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Preface

This volume! aims at introducing some basic ideas for studying approzima-
tion processes and, more generally, discrete processes. The study of discrete
processes, which has grown together with the study of infinitesimal calcu-
lus, has become more and more relevant with the use of computers. The
volume is suitably divided in two parts.

In the first part we illustrate the numerical systems of reals, of integers
as a subset of the reals, and of complex numbers. In this context we intro-
duce, in Chapter 2, the notion of sequence which invites also a rethinking
of the notions of limit and continuity? in terms of discrete processes; then,
in Chapter 3, we discuss some elements of combinatorial calculus and the
mathematical notion of infinity. In Chapter 4 we introduce complez num-
bers and illustrate some of their applications to elementary geometry; in
Chapter 5 we prove the fundamental theorem of algebra and present some
of the elementary properties of polynomials and rational functions, and of
finite sums of harmonic motions.

In the second part we deal with discrete processes, first with the process
of infinite summation, in the numerical case, i.e., in the case of numerical
series in Chapter 6, and in the case of power series in Chapter 7. The last
chapter provides an introduction to discrete dynamical systems; it should
be regarded as an invitation to further study.

We have tried to keep the treatment of topics as independent as pos-
sible even at the cost of some repetition; usually, we assume as known
the content of [GM1], but, whenever possible, we provide an alternative
elementary treatment in order to allow the use of part of this volume on
sequences and series, independently from infinitesimal calculus.

The main body is formed by Chapter 1, Sections 2 and 3, Chapter 2,
Sections 1, 2, 3, and 4, Chapter 4, Sections 1 and 2, Chapter 6, Sections 1, 2,
3, and 4 and Chapter 7, Sections 1 and 2 for about a third of the whole. The
rest of the material may appear as heterogeneous; it develops in branches
that eventually meet, from which it is easy to select several paths. However,

! This volume is a translation and revised edition of M. Giaquinta, G. Modica, Analisi
Matematica, II, Approssimazione e processi discreti, Pitagora Editrice, Bologna,
1999.

2 We have discussed these notions in M. Giaquinta, G. Modica, Mathematical Analysis.
Functions of One Variable, Birkhduser, Boston, 2003. In this volume we shall refer
to this work as [GM1].



vi Preface

we believe that the whole of the material is, besides its intrinsic interest,
fundamentally basic for any further study of mathematical analysis.

As in [GM1] an appropriate number of exercises are distributed in the
text and at the end of each chapter. They are marked by the symbol ¥;
the double 49 indicates exercises that are more difficult.

We are greatly indebted to Cecilia Conti for her help in polishing our
first draft and we warmly thank her. We would like to thank also Alessan-
dro Berarducci, Roberto Conti, Pietro Majer and Stefano Marmi for their
comments when preparing the Italian edition, and Stefan Hildebrandt for
his comments and suggestions concerning especially the choice of illustra-
tions. Our special thanks go also to all members of the editorial technical
staff of Birkhauser for the excellent quality of their work and especially to
the executive editor Ann Kostant.

Note: We have tried to avoid misprints and errors. But, as most authors,
we are imperfect authors. We will be very grateful to anybody who wants
to inform us about errors or just misprints or wants to express criticism
or other comments. Our e-mail addresses are

giaquinta@sns.it modica@dma.unifi.it
We shall try to keep up an errata corrige at the following webpage:

http://www.sns.it/~giaquinta

Mariano Giaquinta
Giuseppe Modica
Pisa and Firenze
October 2003
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1. Real Numbers and
Natural Numbers

In this chapter, after an introductory section, in Section 1.2 we shall il-
lustrate the axiomatic approach to real numbers, and, in Section 1.3, we
shall identify the natural numbers as the smallest inductive subset of R.
Further information about natural numbers will be discussed in Chapter 3,
while the notions of sequences and of limit of a sequence, which are spe-
cially relevant in mathematics, are discussed in Chapter 2; in Section 2.2
we present, in particular, several equivalent formulations of the continuity
aziom.

1.1 Introduction

Rudiments of mathematics, or even refined geometrical and algebraic rules
appear in many ancient civilizations, as for instance the Babylonian, the
Egyptian, the Hindu, the Chinese or some of the pre-Colombian civiliza-
tions. But mathematics as an organized, independent and reasoned disci-
pline, that is as a science, developed from 600 to 300BC in Greece, thanks
probably to the democratic political system of the Greeks that must have
encouraged the attitude toward arguing.

Thales of Miletus (624BC-546BC) is given credit for inventing the
mathematical proof, and, according to Diadochus Proclus (411-485),
Pythagoras of Samos (580BC-520BC)

changed the study of geometry into the form of a liberal educa-
tion, for he examined the principles to the bottom, and investi-
gated its theorems in an immaterial and intellectual manner.

Most of our sources are, however, of several centuries later and refer to
Thales and Pythagoras in a legendary and mythological way. For example
Aristotle, reporting on the mystic-religious society of Pythagoreans, says:

the so-called Pythagoreans applied themselves to the study of

mathematics ... ; in so much that, having been brought up in
it, they thought that its principles must be the principles of all
existing things. ... They thought they found in numbers more

than in fire, earth, or water, many resemblances to things which
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Figure 1.1. Thales’s theorem.

are and become ... . Since then, all other things seemed in their
whole nature to be assimilated to numbers, while numbers seemed
to be the first things in the whole of nature, they supposed the
elements of numbers to be the elements of all things, and the
whole heaven to be a musical scale and a number.!

a. Numbers and measurement

It seems therefore that the Pythagoreans believed all bodies to be made
up of a great number of corpuscules that were all identical and harmo-
niously arranged. They identified integer numbers with patterns of those
atoms, thus making integers the basis of measure. Geometrical entities,
such as lines, surfaces and solids existed, as any other aspect of reality,
as aggregations of point-numbers. This is probably why they came to the
conclusion that the relations of capacity between two homogeneous quan-
tities could always be evaluated in terms of the ratio of positive integer
numbers, by counting in principle the number of corpuscules in the quan-
tities. Concluding the argument, two homogeneous quantities seem to be
always commensurable.
From this point of view the process of measurement becomes that of

(i) finding (with a finite procedure) a unit of measure e, possibly the
largest, common to the quantities to be measured,

(ii) counting; if the quantity A is n-times e, and a quantity B is me,
then the relation between A and B is expressed by the quotient of
the integers n and m.

In fact the basic proofs of some geometrically relevant facts seem to be
in favour of the assumption of commensurability. Here are a few examples.?

1.1 Theorem (Thales’s theorem). Let ABC and DEF be two trian-
gles with equal angles. If the segments AB and DE are commensurable

1 Aristotle (384BC-322BC), Methaphysics.
2 This actually only shows that some geometric constructions preserve rationality of
the measures of the data.



1.1 Introduction 3

ngure 1.2. Area of a rectangle.

with ratio m/n, then the pairs BC-EF and AC-DF, are commensurable
both with ratio m/n.

Proof. Since all angles are equal, possibly after a reflection, translation or rotation, we
can assume that the two triangles have a common angle /ZDEF = ZABC, and that
the lines AC and DF are parallel, see Figure 1.1; we can moreover assume that A and
C are interior points of the segments DC and EF. The commensurability assumption
yields a segment e with the property that AB is a multiple of e with a factor m and
DE is a multiple of e with a factor n. This way AB and DE are subdivided respectively
into n and m pieces equal to e. If we draw the parallel lines to AC through the point of
subdivision of DE, we obtain a subdivision of BC and E'F respectively into m and n
equal pieces. Such a quantity, which is common to BC and EC, is the common measure
we were looking for.

Similarly, we can show that AC and DF are commensurable. O

1.2 Theorem (Area of a Rectangle). Let R be a rectangle with sides
a and b, which are commensurable with ratio m/n with respect to a seg-
ment e. Then R is commensurable to the square @ of side a with ratio
m/n.

Proof. In fact we have a = ne and b = me and, compare Figure 1.2, R =nme X e and

Q=nexe. a

1.3 Remark. It is the commensurability of the sides of a rectangle that
allows us to measure the area in an elementary way.

Figure 1.3. Pythagorean theorem: c? + 2ab = (a + b)2.
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Figure 1.4. Frontispieces of the first printed Greek and Latin editions of the Elements
by Euclid of Alexandria (325BC-265BC).

1.4 §. Show the geometric form of the Pythagorean theorem. That is, show with a
straight edge and compass construction that, in a right triangle, we can decompose the
square on the sides into parts which fit exactly into the square of the hypotenuse.

1.5 Theorem (Pythagorean theorem). Suppose that the sides and
the hypotenuse of a right triangle are commensurable to a segment e with
ratios respectively m/n, p/q and r/s; then

m2 2 7.2

Proof. The squares of the sides are commensurable to the square of side e with ratio
respectively m?/n?, p?/q? and r?/s2. The claim then follows from the geometric version
of the Pythagorean theorem in Exercise 1.4, if we take into account that submultiples
of a given quantity are commensurable. [m}

b. Never-ending processes

The Pythagorean assumption that all pairs of homogeneous quantities are
commensurable was probably supported by proofs such as the ones we have
seen in the previous paragraph. The discovery of incommensurable pairs of
segments, such as the side and the diagonal of a square (see Proposition 1.9
of [GM1]), and its disclosure by Hyppasus, a member of the Pythagorean
school, produced a deep crisis in the numerical foundations of geometry
and on some of the dominant Greek culture, so much so that it cost the
life of Hyppasus himself: according to the tradition, Hippasus was thrown
overboard by the Pythagoreans. Obviously, it was not only a mathemat-
ical foundation that was failing, but a whole conception of the world, a
conception meant to justify social relationships and cultural superiority.
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To , T1
[ L | o =qor1+72
T2 !
O [CLLLD n=aren
: r3 |
[D |:| r2 =qar3+0

Figure 1.5. Euclid’s algorithm.

The procedure for determining a possible unit common to two mag-
nitudes, as line segments, angles, areas, can be regarded as the geometric
equivalent of Euclid’s algorithm (see, for example, 8.25). In the case of two
line segments ¢, 71, we consider the shortest one, r1, and we cover ro with
copies of r1. If we succeed in covering rg perfectly, r; is a common unit as
ro is a multiple of ;. Otherwise, we consider the part r; which remains
from rq after covering it with copies of r1, and restart the process using
o as the shortest segment between, this time, r; and rs (see, for example,
Figure 1.5). For the Pythagoreans this process would always stop after a
finite number of steps.® In fact stopping after a finite number of steps is
exactly equivalent to commensurability. However, the procedure will never
stop in the case of the diagonal and the side of a square, as we have seen,
or of the diagonal and the side of a pentagon (see, for example, Figures
1.6 and 1.7).

The existence of incommensurable pairs made it necessary to face pro-
cesses that were treacherous as they did not stop after a finite number of
steps, and to give up the idea of controlling continuous geometrical entities
by rational numbers or finite processes.

These reasons probably led Eudoxus of Cnidus (408BC-355BC) to
introduce the notion of magnitude as opposed to numbers and develop a
theory of comparison of magnitudes: the theory of proportions which is
presented in Book V of Euclid’s Elements. This, together with the method
of exhaustion, due also to Eudoxus, is among the greatest achievements of
Euclidean geometry. The method of exhaustion is presented in Book XII
of Euclid’s Elements and finds its splendour with Archimedes of Syracuse
(287BC-212BC) and, later, with mathematicians in the Renaissance, as
for example Francesco Maurolico (1494-1575).

Eudoxus’s idea is to consider equal ratios of pairs of magnitudes with-
out any reference to numbers. Nonending processes this way disappear
and we capture their essence via the method of exhaustion. Using modern
notation and numbers in a nonessential way, we can state

3 In this context one can think of Zenon’s paradoxes (about 495BC).
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Figure 1.6. Denote by Pp, n = 1,2,..., the n-th pentagon from the left to the right
and by a, and dn respectively the lengths of its side and diagonal. Then we have
dny1 = an and an = dp4+1 = Gp41 + any2. The figure shows that the process of
construction of pentagons never ends: a; and d; are therefore incommensurable (see,
for example, Chapter 3).

1.6 Definition (Exhaustion principle). The magnitudes a and b are
in the same ratio of the magnitudes A and B if, given arbitrarily two
positive numbers m and n, we have

ma < nb ifand only if  mA < nB,
ma > nb ifand only if  mA > nbB.

Of course the previous criterion requires “infinitely many comparisons
of capability,” but it provides a firm foundation of geometry; for instance,
the proofs of Theorems 1.1, 1.2 and 1.5 extend easily to cover “irrational
ratios.” Though historically not correct, we can think of the exhaustion
method as a method for approximating irrational numbers by rationals.*

c. Back to numbers

In Medieval times the centrality of the numbers came up again because of
the new trading. The algebra brought from the Arab world by Leonardo
Pisano (1170-1250), called Fibonacci, took a relevant role in the new com-
mercial companies: any good is homogeneous to any other good, money is
the unit of measure to which every quantity has to be referred. New prob-
lems, which require numerical solutions, arose and the continuity problem
came again as the problem of finding square or cubic roots. Scientists rec-
ognized the irrational character of those numbers, but, unlike the Greeks,
they learned how to live with them.

They avoided asking themselves about the nature of these new numbers
and were satisfied with approximations whenever irrationals appeared as
solutions of problems.

4 Notice that, if the ratio of magnitudes are numbers, the exhaustion principle is a
process that leads to the equality § = % and amounts to showing that

1
- — =<~ YneN, n>1.
n
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Figure 1.7. The side and the diagonal of a pentagon are incommensurable.

For centuries irrational numbers were used. Meanwhile other num-
bers appeared. In the fifteenth century the Italian mathematicians Niccolo
Fontana (1500-1557), called Tartaglia, Girolamo Cardano (1501-1576) and
Rafael Bombelli (1526-1573) used even imaginary numbers in solving alge-
braic equations of third and fourth degree, and Frangois Viéte (1540-1603)
introduced literal calculus. The bursting impact of the infinitesimal calcu-
lus led to include even “infinity” and “infinitesimal” among numbers. Of
course the development of mathematics, especially in the sixteenth and
seventeenth centuries did not go without criticism, but in some sense,
D’Alembert’s attitude allez de l'avant: la foi vous viendra mattered more.

At the beginning of the eighteenth century, Augustin-Louis Cauchy
(1789-1857) tried to give solid bases to infinitesimal calculus, founding it
on the theory of limits, that he rigourously developed in two celebrated
treatises: the Cours d’Analyse and the Resumé des legons sur le calcul
infinitésimal, respectively in 1821 and 1823. However in this process of
revision he found a series of difficulties that could be overcome, as we
have seen in [GM1], only after a rigorous settlement of the system of real
numbers.

It was only fifty years later in 1872 that Georg Cantor (1845-1918)
and Richard Dedekind (1831-1916) formulated the ariom of continuity
(see, for example, Section 1.2) and built a model of real numbers in the
celebrated works Uber die Ausdehnung eines Satzes aus der Theorie der
trigonometrischer Reihen and Stetigkeit und irrationale Zahlen.

The system of numbers needed should be a minimal extension of the
rationals, so that each number could be approximated by rationals. Also,
in such a system, we should be able to compare, sum and multiply as one
does with the geometrical continuum, but without any reference to it.

The crucial property singled out by Dedekind to capture the intuition
of the continuity of the line was that, in every division of the line into two
classes of points such that every point in one class is to be to the left of
each point in the second, there is one and only one point that produces
the division. He carried this idea over to the existence of the supremum of
every nonempty subset that is bounded from above.
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Figure 1.8. Frontispieces of Johannes Herwangen Editio Princeps in Greek and Latin
of the works of Archimedes of Syracuse (287BC-212BC), Basel 1594, and of one of the
Oxford editions, Oxford 1696.

d. An axiomatic or a constructive approach?

The clarification of the mystery of the continuity of the real line due to
Georg Cantor (1845-1918) and Richard Dedekind (1831-1916) turned out
to be simple and consistent with the way mathematicians had dealt with
real numbers in those years. However, the question of the existence of such
a system of numbers still held. Actually, immediately after Dedekind’s
works, other models of real numbers appeared. They were built starting
from the rationals as, for instance, the one due to Karl Weierstrass (1815-
1897). The idea that became dominant from then on was the following.
Starting from the rationals one adds new numbers such that, if one chooses
a reference on the line, they will occupy the holes left out by the ratio-
nals. Then, by using the possibility of approximating the new numbers
with rational numbers, the operations already defined on the rationals are
extended to the former as well.

The constructive approach brings back the existence of the system of
real numbers, i.e., the consistency of such a system, to the consistency of
the rationals and therefore to the one of natural numbers, in a process
of “arithmetization of mathematics” typical of the so-called Berlin school
around the middle of the nineteenth century, well expressed by the famous
words of Leopold Kronecker (1823-1891) :

Natural numbers are the work of God, all else is the work of
man.

Actually this process is not at all simple and requires a theory of sets, that
is quite abstract and complex. Furthermore, it turns out that within such a
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Figure 1.9. Richard Dedekind (1831-1916) and Georg Cantor (1845-1918).

theory, one cannot establish whether these systems are consistent (Godel’s
theorem, Kurt Godel (1906-1978)); in other words, one cannot establish
whether the assumption that a system enjoys a number of properties will
lead or not to unpleasant surprises: this is the question of the foundations
of mathematics (see, for example, Section 3.3.2).

We chose in [GM1], and we will insist in our choice in Section 1.2,
an axiomatic approach to real numbers: we take for granted that there
is a system of numbers that enjoys the properties it is expected to have,
and within this system we shall find the subsets of rational and natural
numbers.

1.2 The Axiomatic Approach
to Real Numbers

In this section we discuss the axioms of the system of real numbers and
some of their consequences. For the sake of convenience we deal with alge-
braic and order properties in Section 1.2.1, and with the continuity prop-
erty in Section 1.2.2.

1.2.1 Algebraic and order properties

The algebraic properties of real numbers are conveniently subsumed in a
minimal number of arioms that give the rules of computation. Those are
enough to allow us to derive the usual rules of computation.
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a. Axioms for addition

An operation of sum is defined in the system of real numbers R: it asso-
ciates to each pair of numbers x and y their sum denoted by z + y. In
other words a function is defined, the sum, +: RxR — R, (z,y) —» z+v,
z,y € R. We assume that

(Ay) Addition is associative: (x +y)+z=2z+ (y+2) for all z,y,z € R.

(Az) Ewistence of zero: R has an element, denoted by 0, such that 0+ =
z+ 0=z for every z € R.

{A3) Ezistence of the opposite: to every z € R corresponds an element
yE€Rsuchthat z+y=y+z=0.

(Ay) Addition is commutative: z +y =y + z for all z,y € R.

From (A;),..., (A4) we infer, for example,

(i) The number 0 in (A7), called zero or neutral element for the addition,
is unique. In fact, for another 0’ we infer 0 = 0+ 0’ = 0’ by applying
(Az) to 0, A4 and again (A42) to 0.

(ii) The opposite ¥ in (A3) to z is unique. In fact, if for y, 2 € R we had
z+z=2+y=0,thenz=24+0=2+(z+y) = (z+2)+y=0+y=y
by applying (As), (As), (41), (A2) and again (A;). The opposite of
z is usually denoted by —z and one writes  — y instead of z + (—y).
The new operation (z,y) — = — vy is then called subtraction.

Whenever in a set X an operation with the properties (4;),..., (44)
is defined, we say that X is a commutative group. In this case, (i) and (iii)
above read: in a commutative group there is a unique neutral element,
and every x has a unique opposite. Axioms (4) for the reals can therefore
be summarized by saying that R is a commutative group with respect to
addition.

b. Axioms for multiplication

A second operation, called multiplication, {(x,y) — zy, Vz,y € R, is as-
sumed on R. It satisfies the following axioms:

(My) Multiplication is associative: (zy)z = x(yz) for all z,y,z € R.

(M3) Existence of identity: R contains an element, denoted by 1, such
that 1 # 0 and 1z =zl = z for every z € R.

(M3) Existence of the reciprocal: to each x € R, & # 0, corresponds an
element w € R such that we = zw = 1.

(My) Multiplication is commutative: zy = yx for all z,y € R.

Similarly to addition one easily proves that the identity is unique and
the reciprocal of each element is unique. Usually one denotes by =%, 1/z or
by L the reciprocal of z # 0. We emphasize that 0~' or 1/0 is not defined
and it is meaningless. It is easily seen that R\ {0} is a commutative group
with respect to multiplication.
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Figure 1.10. Frontispieces of A treatise of Algebra by John Wallis (1616-1703) and of
Artis analyticae prazis by Thomas Herriot (1560-1621) where probably the symbols <
and > first appear.

1.7 9. Show that rotations of the plane around a given point form a commutative
group, the operation of sum of two rotations, respectively of angles = and y, being
defined as the rotation of angle z + y. Since we can clearly identify rotations of the
plane with the unit circle in R?, we can say in a fancy way that the circle has the
structure of a commutative group.

1.8 9. Show that rotations of the space around a given point form a group which is
however not commutative, that is, rules (A1), (Az2), (A3), but not (44) hold. Again in a
fancy way we can say that the unit sphere in R3 has the structure of a noncommutative

group.

c. The distributive law

The next axiom defines the relationship between the operations of sum
and multiplication.

(AM) z(y + z) = zy + xz holds for all z,y,z € R.

All algebraic rules of computation follow from the axioms (A), (M)
and (AM).

1.9 €. Show that

@i 0-z=0,

(i) (—2)(=y) = 29,

(i) (~2)y = —(z),

(V) (z— 1)z =22 - y2,

(v) zy = 0 if and only if either x = 0 or y = 0.
[Hint: As an example let us prove (i). We have 0 -z + ¢ = Oz + 1z [by (M2)] =
(0+ 1)z [by (AM) and (M4)] = 1z [by (A2) ]| = z [by (M2)]. Summing to both sides
-z we chen infer 0z = 0z+(z+(—z)) = (Oz+z)+(—z) by (A1) = z+(—z) =0 by (43).]
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Figure 1.11. Augustin-Louis Cauchy
(1789-1857) and the frontispiece of his
Cours d’Analyse, 1821.

1821,

If z, y € R, z # 0 the quotient of y by z is defined as

y._ l I |
L=y =y
We also write y/z for £, z # 0. The ordinary rules of computation of

fractions, as for instance

ac ac a ¢ _ad+bc

bd b b d b
follow easily from the axioms for multiplication. We repeat: dividing by
zero is not allowed.

d. Order

We can identify in R a subset P, called the subset of positive numbers, by
means of the following two axioms:

(O4) If z,y are positive numbers, z,y € P, then z + y and 2y € P.
(O3) For each z € R only one of the following three alternatives holds:
z€P,x=00r —z € P.

(O1) and (Os) imply that 1 is positive. In fact, since 1 # 0, either 1 or
—1 is positive and, as 1 = 12 = (—1)? we conclude that 1 is positive. A
nonzero number which is nonpositive, is called negative. We write x > 0
to say that x is positive, while x > y or y < z mean that = — y is positive.
Consequently x < 0 means that z is negative, and = negative, x < 0, is
equivalent to —z is positive, —z > 0. One can show that if x, y are negative,
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Figure 1.12. Frontispieces of the Fondamenti per la teorica delle funzioni di variabili
reali by Ulisse Dini (1845-1918) and of the Italian translation by Oscar Zariski (1899
1986) of Stetigkeit und irrationale Zahlen by Richard Dedekind (1831-1916).

then zy is positive. In fact zy = (—z)(—y) and —z and —y are positive.
In particular the square of a nonzero real number is positive.

From the previous axioms it is not difficult to infer the usual rules to
deal with inequalities:

(i) if z <y and y < 2, then z < z,

(if) if r <y and z > 0, then zz < yz,

(iii) f s <yand 2 € R, thenz + 2 < y + 2,
(iv) if:v<yandm>0,then%<%,

(v) if x <y and z < 0, then zz > yz.

Finally, since 1 is positive, also 2 :=14+1,3:=1+1+1,14+14---+1,
and so on are positive.

1.2.2 Continuity property

a. Supremum

Let A be a nonempty subset of R. We recall (see, for example, Section 1.1
of [GM1])

o ¢ € Ris an upper bound of A if A C] —o0,¢],i. e, if x <cVzeA,

o A is bounded above if it has an upper bound, i.e., if there exists c € R
such that x < cVzx € A,

o cis the greatest element of A, or a mazimum of A, if ¢ is an upper bound
of Aand c € A,
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c € Ris a lower bound of Aifx > cVr € A,

A is bounded below if it has a lower bound, i.e., if there exists ¢ € R such
that ¢ > cVx € A,

¢ € R is the least element of A, or a minimum of A, if ¢ is a lower bound
and c € A,

o c is the infimum of A if c is the greatest lower bound.

o O

o]

1.10 Déﬁnition. Let A be a nonempty subset of R bounded from above.
The least upper bound of A, in short the Lu.b. of A, is also called the
supremum of A and denoted by sup A.

Whenever they exist, the maximum and the supremum are unique,
moreover, if both exist, then they agree. Clearly the supremum is charac-
terized by the following

1.11 Proposition. Let A C R, A # 0. L € R is the supremum of A if
and only if

(i) L is an upper bound of A, i.e., x < L Vx € A,
(ii) Ve > 0 L — ¢ is not an upper bound of A, i.e., Ye > 0 3x € A such
that x > L —e.

The aziom of continuity of the reals is then (see, for example, Section 1.1
of [GM1])

(C) Fvery nonempty subset of R that is bounded above has a least upper
bound.

1.12 Remark. If ¢ is an upper bound of A, then every number larger
than ¢ is again an upper bound of A. We are tempted to say that the
upper bounds of A form a half-line, but to identify it we need the left
extremal point! A geometric way of visualizing the axiom of continuity is
exactly saying that if A C R is nonempty and bounded above, then all
upper bounds of A are given by the numbers in [sup 4, +00].

1.13 Example. If A =] — o0, ¢}, ¢ is the maximum of A. All upper bounds of A are
given by the numbers in the closed half-line [c, +oo[ , and ¢ = sup A.

If A =]— o0, c[, A has no maximum, all upper bounds of A are again the numbers in
the closed half-line [¢, +o0o[, and ¢ is the supremum of A. In both cases the set of upper
bounds is given by the closed half-line [c, +00[, and the L.u.b. is ¢, therefore it exists.

Similarly we have

1.14 Proposition. Let A CR, A # 0. L € R is the infimum of A if and
only if

(i) L is a lower bound of A, i.e., L < x Vz € A,
(ii) Ve > 0 L + ¢ is not a lower bound of A, ie, Ve > 0 3z €
A such that x < L+ e.

Equivalently, the axiom of continuity can be restated as
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(C1) Every nonempty subset A C R which is bounded below has a greatest
lower bound.

b. The extended real line

As we have seen in [GM1], it is convenient to introduce the symbols +oo,
—00, R := R U {400, —c0} and write sup A = +oo if A is not bounded
above, and inf A = —oo if A is not bounded below. With these agreements
the axiom of continuity transforms into

(Cs) Every nonempty subset of R has supremum and infimum.

c. Dedekind cuts of R

The continuity property was stated by Richard Dedekind (1831-1916) in
terms of cuts.

1.15 Definition. Let X be a set in which the axioms (A), (M), (AM)
and (O) hold. A cut (A, B) of X is a subdivision of X in nonempty subsets
A and B such that AUB =X, ANB =0 and

Va € A and Vb € B we havea < b.

If (A, B) is a cut of X, we say that x € X corresponds to (A, B) or that
it brings about this cut if a <z <bVa € A, Vb€ B.

Clearly the element that brings about a cut is unique, if it exists, and
belongs either to A or to B.

1.16 Theorem. Let X satisfy the axioms (A), (M), (AM) and (O). The
following

(i) the axiom of continuity (C) holds in X,
(i) to every cut of X corresponds an element of X

are equivalent.

Following Dedekind, we can then state the axiom of continuity also as
(C3) To every cut of X corresponds an element of X.

Proof of Theorem 1.16. (i) = (ii). Let (A, B) be a cut in X. Clearly A is bounded
above. Set zg9 = sup A. We show that zo brings about the cut (A, B). Since zg is an
upper bound, we have a < z¢ for all ¢ € A. Since z¢ is the least upper bound of A,
zo < bforall b€ B.

(ii) = (i). Let E be a nonempty subset of X that is bounded above. Denote by M(E)
the set of upper bounds of E. Clearly A := R\ M(FE) and B := M(E) form a cut (A, B)
of X. Denote by zp the element of X corresponding to (A, B). We then show that zg
is an upper bound of E. Otherwise, there is an = € E such that = > z¢ and choosing
z1 = (zo + 2)/2, we get 1 € M(FE) since 1 > z¢ and z1 € M(E) since z1 < z € E,
a contradiction. Since moreoever zg < b Vb € M(E), xo is the L.u.b. of E. |
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The axiom of continuity is not valid in Q. For example, if A :=
{z € Q|0 < z? < 2}, A is nonempty, bounded above, and sup A = V2 eR;
but, being that v/2 is not in @, A has no supremum in Q.

1.17 §. Thé existence of the n-th root of a nonnegative real number is a consequence
of the continuity of the function =™, z > 0 (see, for example, 2.46 of [GM1]). Relying
on the axiom of continuity, prove that every nonnegative real number has an n-th root.

1.2.3 Uniqueness of reals

We have already hinted at the fact that it cannot be decided whether the
system of reals is consistent or not. Another important question is the
uniqueness of such a system. This is not clear a priori; both the rationals
and the reals satisfy the algebraic and order axioms, but @ # R. Fortu-
nately two numerical systems S and T" which satisfy the algebraic, order
and continuity axioms are undistinguishable. Let us be more precise on
this point.

A set S with two operations, called addition and multiplication, which
satisfy the axioms (A), (M), (AM), and (0), is called an ordered field. For
example R and Q are ordered fields. An ordered field is said to be complete
if the axiom of continuity holds.

An algebraic isomorphism f : S — S’ is a bijective correspondence
between S and S’ that is compatible with the operations of addition and
multiplication on S and S’, that is, such that

flx+sy) = f(x) +s f(y), flz-sy) = f(z) s fly)

for all z,y € S. We say that the isomorphism is order preserving when
f(z) is positive in S’ if and only if = is positive on S, i.e.,

z <g y if and only if f(z) <g f(y) Vz,y € S.

Finally, we say that the ordered fields S and S’ are isomorphic if there is
an algebraic isomorphism f : & — S’ that preserves the order. We then
have

1.18 Theorem. Every complete ordered field S is isomorphic to R, con-
sequently all complete ordered fields are isomorphic.

Proof. Since S is complete, any of its bounded subsets has supremum in S. Also, if
f: 8 — S is an isomorphism between two complete ordered fields S and S’, then we
have f(sup E) = sup f(E).

We can now easily construct a bijection f : N — § between N and a subset of S
which preserves operations and order;® we can also extend this bijection to a bijection
f of R onto a subset S’ C S. To conclude, it suffices to prove that f(R) = S. Suppose
Ff(R) # S, i.e., that there is T € §\ 8’ and let Q' := f(Q), and consider the sets

{zeQ'|z<z} and {zeQ|z>7}

5 Compare the next section concerning the subset of naturals in R.
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They are clearly nonempty, otherwise Q' would be bounded below or above. If
¢ :=sup{z € Q' |z < 7}, and L' :=inf{z € Q' |z>7T},

we have ¢/, L' € §’ and
L'<z<?,
otherwise T € S’. Therefore we conclude that there is p € Q' such that L' < p < I’;

this is a contradiction, as it would imply that there are no rationals between £ and L,
where £ := f(£), L' .= f(L). O

1.3 Natural Numbers

In this section we identify the subset of R of natural numbers.

a. Natural numbers and the principle of induction

We commonly say that natural numbers are the numbers 0, 1, 2, 3, and
so on, actually meaning that there is a never-ending rule producing all
natural numbers which is

(i) 0 is a natural number,
(ii) if = is a natural number, then adding 1 produces the next natural
number, the “successor” z + 1 of z.

Even more, we intend that this rule generates only natural numbers.
To be more precise, let us state first
1.19 Definition. A subset A C R is said to be inductive if

(i) 0 e A,
(i) ifzr € A, thenz +1 € A.

The entire R, the half-lines [—1, oo[ and [0, oo[, the subset

{0, 1/2, 1, 3/2, 2, 5/2, 3}
are examples of inductive subsets of R. The naive way to describe the
naturals suggests that

(i) the set of natural numbers is inductive,
(ii) no proper subset of the naturals is inductive,
(iii) the subset of naturals is the smallest inductive subset of R.

For these reasons we set

1.20 Definition. N is the smallest inductive subset of R.

A trivial consequence is the following.
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1.21 Proposition (Induction principle). If A C N is inductive, then
A=N.

The Definition 1.20 can be justified by naive set theory. In fact we can
define N as the intersection of all inductive subsets of R,

N:= ﬂ{A cR ' Ais inductive}.

This way the existence of N leads to set theory. Then we need to show that
N is inductive itself. Consequently N exists and is the smallest inductive
subset of R.

1.22 9 9. Show that N:= N{A C R| A inductive} is inductive.

To be consistent, it remains to show that the operations of R, when
restricted to N, yield the usual operations on N. This is summarized in the
following

1.23 Proposition. We have:

(i) ifn €N, thenn+1€N,
(ii) ifn, m € N, then n+m and nm € N,
(iii) ifn € Nandn >0, thenn—1€ N,
(iv) if n,m € N and |n —m| < 1, then n =m,
(v) every nonempty subset A C N has a minimum,
(vi) a subset A C N is bounded if and only if it has a maximum.

Proof. Notice that in principle n + 1, n + m, nm, are real numbers.

(i) It is trivial, since N is inductive.

(ii) For n € N set Ay := {m € N|n + m € N}. It is easily seen that A, is an inductive
subset of R. Thus by the induction principle A, = N, that is n + m € N Vm and fixed
n. The claim follows since n is arbitrary. One can argue similarly for the product of
naturals.

(iii) The set A := {0} U {n € N|n — 1 € N} is inductive, hence A = N, in particular
n—1€Nifn#0.

(iv) We claim that the set A := {n € N| Am € N,n < m < n+1} is inductive. In fact,
if we found a natural number m with 0 < m < 1, then m — 1 < 0 and (iii) would give
m —1 €N, i.e., a contradiction. Similarly, we show that if there is no natural number
between n € N and n + 1, then there is no natural number between n + 1 and n + 2.
By the induction principle, A = N.

(v) Let £ := inf A. If £ is not the minimum of A, we can find (by the properties of the
infimum) z,y € A C Nwith £ <y <z < £+ 1/2. A contradiction to (iv).

(vi) Let A C N be bounded and let £ :=sup A € R. Suppose £ is not a supremum, then
there are n,m € A such that £—1 < n < m < £. Since A C N, we reach a contradiction
to (iv). O

1.24 Axiomatic definition of naturals. Natural numbers can also be defined ax-
iomatically independently from the reals. They are a set N with an applicationo : N — N
called successor, satisfying the following five axioms:

(i) 0 €N,
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Figure 1.13. Giuseppe Peano (1858-
1932) and the frontispiece of Arith-
metices Principia, Torino, 1889.

(ii) if @ € N, then o(a) € N,

(iii) if a € N and a = o(b), then a # 0,

(iv) o is injective, i.e., if the successors of a and b are equal, then so are a and b,
(v) if A C Nis such that 0 € A, and a € A implies o(a) € A, then A =N.

Axioms (i)-(v) were introduced by Giuseppe Peano (1858-1932), who also showed how
one can derive from them the entire arithmetic: they are known as Peano’s ariom.
Starting from natural numbers one can build successively the system of signed integers,
denoted by Z, of rationals Q and of reals R.

From Proposition 1.23 (vi) we in particular infer

1.25 Theorem (Archimedean property). N is not bounded above in
R, i.e., given any M € R there exists n € N such that n > M.

It is convenient to state the Archimedean property of R in several
equivalent forms.

1.26 Proposition. The following equivalent claims hold:

(i) if M > 0, then there exists n € N such that n > M,
(ii) (ARCHIMEDEAN PROPERTY) if z, y € R are positive numbers, then
there is n € N such that nz > y,
(iii) for every € > 0 there exists v € N such that 1/v < e,
(iv) if z € R is such that |z| < %, Vn €N, n>1, then x = 0.

Proof. (i) is true by Theorem 1.25.

(i) = (ii). It suffices to apply (i) with M := y/=z.

(ii) = (iii). It suffices to apply (ii) withy:=1 ez :=e.

(iii) = (iv). If = # 0, we apply (iii) with € := |z| and find v such that 1/v < |z|: a
contradiction.
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Figure 1.14. Rationals are dense.

Y

(iv) = (i). Were N bounded above, we would find L such that L > n Vn € N, hence,
according to (iv) 1/L = 0: a contradiction. ]

We repeat: the possibility of dividing an interval of R in subintervals
as small as we want is equivalent to the unboundedness of N in R.

b. Approximation of reals by rational numbers

Starting from the natural numbers we define the (relative) integer numbers
as

Z:= {xeR“xleN}
and the rational numbers as

Q:={w€R’x=§, p,q €N, q;éO}.

1.27 Definition. We say that A C R is dense in R if for any pair of
distinct real numbers z,y € R, x < y, there is a € A such that x < a < y.

Clearly the following claims are equivalent:

o ACRisdenseinR,
o if € > 0, z € R, then there is a € A such that |z — a| < ¢,
o if n € Nand z € R, then there is a € A such that |z — a| < 1/n.

1.28 Theorem. The subset of rationals Q C R is dense in R.

Proof. Let n € N and let us prove that, if £ > 0, then there is a rational
r > 0 such that |r —z| < 1/n.

(i) f0<z<1/n,wetaker:=0as |z —-0|=z < 1/n.
(ii) If z > 1/n, we define, compare Figure 1.14,

A:={m€N,’%§m}.

Since 1 € A as 1/n < z by the Archimedean property, A is nonempty.
Moreover A is bounded above (by nzx), hence it has a maximum k.
We must have k < nz < (k+ 1), hence

k 1
lo- =] <=
n n
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Finally, if z < 0 we find r 2\0, r € Q, such that | —z —r| < 1/n, hence
lz—(-r)|=]-z—(r)| <1/n. O

1.29 Theorem. The subset of decimal fractions, written as
{m/10"|m € Z, n € N}, and, more generally the subset of fractions
of the type {m/p™|m € Z, n € N}, where p € N, p > 1, is dense in R.

1.30 4. Prove Theorem 1.29. [Hint: Compare the proof of Theorem 1.28 and use that,
ifn € N and p > 2, then p™ > n.}

The last theorem says that if x € R, then we can find o finite decimal
expansion m/10™ as close to  as we want. More precisely, if we fix the
deviation € > 0 and apply Theorem 1.29 in the interval |z —e, z+¢[, we find
an approximate finite decimal expansion m/10™ with 0 < z — m/10™ < e.
Notice also that not every rational is a finite decimal: for example 1/3
cannot be expressed as a decimal fraction.

¢. Recursive statements
The induction principle has also the following useful formulation.

1.31 Proposition. Suppose that for every natural number n € N we are
given a statement p(n).

(i) Suppose that the statement p(0) is known to be true.
(ii) Suppose that for any n, if the statement p(n) happens to be true,
then the statement p(n + 1) must also be true.

Then the statement p(n) must be true for all n.

Proof. Proposition 1.31 is quite convincing: it is equivalent to the induction principle.
In fact the assumptions (i) and (ii) just say that the set A := {n € N|p(n) is true} is
inductive, hence A = N by the induction principle. O

Of course we also have

1.32 Proposition. Suppose that for every n we are given a statement
p(n).
(i) Suppose that there is k € N such that p(k) is true.

(i) Suppose that for all n, if the statements p(k), p(k + 1), ..., p(n)
happen to be true, then p(n + 1) must also be true.

Then the statement p(n) must be also true for all n > k.

1.33 Example. We show that 2" > n,¥n > 0. Let p(n) be the statement “2™ > n.”
We have

(i) p(0) = “29 =1 > 0” is true.

(ii) From “2° = 1 > 0” by adding 1 to both sides we then infer 2! =1+1>1+0=1
i.e., p(1) is true and, from 2™ > n we get 2" 1 =2.2" > 2n > n+1, ie, p(n+1)
is true.

Proposition 1.31 then yields the estimate 2™ > n for all n.
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1.34 Example (Bernoulli’s inequality). We can give a proof of Bernoulli’s inequal-
ity (see, for example, 5.52 of [GM1]) that makes no use of calculus. In fact for n = 0
we have (1+h)°=1=1+0"h. If now n € N and we assume (1 + h)" > 1 + nh, then

QA+t =14 h)QA+R)" > (1+h)(1+nh) [since h > —1]
=1+(m+1h+h?>14(n+1)h

1.35 Example (Arithmetic and quadratic mean). Let us show by induction that

1 & ? 1 &
;Z%’ S;Za?-
j=1 j=1

For n = 1 the claim is trivial. Suppose the claim true for n and let us prove it for n+ 1.
We have

2 2
n+1 n n
Zaj = Zaj + 2an+1 Zaj +a,21+1. (1.1)
=1 =1 i=1

From the inequality 2083 < ea? + %, which holds for all o, 8 € R and ¢ > 0, we infer,
for € := 1/n, that

n 1 n 2
2an41 Z a; < nai_H + ; Zaj . (1.2)
j=1 Jj=1

Formulas (1.1) (1.2) and the inductive assumption then yield

n+1 2 1 n 2 n4+1 3
Zaj < (1-}—;) Zaj +(n+ l)a?H_l < (—n—> nZa?+(n+1)ai+1
=1 =1 =1

n+1

=(n+1) Z a?.
j=1

1.36 Example (Sum of the first n naturals). There is a closed formula for the
sum S1(n) of the first n naturals.

~ n(n+1)
Sl(n):=1+2+--~+n=j§J=T. (1.3)
This can be proved in several ways.
(i) Writing
Si(n) = 1 + 2 + - 4+ (n-1) + =
Sin) = n 4+ (n-1) + - + 2 + 1,

and summing we get,
2851(n)=Mn+D)+(n+1)+---+(n+1)=n(n+1).

