟, 𝜔𝑖 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

(10)

The above models are converted to the following equivalent linear
programming models:

𝜃𝐿0 = max
𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟0

)𝐿

(

𝑦𝑡0𝑟0
)𝑈

.𝑡. (11)
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝑈

(

𝑥𝑡0𝑖0
)𝐿 = 1,

𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟0

)𝐿

(

𝑦𝑡0𝑟0
)𝑈 −

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝑈

(

𝑥𝑡0𝑖0
)𝐿 ≤ 0,

𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟𝑗

)𝑈

(

𝑦𝑡0𝑟𝑗
)𝐿 −

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖𝑗

)𝐿

(

𝑥𝑡0𝑖𝑗
)𝑈 ≤ 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 0,

𝑢𝑟, 𝑣𝑖 ≥ 0,∀𝑟, 𝑖.

𝜃𝑈0 = max
𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟0

)𝑈

(

𝑦𝑡0𝑟0
)𝐿

.𝑡. (12)
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f
c
(

T

𝜃

𝑠

𝜃

𝑠

P
(

𝜃

𝜆

∑

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 = 1,

𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟0

)𝑈

(

𝑦𝑡0𝑟0
)𝐿 −

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 ≤ 0,

𝑠
∑

𝑟=1
𝑢𝑟

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿

(

𝑦𝑡0𝑟𝑗
)𝑈 −

𝑚
∑

𝑖=1
𝑣𝑖

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑥𝑡0𝑖𝑗
)𝐿 ≤ 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 0

𝑢𝑟, 𝑣𝑖 ≥ 0,∀𝑟, 𝑖.

By repeating the solution of the above linear programming models
or each DMU, we can obtain the overall stage interval-valued effi-
iency of 𝑛 DMUs, denoted by efficiency intervals

[

𝜃𝐿0 , 𝜃
𝑈
0
]

𝑗 = 1,… , 𝑛). Next theorem provides the dual of models (11) and (12).

heorem 3.3. The dual of models (11) and (12) are as follows:

𝐿
0 = min 𝜃

.𝑡. (13)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑥𝑡0𝑖𝑗
)𝐿 +

(

𝜆0 − 𝜃
)

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 ≤ 0,

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿

(

𝑦𝑡0𝑟𝑗
)𝑈 +

(

𝜆0 − 1
)

(

𝑦𝑡0+𝑙𝑟0

)𝑈

(

𝑦𝑡0𝑟0
)𝐿 ≥ 0,

𝜆𝑗 ≥ 0, 𝑟 = 1,… , 𝑠, 𝑖 = 1,… , 𝑚.

𝑈
0 = min 𝜃

.𝑡. (14)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑥𝑡0+𝑙𝑖𝑗

)𝐿

(

𝑥𝑡0𝑖𝑗
)𝑈 +

(

𝜆0 − 𝜃
)

(

𝑥𝑡0+𝑙𝑖0

)𝑈

(

𝑥𝑡0𝑖0
)𝐿 ≤ 0,

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑦𝑡0+𝑙𝑟𝑗

)𝑈

(

𝑦𝑡0𝑟𝑗
)𝐿 +

(

𝜆0 − 1
)

(

𝑦𝑡0+𝑙𝑟0

)𝐿

(

𝑦𝑡0𝑟0
)𝑈 ≥ 0,

𝜆𝑗 ≥ 0, 𝑟 = 1,… , 𝑠, 𝑖 = 1,… , 𝑚.

roof. Model (11) is deduced by model (9). The dual model of model
9) is as follows:

𝐿
0 = min

(

𝑋𝑡0
𝑖𝑗

)𝐿
≤ 𝑥𝑡0𝑖𝑗 ≤

(

𝑋𝑡0
𝑖𝑗

)𝑈

(

𝑌 𝑡0
𝑟𝑗

)𝐿
≤ 𝑦𝑡0𝑟𝑗 ≤

(

𝑌 𝑡0
𝑟𝑗

)𝑈

(

𝑋𝑡0+𝑙
𝑖𝑗

)𝐿
≤ 𝑥𝑡0+𝑙𝑖𝑗 ≤

(

𝑋𝑡0+𝑙
𝑖𝑗

)𝑈

(

𝑌 𝑡0+𝑙
𝑟𝑗

)𝐿
≤ 𝑦𝑡0+𝑙𝑟𝑗 ≤

(

𝑌 𝑡0+𝑙
𝑟𝑗

)𝑈

∀𝑖, 𝑟, 𝑗

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min 𝜃

𝑠.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 𝜃

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
,

𝑛
∑

𝑗=1
𝜆𝑗

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
≥

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
,

𝜆𝑗 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

Since 𝜆0
𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
≤

∑𝑛
𝑗=1 𝜆𝑗

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 𝜃

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
, where

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
≥ 0, 𝜆0 ≥ 0, so

− 𝜃 ≤ 0. And 0 ≤ 𝜃 ≤ 1, 𝜆 − 1 ≤ 0.
5

0 0
Therefore, we can get ∑𝑛
𝑗=1
𝑗≠0

𝜆𝑗
𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
+

(

𝜆0 − 𝜃
) 𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
≤ 0 from

𝑛
𝑗=1 𝜆𝑗

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 𝜃

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
. Meanwhile, we can also get ∑𝑛

𝑗=1
𝑗≠0

𝜆𝑗
𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
+
(

𝜆0 − 1
)

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
≥ 0 from ∑𝑛

𝑗=1 𝜆𝑗
𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
≥

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
.

