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A B S T R A C T

How to generate an image from a text description is an imaginative and challenging task. This study proposes a
conditional generative adversarial network (GAN) of transformer architecture for text-to-image tasks called CT-
GAN by employing the GAN generator based on transformer architecture. We also propose a filtering module
suitable for non-end-to-end multi-stage models. This module can screen out the good images generated in
the previous stage and allows only the good images to participate in the generation of the later stage. This
method significantly improves the quality of the generated images. Furthermore, we designed a generator and
discriminator based on symmetry. In the generator, we propose a shift self-attention technology to establish
information communication between grids, reduce boundary loss, and improve image quality. We established
two modes of local and global discriminations based on the grid, which can balance the performance of
the generator and discriminator, improve the training stability, and accelerate the model convergence. We
conducted several experiments on the widely used conditional datasets (CUB and COCO) and unconditional
datasets (CelebA and LSUN church). The experimental results show that the proposed CT-GAN is superior to
the most advanced convolution model in generating diversity and semantic consistency. Codes are available
at: https://github.com/Jwtcode/CT-GAN.
. Introduction

Goodfellow et al. [1] first proposed the idea of generative adver-
arial networks (GANs) [2] and generated images through a game
etween a generator and a discriminator. With the continuous ad-
ancement of GAN technology, people are no longer satisfied with the
imless generation of GAN; thus, some authors proposed conditional
AN (cGAN) [3] to limit the generation of GAN by introducing some
onditional variables based on various information, such as category
abels and image descriptions. Compared to directly synthetic images,
ynthetic images from text faces several challenges, such as ensuring se-
antic consistency between text and image, generating high-resolution

mages with multiple objects and developing suitable and reliable
valuation metrics relevant to human judgments [4]. Currently, almost
ll text-to-image GANs are based on convolution architecture. They are
ommitted to improving the image resolution and effectively using text
nformation. StackGAN [5] first used multi-stage method to generate
igh-resolution images. Although this multi-stage method can synthe-
ize high-resolution images, it still has some drawbacks. For example,
he generation of the later stage depends heavily on the input of the

∗ Corresponding author at: Hebei Key Laboratory of Machine Learning and Computational Intelligence, Hebei University, Baoding, 071000, Hebei, China.
E-mail address: wangbing@hbu.edu.cn (B. Wang).

previous stage. If the quality of the images generated in the previous
stage is poor, it is not easy to correct and refine them in the later stage.
To solve this problem, StackGAN++ [6] changed the training mode
from non-end-to-end to end-to-end. This improvement achieved fine-
tuning effects by increasing the information communication between
different stages. The subsequent multi-stage models [7,8] extended
this method; however, they still had great drawbacks. The end-to-end
training mode greatly increased the memory overhead and calculation
scale, resulting in slow training and difficult convergence. Inspired by a
proposal in faster recurrent convolutional neural network (R-CNN) [9],
we seek a network that can distinguish the quality of the generated
images to filter out the bad images generated in the first stage and
complete the cleaning of the generated images without increasing the
computational cost. We call it a filter.

The processing of text information is essential for text-to-image
tasks. It is mainly divided into text information coding and utilization.
Text information coding ensures a one-to-one mapping between coding
and images. Currently, more convolution encoders are used, includ-
ing long short-term memory (LSTM) [10] and RNN [11], and some
models [12,13] use transformer-based encoders. Compared with text
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information coding, the use of text information is more critical. DM-
GAN [7] designed a series of gates that can dynamically store words to
obtain the information most relevant to image generation. Its advantage
is that it can dynamically pay attention to text information while
introducing additional and complex networks. DF-GAN [8] introduced
text information into each subblock to deeply integrate text and image
features. However, frequent introduction of text information may lead
to dimension disaster and increase the difficulty of model learning. Fun-
damentally speaking, their improvement is to make up for the inability
of convolution to obtain long-distance dependence, which is proved by
the advantages of adopting self-attention [14] and nonlocal [15] op-
erations in computer vision (CV). In contrast, a transformer can obtain
long-distance dependence without an additional network. Owing to this
advantage, we use a transformer to process image and text information
simultaneously and completely rely on the self-attention mechanism in
the transformer to complete the information communication between
text and image without introducing an additional network.

Based on the excellent performance of a transformer in natural
language processing (NLP), several authors [16,17] have introduced it
into the field of CV. Vision transformer (ViT) [18] is the first visual
classification network built with a pure transformer structure. ViT [18]
regards pixels in images as words and builds pixel-level association
through a self-attention mechanism. However, unlike NLP tasks, the
number of pixels in images is far more than the number of words in
sentences. Simply using a self-attention mechanism to calculate the
entire image causes huge computational overhead and memory con-
sumption, which is also the challenge we encounter when generating
high-resolution images. TransGAN [19] proposed a grid self-attention,
which divides the entire feature image into multiple grids and applies
self-attention to each grid separately. Although this is a good solution
to the memory bottleneck, it is accompanied by the loss of boundaries
between divided grids due to the lack of information communication
and the easy occurrence of training crashes. Inspired by the Swin-
Transformer [20], we propose shift self-attention (SSA) using a sliding
grid instead of the previous fixed grid to establish the communication
between grids. It is worth noting that using a sliding grid cannot cause
each grid to gain global attention, meaning that this generator does not
start from the global perspective in the grid generation stage. Facing
this situation, the design of the discriminator is particularly important.
We know that the improvement of generator performance cannot be
separated from the guidance of the discriminator. Since the generator
does not start from the global perspective, if the traditional discrimi-
nation mode is used to discriminate from the global perspective, it will
easily lead to a performance imbalance between the two and crash the
training. Thus, we design a discriminator symmetrical to the generator
and add a local discrimination mode. These two improvements solve
the problems of boundary loss [21] and training imbalance.

