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ABSTRACT

In this work, an efficient and accurate lattice Boltzmann (LB) model is developed based on phase-field theory to study multiphase flows
involving N (N � 2) immiscible incompressible fluids. In this model, a reduction-consistent physical formulation including a volume-frac-
tion-dependent mobility in the Cahn–Hilliard (C–H) equations is adopted. Usually, the effect of cross-diffusion makes it difficult to solve
such equations directly with the classic LB method. To avoid requiring a special treatment on the cross-diffusion terms of the chemical
potential gradients, the proposed LB model introduces some non-diagonal collision operators. In addition, the proper auxiliary source terms
are constructed to ensure the correct macroscopic equations. Through a direct Taylor expansion, the C–H equations are recovered from the
present LB model. Finally, four classical problems including static droplets, the spreading of a liquid lens between two phases, the
Kelvin–Helmholtz instability, and the dynamics of droplets in a four-phase system are used to demonstrate the capability of the LB model.
The numerical results show that the present model satisfies the reduction-consistent property and produces physically accurate results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0078507

I. INTRODUCTION

Multiphase flows consisting of N (N � 2) immiscible incom-
pressible fluids, also referred to as N-phase flows, frequently arise in
nature and engineering applications, such as enhanced oil recovery,1–3

emulsion formation,4–7 and rain drops. As an important research tool,
the numerical simulation is increasingly popular in the study of these
complex flow problems. However, due to the complexity of the mov-
ing interface and its topological changes, the numerical simulation of
multiphase flows consisting of N immiscible incompressible fluids
remains a challenging task, especially when N is relatively large.

To date, several popular numerical methods have been developed
for multiphase flows, including the volume of fluid method,8,9 level set
method,10,11 front tracking method,12 and phase field method.3,13–18

These methods can be roughly divided into sharp interface (SI) and
diffuse interface (DI) approaches. In the SI approach, the thickness of
the interface between different phases is zero, which causes physical
quantities such as the fluid density and viscosity to jump on either side

of the interface. However, in the DI approach, the thickness of the
interface between the two immiscible phases is assumed to be non-
zero, and different phases can be characterized by phase variables that
vary continuously across thin interfacial layers.

As one of the DI methods, the lattice Boltzmann (LB) method
has achieved great success in the simulation of multiphase flows7,19–22

owing to its simplicity in coding, scalability on parallel computers, and
ability to deal with complex geometries. Based on different physical
perspectives, the existing LB models for multiphase flows can be classi-
fied into four categories: the color-gradient model,23 the pseudo-
potential model,24 the free-energy model,25 and the phase-field-based
model.26–32 These models have gained great success in dealing with
multiphase flow problems. However, most of the above-mentioned LB
models are limited to two-phase flows. Recently, they have been
extended to three-phase problems and are sometimes applicable to
cases with more than three phases.7,33–44,58 We must emphasize that
these LB models are largely focused on three-phase flows, and only
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very few studies have considered multiphase flows involving four or
more immiscible incompressible fluids. In fact, it is difficult to generalize
the three-phase models to four or more fluid phases, because the num-
ber of pairwise blue surface tensions for N � 4 is greater than the num-
ber of phase-specific surface-tension coefficients, which leads to an
overdetermined system.2 In the four LB models, the one based on
phase-field theory has a clear physical background and a simple model
structure, making it highly suitable for numerical simulations. For these
reasons, this work focuses on the phase-field-based LB model for multi-
phase flows involvingN (N � 4) immiscible incompressible fluids.

Based on the Cahn–Hilliard (C–H) phase-field theory,45 Zheng
et al.46 developed an LB model for N (N � 2) immiscible incompress-
ible fluids, in which the mobility between phases i and j (mij) is a
constant. However, Dong45 pointed out that, to satisfy the reduction-
consistent property, the mobility should be variable-dependent. Here,
the reduction-consistent property means that if K fluids (1 � K
� N � 1) are absent from the N-phase system, the N-phase system
reduces exactly to the (N − K)-phase system formed by those (N − K)
fluids. Asmij is a function of ci, it is difficult to construct a standard LB
model to solve this cross-diffusion system. To solve the problem,
Zheng et al.47 proposed a reduction-consistent C–H theory-based LB
model for N immiscible incompressible fluids by introducing a source
term containing a gradient term of the chemical potential. However,
their model cannot derive the C–H equations correctly. Yuan et al.48

proposed an efficient and alternative LB model for simulating immis-
cible incompressibleN-phase flows (N � 2), but this cannot guarantee
the reduction-consistent property theoretically.

In general, due to the complexity of multiphase flows involving N
(N � 2) immiscible incompressible fluids, there are few studies on the
phase-field-based LB modeling and numerical simulation for this prob-
lem at present, and further development is needed. In view of this, our
main purpose is to develop an efficient and accurate lattice Boltzmann
(LB) model based on phase-field theory for N-phase flows. In the pre-
sent work, inspired by Refs. 49 and 50, where the coupling effects in the
cross-diffusion system are reflected through corresponding cross-
collision terms in the evolution equation, we develop a C–H theory-
based LB model for multiphase flows involving N (N � 2) immiscible
incompressible fluids, and the reduction-consistent property is satisfied.
Different from the previous models,46–48 in the present model, some
non-diagonal collision operators are introduced to model the cross-
diffusion terms in the coupled system. Additionally, the proper auxiliary
source terms are constructed to recover the macroscopic equations cor-
rectly without special treatments for the gradient terms of the chemical
potential. To prevent the relaxation matrix from becoming singular, an
adjustable matrix is incorporated into the model.

