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In many practical applications, the data are class imbalanced. Accordingly, it is very
meaningful and valuable to investigate the classification of imbalanced data. In the
framework of binary imbalanced data classification, the synthetic minority oversampling
technique (SMOTE) is the best-known oversampling method. However, for each positive
sample, SMOTE generates only k synthetic samples on the lines between the positive sam-
ple and its k-nearest neighbors, resulting in three drawbacks: (1) SMOTE cannot effectively
extend the training field of positive samples; (2) the generated positive samples lack diver-
sity; (3) SMOTE does not accurately approximate the probability distribution of the posi-
tive samples. Therefore, two binary imbalanced data classification methods named
BIDC1 and BIDC2 based on diversity oversampling by generative models are proposed.
The BIDC1 and BIDC2 conduct diversity oversampling using extreme learning machine
autoencoder and generative adversarial network, respectively. Extensive experiments on
26 data sets are conducted to compare the two methods with 14 state-of-the-art methods
using five metrics: F-measure, G-means, AUC-area, MMD-score, and Silhouette-score. The
experimental results demonstrate that the two methods outperform the other 14 methods.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

A binary classification problem is imbalanced when the majority class (negative class) is significantly larger than the
minority class (positive class). Many real-world applications are binary imbalanced classification problems, such as software
defect predictions, medical diagnosis, credit card fraud detection, spam filtering, and severe convective weather prediction.
Therefore, binary imbalanced classification problems have attracted the attention of researchers during the last decade. In
binary imbalanced data classification, misclassifying a positive sample is more costly than misclassifying a negative sample.
For example, diagnosing a sick patient as a healthy person has more serious consequences than diagnosing a healthy person
as a sick person. Since imbalance introduces a bias favoring the majority class, it is challenging for traditional classification
algorithms to discriminate between the minority and majority classes. Balancing the distributions of the minority and
majority classes by augmenting positive class samples is a predominant strategy for handling imbalanced data classifica-
tions. The most notable data augmentation method is the synthetic minority oversampling technique (SMOTE) [1], which
generates synthetic samples on the lines between a positive sample and its k-nearest neighbors. Since SMOTE was proposed
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in 2002, many variants of SMOTE have been developed, such as borderline SMOTE (B-SMOTE) [2], adaptive synthetic
sampling algorithm (ADASYN) [3], geometric SMOTE (GSMOTE) [4], multiple imputation-based minority oversampling
(MI-MOTE) [5], and robust SMOTE (RSMOTE) [6]. However, SMOTE family algorithms have three drawbacks: (1) they do
not effectively extend the training field of positive samples; (2) the generated positive samples lack diversity; (3) SMOTE
does not accurately approximate the probability distribution of the positive samples.

Therefore, motivated by generative models, we propose two binary imbalanced data classification methods BIDC1 and
BIDC2 based on diversity oversampling. The two methods carry out diversity oversampling using extreme learning machine
autoencoder (ELMAE) and generative adversarial network (GAN), respectively. The main contributions of this paper are
threefold.

1. We propose a novel framework to generate new positive samples using generative models iteratively. Unlike SMOTE and
its variants, the proposed framework generates new positive samples in each iteration based on the distribution of the
positive samples generated in the previous iteration rather than generating new positive samples on the lines between
a positive sample to its k-nearest neighbors.

2. We use two generative models, i.e., ELMAE and GAN, to generate new positive samples successively. We use the maxi-
mum mean discrepancy score (MMD-score) [7] and the Silhouette-score [8] to ensure the high quality of the generated
positive samples. The MMD-score measures the diversity of the generated positive samples, and the Silhouette-score
evaluates the separability between the generated positive samples and the original negative samples.

3. We conduct extensive experiments on 26 data sets to compare the BIDC1 and BIDC2 with 14 state-of-the-art methods.
The experimental results on the F-measure, G-means, AUC-area, MMD-score, and Silhouette-score show that our meth-
ods outperform the 14 approaches.

The rest of this paper is organized as follows. In Section 2, we review the related works of binary imbalanced data classifi-
cation. In Section 3, we describe the details of the proposed methods. In Section 4, Extensive experiments compared the
BIDC1 and BIDC2 with 14 state-of-the-art methods are carried out to verify the effectiveness of the two methods. At last,
we conclude our work in the Section 5.
2. Related works

Many methods have been proposed for addressing binary imbalanced data classification problem. The state-of-the-art
methods were reviewed in two excellent papers [9,10]. Generally, binary imbalanced data classification methods can be
roughly classified into three categories: data-level methods, algorithm-level methods, and hybrid methods.

Let S ¼ Sþ [ S�, where Sþ and S� denote the positive and negative class respectively. The goal of data-level methods is to
balance the distribution of the samples in the two classes. The basic strategy is sampling, including random undersampling
(RUS) and random oversampling (ROS) [9]. Undersampling refers to randomly selecting a subset S�u with the same size as Sþ

from S�. The union S�u [ Sþ is a balanced subset of S. Subsequently, a classifier is trained on S�u [ Sþ using a standard classi-
fication algorithm, such as a neural network, decision tree, or support vector machine. The drawback of undersampling is
that only a very small subset S�u of S� with Sþ is used for classification. An improvement is to repeat undersampling p times,
where p is a hyperparameter; p classifiers are trained and integrated using an ensemble method for classification. Oversam-
pling refers to randomly duplicating positive samples or generating synthetic positive samples using specific strategies.
SMOTE is the predominant method for augmenting synthetic positive samples. Fernández et al. [11] presented a very
comprehensive review of SMOTE-based approaches and its progress and challenges in fifteen years (2003 to 2018). The rep-
resentative methods include B-SMOTE [2], ADASYN [3], GSMOTE [4], MI-MOTE [5], and RSMOTE [6]. B-SMOTE [2] is based on
the assumption that the samples far from the boundary contribute little to the classification results; thus only the minority
examples near the boundary are over sampled. ADASYN [3] is an adaptive synthetic sampling approach for imbalanced
learning. It uses a weighted distribution for different positive samples according to their level of difficulty in learning. More
synthetic data are generated for positive samples with a higher level of difficulty in learning than for positive samples with a
lower level. GSMOTE [4] generates synthetic positive samples in a geometric region around a selected positive sample in the
input space. MI-MOTE [5] is a method for imbalanced and incomplete data classification. RSMOTE [6] improves the robust-
ness of SMOTE by incorporating label noise. In recent years, some new data-level methods have been proposed by different
researchers, such as K-means-SMOTE (K-SMOTE) [12], adaptive neighbor synthetic-oversampling (ANS) [13], combined
cleaning and resampling (CCR) [14], noise reduction a priori synthetic over-sampling (NRPSOS) [15], clustering using repre-
sentatives SMOTE (C-SMOTE) [16], self-organizing map oversampling (SOMO) [17], Gaussian-SMOTE (G-SMOTE) [18], and
over-sampling using propensity scores (OUPS) [19]. Since generative models [20] and their variants [21–24] can generate
realistic samples, several researchers used generative models to handle imbalanced data classification problem. For example,
inspired by the auxiliary classifier-GAN (AC-GAN), Ali-Gombe and Elyan proposed an improved model named multiple fake
class-GAN (MFC-GAN) [25] for imbalanced data classification. The MFC-GAN differs from the AC-GAN by using a classifier, a
discriminator, and multiple fake classes rather than the single fake class in AC-GAN. Furthermore, the MFC-GAN preserves
the structure of the minority classes by learning the correct data distribution, which is a desirable property. Zhang et al. [26]
used the conditional Wasserstein GAN with a gradient penalty for imbalanced data classification and proposed a novel and
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efficient synthetic oversampling approach. Unlike existing methods, the novelty of the proposed methods is that the MMD
and Silhouette score ensure the diversity of the synthetic samples. The diversity significantly improves the performance of
imbalanced data classification, as was demonstrated by Wang and Yao [27].

Algorithm-level methods modify existing classification algorithms to adapt them to imbalanced classification scenarios.
Khan et al. [28] proposed a cost-sensitive deep neural network model that automatically learned useful features from
imbalanced data by simultaneously optimizing the class correlation losses and network parameters. In many practical
applications, the losses of misclassification are unknown and are difficult to determine. Zhang et al. [29] modified a tradi-
tional deep belief network model and proposed an evolutionary cost-sensitive deep belief network model that effectively
handled imbalanced data classification problem. Dong et al. [30] used a deep learning approach for imbalanced data classi-
fication and formulated an imbalanced deep learning model based on batch-wise incremental minority class rectification. In
the context of deep learning, Mateusz et al. [31] systematically investigated the impact of class imbalance on the classifica-
tion performance of convolutional neural networks. They experimentally compared frequently used imbalanced data
classification algorithms using three benchmark data sets (MNIST, CIFAR-10, and ImageNet).