So we can derive the following inequalities:

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑥𝑡0+𝑙𝑖𝑗

)𝐿

(

𝑥𝑡0𝑖𝑗
)𝑈 +

(

𝜆0 − 𝜃
)

(

𝑥𝑡0+𝑙𝑖0

)𝑈

(

𝑥𝑡0𝑖0
)𝐿

≤
𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗
𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
+
(

𝜆0 − 𝜃
)
𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0

≤
𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑥𝑡0𝑖𝑗
)𝐿 +

(

𝜆0 − 𝜃
)

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 , (15)

𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿

(

𝑦𝑡0𝑟𝑗
)𝑈 +

(

𝜆0 − 1
)

(

𝑦𝑡0+𝑙𝑟0

)𝑈

(

𝑦𝑡0𝑟0
)𝐿

≤
𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗
𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
+
(

𝜆0 − 1
)
𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0

≤
𝑛
∑

𝑗=1
𝑗≠0

𝜆𝑗

(

𝑦𝑡0+𝑙𝑟𝑗

)𝑈

(

𝑦𝑡0𝑟𝑗
)𝐿 +

(

𝜆0 − 1
)

(

𝑦𝑡0+𝑙𝑟0

)𝐿

(

𝑦𝑡0𝑟0
)𝑈 . (16)

Therefore, model (13) can be obtained through inequalities (15) and
(16).

Similarly, Model (12) is deduced by model (10). The dual model of
model (10) is as follows:

𝜃𝑈0 = max
(

𝑋𝑡0
𝑖𝑗

)𝐿
≤ 𝑥𝑡0𝑖𝑗 ≤

(

𝑋𝑡0
𝑖𝑗

)𝑈

(

𝑌 𝑡0
𝑟𝑗

)𝐿
≤ 𝑦𝑡0𝑟𝑗 ≤

(

𝑌 𝑡0
𝑟𝑗

)𝑈

(

𝑋𝑡0+𝑙
𝑖𝑗

)𝐿
≤ 𝑥𝑡0+𝑙𝑖𝑗 ≤

(

𝑋𝑡0+𝑙
𝑖𝑗

)𝑈

(

𝑌 𝑡0+𝑙
𝑟𝑗

)𝐿
≤ 𝑦𝑡0+𝑙𝑟𝑗 ≤

(

𝑌 𝑡0+𝑙
𝑟𝑗

)𝑈

∀𝑖, 𝑟, 𝑗

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

max 𝜃

𝑠.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

𝑥𝑡0+𝑙𝑖𝑗

𝑥𝑡0𝑖𝑗
≤ 𝜃

𝑥𝑡0+𝑙𝑖0

𝑥𝑡0𝑖0
,

𝑛
∑

𝑗=1
𝜆𝑗

𝑦𝑡0+𝑙𝑟𝑗

𝑦𝑡0𝑟𝑗
≥

𝑦𝑡0+𝑙𝑟0

𝑦𝑡0𝑟0
,

𝜆𝑗 ≥ 0, 𝑟 = 1,… , 𝑠; 𝑖 = 1,… , 𝑚.

Model (14) can be obtained through inequalities (15) and (16). □

Theorem 3.4. If 𝜃𝐿0
∗ and 𝜃𝑈0

∗ are the optimal values of models (11) and
(12), then 𝜃𝐿0

∗ ≤ 𝜃𝑈0
∗ ≤ 1.

Proof. 𝜃𝐿0
∗ and 𝜃𝑈0

∗ are the optimal values of the above optimization
models (11) and (12). It is clear that 𝜃𝐿0

∗ ≤ 1, 𝜃𝑈0
∗ ≤ 1 and 𝜃𝐿0

∗ ≤ 𝜃𝑈0
∗

from models (8) and (9). □

Theorem 3.5. Models (11) and (12) are feasible.