(ii) Arranging squares of side 1 as in Figure 1.15, the total area of the shadow squares
is

n? n  nn+1l)
Sl(n)=—5—+§=—2-——.
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A

1 2 3 n—1n — | 7t {

Figure 1.15. 3°7_, j = n(n +1)/2.

(iii) Using the identity (a + b)2 = a® + 2ab + b2, we can write

12 = + + 1
22 = 12+ 21 + 1
32 = 22 4 2:2 +

n? = (n-12 + 2.(n-1) + 1

and, summing,
124224+ (n+1)2=12422 4. 402 4 251(n) + (n+ 1),

that is, 251(n) = (n+1)2 — (n+ 1) = n(n +1).
(iv) By induction: the sequence zn :=n(n 4 1)/2, n > 1, satisfies the recursion

1 =1,
Tptl =Tpn+(n+1), Yn2>1,

which defines S1(n).

1.37 Example. The sum of the first n odd naturals is
n n
S@i-1)=2> j-n=nn+1)—n=n?
=1 j=1

see Figure 1.16.

o 707 |

NAN

1

Figure 1.16. "7, (2j — 1) = n?.

23
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Figure 1.17. The Josephus problem for n = 5, 8.

1.38 Example (Sum of the squares of the first n naturals). There is a closed
formula for

n
S2(n) 5=1+4+9+"-+n2=2j2'
j=1

In fact the method (iii) in Example 1.36 extends to the present case. Using the identity
(a + b)% = a3 3 3a2b + 3ab? + b3, we write

13 = + + + 1
28 = 13 4+ 3.12 4+ 3.1 + 1
33 = 28 4+ 3.22 4+ 3.2 + 1
nd = (n-12 + 3.(n-12 4+ 3-(n-1) + 1
(m+1)2 = nd + 3.n2 + 3-n + 1

Summing, we then get
B+ 4+ 403+ (n+1)P=13428 ... 4+ nd 4+ 35(n)+351(n) + (n+ 1),

that is
382(n) = (n+1)3 — (n + 1) — 351(n),

i.e., because of the value of S;(n) in Example 1.36,

n
1)(2 1
=t DOAD sy
‘ 6
Jj=1
We can also prove it by induction observing that the sequence = :=n(n+1)(2n+
1)/6, n > 1, satisfies the recursion

1 =1,
Tnt1=2n+(n+1)2 ¥n>1

that defines S2(n).

1.39 Example (The Josephus problem). Consider the following variant of a story
told by Flavius Josephus, a Jewish historian of the first century. We consider n people
numbered from 0 to n — 1, and, starting with the person labelled 1, we eliminate every
second remaining person until only one survives, see Figure 1.17. We are asked to
determine the position 7'(n) of the survivor.

We easily see that T(1) =0, T(2) =0, T(3) = 2, T(4) = 0. For large n we may
argue recursively. If the number of people is even, after the first round only the even-
numbered people survive and the next to be eliminated is labelled 2. We are therefore
in the situation of p people numbered 0,2,...,2p — 2. In formula,
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T(2p) = 2T(p).

If n = 2p+1 is odd, after one round p people labelled 2, 4,..., 2p — 2, 2p survive and
the next to be eliminated is person number 2. Hence

T(2p+1)=2T(p) + 2.
Therefore the sequence of the T(n) satisfies the recurrence
T(1) =0,
T(2n) = 2T(n), Vn >0, (1.4)
T(2n+1)=2T(n)+2, Yn>0.
This is the table of T'(n) for n =0,,1,...,16.

n |12 3[4 5 6 7[8 9 10 11 12 13 14 15| 16
Tn) [o]0o 20 2 4 60 2 4 6 8 10 12 14] 0

This suggests for T'(n) the closed form
T(n) =2(n—2%), if 2% <n<2k+l (1.5)

This is in fact the case as one proves, checking that the sequence {z,} in (1.5) satisfies
the recurrence (1.4).

1.4 Summing Up

Real Numbers

The system of real numbers R is defined axiomatically as a set of objects satisfying a
suitable family of rules. First, we can operate on it with addition, multiplication and
order in the usual way: this is summarized by saying that R is an ordered field. Secondly,
a “continuity property,” that can be expressed in several equivalent forms, holds.

o Let A C R be nonempty. The supremum of A, denoted by sup A, is the least upper
bound of A, that is, the unique number L € R such that
(i) L is an upper bound of A, i.e,, x < L Vz € A,
(ii) Ve > 0 L — ¢ is not an upper bound of A, i.e., Ve > 03z € Asuchthat z > L —e.
o Let A C R be nonempty. The infimum of A, denoted by inf A, is the greatest lower
bound of A, that is, the unique number £ € R such that
(i) £is a lower bound of A, ie., x> £€Vz € A,
(ii) Ve > 0 £+ € is not an upper bound of A, i.e., Ve > 03z € Asuchthat x < £+ e.
o A cut (A,B) of R is a subdivision of R in nonempty subsets A and B such that
AUB =R, AnB =0 and

Va € A and Vb € B we have a < b.

If (A, B) is a cut of X, we say that € X corresponds to (A, B) ifa <z < bVa € A,
Vb € B.
The axiom of continuity of the reals can be expressed by one of the following
equivalent statements:
o every nonempty subset A C R that is bounded above has supremum, sup A € R,
o every nonempty subset A C R that is bounded below has infimum, inf A € R,
o to every cut (A, B) of R corresponds an element of R.
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Natural Numbers

A set A C R is inductive if 0 € A and, if £ € A, then £ + 1 € A. The set of natural
numbers is the subset of R defined by

o N is the smallest inductive subset of R.

Relevant facts about naturals are the following:

o INDUCTION PRINCIPLE If A C N is inductive, then A = N.
o INDUCTION PRINCIPLE Suppose that for every natural number n € N we are given a
statement p(n) and let k € N.
(i) Suppose that the statement p(k) is known to be true.
(ii) Suppose that for any n > k, if the statement p(n) happens to be true, then the
statement p(n + 1) must also be true.
Then the statement p(n) must be true for all n > k.
o ARCHIMEDEAN PROPERTY N is not bounded above in R,
o every nonempty subset A C N has a minimum,
o a subset A C N is bounded if and only if it has a maximum.

Rationals
The integral numbers Z and the rational numbers Q are defined respectively by
P
Z:=3z€R||z] €N}, Q:=4z€R|zc==, p,g€Z,q#0;.
{z eR]lsl e N} {eerfe=7 }

o Q and the irrationals R \ Q are dense in R.

1.5 Exercises

1.40 9. Show that Ry := {z € R|z > 0} is a multiplicative group. Establish an
isomorphism of groups between the additive group R and the multiplicative group R.

1.41 9. Let X be an ordered field. Show

Proposition. Let A C X. A has a maximum if and only if A is nonempty, bounded
above, has supremum and sup A € A. In this case max A = sup A.

1.42 €. Show that
(i) inf A <supA.
(iiy P # AC B CR, then inf B < inf A <supA <supB.

(ii) Let A, B C R be such that a < bfor all a € A, b € B. Then inf A < inf B and
sup A < sup B.



1.5 Exercises 27

1.43 4. Given A, BCRand v € R, v > 0, define

A+B:={zecR|x=a+b ac A be B),

A-B:={ze€R|z=ab, a€ A, be B},
1A:={z €R|z =10, a € A},
—-A:={zeR| -z € A}.

Show that
sup(A + B) = sup A + sup B, inf(A + B) = inf A + inf B.
If moreover A, B C R4, then

sup(A - B) =sup A - sup B, inf(A - B) =inf A - inf B,
sup(vA) = ysup A, inf(yA) = vinf A,
inf(—A) = —sup A, sup —A = inf A.

1.44 4. Let X be an ordered field. Show that min A = — max(—A), sup A = — inf(—A)
for all A C X. Deduce that the axioms (C) and (C;) are equivalent.

1.45 9 9. Prove

Proposition. Let X C R be such that
(@ 0e X,
(i) ifr€ X, thenz+1€ X,
(iif) f0<z€ X,thenz—-1€ X,
(iv) every nonempty subset A of X has a minimum.
Then X = N.

[Hint: The statements (i) and (ii) say that X is inductive, hence N C X. Assume X \ N
is nonempty ... .|

1.46 §. Theorem 1.28 says that between two distinct real numbers there is a rational
one. Show that actually there are infinite many rationals.

1.47 9. Show that irrational numbers R\ Q are dense in R. [Hint: Proceed similarly
to the proof of Theorem 1.28.]

1.48 9. Show that 2 + v/3 and v/2 + v/3 are irrational numbers.

1.49 q. Given four rational numbers a,b, c and d with ad — bc # 0 and an irrational

number x such that cx + d # 0, show that %ﬁ is an irrational number.

1.50 4. Let m,n be natural numbers with /m irrational. Show that /m + ¥/n is
irrational for all k € N.

1.51 9. Show that, if a4+ bv2+c¥4=0,thena=b=c=0.
1.52 9. Show that log;q 2 is irrational.

1.53 4. Show that the set of rationals B := {g € Q|¢® < 2} has supremum (in R)
given by /2.
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1.54 § Tarski’s paradox. All numbers are equal. We proceed by induction on the
number of numbers. The claim is trivial for one number a, a = a. Suppose that the
claim is true for 3 numbers and let us prove it for 4 numbers, a, b, c,d. We know that
a=b=cand b=c=d hence a = b = ¢ = d. By induction the claim is proved. Where
is the error?

1.55 9. Show Proposition 1.32.

1.56 9. Show that
n! > 2" ¥n > 4,

2" —n > n? ¥n > 5,

n">nlv¥n>1.
1.57 § Ovals. Ovals are boundaries of convex figures in the plane. Draw in the plane
n ovals. Suppose that each one intersects any other in exactly two points and that no
more than three ovals meet at the same point. In how many regions is the plane divided
by the ovals?

1.58 q. Let I be an interval and let ¢ : I — R be convex. Show by induction the
discrete Jensen inequality, compare Proposition 5.62 of [GM1]:

¢ (Z Ai%) < E)\itb(zi) (1.6)
i=1 i=1

for all nonnegative A1, A2,...,Aq with 30~ Ay =1 and all z1, x2,...,2n € I.

1.59 9 Lagrange’s identity. Show that
n n n 2
(54) ($24) (£ = Do on
i=1 i=1 i=1 id

1.60 9. Givenreals Ay, ..., Aq with 0 < X; < 1, show that [T7, (1—-X;) > 1-T[7, A

1.61 9. Show that /2 < n! < ((n+1)/2)™. [Hint: Show that n!? = [T, k(n+1—k)
and that for all k, 1 < k <7, we have n < k(n+1—k) < (n +1)2.]

1.62 9 9. Let R be a rotation of the plane around the origin of an angle o incommen-
surable with 7. Denote R™ the composition of R with itself, R* = RoRoRo---0oR,
n-times. Given a point € on the unit circle, show that the orbit of 9, i.e.,

{zeR2|z=R”0, nen},
is dense in the circle.

1.63 99. Let o € R\ Q. Show that {ma — n|m,n € N} is dense in R. Deduce that
{sinn|n € N} is dense in [-1,1].
1.64 § Galileo. Show that

1 143  1+43+5 _

3 547 T49+11

1.65 4. Find closed formulas for -7 247, Yo 33¢7.
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1.66 §. Compute

2(1—1)2 Z(J —j+1),¥n 21,
j=1 j=1

doi-1), Zj(j+1)(j+2),
ij=1 i=1

JE+DE+2)(G +3).

M:

.,
Il
i

1.67 4 Nicomachus’s theorem. Show that

n n 2
> = (Za‘ , Va1
j=1 j=

1.68 q Catalan’s identity. Show that

in —Z( n" Vn > 1.

j=1 =
1.69 9. n straight lines are said to be in a generic position if they intersect each other

at one and only one point. Determine how many regions are delimited by n straight
lines in generic position in the plane.

1.70 9. Show that Z?:o (;L) = 2",
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Thales of Miletus
(624BC-546BC)

Pythagoras of Samos
(580BC-520BC)

Eudemus of Rhodes
(350BC-290BC)

Plato
(428BC-347BC)

Aristotle
(384BC-322BC)

Hippocrates of Chios
(470BC-410BC)

Hippias of Elis
(460BC~400BC)

Eudoxus of Cnidus
(408BC-355BC)

Euclid of Alexandria
(325BC-265BC)

Nicomedes
{280BC-210BC)

Eratosthenes of Cyrene
(276BC-197BC)

Aristarchus of Samos
(310BC-230BC)

Archimedes of Syracuse
(287BC-212BC)

Apollonius of Perga
(262BC-190BC)

Diocles Hipparchus of Rhodes Zenodorus Menelaus of Alexandria
(240BC-180BC) (190BC-120BC) (200BC~140BC) (70AD-130)
Ptolemy
(85~165)

Nicomachus of Gerasa
(60AD-120)

Heron of Alexandria
(IAD)

Diophantus of Alexandria
(200-284)

Pappus of Alexandria Theon of Alexandria Diadochus Praclus Anicus Boethius Eutocius of Ascalon
(290-350) (335-395) (411-485) (475-524) (480-540)

Figure 1.18. A table of Greek Mathematicians.



2. Sequences of Real Numbers

As we have seen, we can represent any rational number, for instance v/2, by
its successive approximations with rational numbers, g1, g2, .... According
to Greek mathematicians the process which generates the approximations
q1,42,... never ends; for us, instead, such a process is the realization of
V2 as the limit of the sequence {g,}. In this chapter we shall discuss the
notions of sequence and of limit of a sequence.

In Section 2.1 we discuss basic properties. They may be inferred by
analogous properties for limits of functions proved in [GM1]. However, we
supply direct proofs for two reasons: first to be self-contained and, secondly,
because one may want to discuss limits of sequences before limits of func-
tions. In Section 2.2 we discuss the important notion of Cauchy sequence,
we prove the Bolzano—Weierstrass theorem and give various equivalent
formulations of continuity of the reals. In Section 2.3 we give alternative
simple proofs of the intermediate value and Weierstrass theorems. Finally,
in Section 2.4 we discuss a few examples, and in Section 2.5 we give an
alternative definition, in terms of sequences, i.e., just continuity, of the
exponential and logarithmic functions.

2.1 Sequences

2.1 Definition. A sequence with values in a set X, or simply a sequence
in X, is a functionrz : N — X.

A sequence is denoted by {z,}, n > 0, or by {zn}nen; Zn, that is z(n),
is referred to as to the n-th term of the sequence {z,}. Accordingly, any
enumeration of points of X by means of an index, which varies in an infinite
subset of the integers, is called a sequence, too: for instance we say “the
sequence 1/n with n odd” for {z,}nen with z, = 1/(2n +1).

There are many ways to produce sequences. For example we can give
a formula to compute z,, for all n, as

2 in(1
xnzl’nzl, xn=n_-l-lSl.I.L/.n_)

n n! 2l

H
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or, and this is in many respects more interesting as we shall see later in
Chapter 8, we can give a rule which gives each term of the sequence in
terms of the preceding terms as in

‘xo = 1,

2.1)
Tnt+1 = f(mn); vn 2 07

where f: R — R is a given function. In this case we can compute

g = 1,
z1 = flao) = f(1),
z2 = f(a1) = £(f(1)),

and it appears clearly that (2.1) defines uniquely the sequence {z,}. Ac-
tually, this is a consequence of the induction principle: the set

A= {n €N i Zn, is defined by (2.1)}

is inductive, hence A = N, i.e., {z,} is uniquely defined for all n € N. It
is usual to refer to (2.1) as to the recursive definition of {x,} or to the
recursive sequence {Tn}n.

2.2 Example (Integer powers). If ¢ € R and n € N, then ¢" is defined as the
product of g by itself n times,

q" :=qqq - q, n times.

However this is a costly definition: we need to recompute with an increasing number
of multiplications every time we increase the exponent. A simpler way to define ail
expressions ¢", n € N, is by the recursive definition

(1 .
=1 (2.2)
gt =gq™ Yn2>0.

2.3 Example (Products). Let {an}, n > 0, be a sequence of real numbers. The
product of the first n-terms of the sequence is

n
Hai =a1a2An.
i=1

The sequence zp, = H?:o aj, n > 0, is clearly defined recursively by

1=an (2.3)
Tn+4l ‘= TnlGn41 Vn 2 1.
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Figure 2.1. Pascal’s triangle.

2.4 Example (Factorial). For all n € N, the factorial n! of n is defined as 1 if n = 0
and as the product of the first n natural numbers

nli=nn-1)n-2)---3-2-1

if n > 1. All factorials are, in fact, defined by

o =1,

Tnt1 = (n+ 1)zp.

2.5 Example (Sums). The sum of the first n + 1 terms of a sequence {an}n>o, of
real numbers ag + a; + - - - + an is denoted by

n

j=0

The sequence z, := Z?:o a; is defined by

s0 = ag,
Snt+1 =5n +ant1 Vn 20.
In 377 ¢ a;, the integral variable j, which varies from 0 to n, just enumerates the
elements to be summed: it is a bound variable: we clearly have

n n n+2

n
Zaj =Zak= Z aj42 = Zaj_z.
k=0 j=2

j=0 j+2=0

2.6 Example (Binomial coefficients and Newton’s binomial). The binomial co-
efficients (see, for example, Chapter 4 of [GM1]) are defined by

Vi, 0<j<n.

(n) - n! _nn=-1)(n-2)---(n—j+1)
i/ g =) ! ’
It is clearly seen that for j,n € N and 0 < j < n we have
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Figure 2.2. Pascal’s triangle.

(o) =) =1 ")
() =Gy (M =221
(:)"“(::Dﬁ“(n;l), 1<k<n,

where the last formula is known as Pascal’s formula.
As an application of the induction principle let us give a proof of the binomial
theorem

(a+b)" = Zn: (:)a"—kbk,\m, beR (2.4)
k=0

(see, for example, 5.53 of [GM1]), which makes no use of calculus.
The claim (2.4) is trivial if either a or b is zero. If, say, a is nonzero, by multiplying
and dividing by a™, we see that (2.4) is equivalent to

n
n _ N,k
1+rm=3" (k)h . (2.5)
k=0
Therefore it suffices to show that the sequence zn := ;’=0 (?)hj satisfies the same

recursive definition of (1 + k)", i.e.,

o =1,
Znt1 = (1+h)zn VYR 2>0.

Since in fact 2o = 2=0 (2)h0 =1 and
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on account of Pascal’s formula, the claim is proved.

a. Limit of a sequence
The notion of limit of a sequence plays a fundamental role in analysis.

2.7 Definition (of limit). Let {z,} be a sequence of real numbers and
let L € R. We say that {z,} tends to , or converges to L, or that L is
the limit of {x,}, and we write

r, — L or lim z, =L
n—oo

if
Ve > 0 3 n. € N such that |z, — L| < € ¥n > n.. (2.6)

2.8 Proposition. 1/n — 0 and (-1)"/n — 0.
2.9 §. Show that that z,, — L if and only if |z, — L| — 0.

2.10 §. Show that the two claims in Proposition 2.8 are both equivalent to the
Archimedean property.
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Figure 2.4. Frontispieces of A Treatise concerning the principles of human knowledge
and of The Analyst by George Berkeley (1685-1753).

2.11 Definition. We say that {x,} diverges or tends to +o0, or that +oo
is the limit of {z,}, and we write

T, — +00 or lim z, =+
n—oo

if
VM >0 3 v € N such that x,, > M VYn > v.

We say that {z,} diverges or tends to —oo, or that —oco is the limit of
{zn}, and we write

T, — —00 or lim z, = ~o0
n—oo

if
VM >0 3 v € N such that z, < —M Vn > v.

Finally we say that {z,} has a limit if {z,} converges or diverges.

b. Properties of limits and calculus

We may interpret the limit of a sequence as the limit of a function. In
fact, given {a,}, fix an interval [z, q[, ¢ € R (say [0, +00]), and a strictly
increasing sequence {z,} in [zo, g with z, — ¢ (say z, = n if ¢ = +00),
and define the step function ¢, : [zo,g[— R by

va(z) = an if Tn LT < Tpga-
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2.12 Proposition. a, — L € R if and only if p,(z) > L asxz — q~.
2.13 4. Prove Proposition 2.12.

2.14 9. Let {an}, {bn} be two sequences, {xn} as above, and let ,, v, be the corre-
sponding functions. Show that

° watb{(Z) = @a(x) + pu(z),

° pap(x) = pa(T)pp(T).

Proposition 2.12 and Exercise 2.14 allow us to specialize properties and
results we have already proved for limits of functions to limits of sequences.
We however add the simple direct proofs, which are similar to the ones of
the limits of functions (see, for example, Chapter 2 of [GM1]). In fact one
might want to develop first the theory of limits of sequences and then the
theory of limits of functions. As we shall see in Theorem 2.46 the two
approaches are completely equivalent.

2.15 Proposition. We have:

(i) (UNIQUENESS) A sequence cannot have more than one limit.
(i) (BOUNDEDNESS) If {z,} converges, then {z,} is bounded.
(iif) (CONSTANCY OF SIGN) Suppose that {x,} has limit L € R.
a) If L > 0 (respectively L < 0), then there exists m such that
z, > 0 (respectively z,, < 0) for all n > 7.
b) If there exists @ such that x, > 0 (respectively z,, < 0) for all
n >, then L > 0 (respectively L < 0).

Proof. (i) Suppose z, — L1, Tn — L2, and Ly # Lo. If L1,L2 € R, then for € :=
|L1 — L2|/2 we find z,, such that |z, — L1| < € and |z, — L2| < €. Therefore

2e = |L1 - L2| < |L1 —(EUI -+ [zy — L2i < 2¢,

a contradiction. The cases in which L, and/or L, are infinity are similar.
(ii) Let {zn} converge to L. By definition, choosing € = 1, we find @ such that |z, — L| <
1 for all n > @. In particular |z,) < |xn — L| 4+ |L| < 1 + |L| for n > 7. Hence

M :=|z| + |z2| + -+ |zm_q |+ |L| + 1

is an upper bound for {|zn(}.

(iii) Suppose L > 0. From the definition of limit with ¢ = L/2, we find @ € N such that
len — L| < L/2 for all n > #, that is, 0 < L/2 = [ — L/2 < xzn, < 3L/2, which proves
(a). By contradiction one then sees that (b) is equivalent to (a). D

2.16 9 Sequences need not have limits. Show that £, := (—1)" has no limit as
n — oo.

2.17 9. Show that, if z, — L and zn > 0 Vn, then L need not be positive.

2.18 Proposition (Squeezing and comparison test). Let {a,}, {bn}
and {c,} be three sequences. Suppose that there exists T such that a, <
bp <c¢, Vn>7.Ifa, — L and ¢, — L, then b, — L.
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Proof. Suppose L € R; we leave to the reader the discussion of the cases L = Foo.
Given ¢ > 0 we find ne such that L ~e < an < L+ e¢and L — ¢ < ¢n < L + €. Since
an < bn < c¢q for all n > 7/, we conclude that L — e < b, < L+ ¢ for all n > max(7, ne),
that is b, — L. O

In the applications, Proposition 2.18 is often used in the following version.

2.19 Corollary. Let {z,}, {yn} be two sequences and let L € R. If
37 such that |z, — L| <y, Vn >, and Yn — 0,
then x,, — L. If
37 such that x, < y, Yn > 7, and Tp — +00,

then y, — +0o0.

2.20 Proposition. Suppose {z»} and {y,} have limits respectively £ and
m in R. Then

(i) If £+ m is well defined in R, then x,, + yn, — £+ m.
(ii) If fm is well defined in R, then z,yn, — m.
(iti) If £/m is well defined in R, then z,/y, — £/m.
(iv) If yo — 0 and yn > 0 for all n, then 1/y,, — +o0.

Proof. We prove (i) in the case ¢, m &€ R. The reader is asked to discuss the other cases.
Given € > 0 we find n; and ny such that

|zn — €| < € for all n > ny lyn — m| < € for all n > ny,

hence for n > W := max(nz,ny), the two inequalities |zn — | < € and |y — m| < €
hold. By the triangle inequality we then infer

jn —€+yn —m| < |Tn — €+ |yn —m| <e+e=2¢ for all n > 7,
which yields the conclusion, since € is arbitrary.
(ii) If £,m € R we write
[rnyn — €m| = |zn(yn — m) + m(zn — £)] < xn||yn —m| + |m||zn — £ < (K + |m|)e

where K is an upper bound for {|zn|} (see, for example, Proposition 2.15). This yields
the conclusion. The cases £ = o0 and m = +oo or m # 0, are simpler.

(iii) If £,m € R, m # 0, it suffices to notice that

Tn _ ,_'mzn—€m+€m byn

; - |< 0o —(1zn — 0+ -—lyn m)
n n

to conclude the proof. (iv) We ask the reader to prove it. a
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Figure 2.5. The frontispiece of Ezercices
d’Analyse et de Physique Mathématique
by Augustin-Louis Cauchy (1789-1857).

c. Limits of monotone sequences
2.21 Definition. A sequence {z,} of real numbers is said to be

bounded above if 3¢ € R such that x, < cVn € N,

bounded below if 3¢ € R such that z, > ¢ Vn € N,

bounded if 3¢ € R such that |z,| < cVn €N,

increasing if Vn we have z, < Tny1,

decreasing if Vn we have x, > Tn41,

strictly increasing if Vn we have x,, < Zn41,

strictly decreasing if Vn we have x,, > Tpy1,

monotone if it is increasing or decreasing,

strictly monotone if it is strictly increasing or strictly decreasing.

O O 0O OO OO0 O o

Recall that we write
sup A = +o0 (respectively inf A = —o0)

if A is not bounded above (respectively below). An important consequence
of the continuity of the reals, on account of Proposition 2.12 above and of
Proposition 2.30 of [GM1] or directly, is

2.22 Proposition (Limits of monotone sequences). All monotonic se-
quences have limits. More precisely, if {z,} is increasing, then z, —
sup,{zn}, while if {z,} is decreasing, z, — inf,{z,}.

Proof. Suppose {zn} is increasing, and let L := sup, {z}, that we assume to be a real
minimizer. Given € > 0, the properties of the supremum read

(l) Tn S L, Vn7

(ii) 3ne such that L — € < zp,.
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Since {zn} is increasing, z,, < zn for all n > ne, hence
L-e<zn, Lzn<L for all n > ne,

that is, zn — L, since € is arbitrary. We ask the reader to prove the other cases. D

d. Sequences and supremum

By comparing the properties that characterize the supremum (or infimum),
and the definition of limit we readily see

2.23 Proposition. Let A C R be nonempty. A number L € R is the
supremum sup A of A if and only if

(i) L is an upper bound of A,
(ii) there exists a sequence {z,} C A that converges to L.

A number L € R is the infimum of A if and only if

(i) L is a lower bound of A,
(ii) there exists a sequence {z,} C A that converges to L.

Notice that sup A = +oo if and only if there exists a sequence {z,}
with values in A that diverges to +o00, in fact sup A = 400 is equivalent
to the unboundedness of A, i.e., to

Vn > 0 3z, € A such that z,, > n.

Similarly inf A = —oo if and only if there is a sequence of points in A that
diverges to —oo. In conclusion, regardless of boundedness of 4, i.e., if A is
nonempty, we can always claim the existence of a mazimizing sequence, i.e.,
a sequence {z,} C A that tends to sup A, and of a minimizing sequence,
i.e., a sequence {z,} that tends to inf A.

2.24 §. More precisely, prove the following two propositions:

Proposition. Let A be a nonempty subset of R. Then there exists an increasing se-
quence {zn} C A that converges to sup A. Moreover we can choose {z»} to be strictly
increasing if A has no maximum or to be constant if A has maximum.

Proposition. Every real number is the limit of a monotone sequence of rational num-
bers.

e. Subsequences

Of particular relevance is the notion of subsequence of a sequence. If {z, } is
a sequence, a subsequence of {z,} is a new sequence obtained by choosing
its values among the values of {z,}, however not randomly, but keeping a
strict order on the indices.
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2.25 Definition. We say that {y,} is a subsequence of {z,} if there is a
function k : N — N strictly increasing, that is a sequence of nonnegative
integers with k1 < ks < k3 < ---, such that

Yn = Tk, Vn € N.
2.26 Example. The first terms of the sequence {1/n} are given by

1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,....

The terms 1, 1/3, 1/4, 1/7 may be the first terms of a subsequence of {1/n}, while no
subsequence of {1/n} can start with 1, 1/3, 1/4, 1/2,....

2.27 9. Notice that kn, > n Vn, since k : N — N is strictly increasing.

2.28 Proposition. If {z,} has limit L € R, then any subsequence of
{zn} has the same limit L.

Proof. Suppose L € R, and let ¢ > 0. By the definition of limit there exists ne such

that |z, — L| < € for all n > ne. Since kn, > n, we also have |z, — L| < € for all n > n,,
i.e., ¢, — L, € being arbitrary. The proofs in the cases L = oo are similar. |

In particular if {z,} has two subsequences with different limits, then
{z,} has no limit.

The following two examples, though artificially simple, may serve to
illustrate the usefulness of Proposition 2.28.

2.29 Example. The sequence 1/n2 — 0 converges to zero, since it is a subsequence
of {1/n} (the selection map being k, = n?). Similarly 1/2® — 0.

2.30 Example. % — 0. In fact, since {1/+/n} is decreasing it has a limit and 1//n —

¢, £ € R. On the other hand {1/n} is a subsequence of {1/n} (the selection map being
kn = n?), hence 1/n — £, consequently £ = 0, since the limit is unique.

2.2 Equivalent Formulations of the
Continuity Axiom

a. The principle of nested intervals or Cantor’s principle

2.31 Theorem (Cantor’s intersection theorem). Let C, = [ap,by]
be a sequence of closed intervals of R such that

[@n+1,bnt1] C lan,bp] VR eEN
Then there exists at least a point x common to all intervals, x € N2, C,.

Proof. Clearly we have

(i) a1 <az < a3 <---,ie, the sequence {a,} is increasing.
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(i) by > by > b3 > ---, i.e., the sequence {b,} is decreasing.
(iii) an < by, for all n and m.

Consequently {a,} and {b,} are bounded monotone sequences, by Propo-
sition 2.22 they have finite limits, a, T ¢, b, | L, and we have

an <E<L<b, Vn,m € N,
In particular

[¢,L] c [) Ca.
n=1

2.32 9. Show that in the proof of Theorem 2.31 we have [¢, L] = N, Ch.

b. Cauchy criterion

Except for monotone sequences we cannot state that a sequence converges
without involving its limit in advance.

2.33 Definition. We say that {z,} is a Cauchy or fundamental sequence
if
Ve 37 such that |z, — x| < e Vh,k > 7.

To a given sequence {x,}, we associate a new sequence {d,} defined
by
dy := sup |zn — zk|. (2.7
k2n
Notice that di can be understood as the length of the interval spanned by
all the elements of the sequence {z,} but the first k. Definition 2.33 yields

2.34 Proposition. A sequence {z,} is a Cauchy sequence if and only if
the corresponding sequence {d,} in (2.7) tends to zero.

If z,, — £, then clearly for any € > 0 we have |z, — 2| < |, — | +
|Zm — U] < € provided n,m are large enough, i.e., n,m > 7 in such a way
that |z, — | < ¢/2 Vn > 7. In other words: every convergent sequence is a
Cauchy sequence.

It is an important fact that the opposite holds true.

2.35 Theorem (Cauchy’s criterion). A real sequence is convergent if
and only if it is a Cauchy sequence.

Proof. It remains to prove that Cauchy’s sequences are convergent. We
first show that Cauchy’s sequences are bounded. In fact, choosing € = 1,
we find 7 such that

Jzn —zml <1 Vn > 7.
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Figure 2.6. lim inf and lim sup.

An upper bound for {|z,|} is then given by |z1]| + |z2| + - -+ + |z7| + 1.
Define now for n =1,2,3,...

£, = inf {xk}, L, := Sup{xk}’
k>2n k>n

and observe that {¢,}, {L.} are sequences of real numbers, {z,} being
bounded. Moreover {¢,} is increasing, {L,} is decreasing and ¢, < L,
V¥n & N. By Proposition 2.22 we have ¢, 1 ¢, L, | L, and

6, <¢<L<LL, VneN
Since {z,} is a Cauchy sequence and

L, — ¢, = sup |zp — Tk,
h,k>n

we get L, — £, — 0 and therefore £ = L =: T € R. Let us finally prove
that x, — Z. Fix € > 0 and let n, be such that T —¢,,_ and L,, —7 be not
greater than e. Since for all n > n. we have ¢, <z, < L,_, we conclude
that

T—e<{l, <zn<L, <T+e,

ie., r, — T as n — 00, € being arbitrary. O

2.36 Remark. As we have seen, every real number is the limit of a strictly
increasing (respectively decreasing) sequence of rational numbers. Consider
the space of all Cauchy sequences of rational numbers in which we identify
those Cauchy sequences {p,} and {g,} if pp, — g — 0, i.e., if “they have
the same limit.” Cauchy’s criterion then allows us, essentially, to identify
this space with R.
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c. Upper and lower limits

Consider any sequence {z,} C R. The sequences {{,} {L,} previously
defined by

£, := inf {z}, L, = sup{zx}
k2n k>n

are respectively an increasing sequence and a decreasing sequence of ex-
tended real numbers. Consequently they have limits in R,

£, — suplg, L, — i%f Ly.
k

We set

liminf z, := lim £, = lim inf {zx},
n—oo n— oo n—oo k>n

limsup z,, := lim L, = lim sup{z},
n—00 n—o0 n—oo an

and refer to them respectively as to the lower and upper limit or the limit
inferior and the limit superior of {z,}. These new notions will be very
useful in the sequel, here we confine ourselves to a few comments.

2.37 Proposition. Every sequence in R has an upper and lower limit in
R.

From the definition

lim inf z,, < lim sup z,,, and liminf z,, = — limsup(—z,).
n—oo n—o0 n—oo n—00

Going to the proof of Cauchy’s criterion, we also see
2.38 Proposition. Let {z,} be a sequence in R. Then z,, — £ € R if and

only if
lim inf z,, = limsup z,, = £.
n n

The following proposition characterizes the upper limit of a bounded
sequence.

2.39 Proposition. Let {z,} be a sequence in R. The number L € R is
the upper limit of {z,} if and only if

(1) Ye > 0 37 such that , < L+ e foralln >,
(ii) there exists a subsequence {z, } of {z,} that converges to L.

Proof. Let L = limsup, zn € R and prove that (i) (ii) hold. By definition L =
limp 00 SUP, >y, {Zx} hence for € > O there is ne such that

L—e<sup{zr} < L+c¢ for n > ne.
k>2n

Because of the properties of the supremum, the last inequalities hold if and only if
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Tn < L +¢€forn>ne, (2.8)

for all n > n¢ there is k > n such that z, > L —¢. (2.9)

Clearly (2.8) is (i). Let us show a subsequence {zj,} of {zn} converging to L.
For ¢ = 1 we choose n = n., and, on account of (2.9), we find k1 > n. such that

L—1 <z, < L+1. For € =1/2 we choose n = max(k1 + 1, n) and again by (2.9) we
find k2 > k; + 1 > k1 with k2 > n. such that

1 1
L—-<ay, <L+~
g STk <Lty

By induction we then find a subsequence {x,, } of {xx} such that |zg, —L| < % Yn > 1,
hence converging to L. This proves (ii).
Conversely, suppose that (i) and (ii) hold, and let € > 0. From (i) we infer that

sup{zx} < L+e¢ vn>n
k>n

and, since there is a subsequence that converges to L,

sup{zg} > L —¢ for all k large enough.
k>n

In conclusion there is ne such that

sup{zr} —L| <e for n > ne,
k>n

that is, € being arbitrary, L is the upper limit of {zn}. ]

Similarly we have

2.40 Proposition. Let {z,} be a sequence of real numbers. The number
L € R is the lower limit of {x,} if and only if

(i) Ve > 0 3 @@ such that z,, > L — € for n > 7,
(i) there exists a subsequence {zy, } of {x,} that converges to L.

Proof. We can give a direct proof following the scheme of the proof of Proposition 2.39
or derived from Proposition 2.39, since

liminf z, = — limsup(—z,).
n——+400 n—+oo

2.41 §. Show the following

Proposition. Let {x,} be a sequence in R.

(i) +oo is the upper limit of {z,} if and only if {zy,} has a subsequence that diverges
to +oo.
(ii) —oo is the upper limit of {z,} if and only if {z,} diverges to —oo.
(iii) —oo is the lower limit of {xy} if and only if {z,} has a subsequence that diverges
to —oo.
(iv) +oo is the lower limit of {z,} if and only if {z} diverges to +oo.

2.42 9. The limit values of a sequence {z,} are the limits of the convergent subse-
quences of {zn}. Show that the upper limit (respectively the lower limit) is the supre-
mum (respectively the infimum) of the set of the limit values.
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Figure 2.7. Bernhard Bolzano (1781-
1848) and the frontispiece of the work
where Bolzano—Weierstrass theorem ap-
pears.
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converging to L, see Proposition 2.39, we can state

2.43 Theorem (Bolzano—Weierstrass). Every bounded sequence of reals
contains a convergent subsequence.

e. The continuity property of the reals

We have seen that the continuity of reals implies

(i) the Archimedean property,

(ii) existence of the limit of monotone sequences,

(iii) Cantor’s principle,
(iv) Cauchy’s criterion,

(v) existence of upper and lower limits,

(vi) that every bounded sequence has a convergent subsequence.

Actually we also have

2.44 Proposition. Let X be an ordered field. The following claims (i)

and (ii) are equivalent.

(i) The continuity axiom (C),

(if) The Archimedean principle and one among

a) Cantor’s principle,
b) Cauchy'’s criterion,

¢) existence of limit of monotone sequences,
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d) existence of the upper and lower limit of a sequence,
e) every bounded sequence has a convergent subsequence.

2.45 9 9. Show Proposition 2.44. [Hint: In order to show that every nonempty bounded
set A has a supremum if the Archimedean property and one of the (a), (b), (c), (d) or
(e) hold, it is convenient to take into account the following construction. Let A C R be
nonempty and bounded. Choose ag € A, an upper bound by of 4, and set ¢ = (ap+bo)/2.
If ¢ is an upper bound of A, we set a1 := ag, b1 := c; otherwise we can find d € A
with d > ¢ > ag and, in this case, we set a; := d and b; = bg. If we repeat the
argument starting from a1 and b; instead of ag, bg, and continue this way, we construct
two sequences {an} and {bn} such that for all n, an, € A, bn is an upper bound of A,
an < bp, an is increasing, b, is decreasing, and
bn —an < (bo — ap)/2™.

Using this construction and one of the (a), (b), (c), (d) or (e) it is not difficult to show
the existence of the supremum of A: one needs the Archimedean property to show that
the limits of {an} and {bn} are equal.]

2.3 Limits of Sequences and
Continuity

a. Limits of sequences and limits of functions

The definition of limit of a sequence in Section 2.2 and of limit of a function
can be reduced one to the other.

2.46 Theorem. Let f :|a,b[— R be a function and x4 € [a,b]. The fol-
lowing two claims are equivalent:

(i) f(z) > LeR asz — z¢, x €la, b,

(ii) for any sequence {z,} Cla,b[\{zo} with z,, — z¢ we have f(z,) — L.
Proof. We prove the theorem in the case L € R and leave the proof to the
reader in the other cases.

(i) = (ii) Let € > 0. By assumption

36> 0:if z €]a,b], z # zo and |z — z¢| < §, then |f(z) — L| < e. (2.10)

If {z,, } converges toward z, then there is an index v such that |z, —zg| < §
for all n > v; since z,, # zo, and z, €ja,b[, (2.10) yields |f(z,) — L| <€
for all n > v, that is f(z,) — L, € being arbitrary.
(i) = (i) Assume that f(z) has no limit when £ — x¢. Then there exist
€0 > 0 and, for any given § > 0, a point z €]a, b[\{zo} such that |z—z¢| < §
while |[f(z) — L] > €. Choosing § = 1,1/2,1/3,... we define this way a
sequence {z,} with values in ]a, b[\{zo} such that

|zn —zo| <1/mn  and 1f(zn) — L| > €.

In particular z,, — z¢ and f(z,) does not converge to L: a contradiction.
O
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2.47 Example. Consider the sequence z, := y/nsin(1/+/n). Since f(z) = sinz/z — 1
as £ — 07 and zn = f(1/+/n), Theorem 2.46 yields z, — 1.

2.48 Example. Let f, g :]a, 5[— R be two functions, zg € [a, 8], and f(z) — L, g(z) —
M as z — zg = €]a,b[. We may prove that f(z) + g(z) = L+ M as z — zo as a
consequence of Proposition 2.20. For any sequence {z,} Cla, b[\{xo}, which converges
to zo, Theorem 2.46 yields f(zn) — L, g(zn) — M, hence f(zn) + g(zn) > L+ M,
according to Proposition 2.20. Again Theorem 2.46 then allows us to conclude that

f(@)+g(@) > L+M as T — zo, <z €la,bl.

2.49 Example. Let us give another example proving the change of variable rule,
Proposition 2.27 of [GM1].

Proposition. Let f : I — R be a function defined on an interval I, let xo be a point
in I or one of its extremal points, and let f(z) — L, L € R, asz — zg. Let x(t) : J — I
be a function defined in an interval J onto I such that z(t) — xp as t — tg, to being a
point in J or one of its extremal points. If one of the following two conditions holds:
(i) zo € I and f is continuous at xp,
(ii) x(t) never takes the value xg for t # to,

then f(z(t)) > L ast —tp, t € J.

Proof. Let {tn} be a sequence with values in J \ {to} that converges to ty. Clearly
{z(tn)} C I and, by Theorem 2.46, z(t) — xo. Let us prove that f(z(trn)) — L.

If £ never takes the value zg for t # to, then z(t,) C I\ {zo} and therefore
f(z(tn)) = L by Theorem 2.46.

If f(zo) = L, for the subsequence {sn} of {t,} such that f(sn) # z¢ we have
f(z(sn)) — L on account of Theorem 2.46. Therefore for any € > 0 there exists @
such that |f(z(zn)) — L| < e for any n > 7 such that z(t,) # zo. Since f(zo) = L,
|F(z(tn)) — L| < e for all n > 7. That is, f(z(tn)) — L, € being arbitrary.

