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a b s t r a c t

Recently, contrastive learning has gained increasing attention as a research topic for image-clustering
tasks. However, most contrastive learning-based clustering models focus only on the similarity of
embedded features or divergence of cluster assignments, without considering the semantic distribution
of instances, undermining the performance of clustering. Therefore, an improved deep clustering model
based on semantic consistency (DCSC) was proposed in this study, motivated by the assumption
that the semantic probability distribution of various augmentations of the same instance should
be similar and that of different instances should be orthogonal. The DCSC fully exploits instance-
level differentiation, cluster-level discrimination, and semantic consistency of instances to design the
objective function. Compared with existing contrastive learning-based clustering models, the proposed
model is more cluster-sensitive to differentiate semantic concepts owing to the incorporation of cluster
structure discovering loss. Extensive experimental results on six benchmark datasets illustrate that the
proposed DCSC achieves superior performance compared to the state-of-the-art clustering models,
with an improved accuracy of 9.3% for CIFAR-100 and 22.1% for tiny-ImageNet. The visualization
results show that the DCSC produces geometrically well-separated cluster embeddings defined by the
Euclidean distance, verifying the effectiveness of the proposed DCSC.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Image clustering and image classification are typical processes
hat use machine learning models, which have boosted various
pplications in data mining, pattern recognition, and computer
ision [1–4]. However, image clustering is more challenging than
mage classification because no supervised information is avail-
ble. It is hard to leverage widely used traditional clustering
ethods, such as K-means [5], spectral clustering [6], and ag-
lomerative clustering [7], owing to the curse of dimensionality
aused by image data.
To overcome the curse of dimensionality, many researchers

ave adopted embedding-based methods to reduce the dimen-
ions of input images by mapping the high-dimensional input
nto a low-dimensional feature embedding space. Earlier
mbedding-based methods employed various handcrafted fea-
ures, such as SIFT [8] and HOG [9], to obtain invariant embedded
eatures at the cost of high computational complexity. In the
ast decade, combining deep convolutional neural networks with
raditional clustering algorithms to perform image clustering has
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become popular. Numerous deep-clustering methods have been
proposed [6,7,10–29]. The existing deep clustering models can be
classified into two categories.

(1) Alternating-training-based clustering method, a two-stage
eep clustering model, has been proposed by iteratively estimat-
ng the cluster assignment and updating the model parameters.
he main idea underlying this method is iteratively employing
raditional clustering algorithms to group the embedded fea-
ures extracted by current deep CNNs and utilizing its estimated
luster assignment to update the parameters of the deep model
6,7,10–17,29]. Although this method has achieved encouraging
erformance, it often suffers from error accumulation due to the
eparation of the learning and clustering phases, undermining the
erformance of clustering. In addition, it is also difficult to learn
discriminative representation that is beneficial for discovering

he boundaries of the inherent cluster because entangled feature
mbeddings might be learned due to the intrinsic defects of
utoencoders [30–32].
(2) Joint-training-based clustering method, an end-to-end

eep clustering model, was proposed to alleviate the aforemen-
ioned error accumulation problem. This type of method can
imultaneously learn feature representations and estimate the
luster assignment of input data [18–21,33–36]. Most clustering
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odels are driven by contrastive learning, which was inspired by
he pioneering study of Becker and Hinton [37]. Most models ne-
lect the semantic similarities of instances by simply pushing em-
edded features apart as long as they are from different instances,
lthough these joint-learning-based clustering algorithms have
chieved great success. This might lead to unstable clustering
erformance due to the ignorance of semantic consistency among
nstances, giving rise to worse clustering performance in some
ases [18–21,38].
An improved deep clustering algorithm based on semantic

onsistency (DCSC) is proposed in this study, motivated by the
ssumption that the semantic cluster assignment for the same in-
tances with different augmentations should be the same and that
f different instances should be orthogonal. In contrast to exist-
ng contrastive-based clustering methods, DCSC imposes cluster
tructure discovery during the learning process and consequently
ndows contrastive learning-based clustering models with the
apability of high-level cluster understanding. Therefore, more
emantic information from embedded features can be learned.
he main contributions of this study are summarized as follows.
(1) A deep image clustering model that accommodates repre-

entation learning and image clustering concurrently in an end-
o-end model is proposed by incorporating a cluster structure
hat discovers loss into conventional contrastive learning-based
lustering objective functions to learn semantic cluster bound-
ries.
(2) The DCSC addresses not only the instance-level differ-

ntiation in the feature embedding space but also the cluster-
evel discrimination and semantic consistency of instances in
he whole batch to implicitly model the inter-cluster and intra-
luster decision boundaries.
(3) Extensive experiments demonstrate that DCSC performs

etter than most existing image clustering methods, with an
mprovement of 9.3% and 22.1% in accuracy on CIFAR-100 and
iny-ImageNet, respectively. Various ablation studies have been
erformed, and some valuable insights have been derived from
he visualization results.