Hybrid methods combine data-level and algorithm-level methods and typically employ ensemble learning to integrate
both approaches. Because the hybrid approaches have the advantage of the two methods, they outperform the two indi-
vidual methods in generalization performance. Hybrid methods can be broadly classified into sampling-based methods
and cost-sensitive based methods. In the first category, oversampling or undersampling is used. SMOTEBoost [32] is
the most well-known early oversampling-based method that integrates SMOTE and boosting. The innovation of SMOTE-
Boost is the weighting mechanism, which differs from the original method. Specifically, the original boosting method
gives all misclassified samples equal weights, whereas SMOTEBoost generates synthetic positive samples, changing the
updating weights and compensating for skewed distributions. Chen et al. [33] proposed an oversampling-based ensemble
method based on the localized generalization error model. The generated synthetic positive samples are located in a
local area of the training samples, and the basic classifiers are trained with the combined original negative training sam-
ples and the synthetic neighborhood samples. Raghuwanshi and Shukla [34] proposed an undersampling-based ensemble
method that creates several balanced training subsets by random undersampling of the majority class samples. The
number of training subsets is determined by the degree of the class imbalance. The generated balanced training subsets
are used for training the basic classifiers, and bagging is used as the ensemble method. The drawback of this method is
that the number of training subsets is very large if the original data set has a high imbalance ratio. Based on the gen-
eralized imbalance ratio, which is a core concept in [35], Tang and He proposed two sampling-based ensemble methods,
i.e., undersampling-based and oversampling-based ensemble approaches. Both approaches adaptively split the imbal-
anced training set into multiple balanced training subsets using a probabilistic method. Multiple weak classifiers are
trained using a boosting method. Chen et al. [36] proposed a hybrid data-level ensemble method for imbalanced data
classification that integrates ensemble learning with combined margin-based undersampling and diversity-enhancing
oversampling. In the second category, pioneering cost-sensitive-based methods were proposed by Zhou et al. [37] and
by Sun et al. [38]. The method in [37] is tailored for training cost-sensitive neural networks to address the class imbal-
ance, and both oversampling and undersampling are considered. In [38], different weighting mechanisms were used in
the conventional AdaBoost algorithm. Tao et al. [39] proposed a
cost-sensitive-based ensemble method for imbalanced data classification. The novelty of the proposed method is a
self-adaptive cost-sensitive-based support vector machine used for ensemble classification. Alaba et al. [40] reviewed
state-of-the-art cost-sensitive ELM methods and presented recent trends in imbalanced data classification.
3. The two methods

This section presents the two methods BIDC1 and BIDC2 for binary imbalanced data classification. The first method is
based on diversity oversampling and uses ELMAE, and the second method is based on diversity oversampling and uses GAN.

3.1. Binary imbalanced data classification based on diversity oversampling using extreme learning machine autoencoder

An ELM [41] is a random algorithm for training a single hidden layer feedforward neural network (SLFNN) (Fig. 1). The
activation functions of the hidden layer nodes are sigmoid functions, whereas the activation functions of the input and out-
put layer nodes are linear functions. The randomness of ELM is ensured by randomly generating the weights between the
input layer and hidden layer and the biases of the hidden layer nodes. The SLFNN trained by the ELM can be viewed as a
random weight network [42], and its generalization performance is closely related to uncertainty [43,44]. Since it is unnec-
essary for an ELM to adjust the network parameters iteratively, it has a very fast learning speed with excellent generalization
performance and has found many successful applications [45–48].

Given a training set S ¼ fðxi; yiÞjxi 2 Rd; yi 2 Rk; i ¼ 1;2; � � � ;n}, ELM only needs to solve the following linear Eq. (1). In other
words, it only needs to calculate the Moore–Penrose generalized inverse of hidden output matrix H.
Hb ¼ Y ð1Þ

where
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H ¼
gðw1 � x1 þ b1Þ � � � gðwm � x1 þ bmÞ
..
. � � � ..

.

gðw1 � xn þ b1Þ � � � gðwm � xn þ bmÞ

2
664

3
775 ð2Þ

b ¼ ðbT
1; � � � ;bT

mÞ
T ð3Þ
and
Y ¼ ðyT
1; � � � ; yT

nÞ
T ð4Þ
In the (2), gð�Þ is the activation function of hidden layer nodes, wj ¼ ðwj1;wj2; � � � ;wjdÞT is the weight vector connecting the jth

hidden node with the input nodes, bj is the bias of the jth hidden node. In the (3), bj ¼ ðbj1; bj2; � � � ; bjmÞT is the weight vector

connecting the jth hidden node with the output nodes, T stands for transpose.
Generally, the number of hidden nodes is much less than the number of training samples. Accordingly, H is not a square

matrix, and the Eq. (1) hasn’t exact solution, one can find its smallest norm least square solution by solving the following
optimization problem.
min
b

jjHb� Yjj ð5Þ
The smallest norm least-squares solution of (5) can be obtained by (6).
b̂ ¼ HyY ð6Þ
where Hy ¼ ðHHTÞ�1
H is the Moore–Penrose generalized inverse of matrix H. The pseudocode of ELM is given in Algorithm 1.

Algorithm 1: The ELM Algorithm
We can introduce a regularization item into (5), the corresponding optimization problem becomes (7).
min
b

f12 jjbjj22 þ C
2

Xn

i¼1

jjnjj22g

s:t: bThi ¼ yi � ni;1 6 i 6 n:

ð7Þ
where ni is the error vector corresponding to xi and C is a positive parameter.
The solution of optimization problem (7) is given by
b̂ ¼ ð1
C
IþHHTÞ

�1

HYT ð8Þ
where I is the identity matrix.
In Fig. 1, if we let the number of nodes in the output layer equal to the number of nodes in the input layer, and let the

input equal to the output, i.e. yi ¼ xi, then the SLFNN given in Fig. 1 becomes an ELMAE (Fig. 2). Obviously, we can use ELM
algorithm to train ELMAE.

The ELMAE can be regarded as a generative model. We propose a binary imbalanced data classification algorithm (BIDC1)
that uses ELMAE to generate positive samples to balance the data sets. It should be noted that the generated positive samples
should be similar but distinct from the original positive samples. Furthermore, the generated positive samples should not
overlap with the negative samples, a feature we refer to as separability. The separability between the generated positive
samples and the original negative samples is determined by the Silhouette coefficient [8], which is named Silhouette-
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Fig. 1. The single hidden layer feedforward neural network with special architecture.
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score in this paper. We use the MMD [7] to characterize the similarity between the generated positive samples and the orig-
inal positive samples.

The Silhouette-score [8] is an evaluation index of clustering algorithms. Given a sample x which belongs to cluster A, the
Silhouette-score of x is defined as Eq. (9).
sðxÞ ¼ bðxÞ � aðxÞ
maxfaðxÞ; bðxÞg ð9Þ
where aðxÞ is the average dissimilarity of sample x to all other samples of A, bðxÞ ¼ minC–Adðx;CÞ, while dðx;CÞ is the average
dissimilarity of sample x to all samples of cluster C. With respect to a cluster (or a set) A, the Silhouette-score of A is
sðAÞ ¼ 1

jAj
P

x2AsðxÞ. From Eq. (9), it is easy to find that the value of sðxÞ is between [-1,1], and the closer the value of sðxÞ
to 1, the better the separability is.

The MMD is a statistics for measuring the mean squared difference of two sets of samples. Given two sets of samples
X ¼ fxig; 1 6 i 6 n and Y ¼ fyig; 1 6 i 6 m, the MMD of X and Y is defined as Eq. (10).
MMD ¼ 1
n

Xn
i¼1

/ðxiÞ � 1
m

Xm
j¼1

/ðyiÞ
�����

�����
2

¼ 1
n2

Xn
i¼1

Xn
i0¼1

/ðxiÞT/ðxi0 Þ � 2
nm

Xn
i¼1

Xm
j¼1

/ðxiÞT/ðyjÞ þ 1
m2

Xm
j¼1

Xm
j0¼1

/ðyjÞT/ðyj0 Þ
ð10Þ
In Eq. (10), /ð�Þ is a kernel mapping, using kernel trick, Eq. (10) can be written as Eq. (11).
MMD ¼ 1
n2

Xn
i¼1

Xn
i0¼1

kðxi;xi0 Þ �
2
nm

Xn
i¼1

Xm
j¼1

kðxi; yjÞ þ
1
m2

Xm
j¼1

Xm
j0¼1

kðyj; yj0 Þ ð11Þ
The Gaussian kernel is typically used to calculate the value of MMD (i.e., the MMD-score) between the distribution of the
original positive samples and the generated positive samples and evaluate the divergence of the two distributions. The larger
the MMD-score, the greater the divergence between the two distributions is, and the higher the diversity of the generated
samples is.
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The BIDC1 consists of three stages: (1) training the ELMAE on the original data set; (2) generating synthetic positive sam-
ples with the trained ELMAE model to balance the original data set; (3) training a classifier model on the balanced data set
and classifying the testing samples. The pseudocode of the BIDC1 is given in Algorithm 2.

Algorithm 2: The BIDC1 algorithm
Note: To execute the statement 11 in the Algorithm 2, we first use the existing positive samples and the generated pos-
itive samples to calculate MMD-score and use the generated positive samples and negative samples to calculate the

Silhouette-score. Specifically, Sþi are used as the input of ELMAE to obtain the generated positive samples in ith iteration,
and we use the random sampling method to get the generated positive samples subset, then calculate the MMD-score
between Sþi and the subset, calculate the Silhouette-score between S�tr and the subset. Finally, we select a subset Sþgen with
the highest scores, the score is the sum of MMD-score add Silhouette-score.
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Fig. 2. The extreme learning machine autoencoder.
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3.2. Binary imbalanced data classification based on diversity oversampling by generative adversarial network

A GAN [20] is an implicit probabilistic generation model that consists of two neural networks (Fig. 3), a generator G, and a
discriminator D. The inputs z of the generator are samples obtained from a prior distribution Pnoise, which is usually a
Fig. 3. The architecture of generative adversarial network.
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Gaussian distribution. The outputs x0 ¼ GðzÞ of the generator are fake samples used to mimic real samples to mislead the
discriminator. The inputs of discriminator D include the fake data x0 and real data x, where x is sampled from an unknown
real distribution Pd. The outputs of discriminator D are probability distributions, which indicate the probability that the
inputs originated from the real distribution Pdata or from the generated distribution Pgen. In other words, the goal of the dis-
criminator is to distinguish between real and fake samples. GANs have excellent performance in several fields, such as com-
puter vision, natural language processing, and audio recognition.