The remainder of this paper is organized as follows. In Sec. II, the
physical formulation for the N-phase immiscible incompressible fluids
are presented, and then a phase-field-based LB model is developed in
Sec. III. Section IV presents the results of simulations conducted to
test the present N-phase LB model. Finally, the conclusions to this
study are summarized in Sec. V.

II. PHYSICAL FORMULATION FOR THE N-PHASE
MIXTURE
A. Cahn–Hilliard equations for the phase field

In the phase-field theory for multiphase flows of N immiscible
incompressible fluids, the thermodynamic behavior can be described

by a free-energy density defined as a function of the volume fraction ci
(0 � ci � 1)45,48

Wð~c;r~cÞ ¼
XN
i;j¼1

lij
2
rci � rcj þHð~cÞ; (1)

where~c ¼ ðc1; c2;…; cNÞ and ci (1 � i � N) is the volume fraction of
fluid i within the mixture;

PN
i¼1 ci ¼ 1. The constant lij (1 � i; j � N)

denotes the mixing energy density coefficient, which is related to the
interfacial thickness D of the diffuse interfaces. Hð~cÞ is a multiwell
potential term accounting for the bulk energy, which can be written
as45,46

Hð~cÞ ¼
XN
i;j¼1

bij gðciÞ þ gðcjÞ � gðci þ cjÞ
� �

; (2)

where bij is a constant depending on the characteristic interfacial
thickness D. The specific expressions of lij and bij can be given as

lij ¼ � 3D
4
rij; bij ¼

3
D
rij; (3)

where rij is the surface tension between fluid i and fluid j, which satis-
fies the following property:

rij ¼ rji > 0; 1 � i 6¼ j � N;

rij ¼ 0; 1 � i ¼ j � N:

(
(4)

By minimizing the total free-energy density function [Eq. (1)],
the chemical potential Ci can be obtained from the variation of the free
energy31,51

Ci ¼ @W
@ci

�r � @W
@rci

; 1 � i � N: (5)

In the phase-field theory, the diffusion of ci is driven by the chemical
potential gradient, and the volume fractions are governed by the fol-
lowing C–H equations:2,45,46

@ci
@t

þ u � rci ¼
XN
j¼1

r � mijð~cÞrCj
� �

; 1 � i � N; (6)

where u is the fluid velocity andmij is referred to as the mobility coeffi-
cient. Based on Onsager’s reciprocal relation, the mobility matrix m
¼ ½mij�N�N should be symmetric.45 Furthermore, the mobility matrix
satisfies the following relation:

XN
j¼1

mij ¼
XN
j¼1

mji ¼ 0; 1 � i � N: (7)

For simplicity, the mobility coefficient can be explicitly expressed as45

mij ¼ �m0c2i c
2
j ; i 6¼ j;

mii ¼ �
XN

j¼1;j 6¼i

mij; i ¼ j;

8>>><
>>>:

(8)

where m0 is a positive constant. It is easy to show that the mobility
coefficient mij (1 � i; j � N) defined above is symmetric and satisfies

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 023311 (2022); doi: 10.1063/5.0078507 34, 023311-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


condition (7). Additionally, when the ith fluid is absent (i.e., ci ¼ 0),
the mobility coefficient related to the ith fluid is zero.

In addition to the C–H equations for capturing the phase interfa-
ces, the hydrodynamic equations for the flow field are needed. In this
work, we consider the following incompressible Navier–Stokes (N–S)
equations:48

r � u ¼ 0; (9a)

@ðquÞ
@t

þr � ðquuÞ ¼ �rpþr � lð/ÞDðuÞ½ �
� r � ð~JuÞ þ Fs þ Gðx; tÞ; (9b)

where q is the density of the mixture, p denotes the pressure, lð/Þ is
the dynamic viscosity, DðuÞ ¼ ruþruT , and ~J is the flux, with
~J ¼ �PN

i;j¼1 ~qimijrCj (~qi is the constant density of the ith fluid). Fs

represents the interface force, with Fs ¼
PN

j¼1 Cjrcj, andGðx; tÞ is an
external body force related to position x and time t.

The dynamics of the N-phase mixture is described by Eqs. (6)
and (9). Note that only ðN � 1Þ expressions in Eq. (6) are independent
because of

PN
i¼1 ci ¼ 1 and condition (7). In this model, the mixture

density and dynamic viscosity are given by

q ¼
XN
i¼1

ci~qi; l ¼
XN
i¼1

ci~li; (10)

where ~li denotes the constant dynamic viscosity of fluid i.