Finally, since f(z(tn)) — L for any sequence {xn} C J \ {to}, the claim follows
applying once again Theorem 2.46. 0O

b. Continuity in terms of sequences

Let f : [a,b] — R be a function and z¢ € [a, b]. We recall, see Chapter 2 of
[GM1], that f is continuous at o, if f(z) — f(zo) as £ — zo, = € [a,b],
or, in the ¢ language

Ve>036>0 : if z € [a,b] and |z — zo| < 4,
then [f(z) - f(zo)| <&

Theorem 2.46 yields at once

2.50 Proposition. Let f : [a,b] — R. f is continuous at ¢ € [a,b]
if and only if for every sequence {z,} C [a,b] with x, — x¢ we have

f(@n) = f(zo).

In terms of sequences we can also give proofs of the intermediate value
theorem and of Weierstrass’s theorem that are more robust, i.e., that can
be extended to more general contexts.
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2.51 Theorem. Let f : [a,b] — R be a continuous function on [a,b]. If
f(a) < 0 and f(b) > 0, then there exists zo € [a,b] such that f(zo) = 0.

Proof. Set ag := a, bg = b and ¢ := (ag + bg)/2. If f(c) =0, then c is the
zero xo; otherwise we set

ay:=c¢, by:=b if f(c) <\0,
ay:=a, by :=c if f(c) > 0.

The function f is continuous on [a1, b1] C [ao, bo), f(a1) < 0 and f(b1) > 0.
Repeating the argument with a;, b; instead of ag and bg, and proceeding
this way, we either find ¢ with f(c) = 0 after a finite number of steps, or
we construct two sequences {a,} and {b,} with the following properties:

(i) ag = a, bo = b,
(i) a,, is increasing, b, is decreasing,
(iii) f(an) <0 and f(bn) >0,

(iv) Jbn —an| = %|bn_1 — ap-1]| = 27"|by — aql.

When n — o0 an T Zo, bn | %0, and |yo — zo| £ |bp — an| Yn. Since by
(iv) |bp — an| — 0, we in fact have 2y = yg, and f being continuous,
f(an) — f(zo) and f(b,) — f(xo). On the other hand, by the constancy
of sign, according to (ii) we infer f(zo) < 0 and f(zo) > 0. We therefore
conclude that we must have f(zg) = 0. O

2.52 Theorem (Weierstrass). Every continuous function f : [a,b] — R
on a closed and bounded interval attains its maximum and its minimum
value.

Proof. Let us prove that f attains its minimum. Define E := f([a,bd])
and let L := inf E and let {y,} be a minimizing sequence for E, that
is {yn} C E and y, — L. Since E = f([a,b]), there is also a sequence
{zn} C [a,b] such that f(z,) = yn Vn. The sequence {z,} is clearly
bounded and therefore, by the Bolzano—Weierstrass theorem, contains a
subsequence {zy, } that converges to some point £y € R. Actually, [a, d]
being a closed interval, z¢ € [a, b].

We shall now prove that x¢ is a minimizer for f. Since {zx.} is a
subsequence of {z,}, from one side f(zx,) — yx,, — L; on the other hand
f(zk,) — f(zo), f being continuous. Uniqueness of the limit yields f(zq) =
L, that is the claim. a

2.4 Some Special Sequences

In this section we discuss a number of sequences that turn out to be quite
relevant for the sequel.
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Figure 2.8. John Wallis (1616-1703) and the frontispiece of his Opera Mathematica.

a. Elementary limits
,n>

2.53 Example (Geometric sequence). Let z, :=q™, n >0, q € R. If ¢ = 1, then
trivially ¢" =1 Vn and ¢" — 1. If ¢ = —1, then ¢ = (—1)" has no limit.

Proposition. We have

(i) g" » 0 ifg>1,

(i) " —0iflq| <1,
(iii) g™ has no limit if ¢ < ~1.

Proof. Let ¢ > 1. Since ¢° — +o00 as ¢ — +o00, z € R (see, for example, [GM1]), we
conclude that g™ — oo by Theorem 2.46.

For a direct proof, which makes no use of calculus, set ¢ =1+ h, h > 0, and from
Newton’s binomial, Example 2.6, or from Bernoulli’s inequality, Example 1.34, we have

q" = (1+h)" > nh,

thus ¢™ — oo by the comparison test (see, for example, Proposition 2.18).
If |q| < 1, we write |g| = 1/(1 + h) with h > 0 to find

1 1

— <= =0
(1+h)® ~ nh

lgI™ <

thus g™ — 0, again by the comparison test. Finally if ¢ < —1, the sequence has no limit
since its two subsequences g2 and ¢2"*+! have different limits

" =g’ = 400, ¢ = —|g"" ! - —co.

w}

2.54 Example. ¥n — 1. In fact, for z € R, > 0, we can write z!/% = exp (log z/x).
Since the exponential function is continuous and logz/xz — 0 as z — +o0 (see, for
example, [GM1]), we then conclude that

1/x

T —1 as ¢ — +o0.
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Consequently ¥/n — 1.
We may also proceed as follows. We observe that ¥/n > 1, therefore ¥/n =: 1+ hq,
with A, > 0, that is

(1 + hn)n =n.
Using the binomial theorem, Example 2.6, we deduce
n(n —1 . -1
n=(1+4+hp)" =1+ %h% + positive terms > 1+ 2(—7—12———)hi,
which yields
2
0<hl <=
n

or

0L hp = %—13”3,
n

from which we get ¥/n — 1 since 1/4/n — 0.

2.55 Example. ¥/a — 1 for all @ > 0. If a > 1, we have
1< Ya< ¥n for n > a.

Since ¥Yn — 1, the squeezing test yields ¥/a — 1. If 0 < a < 1 we write

1
Va=—=
of1
a
to get
1
lim Ya=—— =11
n—oo 1
lim %/~
n—oo [v}

The claims in Examples 2.56 and 2.57 below are part of a series of
results known as Cesadro theorems.

2.56 Example. We have
Proposition. Ifan — L, then 2 Xio16; — L.

Proof. Assume L € R and proceed similarly in the other cases. Given ¢ > 0, we find 7
such that |a; — L| < € for all i > 72. On the other hand

1 1< 18
FOCE B SCES B ST}
i=1 i=1 i=1
hence for n > 7,
1< 1’ X 1 1= (n—7+1)e
S R s
i=1 i=1 i=7 i=1
thus we conclude that |% Sria— L‘ < 2¢ for n sufficiently large. m|

Notice that {% S ai} may have a limit, while {an } has no limit, as the sequence
{(-1)"} shows.

2.57 Example. We have
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Proposition. Let {an} be a sequence of positive numbers and let L € R If
an+1 L
an ’

then ¥an, — L.
Proof. Suppose 0 < L < oo; the cases L = 0 and L = 400 are simpler, and we leave
them to the reader. Set for n > 0,

bn :=log dntl
an

and observe that b, — log L and that
1 1
- log(an) = - (log ag + (logay — logag) + (logaz —logai) +---

+ (logan —logan—1 ))

n—1

1 1
==} =3 b,
n 0gaO+n; i

Therefore % log(arn) — 0 + log L, on account of Example 2.56. This proves the claim.
Let us give a more direct proof which makes no use of logarithms. Let 0 < ¢ < L.
Then we can find @ such that for all n > 7,

(L—¢€)an < an+t1 < (L+¢€)an,

and, by iteration,

am am
L-— n—n__ L n—n—‘_,
( 6) (L_e)n<a""'<( +6) (L+€)n
that is,
(L—e) VB < Yan, < (L+¥C forn>n
where
an aw
Bi=—— d = —
T-or M T Tror

depend on ¢, but not on n. Since VB, ¥C — 1, there is fi; such that
L—2¢<(L—¢) VB, and (L+¢)¥VC < L+2¢
for n > 7. We therefore conclude for n > max(7, 71 ),
L —2e< t/an <L+ 2
which yields the claim, since ¢ is arbitrary. ]

2.58 Example. Let z, be the quotient of two polynomials at n,
_apnP +ap-1nP 1+ 4aintao
bgnd + bg_1n9~1+ -+ bin+bo

p and ¢ being the degrees, that is, ap, by # 0. Of course numerator and denominator
diverge, but by factorizing n® in the numerator and n? in the denominator we find

ap+ap—1-,1;+---+a1n,%1- +a051p

Tn =nP7? i 1 T
bq+bq-1ﬁ+---+b1nq—_r+b05q'

The second factor, the largest fraction on the right, tends to ap/bg. We then conclude
that
400 -sgn(ap/by) ifp>gq,
Tn = § ap/bg ifp=gq,
0 ifp<g.
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b. Powers, exponentials and factorials
2.59 Example (Exponentials grow faster than powers). Let z, := n*/¢" with
k € N and ¢ > 1. We claim that
k

LLANNEN 0.

qﬂ
For that, write ¢ = 1 + h with h > 0 and apply the binomial theorem with n > k+ 1
to find
nn—1)(n—-2)---(n—k)

(k+1)! ’

"=(1+h)"> (Ic :l_ l)h’c+1 + positive terms >

that is

?s-

(k+ 1)In*
h¥+tlpn—1)(n—2)---(n—~ k)’
This yields the claim by comparison, since the right-hand side is the quotient of two

polynomials respectively of degree k and k + 1, and thus tends to zero, according to
Example 2.58.

0<———-<

2.60 Example (Factorials grow faster than powers). z, := ﬂ’-c— — 0. For that
observe that n! =n(n—1)(n—2)(n~3)---3.2.1 > n(n—-1)(n— 2)(n k)ifn>k+1.
The comparison test and Example 2.59 then yield

k k
€<—r——— 0.

Osn! nin—1})---(n—k)

2.61 Example. z, :=n!/n™ — 0. It suffices to observe that

1 -
n_nn-t 11
nm n n n - n

2.62 Example (Factorials grow faster than exponentials). z, := 5111:, — 0. This
is trivial if 0 < ¢ < 1. If ¢ > 1, we observe that

n

" _9 _a g

n! nn—1 1

and that all factors g/n with n > ¢ are smaller than 1. Thus

7 _32 9 q ...2:;0(4)2 for n > gq,
n n
where [g] denotes the integer part of ¢, and this yields the result trivially.

2.63 Example (Euler’s number). For any z € R we have

. T\" _
nIme (1 + ;) =e". (2.11)
The claim is trivial if # = 0. For ¢ # 0, recall that De® = e® (see, for example,
Section 4.3 of [GML1]}, a claim which is equivalent to

e —1 . log(1+x)

lim =1, or to lim
z—0 T x—0 x

=1, (2.12)
compare 4.3 of [GM1]. By the change of variables y = 1/¢t, ¢ > 0, this yields

Jlim_tlog (1+ %) =
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or Int
lim (1 + -—) =e,
t+o0 t

consequently

. T\t . T\E\T
tm (14 3) = (lm (1+3)7) =
Thus Theorem 2.46 yields (2.11).
From (2.11) we get in particular

e=tim (1+ %)" (2.13)

which in fact is trivially equivalent to (2.11). In Section 2.5 below we will deduce (2.12),
and consequently (2.11), directly from (2.13) making no use of calculus.

2.64 Example (Compound interest). If d is the rate of interest per cent and inter-
ests are capitalized every year, the accumulated amount of an original capital x after n
years is given by

o=,

Tpt1l = Zn(l4+d),
which yields

zn =z(1+d)".
If the interests are capitalized N times per year, then we have
d\Nn

Tn =2 (1 + ﬁ)

and for a continuous capitalization,

Nn
—_ H el — nd
wnime Jim (L4 5) =

according to Example 2.63.

2.65 Example (Sum of the terms of a geometric progression). Let ¢ € R. Let
us compute the sum

n
Go(n):=) ¢’ =1+q+¢*+---+q"
=0
If g =1, then G1(n) = n+ 1. For g # 1 the following formula holds:
n
i 1 __qn+1
Gyn)i=Y ¢ = ——
j=0

, Yn>0 (2.14)
l1-gq

as it is easily seen multiplying both sides by 1 — g,

1-9Gn)=(1-9) ¢=> d-q). ¢
j=0 0 F=0

=1+q+q2+‘”+qn_q_q2~q3__.._qn+1=1_qn+1‘
Formula (2.14) yields

+o0 ifg>1,
1
does not exist if ¢ < —1.
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c. Wallis and Stirling formulas
2.66 Example (Wallis’s formula). For n =1,2,..., define J, by

/2
In = / sin™ z dz.
0

Since an integral of sin™ x, I'n(z), is given (see, for example, Example 4.34 of [GM1]) by

n—1 sin” lzcosz

{Io(z) =z, I (z) = —cosz,

I.(z) = In_2(z) — — Vn > 2,
we have Jn = In(7/2) — In(0), i.e.,
-1
Jo=2, N=1  Jp=—Ju2V¥n>2
2 n
Consequently
2n—1 2n -3 1 7 2n 2n-—2 2
J — cee = —, J = fee — .
™= Ton -2 22 and WL T onel Jm—1 3

which we can write, introducing the semifactorials

(2n)!':=2n(2n—2)---4-2, (2n+1)!':=(2n+1)(2n-1)---5.3-1,
as
Jor = 2n-1)1 ™ J (@)t
T T omyn 2 LT Gay U

Since sin*+1 z < sin* z for all k > 1, we have Ji+1 < Jx Vk, hence

L Jam A1 D
= J2nt1 2n Jap-1 2n

Consequently J2n/Jon4+1 — 1: this is Wallis’s formula for m:

(2.16)
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12
T~ lim N ()1 . im ggffﬂﬂ (2.17)
2 nooo (2n4+DU2n—-1)! n—-x1335 (2n—-1)(2n+1)
Since (2n)!! = 2"n! and (2n)!1(2n — 1)!! = (2n)!, we can rewrite (2.17) as
4an (114
= lim —2 )7
2 " nooo (2n)(2n + 1)
or equivalently )
_ 2 "(n')2
VIS G

2.67 Example (Stirling’s formula). In many applications, notably in statistics, an
estimate of the order of magnitude of n! for n large is useful. This estimate is provided
by Stirling’s formula

(2.18)

lim ———— V

n—o00 n"e—"\/_
or, in terms of asymptotic expansions,
nl ~n"e”"V2mn.
In order to prove this, set

n!

nne=n./n’

an 1= n>1,

and observe that the real function
ft) =

is strictly increasing, f(t) — 1 as t — 07 and Ff(£) < 1+ t?/4 since log(l +t) <
t — t2/2 + t3/3. Therefore

t
log(1 + t), 0<t<l,

an 1 1\n+1/2 1 1/ (4n?
=—-(1+— == < n?) )
= (1) Sexp (F(1/m)) < (2.19)

1<

From (2.19) we see that {an } is strictly decreasing, thus it converges to a limit L, L > 0,
and that L > 0 since ane™1/™ is strictly increasing to L. In order to compute L, we
observe that

a? _ (n1)222n

anV2  (2n)lVn’

Passing to the limit and taking into account Wallis’s formula (2.18), we find

L2
—— =7 ie., L =+v2m.
LV?2 vr
Notice that the limits
n! 0 if a > e,
—
n"an +o0o ifa<e

are easy to obtain, instead. In fact, if an := ;%, we have

(n+ Dn!
n4+l,an+1
an+1=(n+1) : a =l(1+l)n_>g'
Qn n: a n a
nna™

This implies that {an} grows or decays exponentially fast if a < e or a > e respectively.
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d. Numerical integration

Let f : [a,b] — R be a Riemann integrable function, and a = ¢ < z; <
- < &p = b be a subdivision of [a,b]. Then the integral of f, see, e.g.,
Section 3.2.1 of [GM1], is the limit of the sums

n—1

D (@is — 2 f(&)

i=0

when the length sup, |z; 41 —;| of the partitiona = 2o < 1 < --- <z, =b
tends to zero, £ being any point chosen in [z;, z;41].
This allows us to find approximate formulas for the integral of f.

2.68 The rectangle rule. Divide [a,b] into N equal parts by means of the subdivi-
sion ; = a +i-b;,—“, i=0,...,N, and choose & := (x; + z;11)/2. Then we have

i) +0(1) as N — oo.

AU@Mw=

i=0

Assuming that f is regular, it is possible to estimate the error

E(h) :=

i=0

in terms of & := (b — a)/N. Suppose for instance that f € C([a,d]) then

|ﬂWs%§/”ﬂﬂ@_(ﬂi&ﬂﬂm
i=0 Y%

N-1

Tit1
S e i) e Bt g
x;

i=0 ]Ii,zi-n[

IA

=z Z sup | f'] (zi41 — 23)°

i=0 9’1,21+1

(b—a)?
= su
]sag[lfl SN

h
=(b—a)sup|f’| .
lapl 2
2.69 The trapezoid formula. Here we choose as approximate value of the integral

the integral of the piecewise interpolate fof f at the points z; :==a + ib'T“, that is of

ﬂm=fua+ﬂﬂﬂLJﬁﬁ

(—=z), wir=a+hi, z<c<ziq.

Therefore

b (b—a) "= (=) + flzir1)
/afdz_ N ; 2 '

If f is of class C2, by integrating by parts twice and using that f(zl) = f(z;) Vi,
we find it L [
[ G-Rae=3 [ @)@ -z @) e,
z; T

hence, being as above h := (b — a)/N,
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Y

Figure 2.10.
Ti41 ~ 1 ” Tit1
[e-Dad <3 s 11 [ @ s -2 de
x; 2 Jog, @il z;
1 3
=— sup |f"'|(®it1—= sup |f'|R°.
12 12,0441 1o l) 12 JEZRE PR
In conclusion we have
dr — de| < uny (b—a)’
[ o= [ Fan] < sup i G2k

or

/fd Zf(wz>+f(wz+1> (NQ)

i=0

2.70 Simpson’s rule. Instead of interpolating with a piecewise linear function, we
want to interpolate with a quadratic function. Let f : [-1,1] — R; we look for f(t) =
At? 4+ Bt +C, t € [1,1), in such a way that f(—1) = f(—1), f(0) = £(0), (1) = f(1).
We easily find

A= f(_1)2+ f(l) _ f(O), B= f(l) _2f(_1)’ C = f(O),

consequently .
[ Fae= (-0 + 470 + 1)

Set now zj := a + kh, h := bT N=2n+1odd, k=0,...,2n. From the above we
then infer (by changmg variable)

[ Fae = 5 (o) + af@) + S(a),

Fio = 2 (f(a2) + 45 (e2) + @),

z2

[ Fo= 5 (flonnms) + 41(2n-0) + fa2n),

that is

b n—1 n—1
/ Fdz = g(f(a) +2) FER) +4 Y f(2k+ 1)+ £(B)).
@ k=1 k=0

In conclusion we find
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b b
/ fd:t=/ fdz+ E(h)
a a
known as Simpson’s rule. One can show that, if f € C*([a, b)), then

(b = 0)5
180N4 '

|E(h)| < sup Al (2.20)
a,

in particular E(h) = O(h*) as h — 0.
2.71 9 9. Prove (2.20). [Hint: Set
T+h h
R = [ (f@) - FUGE =) +4f@) + 1+ ) de.
Show that R"(h) = —2h2f(¥)(¢) for some ¢ €]z — h,z + h[. From R(0) = R'(0) =

R(0) = 0 infer then that R(h) = —%f(“) (€) for some £ € [x — h,z + h], and hence
the result.]

2.5 An Alternative Definition of
Exponentials and Logarithms

In {GM1] we defined Euler’s number e, the exponential and logarithm
functions by making use of the differential and integral calculus. For the
sake of completeness we give in this section a more direct, though slightly
more involved, definition, which makes use of the calculus of limits and
of continuous functions. The procedure is as follows: we define a® for z
rational, we then extend “by continuity” a* : Q@ — R to a continuous
function from R — R. Then we define the logarithm with base a as the
inverse of @, which turns out to be continuous because of 2.48 of [GM1].

a. A definition of a® using continuity

2.72 Rational powers. Let a > 1. Taking into account the existence of
the n-th root of a real number, we define a” when r is rational by

a" = VP, ifr=p/geQ; (2.21)

in fact, it is not difficult to show that the result of the operation /aP
depends only on the quotient p/¢ and not on p and ¢ (if g = %, then

{aP = Y/aP’). Thus aP/? = /aP = (Ya)P. When a < 1, we set, still for

reQ,
=)
a" ==}
a

and, ifa=1, weset a" = 1" =1 Vr € Q. This way a" is defined for ¢ > 0
and r € Q.
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The computational rules for the exponentials of rational numbers are
now an easy consequence: if z, y € R, z, y > 0 and r, s € Q, we have

xryr — (zy)r, Tz = xr—{—s’ (17T)3 =’.’L'Ts,
if0<z<yandr >0, then " <y,
if0<z<landr<s, thenz®’ <2a”, (2.22)
ifz>1andr < s, then 2" < z°,

T T
AU A
v \y/ 'z '

2.73 Real powers. The idea is to define a® when a € R, a > 0 and

z € R as the limit of a®* where {z,} is a sequence of rational numbers
converging to x. For that we need, and in fact it suffices to show that:

(i) the sequence g®~ converges if z, — z,
(ii) the limit of a®~ does not depend on {z,} itself but only on the limit
z.

Finally, we need to show that the new function a® agrees with the old one
if z is rational.
Suppose a > 1. Choosing b := a'/™ — 1 in Bernoulli’s inequality,
145" >1+nb, vneN, vb> -1,

we deduce

(2.23)
Also, it is easily seen that
" 1] <a -1,  Vvreq, (2:24)

since @ > 1. The inequalities (2.23) and (2.24) then yield the following.
2.74 Lemma. Ifr, is a sequence of rationals with r, — 0, then a™ — 1.

2.75 Proposition. For any sequence {z,} C Q with z, — z, the se
quence a®~ has a limit that depends only on x.

Proof. If {z,} is an increasing sequence that converges to z, then {a*"} is increasing
and bounded, therefore has a limit, a*» — L. Consider now any sequence of rationals
{yn} so that y, — x, then

ja¥" — L| < |a¥" — a®n| + |a® — L| = a®"|a¥n~*» — 1] + [a®" — L|.

Since a*» — L and yn, — ¢n — 0, Lemma 2.74 and the comparison test yield a¥» — L.
[m]
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Because of Proposition 2.75, the function

Afz) = lim o*, {2} CQ 20—z, (2.25)

is well defined for any z; moreover A(z) = a” for any x € Q: in fact, if we
choose z,, := z Vn, then

A(z) = (by (2.25)) = nILHéO a® =a” (by (2.21)).

Therefore A(x) extends to the reals the function a®, z € Q, and will be
denoted again by a%, z € R.
Then one defines a* when 0 < a < 1 by

1 —-x
o= (2
a
and a®* =1 :=1ifa=1.

2.76 Real powers: laws of exponents. If we take into account how
the operation of limit behaves with respect to the algebraic operations
and the order of R, it is easy to extend the claims (2.22) and (2.24) to the
case in which r, s € R.

2.77 §. Show that (2.22) and (2.24) hold for r, s € R.

2.78 Continuity of the exponential. The argument in Proposition
2.75 shows also the following.

2.79 Proposition. If {z,} C R, z, — z, then a®* — a~.

Theorem 2.46 then implies that a is a continuous function in R, Since for
a>1,a" — +oo as n — oo and a%, z € R, is monotonically increasing,
we also infer

inf a® = 0, supa® = +00, 0<a#l
z€R z€R

This way the exponential function is defined for alla > 0 and allz € R
and agrees with the exponential function defined in [GM1}, since both are
continuous and agree on rationals.
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b. Euler’s number e

Before proving the differentiability of the exponential function a*, we need
a definition of the Euler number e.

2.80 Proposition. The sequence z, := (1 + 1/n)" is increasing and
bounded, 2 < z,, < 3.
Proof. In fact
I iyl R1an-1)--(n-k+1)
(1+2)"= lg ) == PIY - (2.26)
1 1 2 k-1
S A0-D6-2) -5,

Since each term in the sum increases with n and moreover, when n increases, new
positive terms add to the sum, we infer that {z,} is strictly increasing and zn, > z1 = 2
Vn. Equality (2.26) yields also

In? - 1
(+2) <@
On the other hand 2% < k! for k > 4, therefore

n n
Zl <> 277 =-1-1/2-1/4—1/8+ Gy a(n)
ji=4 ‘7 j=4

<-1-1/2-1/4-1/8+2=1/8,

if we take into account Example 2.65. We then conclude, for all n > 4,

1 1
zn<1+1+ + = +Z—<1+1+ +6+8<29

O
The sequence (1 + 1/n)™ has therefore a finite limit, as it is increasing
and bounded. Set
e=tm (14 1)" (2.27)
= =) :

n—-400

and notice that
2<e<29.

c. Derivative of the exponential

Finally, let us show directly that Da® = a* log, a. First we show that (2.27)
yields

2.81 Proposition. We have

lin})(l + o)/ =e. (2.28)
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Proof. Of course we do not want to differentiate. Therefore we denote by [z] the integral
part of z and observe that

(1+ [w]1+ 1)[11 < (1+ i)z <(1+ %)M“ (2.29)

and that Ianil 1
n n
(1 + ;7,-) — €, and (1 + n_—-l,-l) — e.
Given € > 0 we then find @ € N such that
1 n 1\n+1 _
e—€<(1+n+1) s and (1—}—;) <e+te for n > 7,
and, on account of (2.29),

1Nz
e—e<(1+—) <e+e for z >m.
T
€ being arbitrary, this yields
. 1=
im (1+ ;) —e (2.30)

T — =400

On the other hand, if z < 0 and y = —=z,
()= (-3 = ) = ()

im (14 l)x = lm (1+ —1—)y =e. (2.31)

z—~00 z y—+oo y—1
Changing variable z = 1/y, from (2.30) and (2.31) we finally infer

lim (14 z)Y/? =e.
z—0F

hence

a

Since log x is continuous, as it is the inverse of a continuous function,
(2.28) can be written as
log(14+x
lim log(1 +2) =

z—0 T

1

and, again changing variable, y = €* — 1, we get
e —1

lim =1,
z—0 xr

which yields that e is differentiable and De* = e%, and also Da® =
a”®log, z (see, for example, 4.3 and 4.4 of [GM1]).

2.6 Summing Up

Limit of sequences

Definition

zn — L as n — oo means: for every neighborhood V of L there is @@ such that ¢, € V'
for all n > 7.
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N

Properties

UNIQUENESS. The limit is unique if it exists.

BOUNDEDNESS. If 2, — L € R, then {z,} is bounded.

SQUEEZING TEST. If ar, < by < cpand an — L and cn — L, then also b, — L.
COMPARISON TEST. If an > by Vn and by, — 400, then also an, — +o00.

CONSTANCY OF SIGN. If z, — L and L > 0, then z, is positive for n large enough. If
zn > 0and z, — L, then L > 0.

o 0 o0 O o

Limit of functions and limit of sequences

o Let f:]a,b[— R and zo € [a,b]. Then f(z) — L € R as x — z0, z €]a, b], if and only
if f(zn) — L for any sequence {xn} Cla, b[\{xo} with z, — zo.

o Let f: [a,b] — R. f is continuous at z¢ € [a,b] if and only if f(zn) — f(zo) for
every sequence {zn} C [a,b] with £, — zg.

Fundamental theorems
{zn} is a Cauchy sequence if Ve 37 such that |z, — x| < € for all b,k > 7.

o MONOTONE SEQUENCES Every monotone sequence has limit in R.

o MAXIMIZING AND MINIMIZING SEQUENCES For any nonempty A C R there exist a maz-
imizing sequence, that is, a sequence {zn} C A with n — sup A, and a minimizing
sequence, that is, a sequence {xn} C A with z, — inf A,

o CAUCHY’S CRITERION {zn,} is convergent if and only if {x,} is a Cauchy sequence.

o BOLZANO-WEIERSTRASS THEOREM Every bounded sequence contains a convergent
subsequence.

Upper and lower limits

Definition

iminf x, = li inf li = i

hmigfen = i gl o, Wmsupan = i sup o,
Properties

o liminfn oo zn, limsup,,_, ., Trn always exist in R, and liminf, 00 Tn < lim SUP, o0 Tny
o zn — L if and only if lim infn— o0 n = limsup,, ., on = L,
o Let L € R. L =limsup,_,, zn € R if and only if
(i) Ye > 0, 3 7 such that z, < L + e for all n > 7,
(ii) there is a subsequence {zk, } of {z.} such that z;, — L.
o Let L € R. L =liminf,_,0c zn € R if and only if
(i) Ve>0, 3nasuchthat , > L —eforalln > 7,
(ii) there is a subsequence {xy,, } of {z»} such that z;, — L.
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Some remarkable limits
- 0 ifjg <1, Vo1,
+oo ifg>1,
nk
Vel — 1 Va # 0, — —0,forkeNeg>1,
q
n 1
2 Lovg>o0, 2 o,
n! nn
n +oo ifg>1, oan
YP-{ya-q  ifled<1, (1+2) »evzer
=0 does not exist if ¢ < —1,
[(2n)1)? 1r 227 (n))?
WaLLIS) —MWM—M——————— -, WALLIS) ————— s
( ) Grr DiEn =T 2 ( ) Gonm vE
n!
STIRLING) ————— 1.
( ) n"e~"2nxn -

Figure 2.11. Some remarkable limits.

2.7 Exercises

2.82 9. Let
A:={a, € R|{n € N}, B:= {b, € R|n € N},
C:={an+bp|n €N}, D := {anbn |n € N}.

(i) Show that sup C < sup A+sup B. Give examples in which the inequality is strict.
(ii) Assume an, bp > 0, ¥Yn and show that sup D < sup Asup B, observing that the
inequality can be strict.

2.83 4. Find the infimum and the supremum of some of the following sets:

{n—%lnEN,nZl}, {1—;1;|nEN,n21},
{z-3|=veon}, {Gr+3r|nen},
{sinw|w€(0,7r/2)}, {ﬁnmh,meN, n, m>0},
{ﬁ%lz,yek\(&o)}, {n“e‘"2|neN, nZl}, a>0.

2.84 9. Show that v/2n, n, v/n? + 2 are subsequences of V7, that is, declare the se-
lection function.

2.85 4. Show that
1

1 1 1
Hm (—+ + +oo =) =2
n—'oo(n VvaZ¥1l V242 \/n§+2n)
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2.86 4. Compute, if they exist, the limits of some of the following sequences:

n —sinn
—_—_)
n + cosn

1 !
(1+ E)n’

vEm T 5T,

(cos ;) ,

sin(n) log(n) sin(1/n),
V3+n+n?,

Vvn2 — 1/\3/17,3 +1,

3

n!
\/;+\/ﬁ—\/n—\/ﬁ,

(1 + 7—11;)"
(n2n;_6)n2.

1
(+3)"
n!

\/E(Vn+ - Vn_l):
sin(1/n)

1—cos(1/n)’

(sin %)n+%:

(cosn + 3)™

n2

2
3n+1 _ 3\/ 1+n ,

’

1 log(n + nz),
n

2.87 9 9. Compute, if they exist, the limits of the following sequences:

n+1
/ [r — 2arctant]™t? dt,
n

n+1 2
/ et dt,
n

1
/ (log t)™ dt,
0

1 3 2
sinn
/ tan wdm,
0 n
n 2
\/ﬁ/ e~ " logtdt,
0

1
n/ ze ™ dz.
0

2.88 9. Let z,, := |1l — 10~*n?|. Find the supremum and the infimum of the set

A= {z, |22 <1 - (zn —1)%}.

2.89 9. Compute the upper and the lower limits of the following sequences:

an = {/In—(=2)7",

¥n? nodd,
@ ==
m n—2

2n—9

n even,

i

ap :

an = (1 + %ﬁl—)n,

n—1
an = 5‘% n even,
(-1)"/? n odd,

distance between n and the closest square.

2.90 9. Show that every sequence contains a monotone subsequence.

2.91 9. Show that {xn} has limit if and only if every subsequence of {z»} contains
a further subsequence which has limit and all these limits are equal.
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2.92 € 9. Show that R?, R3 and in general R™ are complete metric spaces. [Hint: Show
that a sequence converges iff the sequences of its components converge.]

2.93 4. Discuss the following claims.

(i) If {an} converges and {b,} does not converge, then {a,b,} does not converge.
(ii) If {an} and {bn} are monotonically increasing, then {anbn} is increasing.

2.94 9. Let an, > 0 Vn and an+1/an — L. Show that
(i) an > 0if0< L <1,
(i) an — +oo if L > 1.

2.95 9 Cesaro’s theorems. Show that
(i) liminfn an < liminfs £ 30 @i < limsup, £ 37, a; < limsup,, an,
(i) liminfn(an — @n-1) < liminf, 22 < limsup,, 2n < limsup,,(an — an-1).
In particular, in case {ap — an—1} has limit, then

. an .
lim — = lim (an — an—1).
n—oo 7 n—oo

(iii) If an > 0 Vn,

n
H a; < limsupan;

n
liminfa, < liminf ? H a; < limsup 7
n—o0 n—o00 n— 00

n—oo

i=1 i=1

in particular, if {ar} has limit, then

lim
n—oc

n

I I a; = lim ap.
4 n—00
t=1

2.96 §. Discuss the convergence of the following sequences

1 1 1 log n!
n+1+n+2+ +2n’ n

n'n
nf? H 2

ot sin (1rV4n +\/r_z).

2.97 9. Show that

lim sinnz exists iff z = kx, k € Z,

TL= OO

lim cosnx exists iff £ = 2kw, k € Z.
n—oo

[Hint: Using the double-angle formula show that, if sinnz — L, then either L = 0 or
L= :tléi; use then the addition formula for sin(n + 1)z to produce a contradiction if
z # kn]

2.98 § Pythagorean algorithm. Set a; =b; =1, and forn > 1

An+1 = Qn + b,
brni1 = 2an + bn.

Show that b, /an — V2. [Hint: Show first that
0 Qn,bn >2VYn > 2,
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o {an} and {bn} are both strictly increasing,
o an, bn g OO,
o b2 —2a2 = (-1)"

2.99 § Heron’s algorithm. Let a be a positive number. Define recursively the se-

quence {zn} by
zo=a >0,
] . (2.32)
Tp+1 = §(-’En + 'ﬂ)
Show that =, — y/a. Show also that the absolute error &, := z, — \/a, verifies 841 <
ﬁ&ﬁ, that is
) 2"

5n+p52\/6(ﬁ) , VYn>0andp>1.
[Hint: Observe that
° ZTnt1 —Va@= 5—(2n — Va2 20,
o {zn} decreases.]

2.100 99. Let ¢ and xzg be positive real numbers. Show that the sequence defined
inductively by

1 c
Tntl = — ((P - lzn + -ﬁ)
p Tn
converges to {/c.

2.101 9 Logarithm-arccosin algorithm. Consider the sequence

2s
Spt1 = 8n S L n=01,....
Sn + Sn—1

1
s_1:= —(x2 - ——), 80 1= (z‘ — l/z)
and prove that s, — logz as n — oo.
(ii) For = € [—1,1], set
s_1:=zV1—22, 0=z

z2
and prove that s, — arcsinz as n — 0.
[Hint: (i) Show that s, = $(27") where S(h) := ilﬁ(:z:h — z"), (ii) show that s, =
R(2™™) where R(h) := ﬂ‘ihﬂl and a = arcsinz.]

(i) Fix ¢ > 0. Set

[V

2.102 9 9. Given a,b> 0 set

A(a,b) := %’—b, the arithmetic mean,

G(a,b) := /a,?, the geometric mean,
— —-1\—1

H(a,b) := (i-l—ztb—) = 3;_"'_':), the harmonic mean.

(i) Show that the sequences {zn} and {y»} defined recursively by

o =4a, yo = b1
Tnt+l = A(wny yn),
Yn+1 = G(wn,yn)

converge to the same limit, called the arithmetic-geometric mean of a and b.
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(ii) Show that the sequences {x,} and {yn} defined recursively by

To =a, Yo = b7
Tn+l = H(ftn,yn)y
Yn+1 = A(Tn,yn)

both converge to the geometric mean G(a, b) of a and b.

2.103 q 9 Stirling’s formula. Set a, := logn! — %log n. Show that
(i) f3"/2 logzdz < an < f;"logzdz,
(i) én = (1 - loga:dz) — an is decreasing and bounded below, thus has a limit

S eR,
(iii) deduce that the rough formula holds

n! =~ en"e /1.
[Hint: Compare with Example 2.67 and Section 7.4.]
2.104 § § Singular perturbation. Let f: R — R. Show that
(i) for any y € R and n € N the function
1
(f=@) —y)* + =2?
n
has a minimum point z,,

(ii) while {z.} may be unbounded, the sequence {z»/+/n} is bounded,
(iii) the sequence of minimum values

1
(flan) = 9)* + ~a2

has the limit as n — oo.
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Leonardo Pisano
(1170-1250), called Fibonacci

Johannes de Sacrobosco Campanus of Novara Jean Buridan Nicole d’ Oresme
(1195-1256) (1220-1296) (1295-1358) (1323-1382)
Albert of Saxony Karl Feuerbach Johann Regiomontanus

(1316-1390) (1800-1834) (1436-1476)

Luca Pacioli
(1445-1517)

Scipione del Ferro Nicolaus Copernicus Rudolf Stiffel
(1465-1526) (1473-1543) (1487-1561)

Colin MacLaurin
(1698-1746)

Niccold Fontana Girolamo Cardano Lodovico Ferrari Rafael Bombelli Christopher Clavius
(1500-1557), called Tartaglia (1501-1576) (1522-1565) (1526-1573) (1537-1612)
Frangois Vigte Simon Stevin Bartholomeo Pitiscus
(1540-1603) {1548-1620) (1581-1613)
John Napier Henry Briggs
(1550-1617) (1561-1630)

Galileo Galilei
(1564-1642)

Paul Guldin Marin Mersenne Girard Desargues Bonaventura Cavalieri
(1577-1643) (1588-1648) {1591-1661) {1598-1647)

René Descartes Pierre de Fermat
(1596-1650) (1601-1665)

Gilles de Roberval Evangelista Torricelli John Wallis Blaise Pascal
(1602-1675) (1608-1647) (1616-1703) (1623-1662)

Christiaan Huygens
(1629-1695)

Vincenzo Viviani Pietro Mengoli Isaac Barrow Robert Hooke James Gregory
(1622-1703) (1626-1686) (1630-1677) (1635-1703) (1638-1675)
Sir Isaac Newton Gottfried von Leibniz

(1643-1727) (1646-1716)

Figure 2.12. A chronological table from Fibonacci to Newton and Leibniz.



3. Integer Numbers:
Congruences, Counting
and Infinity

In this chapter we collect a few complements to the theory of integers.
In Section 3.1, after discussing Euclid’s algorithm, and the fundamental
theorem of arithmetic, we deal with Euler’s function and some of its appli-
cations to public key cryptography. In Section 3.2 we introduce a few basic
elements of combinatorics, that is, the calculus of arrangements of a finite
number of objects. Finally, in Section 3.3, we illustrate the notion of cardi-
nality (or number of elements) of a (not necessarily finite) set introducing
some of the concepts involved in Cantor’s theory of infinity.

3.1 Congruences

3.1.1 Euclid’s algorithm

Any subset of the integers, which is bounded above, has a maximum (see,
for example, Proposition 1.23). An easy consequence of this is division in
the context of integers.

3.1 Proposition. Let a,b € Z, b # 0. Then the number a uniquely de-
composes as

a=gb+r (3.1)
with ¢,7 € N and 0 < r < |b|.

Proof. Suppose b > 0 and let g be the largest integer not greater than a/b,
which exists by (vi) Proposition 1.23. From p < a/b < p + 1 we get for
r:=a—qbthat 0 <r <b.

If b < 0, choose p as the smallest integer not smaller than b/a: from
p>a/b>p—1 weget for r := a — gb that 0 < r < —b.

It remains to prove that the decomposition is unique. If a = g1b+r; =
Q2b+’l”2 with 0 < ry,7r3 < |b|, then (QQ - ql)b = (7'1 —‘1‘2)2 that is, ry —rg is
an integral multiple of b. Since |r; — r2| < b, we conclude that 1 — 72 =0
and in turn that ¢ = ¢s. O
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In (3.1) a is called the dividend, b the divisor, ¢ the quotient and r the
remainder. We write

qg=:a//b, r =: amod b,

hence a = (a//b) b+ amod b, Va,be Z, b # 0.

Let a,b € Z and b # 0; we say that b divides a or that b is a divisor
of a, if a is a multiple of b, that is, a = bq for some g € Z. In this case we
write bla. Of course b|a if and only if @ mod b = 0, and, if a is a multiple of
b and b is a multiple of ¢, then a is a multiple of ¢. Moreover, if a and b are
multiples of ¢, then az + by is a multiple of ¢, too, Vz,y € Z. In particular
a and b are multiples of ¢ if and only if a and a mod b are multiples of c.

a. The greatest common divisor

Let a, b € Z be nonzero integers. The set of common divisors of both a and
b is nonempty and bounded. The largest of those numbers is called the
greatest common factor or the greatest common divisor of a and b, and is
denoted by

g.c.d. (a,b).

In other words, r € Z is the greatest common divisor to a and b if and
only if

o a and b are multiples of r,
o if a and b are multiples of s, then s < r.

Trivially g.c.d. (a,b) = g.c.d. (b,a) = g.c.d.(|al,|b|). Finally, we say that
a,b € Z are prime to one another or coprime if g.c.d. (a,b) = 1. A number
p is said to be prime if p > 1 and p has no positive divisor except 1 and p.

3.2 9. Show that
(i) g.cd.(a,b) =b if and only if b divides a.
(ii) Let p be prime. Then either g.c.d.(a,p) = p, that is a is a multiple of p, or
g.cd.(a,p) =1, that is a and p are coprime.

We mentioned in Chapter 1 Euclid’s algorithm as a method of finding
a common submultiple to two magnitudes, discovering that in general it
generates a process that never ends. When applied to two nonzero inte-
gers a and b, Euclid’s algorithm stops after a finite number of steps and
produces the greatest common divisor of a and b.