Proof. According to the conditions in model (11), there exists a certain

𝑘, such that
(

𝑦𝑡0+𝑙𝑘𝑗

)𝑈

( 𝑡0
)𝐿 ≥

(

𝑦𝑡0+𝑙𝑘𝑗

)𝐿

( 𝑡0
)𝑈 > 0,

(

𝑥𝑡0+𝑙𝑘𝑗

)𝑈

( 𝑡0
)𝐿 ≥

(

𝑥𝑡0+𝑙𝑘𝑗

)𝐿

( 𝑡0
)𝑈 > 0.
𝑦𝑘𝑗 𝑦𝑘𝑗 𝑥𝑘𝑗 𝑥𝑘𝑗
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m

D
b
{

D
i
o

D
i

It may be assumed 𝑘 = 1, let �̂� =
(

�̂�1, 0,… , 0
)

, �̂� =
(

�̂�1, 0,… , 0
)

,

where �̂�1 =

(

𝑥𝑡010
)𝑈

(

𝑥𝑡0+𝑙10

)𝐿 , �̂�1 = min
1≤𝑗≤𝑛

(

𝑦𝑡01𝑗
)𝐿

(

𝑦𝑡0+𝑙1𝑗

)𝑈 , it easy to see �̂�, �̂� satisfy

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚
∑

𝑖=1
�̂�𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 = 1,

𝑠
∑

𝑟=1
�̂�𝑟

(

𝑦𝑡0+𝑙𝑟0

)𝑈

(

𝑦𝑡0𝑟0
)𝐿 −

𝑚
∑

𝑖=1
�̂�𝑖

(

𝑥𝑡0+𝑙𝑖0

)𝐿

(

𝑥𝑡0𝑖0
)𝑈 ≤ 0,

𝑠
∑

𝑟=1
�̂�𝑟

(

𝑦𝑡0+𝑙𝑟𝑗

)𝐿

(

𝑦𝑡0𝑟𝑗
)𝑈 −

𝑚
∑

𝑖=1
�̂�𝑖

(

𝑥𝑡0+𝑙𝑖𝑗

)𝑈

(

𝑥𝑡0𝑖𝑗
)𝐿 ≤ 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 0.

�̂�𝑟, �̂�𝑖 ≥ 0,∀𝑟, 𝑖.

Therefore, it can be seen that �̂� and �̂� are feasible solutions of the
odel (11). Similarly, model (12) has feasible solutions. □

efinition 3.1. A DMU is classified as strongly efficient if the lower
ound of its efficiency interval is greater than or equal to 1 𝑖.𝑒., 𝐸1 =
𝐷𝑀𝑈𝑗 ∶ 𝜃𝐿𝑗 ≥ 1

}

.

efinition 3.2. A DMU is classified as efficient if the lower bound of
ts efficiency interval is less than 1 and the upper bound is greater than
r equal to 1 𝑖.𝑒., 𝐸2 =

{

𝐷𝑀𝑈𝑗 ∶ 𝜃𝐿𝑗 < 1, 𝜃𝑈𝑗 ≥ 1
}

.

efinition 3.3. If the upper bound of the efficiency interval of a DMU
s less than 1, then that DMU is classified as inefficient 𝑖.𝑒., 𝐸3 =
{

𝐷𝑀𝑈𝑗 ∶ 𝜃𝑈𝑗 < 1
}

.

4. Case study

In this section, the proposed two forms of stage ratio DEA models
are validated separately using two cases. The numerical example val-
idates the stage ratio DEA model with accurate ratio inputs–outputs.
And the stage interval ratio DEA model is conducted to evaluate
the sustainable efficiency of 14 ESEPCEs in China during the green
transition stage.

4.1. Numerical example

Suppose that 15 enterprises implement a business plan within the
enterprise in 2015, and the plan ends in 2018. After the end of the
plan, managers want to know the performance of the enterprise during
the implementation period (2015–2018). Each enterprise selected six
inputs and six outputs related to this plan. Input–output data come from
annual reports of enterprises. The efficiency results calculated using the
stage ratio DEA model (5) are shown in Table 1 and are compared with
the DEA-Malmquist index model.

The DEA-Malmquist index model is a dynamic model developed
based on the DEA model to evaluate efficiency changes over different
periods. When the DEA-Malmquist index is greater than 1, it means
that the development from stage 𝑡0 to 𝑡0 + 𝑙 is growing; when the DEA-
Malmquist index is equal to 1, it means that the development from stage
𝑡0 to 𝑡0+𝑙 is unchanged; and when the DEA-Malmquist index is less than
1, it means that the development from stage 𝑡0 to 𝑡0 + 𝑙 is decreasing.
The stage ratio DEA model under accurate inputs–outputs in this paper
is also proposed to reflect stage performance more accurately.

As can be seen from Table 1, the stage efficiencies calculated by the
DEA-Malmquist index model and the proposed stage ratio DEA model
are mostly consistent. When the DEA-Malmquist index is greater than 1,
6

the stage efficiency calculated by the proposed stage ratio DEA model is
Table 1
Efficiency results for the DEA-Malmquist index and stage ratio DEA
models of accurate inputs–outputs.