III. LB MODEL FOR MULTIPHASE FLOWS OF N
IMMISCIBLE INCOMPRESSIBLE FLUIDS
A. LB model for the phase field

As we can see, Eq. (6) describes a typical cross-diffusion system
driven by a chemical potential gradient. In the model of Zheng et al.,46

a special treatment of introducing a source term containing a gradient
term of the chemical potential is adopted to deal with the cross-
diffusion terms. However, this method cannot correctly derive the
macroscopic equations. In Ref. 49, Chai et al. developed a multiple-
relaxation-time LB model for the mass diffusion in multicomponent
mixtures. In their model, the coupling effects among different species
are reflected through corresponding cross-collision terms in the LB
equations. Based on their work, to avoid the need to apply any special
treatments to the gradient terms, some non-diagonal collision opera-
tors are introduced to model the cross-diffusion terms in the coupled
system. The LB equations for the phase field can then be written as

fk;iðx þ ciDt; t þ DtÞ � fk;iðx; tÞ
¼ �kij fk;jðx; tÞ � f eqk;j ðx; tÞ

h i
þ DtRk;iðx; tÞ; 1 � i � N; (11)

where fk;iðx; tÞ (k ¼ 1; 2;…; q� 1, q is the number of discrete veloc-
ity directions) represents the particle distribution function of the vol-
ume fraction at position x and time t, f eqk;iðx; tÞ is the corresponding

local equilibrium distribution function, Rk;iðx; tÞ is the source term, ci
denotes the discrete velocity, and Dt is the time step. (kij) is an invert-
ible N�N relaxation matrix, where kii represents the relaxation factor
of the ith fluid itself, and kij (i 6¼ j) is the relaxation factor of the inter-
section between the ith and jth fluids.

To obtain the correct macroscopic equations [Eq. (6)], the local
equilibrium distribution function f eqk;iðx; tÞ and the source term
Rk;iðx; tÞ are designed as

f eqk;i ðx; tÞ ¼ xk ci þ ck � ciu
c2s

þ ðckck � c2s IÞ : ðKijCjIÞ
2c4s

" #
; 1 � i � N;

(12)

Rk;iðx; tÞ¼ dij�kij
2

� �
xkck � @tðcjuÞþ c2srcj

� �
c2s

; 1� i�N; (13)

where xi is the weight coefficient and (Kij) is an N�N invertible
matrix for adjusting the relaxation matrix (kij).

In this study, for simplicity and without any loss of generality, we
focus on two-dimensional (2D) problems, and adopt the 2D nine-
velocity (D2Q9) lattice model.52 In this lattice model, the weight coeffi-
cients, discrete velocities, and lattice sound speed are given by

xk ¼

4
9
; k ¼ 0;

1
9
; k ¼ 1� 4;

1
36

; k ¼ 5� 8;

8>>>>>><
>>>>>>:

(14a)

ck ¼

ð0; 0Þc; k ¼ 0;

cos
ðk� 1Þp

2

� �
; sin

ðk� 1Þp
2

� �� �
c; k ¼ 1� 4;

ffiffiffi
2

p
cos

ðk� 1Þp
2

þ p
4

� �
; sin

ðk� 1Þp
2

þ p
4

� �� �
c; k ¼ 5� 8;

8>>>>>><
>>>>>>:

(14b)

cs ¼ c=
ffiffiffi
3

p
; (14c)

where c ¼ Dx=Dt is the lattice speed with the time step Dt and lattice
spacing Dx (Dx ¼ Dt ¼ 1 is used in the following simulations).

The volume fraction ci in the present LB model is obtained by
taking the zero-order moment of fk;i, i.e.,

ci ¼
X
k

fk;i; 1 � i � N: (15)

1. Direct Taylor expansion analysis of present LB model
for the phase field

Direct Taylor expansion analysis is now performed to demon-
strate that the present LB model gives the correct governing equations
[Eq. (6)]. Applying the Taylor expansion to Eq. (11), we obtain

XN
l¼1

Dtl

l!
Dl
kfk;i þ OðDtNþ1Þ ¼ �kijf

ne
k;j þ DtRk;i; (16)

where Dk ¼ @t þ ck � r and f nek;i ¼ fk;i � f eqk;i is the non-equilibrium
distribution function. From Eq. (16), we have that

f nek;i ¼ OðDtÞ; (17a)

XN�1

l¼1

Dtl

l!
Dl
kðf eqk;i þ f nek;i Þ þ

DtN

N!
DN
k f

eq
k;i ¼ �kijf

ne
k;j þ DtRk;i þ OðDtNþ1Þ:

(17b)
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With the help of Eq. (17a), we can obtain the following equations at
different orders of Dt:

Dkf
eq
k;i ¼ � kij

Dt
f nek;j þ Rk;i þ OðDtÞ; (18a)

Dkðf eqk;i þ f nek;i Þ þ
Dt
2
D2
kf

eq
k;i ¼ � kij

Dt
f nek;j þ Rk;i þ OðDt2Þ: (18b)

According to Eq. (18a), we can derive

Dt
2
D2
kf

eq
k;i ¼ � 1

2
Dkkijf

ne
k;j þ

Dt
2
DkRk;i þ OðDt2Þ: (19)

Substituting Eq. (19) into Eq. (18b), we have

Dkf
eq
k;i þ Dk dij � kij

2

� �
f nek;j þ

Dt
2
DkRk;i ¼ � kij

Dt
f nek;j þ Rk;i þ OðDt2Þ:

(20)

Based on Eqs. (12) and (13), the following moment conditions hold:X
k

f eqk;i ¼
X
k

fk;i ¼ ci;
X
k

ckf
eq
k;i ¼ ciu;X

k

ckckf
eq
k;i ¼ c2s ciIþ c2s KijCjI;

