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Abstract. Classification is widely used in healthcare man-
agement. Support vector machines (SVMs), as an impor-
tant classification algorithm, have been used in target disease
classification and prediction. Considering that SVMs are
highly dependent on kernel function or parameters of a ker-
nel and medical data uncertainty. This paper extends the clas-
sical kernel-free quadratic surface SVM to the case where
the dataset is fuzzy samples set. A concept of fuzzy quadrati-
cally separable is first introduced, and then kernel-free fuzzy
quadratic surface support vector machine (FQSSVM) is pro-
posed, and the algorithm of the FQSSVM is given. A two-
stage FQSSVM algorithm is provided for the unbalanced
fuzzy sample set. Finally, FQSSVM is used in the diagnosis
of coronary and classification of Haberman’s Survival Data.
The actual applications verify the performance of our pro-
posed model.

Keywords: Kernel-free quadratic surface, Support vector
machine, Possibility measure, Fuzzy training examples, Dis-
eases classification

1. Introduction

Classification is widely used in healthcare manage-
ment. Disease diagnosis is essentially a classification
problem [1]. SVM is a machine learning algorithm for
training regression and classification rules from data.
SVMs can be traced back to the classification model
of Vapnik [2,3]. To classify the nonlinearly separable
data sets, the kernel method is used in SVM. How-
ever, the performance of kernel-based SVM is highly
dependent on the choice of kernel functions and ker-

nel parameters [4,5], training kernel-based SVM of-
ten has high computational and time complexity. To
take advantage of the idea of maximal margin while
avoiding the troubles of using kernel trick, a kernel-
free quadratic surface SVM (QSSVM) was introduced
by Dagher [6]. Luo et al. extended QSSVM to soft
margin QSSVM (SQSSVM) that considered outliers
and noise [7]. Both models find a quadratic separating
surface which maximizes an approximation of a rel-
ative geometric margin [6,7]. Bai et al. [8] proposed
the quadratic kernel-free least squares SVM and used
it in disease classification. For direct nonlinear semi-
supervised classification, polyhedral separability [9]
was first proposed for nonlinear classification based
on the QSSVM. Kernel-free SVMs were also applied
in multi-class classification [10] and quadratic surface
support vector regression [11,12].

These kernel-free quadratic surface SVMs are easier
to operate than kernel-based SVM models because the
structure of the quadratic separating surface is explicit
and clear [7].

In the QSSVM model, the training data is a real-
valued input and the output is y = ±1. Considering the
outliers and noise in the training data set, Ye Tian et al
[13,14] introduced the fuzzy QSSVM, which utilized
the membership function to represent the membership
level of an example to a negative class or positive
class. But essentially, it is still a common QSSVM of
Dagher[6], the training examples are still real-valued
data.

In practice, the training data is often uncertain or
fuzzy because of the error of measurements and out-
liers. Therefore, the study of kernel-free quadratic sur-
face SVM with fuzzy training data is very significant
and necessary.

The rest of this paper is organized as follows. Sec-
tion 2 gives some preliminary knowledge. The model
and algorithm of soft kernel-free fuzzy quadratic sur-
face SVM are introduced in Section 3. Simulations on
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actual data are given in Section 4. The conclusions are
given in Section 5.

2. Preliminary

In this section, we give some related preliminaries.

2.1. Dagher’s QSSVM Models

Definition 1 [5] . For the training data set S =

{(xi, yi) |xi ∈ Rp, yi = ±1, i = 1, 2, ..., n}, if there
exists a symmetric matrix

W =


w11 w12 . . . w1p

w12 w22 · · · w2p

...
... · · ·

...
w1p w2p · · · wpp

 ∈ Rp×p, b =


b1
b2
...
bp

 ∈ Rp, c ∈ R

such that yi( 12x
T
i Wxi+ bTxi+ c) ≥ 1, i = 1, 2, ..., n,

then the training data set S is called quadratically sep-
arable.

Let g(x) = 1
2x

TWx + bx + c, g(x) = 1
2x

TWx +

bx+ c = 0 is called a quadratic classification surface.
The vector ∇g (xi) = Wxi + b is the gradient direc-
tion at xi and the relative geometrical margin at xi

with respect to the hyper-surface g(x) = 0 can be ap-
proximately expressed as γ ≈ 1

∥∇g(xi)∥2
= 1

∥Wxi+b∥2
.