The main contributions of this study are summarized as follows.

• We proposes a conditional GAN of transformer architecture for
text-to-image tasks by employing the GAN generator based on
transformer architecture.

• We propose a filtering module suitable for non-end-to-end multi-
stage models. This module can screen out the good images gen-
erated in the previous stage and allows only the good images to
participate in the generation of the later stage.

• We designed a generator and discriminator based on symmetry.
In the generator, we propose an SSA technology to establish
information communication between grids.

• We also designed two training modes in the discriminator to
balance the performance of the generator and discriminator.

• We conducted several experiments on the widely used conditional
datasets (CUB [22] and COCO [23]) and unconditional datasets
(CelebA [24] and LSUN church [25]).
2

2. Related work

Currently, almost all text-to-image GANs are convolution-based
stack structures, and they focus on how to make better use of text
information. StackGAN [5] pioneered the stacked GAN architecture
using multiple generators and discriminators to synthesize images.
We also inherited the stacked architecture. Unlike it, we added a
filtering module between different stages to filter out the bad images
generated in the previous stage. AttnGAN [26] introduced a cross-
pattern attention mechanism to help the generator synthesize more
detailed images. DM-GAN [7] proposed a dynamic memory module to
record the importance of words to continuously refine images. They
added an attention mechanism in the model to record the importance
of each word for image synthesis. Unlike them, we did not introduce an
additional network to record the importance of words. We completely
relied on the self-attention mechanism in the transformer generator to
complete the relationship between text and images.

For GANs based on transformer architecture, TransGAN [19] pro-
posed a pure transformer GAN to generate images without convolution.
This model generator used grid generation when generating high-
resolution images. However, due to the lack of information interaction
between grids, each grid only generated what it thought was right and
ignored the rationality of the whole. Unlike them, we used a sliding
grid instead of the previous fixed grid to increase information commu-
nication between grids. CombinGAN [27] combined convolution with
a transformer using the transformer structure in the generator and
convolution structure in the discriminator. This model has no module
generated by the grid and can only generate low-resolution images.
Different from this, we fully considered the performance gap between
the transformer generator and convolution discriminator, referred to
the structure of the generator, and designed a discriminator based on
symmetry. We also designed local and global discriminations on the
discriminator to balance their performance.

In text information, we do not use an extra attention module to
record the importance of each word for image generation. We rely
entirely on the transformer’s self-attention mechanism to complete
the information interaction between text and image and ensure the
semantic consistency between text and image. In the generator part,
we designed a filtering module located at the junction of the first and
second stages. It filters out the bad images generated in the first stage
and only allows the better quality images to participate in the second
stage. We also propose an SSA using a sliding grid instead of the previ-
ous fixed grid to increase the information interaction between grids. In
the discriminator part, we refer to the generator and design a discrim-
inator based on symmetry. Additionally, we design two modes: local
and global discriminations. Compared with the traditional convolution
discriminator, our designed discriminator can adjust its performance
according to the generator’s performance to better guide the generator,
improve the training stability, and speed up the convergence of the
model. We designed the generator and discriminator around the grid
to ensure that the semantics of each grid in the generator is as correct
as possible and that the semantics of all grids combined are as correct
as possible.

3. CT-GAN

The proposed CT-GAN employs the most commonly used multi-
stage method (Fig. 1), which consists of two pairs of generators and
discriminators and a filter using the Stage-I discriminator. CT-GAN
takes text as input and extracts sentence features through a LSTM [28]
text encoder. The sentence feature combined with noise samples by
the enhancement method is the generator input, through a two-stage
generator and filter, the final generated image serves as the output
result.



X. Zhang, W. Jiao, B. Wang et al. Signal Processing: Image Communication 115 (2023) 116959
Fig. 1. Architecture of the proposed CT-GAN for text-to-image synthesis. The proposed CT-GAN consists of two pairs of generators and discriminators. The generator uses a pure
transformer architecture, and the discriminator uses a convolution architecture. Here, 𝑐0 and 𝑐1 represent the conditional inputs of the first and second stages, respectively; 𝑠0 and
𝐼0 represent the generated images and real samples of the first stage, respectively; 𝑠1 and 𝐼1 represent the generated images and real samples of the second stage, respectively.
The first stage generates 64 × 64 resolution images; the second stage generates 128 × 128 resolution images; the two stages have independent training.
3.1. Preliminaries

GAN consists of a generator G and a discriminator D. The generator
G and the discriminator D are trained alternately. The generator G tries
to fool the discriminator D, and the discriminator D tries not to be
fooled by the generator G. The training process is similar to two-person
arm wrestling, and the objective function is as follows:

min𝐺max𝐷𝑉 (𝐺,𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 [log 𝐷(𝑥)]

+ E𝑧∼𝑝𝑧 [log (1 −𝐷(𝐺(𝑥)))]
(1)

3.2. Filter module

For the stacked GAN model, there are two modes to choose from:
the non-end-to-end mode, where each stage is trained separately, and
the end-to-end mode, where multiple stages are trained together. The
most advanced text-to-image GANs [7,8] are based on the latter. The
advantages of the former are memory-friendly and faster convergence;
however, it has the disadvantage that there is no interaction between
the stages and cannot make some minor adjustments. The advantage of
the latter is that it can solve the interaction problem among different
stages and make some minor adjustments; however, it has the disadvan-
tages of slow convergence speed, high memory occupation, and long
training period.