The appealing property of GAN is the adversarial training of the two networks, G and D. The goal of adversarial training is
to find a Nash equilibrium. Let JðDÞðhðDÞ; hðGÞÞ is the loss function for the discriminator D, and JðGÞðhðDÞ; hðGÞÞ is the loss function
for the generator G. A Nash equilibrium is a point ðhðDÞ; hðGÞÞ, such that JðDÞð�; �Þ obtains its maximumwith respect to parameter
hðDÞ, and JðGÞð�; �Þ obtains its minimumwith respect to parameter hðGÞ. The corresponding optimal model can be summarized as
the following min–max model:
min
G

max
D

JðG;DÞ ¼ Ex�Pdata ½logðDðxÞÞ� þ Ex0�Pgen ½logð1� Dðx0ÞÞ�
¼ Ex�Pdata ½logðDðxÞÞ� þ Ez�Pnoise ½logð1� DðGðzÞÞÞ�

ð12Þ
With respect to the training of GAN, Goodfellow et al. [20] suggest to training GAN by alternating between k steps of opti-
mizing D and one step of optimizing G. In addition, Goodfellow et al. also pointed out that since Eq. (12) may not provide
sufficient gradient for G to learn well. Early in learning, when the performance of G is poor, D can reject samples with high
confidence because they are clearly different from the training data. In this case, logð1� DðGðzÞÞÞ saturates. Rather than
training G to minimize logð1� DðGðzÞÞÞ, one can train G to maximize logðDðGðzÞÞÞ. The pseudo-code of the algorithm based
on minibatch stochastic gradient descent for training GAN is given in Algorithm 3.

Algorithm 3: Minibatch stochastic gradient descent training of generative adversarial nets

After training of GAN, the obtained G can be used to implicitly approximate the data distribution Pdata, i.e., using the gen-
erated samples x0 to approximate real samples x � Pdata. Motivated by this idea, we borrow technical route of GAN to address
binary imbalanced data classification problem, and proposed another binary imbalanced data classification algorithm
320



J. Zhai, J. Qi and C. Shen Information Sciences 585 (2022) 313–343
(BIDC2). Similar to the BIDC1, the BIDC2 uses GAN to generate positive samples to balance the data sets and it also consists of
three stages: (1) firstly, training the GAN on Sþtr; (2) generating synthetic positive samples with the trained GAN to balance
original data set; (3) training a classifier model on balanced data set and classifying testing samples. The pseudo-code of the
BIDC2 is given in Algorithm 4.

Algorithm 4: The BIDC2 algorithm

Notes: (1) In the experiments, we setm0 ¼ m; (2) We calculate the MMD-score between Sþi and each minibatch generated
positive samples and calculate the Silhouette-score between each minibatch generated positive samples and the negative
samples. Based on the calculation results, we select the minibatch Sþgen with the highest score, the score is the sum of
MMD-score add Silhouette-score.

4. Experimental results and analysis

To verify the effectiveness of the two algorithms BIDC1 and BIDC2, we conducted extensive experiments on 26 data sets
to compare the two algorithms with 14 state-of-the-art algorithms, ROS [9], SMOTE [1], B-SMOTE [2], ADASYN [3], K-SMOTE
[12], ANS [13], CCR [14], NRPSOS [15], C-SMOTE [16], SOMO [17], G-SMOTE [18], OUPS [19], AC-GAN [21], and MFC-GAN
[25]. The 26 data sets include 1 artificial data set, 15 public testing data sets, and 10 application-oriented data sets. The arti-
ficial data set is a two-dimensional data set with two classes following Gaussian distributions. The mean vectors and covari-
ance matrices of the two Gaussian distributions are listed in Table 1. The artificial data set is used to demonstrate the
feasibility of the proposed approach and visualize the generated synthetic examples. The distribution of the data points
of the artificial data set for the class-balanced scenario is shown in Fig. 4. The 15 public testing data sets include 10 UCI data
sets1 and 5 KEEL data sets2. The 10 application-oriented data sets include 7 software defect prediction data sets3, and 3 liver
data sets4. The basic information of the artificial data set and the 15 public testing data sets is listed in Table 2, and that of
1 http://archive.ics.uci.edu/ml/index.php
2 https://sci2s.ugr.es/keel/datasets.php
3 http://promise.site.uottawa.ca/SERepository
4 https://github.com/ShenData/data
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Table 1
The mean vectors and covariance matrices of two Gaussian distributions.

i li Ri

1 ð1:0;1:0ÞT 0:6 �0:2
�0:2 0:6

� �

2 ð2:5;2:5ÞT 0:2 �0:1
�0:1 0:2

� �

Fig. 4. The visualization of distribution of the artificial data set.

Table 2
The basic information of the artificial data set and the 15 public testing data sets.

Data sets #Sample #Attribute #Minority #Majority IR

Artificial 10100 2 100 10000 100
Ecoli1 336 7 52 284 5.46
Ecoli2 310 7 26 284 10.92
Glass1 214 9 70 144 2.06
Glass2 179 9 35 144 4.11
Iris1 150 4 50 100 2.00
Iris2 125 4 25 100 4.00
ILPD1 345 6 145 200 1.38
ILPD2 272 6 72 200 2.78
Wine1 178 13 71 107 1.51
Wine2 142 13 35 107 3.06
Segment 2308 18 329 1979 6.02
Yeast3 1484 8 163 1321 8.10
Yeast4 1484 8 51 1430 28.04
Yeast6 1484 8 35 1449 41.40
Vowel0 988 13 90 898 9.98

J. Zhai, J. Qi and C. Shen Information Sciences 585 (2022) 313–343
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Table 3
The basic information of the 10 data sets for two application scenarios.

Data sets #Sample #Attribute #Minority #Majority IR

CM1 327 37 42 285 6.79
JM1 7782 21 1672 6110 3.65
MC1 1591 38 37 1554 42.00
MC2 125 39 44 81 1.84
PC1 1109 21 77 1032 13.40
KC2 522 21 107 415 3.88
KC3 194 39 36 158 4.39
Liver1 12400 5 200 12200 61
Liver2 14000 5 1000 13000 13
Liver3 13000 5 500 12500 25

J. Zhai, J. Qi and C. Shen Information Sciences 585 (2022) 313–343
the 10 application-oriented data sets is listed in Table 3. In these tables, #Sample is the number of samples in the data set,
#Attribute is the number of attributes, #Minority is the number of minority samples, #Majority is the number of majority sam-
ples, and the IR ¼ #Majority=#Minority.

All experiments are conducted on a PC platform with an Intel i5-6600 k CPU, 16G memory, and 1 TB hard disk. The oper-
ating system is 64-bit Windows 10. The experimental comparison metrics are the F-measure, G-mean, AUC-area [9], MMD-
score [7], and Silhouette-score [8]. Let Positive and Negative represent the true labels of the positive and negative classes
respectively, and Yes and No represent the predicted labels of positive and negative classes, then the confusion matrix of
the binary imbalanced classification problem can be defined in Table 4.

Based on the confusion matrix, the Precision, Recall, and Specificity can be defined by Eq. (13), Eq. (14), and Eq. (15),
respectively.
Table 4
Confusi

True

Pos
Neg
Precision ¼ TP
TPþ FP

ð13Þ

Recall ¼ TP
TPþ FN

ð14Þ

Specificity ¼ TN
TNþ FP

ð15Þ
Based on the Precision and Recall, the F-measure can be defined by Eq. (16).
F�measure ¼ ð1þ bÞ2 � Recall� Precision
b2 � Recallþ Precision

ð16Þ
where b is a coefficient to adjust the relative importance of precision versus recall, in our experiments, we let b ¼ 1.
Based on the Recall and Specificity, the G-mean can be defined by Eq. (17).
G�mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall� Specificity

p
ð17Þ
The AUC refers to the area under the curve of receiver operating characteristics (ROC) [9]. The ROC curve is a graph in 2-
dimension space of TP-rate and FP-rate, which is formed by plotting TP-rate over FP-rate, the TP-rate and FP-rate are the
vertical and horizontal axis of the 2-dimension space respectively.

4.1. Comparison of the 16 algorithms on the artificial data set and 15 public testing data sets

In this experiment, we compared the BIDC1 and BIDC2 with the 14 state-of-the-art algorithms. In the comparison of the
BIDC1 and the 14 state-of-the-art algorithms, the programming environment consists of PyCharm Community Edition
2017.1.1, and Weka 3.9. The support vector machine is selected as the classifier. The activation function of ELMAE is the sig-
moid function sðxÞ ¼ 1

1þe�x. The selected hyperparameters for the different data sets are listed in Table 5, where #Hidden
on matrix of binary imbalanced classification problem.

labels
Prediction labels

Yes No

itive TP(True Positive) FN(False Negative)
ative FP(False Positive) TN(True Negative)
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Table 5
The number of hidden layer neurons and the
number of iterations.

Data sets #Hidden nodes #Iterations

Artificial 150 5
Ecoli1 10 2
Ecoli2 10 3
Glass1 10 1
Glass2 10 2
Iris1 5 1
Iris2 5 2
ILPD1 15 1
ILPD2 15 1
Wine1 20 1
Wine2 20 2
Segment 30 2
Yeast3 20 3
Yrast4 10 4
Yeast6 10 5
Vowel0 20 3

J. Zhai, J. Qi and C. Shen Information Sciences 585 (2022) 313–343
nodes and #Iterations are the number of hidden layer neurons and number of iterations respectively. In the comparison of
the BIDC2 and the 14 state-of-the-art algorithms, the programming environment consists of PyCharm Community Edition
2017.1.1 and TensorFlow. The generator and discriminator of the GAN are single hidden layer feedforward neural networks,
and the activation functions of hidden and output layers are sðxÞ ¼ 1

1þe�x and tðxÞ ¼ ex�e�x

exþe�x, respectively. The dimension dz of the
noise variable z and the number of hidden nodes of generator G and discriminator D are listed in Table 6. We use the ADAM
algorithm to train the two networks with the following parameters: a ¼ 0:001; b1 ¼ 0:900; b2 ¼ 0:999, and � ¼ 10�8.