To find the discriminant function g(x)= 1
2x

TWx+

bx + c, Dagher [6] proposed the following QSSVM
model:

minQ (W, b, c) =
n∑

i=1

∥Wxi + b∥22

s.t.{
yi
(
1
2x

T
i Wxi + bTxi + c

)
≥ 1,

W ∈ Rp×p, b ∈ Rp, c ∈ R.

(1)

Taking account of the fact that some data points may
be misclassified (or outliers of the data set), a vec-
tor of slack variables ξ = (ξ1, . . . , ξn)

T was intro-
duced to describe the amount of violation of the con-
straints. Jian Luo et al. [7] proposed the following soft

quadratic surface support vector machine (SQSSVM):

minQ (W, b, c) =
n∑

i=1

∥Wxi + b∥22 + η
n∑

i=1

ξi

s.t.
yi
(
1
2x

T
i Wxi + bTxi + c

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n,

W ∈ Rp×p, b ∈ Rp, c ∈ R.

(2)

where η is specified beforehand, which adjusts the pro-
portion between maximizing the geometrical margin
and minimizing the training error term.

2.2. Possibility measure and fuzzy chance
constrained programming

Definition 2 . Let X be a nonempty set, P (X) be the
class of all subsets of X , a mapping Pos : P (X) →
[0, 1]is called a possibility measure if it satisfies:

(1) Pos(ϕ) = 0
(2) Pos(X) = 1
(3) Pos(

⋃
t∈T

At) = Sup
t∈T

Pos(At)

Definition 3 . Let ã be a fuzzy number, its membership
function is

µã (x) =


1− m-x

α ,m − α ≤ x < m,
1, x = m,

1 + m−x
β ,m < x ≤ m + β.

then ã is called a triangular fuzzy number, denoted by
ã = (m,α, β), where m is the center of ã and α >
0, β > 0 are the left and right spreads, respectively,
if α = β, then ã = (m,α, β) is called a symmetric
triangular fuzzy number, denoted by ã=(m,α).

Definition 4 . Let ã be a fuzzy number, then the
possibility measure of fuzzy event ã ≤ b is defined
by Pos (ã ≤ b) = Sup {µã (x) |x ∈ R, x ≤ b}. Sim-
ilarly, Pos (ã ≥ b) = Sup {µã (x) |x ∈ R, x ≥ b},
Pos (ã = b) = µã (b).

If x̃i(i = 1, 2, · · · , n) are all fuzzy numbers, then
X̃ = (x̃1, x̃2, · · · , x̃n) is called a fuzzy number vec-
tor, the set of all fuzzy number vectors is denoted by
Fn (R), especially when x̃i(i = 1, 2, · · · , n) are all
triangular fuzzy numbers, then X̃=(x̃1, x̃2, · · · x̃n) is
called a triangular fuzzy number vector, all the trian-
gular fuzzy number vectors are denoted by Tn(R).
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Following from the Zadeh extension principle, then
for function f : Rn → R , ỹ = f (x̃1, x̃2, · · · x̃n) is a
fuzzy number, and its membership function is:

µỹ (v) = sup
u1,u2,··· ,un∈R

{
min

1≤i≤n
µx̃i

(ui) |v = f (u1, u2, · · · , un)

}

Especially when ã, b̃ are two fuzzy numbers, we can
similarly define c̃ = f

(
ã, b̃

)
and obtain the following

results.

Theorem 1 [16] . If ã1 = (a1, α1, β1) and ã2 =
(a2, α2, β2) are two triangular fuzzy numbers, ρ is a
real number, then

– ã1 + ã2 = (a1 + a2, α1 + α2, β1 + β2) .

– ρã1 =

{
(ρa1, ρα1, ρβ1) , ρ ⩾ 0,

(ρa1,−ρβ1,−ρα1) , ρ < 0.
– For ã1 > 0, ã2 > 0,
ã1·ã2 ∼= (m1m2,m1α2 +m2α1,m1β2 +m2β1)

Especially for symmetric triangular fuzzy number
ã=(m,α),λ· ã=λ · (m, α)=(λm, |λ|α) , λ ∈ R.

Theorem 2[14] . Let ã = (a, α, β) be a triangular
fuzzy number, then

Pos{ã ≤ 0) =

 1, a ≤ 0,
1− a

α , a− α ≤ 0, a > 0
0, a− α > 0.