DMU DEA-Malmquist Stage ratio
DEA model

1 1.5577 1.0000
2 1.0023 1.0000
3 0.8767 0.7421
4 0.8808 1.0000
5 0.5340 0.7671
6 1.5144 1.0000
7 1.9767 1.0000
8 1.5483 1.0000
9 1.0281 1.0000

10 0.6313 1.0000
11 1.7430 1.0000
12 1.9675 1.0000
13 0.8964 1.0000
14 1.0755 0.8744
15 3.7131 1.0000

equal to 1 (efficient); when the DEA-Malmquist index is less than 1, the
stage efficiency of the stage ratio DEA model is less than 1 (inefficient).
The effectiveness of our proposed model has been verified.

However, among the 15 DMUs, there are also several with incon-
sistent results, such as DMU4, DMU10, and DMU13. Our experiments
allow for such small errors, partly due to the quality of the input–output
data itself. If the difference between the input and output data is large,
the efficiency results will be different. This sensitivity to data quality
is inherent to DEA and emphasizes the need for reliable data collection
and preprocessing methods in performance evaluation. Another part of
the reason is that the results calculated by the DEA-Malmquist index
model include pre-stage influence, while our proposed model is the
result after eliminating the pre-stage influence. The purpose of this
paper is to eliminate the impact of pre-stage and evaluate the stage
performance of the evaluated stage more accurately.

In summary, the effectiveness of the stage ratio DEA model for
assessing stage performance is verified by comparing it with the DEA-
Malmquist index model. In practice, using the DEA-Malmquist in-
dex model to calculate stage performance requires a large amount of
data and calculations, which is time-consuming and labor-intensive.
The stage ratio DEA model in this paper can not only reflect stage
performance but also save time and cost.

4.2. Application example

The proposed stage interval ratio DEA model is used to evaluate
the sustainable efficiency of 14 ESEPCEs to understand the business
situation of the enterprises at each stage. The input–output interval
ratio data of 14 ESEPCEs from 2012–2021 is selected and divided
into three stages to evaluate their efficiency. The reason is that since
the green transformation policy is implemented in three stages. This
paper also examines the sustainable efficiency of ESEPCEs from each
of the three stages. In this paper, stage 2012–2015 is defined as the
pre-implementation of the policy; stage 2015–2018 is defined as the be-
ginning of the policy implementation; and stage 2018–2021 is defined
as the post-implementation of the policy. This example is carried out
based on this background. The Interval DEA-Malmquist index model
serves as a valuable analytical tool for assessing the dynamic efficiency
of enterprises. Therefore, the proposed stage interval ratio DEA model
is compared with the interval DEA-Malmquist index model and the tra-
ditional interval DEA model, which not only verifies the effectiveness of
the proposed model but also better evaluates the sustainable efficiency
of ESEPCEs.
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Table 2
Inputs-outputs description table.

Classification Indicator name Indicator description

Inputs Administrative expenses Expenses incurred in management
R&D expenses Expenses incurred in R&D
Inventory Goods are sold by enterprises
Number of employees staffing levels
Accounts receivable turnover Operational capacity indicator
Total asset turnover Operational capacity indicator

Outputs Total operating income The income from the main business
Return on total assets Profitability indicator
Return on net assets Profitability indicator
Net profit The greater the net income, the better the business
Employee compensation Employee compensation
Total tax payments The higher the income, the higher the tax
i
t
i
i
o
i
e
e
s
u

n
t
t
L
P
E

4.2.1. Selection of indicators
Enterprises invest heavily in manpower, materials, and capital to

sustain their business operations. Managers look at the profitability of
an enterprise, taxes, salaries, and other factors to determine how well
it is growing. Therefore, the inputs–outputs in Table 2 are selected for
analysis in this paper.

4.2.2. Analysis of the results
Table 3 shows the interval sustainable efficiency and ranking of 14

ESEPCEs in each stage of the green transformation using the proposed
stage interval ratio DEA model.

From the overall perspective of three stages, the sustainable effi-
ciency of each ESEPCE in the pre-green transition policy implementa-
tion stage is the best among the three stages. The reason is that the main
business of each enterprise before the implementation of the policy was
mainly fossil energy, high demand, product diversification, and broad
market prospects. Among them, Goldwind Technology, Wall Nuclear
Material, and Guotou Power rank the top 3 in terms of sustainable effi-
ciency, while the other enterprises rank lower but have higher overall
sustainable efficiency compared to the other two stages. The second
is the stage of 2015–2018 when the green transformation policy starts
to be implemented. Unlike the previous stage, the overall sustainable
efficiency of each enterprise is low. Detailed analysis reveals three main
reasons for this: the high cost of green transformation; the severity
of resource dependence; and the slow transformation speed. At this
stage, as the policy has just started to be implemented, many obstacles
make the sustainable efficiency of all enterprises low. Similarly, by
the middle stage of the policy implementation process in stage 2018–
2021, the sustainable efficiency of enterprises has not greatly improved.
The sustainable efficiency of all enterprises is not optimistic. However,
some enterprises are growing rapidly. Like other policy implementation
effects, the majority of enterprises are affected by the initial green
transformation policy, and the process of adjustment is slow. This slow
adjustment process affects their sustainable efficiency. However, it will
get better in the later stages.