The remainder of this paper is organized as follows. In
ection 2, a brief overview of the related models and discussions
re presented. In Section 3, a deep clustering model based on
emantic-consistent contrastive learning clustering is described
n detail and its corresponding algorithm is introduced. Section 4
resents the experimental setup and the comparison results.
he experimental results are thoroughly analyzed and discussed.
inally, in Section 5, the conclusions and suggestions for future
tudies are provided.

. Related work

Traditional clustering approaches struggle to deal with high-
imensional image data. Therefore, various deep CNN-based
mage-clustering algorithms have been proposed. According to
he training strategy, these deep CNN-based image clustering
odels can be divided into two groups: (1) alternating-training-
ased models [6,7,10–14,22–26] and (2) joint-training-based mod-
ls [18–21,33,38].

.1. Alternating-training-based clustering models

The alternating-training-based clustering model performs clus-
ering in a two-stage manner. First, it extracts the feature rep-
esentation using a deep CNN model, and then, it leverages the
earned features to estimate the cluster assignment. It switches
ack and forth between training the deep model and predicting
luster assignments. For example, deep embedding clustering

DEC) [12] used stacked autoencoders to map high-dimensional

2

images into a low-dimensional space and then leveraged tradi-
tional K-means [5] to perform clustering. The stacked autoen-
coders were iteratively updated based on the estimated cluster
assignments. Deep embedded regularized clustering (DEPICT) [16]
employed an alternating strategy to update the network pa-
rameters and estimated cluster assignments by optimizing a
regularized clustering objective function. JULE [23] used an ag-
glomerative clustering method to obtain clustering assignments
based on current feature representations and used the estimated
clustering assignments to update the parameters of the net-
work alternately. DCCM [25] proposed triplet mutual informa-
tion among features to comprehensively mine the relationship
between the deep- and shallow-layer representations of each
instance for better cluster assignment estimations.

These two-stage methods have achieved great success in
image clustering by enhancing the quality of the feature rep-
resentation. However, it is possible for the errors to accumu-
late gradually in the alternate updating of the feature learning
stage and the cluster assignment stage, reducing image clus-
tering performance [10–14,22–25], owing to the independently
separated process of representation learning and clustering. In
addition, these methods are only applicable to offline tasks,
limiting their use in large-scale online image-clustering scenar-
ios. Consequently, many researchers have focused on clustering
models based on joint training strategies.

2.2. Joint-training-based clustering models

These models incorporate feature representation and cluster-
ing into an end-to-end framework and simultaneously update the
feature representation and clustering heads. The feature repre-
sentation head provides feature embeddings with fine-grained
information, whereas the clustering head predicts the cluster as-
signments. End-to-end clustering models face the challenge of the
representation collision problem because they make a prediction
directly in the feature embedding space. Numerous contrastive
learning-based clustering models have been proposed for image
clustering [18–21,31,33,35,36,39–46] based on the observation
that contrastive loss can circumvent collapsing problems in clus-
tering by formulating the prediction problems into discrimination
tasks [44]. For example, the invariant information clustering (IIC)
model [18] was proposed to learn invariant features from differ-
ent augmented images and performed clustering by maximizing
the mutual information between class assignments of each paired
instance. A deep embedded dimensionality reduction clustering
(DERC) model [31] was designed with a probability-based triplet
loss to improve the clustering accuracy by combining embedded
features and dimensionality reduction into the image clustering
process. Partition confidence maximization (PICA) [33] was de-
veloped to find the most confident cluster decision boundary
by learning the most confident clusters from all possible so-
lutions and to determine the most semantically possible class
separation. However, its performance is unstable because it only
addresses the semantic distribution at the instance-cluster level.
Subsequently, a clustering model with prior information [42]
was suggested to concurrently learn hierarchical representations
and cluster assignments jointly by minimizing the discrepancy
between each pair of instance assignments, where different dis-
tance metrics for each data point were examined. Recently, deep
robust clustering (DRC) [19] was developed to investigate deep
clustering from two perspectives: assignment probability and as-
signment features. The loss function was designed by maximizing
the mutual information between the cluster assignment distri-
bution of the images and their augmentations. A similar mutual
information-based contrastive loss was employed in CRLC [41],
where a weighted sum of two instance-level contrastive losses
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ith respect to the feature representation head and clustering
ead was used to maximize mutual information across various
ugmentations. Contrastive clustering (CC) [21] defined an objec-
ive function consisting of instance-level and cluster-level losses
o design an online image clustering algorithm by maximizing the
imilarities of one image and its corresponding augmentations
nd minimizing those of negative ones. Prototypical contrastive
earning (PCL) [40] formulated prototypical contrastive learning
s an expectation–maximization algorithm to train a deep CNN
nd perform iterative clustering and representation learning in
n EM-based framework. However, these methods suffer from
luster collision because the generated pseudo-positive instances
ay not be truly positive. In [43], a clustering framework was