,

3. Kernel-free fuzzy quadratic surface SVM for
fuzzy training data (FQSSVM)

Consider the fuzzy training sample set
S̃ = (X̃1, y1), (X̃2, y2), · · · , (X̃n, yn), where X̃i =

(x̃i1, x̃i2, ..., x̃ip)
T ∈ T p(R), x̃ik = (xik, αik, βik),

yi∈{−1, 1}, k=1, 2, · · · , p, i=1, 2, · · · , n, yi = ±1
is the class label.

The classification based on the fuzzy training set
S̃ = (X̃1, y1), (X̃2, y2), · · · , (X̃n, yn) is to find a de-
cision function g(X̃) such that the positive class and
the negative class can be separated with good general-
ization performance and low classification error.

In this study, a fuzzy quadratic surface is utilized
to separate the fuzzy training data set S̃ into two
classes. The proposed fuzzy quadratic surface SVM
(FQSSVM) intends to find the parameters W ∈
Rp×p, b ∈ Rp, c ∈ R of a fuzzy quadratic surface
g(X̃) = 1

2X̃
TWX̃ + bX̃ + c that separates the fuzzy

training set S̃ into two classes with maximum relative
geometric margin.

Definition 5 . For the fuzzy training sample set S̃ ={(
X̃1, y1

)
,
(
X̃2, y2

)
, · · · ,

(
X̃n, yn

)}
, if for a given

level λ (0 < λ ≤ 1), there exists a symmetric matrix

W =WT =


a11 a12 · · · a1p
a12 a22 · · · a2p

...
... · · ·

...
a1p a2p · · · app

 ∈ Rp×p, b=


b1
b2
...
bp

∈

Rp, c ∈ R such that, for i = 1, 2, · · · , n

Pos

{
yi

(
1

2
X̃T

i WX̃i + bT X̃i + c

)
≥ 1

}
≥ λ (3)

then the fuzzy training sample set S̃ is called fuzzy
quadratically separable with respect to the level λ. The
fuzzy quadratic surface 1

2X̃
T
i WX̃i + bT X̃i + c = 0̃ is

a quadratic fuzzy classification surface.

Theorem 3 . If the fuzzy training example set S̃ is
fuzzy quadratically separable with respect to the level
λ (0 < λ ≤ 1), where X̃i=(x̃i1, x̃i2, · · · , x̃ip)

T , x̃jk=
(xjk, αjk, βjk) is a triangular fuzzy number, then for
the level λ, the inequality (3) is equivalent to:


yi

(
1

2
(ti1, ti2, · · · , tip)W (ti1, ti2, · · · , tip)T + bT (ti1, ti2, · · · , tip)T + c

)
≥ 1,

xij − αij (1− λ) ≤ tij ≤ xij + βij (1− λ) , i = 1, 2, · · · , n; j = 1, 2, · · · , p.
(4)

Proof. Since

Pos

{
yi

(
1

2
X̃T

i WX̃i + bT X̃i + c

)
≥ 1

}
= Pos{yi(

1

2
(x̃i1, x̃i2, · · · , x̃ip)W (x̃i1, x̃i2, · · · , x̃ip)

T

+ bT (x̃i1, x̃i2, · · · , x̃ip)
T
+ c) ≥ 1}

= sup
ti1,ti2,··· ,tip∈R


min

1≤k≤p
µx̃ik

(tik)|yi(
1

2
(ti1, ti2,

· · · , tip)W (ti1, ti2, · · · , tip)T

+ bT (ti1, ti2, · · · , tip)T + c) ≥ 1

 ≥ λ

Therefore, there existsTi=(ti1, ti2, · · · , tip)T ∈ Rp,
such that for 1 ≤ k ≤ p, µx̃ik

(tik) ≥ λ and

yi(
1

2
(ti1, ti2, · · · , tip)W (ti1, ti2, · · · , tip)T

+ bT (ti1, ti2, · · · , tip)T + c)

= yi(
1

2
TT
i WTi + bTTi + c) ≥ 1, i = 1, 2, · · · , n.
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By µx̃ik
(tik) ≥ λ, we have xik − αik (1− λ) ≤

tik ≤ xik + βik (1− λ), then
yi(

1
2 (ti1, ti2, · · · , tip)W (ti1, ti2, · · · , tip)T

+bT (ti1, ti2, · · · , tip)T + c) ≥ 1,

xik − αik(1− λ) ≤ tij ≤ xik + βik(1− λ),

i = 1, 2, · · · , n; k = 1, 2, · · · , p.