On the other hand, the results in Table 3 show that the stage interval
ratio DEA model can more directly reflect the sustainable efficiency
of the enterprises at the evaluated stage compared to the traditional
interval DEA model and interval DEA-Malmquist index model. Specif-
ically, it can be discussed from two perspectives: stage efficient and
stage inefficient sustainable efficiency values calculated by the stage
interval ratio DEA model.

The stage efficiency reflected by the interval dynamic index cal-
culated using the interval DEA-Malmquist index model is mostly con-
sistent to the results obtained applying the stage interval ratio DEA
model. However, there are also several with inconsistent results. Our
experiments allow for such small errors, partly due to the quality of
the input–output data itself. If the difference between the input and
output data is large, the efficiency values will be different. Another
part of the reason is that the results calculated by the interval DEA-
7

Malmquist index model include pre-stage influence. Meanwhile, when d
the proposed interval sustainable efficiency of the stage is efficient, it
indicates that the enterprise’s trend is increasing in that stage; and the
traditional interval DEA model manifests itself in three forms as follows:

• The interval efficiency value at the beginning of the stage is
inefficient, while at the end of the stage it is efficient.

• The interval efficiency value at the beginning of the stage is
efficient and the end of the stage is also efficient.

• The interval efficiency values at the beginning and end of the
stage are inefficient, but the interval efficiency value at the end
of the stage is closer to the efficient frontier surface.

The first form (Fig. 1) shows that at the beginning of the evaluated
stage, the enterprise’s revenue is not satisfactory. But at the end of the
stage, the enterprise’s efficiency becomes better and the enterprise’s
revenue increases significantly due to proper management and smooth
capital flow. As shown in Table 3, stage 2012–2015 Huayi Electric,
Sunlight Power; stage 2018–2021 Tianshun Wind Energy, Taisheng
Wind Energy, Tongwei Shares. A detailed investigation of the reasons
found that the international financial market repeatedly fluctuated
significantly in 2012. Additionally, the wind power industry continued
to face a persistent recession, characterized by intense competition
driven by low prices. However, with the country’s increasing focus on
green development, the business situation gradually improved, reach-
ing a more favorable position by 2015. While in 2018, Tianshun Wind
Energy lost its high-tech enterprise qualification, Taisheng Wind Energy
faced capital constraints in expanding its offshore wind power business,
and Tongwei Shares experienced inefficiency due to the expansion of
their photovoltaic business. And other reasons led to three enterprises
business inefficiency in 2018. But by 2021, the problem had gradually
resolved, and the operation was in good shape.

The interval DEA-Malmquist index model is used to calculate the
stage interval dynamic index of these enterprises in the above form
1, which is also from M < 1 to M > 1. The interval stage efficiency
s efficient, indicating that the development of these enterprises in
he evaluated stage shows positive. For example, Huayi Electric’s M
ndex from stage 2012–2015 is (0.5628, 2.1283), and Sunlight Power’s
nterval M index is (0.5948, 1.9373). Similarly, the interval M index
f Tianshun Wind Energy, Taisheng Wind Energy, and Tongwei shares
n the stage 2018–2021 also shows that these three enterprises are
fficient in this stage. These results affirm that these aforementioned
nterprises have exhibited positive development trajectories within this
tage, showcasing their ability to maximize productivity and resource
tilization.

The second form is often encountered in practice, where the busi-
ess performance of the enterprise is efficient from the beginning to
he end of the stage, indicating a better sustainable development of
he enterprise in that stage. As shown in Table 3, stage 2012–2015
inyang Energy, Goldwind Technology, Wall Nuclear Material, Guotou
ower, Chuantou Energy, Guodian Nanrui; stage 2015–2018 Linyang
nergy, Wall Nuclear Material, Guotou Power, Sunlight Power, Guo-

ian Nanrui; stage 2018–2021 Huayi Electric, Sunlight Power. These
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Table 3
Sustainable interval efficiency.

Enterprises Traditional interval DEA model Interval DEA-Malmquist model Stage interval ratio DEA model

2012 2015 2018 2021 2012–2015 2015–2018 2018–2021 2012–2015 Rank 2015–2018 Rank 2018–2021 Rank