CT-GAN is trained independently at each stage because of its
memory-friendly non-end-to-end mode. This training mode highly de-
pends on the quality of the initial image. Although the second stage
can correct the defects of the image generated in the first stage, it
cannot be corrected when faced with extremely low-quality images.
To address this situation, we propose using a filter to filter out the
low-quality images generated in the first stage as much as possible.
After the first stage of training, we obtain a pretrained generator and
discriminator. We use the discriminator in the first stage as our filter
(Fig. 2). For the same text description, the generator generates n images
simultaneously. Our filter scores these n images, selects the image with
the highest score, and sends it to the second stage for training. From
the shallow level, it can be understood that the filter can filter out some
bad images with a high probability. However, from the deep level, it
can be understood that we artificially narrow the feature distribution
space of the generator; thus, increasing the probability of intersecting
with the real image feature distribution space.

The selection of a filter should follow the following principles. We
hope that the filter can distinguish the low-quality and real images
3

Fig. 2. The input of the first stage is random noise and text description encoding,
and the output is n images corresponding to the text description, where n is a
hyperparameter, and the default setting is 10. The input of the filter module is the
n images generated in the first stage, corresponding to the text description of the n
images; the output is a value from 0 to 1, which is used to evaluate the quality of the
generated images.

generated in the first stage and cannot distinguish the high-quality and
real images generated by the first-stage generator, which ensures that
only the generated high-quality images can enter the second stage. If
the filter cannot distinguish the generated image from the real image,
or if it can completely distinguish the generated image from the real
image, then this filter is not available.

Our filter is the discriminator trained in the first stage. Theoreti-
cally, the final state of the GAN model training is that the discriminator
cannot distinguish the real image from the generated image. However,
in the final test results, it was found that the score distribution of the
real image does not overlap with that of the generated image. We use
the model trained in the first stage to obtain the score distribution map
of the COCO dataset (Fig. 3). It can be seen that the scores of the
generated images are mostly distributed between 0 and 0.1, whereas
those of the real images are mostly distributed after 0.1. Thus, it can
be considered that the generated images with scores after 0.1 are closer
to the real images, which also satisfies the above principle that the filter
should be able to distinguish the generated low-quality images from the
real images, but not the high-quality generated images from the real
images. We also verified the effectiveness of the method in subsequent
ablation experiments.
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Fig. 3. Score distribution of the generated and real images. Blue and red represent the
ratio of the generated and real images, respectively.

Fig. 4. Transformer and SwinTransformer encoders.

.3. Transformer encoder

The transformer encoder plays an essential role as the core com-
onent of all transformer-based models in the field of NLP and CV.
oreover, many versions have been recently derived, and the Swin-
ransformer encoder is one of the most representative. In our model,
oth encoders are used simultaneously (Fig. 4). Fig. 4(a) shows the
ransformer encoder, which is a single-layer structure; it consists of al-
ernating layers of multiheaded self-attention (MSA) and multi-layered
erceptron (MLP) blocks. Layernorm (LN) is applied before every block
nd residual connections after every block. The MLP contains two
ayers with a GELU [29] nonlinearity. Fig. 4(b) shows the SwinTrans-
ormer encoder, which is a double-layer structure; the left side is
he same as the transformer encoder, and the right side uses shifted
indows MSA (SW-MSA) replaces MAS in the transformer encoder.

The MAS in the transformer encoder directly focuses on the infor-
ation of the current window. The W-MSA and MSA in the SwinTrans-

ormer encoder only focus on the information of the current window. In
ontrast, the SW-MSA slides to the neighborhood window and obtains
he information about the window. This feature of the SwinTransformer
ncoder allows the generator to pay attention to the information on

he current and neighborhood windows when the grid is generated,

4

which is beneficial for the grid to refer to the information in the
neighborhood grid while drawing itself to improve the rationality of
the overall layout, which is explained in detail in Section 3.4.

3.4. Shift self-attention

Compared with CNN, the advantage of transformer lies in its ability
to capture global information because of its self-attention mechanism;
however, this mechanism has disadvantages. Moreover, large-scale
calculations often occur when dealing with long sequences or high-
resolution images, which seriously reduce the reasoning efficiency.
TransGAN [19] uses grid self-attention technology to solve this problem
(Fig. 5(b)). Compared with the standard self-attention in Fig. 5(a), the
grid self-attention divides the entire feature map into several grids
of the same size and applies the standard self-attention to each grid.
Each grid attention only focuses on the information in the current
grid. Its advantage is that it can reduce the computational cost and
is conducive to describing local details. However, its disadvantage is
that information communication between grids is impossible, which is
not conducive to improving the overall image quality. To solve this
problem, we introduce SSA (Fig. 5(c)) by offsetting the grid in different
layers to obtain the information in the neighborhood grid. The standard
self-attention is still applied in each grid; its advantage is that each grid
refers to the information in other grids while drawing itself, which is
essential in improving the overall image quality.

We apply the standard self-attention to each grid. In the standard
self-attention, we use relative position-encoded attention, given as
follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(((
𝑄𝐾𝑇

√

𝑑𝑘
+ 𝐸)𝑉 )) (2)

Here, 𝑄,𝐾, 𝑉 ∈ R𝐻×𝑊 ×𝐶 represent the query, key, and value matrixes,
respectively. 𝐻,𝑊 ,𝐶 represent the height, width of the image, and
dimension of the feature map embedding. The difference in coordinate
between each query and key on 𝐻 axis lies in the range of [−(𝐻−1),𝐻−
], and similar for 𝑊 axis. By simultaneously considering the 𝐻 and

axes, the relative position can be represented by a parameterized
atrix 𝑀 ∈ R(2𝐻−1)×(2𝑊 −1). The relative position encoding 𝐸 is taken

rom matrix 𝑀 for each coordinate and added to the attention map
𝐾𝑇 as a bias term.