According to the algorithm of Dagher’s QSSVM
and Theorem 3, the fuzzy quadratic surface SVM
(FQSSVM) g(X̃) = 1

2X̃
TWX̃ + bX̃ + c can be de-

rived by the following models.
FQSSVM is built based on the principle that maxi-

mizes the sum of the approximated relative geometri-
cal margins at the center of the training fuzzy data with
respect to g(X̃) = 0̃, constrained by the conditions
that the fuzzy training example set S̃ is fuzzy quadrat-
ically separable with respect to level λ. FQSSVM
finds the fuzzy quadratic discriminant surface g(X̃) =
1
2X̃

TWX̃ + bX̃ + c by solving the following fuzzy
chance constrained programming: for the given level
λ (0 < λ ≤ 1),

minQ (W, b, c) =
n∑

i=1

∥WXi + b∥22

s.t{
Pos

{
yi

(
1
2X̃

T
i WX̃i + bT X̃i + c

)
≥ 1

}
≥ λ,

i = 1, 2, · · · , n.

(5)

where W = WT ∈ Rp×p, b ∈ Rp, c ∈ R, Xi =
(xi1, xi2, ..., xip)

T .
Considering the conditions that some fuzzy data

points may be not fuzzy quadratically separable with
respect to the level λ, a vector of slack variables
ξ=(ξ1, . . . , ξn)

T is introduced to measure the amount
of violation of the constraints, then the soft fuzzy
quadratic surface SVM (SFQSSVM) is presented as
follows:

minQ (W, b, c) =

n∑
i=1

∥WXi + b∥22 + η

n∑
i=1

ξi

s.t.{
Pos

{
yi

(
1
2X̃

T
i WX̃i + bT X̃i + c

)
≥ 1− ξi

}
≥ λ,

ξi ≥ 0, (i = 1, 2, · · · , n).

(6)

where W = WT ∈ Rp×p, b ∈ Rp, c ∈ R, Xi =
(xi1, xi2, ..., xip)

T . η > 0 is specified adjustment pa-
rameter.

The fuzzy chance constrained programming (6) can
be solved using the hybrid intelligent algorithm [17].
By Theorem 3, the fuzzy chance-constrained program-
ming (6) is equivalent to the following classical convex
quadratic programming problem (SFQSSVM):

minQ (W, b, c) =
n∑

i=1

∥WXi + b∥22 + η
n∑

i=1

ξi

s.t. (7)



yi{( 12 (ti1, ti2, · · · , tip)W (ti1, ti2, · · · , tip)T

+bT (ti1, ti2, · · · , tip)T + c)} ≥ 1− ξi;

xik − αik (1− λ) ≤ tik ≤ xik + βik (1− λ) ;

ξi ≥ 0, ; (i = 1, 2, · · · , n, k = 1, 2, · · · , p)
W = WT ∈ Rp×p, b ∈ Rp, c ∈ R.

When all X̃i(i = 1, 2, ..., n) are real-valued data,
then SFQSSVM degrades to classical QSSVM. To
simplify the SFQSSVM model, the symmetric matrix
W can be expressed in the following vector form U=

(a11, a12, · · · , a1p, a22, ..., a2p, · · · , app)T ∈ R
p2+p

2 .
The Mi is a p2+p

2 × p matrix formed as follows:
If the data Xi =(xi1, xi2, ..., xip)

T , then in each j-
th row of Mi, check the elements of vector U one by
one, if the k-th element of U is ajk (where d is any
number1 ≤ k ≤ p), then assign the k-th element of the
j-th row of Mi to be xik, otherwise, assign it to be 0.

Let Hi = (Mi, I) ∈ Rp×( p2+p
2 +p), I is the identity

matrix with p-dimensional,

Z =

(
U
b

)
∈ R

p2+3p
2

and

Si =

(
1
2 ti1ti1, ..., ti1tip,

1
2 ti2ti2 · · · , ti2tip, ....,

1
2 ti(p−1)ti(p−1), ti(p−1)tip,

1
2 tiptip, ti1, ti2, ..., tip

)
∈ R

p2+p
2 +p.
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Then the objective of the SFQSSVM is

n∑
i=1

∥WXi + b∥22 =
n∑

i=1

∥HiZ∥22

=
n∑

i=1

(HiZ)
T
(HiZ)

=
n∑

i=1

ZTHT
i HiZ

= ZT (
n∑

i=1

HT
i Hi)Z.