(21a)

X
k

Rk;i ¼ 0;
X
k

ckRk;i ¼ dij � kij
2

� �
ð@tcjuþ c2srcjÞ: (21b)

Summing Eq. (20) over k and using the above relations, we obtain

@tci þr � ðciuÞ ¼ OðDtÞ; (22a)

@tci þr � ðciuÞ þ r � dim � kim
2

� �X
k

ckf
ne
k;m

¼ �Dt
2
r � dij � kij

2

� �
ð@tcjuþ c2srcjÞ

� �
þ OðDt2Þ; (22b)

where
P

k ckf
ne
k;m can be calculated by Eq. (18) as

X
k

ckf
ne
k;m ¼ �k�1

mj Dt @tðcjuÞ þ c2srcj þ c2s KjprCp

"

� djp � kjp
2

� �
ð@tcpuþ c2srcpÞ

�
þ OðDt2Þ

¼ �k�1
mj Dt c2s KjprCp þ

kjp
2
ð@tcpuþ c2srcpÞ

� �
þ OðDt2Þ;

(23)

where ðk�1
mj Þ represents the inverse matrix of ðkjpÞ. Substituting Eq.

(23) into Eq. (22b) gives, and after some manipulations,

@tci þr � ðciuÞ ¼ r � mijrCj
	 
þ OðDt2Þ; (24)

with the relation

mij ¼ k�1
ip � dip

2

� �
Kjpc

2
sDt: (25)

From the above procedure, it is clear that the present LB model cor-
rectly recovers Eq. (6) with a truncation error of OðDt2Þ.

B. LB equation for the flow field

The evolution equation of the LB model for the N–S equations
can be expressed as48,53

gkðx þ ckDt; t þ DtÞ � gkðx; tÞ ¼ � 1
sg

gkðx; tÞ � geqk ðx; tÞ� �
þ Dt 1� 1

2sg

� �
Gkðx; tÞ; (26)

where gkðx; tÞ is the distribution function and sg is the dimensionless
relaxation time, which is related to the kinematic viscosity � ¼ l=q
¼ c2s ðsg � 0:5ÞDt. geqk ðx; tÞ is the local equilibrium distribution func-
tion, which is given by54

geqk ðx; tÞ ¼
q0 þ

p
c2s
ðxk � 1Þ þ qskðuÞ; k ¼ 0;

p
c2s
xk þ qskðuÞ; k ¼ 1� 8;

8>>><
>>>:

(27)

with

skðuÞ ¼ xk
ck � u
c2s

þ ðck � uÞ2
2c4s

� u � u
2c4s

" #
: (28)

To recover the N–S equations correctly, the force distribution function
Giðx; tÞ is expressed as48

Gk¼xkfu �rqþck �F
c2s

þ
ðckck�c2s IÞ : uFþFuþc2surqþc2s ðrqÞuþ

~Ju
Dtðsg�0:5Þ

" #

2c4s
g;

(29)

where F ¼ Fs þ G is the forcing term. The macroscopic local fluid
velocity u and the pressure p are calculated by48,54

qu ¼
X
k

ckgk þ 0:5DtF; (30)

p ¼ c2s
1� x0

X
k6¼0

gk þ Dt
2
u � rqþ qs0ðuÞ

" #
: (31)

Note that Chapman–Enskog analysis can be applied to the present LB
model for the flow field to derive the N–S equations [Eq. (9)]; readers are
referred to Ref. 48 for details. In addition, some special difference
schemes are needed to compute the gradient and Laplacian terms in the
forcing term Gk, chemical potentials Ci, and surface tension Fs. Although
there are many suitable schemes,54,55 the following are used in this study:

rfðx; tÞ ¼
X
k6¼0

xkck fðx þ ckDt; tÞ � fðx � ckDt; tÞ½ �
2c2sDt

; (32a)

r2fðx; tÞ ¼
X
k6¼0

xk fðxþ ckDt; tÞ�2fðx; tÞþ fðx� ckDt; tÞ½ �
c2sDt

2
; (32b)

where f is an arbitrary function. According to the Taylor expansion, it
can be shown that Eqs. (32a) and (32b) have a second-order
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convergence rate in space. Moreover, this scheme ensures the global
mass conservation of an N-phase system.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

In this section, four classical problems are employed to demon-
strate the capability of the LB model. These problems cover static
droplets, the spreading of a liquid lens between two phases, the
Kelvin–Helmholtz (KH) instability, and the dynamics of droplets in a
four-phase system. Some detailed comparisons of the present results
with the analytical solutions or available data are conducted. Prior to
all simulations, grid resolution tests were performed, and the grid sizes
adopted for simulations were found to be fine enough to give grid-
independent results.