.5. Positional embedding

In NLP, the most important thing in position coding is to add
osition information to reflect the different positions of each word.
osition information is artificially set for each word because the same
ord has different meanings in different positions. In GAN, we re-
xamine the requirements of position encoding. First, we hope to reflect
he meaning of the same pixel value in different positions. Second, we
ope that pixels and pixels reflect a certain relative order relationship.
ompared with establishing the relationship between words, artificially
stablishing the relationship between pixels is extremely large and
omplex. We draw on the experience of TransGAN [19] and use a
earnable one-dimensional (1D) position embedding, which is different
rom it. We only use it when generating low-resolution images. When
rid generation is needed, considering the mobility of the grid, we
ancel the location embedding.

.6. Generator

We take the first stage of generating a 64 × 64 resolution image
s an example. The generator in this stage consists of Parts I and
I. Part I generates the feature map with a resolution of not more
han 32, whereas Part II generates the feature map with a resolution
f more than 32. Fig. 6 describes the process of generating images
sing the generator, including initialization of input features, location
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Fig. 5. Three ways to calculate attention.
Fig. 6. Pipeline of the pure transform-based generator of the first-stage CT-GAN. We take the 64 × 64 resolution image generation task as a typical example of the main procedure.
ach small square in the image represents a pixel. When the resolution is less than or equal to 32, we loop Part I. In this part, we use the standard self-attention. When the
esolution is greater than 32, we need to use the grid generation. We execute Part II and use shift self-attention in this part.
mbedding, iteration of feature maps, sampling of feature maps, and
apping and outputting of feature maps.

In the first step, we use MLP to fuse random noise and text vectors.
e initialize them into 2D image features denoted as 𝑥0 ∈ R𝐻×𝑊 ×𝐶 .

For the initialized 𝑥0, 𝐻 , 𝑊 are relatively small, and 𝐶 is relatively
large,so as to provide sufficient resources for subsequent upsampling
operations.

In the second step, since the transformer encoder cannot directly
process 2D information, the 2D feature map 𝑥0 needs to be flattened
into a 1D feature map sequence 𝑥0 ∈ R(𝐻×𝑊 )×𝐶 , each small square
in Fig. 6 represents a pixel. There are 𝐻 × 𝑊 pixels in total, and the
number of channels of each pixel is C.
5

In the third step, to preserve the spatial position information be-
tween pixels, we embed a learnable position code for the flattened 𝑥0,
as follows:

𝑥0 = [𝑃 𝑖𝑥1, 𝑃 𝑖𝑥2,… , 𝑃 𝑖𝑥𝑛] + 𝐸𝑝𝑜𝑠,

𝑛 = 𝐻 ×𝑊 ,𝐸𝑝𝑜𝑠 ∈ R𝑛×𝑐 (3)

where 𝑛 is the number of all pixels in the entire feature map sequence.
The random initialization is between 0 and 1, and the dimension is
consistent with the input feature map sequence.

The fourth step is to send the feature map sequence 𝑥0 embedded
with location information into the transformer encoder. At this time,
the width and height of the feature map are not greater than 32.
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Fig. 7. Pipeline of the pure convolution discriminator in the first stage CT-GAN. We
take the discrimination of 64 × 64 resolution images as an example of the main process.

here are two discrimination modes in the figure: local discrimination (GridCNN) and
lobal discrimination (FullCNN). Local discrimination is used in the early stage of
raining, whereas global discrimination is used in the late stage of training.

herefore, there is no need to divide the grid, and the transformer
ncoder is used to update the iterative feature map directly.

In the fifth step, feature map upsampling, we reshape the 1D feature
ap sequence 𝑥0 to 2D images feature 𝑥0, upsample 𝑥0 to obtain 𝑥1 ∈

R2𝐻×2𝑊 ×𝐶∕4, and then loop all operations of Part I until the feature
figure size is greater than 32.

The last step is to reshape the 𝑘 1D token output using the Swin-
Transformer encoder into 𝑘 2D grids, then reset the 𝑘 2D grids accord-
ing to the window position to obtain a feature map of a given size, and
finally project the number of channels of the feature map to three to
get the final RGB image result ∈ R𝐻×𝑊 ×3.

3.7. Discriminator

We refer to the structure of the generator and design the discrimina-
tor based on symmetry. Moreover, to better balance the performance of
the generator and discriminator, we propose two training modes: local
and global discriminations.

The idea of symmetry is reflected as follows. Assuming that the
number of layers of the generator and discriminator is n, the generator
adopts the method of sub-grid generation when generating a 64 × 64
resolution image at the ith layer. Then, the discriminator identifies the
64 × 64 resolution image at the 𝑛−𝑖th layer. The method of sub-grid
identification should also be used.

As an example, we take the first stage to discriminate 64 × 64
resolution images. Fig. 7 describes the process of the discriminator to
discriminate images.

In the early stage of training, since the generator is difficult to learn
and inefficient, and the discriminator has a low learning difficulty and
high efficiency, the performance of the generator and discriminator is
unbalanced, which is also the root cause of mode collapse. Therefore,
to balance their performance, we used the grid discrimination mode
in the early stages of training. In this mode, the discriminator will not
6

discriminate the image from the overall perspective but discriminate
the image from the perspective of each grid; thus, reducing the real
image. This is different from the generated images; thus, avoiding mode
collapse. From the generator’s perspective, the grid discrimination
mode can guide the generator more quickly on what each grid should
generate to quickly outline the prototype.