Let G =
n∑

i=1

HT
i Hi ∈ R

(
p2+3p

2

)
×
(

p2+3p
2

)
.

Then SFQSSVM model (7) becomes the following
quadratic optimization:

minQ (W, b, c) = ZTGZ+η
n∑

i=1

ξi

s.t. (8)
yi
(
ST
i Z + c

)
≥ 1− ξi,

xik − αik (1− λ) ≤ tik ≤ xik + βik (1− λ) ,

ξi ≥ 0 (i = 1, 2, · · · , n; k = 1, 2, · · · , p).

Obviously, optimization problem (8) is a quadratic
convex optimization, there exists optimal solutions

Z =

(
U
b

)
and c, therefore, we can obtain W =WT ∈

Rp×p, b ∈ Rp, c ∈ R.
For fuzzy example with unknown class

X̃ = (x̃1, x̃2, · · · , x̃n), the decision rule is: for
the given confidence level λ (0 < λ ≤ 1), if
Pos

{(
1
2X̃

T
i WX̃i + bT X̃i + c

)
≥ 0

}
≥ λ, then

X̃ = (x̃1, x̃2, · · · , x̃n) is a positive example; if
Pos

{
( 12X̃

T
i WX̃i + bT X̃i + c)<0

}
≥ λ, then

X̃ = (x̃1, x̃2, · · · , x̃n) is a negative example.

4. Simulations on actual data and disturbed
databases from the UCI repository

To better demonstrate the performance of our pro-
posed model, a performance measure is given as fol-
lows: TP denotes the true positive cases, that is, the
number of samples whose target category and predic-
tion category are all positive classes. Similarly, TN is

the true negative case, FP represents the false positive
case, and FN is the false negative case.

The accuracy (ACC) is the percentage of examples
that are correctly classified, and its calculation formula
is as follows:

ACC =
TP + TN

TP + FP + TN + FN
.

4.1. Simulations on actual data

In the following, SFQSSVM will be applied to the
diagnosis of coronary. The datasets [16] in Table 1
are the diastolic pressure (x̃i1) and plasma cholesterol
(x̃i2) of twenty-four persons. yi = 1 is a healthy
person, yi = −1 is a coronary patient. x̃i1 and x̃i2

are symmetric triangular fuzzy numbers. Let S1 ={
X̃i = (x̃i1, x̃i2) |i = 1, 2, ..., 10, 13, 14, ..., 22

}
be training fuzzy data set, S2 ={
X̃i = (x̃i1, x̃i2) |i = 11, 12, 23, 24

}
be test fuzzy

data set.
Based on the training data set S1 provided in Table

1, when parameters η = 0.1, λ = 0.85, using Lingo
19 to solve the programming (7) or (8), we can obtain

W =

(
0.005522, -0.003817
-0.003817 0.004394

)
,

b =

(
-0.01299
0.05111

)
,c= −0.2996.

Then the decision rule is as follows: for the given
confidence level λ = 0.85, if

Pos

{(
1

2
X̃T

i WX̃i + bT X̃i + c

)
≥ 0

}
≥ 0.85,

then X̃i = (x̃i1, x̃i2) is a positive example(healthy per-
son); if

Pos

{(
1

2
X̃T

i WX̃i + bT X̃i + c

)
< 0

}
≥ 0.85,

then X̃i = (x̃i1, x̃i2) is a negative example(coronary
patient).

Using this decision rule to classify the data in Table
1. And meanwhile, our proposed model is compared
with the fuzzy support vector machine [16]. The train-
ing accuracy and test accuracy are given in Table 2.
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The results show that our proposed model has good
training accuracy and test accuracy for this small fuzzy
dataset, and compared with the existing fuzzy data
classifier [16], it also has better performance and a high
confidence level.