We use a grid search strategy to select the appropriate hyperparameters based on the highest performance. For example,
the numbers of hidden nodes of the encoder and decoder networks in the BIDC1 are listed in Table 5, and the numbers of
hidden nodes of the generator and discriminator networks in the BIDC2 are listed in Table 6. For each data set, we determine
the suitable numbers of hidden nodes of the neural networks using a grid search strategy with the same interval [50,150].
The suitable number of iterations in BIDC1 for each data are selected in the same manner in [1,15], and the two intervals are
determined empirically.

We also analyze the influence of the hyperparameters on the results. The number of hidden nodes determines the size of
the network and affects overfitting or underfitting of the model. If the data set is large or complex, and there are few hidden
nodes, underfitting can occur. Overfitting is likely if the data set is very small with many hidden nodes. Larger or more com-
plex data sets require more iterations to ensure high performance, whereas smaller data sets can learn the distribution well,
resulting in less training time with fewer iterations.

The experimental results on the artificial data set and 15 public data sets are summarized in Tables 7–11. It is observed
that the proposedmethods BIDC1 and BIDC2 outperformmost state-of-the-art methods on all metrics. Especially in Table 10,
our methods outperform all state-of-the-art methods on the MMD-score. It is also found that BIDC2 is most effective and
achieves most maximum values. Its superior performance against BIDC1 suggest that GAN is a stronger generative model
Table 6
The dimension of noise variable z and the number of hidden nodes of
generator G and discriminator D.

Data sets dz #Hidden nodes of G #Hidden nodes of D

Artificial 100 100 100
Ecoli1 55 70 35
Ecoli2 35 50 20
Glass1 35 90 45
Glass2 25 70 35
Iris1 20 25 15
Iris2 20 25 15
ILPD1 50 50 20
ILPD2 25 35 20
Wine1 130 65 40
Wine2 130 65 40
Segment 150 75 50
Yeast3 100 50 30
Yeast4 100 50 30
Yeast6 100 50 30
Vowel0 120 50 40
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Table 7
The experimental results compared with 14 state-of-the-art methods on the 1 artificial data set and 15 public testing data sets on F-measure.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

Artificial 0.243 0.433 0.332 0.623 0.144 0.584 0.234 0.561 0.664 0.804 0.581 0.550 0.621 0.683 0.714 0.783
Ecoli1 0.621 0.625 0.674 0.718 0.756 0.797 0.616 0.800 0.796 0.000 0.710 0.788 0.652 0.688 0.812 0.833
Ecoli2 0.476 0.417 0.500 0.556 0.825 0.821 0.700 0.852 0.819 0.000 0.722 0.741 0.774 0.000 0.485 0.572
Glass1 0.437 0.505 0.609 0.547 0.505 0.530 0.552 0.630 0.556 0.129 0.569 0.551 0.610 0.619 0.633 0.658
Glass2 0.430 0.483 0.572 0.538 0.751 0.639 0.455 0.501 0.511 0.000 0.065 0.671 0.734 0.000 0.769 0.690
Iris1 0.643 0.658 0.286 0.712 0.501 0.000 0.492 0.501 0.501 0.505 0.505 0.501 0.752 0.764 0.720 0.774
Iris2 0.458 0.471 0.502 0.536 0.000 0.528 0.581 0.901 0.476 0.000 0.418 0.649 0.663 0.240 0.625 0.548
ILPD1 0.617 0.602 0.532 0.633 0.285 0.000 0.000 0.668 0.393 0.322 0.415 0.285 0.359 0.586 0.635 0.705
ILPD2 0.524 0.509 0.488 0.554 0.669 0.669 0.132 0.672 0.105 0.000 0.299 0.669 0.075 0.099 0.600 0.644
Wine1 0.880 0.846 0.905 0.899 0.764 0.766 0.726 0.771 0.761 0.764 0.764 0.766 0.923 0.933 0.923 0.938
Wine2 0.872 0.938 0.991 0.984 0.442 0.891 0.671 0.891 0.119 0.891 0.427 0.365 0.921 0.891 0.997 0.993
Segment 0.982 0.991 0.993 0.993 0.741 0.722 0.714 0.716 0.725 0.825 0.767 0.724 0.743 0.523 0.995 0.998
Yeast3 0.665 0.669 0.732 0.708 0.767 0.739 0.728 0.780 0.743 0.000 0.717 0.744 0.571 0.764 0.717 0.784
Yeast4 0.170 0.467 0.504 0.500 0.000 0.942 0.000 0.000 0.000 0.000 0.000 0.739 0.031 0.031 0.514 0.530
Yeast6 0.133 0.510 0.458 0.469 0.000 0.052 0.283 0.113 0.000 0.000 0.454 0.000 0.029 0.000 0.534 0.551
Vowel0 0.878 0.809 0.920 0.923 0.918 0.000 0.837 0.879 0.893 0.000 0.845 0.867 0.540 0.733 0.939 0.955
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Table 8
The experimental results compared with 14 state-of-the-art methods on the 1 artificial data set and 15 public testing data sets on G-mean.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

Artificial 0.391 0.454 0.462 0.343 0.541 0.590 0.313 0.790 0.733 0.914 0.642 0.761 0.633 0.704 0.922 0.854
Ecoli1 0.862 0.927 0.940 0.971 0.591 0.636 0.679 0.640 0.367 0.000 0.727 0.681 0.802 0.781 0.905 0.974
Ecoli2 0.896 0.898 0.908 0.927 0.664 0.636 0.516 0.743 0.458 0.000 0.773 0.607 0.820 0.000 0.912 0.946
Glass1 0.616 0.619 0.667 0.683 0.721 0.624 0.565 0.619 0.609 0.216 0.536 0.669 0.689 0.635 0.700 0.733
Glass2 0.695 0.670 0.717 0.754 0.663 0.250 0.333 0.288 0.591 0.751 0.226 0.107 0.725 0.000 0.928 0.861
Iris1 0.704 0.704 0.722 0.749 0.509 0.000 0.632 0.509 0.509 0.509 0.516 0.509 0.819 0.829 0.794 0.834
Iris2 0.664 0.693 0.706 0.690 0.000 0.143 0.114 0.833 0.210 0.000 0.287 0.178 0.716 0.451 0.721 0.715
ILPD1 0.316 0.311 0.397 0.445 0.286 0.000 0.000 0.153 0.295 0.000 0.163 0.044 0.434 0.560 0.549 0.563
ILPD2 0.672 0.641 0.677 0.692 0.685 0.108 0.045 0.140 0.131 0.000 0.205 0.154 0.233 0.000 0.706 0.711
Wine1 0.887 0.865 0.894 0.906 0.479 0.484 0.000 0.484 0.479 0.492 0.498 0.488 0.914 0.921 0.926 0.935
Wine2 0.939 0.962 0.980 0.971 0.737 0.000 0.275 0.000 0.370 0.000 0.341 0.547 0.000 0.000 0.998 0.984
Segment 0.982 0.990 0.994 0.992 0.545 0.473 0.447 0.448 0.458 0.000 0.758 0.935 0.949 0.490 0.996 0.999
Yeast3 0.657 0.662 0.695 0.686 0.620 0.526 0.534 0.627 0.437 0.000 0.560 0.548 0.652 0.000 0.703 0.775
Yeast4 0.314 0.620 0.577 0.641 0.000 0.933 0.000 0.000 0.000 0.000 0.000 0.773 0.139 0.139 0.685 0.691
Yeast6 0.266 0.584 0.579 0.615 0.000 0.148 0.366 0.218 0.000 0.000 0.545 0.035 0.230 0.000 0.632 0.668
Vowel0 0.890 0.865 0.934 0.946 0.914 0.000 0.843 0.857 0.876 0.000 0.838 0.835 0.556 0.780 0.952 0.967
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Table 9
The experimental results compared with 14 state-of-the-art methods on the 1 artificial data set and 15 public testing data sets on AUC-area.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