rained by combining instance-level contrastive learning with
luster center prediction, which employed an ensemble objec-
ive loss function that combined instance-level contrastive loss,
L-divergence of clustering loss, and an aggregated anchor func-
ion. Instead of comparing feature embeddings directly in the
atent space, a clustering-based representation algorithm [36]
tilized a swapped prediction mechanism for image clustering
ithout pairwise comparisons. Cross-entropy loss was used to
easure the divergence between the generated code and the
luster-assigning vectors.
Joint-training-based clustering models have achieved signif-

cant improvements compared with alternating-training-based
ethods by avoiding error accumulation. However, they have

imited ability to discriminate the semantic cluster because the
ntra-class boundaries are neither modeled by the cluster as-
ignment derived from instance-level features nor captured by
enerating pseudo-labels at the instance level or by employing
ata augmentations. To model semantic-based decision bound-
ries, DCSC was proposed in this study to learn cluster semantic
tructures using a three-pronged objective function that is rein-
orced by semantic consistency and cluster-level discrimination.
CSC implicitly models inter-cluster and intra-cluster decision
oundaries. DCSC generates a larger margin between clusters and
smaller distance within the same clusters compared to that of
ther SOTA methods.

. Deep clustering model based on semantic consistency (DCSC)
odel

Given a dataset containing N unlabeled images T= {I1, I2,
. . , IN}, deep clustering aims to group the images into K clusters
o ensure that the images within the same cluster are close,
hereas the images in different clusters are separated. An im-
roved deep clustering model (DCSC) was proposed to learn the
emantic cluster boundaries. Fig. 1 shows the overall framework.
he proposed DCSC model consists of four components: (1) a
eep neural network fθ (·), which is used as a backbone encoder

to learn the feature representation; (2) a feature-level projection
head Fproj, which is employed to derive the embedded features;
(3) a cluster-level projection head Cproj, which is leveraged to
stimate the cluster assignment at the cluster-level; and (4) a
emantic-level swapped prediction head consisting of a Sproj
nd a Spred, which is used to learn the semantic distribution of

instances.

3.1. Objective function of the DCSC

The performance of a contrastive learning-based clustering
algorithm significantly depends on its objective function. The
objective function of DCSC consists of four components: (1) a
feature-level contrastive loss (FLC) with respect to pairs of in-
stances in latent space, to pull positive pairs closer and push neg-

ative sample pairs apart; (2) a cluster-level contrastive loss (CLC) b

3

of cluster assignments for all instances to find a conservative
decision boundary to maximize the distance between clusters;
(3) a semantic-level contrastive loss (SLC) to learn the semantic
distribution of instances; and 4) a clustering regularization term
(CR), to avoid the local minimum caused by clustering a majority
of instances into a minority of clusters.

♦ Feature-level contrastive loss
Given an unlabeled dataset T with N samples, we performed

two types of random data augmentation methods on each im-
age and obtained 2N augmented instances, denoted by XAug

=

xa1, x
a
2, . . . , x

a
N , xb1, x

b
2, . . . , x

b
N

}
. Each pair of instances {xai , x

b
j } is

labeled as positive samples when i=j and negative counterparts
if i ̸= j. Therefore, the feature-level contrastive (FLC) loss for the
ata augmentations of image xi is expressed in Eq. (3.1).

flai =−log
exp(s(zai , z

b
i )/τFLC )∑N

j=1[exp(s(z
a
i , z

a
j )/τFLC )+ exp(s(zai , z

b
j )/τFLC )]

,

i, j = 1, 2, . . . ,N (3.1)

where zai is the feature embedding of the ith image with aug-
mentation a, and zbj is the corresponding feature embedding of
xj with augmentation b. τFLC is a temperature parameter and s(·)
is the similarity of two augmented data samples. As a result, the
corresponding symmetric FLC loss is computed across all pairs in
a mini-batch, as given by Eq. (3.2).