3.3 Euclid’s algorithm. Let a,b be positive integers with a > b. The
algorithm consists in dividing the larger of the two numbers by the smaller,
then the smaller by the remainder of the first division, then the remainder
of the first division by the remainder of the second, and so on. Formally,
we set g :=a, 1 := b, and
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#! /usr/bin/env python

def euclid(a, b):
rl, r2=a, b
while r2 != 0:
rl, r2 = r2, rl mod r2
return ri

if __

name__ == ’__main__’:
print euclid(168,14)

Figure 3.1. Euclid’s algorithm in Python.

rq 1= 19 mod 71,
r3 := 71 mod 73, (3.2)
74 :=T9 mod 73,

Since rg > r1 > r9 > r3 > .-+ are nonnegative integers, the process will
terminate with remainder zero after a finite number of steps,

Ty i=Tpn_go mod r,_1,
Tn4l i= p—q mod r, = 0. (3.3)

We have

3.4 Theorem (Euclid). r, = g.c.d. (a,b).

Proof. Observe that if a = bg + ¢ and ¢ # 0, then r divides a and b if and
only if r divides b and c. Consequently g.c.d. (a,b) = g.c.d. (b, ¢). Iterating
this observation along the algorithm, we get

g.cd.(a,b) =g.cd.(ro,m1) = - =g.c.d. (rp—2,Tn-1) = .
O
3.5 Remark. Euclid’s algorithm can be written as
To =a, 11 = b,
@k = Tk—-1//Tk;
Tk—1 = QkTk + Tkt1,
for k = 1,2,...,n as long as r, > 0, i.e., until r,4; = 0. Notice that

Gn 2 2.
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Figure 3.2. The frontispiece of the Works by Diophantus of Alexandria (200-284)
with comments of Claude Gaspar Bochet de Mériziac (1581-1638) and observations by
Pierre de Fermat (1601-1665), Tolosae 1670, and the frontispiece of Algebra by Abu al
Khwarizmi (790-850).

3.6 Corollary. Let a,b and \ be integers with a,b > 0. Then
g.c.d.(Aa,Ab) = Ag.cd. (a,b).

Proof. Let {rn},{sn} be the lists of remainders produced by Euclid’s al-
gorithm starting respectively with a,b and Aa, Ab. Since Aa mod (Ab) =
A (a mod b), we deduce that s, = Ar, Vn. Thus r,41 = 0 if and only if
Sp+1 = 0, and

g.cd.(Aa,Ab) = s, = Ar, = Ag.cd. (a,b).

3.7 Corollary. We have

(i) if ¢ divides a and b, then g.c.d. (a/c,b/c) = g.c.d. (a,b)/c,
(ii) a/g.c.d.(a,b) and b/mcd(a,b) are coprime,
(iii) if g.c.d. (a,b) = 1 and a divides bc, then a divides c.

b. Integer solutions of first order equations

We discuss now the solvability in Z of first order equations with integer
coefficients, starting from the homogeneous case

ar + by = 0. (3.4)
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3.8 Proposition. Let a,b be nonzero integers. Then the equation (3.4)
is solvable in Z and all solutions are given by the family of pairs (zk, yx)
given by

(zk,9%) = k (b,—a), keZ (3.5)

max(a, b)

Proof. Trivially all pairs in (3.5) solve the equation. Conversely suppose
that (z,y) solves (3.4). Dividing by g.c.d. (a,b) we have

a _ b )
g.c.d.(a, b)x ~ gcd.(a, b)y’

in particular b/g.c.d. (a,b) divides the product on the left-hand side and,
consequently z, since a/g.c.d. (a,b) and b/g.c.d. (a,b) are coprime (see, for
example, Corollary 3.7). For some k € Z we then have x = km, and

substituting into (3.4), we conclude. ]
Consider now the nonhomogeneous linear equation

ar+by =c, c#0.

3.9 Theorem (Bezout’s theorem). Let a,b, ¢ be nonzero integers. The
nonhomogeneous equation ax + by = c is solvable if and only if g.c.d. (a,b)
divides c.

Proof. Suppose z,y € Z solve ax + by = c¢. Trivially g.c.d. (a,b) has to

divide c. Conversely, suppose that g.c.d. (a, b) divides ¢. We shall just prove

that there exist integers x and y such that az + by = g.c.d. (a, b).
Consider the following recurrence scheme, known as the generalized

Euclid’s algorithm,

(ro =a, 11 = b,

Th+l = —QkTk + Th—1, Gk = Tk—1//Tk,

4.’30:1, x1=0,

Th+l = —GrTk + Tk-1,

Yo = 07 1= 1a
\VYk+1 = —QkYk + Yk—1,

for k:=1,2,...,n as long as r, > 0. Of course the r4’s are the remainders
of Euclid’s algorithm, and it is easily seen by induction that axx +byr = 7%
Yk =0,1,...,n. Then Euclid’s theorem yields

gcd.(a,b)=r, =az, + by,

as required. Going back to the equation ax + by = ¢, a solution is then
given by
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#!/usr/bin/env python

def euclid2(a, b):
# assume a, b>0, a>b.
rl, r2=a, b
x1, x2 i, 0
yi, y2 =0, 1
while r2 <> 0:
q, r= divmod(r1l, r2)

x1, x2 = x2, x1 - g*x2
yl, y2 = y2, yl - q*y2
ri, r2 =12, r

return rl, x1, yi

if __name__ == ’__main__’:
a, b = 1224, 12%17
¢, x, y = euclid2(a, b)
print ’gecd=’ , ¢
print x, a, y, b
print a*x+b*y

Figure 3.3. A Python implementation of the generalized Euclid’s algorithm that com-
putes a solution of az + by = g.c.d. (a,b).

(.’L‘, y) = gcd—m,b)(m"’ yn)‘
0

3.10 Remark. We also remark that Euclid’s algorithm is quite efficient.
Suppose that we perform two successive divisions

r9 = 19 mod 71, (3.6)
r3 = r; mod r3,
then r3 < r1/2. In fact, either 7o < r;/2 and r3 < rg <r1/2,0r 12 > 11 /2,
that is 2rs > ry, hence g3 = 1 and again r3 =71 — 1o <7r1/2.
Euclid’s algorithm in (3.2) requires at most n + 2 divisions in order

to stop at a zero remainder, thus, if we denote by p the integral part of
{n+1)/2, we have in the worst case

1<rp Srn—2/2_<_"'sb/2p7

ie., p < logyb. Therefore (n+1)/2 < p+ 1/2 < logyb + 1/2, that is,
n < 2log, b. We then conclude that Fuclid’s algorithm stops after at most
2 times the number of digits in the binary representation of b. For an
optimal estimate, see Corollary 8.9.

3.11 9. Show that g.c.d.(a,b) is the minimum of the set

A= {n€N|n>0andn=az+by, forsome.'l:,yEZ}.
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Figure 3.4. Pierre de Fermat (1601-1665) and Leonhard Euler (1707-1783).

3.1.2 Prime factorization

3.12 Theorem (The fundamental theorem of arithmetic). Every
integer n > 2 decomposes as a product of primes, and, apart from rear-
rangement of factors, such a decomposition is unique.

Proof. We proceed by induction on n. If n is prime there is nothing to
prove; otherwise, if p is the smallest of its divisors, p has to be prime as
n = mp. Since m < n, by induction m and in turn n are a product of
primes.

To prove uniqueness of the factorization, recall that by Corollary 3.7 if
p is prime and p divides nm, then p divides n or m. Suppose pips -+ pr =
q142 - - - gs where p1,...,Pr,q1,...,qs are prime. For each j = 1,...,7, p;
and the factors g; are coprime, thus necessarily p; is one of the g;. It follows
that r < s, and, changing the p’s with the ¢’s, we get r = s, and, apart
from rearrangement, p; = ¢q; foralli=1,...,r. a

If we arrange the factors of the decomposition of n € N in increasing
order, we obtain that every integer decomposes uniquely as

'n=p(111p32p‘113 ”,p‘,:k
where 2 < p; < py < -+ < pi are prime, and ay,...,ar > 1.

3.13 Theorem (Second Euclid’s theorem). The number of primes is
infinity. '

Proof. Suppose p prime. Let 2,3,5,...,p be the set of primes up to p; and
let

n:=2-3---(p—1)p+1.
Then n is not divisible by any prime between 2 and p. On the other hand
n has a decomposition in primes; therefore either n is prime or divisible
by a prime between p and n. In either case there is a prime greater than
D. a
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3.14 9. Show that g.c.d.(a,b) is the product of factors common to a and b, i.e., is the
greatest common factor to a and b.

How do we identify the list of primes?

The simplest method consists in relying upon the definition of prime
numbers. If n = ab, then a and b cannot exceed /n; therefore any number
that is not prime is divisible by a prime p which does not exceed /n. In
order to decide whether p is prime, it suffices then to divide n by all primes
less than y/n. Notice that the method allows us to factorize p if p is not
prime. In principle all is fine, but the method is impracticable even for
numbers that are not very large: to conclude we need to do roughly /n
divisions: if 10~° seconds is the time needed to carry out a division, the
time necessary to factorize a number of 100 digits is around 25020 = 230
seconds, i.e, about 32 years.

A variant of the previous method is a procedure known as the sieve of
Eratosthenes that allows us to find all primes not greater than n once we
know all primes smaller than /n. It works as follows. Suppose we have a
list {ps(ny} of all primes less than y/n. From pyn) + 1, psin) +2, ..., 7
we strike out successively all multiples of py, ps, ..., Psn) zup to n). The
remaining numbers are all primes. In fact, if ¢ is one of these numbers, it is
not divisible by any of the primes less than /7, and consequently less than
n. Also the sieve of Erathostenes, though requiring multiplications instead
of divisions, requires a number of multiplications of order /. One says
that the computational complezity of the sieve of Eratosthenes is O(2V/?),
N :=log, n being the number of digits of n.

In the eighteenth century eventually the idea of looking for a com-
plete description of primes was given up, and research moved toward a
kind of statistical approach. The fundamental result in this direction is
the remarkable prime number theorem, first conjectured by Adrien-Marie
Legendre (1752-1833) and then proved by Jacques Hadamard (1865-1963)
and Charles de la Vallée-Poussin (1866-1962)

3.15 Theorem (The prime number theorem). Let 7(z) denote the
number of primes not greater than z. Then

(z)
im =
z—+o0 z/log T

There seems to be evidence that z/logzx is a good approximation of
m(x): a celebrated conjecture, Riemann’s conjecture, states that

(@) = —— + O(:c%"'f)

logx

for some ¢ > 0, but it has not been proved or disproved up to now. Inci-
dentally, observe the unexpected relation between prime numbers and the
Euler’s number stated by the prime number theorem.
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3.1.3 Linear congruences
Let p € N. We say that a is congruent to b modulo p and write
a=b (mod p)

if a mod p = b mod p. Equivalently a = b (mod p) if and only ifa—b=hp
for some h € Z. It is easily seen that

(i) if a = b (mod p) and @’ =¥ (mod p), then a +a’ = b+ b (mod p)
and aa’ = bb' (mod p)

and that congruence (mod p) is an equivalence relation, i.e., it is

(i) REFLEXIVE. a = a (mod p),
(ii) SYMMETRIC. if a = b (mod p), then b = a (mod p),
(ili) TRANSITIVE. if a = b (mod p) and b = ¢ (mod p), then a = ¢
(mod p).

Equivalence classes of congruent numbers form a partition of all the
integers into classes of numbers with the same remainder of the division
by p. These classes can therefore be represented by the remainders of the
division by p. Formally, one defines the set of remainder classes modulo p
as

Z, = {0,1,2,...,p—1}

and the map x — x mod p, whose image is Z,, yields a way to introduce
the sum and the product modulo p in Z, by

atpb:=(a+bymodp a-,b:= (ab) modp.

Congruences turn out to be quite important in everyday life. Here we
confine ourselves to basic facts. From the results on the solvability in Z of
linear equations, we readily infer

3.16 Proposition. Consider the equation in x € Z,
az=c (mod p). (3.7)

(i) If c = 0, then all solutions of (3.7) are given by the family of integers
{xx} given by

P
=—k, keZ.
g.cd. (a,p)

(i) If ¢ # 0, (3.7) has a solution if and only if g.c.d. (a,p) divides ¢, and
all the solutions are given by the sequence of integers {zj}

p c
- k+
g.c.d. (a,p) g.cd. (a,p)

where T is such that aT + p§ = 1 for some § € Z, and can be
computed by the generalized Euclid’s algorithm.

Tk

Tk ?E_, ke Za
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In doing computations with congruences modulo a composite number,
the following theorem is quite useful.

3.17 Theorem (Chinese remainder theorem). Let py,pe,...,px be
coprime. -

(i) = € Z is a solution of the system

z=0 (mod p),

z=0 (mod pg),

if and only if z =0 (mod pips - - - k).
(ii) For any (b1,bz,...,by) € ZF, the system

= bl (mOd P1)>
z=by (mod pp),

T= bk (mOd pk)a

is solvable in z € Z.
More precisely, for any i = 1,...,k, denote by M; the product of all
primes {p;} but p;, and let a; be such that M; a; =1 (mod p;). Then
z = Zfﬂ M, b; a; is a solution of (3.8), and two solutions of (3.8)
differ by a multiple of p1p2 -+ pk.
Proof. (i) It suffices to observe that, if p and g are coprime, then a is a
multiple of both p and ¢ if and only if a is a multiple of pq, and proceed
inductively.
(ii) For any ¢ = 1,...,k, observe that M; = 0 (mod p;) for j # 4, and,
since M; and p; are coprime, there exists a; € Z such that

M;a; =1 (mod p;).
Consequently
k
T = Zajbij =a;b;M; =b; (mod p;).
=1
Finally, (i) implies that the difference of two solutions of (3.8) is a multiple
of p1p2 - - - Px. u

Of particular relevance in the theory of congruences is the multiplica-
tive subgroup Zj; of the nonzero elements of Z,, and the discrete exponen-
tial map * — a” mod p from Z, into Z;. As we can see in the table in
Figure 3.5, we get a® = 1 for all a # 0 in Z;. This is a general fact first
observed by Pierre de Fermat (1601-1665)
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ajlal | a2 [ a® [ a* | a® | a®
1 1 1 1 1 1 1
2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

Figure 3.5. The table of a — a™ for Z7.

3.18 Theorem (Fermat minor theorem). Ifp is prime, then a?~! = 1
(mod p) Va # 0.

The original proofs of many of the claims of Fermat were never found. The
following proof is due to Euler (1739).

Progf. By the binomial theorem (see, for example, Example 2.6),

p—~1
(14+a)f =a?+ Z (Z)ak +1,
k=1

where (?) = P(P—l)(P—iz"'(P"“"l), Since p is prime and £ is less than p, all

binomial coefficients (z), k=1,...,p—1 are multiples of p. Therefore

(14+a’=a?+1 (modp) Va € Z.

Using the previous equality, it is not difficult to show by induction on a
that a? = a (mod p). In fact, trivially 17 = 1 (mod p), and, if & = b
(mod p), then

b+1)»=P+1=b+1 (mod p).

Finally, if a # 0, g.c.d. (a,p) = 1, consequently, choosing € Z such that
az =1 (mod p), we conclude
a?'=a’=az=1 (mod p).
a

A different proof was given then by James Ivory (1765-1842) in 1808
and presented again by Lejeune Dirichlet (1805-1859) in 1828.

A different proof of Theorem 3.18. If a # 0 is a multiple of p, the theorem is trivial. If
a is not divisible by p, the numbers

a, 2a, 3a, ..., (p—1)a

are not pairwise congruent modulo p. After rearrangement they are then congruent to
1,2,...,p—1. Thus

a-2a-3a---(p—1)a=1-2-3---(p—1) (mod p),
that is,
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2_1= 3= 3
24 -1= 15 = 5.3
26 1= 63 = 79
28 1= 255 = 51-5
210 _ 1= 1023 = 11-63
212 _ 1= 4095= 13-315

Figure 3.6. The values of 2"~! — 1 for n = 3,5,7,9,11 and 13.

1.2.3...(p—1)aP"1=1-2.3--.(p—1) (med p).
Since 2-3---(p — 1) is not divisible by p, (v) yields
a? =1 (mod p)

and in conclusion a? = a (mod p). O

3.19 Pseudo-primes. One says that p is a pseudo-prime if a? = a
(mod p) for all a € Z. Of course primes are pseudo-primes, but there exist
pseudo-primes that are not prime: they are called Carmichael’s numbers,
and the smallest is 561. Carmichael’s numbers are quite rare, only 255 are
not greater than 108. Therefore it is likely that a number that is chosen
randomly and verifies Fermat’s test, is prime with probability close to 1.
This means that the test a?~! = 1 (mod p) Va € Z, is a good indication
that p is prime.

Fermat’s test with a = 2 was actually the genesis of Fermat’s theorem.
Consider the table in Figure 3.6. It shows that 2"~! — 1 is divisible by
nifnis 3, 5, 7, 11, 13. After many calculations Gottfried von Leibniz
(1646-1716) conjectured that 2"~! — 1 is divisible by n if and only if n is
prime. Fermat’s theorem proves that 2"~ ! is divisible by n if n is prime,
but F. Edouard Lucas (1842-1891) in 1819 showed that the converse is
not true. He showed that

2340 =1 (mod 11),
2340 =1 (mod 31),

being that 25 = —1 (mod 11) and 25 = 1 (mod 31). Consequently 2340 = 1
(mod 341), i.e., 2340 —1 is divisible by 341 = 11-31, which is not prime. In
recent years, the probability has been computed that a number n satisfies
Fermat’s test with a = 2 but is not prime. It turned out that this proba-
bility is quite small: for a randomly chosen number of, say, 200 bits, it is
of the order 2.6 - 1078,

3.1.4 Euler’s function ¢

Given an integer n > 2, we denote by ¢(n) the number of integers not
greater than and prime to n (and therefore greater than 2), and we set
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Al{A2/43]| 44| A51A6|A7| A8 A% A0 All[ A412] 413 414
111|111 f1f1}1)1 1 1 1 1
2 8(1}1214|8|1!2 81|24
3 12(613}19(12 3 12 319
4114|1141 ]|4|1}471]|4|1([4]1
5110/ 5|10} 5(10[{5|10{5 |10 5 (10| 5 | 10
666 666 6|16 |6 616
714({13|1|7|4[13|1 |74 ([13|1 | 7] 4
8|4 |2|1|8|42|1]|8| 4|2 |1]|8]|4
9/16(19]6|9/6[9[(6[9|6[9]6]|9]|6
10/10{10|10[10|10|10(10{10] 10| 10 | 10 | 10 [ 10
111 f11fr 1y f11f1 111 (111 |11] 1
12/913|6(12{9]|3([61(12] 9| 3| 6 (12 9
13/4{7|1(13|4|7(1{13] 4| 7|1 ([13| 4
14/ 1 (14| 1(14|1|14(1114] 1 |14 1 (14 1

Figure 3.7. The map =z — A% mod 15.

#(0) = #(1) = 1. The function ¢ : N — N defined this way is called Fuler’s
function ¢. Clearly,

¢(p)=p—1 if p is prime.

Suppose that p and g are coprime. Since p and g have no common divisors,
we get that Euler’s function is multiplicative, i.e.,

#(pq) = #(p)é(q) if p, ¢ are coprime. (3.9)
In particular
¢(pg) = (p—-1)(g—1) if p, g are two distinct primes.

Now we shall compute ¢(p*), p prime. Noticing that z > 2 divides p* if
and only if z is a divisor of p, we compute

#{z > 2| ged(e,p") # 1} = #{n|2 < hp <}
=#{h'1<h<pk_1}=pk_l—l,

and consequently

kY ok 1 _ (k=1 _ 1) — ok _1
o) =p* 1= ) =pH(1- ). (3.10)

The unique factorization of any number in primes, (3.9) and (3.10) finally
yield
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3.20 Theorem (Euler). If n = p{*p3?---pe* is the decomposition in
primes of n, n > 2, then

¢(n)=n(1—%)(1‘i)“'(l"i)‘

We also prove

3.21 Theorem (Euler). If a and n are coprimes, then

a®™ =1 (mod n).

Proof. Observe that, a and n being coprimes, z is coprime with n if and only if ax is
coprime with n. Moreover ax and ay are congruent modulo n if and only if z and y are
congruent modulo n. In other words, the map £ — ax mod n is a bijection of the set

E := {we {1,...,n—1}Iz and n are coprime},

into itself. In particular

H = H(az) = a®(™ H z,
z€EE x€E zeE

that is,
a®™ =1 (mod n).

3.1.5 RSA Cryptography

Cryptography deals with the confidential transmission of data. Basically
the sender codes the message M to a new object C' = f(M) by an injective
map [ defined on all possible messages, so that the addressee can decode
the message by the inverse map, M = f~1(C). The function f is called the
cryptographic function. For several reasons, for instance because any cryp-
tographic function becomes less secure by use, it is important to change it
from time to time and consider instead a cryptographic system, that is a
family {fx}rex of cryptographic functions indexed by a parameter called
a key. Moreover, it is convenient to consider the cryptographic system as
public and to ground the confidentiality of the system on the key.

One of the oldest ways of communicating secretly reduces to choosing
openly a cryptographic system and then exchanging secretly a common key
to code and decode messages. We then get a bilateral communication, that
is the subjects are both senders and addressees. Among the recent algo-
rithms for confidential connections between computers based on a common
key, let us quote the AES (Advanced Encryption Standard) system, which
is public, fast, and well discussed in the literature.

Exchanging a key is quite simple when the two subjects can meet in a
safe place to physically exchange the key. Otherwise, they have to find a
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safe channel of communication to send the key, but this leads us back to
the starting point.

In 1976 Diffie and Hellman proposed a method that, in principle, en-
ables people A (Alice) and B (Bob) to exchange safely a secret key, using
an unsafe channel. It is based on modulo p arithmetic and on the different
times necessary to compute the discrete exponential

z—y:=a"modp

and the discrete logarithm, that is, to solve the inverse problem of finding
T € Z such that
a® = y mod p.

In fact, on the one hand the modular power operation can be computed
with few multiplications. Writing « in binary form, that is z = Y., z;2¢,
z; = 0 or 1, it is easy to see that the computation of M* mod n resolves
in shifts and a number of multiplications of the order of the number of
bits of . On the other hand, the best known algorithm to solve a* mod p

needs 2¥"* multiplications.! For large N, the second operation cannot be
performed in a few years even using very powerful computers.

The procedure is as follows. Suppose that Alice and Bob want to ex-
change a numerical key k through a nonsafe public channel. First Alice
and Bob openly choose a prime number p that is large enough and a
number between 2 and p — 1. Then Alice chooses a number z that she
keeps to herself and openly sends Bob C := a* mod p. Analogously, Bob
chooses a number y that he, too, keeps to himself and openly sends Alice
D := @Y mod p. Alice and Bob are now able to build the common key by
combining their secret number with the datum received from the other
user: Alice computes

D® mod p = a¥* mod p

and Bob computes
CY mod p = a®¥ mod p.

The two keys are identical. Nobody else will be able to recover z or y
starting from p, a, C and D, without inverting the modular exponential.
In 1978 Rivest, Shamir, and Adelman proposed an algorithm that is
now used in many programs for the so-called public key cryptography. Let
us start with the following generalization of Fermat’s theorem that is a
key point in the RSA cryptographic system (see, for example, Figure 3.7).

3.22 Theorem. Let p, q be two distinct primes and let n := pq. Then for
allz and k € Z,
atk¢(™) = ¢ (mod n),

#(n) being the Euler’s function, ¢(n) := (p— 1)(g — 1).

1 Well, if a* < p, then the answer is immediate.
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Proof. If a is not a multiple of p, by Fermat’s theorem we have a?~! = 1 (mod p),
hence

alt*¢() =4 (mod p).
If a is a multiple of p, then a” = 0 = a (mod p) for all r, in particular a*¢(™) =0 =gq
(mod p), thus alt¥¢(") =g (mod p). In all cases we infer

et = ¢ (mod p).

Similarly
alt®¢(") =4 (mod gq),

and, by the Chinese remainder theorem, alt%9(%) = o (mod n). 0O

3.23 Corollary. Let p,q be two distinct primes and let n := pq. Let e,d
be such that ed =1 (mod ¢(n)). Then the maps

x — z¢ mod n, y—y*modn

from 7Z,, into Z,, are each the inverse of the other.

Proof. In fact ed = 1 + k¢(n), hence, by Theorem 3.22
(z° mod n)? = z°¢ = ¢! T%¥(™) =z (mod n).
0

Assume that A (Alice) wants to communicate a secret to B (Bob). First
Bob does the following;:

(i) he selects two primes p,q, and computes the modulus n := pq, and
the Euler’s function ¢(n) := (p — 1)(¢ — 1),
(ii) he selects a third prime e and computes d such that ed = 1
(mod ¢(n)), e.g., by the generalized Euclid algorithm,
(iii) he publishes as public key the pair (n,e) and keeps as a private key,
his secret, the pair (n, d).

Assume that Alice (or anybody else) wants to send a confidential message
to Bob. Firstly, she gets the public key (n,e) of Bob, then codes the mes-
sages as a number M < n, and finally she sends Bob C := M*¢ mod n. Bob
is then able to recover M by computing C?¢ mod n, according to Corol-
lary 3.23.

Besides the ability of Bob to decode the message, it is worth discussing
the possibilities for an attacker to read the message, or, worse, to find the
secret key (n,d). We make only a few remarks.

o To decide if a given random number of around 256 digits is prime, Fer-
mat’s test with base a = 2 is usually sufficient, even if not totally secure.
As a by-product, Fermat’s test is fast, being based on modular powers.
Recently, a fast algorithm of order O(N7) N = log, p was found that
decides if a number p is prime or not. The algorithm does not exhibit a
prime factor of p in case p is not prime, however.
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o As we have already seen, computing a* mod n uses a number of mul-
tiplications of order O(b), b being the number of bits of z. Assuming
that the public and the secret exponents are between 0 and n, we con-
clude that the computational complexity of coding and of decoding the
message is of order O(N), N := log, n.

o Computing n := pg requires one multiplication, while finding the fac-
tors p, ¢ from n, while in principle feasible, requires too much work for
numbere n = pq of, say, 256 bits. The sieve of Erathostenes is too slow
requiring 2V/2 multiplications, N = log, n, and even the better meth-
ods of factorization based on the LLL algorithm of Lenstra, Lenstra and

Lovasz, predict a number of multiplications of order 22:88N"/*(log N)*/°
roughly 255 for numbers n of 256 bits. Of course, this estimate holds for
products of primes randomly chosen, while for special products the time
of factorization can be shorter. Concluding, the choice of the primes p
and g is somewhat critical, but generally speaking, choosing p,q in a
random way with around 128 bits each, makes it practically infeasible
to find in & short time the factors p, q from pq, and therefore impossible
to get ¢(n) and d from n this way in a short lapse of time.

o The RSA algorithm is clearly less secure than the factorization of inte-
gers, since it publishes also the number e. In fact a clever attack can be
made to find d if d is small enough.

3.24 Theorem (Wiener, 1981). Let p,q be primes with p < q < 2p.
Let n = pq, and let 0 < e,d < ¢(n) be such that ed =1 (mod ¢(n)). If

1
d < —+/n,
\/6‘/_

then one can find d with an algorithm of computational complexity of
O(N), N :=log,n.

Proof. We have 0 < ed — 1 = k¢(n) < d¢(n), from which we infer
0 <k < dand g.c.d.(k,d) = 1. Moreover p+ q < 3./n, therefore we can
infer

bt

dn
_ lde —k¢(n) + k(d(n) —n)| _ |1+ k(4(n) —n)|
dn dn
ko) 3

e ek L

n d! = 2d%’
since 1/¢/n < 1/(v/6d). Therefore k/d is one of the reduced continuous
fractions of e/n, see Theorem 8.35. Since they can be all computed easily
with O(N) complexity by Euclid’s generalized algorithm, the proof is
concluded. d
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o A low exponent e, especially e = 2,3, can be trouble, too, but the
published flaws are far from a total break. Choices of e with around 17
bits are usually made.

o The RSA systems yields a way to make confidential communications
from many to one. For a communication that involves two people, or two
computers, the AES ecryption standard, or other algorithms based on a
common key, are preferred since they are by far faster than RSA. Thus
RSA is often used for the only purpose of transmitting a secret key; then
the actual communication is encrypted by the AES or similar algorithms.
In this respect, the confidentiality of the transmitted message by RSA
has to be analyzed, too. Despite 25 years of use of RSA, very few results
are known on this subject. The basic question, whether inverting the
RSA coding function is computationally equivalent to the factorization
of n := pq, seems today a largely open issue.

The RSA algorithm can be useful also for authentication purposes.
Assume that Bob codes a given public message with his secret key. Then
anyone else can decode the coded version of the original message by Bob’s
public key, rediscovering the original message. In principle nobody can code
the original message in such a way that the coded message, if decoded
by Bob’s public key, agrees to the original, unless the coding was done
by Bob’s secret key. This way, Bob can authenticate himself. However,
the lack of mathematical evidence of the security of the RSA algorithm
for authentication purposes and several documented breaks on some of
the actual implementations, confines the RSA digital signature scheme to
applications that need a mild form of authentication.

3.2 Combinatorics

We recall that a set X is said to be finite if there is a one-to-one correspon-
dence of X with a subset of integers of the type {1,2,...,n}. In this case,
the number n of elements of X is called the cardinality of X and denoted
by |X| or #X. In other words, every finite set X has | X| elements and it
can be ordered by given indices 1,2, ...,|X| to its elements.

Starting from one or several finite sets we can construct new sets either
by selecting or arranging some of their elements or by taking unions, inter-
sections or products. One refers to the procedures that allow computation
of the number of elements of these new sets as combinatorics. This is a
fascinating branch of mathematics with many applications, for instance,
in engineering and social sciences. Here we confine ourselves to a few basic
concepts.
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3.2.1 Samples, mappings and subsets

Given n objects, how many different ways of selecting k objects from n do
we have? In other words we want to compute the cardinality of the set of
the selections of k objects out of n. The question is of course vague unless
we specify

o whether the objects are all of the same type or how many objects belong
to each type,

o the procedure according to which we make the choice,

o how we count the selected configurations.

a. Ordered samples and mappings

3.25 Definition. A list, or an ordered sample, {z;};=0,1,. k-1 Of size k
from a set X, an ordered k-sample in short, is an ordered selection of k
elements from X.

Two lists {z;} and {y;} are equal if z; = y; Vj =0,1,...,k — 1, that
is, if they contain the same elements arranged in the same order.

An ordered k-sample can be obtained by selecting its elements one
after the other in many ways: for instance, we make the selection of each
object from the entire population, so that the same element can be drawn
more than once (sampling with replacement), or, an element once chosen
is removed from the population (sampling without replacement). In the
first case we are using arrangements with repetitions, in the second case
arrangements without repetitions.

3.26 Arrangements without repetitions. What is the number of or-
dered k-samples without replacement from a population of 7 objects, called
also arrangements without repetitions or k-permutations of n distinct ob-
jects? We have n choices for the first element, n — 1 for the second, ...,
(n — k + 1) for the k-th. Consequently the number of ordered k-samples
without replacement from n objects is

DF .= |Dpil=n(n—1)(n—-2)--- (n—k+1), 1<k<n.

For convenience we define also D9 := D3 := 1.

3.27 Permutations. An ordered n-sample from n objects is called a
permutation. The set of permutations P, of a set of n elements has the
cardinality

P,:=|P,|=D;,=nn-1)---3-2-1=nl

We agree that the empty set has only one possible permutation, so that
Py:=1=:0.
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3.28 Arrangements with repetitions. In the case of ordered samples
with replacement, the number of choices for the first element of a list as
well as for the others is always n, thus the cardinality of the set of ordered
k-samples with replacement from n objects, called also permutations with
repetitions of k objects from n, is

Drk .= |D,‘;,k|=|X'°|=|X|k=nk, 1<k<n.

We also set for convenience D0 := D0 := 1.

3.29 Maps. Ordered k-samples from n-elements with repetitions can be
of course identified with the maps f : {1,2,...,k} — {1,...,n}, since
every such map is defined by the list of its values

(F(1), £(2),..., (k).

From 3.28 the next proposition follows.

Proposition. Denote by F(X,Y) the set of all maps from X to Y. If
#X =k and #Y = n, then F(X,Y) has n* elements.

Example. Given A C X, the characteristic function of A is defined by

1 ifzeA,
palx) =
0 ifzgA

The correspondence A C X with the map ¢4 : X — {0,1} is clearly one-to-one.
Therefore subsets of X are as many as the maps from X into {0, 1}, that is P(X) = 2™.

3.30 Injective maps. Also k-samples without repetitions from n ob-
jects can be of course identified with maps, the injective maps from
{0,1,...,k -1} to {0,1,...,n — 1}. Consequently from 3.26 and 3.27 we
get

Proposition. Denote by Z(X,Y) the set of maps from X to Y that are
injective. If #X = k and #Y = n, then

#I(X,Y)|=Df=n(n-1)(n—2)---(n—k+1)
In particular the number of bijective maps from X into itself is

#I(X,X) = k!
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b. Nonordered samples and subsets

We often sample k elements from n objects, but the actual order of the
elements in the resulting arrangement is unimportant, that is, two samples
may be considered equal if they contain the same elements, irrespectively
of the order. We then speak of nonordered samples.

3.31 Nonordered samples without replacement. As we have seen,
the number of ordered k samples with replacement from n objects is DX
(see, for example, 3.26). Since we have k! different ordered samples of the
same k objects, the number of nonordered k-samples without replacement

s 1 k+1
o n(n — )k'(n-— + )___(Z)’ 1<k<n.

We also set for convenience C2 = C§ = 1. Nonordered k-samples without
replacement from 7 objects are also called k-combinations of n distinct

objects.
The binomial coefficients are defined for all a € R and k € N as

(a) — ala—1)(a—-2)---(a—k+1)

k k!

and the following formulas hold

n n!
<k> = Hm—ky erelN,
_o‘) =(_1)k<°‘+k_1> VEeN, aeR,

<
() ()=(2) s

3.32 Subsets of finite sets. A nonordered k-sample without replace-
ment from a set X of n elements, is merely a subset A C X of &k elements.
Therefore, from 3.31 we get

Proposition. Let #X = n. The number of subsets A of X with k ele-

ments is
|{A € P(X) ! 4| = k}| =Ck = (Z)
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In particular, the number of subsets of X, including the empty set, i.e.,
the cardinality of P(X), is

1+k2::1(:) =2n:<z> —(1+1)r =2,

k=0

on account of the binomial theorem.

¢. Ordered lists

3.33 Definition. Let X be an ordered set by <. A monotonic k-list
{z;} C X is also called an ordered list.

3.34 Increasing lists. Let X be an ordered finite set. It is not restrictive
to assume that X = {1,2,...,n}. Let us compute the number L% of the
increasing lists of £ numbers between 1 and n, i.e., of the type

{hl,hz,hg,...,hk}, hi <hip1 Vi=1,...,k—1.

Thinking of k lists from n objects as maps from {1,...,n} to {1,...,n},
it is easy to see that ordered k-lists correspond to the strictly increasing
maps. Since there is a unique way of listing £ numbers in an increasing
order, ordered k-lists are equal in number to the subsets of k elements of

X, that is
n
:— C?I: (k)

3.35 Nondecreasing lists. Let us compute the number L}* of non-
decreasing ordered lists of k objects from n, ie., of k-uples {h;} with
h; < hi41 Vi =1,...,k — 1. This time the elements of a list {h;} are not
necessarily distinct. However, we can associate in a one-to-one fashion to
each such nondecreasing k-list from n objects a strictly increasing k-list
from n + k — 1 objects by means of the map ¢ defined as

Q(hlyhm"'vhk) = (hl’h2+17h3+27ahk+(k_1))

It is easily seen that ¢ maps the nondecreasing k-lists from {1,...,n} to
the increasing k-lists from {1,...,n+k—1} and that ® is one-to-one. Thus

" n+k—1
Lnk = wa+k—l = Cﬁ+k—1 = ( k )

Thinking of & lists from n objects as maps from {1,...,n} to {1,...,n}, it
is easy to see that nondecreasing k-lists correspond to nondecreasing maps
from {1,...,k} to {1,...,n}.
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Figure 3.8. The frontispieces of the Ars conjectandi by Jacob Bernoulli (1654-1705) and
a modern treatise about discrete mathematics.

3.36 Nonordered samples with replacement. Since the nonordered
k-samples with replacement from n objects are clearly as many as the
nondecreasing k-lists from the same objects, we conclude that the number
of nonordered k-samples with repetitions, also called k-combinations with
repetitions from n is

ok (” +: - 1) - (-1)k(‘"), £ ELn (3.11)

d. The formula of inclusion and exclusion

Let A, B C Q be finite and disjoint subsets of ; then we have |[AU B| =
|A| + |B|, and, more generally, in the case AN B # 0,

|AUB|=|A|+|B|-|ANB. (3.12)

The formula (3.12) extends to the case of more than two subsets and
is very useful in computing for example the probability of incompatible
events. The reader will check that in the case of three subsets we have

|A1 U As U Az| = |A1| + |A2] + |As] — |A1 N Az| — |[A2 N As] — | Ay N A3
-+ |A1 N Ay nA3|,

Let Ay, Ag, ..., A, be finite subsets of 2 and 1 < k£ < n. Since the
intersection of k of the sets A;, As, ..., A, is commutative, we index the
intersection A;, N A4;, N---N A;, by an increasing list of indices 4; < i3 <
-+ < ig. It is not difficult to show that we have
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3.37 Proposition (Inclusion-exclusion formula). Let A;, 4o, ..., 4,
be finite subsets of . Then

|ATU A2 U~ U Ag| =) (~1)FF? > |Ai, N A, NN Ay
k=1

1<ii<ig << <n

e. Surjective maps

Denote by S(X,Y) the family of surjective maps from X into Y. Trivially
|S(X,Y)| =0 if |X| < |Y]| while in the case | X| > |Y| we have

3.38 Proposition. Let X = {1,2,...,k}, Y = {1,2,...,n} and n < k.
Then

50001 = 31 (%) =3

Jj=0
Proof. Let F(X,Y) be the family of all maps f : X — Y and, for j =

1,...,n, A; denote the family of maps f : X — Y the ranges of which do
not contain j. Trivially

F(X,Y)=8(X,Y)| Ju,4;,
hence the inclusion-exclusion formula yields
[S(X, V)| = |F(X,Y)| - A U U A4y
=nk —Xn:(—l)j S AN Ayl (3.13)

j=1 1<i: < <i;<n

~

For every j-ple (i1,...,4;) with distinct elements, A;, N--- N A;; is the
family of maps whose images contain at most n — j elements; consequently

|Ai1n"'mA’ijI=(n—'j)k

and

> jAun-ndAgl=@m-j)F > 1

1<i1 < <85 <n 1<i1 <+ <i;<n

()

The result then follows from (3.13) and (3.14). O

(3.14)
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kK [of1]2] 3 4 5 |6
Dtk 11 |5 )25 | 125 | 625 | 3125 | O
DfF [1]|5)2 | 60 [120] 120 | O
cCk |1[5{10] 10 5 1 0
Cx|l1|5|15]| 3 | 70 | 126 | O

Figure 3.9. The values of D%, DE, C2*, Ck.

3.2.2 Drawings

3.39 Drawing in succession. The drawings in succession of k elements
from n with replacement are as many as the ordered k-samples with re-
placement from n objects, D* = n* (see 3.28), while the drawings in
succession of k elements from n without replacement are as many as the

ordered k-samples without replacement from n objects, i.e., DX (n’_L o

(see 3.26).

3.40 Simultaneous drawings. Making a simultaneous drawing of k ob-
jects from n is clearly the same as choosing a subset of k£ elements from
n. Therefore the simultaneous drawings of k elements from n are as many
as the subsets with k elements in a set with n elements, that is, C¥ = (})
(see, for example, 3.32).

3.41 Simultaneous drawings with repetitions. Suppose instead we
have a population of infinitely many elements of type 1, infinitely many
elements of type 2,..., infinitely many elements of type n. The simulta-
neous drawings of k elements from this population are as many as the
nonordered k-samples with replacement, that is, C¥ = ("75~1).The same
result holds provided the initial population has at least k elements of each

type.

The table in Figure 3.9 shows how results can be different.

3.2.3 Location problems

How many ways do we have of placing k balls into n cells? Again the
question is quite vague unless we specify how to distinguish the resulting
arrangements and the rules to fill the cells. In this respect we look at

o whether the balls are distinct,
o how many balls can be placed into a cell.

These kinds of problems arise typically in statistical mechanics. Several
situations left vague by the previous description are quite relevant. The
next examples describe some of them: they refer to the case of distinct
cells.
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3.42 Maxwell-Boltzmann statistics. The balls have a label which
renders them distinct, moreover there is no limit to the number of balls
that can be placed in one of the n cells. In this case the number of ways of
placing k balls into n cells equals the number of maps f : {1,2,...,k} —
{1,2,...,n}, that is n*.

If we instead require that only one of the distinct balls can be placed in a
cell, we have as many possibilities as the injective maps f: {1,2,...,k} —
{1,2,...,n} are, that is, DX = 2 1<k <n.

n—k)!"?

3.43 Bose—Einstein statistics. The k balls are all black, and there is
no limit on the number of balls we can place in a cell. In this case each ar-
rangement can be regarded as a sequence of black balls separated by white
balls, which represent the cells. We therefore have as many possibilities as
the number of the subsets of n — 1 elements in a set of n — 1 + k elements,

ie.,
n+k—1 _ n+k"1 _ ek
(-0 e

Another way of thinking is that any such arrangement be regarded as a
nondecreasing map from {1,...,k} into {1,...,n}.