Artificial 0.414 0.600 0.614 0.562 0.274 0.671 0.552 0.701 0.762 0.911 0.701 0.773 0.672 0.702 0.833 0.924
Ecoli1 0.862 0.840 0.887 0.891 0.709 0.738 0.703 0.743 0.709 0.500 0.772 0.729 0.802 0.798 0.893 0.920
Ecoli2 0.904 0.912 0.926 0.918 0.785 0.750 0.658 0.787 0.680 0.500 0.709 0.653 0.883 0.431 0.887 0.952
Glass1 0.690 0.705 0.683 0.731 0.800 0.724 0.703 0.731 0.721 0.515 0.643 0.745 0.699 0.701 0.814 0.846
Glass2 0.741 0.764 0.876 0.890 0.811 0.508 0.447 0.535 0.610 0.815 0.528 0.512 0.803 0.500 0.931 0.945
Iris1 0.725 0.733 0.767 0.758 0.830 0.500 0.810 0.820 0.820 0.840 0.820 0.820 0.835 0.839 0.800 0.827
Iris2 0.700 0.693 0.706 0.718 0.500 0.400 0.477 0.868 0.348 0.500 0.460 0.492 0.784 0.544 0.725 0.720
ILPD1 0.550 0.533 0.596 0.666 0.565 0.500 0.500 0.508 0.585 0.500 0.490 0.513 0.552 0.599 0.670 0.691
ILPD2 0.680 0.645 0.682 0.701 0.510 0.508 0.505 0.513 0.508 0.815 0.498 0.488 0.518 0.515 0.713 0.750
Wine1 0.893 0.869 0.908 0.894 0.613 0.671 0.500 0.671 0.661 0.675 0.707 0.552 0.937 0.962 0.929 0.966
Wine2 0.895 0.915 0.982 0.933 0.609 0.500 0.500 0.500 0.403 0.500 0.402 0.500 0.500 0.500 0.997 0.989
Segment 0.987 0.991 0.991 0.993 0.652 0.610 0.604 0.599 0.592 0.500 0.746 0.619 0.936 0.949 0.996 0.998
Yeast3 0.753 0.757 0.772 0.769 0.693 0.645 0.651 0.707 0.624 0.500 0.625 0.638 0.710 0.494 0.784 0.825
Yeast4 0.564 0.612 0.678 0.651 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.819 0.505 0.505 0.693 0.736
Yeast6 0.558 0.644 0.619 0.658 0.500 0.509 0.571 0.518 0.500 0.500 0.657 0.500 0.493 0.496 0.682 0.704
Vowel0 0.834 0.854 0.886 0.906 0.925 0.500 0.846 0.872 0.851 0.500 0.841 0.848 0.760 0.803 0.915 0.958

J.Zhai,J.Q
i
and

C.Shen
Inform

ation
Sciences

585
(2022)

313–
343

327



Table 10
The experimental results compared with 14 state-of-the-art methods on the 1 artificial data set and 15 public testing data sets on MMD-score.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

Artificial 0.025 0.026 0.394 0.397 1.096 0.197 0.260 0.251 0.970 0.761 0.030 0.126 1.181 1.436 0.837 1.449
Ecoli1 0.034 0.094 0.063 0.056 0.071 0.054 0.033 0.070 0.042 0.025 0.060 0.035 0.080 0.033 0.109 6.233
Ecoli2 0.064 0.090 0.070 0.142 0.052 0.068 0.082 0.309 0.150 0.114 0.111 0.137 0.070 0.170 0.103 6.124
Glass1 0.046 0.026 0.020 0.032 0.019 0.016 0.031 0.042 0.064 0.029 0.033 0.061 0.057 0.019 7.729 7.720
Glass2 0.031 0.032 0.080 0.106 0.087 0.044 0.092 0.333 0.116 0.059 0.060 0.126 0.070 0.031 0.186 5.243
Iris1 0.019 0.041 0.028 0.017 0.060 0.088 0.059 0.030 0.043 0.063 0.034 0.027 0.037 0.067 0.233 7.383
Iris2 0.047 0.040 0.019 0.048 0.057 0.045 0.046 2.573 0.059 0.188 0.039 0.100 0.019 0.042 0.142 5.778
ILPD1 0.041 0.020 0.020 0.015 0.012 0.023 0.012 0.040 0.020 0.022 0.015 0.019 0.008 0.021 1.460 0.829
ILPD2 0.028 0.044 0.088 0.019 0.022 0.023 0.028 0.224 0.044 0.034 0.020 0.123 0.034 0.032 0.056 5.518
Wine1 0.039 0.053 0.031 0.037 0.047 0.040 0.053 0.032 0.034 0.056 0.038 0.027 0.037 0.038 0.402 1.596
Wine2 0.018 0.011 0.018 0.026 0.021 0.018 0.015 0.020 0.024 0.027 0.029 0.023 0.019 0.014 0.060 3.496
Segment 0.005 0.007 0.005 0.007 0.007 0.014 0.015 0.009 0.016 0.005 0.009 0.005 0.009 0.012 0.594 4.765
Yeast3 0.014 0.017 0.019 0.023 0.014 0.018 0.015 0.072 0.020 0.016 0.009 0.013 0.015 0.013 0.036 5.145
Yeast4 0.067 0.101 0.036 0.042 0.048 0.056 0.051 0.661 0.086 0.031 0.036 0.042 0.081 0.044 0.053 5.313
Yeast6 0.061 0.035 0.050 0.045 0.062 0.066 0.040 0.281 0.069 0.124 0.052 0.077 0.046 0.093 0.122 6.279
Vowel0 0.024 0.040 0.013 0.040 0.018 0.029 0.018 0.052 0.068 0.009 0.026 0.021 0.074 0.021 0.110 3.690
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Table 11
The experimental results compared with 14 state-of-the-art methods on the 1 artificial data set and 15 public testing data sets on Silhouette-score.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

Artificial 0.435 0.449 0.394 0.380 0.438 0.537 0.352 0.548 0.480 0.575 0.450 0.442 0.382 0.592 0.641 0.692
Ecoli1 0.256 0.260 0.344 0.175 0.287 0.329 0.146 0.313 0.142 0.101 0.155 0.305 0.253 0.258 0.352 0.396
Ecoli2 0.276 0.325 0.305 0.267 0.383 0.356 0.160 0.365 0.320 0.076 0.169 0.295 0.268 0.248 0.387 0.439
Glass1 0.133 0.140 0.144 0.134 0.151 0.153 0.095 0.149 0.163 0.165 0.067 0.151 0.214 0.109 0.388 0.463
Glass2 0.012 0.009 0.016 0.010 0.136 0.029 0.010 0.079 0.025 -0.028 0.026 0.016 0.209 0.207 0.113 0.246
Iris1 0.662 0.668 0.629 0.629 0.664 0.629 0.478 0.666 0.661 0.669 0.546 0.672 0.535 0.616 0.723 0.882
Iris2 0.003 0.001 0.002 0.003 -0.019 0.010 0.000 0.428 0.027 -0.019 0.021 0.017 0.290 0.151 0.011 0.245
ILPD1 0.012 0.013 0.011 0.012 0.047 0.005 0.007 0.031 0.021 0.057 0.008 0.025 0.094 0.044 0.175 0.184
ILPD2 0.013 0.023 0.026 0.016 0.092 0.038 0.013 0.055 0.053 -0.021 0.015 0.039 0.234 0.078 0.164 0.239
Wine1 0.178 0.182 0.158 0.157 0.157 0.195 0.131 0.188 0.177 0.209 0.155 0.209 0.300 0.205 0.299 0.397
Wine2 0.012 0.012 0.034 0.010 0.200 0.001 0.018 0.001 0.019 0.001 0.016 0.023 0.187 0.022 0.022 0.144
Segment 0.185 0.188 0.199 0.210 0.216 0.208 0.106 0.187 0.175 -0.057 0.081 0.216 0.264 0.146 0.613 0.709
Yeast3 0.155 0.171 0.120 0.121 0.226 0.187 0.105 0.223 0.215 0.045 0.106 0.187 0.209 0.066 0.141 0.197
Yeast4 0.196 0.218 0.267 0.193 0.181 0.335 0.136 0.387 0.333 0.181 0.153 0.209 0.351 0.136 0.291 0.347
Yeast6 0.299 0.338 0.438 0.261 0.180 0.453 0.209 0.445 0.457 0.180 0.216 0.290 0.018 0.138 0.468 0.542
Vowel0 0.089 0.093 0.371 0.301 0.259 0.097 0.071 0.093 0.093 0.097 0.072 0.109 0.227 0.216 0.486 0.517
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Fig. 5. The visualization of the generated positive samples with different methods on artificial data set.

Table 12
The number of hidden layer neurons and the number of iterations.

Data sets #Hidden nodes #Iterations

CM1 40 2
JM1 20 2
MC1 45 5
MC2 40 1
PC1 25 4
KC2 20 2
KC3 35 2
Liver1 10 10
Liver2 20 6
Liver3 10 7
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than ELMAE and can better learn the distribution of positive samples. In addition, it is also observed that some methods with
extremely low MMD-score and Silhouette-score exhibit low performances. For example, SOMO on the Ecoli1 data set and
ANS and CCR on the Glass2 data set have low MMD-score and Silhouette-score with low performance. Since the BIDC1
and BIDC2 uses the Silhouette-score to ensure no examples are generated within overlapping decision regions, this oversam-
pling mechanism facilitates learning the true decision boundary due to the higher separability between the two classes. This
finding is illustrated in Fig. 5(p) and (q) for the artificial data set. Furthermore, a comparison of the distribution of the gen-
erated samples and the original positive samples in Fig. 5(p) and 5(q) with the real balanced distribution in Fig. 4 indicates
that the BIDC1 and BIDC2 improve the overall classification performance although there may be small differences between
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Table 13
The experimental results compared with 14 state-of-the-art methods on the 10 application-oriented data sets on F-measure.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