LFLC =
1
2N

N∑
i=1

(flai + flbi ) (3.2)

The FLC loss is leveraged to maximize the similarities of the
positive instances and minimize those of the negative instances
at the feature level.

♦ Cluster-level contrastive loss
Given a collection of instances with a batch size of N and

a potential class number of K, the purpose of the DCSC is to
correctly predict the cluster assignment for each instance. In
an ideal scenario, each instance should be assigned to only one
cluster, which is the same as the ground-truth label in classifica-
tion tasks. A cluster-level contrastive loss (CLC loss) was devised
to encourage the cluster assignment distribution vectors of N
images falling into different clusters to be orthogonal to enable
the learning process towards this ideal case. Specifically, let Ca

∈

RN×K and Cb
∈ RN×K denote the cluster assignment matrix for

N instances with two randomly selected augmentations, a and b,
respectively, where Ca

.j is the jth cluster assignment distribution
of all N instances with augmentation a in a mini-batch. Let C
be the concatenation of Ca and Cb. The jth column of C should
preferably be orthogonal to each other, except for the (k+j)th
olumn. Therefore, a cluster structure discovering loss is defined
n Eq. (3.3) to distinguish the ith cluster from other clusters.

CLC = −
1
2K

K∑
j=1

[
log

exp(s(Ca
·,j, C

b
·,j)/τCLC )∑2K

k=1,k̸=j[exp(s(C·,j, C·,k)/τCLC )]

+ log
exp(s(Cb

·,j, C
a
·,j)/τCLC )∑2K

k=1,k̸=j[exp(s(C·,j, C·,k)/τCLC )]

]
, (3.3)

where Ca
.j and Cb

.j are the jth columns of Ca and Cb, representing
he cluster distribution of the jth cluster over all N instances
ith augmentations a and b, respectively. τCLC is a temperature
arameter, where K is a predefined number of clusters.
The CLC loss was utilized to distinguish the cluster distribution

enerated by the guaranteed positive examples from other distri-
utions (i.e., the CLC loss attempts to find a conservative decision
oundary that maximizes the distance between clusters).
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Fig. 1. (a) An overall framework of the improved image clustering model based on semantic contrastive learning, where two loss heads (CLC and SLC losses) are
added to encourage the model to learn more semantic cluster boundaries; (b) Structure of three separate non-linear projection heads and one prediction head, where
B denotes the batch normalization layer, σ denotes the ReLU activation layer, and ∼ denotes the Soft-max function.
i

♦ Semantic-level contrastive loss
A semantic-level contrastive loss is used to guide the backbone

ncoder to learn the semantic representations of the instances.
n classification and semantic segmentation settings, labels can
e regarded as high-level semantic representations. Therefore, we
ncoded all input instances into a latent space with the dimen-
ionality of the cluster number and regarded their soft labels as
special semantic representation. An asymmetric network was

ntroduced to derive the distribution of instances semantically in
CSC because an asymmetric structure can avoid the high intra-
lass diversities caused by the sensitivity to the maximum value
f the sof-tmax function [47].
Given an unlabeled image I ∈ T, the first step is to compute

he cluster assignment distribution of its augmented versions
n the feature embedding space using an asymmetric network
i.e., pθ (P|ha

i ) and qθ ′ (Q |ha
i ) are obtained, where θ and θ ′ are

the parameters of the network and P and Q are the cluster
assignment of N images). The second step is to minimize the di-
vergence between the two distributions of pθ (P|ha

i ) and qθ ′ (Q |ha
i ).

Specifically, two different augmented versions of the same in-
stance were fed to an encoder together with an asymmetric
prediction MLP layer, and their corresponding embedded features
were transformed into their semantic distributions by a predic-
tion head or soft-max layer separately, yielding two distributions
of pθ (P|ha

i ) and qθ ′ (Q |ha
i ). Without the loss of generality, the

contrastive loss between the probability distributions of the ith
instance at the semantic level is defined in Eq. (3.4).

slai = − log
exp(s(pai , q

b
i )/τSLC )∑N a a a b

(3.4)

j=1[exp(s(pi , qj )/τSLC ) + exp(s(pj , qi )/τSLC )]

4

where s(pai , q
b
j ) denotes the similarity between the probability

distributions of the cluster assignment of the ith and jth instances,
, j = 1, 2, . . . ,N , which can be defined as the Jensen–Shannon
divergence or KL divergence of the two distributions. In this
study, τSLC is a temperature parameter that takes a higher value
to encourage more compactness within the cluster. A larger value
of τSLC tends to penalize less on the nearest neighbor samples,
keeping semantically similar instances in the same clusters. The
semantic-level contrastive loss is obtained using Eq. (3.5) by
traversing all the instances in the batch.