A. Static droplets

A benchmark test of static droplets (N¼ 3, 4) is performed to
test the present LB model. We first consider the situation consisting of
four immiscible incompressible fluids (N¼ 4). Initially, three droplets
with radius R¼ 20 are placed in a computational domain of size
NX � NY ¼ 300� 100, with periodic boundary condition applied at
all boundaries. The initial volume fractions are given by

c1ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc1Þ2 þ ðy � yc1Þ2

q� �
D

; (33a)

c2ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc2Þ2 þ ðy � yc2Þ2

q� �
D

; (33b)

c3ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc3Þ2 þ ðy � yc3Þ2

q� �
D

; (33c)

c4ðx; yÞ ¼ 1:0� c1ðx; yÞ � c2ðx; yÞ � c3ðx; yÞ; (33d)

where ðxc1 ; yc1Þ; ðxc2 ; yc2Þ, and ðxc3 ; yc3Þ are the centers of the circular
droplets; these are fixed to ðxc1 ; yc1Þ ¼ ð50; 50Þ; ðxc2 ; yc2Þ ¼ ð150; 50Þ,

and ðxc3 ; yc3Þ ¼ ð200; 50Þ. In these simulations, q1 : q2 : q3 : q4
¼ 20 : 1 : 10 : 5; sg ¼ 0:8; rij ¼ 0:01 (i 6¼ j), m0 ¼ 0:05, D¼ 3, and
the relaxation matrix xip ¼ 1

0:503 dip. Figure 1 shows the steady distri-
butions of the volume fractions obtained by the present LB model, and
it is clear that the model can accurately preserve the profiles of the vol-
ume fractions. To provide a quantitative comparison, we also plot the
volume fractions along the centerline (y¼ 50, 0 � x � 300) in Fig. 2,
showing that the numerical results are in good agreement with the
analytical solutions.

In addition, we show that the present LB model for N-phase
flows satisfies the reduction-consistent property. To this end, the vol-
ume fraction of the third phase in the previous test is set to zero, and
we demonstrate that the four-phase model is able to accurately simu-
late the static droplet problem of three immiscible incompressible
fluids. For convenience, the fourth phase in the former case is denoted

FIG. 1. The steady distributions of the volume fractions obtained by the present LB model: (a) c1, (b) c2, (c) c3, and (d) c4.

FIG. 2. The profiles of volume fractions along the centerline (y¼ 50, 0 � x � 300),
where Ana. and Num. denote analytical and numerical results.
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as the third phase here. A comparison of the volume fractions obtained
from the three-phase model, the four-phase model with one phase
removed, and the theoretical solution is shown in Fig. 3. The results of
the three-phase model and four-phase model with one phase removed
are almost identical, and they are also in good agreement with the theo-
retical solution. In addition, we also consider two phases (the first and
the third phase) removed in the present four-phase LB model, and the
results are compared with the theoretical solutions. The results are
shown in Fig. 4, where we find that the numerical results of the four-
phase model with two phase removed are also in good agreement with
the theoretical ones. These results demonstrate that the reduction-
consistent property is preserved in the present LB model.

B. Spreading of a liquid lens

We now test the developed LB model by considering the spread-
ing of a liquid lens. As a classic benchmark problem for three-phase
flows, this has been widely investigated in the literature16,17,56–58

because its theoretical solution is available. In particular, when the
effect of gravity is dominant, quantitative relations for the droplet
thickness in terms of the other parameters have been developed.59,60

Here, we compare the numerical results against the Langmuir–de
Gennes theory to validate our LB model and demonstrate its capacity
to preserve the reduction-consistent property.

We consider a droplet (phase 1) located at the interface between
two other immiscible fluids (phases 2 and 3). Under the influence of
surface tension, the droplet will form a lens when the system reaches
the equilibrium state. According to Neumann’s law,61 the equilibrium
contact angle and surface tension are related as follows:

cos ðh1Þ ¼ r212 þ r223 � r213
2r12r23

; cos ðh2Þ ¼ r213 þ r223 � r212
2r13r23

; (34)

where hi (i¼ 1, 2) represents the contact angle. From the schematic
shown in Fig. 5, the length d (the distance between two triple junc-
tions) can be calculated as

d ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AX2

i¼1

1
sin ðhiÞ

hi
sin hi

� cos hi

� �
vuuuut ; (35)

where A is the lens area. With the aid of Eqs. (34) and (35), the heights
can be determined as

hi ¼ d
2

� �
1� cos hi
sin hi

; i ¼ 1; 2: (36)

We first study this problem as a three-phase system without grav-
ity. In our simulations, the computational domain is chosen to be
NX � NY ¼ 150� 150. The initial volume fractions are given by

c1ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xcÞ2 þ ðy � ycÞ2

q� �
D

; (37a)

FIG. 3. A comparison of volume fractions obtained from the three-phase model,
four-phase model with one phase disappeared, and the theoretical solutions along
the centerline (y¼ 50, 0 � x � 300).

FIG. 4. A comparison of volume fractions obtained from the four-phase model with
two phase disappeared and the theoretical solutions along the centerline (y¼ 50,
0 � x � 300).