3.44 Fermi-Dirac statistics. The k balls are nondistinct, and we can-
not place more than one ball in each of the n-cells. In thiscase1 <k <n

and the number of possibilities are as many as the injective maps from

El,...,k} into {1,...,n}, i.e., the subsets of k elements in {1,2,...,n},
n

k)

3.45 € 9. A physical system consists of some identical particles. The total energy of
the system is 4Eg, Eg = const > 0. Each particle may possess a level of energy k Eq,
k = 0,1,2,3,4, and a particle of energy k Ep may occupy one of the k2 4 1 states
corresponding to this energetic level. How many different configurations, according to
the energetic state of the particles, can the system assume? Answer the same question
assuming that (a) at the energy level k Ep there are 2(k2 + 1) energetic states, (b) two
particles are not allowed to occupy the same energetic state.

3.46 Example. How many lists of k integers exist with sum n? In other words, what
is the cardinality of the set

{(11,::2,...,11,) |1+ +xx = n} ?
Interpret z1,...,Zx as the number of nondistinct balls placed respectively in the cells

{1,...,k}. Then the initial problem reads as: in how many ways can n nondistinct balls
be placed in k cells? The answer is

n:f;l) =(n+:—l)=(_1)k(—kn)’

The table in Figure 3.16 at the end of this chapter summarizes the
different models of counting we have discussed in this section.
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Figure 3.10. The frontispieces of the Doctrine of Chances by Abraham de Moivre (1667—
1754) and a modern treatise on probability.

3.2.4 The hypergeometric and multinomial
distributions

The birth of probability is dated back to Blaise Pascal (1623-1662) and to
his correspondence with Pierre de Fermat (1601-1665) about a number of
questions connected to the games of cards posed by the knight de Méré,
who was a dogged gambler with mathematical velleity. The first published
treatise, De Ratiociniis in ludo aleae, appeared in 1647 and is due to Chris-
tiaan Huygens (1629-1695) ; it was followed by the Ars conjectandi of 1713
by Jacob Bernoulli (1654-1705) and by The Doctrine of Chances of 1718
by Abraham de Moivre (1667-1754).

There are several definitions of probability. The first, and for this rea-
son it is referred to as classical, is due to Blaise Pascal (1623-1662). The
probability is the ratio between the favorable events and all possible events,
provided all events are equiprobable. It is convenient to imagine the events
as subsets A of a set §2 of the possible cases, and it is usual to assign
probability 1 to the certain event Q2. The classical probability of the event
A is then Al

W’

this way reducing to a problem of counting.

P(A) = VA C Q,

3.47 The hypergeometric distribution. In this context a typical prob-
lem is the following. We are given a set X of N distinct balls: K of them
are white and NV — K black. We simultaneously draw n balls from X. What
is the probability for exactly k of them to be white?
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We assume that the drawings are random, that is, all outcomes are
equally probable. Therefore the probability is the ratio between the favor-
able and possible events, the possible events on the drawings of n balls
from N, i.e., (2’)

Denote by Ay, the set of simultaneous drawings that contain exactly &
white balls, k& < n. Clearly |Ax| = O either if ¥ > K, since in this case
there are not enough white balls, or if n — k > N — K, as in this case
there are not enough black balls to produce an event with £ white balls.
If max(0,n — N + K) < k < min(n, K), we instead have |Ag| # 0.

Given one such k, the number of simultaneous trials of k white balls
from K white balls is (¥) and, for each of them, there are (N=K) different

ways of choosing n — k black balls. Therefore

| 4| = {(IZ) (N2K) if max(0,n— N + K) < k < min(n, K),

0 otherwise,

thus the probability of drawing n balls with exactly k& white balls in the
trial from our set X is

(%) (k)
B(N,K,n)(k) = % (3.15)
(2)
The (3.15) is called the hypergeometric distribution.
Notice that the sets Ay, are pairwise disjoint and their union yields all
possible drawings. Therefore we have

3.48 Proposition (Vandermonde formula). Let N, K, n € N; then

T EE-0)
k=max(0,n—N+K) k n—k n
Proof. In fact

()=o=xma= "3 ()

k k=max(0,n—N+K)

O

3.49 9. Write a proof of Vandermonde’s formula using the identity (1 + a)V¥ =
1+a)¥1 +a)VN-K,

3.50 4 Quality inspection. In an industrial production of 1000 items, 2% of them
are defective. Choosing at random 25 items, what is the probability of finding two or
more defective items?
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3.51 The multinomial distribution. Let € be a set; a partition of Q
is a decomposition of {2 in pairwise disjoint sets Ay, Ag,..., Ap,

Q=L3Ah A4 =0 fori+j.
=1

Let n:=|Q| and k; :=|Ai|, i =1,...,p. Of course k1 + kg +--- + kp =n.
Denote by C(k1,ks, ..., kp) the number of possible decompositions of 2 in
p subsets drawing respectively ki, ka, ..., kp elements with ky + ka4 --- 4
kp = n. We then have

n!

Clhr ke, o kp) = Tt

In fact, we have (;) different ways of choosing ki elements of {2, then

(";2’“) ways of choosing a further ky elements from €2, ..., and, finally,
(""(k1+k2':"'+K”‘1)) ways of choosing the remaining k, elements of 2.
Therefore ‘
Clki,ka,... kp)
_ n! (n— k1) (n—(kr+ka+--+kp_1))!
T Rln—k)! k! kp!
n!
A

3.52 9. 52 cards are distributed to four players. How many hands are possible?

3.3 Infinity

3.3.1 The mathematical analysis of infinity

Already Galileo Galilei (1564-1642) remarked that the squares of natu-
ral numbers are as many as the natural numbers themselves. In Discorsi
intorno a due nuove scienze he wrote

Interrogando io ... quanti siano i numeri quadrati, si pué con
veritd rispondere, loro esser tanti quanti sono le proprie radici,
avvenga che ogni quadrato ha la sua radice, ogni radice il suo
quadrato, né quadrato alcuno ha piu d’una sola radice, né radice
alcuna pit d’un quadrato solo.?

2 Asked ...how many are the squared numbers, one can verily say they are as many
as the square roots, in fact every square number has its square root and every square
root its square, nor any square has more than a square root nor any square root has
more than a square.
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Figure 3.11. The frontispieces of the Discorsi intorno a due nuove scienze by Galileo
Galilei (1564-1642) and a book by Georg Cantor (1845-1918) about infinity.

For a long time the only notion of infinity really accepted by mathemati-
cians was Aristotles’s notion of potential infinity, in the sense of never
ending: the natural numbers as 0, 1 and so on is an example of poten-
tial infinity. But the use of actual infinity was either avoided or used as
a source of contradictions, and according to the mathematical and philo-
sophical Greek tradition: infinitum actu non datur.?

But the development of mathematics, especially in the eighteenth and
nineteenth centuries, led mathematicians to confront themselves not only
with the idea of potential infinity in the sense of infinite processes as in
the infinitesimal calculus, but also with the need of understanding the
structure of infinite sets.

a. Cardinality
At the end of the eighteenth century Georg Cantor (1845-1918), in a series
of papers, set the foundations of the theory of sets and, in particular,
analyzed the concept of infinity on the basis of the principle of one-to-one
correspondence.

3.53 Definition. Two sets A and B are said to be equivalent or to have
the same power or the same cardinality, and we write card A = card B or
A ~ B, if and only if they are in a one-to-one correspondence with each
other.

It is easily seen that ~ is an equivalence relation, i.e., it is

3 Actual infinity is not given.
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(i) REFLEXIVE. A ~ A,
(ii) SYMMETRIC. A ~ B if and only if B ~ A,
(iii) TRANSITIVE. If A~ B and B ~ C, then A ~ C.

The equivalence classes are called the cardinals: if A belongs to the equiv-
alence class a, we say that a is the cardinality of A and we write o := |A|
or o := card A; and, existence of a cardinal o means the existence of a set
A with card A = a.

Sets A that have the same power of {0,1,2,3,...,n — 1} are said to
have cardinality n; the empty set has cardinality 0 by definition. This way
natural numbers become cardinals: they are called finite cardinals, all other
are called transfinite cardinals.

If A and B are disjoint sets of cardinality a and 3, the cardinality of
AU B and of A x B depends only on a and 8 and is denoted by a + 3
and af; in particular, if o = o; and = (1 then a+ 8 = a3 + 1. The
cardinality o + 3 agrees with the ordinary sum of integers if a and 3 are
finite cardinals.

If A # 0, the set of mappings from A into B is denoted by B#, and
its cardinality by 3%. If a and 3 are finite, then 3¢ is the ordinary power
with integers, see Section 3.2.

The set of naturals N is infinite and its cardinality is denoted by Rg
(aleph, X, is the first letter of the Hebrew alphabet). A set that has cardi-
nality Ng, that is in one-to-one correspondence to N, is called denumerable
or countable.

Of course a set has cardinality Ng if and only if it is possible to enu-
merate it.

3.54 q. Show that
(i) card{2n|n € N} =card{2n + 1|n € N} = Ry,

(ii) card{n € N|n > n} =R,

(iii) 7 + Ro = card ({0,1,...,5— 1}UN) = Ro,

(iv) Ro + Ro = o,

(v) nRg =Rg for alln =1,2,3,....
[Hint: Show a bijection between the sets involved. To prove (iii) notice that a bijection
{0,1,...,n — 1} x N — N is given by (i,k) — i + nk)]

3.55 Definition. Let a, 8 be cardinals. We say that

(i) a < B if we can find sets A and B such that A C B, card A = a and
card B = 3.
(ii) a< Bifa< B and a#p.

Trivially card A < card B if A C B. If A is infinite and B C A is finite,
obviously, A\ B is infinite. Consequently we can inductively choose a; € A4,
az € A\ {a1}, ag € A\ {a1, a2}, and so on; therefore A contains a subset
that has the same power of N. We conclude

3.56 Proposition. A set A is infinite if and only if it contains a denu-
merable subset. A cardinal « is transfinite if and only if a > Ng.
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Figure 3.12. Two pages from two of Cantor’s papers about infinity that appeared re-
spectively in 1895 and 1897 in Mathematische Annalen.

If A is infinite, according to Proposition 3.56, we can write
A=A UA, with card A; = Ng and A; NAy = (.

Since A; has the same power as a strictly included subset, A has the same
cardinality as its proper subset B; U A, hence we can state

3.57 Proposition. A set is infinite if and only if it has the same power
as one of its proper subsets.

Cantor—Bernstein theorem

In principle two cardinals are not comparable. However the following the-
orem states that a = § if and only if a < 8 and 5 < a.

3.58 Theorem (Cantor—Bernstein). If A is equivalent to a subset of
B and B is equivalent to a subset of A, then A and B are equivalent.

Proof. Let h: A — B; C B and k: B — A; C A be the one-to-one correspondence
between A and B := h(A) C B and between B and A) := k(B) C A, and let A :=
k(Bj). Writing E ~ F for card E = card F, by assumption A ~ B, and, by construction,
B ~ A2; hence A> ~ A. The map ¢ :=koh: A — Ay is one-to-one; set Ag := A and

An+2 = ‘P(An),
Since A2 C A; C Ao, we have Ap+1 C An Vn > 0, hence

Vn > 1.
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Apia~An Yn

and

(An \ Ant1) ~ @(An \ Any1) = Ant2 \ Anys.
Since the sets Az; \ A2;j4+1, J =0,1,..., are pairwise disjoint, also the subsets

Hi= U2 (A2 \ Azje1),  and  o(H) = U2, (A2 \ Az )
have the same power. On the other hand trivially
A=HU(A1\ A2)UN2yA; =t HUL,

AL = p(H)U (A1 \ A2) UNZgA; =: p(H) UL,

hence A ~ A1, consequently A ~ B. m}

An immediate consequence of the Cantor-Bernstein theorem and of
Proposition 3.56 is

3.59 Proposition. Ny is the first transfinite cardinal, i.e., a < Ny if and
only if a is finite.

We notice that Proposition 3.59 does not follow directly from Proposi-
tion 3.57 since a priori a < Ny is not alternative to Ry < a.

c. Denumerable sets

Since the subset of primes in N is infinite, it is denumerable. Similarly the
set
{p" ]p prime,n € N}

is denumerable. Since A is in one-to-one correspondence with N x N, we

infer
No - Ng = Np.

More generally, the set

{P1p§ Py | P1,P2,- .., Pn Prime }

is denumerable, hence Xj = Ng. The previous relation can be inferred
by means of the following procedure known as the first Cantor diagonal
method. Let I, = {al}ien be a countable family of denumerable sets.
Enumerating U, I,, as follows

1.2 ,.1 .3 2 1 4 3 2 1
ai, ay, as, aq,05,03,01,09,03,0y,- ..,
compare with Figure 3.13, we see that
card U2, I, = Ro.

3.60 §. Show that
(i) 2™, n > 1, is denumerable;
(ii) Q is denumerable;
(iii) the set of polynomials with integer coefficients is denumerable;
(iv) a real number is said to be an algebraic number if it is a root of a polynomial
with integer coefficients. Show that the set of algebraic numbers is countable.
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Figure 3.13. The first Cantor diagonal method.

d. The axiom of choice

Let A be a set; a partial order on A, denoted by <, is a relation on A with
the properties

(i) REFLEXIVE. z < z Vz € A,
(ii) SYMMETRIC. if z,y € A,z <y and y < z, then z =y,
(iiiy TRANSITIVE. if z,y,2 € A,z <y and y < 2, then z < 2.

Notice that we do not require that necessarily either ¢ < y or y < z. If
this last property occurs, we say that < is a (total) order on A. On a tree,
there is a natural partial order, in R there is an order. The set of parts
P(X) of a set X is partially ordered by the inclusion: If A, B C X, then
A, B € P(X), and we can say that A < B in P(X) if and only if A C B.

Because of the Cantor-Bernstein theorem, the relation < defines a
partial order on the family of cardinals. Does it define a total order? In
other words, given two ordinals, is it true that either a < S or 8 < a? The
question is equivalent to the following: given a set A with card A = ¢, and
a cardinal 3, such that 8 > a does not hold, can we construct a subset
B C A with card B = 87 Of course the construction of B involves the
choice of elements of A, and, in the case 8 = Ny, we actually constructed
a countable set B by induction, see Proposition 3.57.

In 1904, Ernst Zermelo (1871-1951) showed, but we are not going to
present the proofs here, that the answer is positive, i.e., the following
theorem holds.

3.61 Theorem. We have card A < card B or card B < card A for every
pair of sets A and B if and only if we admit the following axiom of choice.

3.62 Axiom (Zermelo’s axiom). Let A be a family of nonempty and
pairwise disjoint sets. Then there exists a set C such that C N A consists
exactly of one element for each A € A.

Nowadays Zermelo’s axiom is widely accepted as one of the standard
mathematical tools, though in the years many attempts have been made
to avoid its use in many mathematical theories.

There are many equivalent ways of expressing Zermelo’s axiom and
often the equivalence is not at all detectable at first sight.
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3.63 Theorem. The following claims are equivalent

(1) Zermelo’s Axiom 3.62.

(if) AXIOM OF CHOICE. Let {X;},c1 be a family of nonempty sets with
indices in a set I. Then there exists a function choice ¢ defined on
each i € I such that ¢(i) € X; Vi € I, that is, we can choose an
element x; = ¢(i) in each X; and consider the set {z;}icr-

(iii) CARTESIAN PRODUCT. The Cartesian product of the family { X, }ic1,
[I;c; X, is empty if and only if one of the factors X; is empty.

Suppose a partial order < is defined on A, and let C C A. In this situation
we can eagsily introduce the notions of upper bound, supremum and maxi-
mum of C. An upper bound for C is an element m such that c < m Ve € C;
the supremum of C is, if it exists, the lowest of the upper bounds m of C;
co € A is the mazimum of C if ¢g € C and ¢ < ¢y Ve € C. Moreover, we
say that cg is a mazximal element for C if there is no b € A such that a < b
and b # a; finally, a totally ordered subset of C is called a chain of C.

With the previous definitions we can now formulate two other equiva-
lent forms of Zermelo’s axiom.

3.64 Theorem (well-ordering). On every set X there is an order such
that every nonempty subset has minimum.

3.65 Theorem (Zorn’s lemma). Let A be a partial ordered set by <,
and suppose that every chain of it has supremum. Then for every a € A
there exists a maximal element x € A such that a < .

e. The power of the continuum

3.66 Theorem (Cantor). Let A be a countable set. The family P(A) of
subsets of A has the same power as the family 24 of mappings ¢ : A —
{0,1}, i.e., 2%, and it is strictly larger than Ry.

Proof. The map that associates to each subset E C A its characteristic
function xg(z) (defined by xg(z) =1if z € E and xp(z) =0if z ¢ E)
clearly defines a bijection between P(A) and 24. It remains to show that
2% > Wy, that is, one cannot enumerate the family of sequences with values
0 and 1. We shall prove this using the second Cantor diagonal method.
Suppose we are able to enumerate all sequences of 0 and 1. In this case we
can form the table

ap a3 a3
of o af
af o af

where the a; are either 0 or 1. We now define a new sequence with values

in {0, 1} which is not listed in the previous table, a contradiction. For that,
define
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1 ifaf =0,
Ty = ek
0 lfak=1.

Clearly {z} does not agree with any of the lines in the table. |

If we now observe that whenever card A > N, B C A with card B = g,
then card A\ B = card A, and if we represent the reals in a binary basis, we
easily conclude that card [0, 1] = 2%, Also since tan(7(z —1/2)), = €]0, 1],
is a bijection between )0, 1[ and R, we infer that

card R = 2%0

i.e., 2%0 s the power of the continuum. Finally by the first Cantor diagonal
method we have card R™ = 2% too. We can then summarize

3.67 Theorem. The sets [0,1], [0,1]", n > 2, and R™ have all the power
of the continuum.

3.68 €. The real numbers that are not algebraic (see, for example, Exercise 3.60) are
called transcendental. Show that the set of transcendental numbers has the power of
the continuum.

The claim that the segment [0,1] and the n-dimensional cube have
the same power deserves a few comments. The claim in Theorem 3.67
means that there exists a one-to-one map between [0,1] and [0,1]". As
paradoxical as it may appear, it says in particular that the concept of
power or cardinality and of dimension, that is, in its intuitive form, the
number of independent variables needed to describe a particular situation,
are unrelated: for example it is not enough to describe an object in a one-
to-one way with two parameters in order for it to be a surface. Actually
the notion of dimension is related to more refined structures than just
counting points, as, for instance, continuity.

f. The continuum hypothesis

More generally one shows that 2* > « for any cardinal a. This way we
can construct a hierarchy of transfinite cardinals

card N < card P(N) < card (P(P(N))) < --- . (3.16)

The natural question of whether such a hierarchy exhausts all transfinite
cardinals naturally arises.

The hypothesis that the cardinality of the continuum is the smallest
nondenumerable cardinal, i.e., that no other cardinal lies between Ng and
2% g called the continuum hypothesis, while one refers to the assump-
tion that the hierarchy in (3.16) exhausts all transfinite cardinals as the
generalized continuum hypothesis.

In 1939 Kurt Godel (1906-1978) showed that the generalized contin-
uum hypothesis (in particular the continuum hypothesis) is consistent with
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Figure 3.14. Bertrand Russell (1872-1970) and David Hilbert (1862-1943).

the standard axioms of set theory; in 1963 Paul Cohen (1934- ) showed
that also its negation (or the negation of the continuum hypothesis) is con-
sistent with the same axioms. In other words, the continuum hypothesis is
independent from the axioms of set theory and we can develop a set theory
in which it is valid and a set theory in which it is not valid.

3.3.2 Some information on the theory of sets

In the second half of the eighteenth century mathematicians realized that
a reasonable theory of sets was necessary for the development of mathe-
matics. It is commonly agreed that the creator of the theory of sets was
Georg Cantor (1845-1918) who developed the theory in many papers and
made use of it in several contexts, and especially in the study of cardinal
and ordinal numbers.

At the same time as Cantor, Gottlob Frege (1848-1925) developed a
formal theory of the higher order calculus of predicates. This theory may
be regarded as a theory of sets based on two axioms:

o AXIOM OF EXTENSIONALITY. Two sets are equal if they contain the
same members.

o AXIOM OF ABSTRACTION. Given a predicate p(x), there exists the set
of z that satisfy p(x).

Frege’s axioms in connection with sets that are too large lead to several
paradozes. Cantor himself observed that the set of all sets should have a
maximum cardinality K contradicting the fact that 2K > K. A similar
observation had already been made by Cesare Burali-Forti (1861-1931) in
connection with the theory of ordinals. In 1902 Bertrand Russell (1872—
1970) observed that the axiom of abstraction is contradictory; in fact, if
R is the set of all sets that are not members of themselves, then R is a
member of itself.
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What is the reason for paradoxes and how can we avoid them? A first
reason was found by J. Henri Poincaré (1854-1912) and Bertrand Russell
(1872-1970), and consists in the use of so-called impredicative notions,
that is, in the use of quantifiers acting on all members of the set in order
to define a new element. A first attempt to make up for this was the
theory of types developed by Bertrand Russell (1872-1970) and Alfred
N. Whitehead (1861-1947) in Principia Mathematica. However, excluding
impredicative notions has some consequences, for instance the definition
of the supremum for subsets of R is impredicative. Another reason for
the occurence of paradoxes was seen by L. E. Brouwer (1881-1966) and
the intuitionists in the principle of excluded middle (tertium non datur):
either p or not p. They say that such a principle holds in correspondence
of finite sets, but not in situations in which we use quantifiers on infinite
sets. For the intuitionists the fact that “p(x) holds Yz” does not hold does
not imply that “there is z such that p(x) does not hold.” They in fact
interpret (or better pretend that one should interpret) the existence of x
as the procedure or the exhibit of an x. On this basis the intuitionists
started a program of reformulation of mathematics, that later on turned
out to be of extreme relevance for information science, but doing that they
also came to unsatisfactory conclusions such as, for instance, that every
real function that exists in their sense is continuous.

Nobody, or hardly anybody, is willing to give up Cantor’s results, as
Hilbert put it “no one will expel us from the paradise which Cantor created
for us,” and Bertrand Russell describes Cantor’s work as “probably the
greatest of which the age can boast.” However, in order to compare two
cardinals « and 8 (i.e., say whether 8 = a, a < 8 or 8 < a) Cantor had
to assume that every set can be well-ordered, a counter-intuitive claim.

In 1904 Ernst Zermelo (1871-1951) showed that every set can be well-
ordered. In 1908 he analyzed the assumptions from which the theorem
follows and which do not allow inference of the old paradoxes, though it
does not answer the question of whether the new axioms would give rise
to new paradoxes.

Zermelo gives up Frege’s axiom of abstraction (which is contradictory)
and replaces it with rules that produce admissible sets (by means of union,
intersections and powers) and with a weaker form of the axiom of abstrac-
tion, the

o AXIOM OF SEGREGATION. Given a set X and a predicate p(z), there
exists the subset {z € X |p(z)}.

In the previous axiom p may be impredicative, i.e., may contain quantifiers
on all X.
With these axioms, Zermelo was able to produce finite sets such as

{0, {0}, {{0}}, {0, {0}}}

but cannot produce infinite sets. For this reason Zermelo assumes also

o AXIOM OF INFINITY. There exists a set that contains the empty set and
contains {x} if it contains x.
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Figure 3.15. The frontispieces of a collection of sources of Mathematical logic and of a
popular book about infinity.

Notice that the axiom of infinity states, in terms of sets, the existence
of the natural numbers as an actual infinite set and not just as a potential
infinite set. Finally, Zermelo states

o AXIOM OF CHOICE. Given a family of disjoint nonempty sets {X,}, then
there exists a set C which has as its members one and only one element
from each X,

which is crucial for the proof of the well-ordering theorem.

The previous axioms, slightly modified by Abraham A. Fraenkel (1891—
1965), are Zermelo—Fraenkel axioms of the theory of sets that allow one
to prove the well-ordering theorem. Zermelo’s idea is: if we accept those
claims, then we also have to accept the well-ordering theorem.

In contrast with the intuitionists, David Hilbert (1862-1943) started
a new program. For Hilbert “forbidding a mathematician to make use of
the principle of excluded middle is like forbidding an astronomer his tele-
scope.” For Hilbert we need to distinguish between the formalism, which is
finitistic, and interpretations of the formalism which may be nonfinitistic:
for example, the calculus of polynomials is finitistic, but the interpretation
of the formalism of polynomials as polynomial functions is nonfinitistic.
Hilbert’s idea is then that formalism, being finitistic, always works, how-
ever, a part of it has a meaning which is accepted by everybody, i.e., real
sentences, but ideal sentences may have a meaning which is not unani-
mously accepted, but, in any case, ideal sentences can be used to infer real
sentences. From this point of view the fundamental question is that of the
consistency of the system and the central question becomes the question
of the consistency of the Zermelo—Fraenkel azioms.
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Without getting into many details it is worth saying something more
about the meaning of ideal and real sentences. Roughly speaking, a
real sentence stands for a generalization of particular observations, thus
“p(z,y) holds Vz,y € X” is a real sentence, while “Vz € X3y € X
such that p(z,y) holds” is an ideal sentence. Corresponding to real and
ideal sentences we have finitary and nonfinitary proofs. A finitary proof
is essentially a proof that uses only arguments on finite sets or inductive
arguments, while a nonfinitary proof is for instance one which makes an
essential use of the axiom of infinity.

In principle the proof of consistency should be finitary: for all d, d is not
a proof of a contradiction. Therefore it should be possible not only to prove
theorems of relative consistency (reducing the proof of the construction
of the reals to that of rationals and, in turn, to that of naturals and of
the theory of sets), but, in the context designed by Hilbert, it should be
possible to prove a theorem of absolute consistency. Hilbert’s idea was that
inorder to prove consistency it suffices to find a property, that is satisfied
by the axioms, preserved by the inference rules, but that is not satisfied
by a contradictory sentence. This way the proof of consistency could be
carried out by induction.

Hilbert (as many other mathematicians) was worried by the fact that
paradoxes, confined for the time to areas away from the kernel of mathe-
matics, would enter the field of mathematical analysis, just refounded on
nonfinitary arguments of set theory. On the other hand he firmly believed
that every proof, even nonfinitary proofs, could be formally analyzed as
a finite sequence of symbols on formulas, worked out according to precise
synctactical rules (instead of as a flow of ideas, meanings and concepts),
and consequently could be handled in a finitary way.

Hilbert’s program reached a crisis when in 1931 Kurt Goédel (1906—
1978) proved his celebrated incompleteness theorems, a consequence of
which being that one can exhibit real sentences (in the sense of Hilbert)
that can be proved only with nonfinitary means using the same axioms
except the one asserting the existence of an infinite set. Later it was proved
that one can exhibit a polynomial (in more than one variable) with integer
coefficients without integer roots, a finitary claim, that however requires
in an essential way the use of the axiom of infinity.

But there is more. Modulo coding numbers, Godel proves that the claim
of consistency of the Zermelo—Fraenkel axioms is not provable not only
with finitary but even with nonfinitary means. However, the sum of knowl-
edge acquired leads and tranforms into the study of formal systems, that is
into a new branch of mathematics, though, as Hermann Weyl (1885-1955)
states,

the question of the ultimate foundations and the ultimate mean-
ing of mathematics remains open; we do not know in what direc-
tion it will find its final solution or even whether a final objec-
tive answer can be expressed at all. “Mathematizing” may well
be a creative activity of man, like language or music, of primary
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originality,”* whose historical decisions defy complete objective
rationalization.

3.4 Summing Up

Integer arithmetic

Integral numbers

The integral division of integers leads naturally to the notions of prime and coprime
numbers and of greatest common divisor of two numbers as well as to Euclid’s algorithm
for finding the greatest common divisor of two numbers. An extension, Euclid’s gener-
alized algorithm, produces a solution (x,y) € Z2 of the equation ax + by = g.c.d. (a,b),
which allows computation of all solutions of the linear equation with integral coefficients

az+by=c,

see Bezout’s theorem, Theorem 3.9.

o FUNDAMENTAL THEOREM OF ARITHMETIC. Every integer n > 2 decomposes as a
product of primes and, apart from rearrangement of factors, that decomposition is
unique.

Congruences

Bezout’s theorem solves linear first order congruences modulo p:

o az = ¢ (mod p) is solvable if and only if c is a multiple of g.c.d. (a,p). In this case
one is able to find all the solutions, see Proposition 3.16.

o ar =1 (mod p) is always solvable with a unique solution z € {0,...,p— 1} if p is
prime. Thus the ring of the remainders modulo p, Zy, is a field if p is prime.

o CHINESE REMAINDER THEOREM. Given pi, p2,...,pr coprimes, the system

T=b (mOd P1)7
z=bz (mod p2),

=bn (mod pn)
is solvable for any b1, b2,...,bn, and two solutions differ by a multiple of p1ps - - - pp.
The Chinese remainder theorem is often used to solve az = b (mod n) when n is a
product of distinct primes.
A useful tool to analyze the multiplicative structure of the ring Z,,, is the exponential
modular function from Z, into Z, given by z — a® (mod n). We have
o FERMAT’S MINOR THEOREM. If p is prime, then a? =1 (mod p) Va € Zy, a # 0.
o BULER'S THEOREM. Denote by ¢(n) the number of integers < n that are coprime with
n. Then a®(™ =1 (mod n) for all a coprime with n.
o Let p and g be prime. Set n := pg and let e and d be such that ed =1 (mod ¢(n)).
Then the two modular power maps from Z, into Z, given by

z — a® (mod n) and z—a® (mod n)
are one the inverse of the other.

The latter sentence is the foundation of the RSA public key cryptography.

4 And usefulness, we add.
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Model ||Arrangements|Drawings Mappings Locations Statistical
Physics
n population number of|[cardinality of|cells states
balls the range
k samples drawn balls |cardinality of|balls particles
the domain
nk ordered k-|number of{number of[ number of | Maxwell—
samples with|drawings in|mappings ways of locat-|Boltzmann
replacement |succession of|{1,...,k} —|ing k distinct|statistics
from n k balls with{{1,...,n} balls in n
replacement cells
from n
Zn—TkW ordered number of! number of|
k-samples drawings in ways of locat-
without re-|succession ing k distinct
placement of k balls balls in n
from n without re- cells, with at
placement most one ball
from n per cell
(=1)*(7)|lunordered k- number  of|Bose-
samples with ways of lo-[Einstein
replacement cating k|statistics
from n nondistinct
balls in =n
cells
B unordered  |number  of|number  of{number  of|Fermi-Dirac
k-samples simultaneous |[injective ways of lo-[statistics
without re-|drawings of k|maps  from|cating k
placement balls fromn [{1,...,k} to|nondistinct
from n {1,...,n} balls in =

cells, with at
most one ball
per cell

Figure 3.16. Samplings in different models of counting.

Combinatorics

The table in Figure 3.16 summarizes the numbers of ordered and nonorderd samples in

the various models of counting: arrangements, sets and maps, drawings and locations.

Cardinals

Cardinality is a way to count elements in a set. Two sets have the same cardinality if
there is a bijection between them, and cardinals are simply the equivalence classes of

sets which are in a one-to-one correspondence.

One distinguishes sets with finite cardinality, or simply finite, that is the sets which
are in a one-to-one correspondence with bounded sets of N. The cardinality of such sets
is just the number of elements they have. The other sets are called infinite, and their
cardinals are said to be transfinite. Among these sets, the sets which are in a one-to
one correspondence with N are called denumerable or countable, and their cardinality

is denoted by Rg. These sets are obviously infinite.
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The inclusion relation between sets defines a relation on cardinals: o < 8 if and
only if there exist sets A and B such that card A = a, card B = 8, and A C B. We also
set a < B iff a < B and a # B. The relation < between cardinals is obviously reflexive
and transitive, while the symmetry is given by the

o CANTOR-BERNSTEIN THEOREM. Let a and 8 be two cardinals. If a < 8 and 8 < ¢,
then a = 8.

It then follows

o The relation < between cardinals is a partial order.

o Let A C N. Then, either A is finite or it is in a one-to-one correspondence with N.
Equivalently, R is the first transfinite cardinal.

o Z,Q, and for n > 1, N* | Z™, Q™ are denumerable.

At the beginning of the nineteenth century, Zermelo showed that the partial order
relation < between cardinals actually is a total order, that is, given sets A and B we
have either card A < card B or card B < card A, provided we assume the following:

o ZERMELO’S AXIOM OF CHOICE. Let .4 be a family of nonempty and pairwise disjoint
sets. Then there exists a set C such that C N A consists exactly of one element for
each A € A.

Nowadays the axiom of choice is tacitly accepted, hence the possibility to compare
different cardinals.

o CANTOR. Let a := card (A). Denote by 2* the cardinality of the set of all maps
¢ : A — {0,1}. Then 2° > a. In particular 2¥0 > Ry.

o [0,1] € R, R and more generally, for every n > 2, R™ have cardinality 2%°. It is
therefore impossible to distinguish sizes and “dimensions” by counting points.

3.5 Exercises

3.69 4. Find a number that is divisible by 7 and that, divided by 2, 3, 4, 5 or 6, yields
always a remainder 1.

3.70 §. The least common multiple of two positive integers a and b is the least positive
number that is divisible by both a and b. It is denoted by l.c.m (a, b). Show that

l.e.m(a,b)g.c.d.(a,b) = abd.
3.71 9. If p and q divide a and g.c.d. (p, ¢) = 1, then pq divides a.

3.72 9. Find the g.c.d. (a,b) and the l.c.m (a, b) for each of the following pairs of inte-
gers:

(15000, 32768), (46035, 47430), (17795, 43291), (2295, 1989).

3.73 9. Solve ax + by = g.c.d. (a,b), =,y € Z for the pairs (a,b) that follow:
(1542, 2102), (2287, 442), (1485, 1547), (38,127).

3.74 4. Show that p is prime if and only if g.c.d. (a,p) =1 foralla, 2<a < p.
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3.75 4. Let d € N, d > 2. Show that each n € N can be uniquely represented as
k
n=ao—+-a1ai+azd2+-~--|-akd’c = Zakdk
=0

with 0 < a; < d —1 Vi, known as the representation of n in bases d.

3.76 4. Let a and b be coprime. Show that

1

ab  a

o=

with z, y € Z.

3.77 9. Show that every rational number r = p/q, p,g € Z, ¢ # 0, has a unique
representation of the form

T1 T2 Tk
r=—+—+- -+ —
per - p2 Pk
where o), asg,..., ai are integer coefficients, and p;, p2, ..., pg are distinct primes.

3.78 9. If p is prime, show that (a + b)? = aP + bP (mod p).

3.79 ¥. Show that
(i) n is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3,
(ii) n is divisible by 9 if and only if the sum of its digits (in base 10) is divisible by 9.
(iii) n = Z?:o a;107 is divisible by 11 if and only if the alternate sum of its digits
ap —aj +ag —az + - + (—1)¥ay is divisible by 11.

3.80 9 9. Show that for every N > 1 there exists N consecutive numbers none of which
is prime. [Hint: If p is prime and p > N, consider the numbers p!+2, p!'+3,..., p!+p]

3.81 4 9. Deduce from the prime number theorem that, if p,, is the n-th prime number,

then Pn 3

lim —— =
n—oo n/logn

3.82 4. Let {o} be a sequence of real numbers in binary representation. Cantor’s
diagonal procedure then produces a real number o ¢ {ay}. In particular, every sequence
of algebraic numbers produces a nonalgebraic number.

3.83 4. Find the probability that two persons chosen at random were born on a Mon-
day.

3.84 €. In how many different ways

(i) can 8 persons be seated in 5 seats?
(ii) can 5 persons be seated in 8 seats?

3.85 q Poker. Find the probability for a poker hand to be three of a kind or a full
house.

3.86 § Méré paradox. Show that it is more probable to get at least one ace with
four dice than at least one double ace in 24 throws of two dice.
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3.87 4. Drawing successively with replacement ¢ balls from n labeled from 1 to n,
what is the probability of drawing k different balls?

3.88 4. From a box containing n distinct balls, what is the probability that a sample
of size k, obtained with replacement, contains two equal balls?

3.89 § Birthdays. What is the probability that in a population of n people the birth-
day of at least two people will fall on the same day, assuming equal probability for each
day? Compute the probability for n = 10, 25, 50. Suppose n = 12; what is the probabil-
ity that the birthday of the twelve people will fall in twelve different months?

3.90 €. What is the probability that a random number between 1 and n divides n?

3.91 9. Though Robin Hood is a wonderful archer (he hits the mark 9 times out of
10}, he faces a difficult challenge in this tournament. In order to win, he must hit the
center of the mark at least 4 times with the next 5 arrows. On the other hand, if he hit
the mark 5 times out of 5, the county sheriff would recognize him. Let us suppose he
can miss the mark at will: what is the probability of his winning the tournament?

3.92 4. A drug smuggler mixes drug pills with vitamin pills, hoping customs officers
won’t find him out. Of a total of 400 pills, only 5% are illegal ones. If the officers check
5 pills, what is their probability of finding an illegal one?

3.93 9. A box contains 90 balls numbered from 1 to 90. We sample without replacement
5 balls. What is the probability that they contain the balls 1, 2 and 3?7 Suppose we add
three more balls numbered 1,2 and 3 to the original 90 balls. What is now the probability
that after producing a sample of size 5 the trick is discovered?

3.94 9. Let n > k > r > 0 be natural numbers and let X be a set of cardinality n,
|X| = n. Define
Prr(X):={(A,B)|BCACX, |B|=r, |A|=k}.

Show that

Perl = () ()

3.95 4. Show that the number of strings of characters of k letters from an alphabet of
n letters is nk.
Show that the number of strings of characters with n letters from an alphabet A =

{A1,Az,...,Ar} where the letter A; appears k; times with k; > 0and )], k; =n is

n!
kilka!- k!

3.96 9. Show that



116 3. Integer Numbers: Congruences, Counting and Infinity

()=t () = 0Hee+ ),
()=, =07,
k

Y (n-kk—gp = (arnr,  LCRT s caper(V),

(6=, i(?)z(ﬁ?)’

3=0 Z
S (2n) 2m 2
2 e =(a) zwk _

3.97 9. Let |X| = n and let Pr(X) := {A C X||A| = k} C P(X) be the set of
k-subsets of X and IIx(X) the set of k—partltlons of X, i.e., of subsets {A1,..., A} of
X which are disjoint and such that X = Uk_| A;. Show that

IZ(X, {1,2,.. ., kDI = KNPR(X)],  [S(X,{1,2,...,k})| = K!IT(X))-
Moreover show that
M (X U{zo})| = k| (X)| + [The—1(X)]-
[Hint: Notice that the k-partitions of X U {z¢} divide into the ones for which {zg} is

one of the sets and the ones where z is properly contained in one of the k-subsets.]

3.98 9. N balls numbered from 1 to N are successively located in N cells numbered
from 1 to N starting from the first. What is the probability that a ball is located in
the cell with the same number? [Hint: Compute first the probability that k balls are
located in the corresponding cells.]

3.99 9. Let Ey,..., E, be finite sets such that the intersection of k of them has
always the same power, i.e., for all i1 < i2 < --- < iy we have |E;) NE;,, N---NE; | =

¢(k). Show that
U ] = -0 (et

In particular show that, if P, denotes the family of permutations of n objects without
fixed points,

P.={oc€P.|o; #1}

we have
-~ i 1
| P} =n! Z(—l)kﬁ-
k=0
[Hint: Write Py \ P, = U2, E; with E; = {0 € Pp|0; = i}]

3.100 § 9 Graphs. Many problems, both theoretical as well as of practical interest,
often translate into graph problems.

Definition. A (symmetric) graph with vertices V' is a subset G of V X V such that if
(u,v) € G, then (v,u) € G, and (v,v) ¢ G forallve V.
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x = first extreme of
« in alphabetical or-
der

write the nearest to
T

] remove z from I' _I

Figure 3.17. Passing from a tree I" to a word .

Two graphs (V,G) and (V',G’) are said to be isomorphic if there is a bijection
¢ : V — V' such that (u,v) € G if and only if (¢(u), p(v)) € G’. Of course we can
always decide if two finite graphs are isomorphic or not; however, the needed time can
be very large in presence of many vertices: the best algorithms are just slightly more
efficient than comparing the n! bijections from V and V7,

To make the comparison more efficient, it is convenjent to look at invariants. One
such invariant is the number of connected components of a graph.

Definition. The connected component of v in G is the set
[v] := {w € V|3uo,u1,...,ur €G

such that up = v, ur =w, and (¥;_y,u;) € GVi= 1,...,7‘}.

The number of connected components of G, ¢(G), is clearly the same for isomorphic
graphs. In particular, G is said to be connected if it has only one connected component:
being connected is an invariant.

Another invariant is the chromatic polynomial introduced by George Birkhoff
(1884-1944) in 1912.

Definition. A coloring of a graph (V,G) with x € N colors is a mapping x : V —
{1,2,...,z} such that x(u) # x(v) whenever (u,v) € G, that is, such that adjacent
vertices are colored differently.

The least number of distinct colors needed to color a graph is called the chromatic
number, y(n), of the graph. Given a graph with n vertices and = > v(n), show that the
number of coloring of G with x colors is given by a polynomial in z of degree n = |V|,
called the chromatic polynomial of G
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Add last letter on
the right of =

x = first letter which
does not appear in w

no

Add z to the right of
w

y = first letter on the
left of

Draw the arrow
(z,9)

I Remove y from 7 ]

Figure 3.18. Passing from a word = to a tree I'.

pa(z) = Z (—1)ITl et

rcG

where the sum is taken on all subgraphs I of G (including @ and G).5 [Hint: Compute
the number of wrong colorings.]

3.101 99 Trees. A treeIis a connected graph without cycles, a cycle being a sequence
of distinct vertices uy,...,un, n > 2, with (uk, ux+1) € G and (un,uo) € G.

Theorem (Cayley). The number of trees with n vertices is the number of words with
n — 2 letters from an alphabet of n letters, i.e., n™ 2.

Figures 3.17 and 3.18 show how to construct a word from a tree I' and a tree from a
word.

5 There exist efficient algorithms to compute the chromatic polynomial of a graph.
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3.102 § The Pigeonhole Principle. Prove

Proposition. Let X and Y be nonempty finite sets and let ¢ : X — Y. There exists
y € Y such that the fiber ¢~!(y) contains at least | X|/|Y| elements.