In the later stage of training, after improving the performance
of the generator, the grid-based discrimination mode has limited the
generator. We are not forcing the generator to generate something for
each grid. As long as the entire image is reasonable, it can be regarded
as a good image. This requires the discriminator to discriminate from
an overall perspective. Thus, we adopt a global discriminative mode in
the later stages of training.

This method can improve the stability of model training, speed up
model convergence, and improve the quality of the final generated
image.

3.8. Objective function

As shown in Fig. 1, in the first stage, the pretrained text-encoder is
used to encode the text description to obtain the conditional variable
𝑐0 that obeys the Gaussian distribution. The conditional variable 𝑐0 and
the random noise 𝑧 are fused and sent to 𝐺0 to generate a low-resolution
mage 𝑠0, and then fuse 𝑐0 with 𝑠0 and the real sample 𝐼0, respectively,
nd pass it into the discriminator 𝐷0. This process can be represented
y the objective functions 𝐷0

and 𝐺0
. Stage-I trains discriminator 𝐷0

nd generator 𝐺0 by maximizing 𝐺0
and minimizing 𝐷0

, respectively,
s follows.

𝐷0
= E(𝐼0 ,𝑡)∼𝑝𝑑𝑎𝑡𝑎 [log 𝐷0(𝐼0, 𝑐0)]+

E𝑧∼𝑝𝑧 ,𝑡∼𝑝𝑑𝑎𝑡𝑎 [log (1 −𝐷0(𝐺0(𝑧, 𝑐0), 𝑐0))]
(4)

𝐺0
= E𝑧∼𝑝𝑧 ,𝑡∼𝑝𝑑𝑎𝑡𝑎 [log (1 −𝐷0(𝐺0(𝑧, 𝑐0), 𝑐0))] (5)

he real image 𝐼0 and text description 𝑡 obey the real sample distribu-
ion 𝑝𝑑𝑎𝑡𝑎, and 𝑧 is random noise obeying the Gaussian distribution.

Entering the second stage, we need to introduce 𝐺0 and 𝐹0, use 𝐺0
o generate a low-resolution image 𝑠0, and then score through the filter
0, select the image 𝑠0 with the highest score. After downsampling
he image 𝑠1 to an appropriate size, it is fused with the conditional
nformation 𝑐1 and sent to 𝐺1 to generate a high-resolution image.
or the discriminator 𝐷1, the same as in the first stage, 𝑐1 is sent to
1 combined with the real sample 𝐼1, and the corresponding results
re obtained. The discriminator 𝐷1 and generator 𝐺1 in Stage-II GAN
re trained by alternatively maximizing 𝐺1

and minimizing 𝐷1
,

espectively, as follows.

𝐷1
= E(𝐼1 ,𝑡)∼𝑝𝑑𝑎𝑡𝑎 [log 𝐷1(𝐼1, 𝑐1)]+

E𝑠0∼𝑝𝐺0 ,𝑡∼𝑝𝑑𝑎𝑡𝑎
[log (1 −𝐷1(𝐺1(𝐹0(𝑠0, 𝑐1), 𝑐1), 𝑐1))]

(6)

𝐺1
= E𝑠0∼𝑝𝐺0 ,𝑡∼𝑝𝑑𝑎𝑡𝑎

[log (1 −𝐷1(𝐺1(𝐹0(𝑠0, 𝑐1), 𝑐1), 𝑐1))] (7)

nlike the first stage, the second stage does not use random noise as
nput; however, it uses the low-resolution image generated in the first
tage as input, which also has randomness.

. Experiments

.1. Datasets

We performed conditional image generation in the CUB and COCO
atasets. The CUB dataset contains 11,788 images of 200 bird species,
f which 150 categories and 8855 images are used for training, and
he remaining 50 categories and 2933 images are used for testing. Each
mage has ten text descriptions. The COCO dataset consists of 80k and
0k images for the training and test sets, respectively. Each image
as five text descriptions. we also conducted unconditional image
eneration on CelebA and LSUN church datasets.
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4.2. Implementation details

Before the training, we first use the pretrained bidirectional LSTM
[28] to encode all the text information, obtain the text embedding,
and use the image and text embedding as input during training. Image
preprocessing is also crucial for CT-GAN. For single-category datasets,
we use the Boundingbox that comes with the dataset to crop the images
so that the model pays more attention to the target instead of the
background.

Due to the memory limitation, we only have two stages of image
generation: 64 × 64 and 128 × 128 resolution images.

When we first built the model, we first tried using the pure trans-
ormer architecture in the generator and discriminator. The experi-
ental results confirm that this architecture effectively generates low-

esolution (not more than 48) images. When the resolution is further
mproved, the discriminator of the transformer architecture cannot
lay a good role. We replaced the discriminator with a convolution
tructure. Consequently, we found that the discriminator of convolution
tructure could make the model training more stable and generate
ecognizable images.

For the loss function, in the case of conditional training, we need
o divide the positive and negative samples. Positive samples pair real
mages with real labels. In contrast, negative samples pair not only fake
mages with real labels but also fake images. Paired with the wrong
abels, we use a binary cross-entropy loss function. The generator and
iscriminator use the Adam optimizer with a learning rate of 2𝑒−4,

𝛽1 of 0.5, 𝛽2 of 0.999. However, we do not need to divide positive
and negative samples for unconditional training. The generator and
discriminator use the Adam optimizer with a learning rate of 2𝑒−4, 𝛽1
f 0.5, and 𝛽2 of 0.999. In the first stage, we set the batch size of the
enerator and discriminator to 128. Meanwhile, in the second stage,
e set the batch size to 64. We used 8 P100 GPUs and the open source
ython library Pytorch to implement the CT-GAN model.