Lingyang Energy (0.2749, 1.0000) (0.1333, 1.0000) (0.2083, 1.0000) (0.2264, 1.0000) (0.4412, 3.3010) (0.5508, 3.1214) (0.6966, 0.7911) (0.0266, 1.0000) 7 (0.0154, 1.0000) 6 (0.0491, 0.3847) 12
Goldwind Technology (0.1458, 1.0000) (0.2627, 1.0000) (0.3621, 1.0000) (0.4573, 1.0000) (0.4953, 1.7285) (0.7690, 0.9344) (0.4145, 0.7311) (0.1353, 1.0000) 1 (0.0199, 0.6624) 7 (0.0616, 0.5630) 10
Tianshun Wind Energy (0.1951, 1.0000) (0.2699, 1.0000) (0.1950, 0.8967) (0.2846, 1.0000) (0.5284, 0.6853) (0.7647, 0.8691) (0.9940, 2.1949) (0.0609, 0.7837) 10 (0.0309, 0.2606) 12 (0.0320, 1.0000) 4
Taisheng Wind Energy (0.1225, 0.5304) (0.1345, 0.7418) (0.0880, 0.7199) (0.3313, 1.0000) (1.6247, 1.8459) (0.5792, 0.6328) (2.4595, 3.4378) (0.0850, 0.8325) 9 (0.0355, 0.3906) 10 (0.1396, 1.0000) 2
Huayi Electric (0.1207, 0.3868) (0.1677, 1.0000) (0.0992, 1.0000) (0.1930, 1.0000) (0.5628, 2.1283) (0.4354, 0.9388) (1.8822, 7.1790) (0.0732, 1.0000) 5 (0.0322, 0.3039) 11 (0.2474, 1.0000) 1
Wall Nuclear Material (0.1304, 1.0000) (0.1421, 1.0000) (0.1616, 1.0000) (0.4025, 1.0000) (1.4880, 4.0032) (0.3219, 1.7736) (0.5834, 1.8006) (0.0917, 1.0000) 2 (0.0548, 1.0000) 2 (0.0621, 0.5076) 11
Jiangsu Shentong (0.1502, 1.0000) (0.0831, 0.3952) (0.2230, 0.8286) (0.3501, 0.7653) (0.3102, 0.6762) (0.9972, 2.3689) (0.8472, 2.1833) (0.0278, 0.2374) 14 (0.0606, 0.5379) 8 (0.0776, 0.6701) 9
Juritic Material (0.1887, 0.4942) (0.1621, 0.3692) (0.1686, 0.6186) (0.4246, 0.7896) (0.4456, 0.9121) (1.4641, 2.2140) (1.1292, 1.9289) (0.0662, 0.3359) 12 (0.0933, 1.0000) 1 (0.0611, 0.8598) 6
Shanghai Electric (0.6776, 1.0000) (0.4803, 1.0000) (0.7505, 1.0000) (0.6993, 1.0000) (1.0812, 4.2756) (0.3007, 1.1126) (1.1197, 1.4161) (0.0650, 0.2841) 13 (0.0531, 0.2156) 13 (0.0410, 0.1672) 14
Guotou Power (0.8030, 1.0000) (0.6650, 1.0000) (1.0000, 1.0000) (0.6338, 0.8766) (0.7620, 1.4644) (0.6432, 1.0539) (0.3559, 0.6624) (0.0889, 1.0000) 3 (0.0523, 1.0000) 4 (0.2907, 0.3101) 13
Chuantou Energy (0.7349, 1.0000) (0.4587, 1.0000) (0.3549, 1.0000) (0.4130, 1.0000) (1.6362, 2.4448) (0.6696, 0.9833) (0.5819, 1.3591) (0.0529, 1.0000) 6 (0.0299, 0.1776) 14 (0.0214, 0.8008) 7
Sunlight Power (0.0819, 0.4250) (0.2484, 1.0000) (0.1735, 1.0000) (0.1550, 1.0000) (0.5948, 1.9373) (0.6324, 3.1183) (0.3830, 1.5449) (0.0844, 1.0000) 4 (0.0214, 1.0000) 5 (0.0092, 1.0000) 5
Tongwei shares (0.2203, 0.8540) (0.1386, 0.9934) (0.4311, 0.8577) (0.2515, 1.0000) (0.5615, 0.7535) (1.0727, 1.1538) (1.0695, 2.0030) (0.0417, 0.6325) 11 (0.0478, 0.4153) 9 (0.0493, 1.0000) 3
Guodian Nanrui (0.2261, 1.0000) (0.1277, 1.0000) (0.2650, 1.0000) (0.1871, 1.0000) (0.4991, 1.4830) (0.9146, 2.5357) (0.7733, 0.9116) (0.0095, 1.0000) 8 (0.0544, 1.0000) 3 (0.0141, 0.6950) 8



Expert Systems With Applications 238 (2024) 122397B.-w. Wei et al.
Fig. 1. Schematic diagram of interval stage efficiency efficient form 1.

enterprises have been operating sustainably from the beginning to the
end of each stage, with steady growth in performance. Huayi Electric,
the top-ranked enterprise for the stage 2018–2021, is ranked 11th at
the beginning of policy implementation, but as the enterprise adjusts
its business structure and downsizes unnecessary operations, revenue
increases, and sustainable corporate efficiency improves with the help
of the policy.