Despite its simplicity, it is one of the most powerful methods of combinatorics. However,
it is not always easy to understand how to use it. As an example of its applications we
state, without proof, the following theorem.

Theorem (Erdts—Szekeres). Let a,b € N, n := ab+ 1 and let z1,x2,,%n be any
n-sample of real numbers. Then the sequence contains either an increasing sequence of
a + 1 numbers or a decreasing sequence of b+ 1 numbers.
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Sir Isaac Newton Gottfried von Leibniz
(1643-1727) (1646-1716)
Jacob Bernoulli Johann Bernoulli
(1654-1705) (1667-1748)
Michel Rolle Guillaume de I’Hépital Jacopo Riccati Guido Grandi Giulio Fagnano

(1652-1719) (1661-1704)

Abraham de Moivre
(1667-1754)

Brook Taylor
(1685-1731)

Alexis Clairaut
(1713-1765)

Daniel Bernoulli
{1700-1782)

Marije Jean Condorcet
{1743-1794)

Adrien-Marie Legendre
{1752-1833)

(1676-1754)

James Stirling

Johann Lambert

(1671-1742) (1682-1766)
Colin MacLaurin

(1692-1770) (1698-1746)

Leonhard Euler
(1707-1783)

Jean d’Alembert
(1717-1783)

Etienne B’ezout

(1728-1777) (1730-1783)

Joseph-Louis Lagrange
(1736-1813)

Pierre-Simon Laplace
(1749-1827)

Lazare Carnot

(1753-1823)

Sylvestre Lacroix
(1765-1843)

Joseph Fourier
(1768-1830)

Figure 3.19. Infinitesimal analysis: a chronology from Newton and Leibniz to Fourier.




4. Complex Numbers

As already stated, the process of formation of numerical systems has
been very slow. For instance, while Heron of Alexandria (IAD) and
Archimedes of Syracuse (287BC-212BC) essentially accepted irrational
numbers, working with their approximations, Diophantus of Alexandria
(200-284) thought that equations with no integer solutions were not solv-
able; and only in the fifteenth century were negative numbers accepted
as solutions of algebraic equations.! In the sixteenth century complex
numbers enter the scene, with Girolamo Cardano (1501-1576) and Rafael
Bombelli (1526-1573), in the resolution of algebraic equations as surdes
numbers, that is numbers which are convenient to use in order to achieve
correct real number solutions. But René Descartes (1596-1650) rejected
complex roots and coined the term imaginary for these numbers. Despite
the fact that complex numbers were fruitfully used by Jacob Bernoulli
(1654-1705) and Leonhard Euler (1707-1783) to integrate rational func-
tions and that several complex functions had been introduced, such as
the complex logarithm by Leonhard Euler (1707-1783), complex numbers
were accepted only after Carl Friedrich Gauss (1777-1855) gave a convine-
ing geometric interpretation of them and proved the fundamental theorem
of algebra (following previous researches by Leonhard Euler (1707-1783),
Jean d’Alembert (1717-1783) and Joseph-Louis Lagrange (1736-1813)).
Finally, in 1837 William R. Hamilton (1805-1865) introduced a formal
definition of the system of complex numbers, which is essentially the one
in use, giving up the mysterious imaginary unit /—1. Meanwhile complex
functions reveal their importance in treating the equations of hydrody-
namics and electromagnetism, and, in the eighteenth century develop into
the theory of functions of complezr variables with Augustin-Louis Cauchy
(1789-1857), Karl Weierstrass (1815-1897) and G. F. Bernhard Riemann
(1826-1866).

1 For example, Antoine Arnauld (1612-1694) questioned that —1 : 1 = 1 : -1 by
asking how a smaller could be to a greater as a greater to a smaller.
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24

Figure 4.1. Girolamo Cardano (1501-1576) and Niccold Fontana (1500-1557), called
Tartaglia.

4.1 Complex Numbers

The development of the notion of complex numbers goes through their
use in algebraic and differential problems and the understanding of their
geometric properties. An a posteriori motivation is that they allow the
solution of algebraic equations, as for instance 2% + 1 = 0, that is not
solvable in R.

a. The system of complex numbers

4.1 Gauss plane. The set of complex numbers, denoted C, is the Gauss
plane, that is the Cartesian plane R? with the operations of sum,

(a,0) + (c,d) := (a+¢,b+d),

that is, the usual rule of summing vectors in R?, and of product, defined
by
(a,b) - (¢,d) := (ac — bd, ad + bc).

If we identify the axis of abscisses with R in such a way that (0,0) = 0 and
(1,0) = 1, and we introduce the imaginary unit ¢ to indicate the vector
(0, 1), we see, on account of the computation rules previously defined, that
i2 =1-1=—1, that z = (a,b) = a(1,0) + b(0, 1) is written as z = a + b,
and that the product of two complex numbers is written as

(a +ib)(c + id) = ac + iad + ibc + i*bd = (ac — bd) + i(ad + bc).

It is easily seen that the properties (A4), (M) and (AM) of the real
system R, relative to the sum and the product, continue to hold in C, 0
and 1 being this time respectively 0 := 0+ ¢0, 1 := 1+ ¢0. The inverse 1/z
of the complex number z = z + iy # 0 is then given by
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CONTALNIND A STATEMATIC STATEXENT
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Figure 4.2. The frontispiece of the Lec- 1858
tures on Quaternions by William R.
Hamilton (1805~-1865).

1 -1y T —1y T ]

:v+iy= (x+ay)(z—iy) x2+y2  x2+92 _Zx2+y2'

Consequently we can summarize saying that C is a commutative field.
Moreover, since the sum and product of complex numbers reduce to the
sum and product of real numbers on the real axis, we can state that R ~
{x +iy € C|y =0} is a subfield of C.

Of course there are several ways of ordering complex numbers; for in-
stance, we can order them lericographically: (a,b) < (c,d) if a < ¢ or
a = c and b < d. However, none of all possible orderings is compatible
with the field structure of C and the order of R. Otherwise, we would have
either ¢ ~ 0 or 1 < 0, as ¢ # 0 being 0 € R and ¢ ¢ R, thus, in both cases
—1 =142 > 0: a contradiction. For this reason inequalities between complex
numbers are meaningless.

4.2 Conjugation. Let z := a + ib € C. The numbers a and b, denoted
also a =: Rz and b =: Sz, are called the real part and the imaginary part

A z=a+ib A
. I SRR TR .
. z+w
z w :
i T : .
: ¢
: z
1 a

Figure 4.3, The sum of complex numbers.
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A A
-z z
2 A FO .
[z b e ’ .
Iz >
S e ;
Rz -z z

Figure 4.4. (a) Rz, Uz, |2| and the argument 6 of 2. (b) Relative locations of +2z and
+z.

of z. The conjugate of z is defined by

Z:=aq—1ib=Rz—1iJ2.

Of course Rz = Rz and I% = —z. Consequently Z is the symmetric of z
with respect to the real axis. The symmetric point of 2z with respect to the
imaginary axis is —%, and the symmetric of z with respect to the origin is
—2z. Moreover,

Z2+7Z 22—z
Rz = Qz=—
2’ 2i
4.3 4. Show that
§=z, z+w=Z+w, Z T w=7%2 w,
1 1 Z z

4.4 Absolute value or modulus. Let z = a + ib € C. Its absolute
value, or modulus, is defined as the nonnegative real number

2] := Va2 + b2 = /(R2)2 + (I2)2.

Clearly |z| is the Euclidean length of 2 in the Gauss plane (i.e., the distance
between z and the origin) and agrees with the modulus in R if 7 is real.
Clearly

(i) |z} 20, |z| = 0 if and only if 2 =0,
(ii) TRIANGLE INEQUALITY. |z + w| < |2| + |w|.

4.5 9. Show that for all z and w € C the following hold:

122 = 23, ol = lal ), [E =)

Rl < 2l (2] < |, el = hwl | < |z - wl,
1 z

~ = —if 25 0.

PR
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4.6 Hermitian product. The Hermitian product of z and w is simply
zw. f w=a+1iband z = ¢+ id, then

zW = (c+id)(a — ib) = (ac + bd) + i(ad — be)

from which we easily infer

o 2Z=2z%+y? = 2]%

o R(2w) is the scalar product of z and w in R?, in particular z and w are
perpendicular if and only if R(2w) =0,

o the area of the triangle T" with vertices 0, z and w is

Area(T) = %]ad —be| = %I%(zﬁ)'

For the last claim, denote by ¢ the angle between the segments 0z and 0w
at the origin, and recall that ac + bd = |z||w| cos ¢ and that Area(T) =
|z Jw| | sin p|. Therefore

Area(T)? = |z|2|w|?(1 — cos? ) (4.1)
= (? +d?)(a® +b?) — (ac+ bd)? = - -- = (ad — bc)%.

4.7 Polar form of complex numbers: Argand’s plane. A complex
number 2 = a4+ ib € C, z # 0, can be represented in polar coordinates
(r,8) with center at the origin, r being the modulus of z and 8 the angle
between the real positive axis and the half-line from the origin through z,
“measured counterclockwise and in radiants,” that is,

a = |z|cos¥, b=|z|sin@ (4.2)

ie.,
z = |z|(cos @ + isin ). (4.3)

Notice that the previous equality holds for all z € C. It is the polar repre-
sentation of z. The number @ is called the argument or phase of z. Clearly,
6 is determined by z up to an integer multiple of 2, in particular (1) =0
modulo 2. The argument of z, denoted by Arg (z), must be understood
as a multivalued function and not as a real-valued function. If we insist in
considering the argument of z as a function from C\ {0} to R, we have to
choose a determination: that is, an interval [a, a+ 27| where a unique value
of the angle must be read. The restriction of the argument to this interval,
called a determination of the argument, is denoted by arg (*)(z). Among
all determinations, two standard choices are a = 0, that is 8 € [0, 2n],
often called the principal determination, commonly denoted by arg z, and
a = —m, that is § € [-m, [

However, choosing a determination has drawbacks: first we have a dis-
continuity of the argument function arg (*)(z) along the half-line through
the origin that forms an angle a with the positive z-axis, where a jump
of 27 between the values of the two sides of the half-line exists; secondly,
addition formulas just do not hold for a determination, we in fact have
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z4+w

Figure 4.5. Multiplication of complex numbers.

arg @ (z12,) = arg Wz +arg @z, — ¢

where

c=a+ 0 if2a< a,rg(“)z1 + arg ()25 < 2a + 2,
27 if arg @z + arg @z, > 2a + 2.

4.8 §. Show that

arctan £ ifz >0,

z ifxr=0and y >0,
8(z) = arctan £ + 7 if z <0 and y > 0,

arctan £ — 7 ifz <0Oand y <0,

-z isz=0and y <0,

where z = z + iy, is the determination of the argument on [—n, «[.

4.9 Multiplication in polar coordinates. If 2 = p(cos§ +isin§) and
w = r(cosn + isinn), on account of the addition formulas for the trigono-
metric functions and of the rule of multiplication for complex numbers, we
get

2w = pr{(cos @ cosn — sin @sinn) + i(cos sinn + cos 7 sin §)]

= pr(cos(6 + n) +isin(f + n)]. (44)
That is, the modulus of the product is the product of moduli, while the
argument of the product is the sum of the arguments of the factors. Ge-
ometrically, multiplying a vector z € C by w := |w|(cosn + isinn) means
dilating the vector by a factor |w| and rotating it anticlockwise through
an angle 7. For instance iz is the anticlockwise rotation of z by 90 degrees.
Thus dilations and rotations for plane geometry can all be expressed by
complex multiplication, a useful fact in plane geometry (see, for example,
Section 4.3.2).
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4.10 de Moivre’s formula. A trivial consequence of (4.4) is that
22 = p?(cos 20 + isin 26)

if 2 = p(cos 8+ sin §), and, proceeding by induction, the following formula,
de Moivre’s formula, holds for every n € N,

2" = p"(cosnb + isinnh). (4.5)

4.11 Complex exponential. Set f(#) := cosd + isinf, 8 € R. The
multiplication rule yields the formula

f(61)f(02) = (61 + 62) Vo, 62 € R,

which is analogous to a®'a® = a®'**2, We then define the complez expo-
nential as the map e* : C — C also denoted by exp, given by

e* = exp (z) := e**(cos Sz + isin Iz), (4.6)
e being Euler’s number. It is readily seen that

efe? = et VY z,weC,

le*| = Rz,

Clearly, if z is real, the complex and real exponential (with base e) agree;
the novelty is in the definition

e = cosf +isiné, (4.7)

which allows the use of an exponential notation for the trigonometric func-
tions sin @ and cos 6. Notice the very famous Euler’s identity

Actually, observing that for all # € R we have
e®® = cosf +isiné, e = cos§ — isiné,
we easily infer the following Euler’s formulas:
0 ,—if 6 __ ,—if
2 2

Finally, observe that (4.7) allow us to write any complex number in the
shorter polar form

i (a)
z=|z|e*8“%  VaeR, VzeR.
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b. The n-th roots
4.12 Proposition. Let w € C, w # 0, n € N, n > 1. The equation

z™ = w has exactly n distinct roots zg, z1,...,2,—1 given by
2k
2z := |w|/™ exp (Zjarg&iu) k=0,1,...,n—1. (4.8)
Proof. If z is a root of z" = w, then
I2|™ = |w] and  Arg:" = Argw.

The first equality yields |z| = |w|'/", while the second yields

A 2k
Argz = _ng_—f-_w, keZ,
n
as Arg 2™ = nArg z. Therefore
2
2 = [w|*" exp (iir&:“_k_”), VE € Z.

Since the values (arg (w) + 2kn)/n repeat periodically with period 27 /n,
the only distinct values in [0, 27| correspond to £ = 0,1,...,n — 1. Thus
we conclude that z ought to be one of the z;’s. Finally, one checks that all
the z;’s are solutions of 2" = w. 0O

The n distinct solutions 2g, 21, . . . , 2n—1 of the equation 2" = w in (4.8)
are called the complex or algebraic n-th roots of w.

Proposition 4.12 applies also to w = a € R. If a > 0, we have a = |a| =
|ajexp (i - 0), thus

{‘/E=|a’1/”exp(i?) k=0,1,...,n— 1L

If a < 0, we have a = |alexp (i7), hence

2k +1
{‘/E=|a|1/"exp(i(——~:—)7r) k=0,1,...,n—1.
In particular, for @ > 0, we rediscover the arithmetic root al/™ correspond-

ing to k = 0, and, in case n is even, for k£ = n/2 we also find
Ya = a/™(cosm +isinm) = —a/™,

as n-th root of a, that is the negative real n-th root of a. If a < 0 and n is
odd, n = 2h + 1, then for k = h {/a = |a|'/?(cos 7 + isin7) = —|a|'/™ is
one of the complex roots and is the only real n-th root of a.

Notice that for every k£ = 0,...,n—1 the argument of z is the argument
of zx—1 plus 27/n. Consequently, the n-th roots of a complex number w
represent a regular n-sided polygon, inscribed in a circle at 0, with radius
|w|'/™ and one vertex at |w|!/"erare (w)/n,



4.1 Complex Numbers 129

w [y
.
R z2
o
23 2
L LN -
argw/%
N I ..
[T 25
24

Figure 4.6. The 5th roots of a complex number.

4.13 Roots of unity. In particular Proposition 4.12 yields that the n
solutions of 2™ = 1 are given by

2nk
Wn k 1= €Xp (zT),

k=0,...,n-1.
Let w := wy, ; = €'?™/™, Then the n-th roots of unity are the numbers
1=u® w, w?, W3,...,w" L. (4.9)

Notice that obviously w™ = 1. Moreover, comparing with (4.8), if z; :=
|w|/"exp (iarg (w)/n), then the n-th roots of w can be written as

21, 21w, z2w?, ..., nw™ L (4.10)

c. Complex exponential and logarithm

The exponential function z — e* is actually a map from C into C. Observe
that e* # 0 everywhere since |e*| = e®* # 0.

4.14 Proposition. The complex exponential is periodic with period 21,
ie.,
exp (z + 2mi) = exp (2) VzeC.

Moreover for any a € R, the restriction of the exponential map e* to
I, = {zeC’a§3z<a+7r}

is a bijective map onto C \ {0}.
Proof. Formula (4.7) yields
exp (i(y + 2km)) = exp(iy) Vy€ER,

that is, e* is 2mwi-periodic. Fix ¢ € R and assume that e*! = e?2, i.e.,
e*1=*2 = 1, Then 21 — 23 = 2kmi, from which we infer 2y = 23, since
21,29 € 1. 0
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Given z € C, 2 # 0, every w € C such that e* = z is called a natural

logarithm of z. More precisely,

4.15 Definition. For any a € R, The inverse function of the restriction
of the complex exponential e* to

I, .= {z)af%‘z <a+21r}
is called a determination of the complex logarithm,
log® : C\ {0} - I, c C.

When a = —m, we denote log("")w by logw and call it the principal
logarithm.

By definition
oEVv —y  YweC \ {0}

and
log®(e*) =z ifandonlyif z€I,.

4.16 Proposition. For any a € R and w € C\ {0} we have
log® w = log jw| + i arg Pw. (4.11)

Proof. Let z : x + iy = log{® w. Then w = e* and z € I, if and only if

= e eV lw} = e
w=een if and only if iy w
a<y<a+27r € =—,aSy<a+27T7
= 3 w(
from which we infer z = log |w| and y = arg (Yw = arg (V2. O

4.17 Example. Since i = cos § + isin 7, i.e., argi = 7, we have logi = iJ or it =
e /2,

On account of Proposition 4.16, all determinations of the logarithm
are discontinuous as the corresponding determination of the argument. In
particular log(“) w is singular along the half-line that has an angle a with
the positive z-axis, with a jump of 274 along this half-line. Also, some care
is necessary to compute with logarithms since the argument of a product
is not in general the sum of the arguments. In fact, if z,w € C\ {0}, we
have

log®(2w) = log'® z + log® w — ic

where
c—a+ 0 if arg (@ (z) + arg () (w) < 2a + 2,
2r  if arg () (2) + arg () (w) > 2a + 2.
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GRUNDLAGEN
An Imaginary Tale

THE $STORY OF V=1

PUR BINE

' ALLGEMEINE THEORIE DER FUNCTIONEN

Paul J. Nahin
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VERANDERLICHEN COMPLEXEN GROSSE.

GOTTINGEN,

VERLAG VON ADALBERT RENTE

1867,

Figure 4.7. The frontispieces of a treatise on functions of complex variables by
G. F. Bernhard Riemann (1826-1866) and of a popular book about /—1.

4.2 Sequences of Complex Numbers

a. Definitions

The limit of a sequence of complex numbers is defined similarly to the real
case.

4.18 Definition. Let {z,} C C be a sequence of complex numbers. We
say that {z,} converges to the complex number zq if |z, — z9| — 0, that is

Ve > 0 3 7 such that |z, — 20| < e Vn > 7.
We say that {z,} C C diverges if |2,| — +00 as a sequence of real numbers.

As in the real case

4.19 Definition. We say that a sequence {z,} C C is a Cauchy sequence
if Ve > 0 there is 7 such that |z, — zm| < € for all n,m > 7.

From the inequalities

lz], yl < |2l = Va? +y* < || + [yl (4.12)

for all z =z + iy € C, we easily infer

4.20 Proposition. Let {z,}, 2z, := Zn + iyn, be a sequence of complex
numbers, and let zg := zg + iyo € C. Then

(i) zn — 20 € C if and only if x,, — x¢ and y, — Yo.
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(ii) zn is a Cauchy sequence in C if and only if {z,} and {y,} are Cauchy
sequences in R.

From Proposition 4.20 we easily infer for instance

4.21 Proposition. Let {z,} and {w,} be two sequences of complex num-
bers such that z, — z € C and w, —» w € C. Then

(i) Azn + pwn — Az + pw for all A\, p € C,
(i) zpwp — 2w,
(ili) if wn # 0 and w # 0, then 2, /wn — 2z/w,
(iv) |zn| — |2|, and Z, — Z.

4.22 §. Prove Propositions 4.20 and 4.21.

Finally, we have the following.

4.23 Theorem (Cauchy test}). A sequence of complex numbers con-
verges if and only if it is a Cauchy sequence.

This follows again from Proposition 4.20 if we take into account the Cauchy
test for real sequences. For the same reason the Bolzano—Weierstrass the-
orem, Theorem 2.43 extends to complex sequences

4.24 Theorem (Bolzano—Weierstrass). Any bounded sequence of com-
plex numbers has a convergent subsequence.

b. Weierstrass’s theorem

At this point we could introduce the notions of limit and of continuity for
functions of a complex variable and develop a theory similar to the real
case. Instead, we prefer to postpone this study in the context of metric
spaces. Here we confine ourselves to defining continuity for functions f :
C — R. A function f : C — R is said to be continuous at zq if for every
sequence {z, } converging to zg we have f(%,) — f(zo); and f is continuous
if it is continuous at each zp € C. Finally we say that f(z) — +oo as
|z] — +oo if VM > 0 there exists r > 0 such that f(z) > M for all z such
that |z| > r.

4.25 Theorem (Weierstrass). Let f : C — R be a continuous function
such that f(z) — +oo as |z| = oo. Then f attains its minimum at a point
2o € C.

Proof. Let L :=inf{f(z)|z € C}. It suffices to show that f(zp) = L. From
the characterization of the infimum we infer —0o < L < 400, the existence
of a minimizing sequence {y,} C f(C) C R such that y, — L and of a
sequence {zx} C C such that f(zx) = yx. The sequence {z;} is bounded,
otherwise we could find a subsequence {z,,} of {2z} with |z,,| — o0,
hence f(zn,) — +o0. Since yn, = f(zn,) — L, we would get L = +oc:
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a contradiction. The Bolzano—Weierstrass theorem, Theorem 4.25, then
yields a subsequence {z,,} which converges to some z; € C. We then
have yn, = f(2n,) — f(z0). Since by construction y, — L, we conclude
L = f(z), as wanted. a

4.3 Some Elementary Applications

In this section we present a few elementary applications.

4.3.1 A few applications of the complex
notation

When dealing with trigonometric formulas, but actually in many instances,
the complex notation simplifies computations a great deal.

4.26 Uniform circular motion. Recall that the harmonic motion of a
point P(t) on the unit circle of R?, that starts at ¢ = 0 from (1,0) with
angular velocity w, is given by

z(t) = coswt,
y(t) = sinwt,

see, e.g, Proposition 6.25 of [GM1]. Thus, introducing complex notation,
the uniform circular motion on the unit circle is described by the function
P : R — C given by P(t) = e¢'“*, This formula already appears as a great
simplification of the description of the harmonic motion on the unit circle.

However the simplification that can be obtained using complex numbers
and complex notation is even more evident if one notices that it is easier to
compute with powers than with sine and cosine. For instance, if we define
for 2(t) : R — C, 2(t) = z(¢) + iy(t),

2/ (t) = Dz(t) := ' (t) + iy (¢),
/0 z(s)ds := /0 z(s)ds +i/0 y(s) ds,

eiwt -1

W

then we have

t
D(ezwt) — iwe'zwt7 / ezws ds =
0

for all w € R. Clearly these formulas are handier than D(e® cos(bt)) =
ae® cos(bt) — be®t sin(bt), and D(e® sin(bt)) = ae® sin(bt) + be* cos(bt), or
the corresponding formulas for the primitives.
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4.27 Example. Euler’s formulas yield that the sine and cosine function are just a
superposition of two uniform circular motions with opposite angular velocities of +1.

4.28 Complex solutions of the oscillation equation. Consider the
differential equation
az”"(t)+bz'(t)+c=0

and look for solutions z : R — C. The characteristic equation
aX’ +bA+c=0

has two roots A\; and Ao that are either distinct or equal. In the first case,
A1 # Az, €M1t and e*2t are solutions and, on account of the principle of
superposition

c1e?t + coe??t c1,c0 €C

are solutions,too. In the second case, A\ = A2 =: ), the functions e** and
te’ are solutions as well as all functions of the type

(c1 + czt)e)‘t, c1,c2 €C.

Exactly as in the real case (see, e.g., Section 6.1.3 of [GM1]), one can
then conclude that, in fact, these are all solutions.

4.29 Prostapheresis formulas. In complex notation they are writ-
ten as

e + ¢ = 2 cos 252 ei*$2,
(4.13)

; ; . v a—B otB
e'* — ¢tf = 24 sin 9—‘—2-g e 2

and can be easily deduced. In fact, writing

_a+f  a-f
=t

it suffices to note that

a+f a-p

2 2

B=

2

. . ca+8 ca—p8 _;a=8
eza+ezﬂ=622 {612 +et },

gia _ i — oi%f2 {ei‘*;f’ — %2 }
Therefore they are a trivial consequence of Euler’s formulas.

4.30 Beating phenomenon. This is a phenomenon which occurs when
we sum two sinusoids of slightly different pulses, compare, e.g., 6.13 of
[GM1]. As a simple example, let us show that the same phenomenon
appears when we sum sinusoidal signals with different amplitudes. If
f1(t) = Arcos(wit + 1), fa(t) = Agcos(wat + p2), we have

fi(t) = R(cre™?),  fo(t) = R(coe™??)

where ¢; = A1€*1 and ¢, = Aye?2. Hence
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h (t) + f2(t) = %(Cleiwlt + Czei“"?t),

Factoring out the mean oscillation 232 we then find
. . LWyt w ;W] —w ;W] —w
clewlt +02ezwgt — ez—ﬁ—zt {clezug t +02e—z—1——12 t} . (4.14)

The explicit computation of the real part is of course complicated, but,
without performing such a computation, we see that we are in the presence
of a signal with pulse ﬂ%l and amplitude varying periodically with pulse

w1 —w2
3 .

4.3.2' A few applicatons to elementary
Euclidean geometry

Translations, dilations and rotations are the typical transformations of
Euclidean geometry of the plane. As we have seen, after introducing an
orthonormal reference frame, they have a natural algebraic counterpart in
the operation of sum and product in the Gauss plane. Therefore it is not
surprising that the use of complex numbers permits a particularly simple
algebrization of the geometry in the plane.

4.31 Straight line through two points a # b € C. The point z € C
is in the line through a and b if and only if z — a is a real multiple of b — a,
equivalently if and only if (z — a)/(b — a) is real, that is

S =

Consequently the two open half-planes bounded by that line are described

T Y <o) wa L[o(EIn) o)

4.32 Perpendicular lines. Let a,b,c be three distinct points in the
plane. Since an anticlockwise rotation by 90 degrees translates into a mul-
tiplication by ¢, the lines through a and b and through a and ¢ are perpen-
dicular if and only if ¢ — a/b — a is purely imaginary, that is

c—a c—a

b—a b—a
or

R((c-a)(®—7a)) =0.

Consequently the line through a and perpendicular to the line through a
and b is _
{z GC‘(b—?i)(z—a)+(b—a)(E—a) =o}.
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4.33 Similarity of two triangles. Let s;,82,53 € C and t1,t5,t3 € C
be the vertices of two triangles S and T'. We recall that S and T are similar
(with the ordered vertices) if the dilation and rotation which moves t; —t;
to so — s; moves also t3 — ¢; onto s3 — s1. Since rotations and dilations
translate into a complex multiplication, S and T are similar if and only if,
for some b € C we have wg —w; = b(z2 —21), then also w3 —wy = b(23—21),
that is,
23 — 21 _ W3z — Wy

Zg—21 Wy—wy

a. Special points of a triangle

4.34 Circumcenter. The perpendicular bisectors to the three sides af an arbitrary
triangle meet at a point. It is called the circumcenter of the triangle, and it is the center
of the circumcircle of the triangle.

Let a,b, ¢ € C be the vertices. The middle points of the three sides are respectively
(a+b)/2, (a+c)/2 and (b + ¢)/2. The equations of the bisectors are consequently

(b-0z+ (b-)z=b* - [c]?,

@-a)z+ (c—a)z = |c|* - |al?,

@-b)z+ (a~b)z =a|? - b2,
that, solved in z, give for the circumcenter

0= laf?(b—c) + [bI*(c — a) + |¢|*(a — b)
- @ab—c)+blc—a)+ea—b

4.35 Barycenter or centroid. The three medians (the lines connecting each vertex
to the middle point of the opposite side) meet at a point. If a,b, ¢ are the vertices,
(b+¢)/2, (a+c¢)/2 and (a+b)/2 are the midpoints of the corresponding opposite sides.
The intersection point of two medians can be obtained solving in A, 4 € R the system

z=/\a+(1—)\)9%'—c-,
z=uc+(1—)\)ﬂ2'—b.

Subtracting, we easily infer, since the triangle is nondegenerate, that the previous system
has one solution given by A = u = 1/3, thus concluding that the barycenter is

_a+b+ec
3 3
z belonging also to the third median. Notice that is is easy now to prove that the
intersection of the medians is two thirds of the way along from each of their vertices.

4.36 Orthocenter. The altitudes of a triangle (that is the perpendiculars dropped
down from vertices onto the opposite side) intersect at a single point: the orthocenter.
Fix a reference with origin at the circumcenter o of the triangle, and, in this reference,
let a, b, ¢ € C be the three vertices of the triangle, so that |a| = |b] = |c|. We claim that
the point

p=a+b+ec

is the orthocenter. In fact, since p — a = b+ ¢, and |b| = |¢|, p — a is perpendicular to
the side bc. By simmetry, p is also on the perpendicular from b to ca and from c to ab.
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Figure 4.8. (a) Euler’s line. (b) The nine-point circle.

4.37 4 Incenter. Show that the three angle bisectors of a triangle meet at a point
called the incenter.

4.38 Euler’s line. In any triangle, the circumcenter, the orthocenter and the barycen-
ter lie on a straight line. In fact in a reference in which the circumcenter is the origin,
the barycenter m and the orthocenter are respectively

1
m=§(a+b+c) and p=a+b+c
by 4.35 and 4.36.

We also have the following theorem due to Karl Feuerbach (1800-1834), but proba-
bly already known to Charles Brianchon (1783-1864) and Jean-Victor Poncelet (1788-
1867).

4.39 Theorem (The nine-point circle). Let a,b,c € C be the vertices of a triangle
that for convenience we think to be inscribed in a unitary circle, i.e., that is |a| = |b| =
le} = 1. Let g be the midpoint of the segment connecting the circumcenter and the
orthocenter, that is, in the chosen frame,

_a+b+c

=—

Then the circle with center q and radius 1/2 goes through
(i) the midpoints of the three sides,

(ii) the midpoints of the segments joining the orthocenter with the three vertices,
(iii) the feet of the three perpendiculars from the vertices to the opposite sides.

Proof. It suffices to show that each of those points has distance 1/2 from ¢. The distance
of the midpoint of be from q is

b+c]_l2|_m_l

2 (2l 2 2

The midpoint of the segment joining the orthocenter p with a is (a + (a + b+ ¢))/2 =
(a + 29)/2, hence

Jo-

- 52 =151=3
LR Bl ) i)
Finally, one sees that the foot of the perpendicular from a to bc is

7’=(a-i-;>-|-c ;Z)
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w3

Figure 4.9. Napoleon’s theorem.

hence

be l _ ] {e]

1
Iq—Tl| " 12a 2la] 2

b. Equilateral triangles

4.40 Proposition. Let z1, 22, 23 be the vertices of a triangle (listed anticlockwise) and
let w := exp (i27/3) be the second of the 3rd roots of unity. Then the triangle 212223
is equilateral if and only if

21 + wze + w2z3 =0.

Proof. In fact, 212223 is equilateral if it is similar to the triangle of the 3rd roots of
unity, 1,w,w?. Then, according to 4.33,
zZ3 — 21 w? -1

= =w+1,
22 — 21 w—1

i.e., 23 + wz1 — (w + 1)z2 = 0. Since w? + w + 1 = 0, we infer
23 +wz1 +w?zz=0

and, multiplying by w?, the conclusion. a

4.41 Napoleon’s theorem. It is said that Napoleon stated and proved the following
result. On each side of an arbitrary triangle draw the exterior equilateral triangle. Then
the barycenters of these three equilateral triangles are the vertices of a fourth equilateral
triangle. In fact, listing the vertices anticlockwise, if 2z, 22, 23 are the vertices of the
triangle and w3z22z1, w)z3z2, waz12z3 are the exterior equilateral triangles, we have

22 + w2y + w?ws =0,

w1 + wzz +w?zg =0,

23 + wwa + w?z =0,

and the barycenters of the exterior triangles are given by
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A

B

Figure 4.10. Mofley’s equilateral triangle.

21+ 22 +w3

=
22+ 23 + w1
L
21+ 23 + w2
n2 = - 3

Therefore
2 1 w w?
m+wn2 +wnz = g(w1+z2+23)+ g(zs +wa +21) + ?(22+Z1 + w3)

1
=3 ((uu +wzs +wzs) + (23 + wwz +wla) + (22 + w2 + wzwg))
= 0.

The following result, discovered by Frank Morley (1860-1937), is quite surprising

4.42 Theorem (Morley). The intersections of the adjacent pairs of angle trisectors
of an arbitrary triangle are the vertices of an equilateral triangle.

4.43 Lemma. Suppose that t1,t2,t3,t4 are points on the unit circle. Then the exten-
sions of the chords joining the points t1, t2 and t3,t4 meet at

Y ti+l2—13—14
Tito —13ts

4.44 ¥. Prove Lemma 4.43.

Proof of Morley’s theorem. For the sake of convenience assume that the triangle ABC
is inscribed in the unit circle, 4 = 1, ZAOB = 3y, LAOC = 38, 8 <0, and ZLBOC =
3a. Since circumferential angles are half the corresponding central angles, in order to find
the intersections of the trisectors of vertex angles it suffices to trisect the corresponding
central angles. We then call B = ¢3 in such a way that the intersection of the trisectors
of the angle in ¢ with the circle are the points ¢ and ¢?. Similarly we set C' = b3, Qb < 0,
in such a way that the corresponding intersections are b and 52, The arguments of the
intersections of the trisectors of the angle in A are

2 4n
at+3y=—f+2y+ —;—r 2a+3y=-28+7+

consequently the intersections of the trisectors of the angle A with the circle are the
points wb?c and wbc? where w = €'27/3, gee Figure 4.11.
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b2

Figure 4.11. Intersections of the angle trisectors with the circumscribed circle.

If P,Q, R are the vertices of the triangle obtained intersecting adjacent trisectors,
we compute, on account of Lemma 4.43,

_ b2 4¢3 —p 32 _ bed + b3 — 3 — B3¢
T b2e-3 _p-3c-2 b—c
= (b2 4 be + ¢2) — be(b + ¢),
_ 1+ b~ 2c 1w=2 —p=3 — -1 _ e+ bw—c~b3
- b=2¢~1lw=2 —p—3¢c-1 - bw—1

=u? (c(b2 + bw? +w) — b(b +w2)),
.o 140 ¢ 2wl —p~1 -3 _ beB +ew?—c3—b
- b~lc—2p~1 —p=1c-3 - caw? —1

=w(b(c2 + cw + w?) —c(c+w)).

Finally, we infer
P+ wq + w?r = b% + be + ¢ — b2¢c — be? + b2c + baw?
=w~b2—bw2+bcz+bcw+bw2—c2—cw=0,

and the claim follows from Proposition 4.40. 0

4.4 Summing Up

Complex numbers

Complex numbers are points in the plane R?: one identifies 1 to (1,0) and denotes by
1 the number corrsponding to (0,1). Complex addition then coincides with the sum of
plane vectors. Any complex number z = (z,y) then is written as x + 4y and complex

multiplication reduces to standard rules plus i2 = —1.
If z=xz+ iy € C, then
R(z) := =, S(z) =y, Zi=z— 1y,
R(z) = ztz 9(z)=z_z |2|? := 22 + ¢? = 27

2’ 2i '



4.4 Summing Up 141

Polar form

Every complex number z # 0 appears in polar form as z = |z|(cos 8 + isin #) where 8,

which is defined modulo a multiple of 2, is called the argument of z. We have

o for z = |z|[(cosf + isin®) and w = |w|(cosp + isiny), 2w = |z||w|(cos(6 + ¢) +
isin(@ + ¢)).

o DE MOIVRE’'S FORMULA. 2" = |z|™(cosnf + isinnf).

o The argument of a complex number z # 0 is not uniquely defined. In order to
consider the argument as a real function arg(z) : C\ {0} — R, we need to choose a
determination, that is an interval of size 27 in which to read the argument: a common
choice is the principal determination arg : C\ {0} — [0, 2x].

The n-th roots

If w € C\ {0}, there are n distinct n-th roots of w, i.e., n distinct solutions of the
equation 2™ = w, given by

.a,l'gw . .
z; = lwt/ e Th W, i=0,1,...,n—1,

i 2%
where w := €' = . The numbers
zj i =w, i=0,1,...,n-1

are the n-th roots of unity, i.e., the solutions of 2™ = 1.

Complex exponential
Define the complex exponential by

z

e* := e®(cosy + isiny), forall z=z+iy € C.

o We have )
=1, e = -1, ¥ =e*e¥ Vz,welC.

o EULER’S FORMULAS. If ¢t € R, then

X etwt | g—iwt ewt _ g—iwt
e :=cost + isint, coswt = —i——, sinwt = —————
2 21
Complex notation appears as a great simplicification of the description of the harmonic
functions.
o the uniform circular motion on the unit circle with angular velocity w passing through
1 at t = 0, is described by t — e™“t, t € R.
o for A € C formulas
X . t eiAt 1
D(e?) = iaet™, / eMds="—" A#0,
[} A
are handier than D(e® cos(bt)) = ae® cos(bt) — be? sin(bt), and D(e® sin(bt)) =
ae® sin(bt) + be®t cos(bt), or the corresponding formulas for the primitives.
o PROSTAPHERESIS FORMULAS.

; ; _3 iets
e“’+e"3=2cos°‘Tﬁe’ z ,

; i .. 3 ;ot8
em—e‘ﬂ=Zzsm°‘Tﬁe’ 7.

They clearly explain the beating phenomenon between two oscillators, even with
different amplitudes,

. . . w]two LW —wo g wl—w2
clezw1t+c2ezw2t=el ] t{clez 5 t+62e i 5 t}.
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4.5 Exercises

4.45 ¥. Write the following complex numbers in polar form:

5-5i, 1+iv3, 2-5i, 1—i.

4.46 4. Determine the points in the complex plane such that

1 —
1<l RZTL_ 0 jaoil4letil<a,
z a z+1 .

z-a|

z— 2z

Describe algebraically the sets
(i) of the points that have distance at most 1 from the imaginary axis;
(ii) of the points in the positive half-plane, with distance at least 2 from the origin.

4.47 §. Write in the form a + b the numbers

2—1 1+i\2
, (144972, .
T At9 (1—11)

4.48 §. Compute J]i_:-:ll

4.49 9. Verify the following;:
cos 30 = cos® 6 — 3cosHsin? 6,
sin 30 = 3 cos? O sin 6 — sin> 4,
cos 48 = cos? @ — 6 cos? §sin’ 0 + sin* = 1 — 8cos? Psin? 6,
sin 46 = 4 cos® §sin# — 4 cosOsin? 4.

4.50 §. Compute
(1+3%, (3-30)% (=5+5i)8.

4.51 9. de Moivre’s formula allows us to express cosnf and sinn@ by means of cosf
and sin§. Find those formulas. [Hint: Use Newton’s binomial.]

4.52 § Fagnano formula. Show that 2ilog 1;:

= .

4.53 4. Infer the following equalities from Euler’s formulas:

cos®z = lcos3:|:+ icosc::
T4 4 ’

4

1 1 3
sin*z = -8—cos4m = ~2—c0521:+ 3

1 5
sin®z = EsinSz - %sin?’z-i- gsinx.

4.54 4. Prove that

. ) . sin2Hlg  ng
sinf +sin26 +sin30 + - - 4 sinnf = —5— sin —,
sin 3 2
sin(n+%)0
—

2sin 3

1+ cosf +cos20+cos36+---+cosnf =

[Hint: Recall *® = cos + isin# and de Moivre’s formula.]
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4.55 §. Compute
Va, ¥Y=1, Vi, V2=, y1+iV3, ¥B-8&, Y4

4.56 9. Denote by €p,...,en—1 the n-th roots of unity. Show that they form a mul-
tiplicative group of finite order n, (i.e., only the first n — 1 roots are distinct. We say
that e € G, is a generator of Gy, if the elements 1,e,€2,...,e"~1 are distinct. Show
that ey is a generator of Gy, if and only if h and n are coprime.

4.57 §. Show that the sum of the n-th roots of a number is zero.

4.58 §. Solve the equations

2243iz+4=0, 22=3%, 24iz=1,

224224i=0, (z2+41i)®=(V3+1i)3,

4 3

=727, 3

z|z]| —-22-1=0, =z = 2%,
|2|222 = 4, Rzt = |z|4, zjz| — 2Rz =0,

224+22=1+2i, Rz=1}[z2

z

4.59 9. Show that z and cz are orthogonal in R? ~ C if and only if c is purely imaginary.

4.60 9. Verify that
log(—5) = log 5 + i,
log(—v3+1i) =log2+ i%w,

log(7 + 7i) =log 7+ = log2+z-—.

4.61 9. Interpret in complex notation the two-squares theorem of Diophantus of
Alexandria (200-284)

(2 +0))(@® + %) = (uz — vy)® + (uy + va)”.

4.62 9. Let 21, 22, 23, z4 be four points on a circle centered at the origin. Show that
the following claims are equivalent:

(i) 21, z2, 23, z4 are the vertices of a rectangle,
(ii) 21 + 22 + z3 + 24 =0,
(ili) z1, 22, 23, z4 are the roots of an equation of the type (22 — a?)(22 — b2) = 0
with |a| = |b] # 0.

4.63 §9. o f: C — C is said to be an isometry or is distance preserving if |f(w) —
f(2)| = |z — w| Vz,w € C. Show that f is distance preserving if and only if f(2) :=
F(0) + bz or f(z) = f(0) + bZ with |b| = 1.

o f:C — Cis said to be R-linear if f(z) = Rz f(1) + Sz f(i). Show that f is R-linear
if and only if f(2) = az + bZ with a,b € C.

o An R-linear map f : C — C is said to be orthogonal if R(f(z)f(w)) = R(zw) for all
z,w € C. Show that f is orthogonal if and only if f(z) = az or f(z) =aZ witha € C
and |a| = 1.