4.2. Simulations on UCI data set

The dataset S uses Haberman’s Survival data from
UCI, which contains cases from 1958 to 1970 at
Billings Hospital of the University of Chicago on the
survival of patients who had undergone surgery for
breast cancer. There are 306 observations on four vari-
ables:
yi = 1 if patient i survived 5 years or longer, yi =

−1 otherwise;
xi1 is the age of patient i at time of operation;
xi2 is the year of operation for patient i (minus

1900);
xi3 is the number of positive axillary nodes detected

in patient i.
In this UCI data set, the independent variables (xi1,

xi2, xi3) are all described by positive integer. In fact,
some of them are approximate values, such as xi1, xi2,
and should be represented by a fuzzy number. Accord-
ing to the characteristics of the year data, xi1, xi2 can
be expressed as a special triangular fuzzy number of
the following form:

µx̃(t) =


1, t = x,

1− 1
r (t− x), x < t < x+ r, 0 ≤ r < 1.

0, otherwise.

x̃ can be viewed as a fuzzy number generated by
fuzzy right disturbance to the right of x, it is denoted
by x̃ = (x, 0, r), its λ-cut (x̃)λ = [x, x+r(1−λ)], 0 <
λ ≤ 1.

Considering the uncertainty of xi1 and xi2, we ran-
domly give xi1(xi2) a fuzzy disturbance to the right,
rik ∼ U(0, 1), k = 1, 2, then we have the fuzzy data
set F (S) = {(x̃i1, x̃i2, xi3) |i = 1, 2, ..., 306}, where
x̃ik=(xik, 0, rik), i = 1, 2, · · · , 306, i = 1, 2, · · · , 306;
p = 1, 2,. In this simulation study, the first 204 sample
sets F (S1) are selected as the fuzzy training data sets,
the rest F (S2) as the fuzzy test data sets.

The SFQSSVM (7) for Haberman’s Survival data
with fuzzy right disturbance is as follows:

minQ (W, b, c) =

204∑
i=1

∥WXi + b∥22 + η

204∑
i=1

ξi

s.t. (9)



yi

(
1
2 (ti1, ti2, ti3)W (ti1, ti2, ti3)

T
+ bT (ti1, ti2, ti3)

T
+ c

)
≥ 1− ξi,

xij ≤ tij ≤ xij + rij (1− λ) , i = 1, 2, · · · , 204, k = 1, 2,

ξi ≥ 0, i = 1, 2, · · · , 204,

W =

w11 w12 w13

w12 w22 w23

w13 w23 w33

∈Rp×p, b =

b1

b2

b3

 ∈ Rp, c ∈ R.

The optimization problem (9), as before, can be eas-
ily converted into a quadratic optimization form like
that of (8).

Based on the training data given in F (S1), when pa-
rameters η = 0.1, λ = 0.95, using Lingo 19 to solve
the programming (9), we can obtain

W =

 0.5797E − 04 0.1675E − 03 −0.1194E − 02
0.1675E − 03 0.3565E − 03 0.1041E − 02
−0.1194E − 02 0.1041E − 02 −0.1166E − 02

 ,

b=

−0.01280
−0.03255
−0.01759

 , c = 2.393934,

then the decision rule is obtained as follows:
For the given confidence level λ = 0.95, if

Pos
{(

1
2X̃

T
i WX̃i + bT X̃i + c

)
≥ 0

}
≥ 0.95, then

X̃i = (x̃i1, x̃i2, xi3) is a positive example; if
Pos

{(
1
2X̃

T
i WX̃i + bT X̃i + c

)
< 0

}
≥ 0.95, then

X̃i = (x̃i1, x̃i2, xi3) is a negative example. Using this
decision rule to classify the Haberman’s Survival data,
the training accuracy and test accuracy are given in Ta-
ble 3.

To show the advantages of our algorithm, we com-
pare our proposed model with other classification
models. There are several classification models to clas-
sify Haberman’s Survival data, such as Decision Tree
[18], Support Vector Machine [18], Probabilistic Mod-
eling Approach [19], and Multi-Branch Ferns-based
Naive Bayesian classifier [20]. Their training accuracy
is listed in Table 4.

Table 4 summarizes the accuracy comparison with
other classification model. It is evident that our pro-
posed model has better training accuracy and test ac-
curacy, although its training data is subjected to certain
fuzzy disturbance. Table 3 shows that positive samples
have high training accuracy and testing accuracy, but
negative samples have very low training accuracy and
testing accuracy. This may be due to the imbalance
between the two classes of samples. Positive samples
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Table 1
the data of diastolic pressure and plasma cholesterol of the patient 
of Coronary and healthy people