LSLC =
1
2N

N∑
i=1

(slai + slbi ) (3.5)

The semantic-level contrastive loss is leveraged to differenti-
ate the probability distribution of the cluster assignment gener-
ated by the guaranteed positive instances from other instances
at the semantic level to find a conservative decision boundary. It
was used to minimize the distance between positive samples and
maximize the distance between negative samples. In addition,
instances with different ground-truth labels may be clustered into
the same cluster, resulting in a cluster collision problem because
the soft-max function is only sensitive to the maximum value of
the outputs. This problem is solved using an asymmetric Siamese
network with two branches of non-linear projection heads, where
one branch comprises a projector and a predictor, and the other
has a non-linear projection head only. The experimental results in
Section 4.4.2 show that the parameters of the two branches can
be adjusted during the training process.
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♦ Clustering regularization term
An entropy constraint was applied as a clustering regulariza-

ion term to solve this problem (see Eq. (3.6)) to avoid the local
ptimal solution produced by assigning the majority of examples
o a minority of clusters during training.

CR = −[p(ca) log p(ca) + p(cb) log p(cb)], (3.6)

here p(ct ) =

∑N
i=1 ctij
N and t ∈ {a, b} is the probability distribution

f the jth cluster for all instances with augmentation t in the
entire batch, j = 1,2,. . . , K and t ∈ {a, b}. In summary, the final
objective function of the DCSC is defined by Eqs. (3.7), where λ is
the balance parameter.

L = LFLC + LCLC + LSLC + λLCR (3.7)

3.2. Algorithm of deep clustering model based on semantic consis-
tency

The proposed clustering method based on semantic consis-
tency is summarized in the following Algorithm.

4. Experiments

In this section, various comparison experiments were con-
ducted on widely used benchmark datasets to validate the perfor-
mance of the DCSC. Several ablation studies have been performed
to investigate the importance of each loss item and its effect on
each DCSC module.

4.1. Datasets and evaluation metrics

Six widely used benchmark datasets, CIFAR-10/100 [48], STL-
10 [49], ImageNet-10 [14], ImageNet-Dogs [14] and
Tiny-ImageNet [50], were used in this study. The number of
samples and cluster number ranged from 500 to 100,000 and
from 10 to 200. We trained the model using the instances in
each dataset and evaluated its clustering performance on the
same dataset to validate the performance of the DCSC on different
datasets.

Three metrics were employed to evaluate the clustering per-
formance of the DCSC, including accuracy (ACC) [51], normal-
ized mutual information (NMI) [52] and adjusted rand index
(ARI) [53]. The higher the value of these metrics, the better
the clustering performance. We reported the average value of
each metric for each dataset to reduce the stochasticity of the

experimental results.

5

4.2. Experiments implementation details

Image augmentations For a fair comparison, the same aug-
mentation strategy and backbone encoder used in [21,35] are
adopted in this study. The data augmentations were randomly
selected from ResizedCrop, HorizontalFlip, ColorJitter, Grayscale, or
GaussianBlur, which have been proved more effective for repre-
sentation learning algorithms [35].

Backbone: To ensure a fair comparison, ResNet34 [19,21,35,
54] was adopted as the backbone encoder, although DCSC does
not depend on any specific network. As ResNet was designed for
images of size 224 × 224 pixels, all input images were resized be-
fore they were supplied to the backbone encoder. Each image was
first resized to 224 × 224 to ensure that the model can applied
to every dataset to keep the structure of the backbone encoder
unchanged. In non-linear projection heads, batch normalization
(BN) [55] was used to accelerate the training process and increase
clustering efficiency. The projection head and prediction head are
jointly trained in a swapped manner based on the semantic-level
loss to solve the cluster collision induced by utilizing the soft-
max function exclusively in the non-linear prediction head. In
this study, the backbone encoder used was not pre-trained on any
dataset.

Parameters: The embedded feature dimension was set to 128
to make a fair comparison with previous studies. For the feature-
level contrastive loss and cluster-level contrastive loss, the tem-
perature parameters τFLC and τCLC were set as 0.2 and 1.0, respec-
tively. For SLC loss, τSLC is set to 1.0 to avoid cluster collisions. In
addition, an over-clustering approach was used to extract addi-
tional information from potentially relevant classes, reducing the
possibility of generating an overly conservative boundary using
only positive instances. Specifically, in our experiments, we set
the number of clusters for Tiny-ImageNet to 700 and 70 for the
other datasets in our study. The balance parameter λ was set to
1 in all experiments.