When the stage is efficient, the interval M index calculated using
the interval DEA-Malmquist model is also the same as the second form
described by the traditional interval DEA model above, that is, from
M > 1 (beginning) to M > 1 (end). This form is also one of the
stage efficient forms, indicating that the development is better at the
beginning of this stage, and then the development is also in the form
of positive growth to the end of the stage. In Table 3, Wall Nuclear
Material in the stage 2012–2015; Juritic Material and Tongwei shares
in the stage 2015–2018; and Goldwind Technology, Juritic Material,
Shanghai Electric and other enterprises in the stage 2018–2021 all
conform to this form. This shows that these enterprises already have a
solid economic foundation at the beginning of the stage, and continue
to maintain a positive growth trend until the end of the stage in
subsequent development.

The third form (Fig. 2) has a positive trend in sustainable effi-
ciency in this stage, although both the beginning and end sustainable
efficiency values are inefficient, indicating that the adjustment of influ-
encing factors is favorable to sustainable efficiency but not optimal. As
in the case of Juritic Material in Table 3, this enterprise have inefficient
interval sustainable efficiency in 2015 or 2018, but the interval effi-
ciency in 2018 is closer to the effective frontier surface, so the interval
sustainable efficiency in the stage 2015–2018 is efficient. With the help
of the policy, the management of Juritic Material improved from 12th
place in stage 2012–2015 to first place in stage 2015–2018. The reason
is that the enterprise starts to engage in the clean energy business
before the implementation of the 2012–2015 green transformation
policy, but the income is not significant. With the release of the policy,
the country provides more resources and funds for the enterprises
implementing green transformation, Juritic Material follows the pace,
and the development of the enterprises becomes significantly better.

Using the interval DEA-Malmquist index model to calculate the
interval M value of Juritic Material in the stage 2015–2018 is (1.4641,
2.2140). It shows that the development of the enterprise in the stage
2015–2018 is positive. At the same time, it is also efficient to calculate
the interval efficiency by applying the stage interval ratio DEA model.
Therefore, comparisons with the traditional interval DEA model and the
interval DEA-Malmquist index model have verified the effectiveness of
the proposed model.

Conversely, when the stage efficiency value is inefficient, it indi-
cates that the enterprise’s trend is decreasing at that stage, and the
traditional interval DEA model also manifests itself in three forms as
follows:

• The interval efficiency value at the beginning of the stage is
efficient and the end of the stage is inefficient.
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Fig. 2. Schematic diagram of interval stage efficiency efficient form 3.

Fig. 3. Schematic diagram of interval stage efficiency inefficient form 1.

Fig. 4. Schematic diagram of interval stage efficiency inefficient form 2.

• The interval efficiency value at the beginning of the stage is
inefficient, and the end of the stage is inefficient.

• The interval efficiency value at the beginning of the stage is
efficient, and the end of the stage is efficient.

The first form (Fig. 3) indicates that the enterprise has a good
operating turnover at the beginning of the stage. And later on, due to
internal problems or external environmental influences, the enterprise
ends the stage with lower operating income and poorer operating per-
formance. As shown in Table 3, stage 2012–2015 for Jiangsu Shentong;
stage 2015–2018 for Tianshun Wind Energy; and stage 2018–2021 for
Guotou Power are verified. Three enterprises have good initial operat-
ing results at the beginning of each stage, but later Jiangsu Shentong’s
revenue decreases due to the decline in product prices caused by the
market downturn in the metallurgical industry; Tianshun Wind En-
ergy’s corporate debt increases due to the expansion of an unrelated car
rental business in 2017–2018; and Guotou Power’s revenue decreases
during 2020–2021 due to the financial crisis and the epidemic.

From a dynamic perspective, as shown in Table 3, the interval M
index calculated by the interval DEA-Malmquist index model for the
enterprises described by the traditional interval DEA model is ineffi-
cient. On the other hand, the calculation results of the above-mentioned
enterprises using the interval DEA-Malmquist index model and the
stage interval ratio DEA model reflect the same stage inefficiency,
which proves the effectiveness of the proposed model.

The second form (Fig. 4) is common in practice and indicates that
the business is in a worse state from the beginning of the stage to
the end of the business. For example, stage 2012–2015 Taisheng Wind
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A

A

Energy, Juritic Material, Tongwei Shares; stage 2015–2018 Taisheng
Wind Energy, Jiangsu Shentong, Tongwei Shares; stage 2018–2021
Jiangsu Shentong, Juritic Material. The performance of these enter-
prises at the beginning of each stage is not satisfactory, and the situa-
tion does not improve at the end of the stage due to mismanagement
and other reasons. The first-ranked Juritic Material in the last stage
of the enterprise’s internal management led to problems in business
operations and a decline in sustainable efficiency.