i x̃i1(KPa) x̃i2(mmol/L) yi i x̃i1 x̃i2 yi

1 (9.86, 0.02) (5.18, 0.01) 1 13 (10.66, 0.04) (2.07, 0.01) -1
2 (13.33, 0.02) (3.73, 0.01) 1 14 (12.53, 0.02) (4.45, 0.01) -1
3 (14.66, 0.03) (3.89, 0.02) 1 15 (13.33, 0.03) (3.06, 0.02) -1
4 (9.33, 0.01) (7.10, 0.02) 1 16 (9.33, 0.01) (3.94, 0.04) -1
5 (12.80, 0.03) (5.49, 0.02) 1 17 (10.66, 0.02) (4.45, 0.02) -1
6 (10.66, 0.02) (4.09, 0.03) 1 18 (10.66, 0.02) (4.92, 0.03) -1
7 (10.66, 0.01) (4.45, 0.02) 1 19 (9.33, 0.02) (3.68, 0.02) -1
8 (13.33, 0.02) (3.63, 0.03) 1 20 (10.66, 0.02) (3.21, 0.01) -1
9 (13.33, 0.01) (5.70, 0.02) 1 21 (10.40, 0.03) (3.94, 0.02) -1
10 (12.00, 0.03) (6.19, 0.02) 1 22 (9.33, 0.02) (4.92, 0.02) -1
11 (14.66, 0.02) (4.01, 0.01) 1 23 (11.20, 0.01) (3.42, 0.02) -1
12 (13.33, 0.02) (4.01, 0.02) 1 24 (9.33, 0.02) (3.63, 0.01) -1

Table 2
Performance evaluation and the accuracy comparison

Model Parameters Training accuracy ACC Test accuracy ACC

SFQSSVM C = 0.1, λ = 0.85 85% 100%
SVM based on fuzzy data[16] Linear kernel,C = 0.1, λ = 0.65 80% 100%

Table 3
Performance evaluation of SFQSSVM

Training accuracy ACC Test accuracy ACC
Positive examples 99.3% Positive examples 98.7%
Negative examples 8.93% Negative examples 4%
Total 74.5% Total 75.4%

Table 4
The accuracy comparison with other classification models

Model Training accuracy ACC Test accuracy ACC

SFQSSVM 74.5% 75.4%
Decision tree[18] 67.41% Not provided
SVM with radial basis function kernel[18] 73.9% Not provided
probabilistic modeling approach[19] 69% Not provided
ulti-Branch Ferns-based Naive Bayesian classifier[20] 75.8% Not provided

accounted for 73.53%, much higher than the negative
samples.

In order to improve the prediction ability of nega-
tive samples, we need to give a further classification
method for negative samples. The composition of the
new training dataset S* is as follows: partially cor-
rectly classified positive samples (28 examples) and all
misclassified negative samples (76 examples). Using
the new dataset S* to train the optimization (7) or (8).

The following fuzzy quadratic discriminant function:

g(X̃) =
1

2
(x̃i1, x̃i2, xi3)

0.005173 0.001822 0.002868
0.001822 −0.002914 0.00227
0.002868 0.00227 0.001151

x̃i1

x̃i2

xi3


+

(
−0.4488 0.05937 −0.3003

)x̃i1

x̃i2

xi3

+ 11.2401.

Using the above decision rule to classify the samples
in the new dataset S*, the total ACC is 97.13%, only
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two negative examples are misclassified, and the clas-
sification accuracy for negative examples is 97.37%.

The following conclusions can be drawn from the
two applications. Our proposed model has better train-
ing accuracy and test performance. A two-stage clas-
sification algorithm can be utilized for the imbalanced
dataset.

5. Conclusions

The classification model is widely used in health-
care management. SVM is a widely used statistical
tool for classification and is a training algorithm for
learning classification rules from data. But the perfor-
mance of SVM is closely related to the selection of an
appropriate kernel function or the kernel parameters,
existing kernel-free SVM are all based on real-value
training data. This paper proposes a kernel-free fuzzy
quadratic surface SVM (FQSSVM), in which the train-
ing dataset is fuzzy training data. The main innovations
are as follows:

– Give the concept of fuzzy quadratically separable
and its equivalent expression.

– Introduce the model of soft kernel-free fuzzy
quadratic surface SVM.

– Present the algorithm of soft kernel-free fuzzy
quadratic surface SVM.

– Apply our proposed model in medical diagnosis
to verify the validity of the method.

In further study, we are to extend our proposed
model to a semi-supervised model and give intelligent
algorithms.
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