Optimizer: We implemented DCSC using Pytorch 1.6.0. We
used the Adam optimizer [56] with a learning rate of 3e-4 for
gradient descent during the training procedure. Because of mem-
ory limitations, the batch size and training epochs were set to 256
and 1,000, respectively. All experiments were performed using an
Nvidia 3090 RTX 24G. CIFAR-10 requires 55 GPU hours, CIFAR-
100 requires 60 GPU hours, STL-10 requires 120 GPU hours,
ImageNet-10 requires 15 GPU hours, ImageNet-dogs requires 20
GPU hours, and Tiny-ImageNet requires 100 GPU hours to train
the proposed DCSC.
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Table 1
Comparison results on six image clustering benchmarks.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet

Metrics ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI
K-means 0.229 0.087 0.049 0.130 0.084 0.028 0.192 0.125 0.061 0.241 0.119 0.057 0.105 0.055 0.020 0.025 0.065 0.005
SC 0.247 0.103 0.085 0.136 0.090 0.022 0.159 0.098 0.048 0.274 0.151 0.076 0.111 0.038 0.013 0.022 0.063 0.004
AC 0.228 0.105 0.066 0.138 0.098 0.034 0.332 0.239 0.140 0.242 0.138 0.067 0.139 0.037 0.021 0.027 0.069 0.005
NMF 0.190 0.081 0.034 0.118 0.079 0.026 0.180 0.096 0.046 0.230 0.132 0.065 0.118 0.044 0.016 0.029 0.072 0.005
DCGAN 0.315 0.265 0.176 0.151 0.120 0.045 0.298 0.210 0.139 0.346 0.225 0.157 0.174 0.121 0.078 0.041 0.135 0.007
DeCNN 0.282 0.240 0.174 0.133 0.092 0.038 0.299 0.227 0.162 0.313 0.186 0.142 0.175 0.098 0.073 0.036 0.111 0.006
AE 0.314 0.239 0.169 0.165 0.100 0.048 0.303 0.250 0.161 0.317 0.210 0.152 0.185 0.104 0.073 0.041 0.131 0.007
VAE 0.291 0.245 0.167 0.152 0.108 0.040 0.282 0.200 0.146 0.334 0.193 0.168 0.179 0.107 0.079 0.033 0.113 0.006
JULE 0.272 0.192 0.138 0.137 0.103 0.033 0.277 0.182 0.164 0.300 0.175 0.138 0.138 0.054 0.028 0.033 0.102 0.006
DEC 0.301 0.257 0.161 0.185 0.136 0.050 0.359 0.276 0.186 0.381 0.282 0.203 0.195 0.122 0.079 0.037 0.115 0.007
DC-VAE 0.350 0.440 - - - - - - - - - - - - - - - -
DAC 0.522 0.396 0.306 0.238 0.185 0.088 0.470 0.366 0.257 0.527 0.394 0.302 0.275 0.219 0.111 0.066 0.190 0.017
DDC 0.524 0.424 0.329 - - - 0.489 0.371 0.267 0.577 0.433 0.345 - - - - - -
DCCM 0.623 0.496 0.408 0.327 0.285 0.173 0.482 0.376 0.262 0.710 0.608 0.555 0.383 0.321 0.182 0.108 0.224 0.038
PICA 0.696 0.591 0.512 0.337 0.310 0.171 0.713 0.611 0.531 0.870 0.802 0.761 0.352 0.352 0.201 0.098 0.277 0.040
DRC 0.727 0.621 0.547 0.367 0.356 0.208 0.747 0.644 0.569 0.884 0.830 0.798 0.389 0.384 0.233 0.139 0.321 0.056
CRLC 0.799 0.679 0.634 0.425 0.416 0.263 0.818 0.729 0.682 0.854 0.831 0.759 0.461 0.484 0.297 - - -
CC 0.790 0.705 0.637 0.429 0.431 0.266 0.850 0.764 0.726 0.893 0.859 0.822 0.429 0.445 0.274 0.140 0.340 0.071
DCSC 0.798 0.704 0.644 0.469 0.452 0.293 0.865 0.792 0.749 0.904 0.867 0.838 0.443 0.462 0.299 0.171 0.358 0.073
Fig. 2. Visualization of clustering result of four different methods on ImageNet-10.
-