.3. Evaluation criteria

We choose the widely used inception score (IS) [30] and Frechet
nception distance (FID) [31] as evaluation criteria. IS examines the
erformance of the generated model from two aspects to determine
hether the quality of the generated image is clear. The larger the IS
alue, the more representative the image. The higher the clarity of the
mage, the higher the quality of the image. The second is to determine
hether the generated image has diversity, i.e., the generated image

ontains as many categories as possible. FID is another evaluation
riterion that considers more connections between the generated and
eal images. It determines whether the image quality is good or bad by
alculating the Frechet distance between the synthetic and real-world
mage distributions in the feature space. Contrary to IS, the smaller the
alue of FID, the more realistic the generated image. We generated 30k
ample images on the conditional datasets using the text descriptions
f the untrained test set for computing FID and IS. In contrast, we
sed the trained model to randomly generate 50k sample images on
n unconditional datasets to calculate FID and IS.

.4. Experiment results

We compare the most advanced text image synthesis methods [7,8]
n CUB and COCO datasets with text descriptions. We obtain the IS and
ID of these state-of-the-art models on the conditional datasets from the
fficial pretrained models (Table 1). The results show that the proposed
T-GAN achieves the highest score on IS compared with other leading
odels, with the second best score on FID, just behind DF-GAN [8].
ompared with the current state-of-the-art DF-GAN [8], we improved
he IS from 5.10 to 5.37 and 30.49 to 33.01 on the CUB and COCO

atasets, respectively.
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Table 1
Results of IS and FID compared with state-of-the-art methods on CUB and COCO
datasets. The best results are in bold.

Methods CUB COCO

IS FID IS FID

StackGAN 3.70 ± 0.04 (–) 8.45 ± 0.03 (–)
AttentionGAN 4.36 ± 0.03 23.98 25.89 ± 0.47 35.49
DM-GAN 4.75 ± 0.07 16.09 30.49 ± 0.57 32.64
DF-GAN 5.10 ± 0.03 14.81 (–) 21.42
Ours 5.37 ± 0.04 15.06 35.26 ± 0.43 32.36

Table 2
Results of FID compared with state-of-the-art methods on the CelebA dataset.

Methods COCOGAN StyleGANv2 TransGAN Ours

CelebA 5.74 5.59 5.28 5.14

Table 3
Results compared with state-of-the-art models on Params, Memory, GFLOP and FPS
metrics.

Methods Params(M) Memory (MB) GFLOPs FPS

StackGAN 97.55 573.24 15.92 184
AttentionGAN 29.77 433.38 17.96 152
DM-GAN 87.20 456.07 33.93 57
DF-GAN 32.41 387.06 13.22 233
TransGAN 180.15 2785.28 102.62 8
Ours 99.20 952.96 30.73 86

The three state-of-the-art image synthesis methods [19,32,33] are
compared on the CelebA dataset without textual information. we obtain
the FID of these state-of-the-art models from the official pretrained
models (Table 2). We compared our model and current state-of-the-art
models. Compared with TransGAN [19], we drop the FID value from
5.28 to 5.14.

We also compared the relevant metrics of the proposed CT-GAN and
other models when generating the image of 128 × 128 resolution by us-
ing the same setting (Table 3). It can be seen that under the number of
parameters, the memory and calculation amount (GFLOPS) consumed
by CT-GAN are much higher than StackGAN, which indirectly leads
to the lag in terms of speed (FPS). The reason for this result is that
the computation mode of Transformer and convolution is different.
Compared with TransGAN, the same Transformer architecture, we have
obvious advantages in each metrics, but there is still a lot of room to
rise over the state-of-the-art convolution model.

The experimental results show that the generator based on the
transformer architecture has more advantages in IS than that with
the convolutional structure. This advantage is mainly reflected in the
diversity of the generated images.

4.5. Visual quality

For qualitative evaluation, Fig. 8 shows an example of text-to-image
synthesis generated using the proposed CT-GAN and state-of-the-art
models. Generally speaking, compared with convolution model, our CT-
GAN synthesizes the semantic information of images more accurately
in most cases, because we use the generator of pure Transformer. The
self-Attention mechanism in Transformer allows long-distance pixels
or words to contact directly, which makes it easier for the model to
learn the long-distance dependence of sequences, which is essential for
synthesizing images from texts.

It can be seen that the visual effect of the proposed CT-GAN on
single-category CUB dataset is not inferior to that of the two most
advanced convolution models, even superior to them in some scenes.
For example, the transition of feather color is more natural and rich
(columns 2, 4, and 7). Owing to the generator of transformer architec-
ture and the use of SSA, things can be portrayed from a larger receptive
field. For example, the description and integration of the background
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Fig. 8. Examples of images synthesized using DM-GAN [7], DF-GAN [8], and our proposed CT-GAN conditioned on text descriptions from the test set of CUB and COCO dataset.
Fig. 9. Examples of images synthesized our proposed CT-GAN on CelebA and LSUN church datasets.
are purer and more natural (columns 1, 2, 3, 4, 6, and 7). There are no
words related to the background in the text description. Meanwhile, the
convolution-based model randomly produces more backgrounds, and
the background of our model is simpler. This indicates that the trans-
former can grasp the key information in processing text information,
8

learn the mapping relationship between text and image, and synthesize
images from the text description perspective. We also conducted exper-
iments on more challenging COCO dataset. The experimental results
show that the proposed model is inferior to convolution-based models
in detail control of multi-category datasets but superior to them in
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Table 4
Performance of different architectures of the proposed CT-GAN on CUB and COCO
datasets. Grid self-attention (Fig. 5(b)) technology is used as the baseline. GC and SSA
represent GridCNN and shift self-attention, respectively.