CM1 0.333 0.343 0.286 0.415 0.110 0.400 0.000 0.974 0.110 0.000 0.020 0.669 0.742 0.044 0.462 0.502
JM1 0.642 0.630 0.647 0.669 0.756 0.001 0.000 0.005 0.001 0.757 0.001 0.003 0.771 0.387 0.694 0.786
MC1 0.335 0.421 0.375 0.456 0.000 0.694 0.000 0.000 0.682 0.000 0.033 0.672 0.000 0.043 0.517 0.460
MC2 0.000 0.041 0.030 0.154 0.576 0.044 0.685 0.252 0.044 0.305 0.112 0.237 0.568 0.553 0.211 0.236
PC1 0.526 0.538 0.556 0.601 0.071 0.010 0.668 0.329 0.093 0.574 0.030 0.139 0.072 0.071 0.625 0.611
KC2 0.376 0.342 0.400 0.398 0.778 0.018 0.671 0.023 0.145 0.689 0.014 0.138 0.360 0.439 0.504 0.527
KC3 0.012 0.407 0.392 0.410 0.140 0.022 0.013 0.268 0.133 0.000 0.024 0.598 0.000 0.000 0.530 0.644
Liver1 0.000 0.785 0.896 0.823 0.000 0.727 0.720 0.720 0.642 0.000 0.645 0.764 0.000 0.019 0.921 0.958
Liver2 0.000 0.406 0.664 0.750 0.000 0.730 0.732 0.730 0.697 0.000 0.662 0.740 0.008 0.010 0.825 0.871
Liver3 0.000 0.842 0.883 0.793 0.000 0.735 0.727 0.730 0.505 0.000 0.656 0.739 0.010 0.000 0.904 0.934
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Table 14
The experimental results compared with 14 state-of-the-art methods on the 10 application-oriented data sets on G-mean.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

CM1 0.667 0.482 0.688 0.657 0.129 0.098 0.000 0.958 0.000 0.000 0.072 0.000 0.749 0.154 0.690 0.724
JM1 0.814 0.808 0.793 0.802 0.769 0.008 0.000 0.065 0.008 0.715 0.011 0.000 0.779 0.558 0.821 0.852
MC1 0.541 0.563 0.533 0.527 0.000 0.339 0.000 0.000 0.248 0.000 0.123 0.000 0.000 0.164 0.625 0.567
MC2 0.000 0.145 0.126 0.330 0.642 0.071 0.000 0.452 0.071 0.434 0.207 0.157 0.651 0.645 0.333 0.417
PC1 0.618 0.646 0.661 0.640 0.094 0.034 0.000 0.458 0.000 0.959 0.038 0.000 0.197 0.197 0.692 0.686
KC2 0.493 0.579 0.511 0.556 0.805 0.044 0.000 0.097 0.073 0.596 0.053 0.022 0.479 0.565 0.600 0.652
KC3 0.508 0.546 0.539 0.558 0.832 0.034 0.036 0.406 0.130 0.000 0.086 0.049 0.000 0.000 0.588 0.737
Liver1 0.000 0.612 0.581 0.736 0.000 0.504 0.512 0.475 0.687 0.000 0.568 0.629 0.000 0.265 0.884 0.893
Liver2 0.000 0.597 0.624 0.713 0.000 0.509 0.539 0.513 0.746 0.000 0.588 0.543 0.070 0.100 0.853 0.906
Liver3 0.000 0.643 0.708 0.758 0.000 0.529 0.528 0.508 0.766 0.000 0.566 0.542 0.077 0.000 0.897 0.924
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Table 15
The experimental results compared with 14 state-of-the-art methods on the 10 application-oriented data sets on AUC-area.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

CM1 0.682 0.691 0.590 0.715 0.535 0.496 0.498 0.961 0.498 0.500 0.505 0.500 0.855 0.508 0.747 0.772
JM1 0.814 0.808 0.823 0.837 0.864 0.500 0.500 0.503 0.500 0.772 0.500 0.500 0.874 0.584 0.850 0.893
MC1 0.578 0.609 0.641 0.618 0.500 0.562 0.500 0.500 0.546 0.500 0.510 0.500 0.500 0.511 0.702 0.717
MC2 0.500 0.510 0.507 0.524 0.756 0.513 0.500 0.605 0.519 0.593 0.538 0.518 0.683 0.647 0.556 0.604
PC1 0.622 0.653 0.680 0.695 0.964 0.524 0.500 0.593 0.500 0.500 0.506 0.500 0.518 0.518 0.686 0.735
KC2 0.611 0.661 0.623 0.592 0.747 0.505 0.500 0.505 0.513 0.671 0.502 0.501 0.608 0.643 0.677 0.710
KC3 0.598 0.582 0.621 0.609 0.547 0.494 0.500 0.573 0.534 0.500 0.500 0.503 0.500 0.500 0.634 0.743
Liver1 0.500 0.772 0.846 0.865 0.500 0.626 0.620 0.613 0.732 0.500 0.598 0.692 0.500 0.480 0.961 0.969
Liver2 0.500 0.714 0.785 0.851 0.500 0.630 0.640 0.631 0.697 0.500 0.605 0.649 0.495 0.460 0.926 0.948
Liver3 0.500 0.803 0.869 0.864 0.500 0.635 0.632 0.627 0.637 0.500 0.593 0.646 0.498 0.498 0.885 0.914
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Table 16
The experimental results compared with 14 state-of-the-art methods on the 10 application-oriented data sets on MMD-score.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

CM1 0.034 0.151 0.033 0.033 0.043 0.060 0.054 2.380 0.039 0.023 0.106 0.045 0.086 0.055 0.055 4.406
JM1 0.001 0.001 0.001 0.171 0.001 0.001 0.002 0.245 0.001 0.001 0.000 0.001 0.002 0.001 0.004 3.759
MC1 0.131 0.036 0.031 0.051 0.159 0.097 0.041 0.085 0.044 0.061 0.048 0.042 0.052 0.053 0.218 4.201
MC2 0.033 0.059 0.061 0.134 0.037 0.037 0.099 0.437 0.040 0.080 0.038 0.054 0.038 0.058 0.202 3.040
PC1 0.010 0.012 0.008 0.009 0.016 0.008 0.013 0.615 0.040 0.021 0.010 0.008 0.006 0.007 0.022 5.024
KC2 0.017 0.026 0.007 0.007 0.016 0.014 0.014 0.228 0.011 0.010 0.014 0.026 0.009 0.013 0.033 4.411
KC3 0.061 0.057 0.084 0.069 0.083 0.091 0.110 0.566 0.047 0.085 0.071 0.077 0.050 0.138 0.133 4.202
Liver1 0.026 0.009 0.006 0.019 0.019 0.010 0.007 0.170 0.019 0.015 0.018 0.009 0.011 0.005 7.738 5.880
Liver2 0.002 0.002 0.005 0.002 0.002 0.002 0.001 0.021 0.002 0.002 0.008 0.001 0.003 0.002 7.742 6.154
Liver3 0.011 0.010 0.003 0.006 0.006 0.009 0.003 0.046 0.002 0.003 0.009 0.009 0.002 0.005 7.741 5.967
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Table 17
The experimental results compared with 14 state-of-the-art methods on the 10 application-oriented data sets on Silhouette-score.

Data sets ROS SMOTE B-SMOTE ADASYN K-SMOTE ANS CCR NRPSOS C-SMOTE SOMO G-SMOTE OUPS AC-GAN MFC-GAN BIDC1 BIDC2

CM1 0.049 0.052 0.064 0.051 0.249 0.073 0.041 0.436 0.129 0.078 0.058 0.071 0.168 0.213 0.446 0.498
JM1 0.034 0.033 0.033 0.021 0.476 0.058 0.009 0.141 0.060 0.391 0.083 0.078 0.121 0.282 0.436 0.450
MC1 0.059 0.068 0.139 0.065 0.054 0.128 0.044 0.054 0.090 0.054 0.049 0.064 0.062 0.244 0.154 0.258
MC2 0.061 0.060 0.045 0.038 0.225 0.044 0.052 0.225 0.094 0.213 0.070 0.114 0.341 0.128 0.176 0.378
PC1 0.081 0.078 0.084 0.066 0.463 0.105 0.054 0.197 0.149 0.405 0.141 0.092 0.316 0.644 0.484 0.596
KC2 0.163 0.174 0.139 0.124 0.561 0.239 0.046 0.320 0.239 0.433 0.167 0.262 0.246 0.297 0.484 0.527
KC3 0.040 0.052 0.041 0.037 0.344 0.064 0.040 0.225 0.077 0.096 0.060 0.071 0.086 0.259 0.258 0.478
Liver1 0.074 0.082 0.091 0.054 -0.130 0.147 0.059 0.148 0.173 -0.130 0.019 0.068 0.143 0.534 0.972 0.788
Liver2 0.065 0.067 0.051 0.040 -0.088 0.121 0.052 0.086 0.174 -0.088 0.018 0.086 0.230 0.301 0.878 0.698
Liver3 0.076 0.075 0.059 0.048 -0.116 0.122 0.057 0.107 0.144 -0.116 0.018 0.085 0.430 0.162 0.937 0.754
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Table 18
The statistical analysis of the experimental results compared with 14 state-of-the-art methods on 10 application-oriented data sets on F-measure.