.3. Comparisons with state-of-the-art methods

The performance of the DCSC was comprehensively evaluated
sing six benchmark datasets. The results were compared with 18
mage clustering methods, including typical traditional clustering
odels, such as K-means [5], SC [6], AC [7], and NMF [22];
nd popular deep learning-based clustering models, such as DC-
AN [11], DeCNN [10], AE [16], DC-VAE [53], VAE [57], JULE [23],
EC [12], DAC [14], DDC [24], DCCM [25], PICA [33], DRC [19],
RLC [41], and CC [21]. The results of the existing methods were
btained from [19,25,33], and the final comparison results are
ummarized in Table 1, where the best results are shown in bold.
Table 1 shows that the proposed DCSC model performed better

han the existing models on the six benchmark datasets. For
xample, compared with the result of CC [21], the accuracy of
he clustering results provided by DCSC is improved by 9.3% and
2.1% on CIFAR-100 and Tiny-ImageNet, respectively.
Fig. 2 shows the results of the comparison of the proposed

odel with three SOTA models (i.e., PICA [33], DRC [19], and
C [21]). The proposed DCSC generates smaller intracluster di-
ergence compared to the other SOTA methods, as shown in
ig. 2.

.4. Ablation studies

In this section, various ablation studies are conducted on two
enchmark datasets. This aims to (1) investigate the importance
f different losses in the proposed objective function, (2) dis-
lose the effect of each model component on the DCSC model,
nd (3) explore the functions of batch normalization (BN) and
6

Table 2
Experimental results of different losses.
Dataset Metric NMI ACC ARI

CIFAR-10

DCSC 0.704 0.798 0.644
DCSC w/o FLC loss 0.611 0.694 0.523
DCSC w/o CLC loss 0.673 0.761 0.625
DCSC w/o SLC loss 0.657 0.745 0.578

ImageNet-10

DCSC 0.867 0.904 0.838
DCSC w/o FLC loss 0.857 0.895 0.824
DCSC w/o CLC loss 0.851 0.890 0.819
DCSC w/o SLC loss 0.860 0.896 0.831

asymmetric networks in contrastive learning-based clustering
models.

4.4.1. Importance of different losses
We conducted ablation experiments on CIFAR-10 and ImageNet

10 by removing different losses from the original objective func-
tion to explore the importance of different losses in the DCSC.
Table 2 lists the ablation results.

For a fair comparison with CC [21], K-means is performed
for clustering in the embedding feature space with the same
dimension after removing the CLC/SLC loss. For CIFAR-10 and
ImageNet-10, the proposed DCSC model with three contrastive
losses (three-head) produced the best results, as shown in Table 2.
Table 2 shows that each loss item contributes to the enhancement
of the clustering performance. For example, the removal of the
semantic-level contrastive loss reduced the performance by 7.1%
in terms of ACC and 7.2% in terms of NMI on CIFAR-10. Deleting



F. Zhang, L. Li, Q. Hua et al. Knowledge-Based Systems 253 (2022) 109507

i
s
5
s
b
t
a
s
p
r
m
v
o
r

f
c
f
r
i
c
s
p

I
i
T

Fig. 3. Predicted dynamics of DCSC during the training process on ImageNet-10.
Table 3
Effect of BN in MLP.
Datasets BN in MLP? ACC NMI ARI

CIFAR10 No 0.796 0.702 0.641
Yes 0.798 0.704 0.644

CIFAR100 No 0.463 0.488 0.289
Yes 0.469 0.452 0.293

the cluster-level contrastive loss decreased ACC and NMI by 1.8%
and 1.6%, respectively, on ImageNet-10. The results in Table 2 in-
dicate that the joint training of multiheads improves the semantic
representation ability of the backbone encoder. For example, in
CIFAR-10, jointly training CLC and SLC in DCSC achieves NMI and
ACC of 61.1% and 69.4%, respectively. Only the training of CLC
loss in the CC model [21] achieves NMI and ACC of 59.2% and
65.9% (see Table 4 in [21]) respectively. Table 2 shows that SLC
loss is more important than CLC loss in the CIFAR-10 dataset.
In contrast, the CLC loss mainly contributed on the performance
improvement on the ImageNet-10 dataset, with ACC and NMI of
1.5% and 1.8%, respectively.