FIG. 5. The lens shape at the equilibrium state.
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c2ðx; yÞ ¼ max 0:5þ 0:5tanh
2ðy � ycÞ

D
� c1ðx; yÞ; 0

� �
; (37b)

c3ðx; yÞ ¼ 1:0� c1ðx; yÞ � c2ðx; yÞ; (37c)

where (xc, yc) is the center of the circular droplet and R is the radius of
the circular lens with R¼ 30. Periodic boundary conditions are
imposed on the right and left boundaries, and a no-slip boundary con-
dition is enforced on the top and bottom walls. The density ratio of
the three fluids is set to q1 : q2 : q3 ¼ 10 : 1 : 5, and the other physi-
cal parameters are set to D¼ 3, sg ¼ 0:8; xip ¼ 1

0:503 dip; m0 ¼ 0:05;
r12 : r13 : r23 ¼ 1 : 1 : 1 and 1 : 43 : 1. The equilibrium droplet pro-
files of the liquid lens are plotted in Fig. 6. The system reaches distinct
equilibrium states under different values of the surface tension ratio.
Additionally, the shapes of the liquid interface are in good agreement
with previous results.16,46,48,56 To provide a quantitative analysis, we
measured the contact angles (h1 and h2), length (d), and heights (d1
and d2) of the lens. These are compared with the analytical solutions
in Tables I and II. In Table I, the numerical results for the contact
angles h1 and h2 are in good agreement with the analytical solutions,
and the maximum relative errors are no more than 3.0%. From Table
II, it is clear that the numerical solutions for the length d and height
(h1, h2) are consistent with the theoretical predictions, and the maxi-
mum relative errors of d, h1, and h2 are less than 5.0%.

The spreading of a liquid lens can also be physically considered as
a multiphase system consisting of four fluid components, in which one
fluid is absent. We simulate this problem as a four-phase system in

which c4 ¼ 0. In this simulation, q4 ¼ 6; ri4 ¼ 0:01 (i ¼ 1� 4), and
the other parameters are the same as in the three-phase model. For both
cases, the numerical results in Tables I and II are exactly the same,
which indicates that the present LB model is reduction-consistent.

The effect of gravity on the equilibrium configurations is now con-
sidered. In this test, the gravitational acceleration g is assumed to be in the
−y direction, and the magnitude of the gravitational acceleration varies
from 0 to 10�5. The equilibrium configurations corresponding to these
gravity values are simulated with all other physical parameters fixed. The
computational domain is expanded to NX �NY ¼ 300� 150 in this
test because of the large deformation of the interface. The physical param-
eters are set to q1 : q2 : q3 ¼ 5 : 1 : 10 for the three-phase model, q1 :
q2 : q3 : q4 ¼ 5 : 1 : 10 : 6 for the four-phase model (fluid 4 absent),
rij ¼ 0:01 (i 6¼ j),xip ¼ 1

0:505 dip, andm0 ¼ 0:001.
According to the Langmuir–de Gennes theory,59,60 when gravity

is dominant, the droplet will form a puddle. The asymptotic puddle
thickness Ha is determined by the strength of the gravitational acceler-
ation, the three pairwise surface tensions, and the densities according
to the following expression:

Ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr12 þ r13 � r23Þ

q1
q3

ðq3 � q1Þg

vuuut : (38)

Figure 7 shows the asymptotic thickness as a function of gravity for
the present three-phase model, four-phase model, and Langmuir–de

FIG. 6. The equilibrium droplet profiles of
the lens with (a) r12 : r13 : r23 ¼ 1 : 43 : 1
and (b) r12 : r13 : r23 ¼ 1 : 1 : 1.

TABLE I. The equilibrium contact angles h1 and h2 with different surface tension ratios.

LB model
Surface tension

Numerical Analytical Relative errors

ðr12 : r13 : r23Þ h1 h2 h1 h2 h1 h2

Three-phase model 1 : 1 : 1 59:7� 59:7� 60:0� 60:0� 0.5% 0.5%

1 :
4
3
: 1 84:3� 46:8� 83:6� 48:2� 0.8% 2.9%

Four-phase model 1 : 1 : 1 59:7� 59:7� 60:0� 60:0� 0.5% 0.5%

1 :
4
3
: 1 84:3� 46:8� 83:6� 48:2� 0.8% 2.9%
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Gennes theory.59,60 When g is small, there is a large discrepancy
between the numerical results and the Langmuir–de Gennes theory,
because Langmuir–de Gennes theory is not valid for such values of g.2

Actually, when g¼ 0, the numerical result for the asymptotic thickness
(Ha ¼ 47:8) is very close to the theoretical value [h1 þ h2 ¼ 48:0 in
Table II, see Eq. (36)]. Similar results can be found in Ref. 45. As the
gravitational acceleration increases (g � 2� 10�5), the numerical
simulation results become closer to the Langmuir–de Gennes theory.
Additionally, the results from the four-phase simulation almost exactly
overlap with those from the three-phase simulation, suggesting that
the present model preserves the reduction-consistency property.

C. Kelvin–Helmholtz instability

We now consider the Kelvin–Helmholtz (KH) instability to illus-
trate the capacity of the present model to deal with complex interfacial
dynamics. The KH instability typically occurs when there is velocity
shear in a single continuous fluid, or where there is a velocity differ-
ence across the interface between fluids.62,63 The KH instability phe-
nomenon is an all-encompassing occurrence of fluid flow that is
widespread in nature. From the waves of the ocean to the clouds in the
sky, the KH instability is responsible for some of nature’s most basic
structures. Due to its importance, the KH instability has been widely
investigated.58,64–69 However, most numerical studies on the KH

instability are limited to two-phase systems.65–68 In view of this, we
attempt to simulate the KH instability of three immiscible incompress-
ible fluids using the present LB model.