Architecture CUB

IS FID

Baseline 5.04 24.36
Baseline+Filter 5.17 20.17
Baseline+GC 5.16 22.16
Baseline+SSA 5.33 18.13
Baseline+Filter+SSA+GC 5.37 15.06

semantic consistency and text understanding. For example, in the first
column, DM-GAN [7] and DF-GAN [8] focus on depicting characters,
ignoring the information about ‘‘snowboard’’ and our model captures
this information, indicating that the transformer model is superior to
convolution-based models in semantic image consistency.

Fig. 9 shows an example of image synthesis using the proposed CT-
GAN without textual information. Compared with the most advanced
TransGAN [19] based on transformer architecture, our advantage lies
in the multi-stage method and the self-attention mode based on a
sliding grid. The multi-stage method can synthesize images step by step,
reducing the difficulty of synthesizing images, while sliding grid can
increase the information communication between different grids and
improve the overall quality of images.

It can be seen that the visual effect of the proposed CT-GAN on
CelebA and LSUN church datasets, We can observe the skin color, hair
color, expression and other details from the face images, and different
architectural styles can be observed in the architectural images, all of
which show pleasant visual details and diversity.

4.6. Ablation study

To further evaluate the effectiveness of the proposed components,
we perform an ablation study, add these components to the base
method separately, and report their IS and FID scores on the CUB
dataset.

We define a baseline model, which excludes filter, GridCNN (GC),
and SSA but uses a grid self-attention (Fig. 5(b)). To evaluate the
effectiveness of these components separately, we add these components
to baseline for comparison. As presented in Table 4, IS and FID obtained
using the baseline model are 5.04 and 24.36, respectively. Compared
with the baseline model, the filter improves the IS score from 5.04 to
5.17, the FID reduces from 24.36 to 20.17, and the GC improves the
IS score from 24.36 to 20.17. The score increases from 5.04 to 5.16,
and the FID decreases from 24.36 to 22.16.SSA increases the IS score
from 5.04 to 5.33, and the FID decreases from 24.36 to 18.13. It can
be seen that each component plays a corresponding role in the model,
especially the filter, and SSA components play a key role. Finally, we
combine all components to improve the IS score from 5.04 to 5.37 and
reduce FID from 24.36 to 15.06.

In order to show the role of the filter more intuitively, we use the
same text description to generate 5 images under the action of different
noises. As shown in Fig. 10, the filter scores them according to the text
description, and it can be seen that the images with higher recognition
get higher scores, and the images with lower recognition get lower
scores. When the images of the first stage are sent to the second stage,
it can be seen that the images with high scores in the first stage finally
produce higher image quality. This is enough to prove that when the
filter is strong enough and the sample is generated enough, the bad
image rate of the final generated image drops to very low, and this
method can be extended to almost all multistage models.

Moreover, we also tested the convergence speed of the model in
local and global discrimination modes. As shown in Fig. 11, in the
10th step at the beginning of the training, the contour of the face
was captured by the generator in the local discrimination mode, but
9

Fig. 10. The filter scores the images generated under different noise for the same text
description, with the red font as the obtained score.

Fig. 11. The first stage generator visualizes the pre-training effect in two modes of
global discrimination (FullCNN) and local discrimination (GridCNN).

there was no change in the global discrimination mode. After a epoch
of training, it can be observed that the quality of the synthesized
picture in the global discrimination mode lags behind that in the local
discrimination mode, which also shows that the convergence speed of
the model is faster in the local discrimination mode.

5. Conclusions

In this study, we developed a new architecture called CT-GAN and
applied the GAN generator based on the transformer architecture to
the text-to-image tasks. We also propose a filtering module that can
filter out low-quality images. Additionally, we design the generator
and discriminator based on symmetry. In the generator, we propose
an SSA technology to establish information communication between
grids. We used two discrimination modes in the discriminator, local
and global discriminations, to balance the performance of the generator
and discriminator. Experimental results on several real datasets show
that the proposed CT-GAN is superior to the most advanced convolution
model in generating diversity and semantic consistency. In the future,
we will try to choose more effective filtering modules and synthesize
higher resolution images.

CRediT authorship contribution statement

Xin Zhang: Writing - Review, Editing. Wentao Jiao: Writing -
Original Draft, Software. Bing Wang: Conceptualization, Methodology,
Software. Xuedong Tian: Writing - Review, Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.



X. Zhang, W. Jiao, B. Wang et al. Signal Processing: Image Communication 115 (2023) 116959
Acknowledgments

This research work is partially supported by the National Natural
Science Foundation of China (Grant No. 61375075), the Natural Sci-
ence Foundation of Hebei Province of China (Grant No. F2019201329),
the Special Project of Science and Technology Department of Hebei
Province (Grant No. 2021H060306). The authors are grateful to the
clinicians in Hebei University Affiliated Hospital and Hebei Key Lab-
oratory of Machine Learning and Computational Intelligence for their
support in providing data and clinical advice.

References

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process. Syst.
27 (2014).

[2] I. Goodfellow, Nips 2016 tutorial: Generative adversarial networks, 2016, arXiv
preprint arXiv:1701.00160.

[3] M. Mirza, S. Osindero, Conditional generative adversarial nets, 2014, arXiv
preprint arXiv:1411.1784.

[4] S. Frolov, T. Hinz, F. Raue, J. Hees, A. Dengel, Adversarial text-to-image
synthesis: A review, Neural Netw. 144 (2021) 187–209.

[5] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, S. Belongie, Stacked generative
adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5077–5086.

[6] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, D.N. Metaxas, Stackgan++:
Realistic image synthesis with stacked generative adversarial networks, IEEE
Trans. Pattern Anal. Mach. Intell. 41 (8) (2018) 1947–1962.