Compared with the interval DEA-Malmquist index model, when the
stage is inefficient, the interval M index calculated using the interval
DEA-Malmquist model is also the same as the first form described by the
traditional interval DEA model above, that is, from M < 1 (beginning)
to M < 1 (end). This form is also one of the stage inefficient forms,
indicating a decline in development from the beginning to the end of
the stage. As shown in Table 3, the interval M index, calculated using
the interval DEA-Malmquist index model for enterprises described by
the traditional interval DEA model, is also inefficient. This indicates
that the development of these enterprises is not ideal during the evalu-
ated stage. And the results calculated using the interval DEA-Malmquist
index model and the stage interval ratio DEA model reflect the same
stage inefficient case, which proves the effectiveness of the proposed
model.

The third form suggests that the effectiveness of the end of stage
period may be due to the fact that the performance at the beginning
of the stage is so good that even though the development in that stage
is reduced, the lesser degree of decline does not affect the inter-firm
zone sustainable efficiency effectiveness at the end of the stage period.
Examples include Tianshun Wind Energy and Shanghai Electric in
the stage 2012–2015; Goldwind Technology, Huayi Electric, Shanghai
Electric, and Chuantou Energy in the stage 2015–2018; and Linyang
Energy, Goldwind Technology, Wall Nuclear Material, Shanghai Elec-
tric, Chuantou Energy, and Guodian Nanrui in the stage 2018–2021.
These enterprises have good corporate performance at the beginning of
the stage and still efficient sustainable efficiency at the end of the stage,
but inefficient sustainable efficiency for the whole stage, indicating that
corporate sustainability is declining for the whole stage period, but the
decline is low and the impact is not significant.

From a dynamic perspective, the interval M index calculated by
the interval DEA-Malmquist index model for the enterprises described
above by the traditional interval DEA model is also inefficient, proving
the analysis results of the traditional interval DEA model. For example,
Tianshun Wind Energy in the stage 2012–2015; Goldwind Technol-
ogy, Huayi Electric, Shanghai Electric, Chuantou Energy, etc. in the
stage 2015–2018. On the other hand, the calculation results of the
above-mentioned enterprises using the interval DEA-Malmquist index
model and the stage interval ratio DEA model reflect the same stage
inefficient case. This consistency also demonstrates the robustness of
the stage ratio DEA model and strengthens the case for adopting this
approach in dynamic efficiency assessments, particularly when dealing
with enterprises operating in fluctuating environments.

5. Conclusions

In general, stage evaluation becomes particularly crucial when man-
agers try to eliminate the upfront impact of this stage and more directly
check the implementation over a specific period. At the same time,
when conducting stage evaluation, ratio data can reflect the charac-
teristics of the stage more directly compared to real-valued data. From
a data point of view, if the ratio of the (stage end)/(stage beginning) is
larger, it means that the stage is developing in a growing trend; on the
contrary, it is developing in a decreasing trend.

Taking the above into account, we proposed two forms of stage
ratio DEA models to examine stage performance. It not only discusses
the stage ratio DEA models of input–output under deterministic con-
ditions but also extends them to interval conditions. The numerical
example validates the stage ratio DEA model with accurate inputs
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and outputs. And the stage interval ratio DEA model is also used to
evaluate the sustainable efficiency of 14 ESEPCEs under three stages
(pre-implementation stage, beginning implementation stage, and in-
implementation stage) in the context of green transition policy. As an
industry that directly provides green ecological products and services,
examining the business situation of ESEPCEs at this stage can provide
a reference for managers to develop business plans for the next stage.

The above analysis found that the proposed two forms of stage ratio
DEA models more directly respond to stage performance. The sustain-
able efficiency analysis of 14 ESEPCEs using the proposed models found
that when the policy of green transition is not started, the enterprises
are more in the business of fossil energy. And the enterprises are better
run and have higher revenues. When the policy is first implemented,
most enterprises have a large number of problems due to the internal
transformation of the enterprise, resulting in low overall sustainable
efficiency. By the time we reach the mid-implementation stage, the
overall sustainable efficiency is still low, although there has been a
significant improvement compared to the beginning. However, there
are still many enterprises, and due to the resources and funds given
by the policy, the sustainable efficiency of the enterprises improves,
such as Tianshun Wind Energy, Taisheng Wind Energy, Huayi Elec-
tric, Chuantou Energy, and Tongwei Shares. But some enterprises are
affected by the transformation due to their own management prob-
lems, with declining revenues and lower sustainable efficiency, such as
Linyang Energy, Wall Nuclear Material, Juritic Material, Guotou Power,
and Guodian Nanrui.

The stage ratio DEA model proposed in this paper eliminates the
influence of the previous stage and can better evaluate the stage
efficiency. However, when inputs (outputs) are zero, it is still difficult
to process using the proposed models. Future research on stage DEA
models can be expanded to consider stage DEA models under unde-
sirable inputs (outputs). Meanwhile, stage DEA efficiency evaluation
and prediction methods under large panel production possibility sets
or stochastic environments are also worth studying.
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