In this simulation, a square mesh of NX � NY ¼ 256� 256 is
adopted. The periodic boundary condition is applied in the x direction
and the non-equilibrium extrapolation scheme70 is used to treat the
bottom and top boundaries. The initial setup is shown in Fig. 8. The
initial volume fractions are given by

c1ðx; yÞ ¼ 0:5þ 0:5tanh
2ðy � 2NY=3� hÞ

D
; (39a)

c2ðx; yÞ ¼ 0:5þ 0:5tanh
2ðy � NY=3� hÞ

D
� c1ðx; yÞ; (39b)

c3ðx; yÞ ¼ 1:0� c1ðx; yÞ � c2ðx; yÞ; (39c)

where h is a sinusoidal perturbation with h ¼ 0:01NY � sin 4px
NX

	 

.

The initial distribution of the fluid velocity is set to69

u ¼ U0 þ U0 tanh
2ðy � 2NY=3� hÞ

D
� tanh

2ðy � NY=3� hÞ
D

� �
;

(40a)

v ¼ 0; (40b)

where U0 is a constant velocity. In addition, the velocities for the bot-
tom and top boundaries are fixed at u ¼ U0 and v¼ 0. The KH insta-
bility is mainly characterized by the non-dimensional Reynolds
number defined by Re ¼ NY � U0=�; in this test, Re¼ 5000. The
other parameters are set to q1 : q2 : q3 ¼ 0:98 : 0:99 : 1; U0 ¼ 0:04,

TABLE II. The equilibrium length d and height (h1, h2) with different surface tension ratios.

LB model
Surface tension

Numerical Analytical Relative errors

ðr12 : r13 : r23Þ d h1 h2 d h1 h2 d h1 h2

Three-phase model 1 : 1 : 1 82.7 23.9 23.9 83.1 24.0 24.0 0.5% 0.4% 0.4%

1 :
4
3
: 1 74.2 34.9 16.1 75.5 33.8 16.9 1.7% 3.3% 4.7%

Four-phase model 1 : 1 : 1 82.7 23.9 23.9 83.1 24.0 24.0 0.5% 0.4% 0.4%

1 :
4
3
: 1 74.2 34.9 16.1 75.5 33.8 16.9 1.7% 3.3% 4.7%

FIG. 7. A comparison of the asymptotic thickness Ha as a function of gravity g
between the numerical results (by the three-phase and four-phase models) and the
Langmuir–de Gennes theory. FIG. 8. The initial setup of the KH instability test.
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D¼ 3, xip ¼ 1
0:505 dip; m0 ¼ 0:0002, and r12 ¼ r13 ¼ r23 ¼ 0:0001.

Figure 9 shows the evolution of the density with two sinusoidal inter-
face perturbations. Because of the shear stress effect, the upper and
lower interfaces gradually curl up, forming the shape of billows. This
curling of the interface becomes more severe with time. This phenom-
enon can be explained by the accumulation of vorticity. As shown in
Fig. 10, the vorticity accumulates in the billow cores, resulting in the
formation of thin braids and cores of vorticity.69 As a result, vortices
form and gradually grow over time. The current simulation results are
compared with those in Ref. 58 (see Figs. 9 and 10), and there is good
agreement between the two.

D. Dynamics of droplets in a four-phase system

The rising and falling of droplets are very common phenomena
in nature and in engineering applications such as in inkjet printing,
microreactors, and kitchens.2,71,72 To demonstrate the capability of the
present LB model to handle such complex problems, we now consider
the dynamics of droplets in a system composed of four immiscible
incompressible fluids under gravity/buoyancy. The setting of this
problem is shown in Fig. 11, where the rectangular domain is fixed to
be NY � NX ¼ 480� 160. At t¼ 0, the top part of the domain is
filled with phase 2, and the bottom part is full of phase 3. Two circular
droplets of radius R¼ 20 centered at ðNX=2;NY=8Þ (phase 1) and
ðNX=2; 7NY=8Þ (phase 4) start to move under gravity/buoyancy
simultaneously. The initial volume fractions are given by

c1ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc1Þ2 þ ðy � yc1Þ2

q� �
D

; (41a)

c4ðx; yÞ ¼ 0:5þ 0:5tanh
2 R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xc2Þ2 þ ðy � yc2Þ2

q� �
D

; (41b)

c2ðx; yÞ ¼ 0:5þ 0:5tanh
2ðy � y0Þ

D

� �
� 1:0� c4ðx; yÞ½ � (41c)

c3ðx; yÞ ¼ 1:0� c1ðx; yÞ � c2ðx; yÞ � c4ðx; yÞ; (41d)

where ðxc1 ; yc1Þ and ðxc2 ; yc2Þ are the centers of the two droplets and
y0 ¼ 1

2NY is the initial position of the interface between phases 3 and
4. In this test, periodic boundary conditions are imposed on the right
and left boundaries, while the no-slip boundary condition is imposed
on the top and bottom walls. Different values of the surface tensions
r23 are considered. The physical parameters are set to q1 : q2 : q3 :
q4 ¼ 1 : 3 : 4 : 6; r12 ¼ r13 ¼ r14 ¼ r24 ¼ r34 ¼ 0:01; r23
¼ 0:001; 0:01; 0:03; m0 ¼ 0:01, D¼ 3, g ¼ 2� 10�5; sg ¼ 0:8, and
xip ¼ 1