[Hint: For the first claim, consider g(z) (f(z) = £(0))/(f(1) — £(0)), and show that

lg(2)[? = |2|? and |g(z) — 1|? = |z - 1}%]
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Abu al Khwarizmi

(790-850)
Abu al Kindi Hunayn ibn-Ishaq Abu al Mahani ibn Qurra Abu'l Thabit
(805-873) (808-873) (820-880) (826-901)

Abu Shuja Kamil Abu al-Battani Sinan-ibn-Thabit Abu Jafar al Khazin
(850-930) (850-929) (880-943) (900-971)
Abu’l al Uqlidisi al-Buzjani Abu’l Wafa Abu al Quhi al Karkhi

(920-980) (940-998) (940-1000) (953-1029)
Abu Ali al Haytham Abu al Biruni ibn Sina Avicenna ibn Tahir AiBaghdadi
(965-1039) (973-1048) (980-1037) (980-1037)

Omar-Khayyam
(1048-1122)

Ibn al Samawal Nasir-al Tusi al Farisi Kamal Ghiyath al Kashi Ulugh-Beg
(1130-1180) (1201-1274) (1260-1320) {1390-1450) (1393-1449)

Figure 4.12. The arab renaissance.

Filippo Brunelleschi
(1377-1446)

Leone Alberti della Francesca Piero
(1404-1472) (1412-1492)

Andrea Mantegna
(1431-1506)

Leonardo da Vinci
(1452-1519)

Albrecht Diirer
(1471-1528)

Figure 4.13. Mathematics and art in the Renaissance period.



5. Polynomials, Rational
Functions and Trigonometric
Polynomials

In this chapter we want to illustrate the relevance of complex numbers
in some elementary situations. After a brief discussion of the algebra of
polynomials in Section 5.1, we prove the fundamental theorem of algebra
and discuss solutions by radicals of algebraic equations in Section 5.2.
In Section 5.3 we present Hermite’s decomposition formulas for rational
functions, which are useful for the integration of rational functions, see
Chapter 4 of [GM1]. Finally, in Section 5.4, we discuss some basic facts
about trigonometric polynomials and, more generally, sums of sinusoidal
signals. In particular we shall see that the spectrum of a signal completely
identifies the signal itself, we shall prove the energy identity and present a
sampling formula.

5.1 Polynomials

Let K be a field as, for instance, C, R, Q, or a finite field as, for example,
the residue class Z,, p prime. A polynomial with coefficients in K in the
indeterminate x is an expression of the form

P
P(z) :=agp +a17 + agx? + -+ - + apa? = Zaja:j, 1
j=0

where a; € K for all j =0,...,p. The class of all polynomials with coeffi-
cients in K in the indeterminate z will be denoted by K|z].

Presently a polynomial P(z) € K|z] is not a function defined in some
domain, but, instead, a formal expression defined essentially by the list of
its coefficients. In fact we say that two polynomials P(z) = Z?:o a;jz’ and
Q(x) = 372 bjz? are equal if a; = b; Vj = 0,...,min(n,m) and a; = 0
Vj =min(n,m)+1,...,n and b; =0 Vj = min(n,m) +1,...,m.

We can therefore extend, if this is convenient, the list of the coefhi-
cients of a polynomial by adding zeros as coefficients of higher order terms
without changing the polynomial itself.

Lag+ Z?zl a;z’ is the actual meaning of the sum!
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Figure 5.1. The frontispieces of Ars Magna by Girolamo Cardano (1501-1576) and of
Albebra by Rafael Bombelli (1526-1573).

If P(z) = 37 ga;z’ € Klz], the largest integer j for which a; #
0 is called the degree of P and is denoted by deg P. Nonzero constant
polynomials have degree 0, and the zero-polynomial, that is the polynomial
with a; = 0 Vj, is given degree —ooc.

Polynomlals in K[z] can be added and multiplied. If P(z) = Zp —p 05
and Q(z) = j=0 b;z? € K[z], and assuming for instance p > ¢, we define
the sum of P and @ by

P

P(z) + Q(z) := ) (a; +b;)a’

=0

<.

where we have set b; = 0 for j = ¢+ 1,...,p. Of course deg(P + Q) <
max(deg P, deg Q). The product of P and Q is then defined by

P 4q pt+q

P(z)Q(z) = (iawi) (ibja:j) = Zz:azb ztrd = chw

=0 j=0 1=0 j=0

Ck = Z a.,;bj

%)
itj=k

or, explicitly,
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Figure 5.2. Frontispieces of the first and fifth parts of the General Trattato sui numeri
of Niccold Fontana (1500-1557), called Tartaglia.

)
co = agbo,

c1 = arbg + agby,

c2 = agbg + a1b + apbz,

4

Cn = anbg +an_1b1 + Gn_2by + - +ajb,—1 + agbn,

\ -

Notice that we have extended the list of the coefficients of the polynomials
by setting a; := 0 for j = p+1,...,p+q,and b; := 0for j = ¢+1,...,p+q.
It is easy to see that deg(PQ) = deg PdegQ.

5.1 €. Show that the product of two polynomials is zero if and only if one of the two
polynomials is zero. This is expressed by saying that K[z] is an integral domain.

5.1.1 The Division Algorithm
Given two polynomials A(z) = Y_;_ga;27 and B(z) = 3 7" b;z’ € K(z]
with deg B = m < n, we observe that

Ai(z) := A(z) — Z—"m"‘mB(x) € K[z]

m

has degree less than n. Proceeding inductively, it is not difficult to show
that
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Figure 5.3. The frontispiece of the Opere Matematiche by Paolo Ruffini (1765-1822)
and the first page of the first chapter of the Teoria generale delle equazioni in cui si
dimostra impossibile la soluzione algebrica delle equazioni di grado superiore al quarto
by Paolo Ruffini (1765-1822).

TOMO PRIMO

COX RITRATTO PRLUAUTORE

..........

5.2 Theorem (Division algorithm). For given A, B € K[z] with B #
0, there are uniquely defined polynomials Q, R € K|z] such that

A=BQ@Q+R and deg R < deg B.

The polynomial Q in Theorem 5.2 is called the integral quotient of A by
B, and R is called the remainder of A divided by B.

a. Euclid’s algorithm and Bezout identity

Let A, B € K[z] be two nonzero polynomials. We say that B divides A or
that B is a divisor of A if A = BQ for some @ € K[z]. Notice that, if B is
a divisor of A, then AB for A € K, X\ # 0, is a divisor of A, too. Notice that
this contrasts with the notion of integral divisor of an integral number.
We shall say that A is irreducible in K if it has no divisors. In this case if
A = BQ, then either B or Q reduces to a constant polynomial.

We now look for the common divisors of A and B. Clearly polynomials
of degree zero are common divisors of A and B; also, every common divisor
to A and B divides PA + @B for all polynomials P, Q.

We say that a subset Z C K[z] is an ideal of K([z] if Z is a subgroup with
respect to the addition, and it is closed with respect to the multiplication
with any element, that is, PQ C Z VP € K[z], VQ € T.
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5.3 Proposition. Every nonzero ideal J of polynomials with one inde-
terminate is a principal ideal, that is, it contains only multiples (in K[z])
of a polynomial that is unique up to a multiplication by a constant.

Proof. Let B be a polynomial in Z with minimal degree and let A be
any other element in Z. By dividing A by B we have A = BQ + R, thus
R = A — B(@ belongs to Z. Since deg R < deg B, we conclude that R = 0,
i.e., A = BQ. Suppose now that B’ € T and deg B’ = deg B; B’ = BQ
yields deg @ =0, i.e., B = AB, A€ C. O

Since
7= {PA+QB|P,Q € Kls]}

is an ideal of K[z], we conclude that there exists a polynomial D, uniquely
defined modulo a multiplicative constant, such that every polynomial PA+
Q@B in T is a multiple of D. In particular

o D= AP + BQ for some P,Q,
o A=AD and B=BD,since1-A+0-B,0-A+1-Bel.

We therefore conclude that every common divisor of A and B divides D
and that every divisor of D divides both A and B. That is, D is the (up
to a multiplicative constant) greatest common divisor of A and B. With
some abuse of notation, it is denoted by g.c.d. (4, B).

As for integers, Fuclid’s algorithm and FEuclid’s generalized algorithm
yield a way to compute the greatest common divisor of A and B together
with polynomials U, V such that AU+BV = g.c.d. (A, B). Assume deg A >
deg B and define the three sequences {Rx}, {Ux}, {Vi} by

(Ry:= A, R, =B,
Ri+1 = Rg—1 — Qi Ry,

ﬁ Uo = 1, U1 = 0,
Uk41 = Ug—1 — QrUk,

Vo:=0, V1:=1,
\Vit1 = Ur—1 — Qi Vi,

until R,41 # 0.
5.4 Theorem (Euclid). We have R, := g.c.d. (4, B), and
gcd. (A, B)=R,=AU,+ BV,.

Proof. In fact, noticing that C divides A and B if and only if C divides B
and the remainder R := A — BQ, by induction one proves
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g.cd.(A,B) =g.cd.(Ry, Ry) = g.c.d. (R1, Rp)
=...=gcd. (Ru-1,Rp) = Ry.

(ii) It suffices to check by induction that Ry = AUx+ BV, Vk=0,...,n.
O

b. Factorization

Two polynomials that have a constant polynomial as greatest common

divisor are said to be coprime, and a polynomial is said to be prime or

irreducible over K if it has no divisors except for the nonzero constants.
From Euclid’s algorithm, it is easy to see that g.c.d. (AC,BC) =

g.c.d. (A, B) C. This implies the following.

5.5 Theorem (Euclid). If A divides BC and A and B are coprime, then
A divides C.

This, in turn, allows us to prove as for integers the following.

5.6 Theorem (Unique factorization). Every polynomial in K[z] can
be uniquely written as a product of irreducible factors.

Thus irreducible factors play in K[z] the same role as prime numbers
in arithmetic.

5.7 Remark. We notice that the notion of irreducible polynomial de-
pends on the field K of coefficients. For instance, 2 — 4 is not prime in
Q[z], z% — 2 is prime in Q[z] but not in R[z], nor in C[z], and z° + 1 is
prime in R[z] but not in Clz].

c. The factor theorem
A polynomial P(z) = }77_, a;27 € K[z] may be also regarded as a function
P : K — K which maps z € K — P(2) := Z;';o a;jz?, which we call the
polynomial function of P. In general, two different polynomials may have
the same polynomial function, for instance x + 1 and z3 + 1 on Z,, but,
as we shall see in a moment, two polynomials are identical if and only if
they have the same polynomial function, provided the field K is infinite.
We say that @ € K is a zero of a polynomial P € K[z] if P(a) = 0.
From the division algorithm theorem we infer at once

5.8 Theorem (Ruffini). Let P(z) = Z?:o a;z’ € K[z] be a polynomial
of degree p and let a € K. Then P(z) = (z — a)Qu(z) + P(a) Vz € K
where Q. () = Zé’;g bjz! with

bp_lzap,
bj_i1=a;+ab; (nK, Vi=p-1,p-2,...,1.
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Proof. In fact,
p—1 i r—1 ) p—1
(z — 0)Qa(z) = bizitl — Z bja? =bp_12P + Z(bj_l — abj)z? — abg
=0 j

j=1 j=1
p—1 )
= apz®? + Z ajz’ — aby = P(x) — (ag — abg).
i=1

Theorem 5.8 yields the following.

5.9 Theorem (Factor theorem). Let P € K[z] and o € K. Thenz —a
divides P(z) if and only if a is a root of P, P(c) = 0.

If we know k distinct roots z1, z3,..., zx of P, we can write inductively
P(z) = (x — 21)Q1(x), P(z) = (z — z1)(z — 72)Q2(x) as Q1(z2) =0, ...,
and finally

P(z) = (z — z1)(z — 72) - - (T — 2£)Qx(2), (5.1)

where deg Q) = deg P — k. In particular we cannot exceed deg P, that is,
every polynomial of degree n has at most n roots.

5.10 Theorem (Principle of identity of polynomials). Two polyno-
mials P and Q € K|z] of degree at most n are equal in K[z] if and only
if their polynomial functions take equal values in at least n + 1 distinct
points of K. In particular, if P has degree n and its polynomial function
vanishes in at least n + 1 distinct points, then P = 0 in K[z].

5.11 P(z) in the indeterminate r — «. By using the factor theorem,
it is easy to rewite P € K[z] as a polynomial in the indeterminate z — a.
We have the following.

Proposition. Let P be a polynomial of degree p and let o € K. Let
Qps @p—1, - - -, Q1 be the polynomials of degrees respectively p,p—1,...,2,1
obtained iteratively by Ruffini’s rule, i.e.,

{ Qn =P
Q;(2) — Qj(a) = (2 — a)Q;-1(2) Vi=n-1,...,2,1.
Then P(x) = P(a) + 3°5_; Qp—j(o)(z — o).
Proof. In fact,
Qo(z) = Qo(a),
Q1(z) = Q1(a) + (z — a)Qo(x),
Q2(z) = Q2(a) + (z — 0)Q1(z) = Q2(a) + (z — @)Q1(a) + (= — 2)?Qo(a),

P(z) = Qp(x) = ) Qp—j(a)(z — a)’.

=0
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Figure 5.4. The Italian Renaissance is probably the turning point for the development
of modern western culture. The knowledge of artists, technicians and merchants merges
with school education. Luca Pacioli (1445-1517) writes for “curious and ingenious en-
gineers and for any scholar of philosophy, perspective, painting, sculpture, architecture,
music and other mathematics.”

5.12 Complex derivative. Let P(z) = 3°7_ja;(z — @)’ € C[z]. The
complex derivative of P is defined as the polynomial of degree n — 1,

DP(z) = P'(z) := Z jaj(z —a) 1,

Of course D?P(z) := D(DP)(2) = 3.7, j(j — 1)a;27~2, and

n

DkP(z)z ;J(]—l)(]—k+l)a](z_a)]—k lfksn,

if k> n.

In particular for 0 < k < n, D¥A(a) = klay. Consequently we infer,
compare Taylor’s formula in [GM1],

P(z) = i £)%ﬁ)(z —a). (5.2)
3=0 )
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Figure 5.5. The famous architect Leon
Battista Alberti (1404-1472) was the
theorist of mathematical perspective.
His ideas were presented in De Pictura,
1511, while in Ludi Mathematic: he dis-
cussed applications of mathematics to
various practical problems. The fron-
tispiece of his De re aedificatoria, or-
ganic summa of the architecture of his
time.

5.1.2 The fundamental theorem of algebra

Finding the irreducible polynomials in K[z] is obviously a key point of the
algebra of polynomials. We shall restrict ourselves to factorization in the
fields R and C.

a. Factorization in C

Let P(z) = > p_,axz" be a polynomial in C[z] of degree n, i.e., a, # 0.
Trivially every root of P(z), that is a point £ € C such that P(§) =0, is a
minimum point for the real-valued function z — |P(z)|. An interesting fact
discovered by Jean d’Alembert (1717-1783) and Jean Argand (1768-1822)
is that the converse holds true.

5.13 Proposition. Let £ be a local minimizer for |P(z)|, i.e., there is a
disk B(¢, p) of radius p and center ¢ such that |P(§)| < |P(z)| Vz € B(§, p);
then |P(¢)| = 0.

This is a consequence of the following.

5.14 Lemma (d’Alembert). Let zg € C be such that P(z) # 0; then
for any € > 0 we can find h € C with |h| < € such that |P(29+h)| < |P(z0)|.

In order to prove d’Alembert’s lemma we make the following remarks.
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o Let P(2) = 3.7 a;2’ and let & € C. As we have seen, in 5.11, we can

write P(z) as
P

P(z) ~ P(a) =) Aj(z —a)

J=1

where the coefficients A; depend on the coefficients of P and o but
not on z. Denote by m the smallest integer such that A; # 0. Clearly
1<m<pand

p
P(z) - P(a) = ) _ Aj(z— ). (5.3)

i=m

o From (5.3) and the triangle inequality, we infer
P ' P ,
IP(z) = P@)] = | 3 A;(z~ | < 3 145112 = af,
j=m j=m
therefore for all z with |z — | < 1 we have
P
[P(z) - P(@)| < klz—a™  k:=Y_ |4 (5.4)
j=m
Proof of Lemma 5.14. According to the above, for h € C we write
P(z0+h) = P(20) + Y _ A;H7, (5.5)
j=1
and, if m is the smallest integer with A,, # 0 and
n .
Qh):= > Al
j=m+1
we rewrite (5.5) as

P(z9 + h) = P(20) + Apnnh™ + Q(h).

We now choose ho in such a way that A,,hJ* is in the opposite direction
of P (Z0)7
Amhg* = —P(20), (5.6)

i.e., we choose hg as one of the m-th roots of —P(z)/A,, which is possible,
since we are working in C. Then we set h = phg, p small and precisely
plho| = |h| < 1). From (5.6) we then infer

Q)] < HIB™ = TEH LA ol 5

_ klhol

m+1

hence
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Figure 5.6. Jean d’Alembert (1717-1783) and Carl Friedrich Gauss (1777-1855).

Q)| < 3o™IPGo)l

if, moreover, p < |An|/(2k|ho|). Finally, from (5.5) and the triangle in-
equality we conclude

[PGao -+ )] < (1= 5™)|P(z0)]| + QA
< (1= ™ + 2™ IPzo)| < Pz

Besides Proposition 5.13 we also have

5.15 Lemma (Coercivity). Let P(z) = Y r_, axz* be a polynomial of
degree n > 1. Then
lim |P(z)| = +o0.
|z| =00

Proof. Factoring out the term of highest degree, we have

n

P(z) =a,2"(1+ Q(l/z))v Qw) = Z(an—j/an)wj'

Jj=1
If k== 377, lan—j/anl, |2 > 1 and |2| > 2k, applying (5.4) to Q we get
k1
(/2] = 1Q1/2) - QO < 15 < 3.

Consequently, using the triangle inequality |1+ q| > |1 — |q||,
[P(2)] = lanl|2I" |1+ Q(1/2)] 2 lanlle]”[1 - Q(1/2)]

= lanll2*(1 = 1Q/2)]) 2 =lanll2l™;

this yields the result at once. O
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Figure 5.7. The first pages of two of the papers dedicated by Carl Friedrich Gauss
(1777-1855) to the fundamental theorem of algebra.

On account of coercivity, d’Alembert thought that the existence of a
minimum point for the function |P(z)| was evident and concluded

5.16 Theorem. Every nonconstant polynomial with complex coefficients
has at least a complex root.

However, existence of a minimizer of [P(z)[ is not at all evident and
trivial. It is a consequence of the continuity of polynomial functions and of
the continuity or completeness of C. In fact, from Weierstrass’s theorem,
Theorem 5.16, and the factor theorem, Theorem 5.9, we readily conclude

5.17 Theorem (Fundamental theorem of algebra). Every complex
polynomial of degree n > 1 factorizes as a product of n polynomials of
first degree,

Pz)=an(z—o)(z—a2) - (z — an).

b. Simple and multiple roots of a polynomial

5.18 Definition. Let P € K[z], o € K, and let k£ > 1. We say that «
is a root of P of multiplicity k, 1 < k < mn, if (x — ) divides P(z) and
(z —a)**! does not divide P. A simple root of P is a root of multiplicity 1.

Notice that, from the factor theorem, a is a root of multiplicity k if

and only if
P(z) = (z- a)*Q(z),  Qa) #0.

, 2, be the roots of P and assume that they have multiplici-
,nk. Then the fundamental theorem is rewritten as

Let zq,...
ties respectively n, ...
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every polynomial P € C[z] of degree n has exactly n roots, when counted
with their multiplicities, i.e.,

Pz)=an(z—21)" (2 —22)" - (z—2zx)™, ma+na+---+np=mn.

The roots of a polynomial and of its derivative are related. It is easy
to prove the following:

o A simple root of a polynomial P is not a root of its derivative P’;
consequently P and P’ are coprime if and only if all the roots of P
are simple.

o A root of multiplicity k& of a polynomial is a root of its derivative of
multiplicity k£ — 1.

o Let P be a polynomial. Then Py := P/g.c.d. (P, P’) has the same set of
zeros of P but all its roots are simple.

The following claims are easy consequences of Rolle’s theorem:

o If all roots of a real polynomial are real, then all roots of its derivative
are also real.

o If all roots of a real polynomial P are real and of those p are positive,
then P’ has p or p — 1 positive roots.

c. Factorization in R
If P(z) = Y p_oarxz* € C[z], the conjugate polynomial is defined by
P(z) := Y_7_,axz®. Of course

iﬁz = P(z).
k=0

It follows: « is a root of P with multiplicity h if and only if @ is a root for
P of multiplicity h. Since P = P for polynomials with real coefficients, we
deduce

5.19 Proposition. Every real polynomial has n complex roots when
counted with their multiplicities; an even number of them are nonreal
and come in couples of conjugate complex numbers.

As a corollary, on account of the fundamental theorem of algebra, we
have proved again that every real polynomial with odd degree has at least
one real root.

Let P be a polynomial of degree n with real coefficients and let
o1, 02,...,0p be its real roots with respective multiplicities k1, kz, ..., kp.
Moreover, let 31, Bz,..., 3, be its complex roots with positive imaginary
parts and multiplicities h1, hg, ..., hq. Since also B, Bayr s ﬂ are roots
of P with multiplicities hi, hs,.. hq, we find, on account of the funda-
mental theorem of algebra, that k1 +--+kp+2hy + -+ 2hg =n,
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P q
=a, [[(z—a)® [[(z-8))"(z-B;)",
j=1

Jj=1
and, writing 8; =: b; + ic;, so that
(2 —ay)(z —@;) = (z — b;)® + &3,

we conclude
P q
P(z)=anH z — a;)* H a:—bj)2+c?)hf VzeR.
j=1 =1

We therefore have the following.

5.20 Proposition. Every real polynomial can be factorized as a product
of first and second order irreducible polynomials in R.

5.2 Solutions of Polynomial Equations

The Italian Renaissance marks a tremendous renewal of interest in nature,
and also in mathematics. Artists studied and employed mathematics in-
tensively, among them let us mention Filippo Brunelleschi (1377-1446),
Paolo Uccello (1397-1475), Masaccio (1401-1428), Leon Battista Alberti
(1404-1472), and Piero della Francesca (1410-1492), who set forth the
mathematical principle of perspective. The development of banking and
commercial activities called for an improved arithmetic. The Summa by
Luca Pacioli (1445-1517) and the General trattato dei numeri e misure by
Niccold Fontana (1500-1557), called Tartaglia, contained many problems
on what one could call numerable mathematics.

With respect to the topic we are discussing, the new flourishing of
mathematical studies led to the discovery of formulas for solving alge-
braic equations of degree 3 and 4 and the consequent introduction of the
imaginary unity. These developments are connected to the names of Scipi-
one del Ferro (1465-1526), Niccold Fontana (1500-1557), called Tartaglia,
Girolamo Cardano (1501-1576) and Rafael Bombelli (1526-1573) and are
presented in Cardano’s Ars Magna and Bombelli’s Algebra.

5.2.1 Solutions by radicals

Equations of second degree

az? +bz+c=0, a,bceC, a#0, (5.7)
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can be easily solved in C as everybody knows. In fact, completing the

square we get

b
a<22 + 2—(;z +

2
hence

b2

+c——=0,

4a

(2a(z + %))2 +4ac - b* = 0.

Thus solutions are given by

21,2 =

where w and —w are the roots of w? = b% — 4ac.

5.21 Third degree equations. Complex numbers were introduced as
an intermediate step to solve the third degree equation

x3 — 3pr —2¢ =0,

g €ER, p#0,

(5.8)

that, as we know, has at least a real solution. Set z = u + v, p = uv, so

that (5.8) becomes

ud 4+ —2¢=0

hence

ub — 2qu® + p% =0,

since v = p/u. The last equation is solved by

(5.9)



160 5. Polynomials, Rational Functions and Trigonometric Polynomials

u3=Q+W7
v =g- @ -
$=U+v=f/q+ q2—p3+§/q—\/m

is a solution of (5.8). This is of course correct if ¢ — p® > 0, otherwise
the solving formula is meaningless (at least for the Renaissance people).
However, if we introduce the imaginary unit i := v/—1 in the case ¢> —p® <

0, we have
u =g +iypd - ¢ (5.10)
v¥=¢q—1iy/p?—¢%

If u = @+ ib is a cubic root of g + i4/P® — g2, we see from (5.10) that

v := a — ib is a cubic root of g — i1/p3 — g2, therefore the imaginary parts
cancel if we sum u + v, finding a real root.

while (5.9) yields

Thus

5.22 Example. If we consider the equation

23— 150 —4 =0, p=5,g=2, (5.11)
we find x = ¥2 + 113+ &/2 — 11i. If we try to express 2 + 11i as the cube of a complex
number, we find (2 +1)3 = 8 + 12¢ + 662 4 i3 = 2 + 114, while (2 — )3 = 2 — 114, hence
z=2+1+2—i=4Iis a solution of (5.11).

An adjustment of the method just presented allows us to solve third
degree equations. We want to solve in C,

P(z) = a0z® +a12% + azz+ a3 =0, ap,a1,az,a3 € C, ap # 0. (5.12)
We see that P"(a) = 0, if a := —a3/(3a0), hence
P(2) = ag(z — a)® + P'(e)(z — a) + P(a),

and z solves (5.12) if and only if y := z—a solves agy®+ P'(a)y+P(a) = 0.
Therefore it suffices to solve equations of the form

24+pz+qg=0 p,qgeC. (5.13)

The idea is to look for solutions of the form z = v+ v. Inserting z = u+v
in (5.13), we see that z is a solution if « and v satisfy

uwv = —p/3,
ud 4+ 0% = —g,

or
udv® = —p3/27, ud 403 = —q.
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This happens if w3 and v3 are the two solutions 7,7, of the second degree
equation

r2+qr—p3/27=0.
The numbers u and v are then to be chosen among the cubic roots of r;
and rg. Set

uy 1= s [/
ug = [rg /2652,
w:=—1/2+41iv/3/2.

Then the solutions of (5.13) are among the numbers

2 = ugw® + vow?, ,7=0,1,2.
Since uowivow! = ugvow‘t? = —p/3 only for i + j = 3 we conclude that
2 = upw® + vow® 7, 1=0,1,2,

are the three solutions of equation (5.13).

5.23 Fourth degree equations. Suppose we want to solve
P(z2) = a0z4 + a123 -+ a2z2 + a3z + aq4, a; € C, a9 #0. (5‘14)
We observe that, if @ = —a1/4ap, then P"”'(a) = 0, hence

P/I (a)

ol (z—a)®+ P'(a)(z—a) + P(a), (5.15)

P(2) = ag(z — )* +
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and z solves (5.14) if and only if y := z — a solves (5.15). Therefore it
suffices to solve

224 pl+qz+r=0, p,q,m € R. (5.16)

We look for solutions of the type z = u+ v+ w. Inserting into the equation
we find
2% — 2(u? + 02 + w?)2? - Buvwz + (v + v? + w?)?
— 4(u?? + Pw? + v*w?) = 0,

therefore z = u + v + w is a solution if

u? + 12 +w? = —p/2,

uvw = —q/8,

u2v? + v2w? + w?w? = (p? — 4r)/16.
By computation, see Exercise 5.61, u%,v? and w? are the three solutions
Y1,Y2,ys of the third degree equation

p2 —4r q2

3, P o
= —==0.
VYt 64
Consequently u, v, w are to be chosen among the square roots tug, *vg,
+wg of y1, Yo, ¥3. If we choose wq in such a way that ugvowy = —g/8, then

we conclude that
21 = ug + Yo + wo,
22 = Ug — Vp — Wy,
23 = —ug + vg — wo,
24 = —UQ—'l)o+’w0

are the four solutions of equation (5.16).

5.24 Solutions by radicals. The study of algebraic equations and, es-
pecially, the research of a procedure for solving algebraic equations, i.e.,
finding the roots of a given equation from its coefficients by means of a fi-
nite number of rational operations and extraction of radicals, continued till
the end of the eighteenth century. In 1770 a fundamental work by Joseph-
Louis Lagrange (1736-1813) appeared in the Nouv. Mem. de I’Acad. de
Berlin. There he analyzed the methods for solving equations of degree at
most 4 and set a new basis for the study of higher order equations. In
1799 Carl Friedrich Gauss (1777-1855) provided a first rigorous proof of
the fundamental theorem of algebra (incomplete proofs had been given
by Jean d’Alembert (1717-1783), Leonhard Euler (1707-1783), and Gauss
himself). From 1799 with the treatise Teoria generale delle equazioni in
cui si dimostra impossibile la soluzione algebrica delle equazioni di grado
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Figure 5.10. Niels Henrik Abel (1802— it 1o

1829) and the frontispiece of a Memoria
by Paolo Ruffini (1765-1822).

superiore al quarto until 1813, Paolo Ruffini (1765-1822) made several at-
tempts to prove that general equations of degree higher than four could
not be solved by radicals. Finally in 1824 the Mémoire sur les équations
algébriques, ou l'on démontre l'impossibilité de la résolution de I’équation
générale de cinquiéme degré by Niels Henrik Abel (1802-1829) appeared,
where a complete proof of Ruffini’s attempts was given.

The problem then became that of deciding whether a specific equation
was or was not solvable by radicals, and, if not, finding more complicated
formulas: the fundamental ideas in this direction are due to Evariste Ga-
lois (1811-1832) with further contributions, among others, by Enrico Betti
(1823-1892), Charles Hermite (1822-1901), Leopold Kronecker (1823-
1891) which led to the in some sense definitive treatise by Camille Jordan
(1838-1922). But this would lead us far away from our main path.

5.2.2 Distribution of the roots of a
polynomial

Let P be a polynomial of degree n with real coefficients, P(z) = 3" p_, axz*.
Without solving the equation P(z) = 0 we would like to obtain information
about the distribution of its roots. For instance, we would like to determine
whether it has real roots, and if it does, how many; or how many positive
roots it has, or how many real roots lie between given limits a and b.
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a. Descartes’s law of signs
In his book Geometria René Descartes (1596-1650) proved the following.

5.25 Theorem. Let P(x) be a real polynomial. If all its roots are real,
then the number of its positive roots, counted with multiplicity, is equal
to the number of changes of sign in the sequence of its coefficients.

The number of changes of sign is defined as follows: we list all coef-
ficients in order of decreasing power index, including a, and ag, cancel
out the zeros, and consider all pairs of successive numbers in the list so
obtained: if in such a pair the signs of the numbers are different, then we
call this a change of sign.

Proof. Of course we can assume a,, > 0. We start by observing that the sign of the first
nonzero coefficient of P is (—1)P, p being the number of positive roots of P, counted
with their multiplicities. We can in fact write

P(z) = anz™ + - - + apz® = ane®(zc— 1) (= —zp)(@ - zps1) - (¢ — zk)

if P has 0 as a root of multiplicity k, =1, z2,...,Zp are the positive roots of P and
Tp41,---Tn_k are the negative ones.

The proof now proceeds by induction on the degree of P. The claim is trivial for
n = 1. Let us suppose it for polynomials of degree n —~ 1 and consider a polynomial
P(z) =3 }_oaxz® of degree n.

If ag = 0, then P(z) = z Q(z). Since the number of positive roots and the number
of changes of sign of P and Q are equal and the claim holds for Q, it holds for P.

Suppose ap # 0. It is clear that the number of changes of sign in P(x) is equal to the
analogous number for the derivative P/(x), if the sign of ap and the last coefficient of
P’ coincide, or it is one more if the signs are opposite. By the remark at the beginning
of the proof, in the first case the numbers of positive roots of P and P’ have the same
parity (are both even or odd), and in the second case they have opposite parity. On
the other hand the number of positive roots of P can be either equal to the number of
positive roots of P’, or one more. Therefore in both cases the difference between the
changes of sign and the number of roots of P and P’ is the same.

Since the number of positive roots of P’ is equal to the number of changes of sign
in the coefficients of P’, by inductive assumption, the claim is proved also for P. [m}

5.26 Remark. Actually one could also show: if P(x) has also complex roots, then the
number of positive roots is equal to, or an even number less, than the number of changes
in sign in the coefficients.

b. Sturm’s theorem

Descartes’s law of signs does not give an answer to our initial question to
know the number of real roots of a given polynomial in a given interval.
After many attempts, this problem was solved by Jean-Charles-Frangois
Sturm (1803-1855) in 1835. He considers the problem of localizing the
sets of zeros of a polynomial disregarding multiplicities. For this problem
it suffices to consider the case of polynomials with only simple roots, since
for any polynomial P, Py := P(z)/g.c.d. (P(z), P'(z)) has the same set of
roots of P, and Py and P§ are coprime. So we can and do assume from
now on that P and P’ are coprime.
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We now apply Euclid’s algorithm to P and P’ with a slightly different
notation to find the list of polynomials {Q} given by

{Qo(x) =P@@), Qi) =P(), (5.17)
Qr-1(z) = gk (2)Qr(z) — Qr+1(z),  degQit1 < deg Qk,

till the last one, @Q4(x), that is nonzero. P and P’ being coprime, Q,(z) is
a nonzero constant. The list of polynomials

{Qo(z), Qu(x),..., Qu(x)}

is called the Sturm’s sequence of P.
For a € R we denote by V(a) the number of changes of sign in the list

{QO(G‘)’ Ql(a)v L) Ql(a)}

not counting possible zeros.

5.27 Theorem (Sturm). The number of roots of P in [a,b] is equal to
V(a) - V(b).

Proof. The idea is to look at how V(£) changes when £ moves from a
to b. Let I be the interval between two consecutive roots of the Q;’s,
i=0,...,£— 1. By continuity sgn (Q;(£)) is constant in I, from which we
infer V' (€) is constant in I. Thus V(£) is a piecewise constant function on
[a,b] that eventually jumps at the roots of one of the Q);’s.

Let us now look at V(£) when £, moving from a to b, passes through
one of the roots of the polynomials Qy, ..., Qs—1. First we observe that if

Qi(§) = 0, then Q;1(£) and Q;41(§) are nonzero, since Q;(§) = Q;+1(§) =
0 and (5.17) would give Q;4+2(¢) =0, ..., Q¢(£) = 0: a contradiction.

(i) Assume then
Qo(7) =0, Qi1(7) #0, ..., Qe—1(7) #0, Qe(y) #0.
The continuity of the @Q;’s yields a 6 > 0 such that
sgn Q;(y — 8) = sgn Q;i(y + 6) fori=1,...,¢
Since Q1(7y) # 0, Qg is monotone in a neighborhood of <y, we may assume
sgnQo(y —6) = —sgnQ1(y—6)  sgnQo(y+6) =sgn@i(y +9).
In this case, we therefore conclude
Viy=90)-V(y+4d) =1
(i) If instead =y is a root of
Qi(z)=0 for somei=1,2,...,£~1,

then (5.17) yields Q;—1(v) = —Qi+1(7), therefore Q;_; and Q;4, have
opposite sign in a neighborhood of v, say [y — 6,y + 8], since they are not
zero. Hence the following two tables are possible
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z l ¥y—48 v v+ z l y—40 v 46
Qi-1 + + + Qi—1 - - -
Qi + 0 + Qi + 0 +
Qi+1 - - - Qi+1 + + +

In this case we then conclude that
Viy=98)-V(y+4)=0.

From (i) (ii), we infer that V(¢) jumps at + if and only if v is a root
of Qo, and the jump is +1, thus concluding that V(a) — V(b) equals the
number of zeros of Qg = P. O

5.3 Rational Functions

5.28 Definition. A rational function R(z) is the quotient R(z) =
A(z)/B(z) of two polynomial functions A,B : C — C. R(z) is therefore
defined for all z € C such that B(z) # 0.

a. Decomposition in C

Hermite’s formula allows to decompose every rational function A(z)/B(z)
as the sum of a polynomial (which is nonzero if and only if deg A > deg B)
and of simple rational functions, that is of functions of the type

A
(2 — o)k

where A € C, k € N, and « is a root of B.

Of course we can assume that A and B are coprime. Also, if deg A >
deg B, we may divide A by B obtaining A(z) = B(2)Q(z) + R(z) with
deg R(z) < deg B(z), i.e.,

A(z)

B =Q(z)+-B(—z), deg R < deg B.

Therefore in the sequel of this section we shall always assume that A and
B are coprime and deg A < deg B.

Let ai, as,...,0p be the roots of B with multiplicities kq, ka,...,kp
so that

B(z) = (z —a1)" (2 — ag)®? - - - (2 — ap)Fr, ki+ka+--+ky,=n.

Fix one of the roots, denote it by « and denote its multiplicity by k, so
that
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B(z) = (z - a)kQa(z)a Qa(a) # 0,

while Q,(8) = 0 for any root 8 of B with 8 # «. Notice also that, by
Taylor’s formula,
D*B(a

Hermite’s decomposition formula is a consequence of the following
lemma, which allows us to decrease the degree of the denominator.

5.29 Lemma. Let o be a root of B with multiplicity k, and let Q,(z) be
such that B(z) = (z — a)*Q4(z). We have

A(z) _ )\a,k R(z)
B(Z) B (Z - a)k + (Z — a)k—lQa(z) (5.18)
where
_ Ale)  klA(e) o A ~ 200
)\a,k = Qa(a) = D’“B(a)’ R( ) : P .

Moreover deg R < deg B — 1 and R(z) and Q,, are coprime.
Proof. We have

AR) _ MQa(z) | Al2) = 2Qa(s) _ A A(2) = AQa(2)
B(z)  B(z) B(z) (z—a)f " (2 - a)*Qal2)

Since A(a) — AQq() = 0 if A = Ay k, we have A(2) — Ag xQa(2) =
R(z)(z — &), proving (5.18) and that deg R < deg B — 1. It remains to
prove that R and @, are coprime. In fact, if 8 is a common root to R
and Qc, then A(B) = A(B) — Mo xQa(f) = R(F)( — @) = 0, hence f is

common root to A and B, a contradiction. O

Iterating Lemma 5.29 we get the following.

5.30 Theorem. Let A, B be coprime polynomials with deg A < deg B
and let o be a root of B with multiplicity k. Then we can find A, ,
Aak—1, -++» Aa,1 € C and a polynomial R, coprime with Q.(z) with
deg R, < deg B — k, such that

AZ) & Ay, Ra(2)

Be) 2 G-ap T Q)

=1

Actually {\qx} and R, can be computed as follows: Let Q(z) be such
that B(z) = (z — @)*Qu(2), Qula) # 0. Set R, x(z) := A(z), compute
iteratively for j = k,...,2,1,

{Aa,j = Ra,;(@)/Qala),
Raj-1(2) == (Ra; — Aa,jQa(2))/(z — a),
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Figure 5.11. Charles Hermite (1822—
1901).

and set R, (z) := Ra0(2).
Finally, observe that, for any root 3 # o, we have

Ra(B) = 1) (5.19)

(B—a)k

5.31 Theorem (Hermite). Let A,B be coprime polynomials in C|z]
with deg A < degB =: n. Let k(a) be the multiplicity of the root
a of B. Then we can find uniquely determined complex numbers A, j,
j=1,...,k(a) such that

A(z) _ Aa,j
B 2 G P )

a root of B j=1

where the )\, ; can be computed as follows: let Qq(z) be such that
B(z) = (z—a)*®Qq(2), Qa(c) # 0. Set R k(o) (2) := A(2), then compute
iteratively for j = k(a),...,2,1

{Aa,j = Ra ;(@)/Qala),
Ry,j-1(2) = (Ra,j — 2a,jQa(2))/(2 — @).

Proof. Uniqueness. Let a be a root of B with multiplicity k.. Multiplying
(5.20) by (2 — a)*=, we characterize A, x, by

A@GE—a)k Al
A := lim = .
S = -T6) Qa()
Proceeding iteratively, the uniqueness of the decomposition follows.

Ezistence. The existence of the decomposition follows applying Theo-
rem 5.30 to the roots of B(z) ordered in an arbitrary order. Moreover,
because of the uniqueness, we get the same decomposition starting from
an arbitrary root, hence the algorithm. O
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5.32 Remark. If the roots of B are distinct, Hermite’s formula becomes particularly
simple. Let A and B be coprime and deg A < deg B. Denote by a1, a2, ..., an, the roots

of B, and set
Qi(2) == Qu, (2) = B(2)/(z — i)
so that
Qi(e:) = B'(2s),  Qi(ey) =0 for j #4; (5.21)
then we have
A(z) DY
B(z) ; z—aj

where
= Aley) _ Aley)

Qjla;)  B'(ay)

A direct proof of Hermite’s formula in this case can be done as follows. Write
1/(z — a;) = Q;(2)/B(z) so that

. 2i=10Q5(2)
z z—Jaj == B(z) )

Aj

(5.22)

The degree of the polynomial C(z) := 3_7_; A;Q;(2) is less than n, moreover for all
i=1,...,n (5.21) yields

oS A o
Ola) = 32 5 s (a0) = Ala

Since C and A agree on n points, we have C = A and the claim follows from (5.22).

5.33 Example. Suppose we want to decompose
1
(22 +1)(z—-1)3"
We start with the root 1 with multiplicity 3. In the algorithm of Theorem 5.30 A(z) =1,
Q1(2) = 22 + 1 and R3(z) = A(z) = 1. Then we compute

A0 1

@) 2’
Ra(z) = (Ra2) — 3Qu(2)): (2= 1)

A1,3

1 1 1
=(1—§(z2+1)):(z—1)=—5(22—1):(z—l)=—5(2+1),

M2 = Ra(D)/QuD) = -3,

Ra(2) = (Ra(a) + 2(2 +1) i (2= 1)

=(—%(z+1)+%(z2+1)):(z—1)=%z(z—1):(z—1)=-;-z,

M= Ri(1)/Qi(1) = 3,

[N

R(z) = Ro(2) = (Ru(z) — i(z'*’ +1) i (e—1) = —i(z C1)2i(z-1) = —i(z —1),

finding
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1 _l_1 11 1 z—1
(R2+D(z~-13 2 (z-13 2 (z-1)2 42—-1 4(z22+1)

It remains to decompose
z—1

Ta2+ 1)

As 22 +1 = (z — i)(z + 4), the roots of the denominator are i and —i with multiplicity
1. Therefore it suffices to compute

Mforz=i )‘_i1=_(z;1.)/4.