[7] M. Zhu, P. Pan, W. Chen, Y. Yang, Dm-gan: Dynamic memory generative
adversarial networks for text-to-image synthesis, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 5802–5810.

[8] M. Tao, H. Tang, S. Wu, N. Sebe, X.-Y. Jing, F. Wu, B. Bao, Df-gan: Deep fusion
generative adversarial networks for text-to-image synthesis, 2020, arXiv preprint
arXiv:2008.05865.

[9] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object
detection with region proposal networks, Adv. Neural Inf. Process. Syst. 28
(2015).

[10] Y. Yu, X. Si, C. Hu, J. Zhang, A review of recurrent neural networks: LSTM cells
and network architectures, Neural Comput. 31 (7) (2019) 1235–1270.

[11] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder for
statistical machine translation, 2014, arXiv preprint arXiv:1406.1078.

[12] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

[13] K. Lagler, M. Schindelegger, J. Böhm, H. Krásná, T. Nilsson, GPT2: Empirical
slant delay model for radio space geodetic techniques, Geophys. Res. Lett. 40
(6) (2013) 1069–1073.

[14] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adver-
sarial networks, in: International Conference on Machine Learning, PMLR, 2019,
pp. 7354–7363.
10
[15] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
7794–7803.

[16] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, Deformable detr: Deformable
transformers for end-to-end object detection, 2020, arXiv preprint arXiv:2010.
04159.

[17] Y. Chen, X. Dai, D. Chen, M. Liu, X. Dong, L. Yuan, Z. Liu, Mobile-former:
Bridging mobilenet and transformer, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 5270–5279.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth
16x16 words: Transformers for image recognition at scale, 2020, arXiv preprint
arXiv:2010.11929.

[19] Y. Jiang, S. Chang, Z. Wang, Transgan: Two transformers can make one strong
gan, 2021, arXiv preprint arXiv:2102.07074, 1.

[20] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer:
Hierarchical vision transformer using shifted windows, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 10012–10022.

[21] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, I.B. Ayed, Boundary
loss for highly unbalanced segmentation, in: International Conference on Medical
Imaging with Deep Learning, PMLR, 2019, pp. 285–296.

[22] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie, The caltech-ucsd
birds-200–2011 dataset, 2011.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L.
Zitnick, Microsoft coco: Common objects in context, in: European Conference on
Computer Vision, Springer, 2014, pp. 740–755.

[24] Z. Liu, P. Luo, X. Wang, X. Tang, Large-scale celebfaces attributes (celeba)
dataset, 2018, p. 11, Retrieved August 15.

[25] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, J. Xiao, Lsun: Construction of
a large-scale image dataset using deep learning with humans in the loop, 2015,
arXiv preprint arXiv:1506.03365.

[26] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, X. He, Attngan:
Fine-grained text to image generation with attentional generative adversarial
networks, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 1316–1324.

[27] R. Durall, S. Frolov, J. Hees, F. Raue, F.-J. Pfreundt, A. Dengel, J. Keuper,
Combining transformer generators with convolutional discriminators, in: German
Conference on Artificial Intelligence (KÜNstliche Intelligenz), Springer, 2021, pp.
67–79.

[28] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional
LSTM and other neural network architectures, Neural Netw. 18 (5–6) (2005)
602–610.

[29] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), 2016, arXiv preprint
arXiv:1606.08415.

[30] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen,
Improved techniques for training gans, Adv. Neural Inf. Process. Syst. 29 (2016).

[31] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, Gans trained
by a two time-scale update rule converge to a local nash equilibrium, Adv. Neural
Inf. Process. Syst. 30 (2017).

[32] C.H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, H.-T. Chen, COCO-GAN:
Conditional coordinate generative adversarial network, 2018.

[33] Y. Viazovetskyi, V. Ivashkin, E. Kashin, Stylegan2 distillation for feed-forward
image manipulation, in: European Conference on Computer Vision, Springer,
2020, pp. 170–186.

http://refhub.elsevier.com/S0923-5965(23)00041-3/sb1
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb1
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb1
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb1
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb1
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1411.1784
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb4
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb4
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb4
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb5
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb5
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb5
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb5
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb5
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb6
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb6
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb6
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb6
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb6
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb7
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb7
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb7
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb7
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb7
http://arxiv.org/abs/2008.05865
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb9
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb9
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb9
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb9
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb9
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb10
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb10
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb10
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb13
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb13
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb13
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb13
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb13
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb14
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb14
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb14
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb14
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb14
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb15
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb15
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb15
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb15
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb15
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159
http://arxiv.org/abs/2010.04159
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb17
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb17
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb17
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb17
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb17
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2102.07074
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb20
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb20
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb20
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb20
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb20
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb21
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb21
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb21
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb21
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb21
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb22
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb22
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb22
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb23
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb23
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb23
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb23
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb23
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb24
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb24
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb24
http://arxiv.org/abs/1506.03365
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb26
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb27
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb28
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb28
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb28
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb28
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb28
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb30
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb30
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb30
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb31
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb31
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb31
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb31
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb31
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb32
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb32
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb32
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb33
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb33
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb33
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb33
http://refhub.elsevier.com/S0923-5965(23)00041-3/sb33

	CT-GAN: A conditional Generative Adversarial Network of transformer architecture for text-to-image
	Introduction
	Related Work
	CT-GAN
	Preliminaries
	Filter module
	Transformer encoder
	Shift Self-Attention
	Positional Embedding
	Generator
	Discriminator
	Objective function

	Experiments
	Datasets
	Implementation Details
	Evaluation Criteria
	Experiment Results
	Visual Quality
	Ablation Study

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