Datasets p-value1 p-value2 p-value3 p-value4 p-value5 p-value6 p-value7 p-value8 p-value9 p-value10 p-value11 p-value12 p-value13 p-value14

CM1 1.05e-13 2.46e-15 3.45e-13 6.04e-14 7.37e-11 4.52e-22 3.96e-11 3.41e-07 7.25e-11 1.96e-11 1.70e-11 1.17e-04 2.10e-05 2.64e-11
JM1 1.18e-17 8.70e-15 3.40e-15 6.26e-16 2.84e-11 5.82e-10 1.23e-10 3.54e-10 5.69e-10 5.24e-09 3.68e-10 2.15e-10 4.72e-07 3.05e-11
MC1 5.94e-14 2.05e-11 4.02e-12 1.34e-06 1.99e-11 9.10e-06 3.73e-11 2.33e-11 1.90e-05 2.24e-11 1.90e-11 1.29e-05 1.92e-11 9.33e-11
MC2 1.03e-13 5.05e-16 7.71e-14 9.43e-17 7.66e-06 1.64e-12 1.21e-06 1.47e-02 8.31e-14 1.07e-01 4.51e-18 7.43e-04 1.93e-06 1.47e-05
PC1 9.70e-13 1.08e-17 6.74e-16 3.52e-06 1.53e-11 1.11e-10 5.05e-01 2.97e-12 7.34e-11 3.04e-12 6.39e-11 5.23e-11 2.86e-11 8.05e-11
KC2 2.95e-18 1.09e-14 1.19e-16 6.11e-16 3.73e-05 2.76e-11 6.51e-04 3.21e-10 8.44e-13 5.03e-04 3.26e-10 2.35e-11 2.66e-16 4.39e-21
KC3 8.41e-11 5.73e-14 7.66e-11 1.15e-14 1.89e-10 1.15e-10 7.75e-11 4.10e-11 3.00e-11 3.68e-10 1.96e-10 6.50e-13 7.64e-11 4.28e-10
Liver1 8.85e-10 2.12e-12 1.92e-13 2.47e-15 6.57e-10 1.02e-14 1.99e-14 4.77e-14 6.01e-12 7.56e-10 7.00e-13 7.44e-14 1.27e-09 5.23e-10
Liver2 6.67e-10 2.16e-11 8.38e-13 5.65e-14 5.05e-10 2.93e-14 2.34e-16 1.12e-13 5.59e-15 3.27e-10 2.14e-11 1.84e-14 4.13e-10 2.50e-10
Liver3 7.67e-10 1.73e-23 2.55e-20 4.85e-18 3.10e-10 1.44e-14 4.22e-14 6.14e-16 5.47e-11 4.74e-10 4.90e-13 3.56e-14 8.50e-10 4.79e-10
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Table 19
The statistical analysis of the experimental results compared with 14 state-of-the-art methods on 10 application-oriented data sets on G-mean.

Datasets p-value1 p-value2 p-value3 p-value4 p-value5 p-value6 p-value7 p-value8 p-value9 p-value10 p-value11 p-value12 p-value13 p-value14

CM1 1.12e-08 3.56e-09 9.83e-09 6.04e-10 6.43e-09 6.19e-09 7.02e-09 8.01e-09 6.26e-09 6.67e-09 6.31e-09 6.80e-09 2.03e-08 6.98e-09
JM1 1.59e-08 6.39e-08 3.00e-08 8.72e-08 2.73e-08 7.30e-09 6.99e-09 6.63e-09 6.09e-09 8.01e-09 7.29e-09 6.86e-09 9.81e-09 6.21e-09
MC1 2.86e-08 8.41e-03 6.75e-07 1.35e-09 6.05e-09 4.35e-09 5.90e-09 5.45e-09 4.63e-09 6.66e-09 8.45e-09 7.97e-09 6.43e-09 5.31e-09
MC2 6.23e-09 8.66e-09 1.04e-08 2.68e-09 1.41e-08 7.24e-09 7.32e-09 5.38e-07 6.95e-09 2.50e-05 5.96e-09 6.46e-09 6.96e-09 3.17e-09
PC1 1.23e-08 1.02e-09 3.52e-10 3.91e-09 8.28e-09 6.55e-09 6.91e-09 5.81e-09 8.00e-09 9.50e-09 6.51e-09 5.76e-09 6.29e-09 5.80e-09
KC2 4.65e-09 1.78e-09 8.05e-09 2.74e-08 7.36e-09 7.32e-09 7.61e-09 5.16e-09 5.29e-09 5.56e-08 7.16e-09 8.50e-09 6.46e-09 1.50e-08
KC3 5.94e-09 4.53e-09 7.47e-09 1.21e-08 6.05e-09 6.96e-09 6.47e-09 6.49e-09 6.13e-09 8.97e-09 6.63e-09 6.83e-09 5.71e-09 6.78e-09
Liver1 7.25e-09 7.48e-09 6.11e-09 5.67e-09 6.25e-09 5.06e-09 9.75e-09 7.42e-09 6.80e-09 6.37e-09 5.96e-09 5.38e-09 6.29e-09 4.91e-09
Liver2 6.10e-09 6.94e-09 9.98e-09 6.32e-09 6.47e-09 6.94e-09 8.04e-09 8.84e-09 1.02e-08 5.94e-09 6.80e-09 4.93e-09 5.99e-09 6.73e-09
Liver3 6.52e-09 5.79e-09 6.09e-09 8.06e-09 7.71e-09 9.09e-09 6.70e-09 5.65e-09 7.10e-09 7.15e-09 9.55e-09 7.11e-09 7.45e-09 6.76e-09
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Table 20
The statistical analysis of the experimental results compared with 14 state-of-the-art methods on 10 application-oriented data sets on AUC-area.

Datasets p-value1 p-value2 p-value3 p-value4 p-value5 p-value6 p-value7 p-value8 p-value9 p-value10 p-value11 p-value12 p-value13 p-value14

CM1 5.93e-09 4.21e-09 4.52e-09 4.62e-08 6.84e-09 6.17e-09 6.03e-09 1.08e-08 9.19e-09 6.14e-09 7.70e-09 4.85e-09 1.84e-08 9.73e-09
JM1 1.42e-08 8.21e-10 3.38e-10 2.94e-10 2.71e-08 6.87e-09 8.88e-09 6.16e-09 9.18e-09 5.59e-09 8.49e-09 9.35e-09 5.82e-06 5.51e-09
MC1 8.70e-09 2.90e-09 1.26e-09 1.84e-08 3.77e-09 1.29e-08 4.43e-09 3.50e-09 8.32e-09 6.26e-09 9.23e-09 8.26e-09 1.02e-08 7.10e-09
MC2 1.60e-09 3.07e-09 5.31e-09 7.88e-09 2.19e-09 3.23e-09 1.83e-08 8.45e-01 2.76e-08 2.61e-09 4.10e-09 3.80e-09 3.31e-08 1.68e-08
PC1 3.31e-09 5.05e-09 3.03e-09 1.25e-11 4.90e-09 6.02e-09 9.79e-09 7.75e-09 6.24e-09 1.17e-08 5.76e-09 1.12e-08 6.95e-09 7.03e-09
KC2 8.05e-09 8.15e-08 7.10e-09 4.79e-09 1.60e-07 7.62e-09 5.08e-09 8.64e-09 9.67e-09 9.21e-09 1.19e-08 4.60e-09 5.20e-09 1.25e-08
KC3 1.08e-08 9.00e-09 7.21e-09 4.06e-09 6.54e-09 4.73e-09 5.96e-09 9.66e-09 8.55e-09 8.22e-09 4.54e-09 3.61e-09 5.45e-09 4.07e-09
Liver1 8.27e-09 1.16e-08 4.67e-09 8.83e-09 7.54e-09 4.49e-09 6.23e-09 6.34e-09 6.23e-09 4.59e-09 6.81e-09 4.41e-09 8.57e-09 6.67e-09
Liver2 6.47e-09 8.32e-09 1.24e-08 6.41e-09 6.58e-09 5.16e-09 6.25e-09 7.07e-09 6.75e-09 6.06e-09 6.14e-09 6.84e-09 9.81e-09 8.69e-09
Liver3 6.76e-09 2.39e-09 3.68e-08 3.97e-09 5.22e-09 1.17e-08 4.90e-09 4.12e-09 9.93e-09 5.67e-09 8.40e-09 5.93e-09 7.46e-09 7.20e-09
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Table 21
The statistical analysis of the experimental results compared with 14 state-of-the-art methods on 10 application-oriented data sets on MMD-score.

Datasets p-value1 p-value2 p-value3 p-value4 p-value5 p-value6 p-value7 p-value8 p-value9 p-value10 p-value11 p-value12 p-value13 p-value14

CM1 3.59e-09 3.70e-09 4.07e-09 3.55e-09 4.02e-09 3.48e-09 3.67e-09 1.98e-09 3.98e-09 4.06e-09 4.66e-09 3.72e-09 3.76e-09 3.85e-09
JM1 3.62e-09 3.73e-09 3.86e-09 3.49e-09 3.73e-09 3.69e-09 2.66e-09 3.30e-09 3.50e-09 3.73e-09 4.18e-09 3.54e-09 3.10e-09 3.81e-09
MC1 4.21e-09 3.85e-09 4.05e-09 4.13e-09 4.42e-09 4.12e-09 3.32e-09 4.21e-09 3.69e-09 3.66e-09 4.21e-09 4.03e-09 4.04e-09 3.81e-09
MC2 3.23e-09 3.93e-09 2.47e-09 2.89e-09 3.31e-09 3.33e-09 2.69e-09 2.63e-09 3.42e-09 3.36e-09 3.80e-09 3.33e-09 4.23e-09 2.94e-09
PC1 4.01e-09 3.98e-09 4.61e-09 4.38e-09 4.32e-09 3.79e-09 4.15e-09 3.88e-09 3.84e-09 3.88e-09 4.30e-09 4.18e-09 4.28e-09 3.85e-09
KC2 4.54e-09 4.22e-09 3.99e-09 4.05e-09 4.26e-09 3.82e-09 3.83e-09 3.34e-09 3.94e-09 4.44e-09 3.78e-09 4.11e-09 3.61e-09 4.13e-09
KC3 3.62e-09 3.83e-09 3.51e-09 3.52e-09 3.51e-09 3.96e-09 3.88e-09 3.42e-09 4.12e-09 3.63e-09 4.10e-09 4.27e-09 3.89e-09 3.60e-09
Liver1 6.91e-09 6.66e-09 6.84e-09 6.88e-09 6.85e-09 6.93e-09 6.88e-09 6.79e-09 6.96e-09 6.92e-09 7.19e-09 6.71e-09 6.90e-09 7.08e-09
Liver2 6.79e-09 6.93e-09 6.85e-09 6.73e-09 6.72e-09 6.83e-09 6.99e-09 7.03e-09 7.23e-09 6.89e-09 7.00e-09 7.04e-09 6.90e-09 6.69e-09
Liver3 6.88e-09 6.82e-09 7.09e-09 6.84e-09 6.90e-09 6.82e-09 6.91e-09 7.13e-09 6.82e-09 6.71e-09 6.87e-09 6.94e-09 6.89e-09 6.95e-09
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Table 22
The statistical analysis of the experimental results compared with 14 state-of-the-art methods on 10 application-oriented data sets on Silhouette-score.