4.4.2. Impact of batch normalization and asymmetric network on
DCSC

Learning a good image representation is key for efficient train-
ng of downstream tasks. Most contrastive learning-based repre-
entation learning methods rely on either large batch sizes [35,
8] or memory banks [34] to improve the diversity of negative
amples. BYOL [44] provides an alternative way to train a back-
one encoder by adding a BN layer and using a predictor network
hat breaks network symmetry. These methods can successfully
void trivial solutions while allowing smaller batch sizes without
acrificing the performance. Some researchers claimed that BN
layed an important role in preventing collapse [44,59]. Other
esearch [60,61] asserted that the asymmetry of networks was
ore important than BN. We performed ablation studies to in-
estigate the impact of the BN layer and asymmetry of networks
n the clustering performance of the DCSC, and the experimental
esults are shown in Table 3.

Table 3 shows that the application of BN before the activation
unction in non-linear projection MLP heads slightly improves
lustering performance, especially for fine-grained semantic in-
ormation extraction tasks. This is because the BN layer can
ender the backbone encoder more robust when the initialization
s improperly scaled. Additionally, the BN layer can maintain a
onsistent data distribution by constraining the latent feature
pace to a unit hypersphere, thereby speeding up the training
rocess.
We performed ablation experiments using CIFAR-100 and

mageNet-10 to explore the effect of the asymmetric structure
n the DCSC model. The experimental results are summarized in

able 4.

7

Table 4
Effect of predictive head.
Dataset/Metric CIFAR-100 ImageNet-10

ACC NMI ARI ACC NMI ARI

DCSC 0.469 0.452 0.293 0.904 0.867 0.838
DCSC w/o Spred head 0.449 0.440 0.278 0.890 0.861 0.824

Based on Tables 3 and 4, the removal of BN from the DCSC
degrades the performance by 1.27%, whereas the deletion of the
predictive head reduces the accuracy by 4.26%. The empirical
results in Tables 3 and 4 suggest that in DCSC, the asymmetric
network is more essential than BN. This conclusion is consistent
with the results of Simsiam [60] (see Table 1 in [60] for more
details). Therefore, we concluded that introducing asymmetry in
the architecture plays a more important role than BN in aiding
the backbone encoder to avoid trivial solutions. One reason for
this is the symmetric loss expressed in Eqs. (3.4) and (3.5) [60].
Another possible reason is that the asymmetric structure can
jointly train the projection and prediction heads simultaneously,
thereby avoiding the generation of trivial solutions.

4.5. Qualitative study

4.5.1. Visualization of clustering result
In this section, the evolution of cluster assignment during the

training process is visualized using t-SNE [62]. A qualitative anal-
ysis was presented to better understand the DCSC model. Fig. 3
shows the results of the DCSC on ImageNet-10, where different
colors represent different clusters. A total of 13,000 samples were
used, where the ground-truth class labels are shown in different
colors. Fig. 3 shows that the distance between clusters increased
and the samples within the same cluster became more compact
as the training epochs increased.

4.5.2. Investigation of success and failure cases
Examining the success and failure cases of the DCSC model

will provide more insights into our method. In this section, we
randomly selected four classes of images from ImageNet-10 and
focused on the three cases. Fig. 4(left) shows successful cases,
in which each image is correctly assigned to its ground-truth
label. Fig. 4(middle) presented false negative failure cases, in
which images from a target class are incorrectly clustered to
other clusters. Finally, Fig. 4 (right) illustrates false positive failure
cases, in which images from other classes are incorrectly assigned
to the current target class (right).

Fig. 4 shows that the DCSC model can successfully cluster
images in most scenarios, indicating that the proposed clustering
model is valid. However, misclustering outcomes occur when the
DCSC is used to discriminate samples with high similarity. Taking
false negative examples as an example, most misclustered sam-
ples have more than one ground-truth label, which could worsen
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Fig. 4. Success vs. failure cases studies on ImageNet-10. (Left) Successful positive cases, (Middle) false negative, and (right) false positive failure cases.
he performance of the proposed model. One possible explanation
or these failures is that learning appropriate feature embeddings
ithout ground-truth labels is difficult for these models.

. Conclusions and future works

DCSC was proposed in this study. DCSC imposes the cluster
tructure discovery on the learning process and enhances the
erformance of existing contrastive learning-based approaches,
ncreasing inter-class diversity and decreasing intra-class diver-
ity by effectively integrating the semantic clustering assignment
istribution loss into the traditional contrastive loss. Extensive
xperimental results demonstrate that the proposed DCSC out-
erforms the state-of-the-art image clustering methods. How-
ver, some misclustering results are unavoidable because of a lack
f supervision information when DCSC is used to differentiate
ine-grain clusters.

For future research, we will focus on how to leverage pseudo-
abels with high confidence to improve the ability to distinguish
ine-grained classes. Another possible direction is to investigate
he relationship of the embedding features to reduce redundant
eatures and generate a more efficient representation of each
nput.
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