0:505 dip. Since phase 1 is lighter than phase 3 and phase 4 is
heavier than phase 2, the droplet of phase 1 should be rising while
phase 4 droplet should be falling down. Figure 12 shows a temporal
sequence of snapshots of the fluid interface for various values of r23.
For r23 ¼ 0:001, phases 1 and 4 undergo significant deformation
under the action of surface tension and gravity, and the interface
between phases 2 and 3 becomes curved due to the effect of the drop-
lets on both sides (t¼ 16.97, where the time has been non-
dimensionalized by t ¼ tl ffiffiffi

2R
g

p , with tl being the lattice time). After that,

phase 1 continues to rise, producing a severe deformation of phase 4
and in the interface between phases 2 and 3 (t¼ 21.21). Finally, phase

FIG. 9. The density at t¼ 2000, t¼ 3000, t¼ 4000, t¼ 9000. [(a)–(d) present LB model and (e)–(h) LB model in the previous work.58] Reproduced with permission from
Phys. Rev. E 93, 0 13 308 (2016). Copyright 2016 American Physical Society.
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4 breaks into two sub-droplets, and phase 1 departs from the interface
(t¼ 28.28–42.43).

An increase in the surface tension r23 makes the deformation of
the interface between phases 2 and 3 less obvious at the same moment
(see Fig. 12), and it becomes increasingly difficult for phase 1 to pass
through the interface. This is because an increase in r23 means that

more energy is needed to produce the same degree of deformation of
the interface between phases 2 and 3. As illustrated in Fig. 12, the pre-
sent numerical results meet our expectations.

We now examine the dynamical features of this four-phase flow
by investigating the velocity distributions. Figure 13 shows a temporal
sequence of snapshots of the velocity fields at the same times as the
images in Fig. 12. From Fig. 13(a), we can observe that, prior to the
impact on the surface between phases 2 and 3 (t¼ 7.07–16.97), phases
1 and 4 induce a velocity field, forming two pair of vortices near the
shoulders of these phases. At the time t¼ 21.21, only a pair of signifi-
cant vortices is observed. Under their action, phase 1 continues to rise,
while phase 4 breaks into two sub-droplets. Subsequently, phase 1
crosses the interface between phases 2 and 3 and induces a new pair of
vortices (t¼ 28.28–42.43). At the same time, the vortices around the
sub-droplets of phase 4 gradually weaken. Finally, the system reaches a
relatively stable state. With an increase in surface tension r23, we find
that the velocity distribution at the same moment (t>16.97) exhibits a
smaller gradient. This is because greater surface tension at the interface
hinders the movement of droplets on either side of the interface, so
the droplet moves more smoothly. From the above discussion, it can
be concluded that the present LB model works well in simulating com-
plicated dynamical problems in a four-phase system.

V. CONCLUSIONS

In this paper, we have developed an efficient and accurate phase-
field-based LB model for multiphase flows consisting of N (N � 2)
immiscible incompressible fluids. A new LB equation for the phase
field governed byN coupled C–H equations was first proposed. In par-
ticular, the mobility mij depends on the volume fraction. To solve this

FIG. 10. The vorticity field at t¼ 2000, t¼ 3000, t¼ 4000, t¼ 9000. [(a)–(d) Present LB model and (e)–(h) LB model in the previous work.58]

FIG. 11. Initial configuration of droplet collision in a four-phase system.
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FIG. 12. Time evolution of the fluid interfaces at t¼ 0, t¼ 7.07, t¼ 16.97, t¼ 21.21, t¼ 28.28, t¼ 35.36, t¼ 42.43, (a) r23 ¼ 0:001, (b) r23 ¼ 0:01, and (c) r23 ¼ 0:03.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 023311 (2022); doi: 10.1063/5.0078507 34, 023311-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


problem, some extra collision operators were introduced to model the
cross-diffusion terms; simultaneously, proper auxiliary source terms
were constructed to derive the correct macroscopic equations. Note
that, compared with previous LB models for multiphase flows, there is

no need to calculate the chemical potential gradient in the current LB
model. In addition, another LB equation was adopted for the flow
field. Direct Taylor expansion analysis showed that the present LB
model derives the macroscopic equations correctly.

FIG. 13. Evolution of the velocity fields at t¼ 0, t¼ 7.07, t¼ 16.97, t¼ 21.21, t¼ 28.28, t¼ 35.36, t¼ 42.43, (a) r23 ¼ 0:001, (b) r23 ¼ 0:01, and (c) r23 ¼ 0:03.
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Four classical problems were used to demonstrate the capability
of the LB model. In the tests considering static droplets and the
spreading of a liquid lens, the present LB model was found to capture
the interface accurately, and the numerical results were in good agree-
ment with analytical solutions. These two examples also illustrated
that the present LB model has the reduction-consistency property. We
then studied the KH instability of three immiscible incompressible flu-
ids, and compared the numerical results with those of Liang et al.58

Good agreement was observed between the two sets of results. Finally,
the dynamics of droplets in a four-phase system were investigated to
demonstrate the capability of the present LB model to handle complex
N-phase (N>3) flow problems. The results show that the surface ten-
sion has a significant influence on the dynamic behavior of droplets.
All the numerical results presented here indicate that the LB model
established in this study is accurate and efficient for multiphase flows.
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