Datasets p-value1 p-value2 p-value3 p-value4 p-value5 p-value6 p-value7 p-value8 p-value9 p-value10 p-value11 p-value12 p-value13 p-value14

CM1 6.88e-09 6.08e-09 5.37e-09 5.79e-09 1.07e-08 8.94e-09 5.55e-09 1.36e-08 6.94e-09 6.74e-09 8.29e-09 6.69e-09 7.51e-09 1.04e-08
JM1 5.83e-09 6.26e-09 8.10e-09 7.83e-09 5.54e-07 6.23e-09 6.00e-09 7.48e-09 7.41e-09 5.98e-08 7.62e-09 9.12e-09 8.65e-09 9.73e-09
MC1 1.18e-08 6.69e-09 5.55e-09 1.36e-08 1.37e-08 3.41e-09 7.07e-09 1.12e-08 9.94e-09 6.68e-09 4.79e-09 6.27e-09 7.70e-09 1.24e-09
MC2 6.10e-09 6.88e-09 5.52e-09 4.78e-09 4.40e-09 7.23e-09 8.94e-09 1.01e-08 5.17e-09 5.80e-09 9.15e-09 5.72e-09 2.47e-10 8.07e-09
PC1 7.35e-09 6.72e-09 7.29e-09 7.82e-09 1.64e-08 7.18e-09 5.25e-09 7.46e-09 8.16e-09 9.86e-09 6.72e-09 6.94e-09 6.47e-09 1.25e-07
KC2 4.95e-09 6.82e-09 6.85e-09 6.91e-09 1.89e-08 7.39e-09 5.69e-09 7.01e-09 7.19e-09 3.54e-09 8.65e-09 5.73e-09 6.64e-09 7.01e-09
KC3 6.35e-09 8.41e-09 6.92e-09 6.33e-09 5.83e-09 6.47e-09 6.39e-09 7.16e-09 6.77e-09 8.66e-09 8.17e-09 6.52e-09 8.40e-09 7.44e-09
Liver1 7.64e-09 6.76e-09 5.61e-09 7.68e-09 6.01e-09 6.96e-09 6.14e-09 6.78e-09 6.86e-09 7.18e-09 5.87e-09 5.99e-09 5.96e-09 6.63e-09
Liver2 6.77e-09 6.30e-09 7.87e-09 6.55e-09 6.89e-09 6.55e-09 6.78e-09 6.28e-09 6.18e-09 7.85e-09 7.49e-09 6.65e-09 6.74e-09 8.99e-09
Liver3 5.97e-09 7.00e-09 5.86e-09 5.90e-09 6.39e-09 7.39e-09 6.81e-09 6.64e-09 7.13e-09 6.11e-09 6.33e-09 5.71e-09 5.45e-09 5.85e-09
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the classification boundaries. This result is confirmed by the classification results. For example, many examples generated by
CCR occur in the overlap region, and the F-measure and G-mean of this method are the worst among all methods.

In summary, the proposed methods BIDC1 and BIDC2 outperform the 14 state-of-the-art methods regarding the F-
measure, G-mean, AUC-area, MMD-score, and Silhouette-score in most cases. We believe the likely reasons are that (1)
instead of generating positive samples around a ground truth sample and its nearest neighbors, the proposed methods learn
the distribution of positive samples. (2)the synthetic positive samples generated by the proposed methods have good diver-
sity and separability, which is confirmed by the higher MMD and Silhouette scores of the proposed methods than the 14
state-of-the-art approaches. To verify this result, we visualized the experimental results (i.e., the generated positive data
points) on the artificial data set (Fig. 5). Fig. 5 shows the sample distribution after oversampling on the artificial data set
for different methods. The red ‘‘-” represents the negative sample, the blue ‘‘+” represents the positive sample, and the green
‘‘+” represents the generated positive sample. The samples generated by the traditional oversampling methods (e.g., SMOTE
and ADASYN) have a large overlap with the negative samples, and the generated samples have low diversity. As a result, the
traditional methods result in a smaller improvement in the prediction accuracy of the positive class and low accuracy of the
negative class. Although the samples generated by AC-GAN are relatively scattered, they overlap significantly with the neg-
ative samples, resulting in low classification performance. MFC-GAN has less overlap between the positive and negative
classes, but the diversity is low. The two proposed methods are superior to the other methods in terms of the diversity of
the generated positive samples and the overlap between the positive and negative classes. The visualization results on
the artificial data set are consistent with the results on the MMD-score and Silhouette-score, confirming that the two pro-
posed methods substantially improve the prediction accuracy of the positive and negative class. Furthermore, the experi-
mental results in Tables 7 to 11 indicate that the BIDC1 and BIDC2 are not only suitable for data sets with low imbalance
ratios, e.g., the data sets ILPD1 and ILPD2, but also for data sets with high imbalance ratios, such as data sets Yeast4 and
Yeast6.
4.2. Comparison of the 16 algorithms on the 10 application-oriented data sets

To demonstrate the applicability of the two algorithms BIDC1 and BIDC2, we also experimentally compared the two algo-
rithms with 14 state-of-the-art algorithms on the 10 application-oriented data sets. The experimental environment and
parameter settings are the same as in the previous experiments, except for the number of hidden layer neurons and itera-
tions, which are listed in Table 12, the experimental results on the F-measure, G-mean, AUC-area, MMD-score, and
Silhouette-score are listed in Tables 13–17.

It is observed from the experimental results listed in Tables 13–17 that the proposed methods BIDC1 and BIDC2 outper-
form more than half of the state-of-the-art methods on all metrics. Similarly, as on the artificial and 15 public testing data
sets, our methods outperform all state-of-the-art methods on metric of MMD-score and BIDC2 performs the best as it
achieves most maximum values. K-SMOTE outperforms our methods on few small data sets. However, the margins are
not large and our performance is close to that of K-SMOTE. The reason could be that when there are only limited samples,
it is harder for generative models to learn the correct distributions. In summary, the BIDC1 and BIDC2 outperform the 14
state-of-the-art methods in terms of the F-measure, G-mean, AUC-area, MMD-score, Silhouette-score in most case. The
BIDC2 significantly outperforms the 14 state-of-the-art methods in terms of the MMD-score on 7 software defect prediction
data sets, and the BIDC1 significantly outperforms the 14 state-of-the-art methods in terms of the MMD-score on 3 liver data
sets, which have high imbalance ratios. In addition, the experimental results on the MMD-score imply that the samples gen-
erated by the BIDC1 and BIDC2 have high diversity, considerably extending the training domain of the positive samples.

To further confirm the superiority of the BIDC1 and BIDC2, we statistically analyzed the experimental results on the F-
measure, G-mean, AUC-area, MMD-score and Silhouette-score using paired T-test with a confidence level of 0.05 [49,50].
For each data set and each method, we run the 5-fold cross-validation 5 times and obtained fourteen 25-dimensional statis-
tics denoted by Sið1 6 i 6 15Þ, which correspond to ROS, SMOTE, B-SMOTE, ADASYN, K-SMOTE, ANS, CCR, NRPSOS, C-SMOTE,
SOMO, G-SMOTE, OUPS, AC-GAN, MFC-GAN, and the BIDC1 or BIDC2, respectively. Next the paired T-test is applied to the
experimental results by calling the Python library function ttest_rel(Si; S15) ð1 6 i 6 14Þ. Due to page limitation, we only pro-
vide the results of the statistical analysis on the experimental results compared the BIDC2 with the 14 related methods on
the 10 application-oriented data sets. The results of the statistical analysis on the F-measure, G-mean, AUC-area, MMD-score
and Silhouette-score are listed in Tables 18-22. The p-values listed in the five tables show that the BIDC2 statistically out-
performs ROS, SMOTE, B-SMOTE, ADASYN, K-SMOTE, ANS, CCR, NRPSOS, C-SMOTE, SOMO, G-SMOTE, OUPS, AC-GAN, MFC-
GAN.
5. Conclusions

We focus on addressing binary classification problem in this paper. Previous SMOTE-based approaches generate synthetic
samples on the lines between the positive sample and its nearest neighbors, and the generated positive samples lack diver-
sity. Previous generative model based approaches suffers model collapse probem and cannot generate diverse positive sam-
ples. To alleviate the problems, two binary imbalanced data classification algorithms BIDC1 and BIDC2 based on diversity
oversampling by ELMAE and GAN were proposed. The algorithms have three advantages: (1) The ideas of the two algorithms
341



J. Zhai, J. Qi and C. Shen Information Sciences 585 (2022) 313–343
are simple but they are highly effective. They provide excellent performance for data sets with low and high imbalance
ratios. (3) They are suitable for different practical scenarios. The experimental results suggest that previous methods gener-
ate positive samples with limited diversity and cannot avoid the overlapping between positive and negative classes. In con-
trast, the two proposed methods are superior to other methods, outperforming the 14 related state-of-the-art methods in
terms of F-measure, G-mean, AUC-area, MMD-score, Silhouette-score in most cases. Future studies will focus on (1) the scal-
ability of the BIDC1 and BIDC2 in big data scenarios, and (2) theoretical analysis of the discrepancy between the original and
generated data distributions.
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