Ai1 =
’ z4+1 z—1

for z = ~1i,

that is A;1 = —%(1 +1), Aoil = —%(1 — i}, to conclude
1 1 1 1 1 1 1 1 1+ 1 1—14

R+D(-18 2@z-1° 2(-12 4z-1 8z—4 8z2+i

Alternatively, we can proceed as follows. From Hermite’s rule we know the existence
and uniqueness of a decomposition
1 a b c d e

EIDG-1° (-1 -2 a1ttt

for suitable a,b,¢,d,e € C. We can compute those coefficients by reducing to the com-
mon denominator. This way the polynomials in the numerators have to be equal, hence
their coefficients have to be equal, by the principle of identity of polynomials. This
yields a system of five linear equations in a, b, ¢, d, e that, once solved, yields the values
of a,b,c,d,e.

b. Decomposition in R

If A(z), B(z) € Rz] are two polynomials with real coefficients, one can
decompose A(z)/B(z) as a sum of a polynomial (that is not zero if and only
if deg A > deg B) and of simple rational functions with real coefficients.
In fact, recalling that nonreal roots of B come in couples of conjugate
complex numbers, by the complex Hermite’s formula, Theorem 5.31, we
infer

A(z) _ ,J
B = > Z oo (5.23)

a root of B §=]
a€R

k(e)

Aa,j
+ Z Zm+ Z Zx_a)a

a root of B j=] o root of B j—
SI(a)>0 S(a)>0

for all z € C with B(2) # 0. Going through the iterative scheme in The-
orem 5.31 which yields the ), ;, taking into account that A and B have
real coefficients, we infer

QRa(Z) = Qa(2), R5;(Z) = Ra,;(2), Aa,j = Aa,js

hence from (5.23) the Hermite decomposition formula in R
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k(a) k(o)

Alx Ao
ng;= 2 Yot Z?R( Goly) 62

a root of B j=] a root of B j=]1
a€R S(a)>0

for z € R with B(z) # 0.
Notice that if all roots of B are simple, formula (5.24) reduces to

Az) _ Aa A Ao
B(z) - o:rc;ﬁB rT—a " atc;)fﬁ (mja + x—a)
«€R F(a)>0

where A\, = %(%)5 for every root o of B. Therefore

5.34 Corollary. Let A(z) and B(z) € R[z]| be coprime real polynomials
with deg A < deg B. Suppose that B(x) has only simple roots. Then

Al) _ ) Ao ) £a(T — pa) + Mo
B(.T) a root of B T—a a root of B w2_2pax+Qa ’
a€R ¥(a)>0

where A, = %(% for every root o € C of B and, if S(a) > 0,

o = R(@), Go:=|a]?, Lo:=2R0N\a), Ha:=—~230a)(a).

c. Integration of rational functions

Of course, Hermite’s decomposition allows us to integrate and express
the indefinite integral of every rational function in terms of elementary
functions. Here we just state the following.

5.35 Proposition. Under the assumptions and with the notation of
Corollary 5.34, we have

Az
BE.’E; dz = Z Aalog |z — a|

aroot of B

a€R
z — R(a)
+ ( (M) log(z? — 2paz + go) — 23(\e) arctan [ ———— ).
‘g’%):"‘ﬁ @ ( () )
@)>

5.36 Example. Let us compute
+ 00 $2m
/ —dx, m,n €N, m<n.
oo 14+ x2m

The roots of B(z) = 1 + 22" are the 2n-th roots of —1,

. 2j+1 .
ﬂ].—exp(ur ™ ), i=0,...,2n—-1.
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The roots with positive imaginary part are 3;, j = 0,...,n — 1. According to Propo-
sition 5.35, we need to compute the numbers x; := z2™/D(1 + z2") at = = ;. Since
B3 = —1 we get

pom e m Lt L Lo a4 1)
J - 2nB§n—1 2n 3 2n
where om 41
o=
2n

We remark that
a(2j+1)+a2(n—1-4)+1=n(2m+1),

hence
arg (u;) + arg (bn-1-5) = 7.
Also, since |uj| = 1 Vj, we have R(u;) = —~R(up_1_;). Finally, taking into account
that p,_j_1 = R(Bn—1—;) = —R(B;) = —p;, Proposition 5.35 yields
too  p2m
—Fd 5.25
/_oo 1+ z2n (5:25)
(n~1)/2 2 +o0 n—1 +o0
z2 - 2pjz+1 | z—pj
= R(p;)log | 7—7——— -2 () arctan
;; (5) (m2+2pjz+1) oo jz___(:) J (8‘(,@])) oo
n—1 n—1
=273 S() = -275( Y uy).
=0 j=0
It remains to compute ;.‘;01 ;- Set k := exp (i) and q := exp (i2a), so that
nilu k&= 1 k(1—gq")
j 12— = — ————
= 2n iz 2n l1-g¢q
Since g™ = exp (i72 2—';‘7—'5'—17;) = exp (im(2m + 1)) = exp (iw) = —1, we deduce
n-—1 i .
1 2e* 1 —1 1 -
L e 1 - 1 . 5.26
go B g 1 e?ia ™ 25 ela _g@  2n sma (5-26)
2%
Therefore from (5.25) and (5.26) we conclude that, for n, m € N, m < n, we have
+o0 2m 1 1
/ 1:—% g =l (5.27)
—o0 i n sin( 7r)

5.37 9 9. Following the same path of the Hermite formula for complex rational func-
tions, prove the following.

Lemma. Let A, B be two polynomials with real coefficients which are coprime in Rz]
with deg A < deg B, and let o be a nonreal root of B of multiplicity k. Then

A(z) _ _a(z—p)+b R(z)
B(z) (2 -2pz+q)* (22— 2pz+ q)*~1Q(2)

where, if X := A(2)/Q(a), then a = 323, b= R()), and

_ A() — (az ~ p) + 8)Q(z)
22— 2pz+¢q
is a real polynomial with deg R < deg B — 2.

R(z):
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Iterating the previous lemma over k and all roots of B, show the following.

Theorem. Let A, B be two polynomials with real coeflicients which are coprime in
R[z] with deg A < deg B. Assume that B has no real root and denote by k(a) the
multiplicity of the root a of B. Then

k
A(z) _ Z Z(a) Ga,j(Z — Pa) + ba,j
B(z) a root of B j=1 (22 = 2paz + qa)’
(a)>0

where po = R(c), ga = |&|?, and the aq,; and by ; can be computed by the following
procedure: Set Qo (2z) = B(2)/(2% ~ 2paz + ga)¥. Set Ry x(2) := A(z) and compute for
j=kk—1,...,1,

© Aa,j = Ra,;(8)/Qa(a),

° 8a,j = (a,5)/H(@), ba,j = R(Aa5),

© Ra,j-1(2) = (Ra3(2) = (@ai(z = Pa) + ba i) Qa(2)) /(2 — 2paz + ga).
5.38 4. Prove the following.

Theorem. Let A, B be two polynomials with real coefficients which are coprime in
R[z] with deg A < deg B. Let N := g.c.d.(B,B’) and S := B/N. Then there exist
polynomials M and R with real coefficients with deg M < deg N, deg R < deg S such

that
A(z) d (M(z)) + R(z)

B(z) dx\N(@)/ S(z)

[Hint: Use Hermite’s formula (5.23).]

5.4 Sinusoidal Functions and Their
Sums

The existence in nature of periodic phenomena, i.e., phenomena that recur
after some time, attracted the attention and the interest of man and prob-
ably was one of the main starting points for organized knowledge. Next to
the totally fortuitous events of life, there stood out a number of more or
less regular phenomena that were predictable. Seasons, the apparent mo-
tion of the moon, of the sun, of fixed stars and planets could be predicted
by everyone. On the other hand, other phenomena such as solar and lunar
eclipses could be predicted only by a few people, usually the high priests.

With the creation of modern science and the systematic use of calculus
to investigate reality, several periodic phenomena were studied in detail
(oscillations, vibrations, waves) and, once more, the ondulatory model be-
came relevant in the nineteenth century in order to understand the nature
of light and electromagnetic radiation.
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5.4.1 Trigonometric polynomials

An elementary periodic phenomenon is clearly the uniform circular motion,
described as we know (compare, e.g., [GM1]) by the functions sine and
cosine.

5.39 Definition. A sinusoidal signal, or a circular or harmonic function
of pulse or angular frequency w is a solution of the equation of simple
harmonic motion z”(t) + w?z(t) = 0.

All harmonic functions with pulse w # 0 have the form
acoswt + bsinwt, a,beR,

compare [GM1), or, if we set A := v/a®+b? and ¢ is such that cosp =
a/va? + b2, sing := —b/v/a2 + b, all functions of the form

z(t) = Acos(wt + @), A>0.

A is the amplitude and ¢ the phase at time ¢ = 0 of the circular motion
z(t). As we have seen, complex notation yields simpler formulas, since, by
Euler’s formulas .

z(t) = AetPe™t.

The phase is of course defined modulo an integer multiple of 27, there-
fore, if we want to have a definite number, we need to fix a determination
of the angle.

a. Periodic functions

5.40 Definition. A function f : R — R is said to be periodic of period T
IffEt+T)=f(t) VteR.

If f and g are periodic with period 7', then f+ g and fg are periodic of
the same period T'; moreover if f is differentiable, then f’ is also periodic
of period T

5.41 9. In general, the primitive of a periodic function is not periodic, for instance,
1+ cost is 2n-periodic, but ¢ + sint is not. Show the following.

Proposition. Let f be a periodic, continuous function with period T. Then [ f(t)dt

is periodic of period T if and only if f has integral mean zero over a period, foT ft)dt=
0.

If f is a periodic function of period T, then f is also periodic with
periods kT, k € N, k& > 1. A sinusoidal signal with pulse w, f(t) :=
A cos(wt+) has a minimum period T := 27/w, and then it is periodic with
all the periods %"k, k € N, k > 1. Notice however that not every periodic
function has a minimum period. For instance the Dirichlet function
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D(x)={1 ifx €Q,
0 ifz¢Q

is periodic with period q for all ¢ € Q4. The “minimum period” should
then be zero, but this is meaningless.

b. Trigonometric polynomials

As we shall see in Theorem 5.55, the sum of sinusoidal signals of pulses w;
and wy is periodic if and only if wy /ws is rational, that is, if both pulses
are integer multiples of a fundamental pulse.

5.42 Definition. A trigonometric polynomial of degree n and period T
is a periodic function of the form

P(t) = % + k}; (ak cos (%rkt) + by sin (%kt)), teR, (5.28)

with ar, b, € R.

Notice that the quotients of the frequencies k/T of the components are
rational. The terminology that follows comes from acoustics. The human
ear considers as harmonic the sounds that have rational quotients of pulses
and, actually, with quotient p/q with p, g small. Then

(i) ao/2, or more precisely the constant function z — ag/2, is the con-
tinuous component of P,

(ii) the function t — @y cos (25t) + by sin (%5t) is the fundamental har-
monic of P; the function ¢t — ay, cos (g%kt) + by, sin (%"kt), k>2is
the k-th harmonic of P.

If we set
A {ao/Z if k=0,

\/az+b§,c ifk=1,...,n

and ¢y is such that

cosgokzak/\/ai—f—bi, singpk=—bk/\/a£+bi,

we can write P as
2 2
P(t)= Ao+ ZAk cos (Tkt + cpk).
k=1

The lists {Ax}, k=0,...,n, and {¢x}, k = 1,...,n, are called respectively
the amplitude and the phase spectrum of P.
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When dealing with trigonometric polynomials, the complex notation is
useful to write formulas which are handier to manipulate. In fact, taking
into account Euler’s formulas, we can write P(¢) in (5.28) as

Pit)= Y ce'®*,  teR (5.29)
k=-—n
where 5
aL_z_lE = Age~i0x  if k> 1,
%=1 2= 4o if k=0,
[y if k< -1

Observe that, while each term is complex, the sum
—i2z i2x i2x
c_pe  FR i F R 2?)?<cke’ Tk:t)

is real for each k € {—n,...,n}.
More generally, we set the following.

5.43 Definition. A complex trigonometric polynomial of degree n and
period T is a periodic function with complex values, P : R — C, of the

type

n

27
P(t) = k;n Ckexp (z?kt), teR, (5.30)
where ¢, € C for k = —n, ..., n. The vector {ci}—n<k<n € C2nt1 g called

the complex spectrum, or simply the spectrum of P.
The class of all complex trigonometric polynomials is denoted by Pp, 7.

Notice that f + g and Af € P, 7 if f,g € Pnr and A € C, or, as we
say, P, 1 is a complex vector space. Finally, notice that P(%;t) € Ppox if
Pec 'Pn,T.

¢. Spectrum and energy identity

By definition, a complex trigonometrical polynomial is defined uniquely
by its spectrum, and the surjective map @ : C?"*! — P,, 1 given by

n

(Conye--yCn) — f(t) = Z CLEXD (zET?—rkt) (5.31)

k=—n

is linear. Thus P, 7 is a vector space of dimension less than or equal to
2n 4+ 1. A relevant fact is that one can compute the complex amplitudes
of the harmonics from the sum of the harmonics, thus proving that @ is
injective and therefore that the dimension of P, r is 2n + 1.
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5.44 Proposition. Let P(t) = Y p__, cke' ¥5 € P, 1.

(i) For allk = -n,...,n we have

T
cx = L / P(t)e™  Frt gt (5.32)
T 0

Consequently P, v has complex dimension 2n + 1.
(ii) The energy equality holds

n

T
-,}- /0 PORd= 3 Joxl. (5.33)

k=-n

The proof of Proposition 5.44 is a simple consequence of the following
computation.

5.45 Lemma. Let k € Z. Then
l/Te,-zTnktdtz 0 ifk#0,
T 0 1 Ifk = 0

Proof. If k = 0, we have e‘** = 1, hence 4 [ e F*dt = 1. If k # 0,

writing e* F* = cos (27r kt) + i sin (2" kt) and noticing that cosf and
sin @ have zero mean average over an interval of size 2, we conclude that

TfoezTrktdt=0. 0O

Introducing the Kronecker symbol dpy,

1 ifh=k,
Onk = )
0 ifh#£k,

Lemma 5.45 yields
1 (T i 22 (h—k)t
T eT dt = Oni Vh,k € Z. (5.34)
o}

Proof of Proposition 5.44. (i) From (5.34)

1 T —i 2% ket ht - —kt
7 ), P(tye " TF gt = / Z che? Fhtei dt
h=—n
n 1 /T ., n
— il i 2 (h—k)t — —
= Z Ch<T/0 T dt) = Z chlnk = Ck-
h=-n h=—n

(ii) We have
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n n
POP=( 3 ae ) (3 ac#h)= 3 aoe FEL

k=—n h=—n h,k=—n,n

Thus we conclude from (5.34) that

1 T n
T /O POPdt= Y amabem= p_ ate= p_ lal*

h,k=—n,n k=-n k=—n

5.46 Remark. Let f € C°(R) be periodic with period T. The energy of
f is defined to be

T
o I

Of course the energy of the continuous coraponent of P is leg|?, while the
energy of the k-th harmonic of P(t) is

1 (T o 2
? / loxet FR 4 et FRP dt = [opf? + e_if-
]

The energy identity can therefore be restated as: the energy of a trigono-
metric polynomial is the sum of the energies of its components.

d. Sampling
Let P(t) = Y o, cke' ¥k ¢ P, r be a complex trigonometric polyno-

mial of order n. Trivially P(t) = R(exp (i%%t)), where R is the rational

function n

R(z) := Z ck2”.

k=—n

Observing that R(z) = N(z)/z" where N is a polynomial of degree 2n,
and taking into account the principle of identity of polynomials, we infer
the following.

5.47 Proposition. Let P, Q € P, r. Suppose that P and Q agree on
2n + 1 distinct points in [0, T[. Then P(t) = Q(t) for all t € R.

Not only is this true, but there is an interpolation formula that permits
to reconstruct P(¢) from its values on a suitable choice of 2n + 1 points in
[0, T[. This is an easy version of the sampling theorem of Claude Shannon
(1916-2001). In order to show that formula, we introduce Dirichlet’s kernel
of order n as the trigonometric polynomial in P, 2. defined by

7
Du(t):= > e*=1+2) coskt, tER (5.35)
k=—n k=1



5.4 Sinusoidal Functions and Their Sums 179

5.48 Proposition. We have

(i) Dn(t) is an even function D,(—t) = Dyn(t),
(i) Dp(0) =2n+1 and D,(7r) = (-1)",
(iil) for t # 2km, k € Z, we have

sin((n + 1/2)t)

Dn(®) = sint/2

(iv) Dn(t) vanishes at t; = 5= +1] if j € Z and j is not a multiple of
2n + 1. In particular, if j € [-2n,2n], then

2r 0 if j #0,
D"(z 1J>= 7
n+ 2n+1 ifj=0.

Proof. (i), (ii), and (iv) are trivial. (iii} can be proved by induction or even
directly. In fact, on account of

P
1 — zp+1
sz=1+z+zz+...+zp=—~z——’ Z?é].,
~ 1—-2
one computes
1_z2n+2 .t
D,(t)= ——— =é
0=y i
hence
1 — i@t sin((n + 1/2)t)
D=t~ . ... =Z2Z2U\BT /) 5.36
n(t) = e 1— et sin(t/2) (5.36)
O

5.49 Theorem. Let Q(z) € Pp,r. Set P(t) := Q(L£t) € Pnox. Then

1 n
— : n t— . s
P(t) T jg_n P(t;)Dn(t — t;) VteR
where t; 2n+1], je€{-n,...,n}.

In other words, we can reconstruct P(t) from the values P(t;) of P
at tj.

Proof. Since the formula is linear with respect to P, it is enough to prove
it only for the functions e***, h = —n,...,n, that form a basis for Py, 2r.
From the definitions of D, and of {tj}, we deduce
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n n n
Z e'iha:an(x _ l'j) — Z Z ethz; gik(z—x;)

j=—n j=—nk=—n
Z z ezkm i(h—k)z; _ E ikx Z ez(h k)x;
]——nk_—n k=-n
k;ne'kwpn( " 1(h k)).

Since h — k € [-2n, 2n], (iv) of Proposition 5.48 yields

h— =
D, (2 T 1( k)) = (2n + 1)bnk
hence
ikx zh:c
Ze D(2 +1 =(2n+1)e
k=—n
|
5.50 Example (Euler’s formula). Let us prove that
> gint
/0 ra=1. (5.37)

We recall that the integral in (5.37) exists as an improper integral,

sinz . Y sinx
/ ——dz ;= lim dx;
o T y—o Jg

see, e.g., Example 4.81 of [GM1]. Therefore it suffices to compute the limit of [’ 5‘“ tdt
as n — oo where {z,} is a sequence that diverges to +oo.
From (5.35) and (5.36) we infer
sin(2n + 1)t

n
=142 k
Sint + Zcos2 t

k=1
and, integrating over [0, 7/2],
/1r/2 sin(2.n + l)t + 9 Z Sm(2kt) /2 _
0 sint 0 2
Therefore
(2n+1)F o T2 o /2 o3
n _/ % sint dt =/ sm((2.n+ 1)t) dt _/ sin(2n + 1)t dt
2 0 t 0 sint 1) t
_/"/2 LSt n2n + 1)tdt (5.38)
“Jo teing o ’
/2
= / F(t)sin(2n + 1)t dt
0
where f(t) = —:%“tt Since f(t) is of class C?! in [0,7/2], we can integrate by parts the
last 1ntegral in ( 5.38) finding
™/ . cos(2n + 1)t |™/2 /"/2 4. €08(2n + 1)t
t 2 WHtdt = —f(t) ———————— t) —————dt 0
[ @ sinGan 4 e = - =GR Ty [ 2ot Dty

as n — oo, i.e.,
(2n+1)% gint
[ Rty
o t 2
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5.4.2 Sums of sinusoidal functions

5.51 Definition. A finite sum of complex sinusoidal functions is a func-
tion f : R — C of the form

Ft) = Z c;exp (iwjt), t € R,
P

where c; € C, w; € R, w; # w; fori # j and j = 1,...,n. Each addend
is referred to as a component of f, c; is the amplitude of the component
and the vector f :=(c1,...,c,) € C" is the spectrum of f.

The sum of complex sinusoidal functions identifies again the coefficients
of its components. In fact, we have the following.

5.52 Theorem. Let f : R — C be the finite sum of complex harmonic

functions "

f@)= Z c;jexp (iw;t).

Jj=1
Then for any w € R,

N . '

c o fw=w; =1....
lim 1 / f(t)exp (—iwt) dt = ¢ 1 wj for some j =1,...,n,
N—+o0 2N J_pn 0 otherwise.

The claim in Theorem 5.52 follows easily from the following

5.583 Lemma. For all w € R we have

1 N 0 ifw#0
lim — / exp (iwt) dt = ’
N—+oo 2N J_n (1) {1 ifw=0.

Proof. If w = 0 the claim is trivial. Suppose w # 0, let T := 27/w and let
k be the largest integer such that kT" < N, so that N — kT < T'. Since
exp (twt) has zero average over one period interval we deduce

kT
/ exp (iwt) dt = 0,
—kT

hence
N

N —kT
l/ exp (iwt) dt’ = ’/ exp (iwt) dt+/ exp (iwt) dt‘
-N -N kT

—kT N

5/ |exp(z'wt)|dt+/ lexp (iwt)} dt
-N kT

< 2T

Therefore we conclude | 7% fiVN exp (iwt)dt| <L —»0as N> +oo. O
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Proof of Theorem 5.52. Since
1 N 1y
- —3 = L i(w; —w)t)dt
5N /_N f(t)exp (—iwt) dt ;CJ2N /_Nexp(z(wJ w)t) dt,

the conclusion follows from Lemma 5.53. 0O

In particular, Theorem 5.52 yields the following.

5.54 Corollary. If the finite sum of complex sinusoidal functions is zero
in R, then the coefficients of all components are zero.

Another proof of Corollary 5.54. We give here a direct alternative proof based on in-
duction on the number of components. The claim is trivial for n = 1. Let us prove it
for n = 2. Suppose

ci1exp (iw1t) + coexp (iwat) = 0 Vi, w1 # wa.
Multiplying by exp (—iw2t) we find ciexp (i(w1 — w2)t) + c2 = 0 and differentiating
ic1 (w1 — w2)exp (Hw1 — w2)t) =0 Vi

which yields ¢; = 0 since ws # wj. Consequently also co = 0.
Suppose the theorem holds for the sum of n — 1 complex harmonic functions and
let

fit)y= E cjexp (iw;t) = 0.

=1

Multiply by exp (—iwnt) and differentiating we find

n—1

Z icj(w; — wn)exp (tw;t) = 0;

5=1
therefore ¢;j(w; —wp) =0for all j = 1,...,n — 1, because of the inductive assumption.
Since w; # wn, we infer c; =0 for all j = 1,...,n—1 and consequently also c, =0. O

Though sinusoidal signals are periodic, finite sums of sinusoidal signals
are periodic if and only if the sum is a trigonometric polynomial. In fact,
we have the following.

5.55 Theorem. The sum of sinusoidal signals is periodic if and only if
the quotients of the pulses of the components are rational.

Proof. Let f(t) = z;.’“:l c;jexp (iw;t) be the sum of sinusoidal signals with
w; # w; for i # j and ¢; # 0. Write T; = 27 /w; for the period of the j-th
component.

We may and do assume that wy # 0. If w; = wyp;/q; for j =1,...,n,
then p;T; := q;T1. Each Tj is then a submultiple of T := ¢2 - g3 - - - ¢, T1.
Consequently every component is periodic of period T, hence f(t) is peri-
odic of period T'.

Conversely suppose that f(t) is periodic of period T' > 0. We have
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FE+T) - f(O) =Y cj(exp (iw;T) ~ 1)exp (iw;t) = 0,
j=1

then Corollary 5.54 implies exp (iw;T) = 1. It follows that for every
J = 1,...,n, there exists an integer k; such that w;T = 2k;m, i.e., the
component’s pulses have rational quotients. a

5.5 Summing Up

Polynomials

Let A, B € K[z] be two polynomials with coefficients in the field K. B divides A if
A = BQ. A is said to be irreducible if no polynomial divides A but the constants.
Two polynomials A and B are coprime if they do not have a common divisor but the
constants. The greatest common divisor of A and B, g.c.d. (4, B), is the divisor of A and
B of highest degree. All greatest common divisors differ by a multiplicative constant,
and one of them can be quickly computed by Euclid’s algorithm.

o DIVISION ALGORITHM. Assume that A and B are two polynomials in K[z] with deg A <
deg B; then there exist uniquely defined polynomials Q and R such that A(z) =
B(z) Q(x) + R(z) with deg R < deg B.

o BEZOUT IDENTITY. Given two polynomials A and B, there exist polynomials U,V €
K(z] such that A(z)U(z) + B(z)V (z) = g.c.d. (4, B)(z).

o UNIQUE FACTORIZATION THEOREM. Any polynomial in K[z] is the product of its irre-
ducible factors. The decomposition is unique apart from the order of the factors.

o FACTOR THEOREM. a € K is a root of P € K, ie., P(a) = 0, if and only if z — o
divides P(z). Therefore P(z) has at most n distinct roots if deg P = n.

o PRINCIPLE OF IDENTITY OF POLYNOMIALS. Two polynomials P, Q with degree at most
n must be equal if their polynomial functions coincide on n + 1 distinct points in K.

o FUNDAMENTAL THEOREM OF ALGEBRA A polynomial P(z) = 3°7_, a;27 of degree n
in C[z] factorizes as a product of n polynomials of first degree

P(z) = an(z —o1)(z—a2)---(2—on)  inClz].

o FACTORIZATION IN R[x]. A polynomial with real coefficients of degree n in Riz] fac-
torizes as a product of first and second order irreducible polynomials in R[z].

Polynomial equations

There exist algebraic procedures that fully solve in C the polynomial equations of third
and fourth degree, see 5.21 and 5.23. Polynomial equations of degree higher than five
cannot be solved by radicals in general. There are however simpler rules to compute the
number of real, positive roots of a real polynomial, see Theorem 5.25, and the number
of zeros of a real polynomial in a given interval [a, b] of R, see Theorem 5.27.
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Rational functions
Rational functions are quotients of complex polynomials

C(2)
D(z)’

R(z) :=

They are defined on C\ {z|D(z) = 0}. By the division algorithm, R(z) decomposes
as a sum of a polynomial, which is nonzero if and only if degC > deg D, and of a
rational function §(z) := A(z)/B{(z) such that deg A < deg B. We can now decompose
A(z)/B(z) in simpler fractions, once the roots of B are known.

o HERMITE’S DECOMPOSITION FORMULA IN C. We have
k(o)
AC@ Aozj
= IR . 5.39
B = 2 Xy (5-39)

a root of B j=1

where the Ay ; can be computed as follows: Set Qq(2z) be such that B(z) = (z —
a)*(®)Q,(z). We then have Q,(a) # 0. Set B k(a)(2) := A(z), then compute
iteratively for j = k{a),...,2,1,

Aa,j i= Ra,j(@)/Qala),
Raj-1(2) i= (Ra,j = Aa,jQa(2))/(z — @).

o HERMITE’'S DECOMPOSITION FORMULA IN R. Let A(z) and B(z) € R[x] with deg A <
deg B. Let deg B =: n and denote by k(o) the multiplicity of the root « of B. Then

k(o) k(o)

A(w)__ Aa, Aa,
5@ = 3 z(m_;)]+2 IS ((m_;)J) (5.40)

@ root of B j=1 a root of B j=1
a€R S(a)>0

for all z € R such that B(z) # 0. The constants ), ; are the same as in (5.39)

Trigonometric polynomials
A (complex) trigonometric polynomial is a function of the type

= 27k
Pt)= 3 evexp(i55°t),  teR
k=—n

where T > 0 and, for kK = ~n,...,n, ¢y € C. The numbers cj, are called the spectrum
of P and obviously fix P.

o The spectrum can be recovered from P by
1 T ; s
= ——/ P(t)e"g‘l"ktdt, k=-n,...,n,
T Jo

o the energy equality holds
2 [ Pera= 3
k=-—n

o SAMPLING. The trigonometrical polynomial P(t) € P, 2 and its spectrum {ck},
k€ {—n,...,n}, can be computed by sampling P at the points t;, := 27k/(2n + 1),
k€ {-n,...,n}. We have
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1 n
P(t) = E P )Dp(t —t; t
®) 2n+1j=—n (43 ) VeR
1 n
— ikt —
ck_2n 1j=§_nP(tJ)e’ i, k=-n,...,n

where
— Z” ikt _ sin{{n +1/2)t)
Dn(t) = et = " sin(t/2)

k=—n

is the Dirichlet’s kernel of order n.

5.6 Exercises

5.56 4. Let P(z) = agz®+a1z+ag and let a3, a2 be its two complex roots. Show that
aifaz = a1+ a2, ao/az = aroz.
5.57 §. Let P(z) = a3z® + a2z + a1z + a¢ and let a;, a2, a3 be its three complex
roots. Show that
ay + a2 + a3 = —agfas, ooz +araz + aza3z =a1/a3, oiogas = —ap/as.
5.58 9. Suppose that the coefficients of anz™ +an—12" 1+ --+a1x+ ag are integers

and that a, = 1. Suppose that such a polynomial has a real root x. Show that either x
is an integer or « is irrational. In the case x is an integer, notice that z divides ag.

5.59 4. Suppose that the equation z3 + pz2 4+ gz + v = 0 has three real roots. and let
d be the difference between the largest and the smallest root. Show that

Vp?—-3¢<d< %\/pz—ﬂ’»q-

5.60 4. Let 2o be a root of 2 + an—_12" ! +--- 4+ ap = 0. Show that |xo| < 1+ |ao]+
+++ + lan-1|. [Hint: Consider separately the case |xo| < 1 and |xzg| > 1.

5.61 §. Let P(z) =3 7_, a,z® be a polynomial of degree n and let a1, ..., a, be the
n roots. Show that

Uk(alv-"van)=(_1)kan—k/an1 k=1,...,n
where o (ai,...,an) is the sum of all possible products of k roots, called the symmetric

k-function.

5.62 4. Every real polynomial which is nonnegative for all real £ may be written in the
form P?(z) 4+ Q?%(z) where P and Q are real polynomials. [Hint: Observe (p? + ¢%)(r% +
8%) = (pr +¢5)> + (ps — qr)? ]
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5.63 4 Lagrange’s interpolating polynomials. Given n+-1 points in C, zo,z1,...,2n
and n + 1 values yo,¥1,...,¥n in C, show that a polynomial P of degree n such that

ﬁ(wi)zyi i=0,1,...,n

necessarily has the form
n

P(z) = Z L} @)y
3=0
where the Ly (z) are the unique polynomials of degree n, called Lagrange’s interpolating
polynomials, such that

L} (z:) = 64, i,j=0,1,...,n,

8;; being the Kronecker symbol. Write explicitly the L} (z)’s.

5.64 99 Trigonometric solution of third degree equations. Consider the equa-
tion 23 + pz + ¢ = 0 where p,q € R.
(i) If g2/4+ p3/27 < 0 and p > 0, replace z with rz to obtain

3, P 9 _
y +r—2y+;-§—0.

Comparing with the trigonometric identity

write the roots in terms of trigonometric functions of .
(ii) If g2/4+p%/27 >0 and p > 0, set

P\32 3 P
tang:=—(,/2)°Z, o ,  tany:= {ftan 7,
an ¢ ( 3) p <p<mw an Y an2

and find the roots as functions of .
(iii) If g2 +p3/27 > 0 and p < 0, set

sin(p::( —g)z(—-g), O<ep<n

and find the roots in function of ¢.

5.65 9. A hydrostatic approach to solve third order equations was proposed in 1898 by
A. Demanet. Consider two communicating vessels, one being a circular cone of radius
r and altitude a, the other a cylinder with basis of 1 square centimeter. If

r 3

a '
and if h is the altitude that is reached by ¢ cubic centimeters of liquid, show that h

solves the equation
z? +z=c



6. Series

Processes of infinite summation or infinite series, or, simply, series have
appeared since ancient times. Aristotle (384BC-322BC) in his Physics
seems to be aware that the geometric series

1+g+¢*+¢*+--

has a finite sum if |g| < 1. Later Frangois Viete (1540-1603) in fact com-
puted (in 1593)
1
1+q+¢+¢+- = —.
1-g¢
Zeno’s paradox of dichotomy clearly concerns the decomposition of 1 into
the infinite series
=i+ 42+
222 7 28 ‘
In medieval times, Nicole d’ Oresme (1323-1382) showed that the harmonic
series
1+l Ly
2 3 4
diverged. However, it was in the seventeenth century with the Calculus of
Sir Isaac Newton (1643-1727) and Gottfried von Leibniz (1646-1716) that
infinite series pervaded mathematics tremendously, especially as power se-
TiES.

For Gottfried von Leibniz (1646-1716) and Sir Isaac Newton (1643-
1727) and their contemporaries such as John Wallis (1616-1703), James
Gregory (1638-1675), Brook Taylor (1685-1731), James Stirling (1692—
1770), and Colin MacLaurin (1698-1746), functions were essentially infi-
nite polynomials or power series, and with them one operated to differenti-
ate and to integrate or compute areas, to calculate special quantities such
as e and 7 and the logarithmic and trigonometric functions, to interpolate
series of data (which was particularly useful for navigation). For example,
Leibniz found

m_y 1,1 1

4~ 3'5 7 ’
the right-hand side of which is now called a Leibniz series, and Newton, in
De analysi per equationes numero terminorum infinitas, found the series
of log(1 + z), sinz, cosz, arcsinz, €%, ...: as, for instance,
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LEONHARDO EULERO,

Profeffore Regio Berovinensy, 8 Aiademie b
perialie Scientiarum PETR OTOLITANA
Socio.

AUCTORE

'LEONHARDO EULERO

ACAD. REG. SCIENT. ET ELEG. LITT. DORUSS. DIRECTORE
PROR HONOR ACAD. IR JCIENT. PETROC. KT 4CADELIARYM
RECIARTM PARISINAE £ LONDINNILS
20010,

TOMUS PRIMUS

e

LAUSANNE,

Apwd MarcuM-MIcuazLEn BousQueT & Socios. INPENSTS
B ACADEMIAE IMPERIALIS SCIENTIARUM
MDCCXLVIIL - " PETROPOLITANAE
kAL LTER.
Figure 6.1. Frontispieces of Introductio ... and of Institutiones calculi . .. by Leonhard

Euler (1707-1783).

1 1
log(l+z)=z—-2?+ -2+,

2 3
from which i 4 7
10g2=1—§+§—z+..‘;
James Gregory (1638-1675) found
2
arctanx:x—?.p.g_...

nowadays called a Gregory series, the special case of which with z =1 is
a Leibniz series.

In this chapter we illustrate methods for the study of the convergence of
numerical series, while in the next we shall deal with basic facts concerning
power Series.

6.1 Basic Facts

Given a sequence {an}, n = 0,1,2,..., of real or complex numbers, the
recurrence

So = ao, (6 1)
Snt1 = Sp +Gpy1, YN 2>0
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DISQVISITIONES GENERALES
CIRCA SERTEM INFINITAM

_._: .z.+-)t:(c+|) , a(atN) (a+2)EEFNEF2)
M a6 )t Tha, 3.0GTI0ED

4 ete

AYCTORE
CAROLO FRIDERICO GAVSS.
A
PARS 1
SOCIETATI REGIAE SCIENTIARVM TRADITA, 1AX. 30. 1918,

INTRODVCTIO.

1.

Seties, quam In hac commentatione perftmhn fulcipimog, tam-
quam fandtio quatoor quantitstum 4, x [pedtari poteft, quss
ipfius elomenta ‘vocabimus, ordine fuo elenientum privaum a, fecua-
dum €, tertium 7, quartum x diftinguentes. Musifefio elementor
primum cum fecundo permutare licet: Quodfi itaque breuitatis caulla
Ierlem noftram hoc f'xuo F(a, §,79,x) denotaous, habebimus

F(S, a7 %) = Fa £, ).
2.

Tribuendo eleruentis e, £, y valores determinatos, feries noftra
in funtionem mm vasiabilis x tranfit, quae masifelto poit termis
nUM L —a"® ve] 1~ &% abrumpitur, fia— ¢ vel &~ 1 et o
merus integer npgnmu in cafibus reliquis vero, in infinitam exwlr

Aa it

Beitriige zur Theorie
der

dureh die Ganss'sche Reihe F(, 5,9, 3
darstellbaren Functionen

on

Bernhard Hiemann,
Avtenior drr Kinigl Gesellchatt des” Wissenschalics.

Aus dem siobeten Bende der Abhandlungen der Kongfichon Gesellschaht der
Wissenschafien zu_Gaitingea.

Gittingen,

189

!\ Yerlag der Dioterichschen Buchhandlung.
l 167, J

Figure 6.2. The first page of the paper by Carl Friedrich Gauss (1777-1855) and the
frontispiece of G. F. Bernhard Riemann’s (1826-1866) paper on hypergeometric series.

defines by induction a unique sequence {sn},

ni=a0+a1+a+ - +a,

n
= E aj,
=0

see Example 2.5. The sequence {s,} is called the sequence of partial sums
of {an} or just the series of {a,}. We use the symbol

o0
>4
5=0

in order to indicate the sequence {s,}. The presumption let us consider
the series 3 a;, is therefore a shorthand for let us consider the sequence

of partial sums {3°7_, a;} of the sequence {ax,}.

a. Definitions and examples

Let > > 1 an, an € R, be a series of real numbers, and let {s,}, s, =
> ko Gk, be the sequence of partial sums.

6.1 Definition. If {s,} converges to L, we say that the series converges
and that L is the sum of the series.

Actually, three alternative situations are possible:

(i) limp—oo Z?:o a; does not exist; we then say that the series is inde-
terminate. This is the case of the series Y o ((—1)™.
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T T

~1 0 1

Figure 6.3. Summing the diameters of the internal circles, one sees that 3 oo | Wl?1+_1) =1

(il) limp—oo 2-5—9a; = L € R, the series converges to L and we write

0 ‘
Zan=L

n=0

for 327 _pa; — L, n — co.
(ili) limy00 3559 @; = +00 (resp. —o0). In this case we say that the
series diverges to +oo (resp. —oo) and we write

o oo
Z an = +00 (resp. Z an = —00).
n=0 n=0

6.2 9. Show that 3°52, j and 3522, 42 diverge to +oo0.

6.3 Example (Geometric series). We saw in Example 2.65 that

LI n+1 ifg=1,
Gq(n) = E ¢ = n+l_
j=0 %{i Otherwise,

o converges to ﬁ if |g| < 1,
E ¢ diverges to +o00 ifg>1,
j=0

is indeterminate if ¢ < —1.

6.4 Example (Telescoping series). These are series for which the general term an
can be expressed in the form
an =bp —bn_1

for a suitable sequence {bn}. In this case

n
Zaj = (bp —bp—1) + (bn-1 —bn—2) + -+ (b3 — b2) + (bg — b1) = bp — by.
i=1

An example is given by Mengoli’s series Z‘;‘;l j(j+1), named after Pietro Mengoli
(1626-1686). In fact
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iG+1Y) 7 i+l
hence 377, ;ﬁ =1- n+_1 for all n > 1. We therefore get

o0
1
2 5G+n "
i+
see an illustration in Figure 6.3.
Actually, the telescoping trick allows us to regard every sequence as the partial sum
of a series. In fact, if {an},>1 is given and we set ap = 0, we have

n

S (aj-aj_1)=an—as=an, ¥n2>1,
j=1
consequently we see that the series E;‘;O (aj — aj—1) converges, diverges or is indeter-

minate according to whether {an} converges, diverges or has no limit. In the first two

cases
o0

jz_:l(aj =a;-1) = lim an.
6.5 Example (Arithmetic-geometric series). There is a closed formula also for

S(n):=3_j¢', n>1,9€C, qg#1
j=1

In fact, multiplying S(n) by 1 — g2, we get
n . n X n i
1-93Sn) =) _j¢ -2 it + ig?+?
j=0 j=0 F=0

n
=q+3_((-20-D+G-2)d) - 2ng" + (n = g"* +ng"*
j=2
that yields

g™ (n+Dgti4g
2’ = 1-a)7

Since ng™ — 0 as n — co if and only if |g| < 1, see Example 2.59, 322, jq’ converges
if and only if |¢| < 1 and in this case

Z’q a —q)2

6.6 Infinite product. We can define the infinite product of a sequence
of positive numbers {a,},

o0 n
H a; = lim H a;,
n—o00
i=1 i=1

when it exists. Trivially, []o0, a; ezists if and only if the series Y .0, loga;

converges and

i=1

o0 o0
Hai = exp (Zloga,-).
i=1 i=1
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b. A necessary condition for convergence
6.7 Proposition. If Y7  a, converges, then a, — 0.

Proof. In fact

n n—1
=Y a; =Y a; > L-L=0,
=0 5=0

if L is the sum of Y 27 a

n=0 @

However, the condition a,, — 0 is not sufficient to ensure convergence
of Z?:o a,. For instance, we shall see in Example 6.27 that the hAarmonic

series 3 0,  diverges.

c. Series and improper integrals

The concept of sum of a series can be seen as a particular case of an
improper integral (see Section 4.5.2 of [GM1]), and this is quite a useful
remark, see, for instance Example 6.25. To a sequence {an}, n > 0, of real
numbers, we associate the piecewise constant function ¢ : [0, +o00[— R

defined by
Ya(Z) = an fn<zr<n+l.

Clearly ¢ is measurable and, for all n > 0 we have

n n+1
].2:3 a; = /0 val(z) de. (6.2)

Actually

6.8 Prop051tlon The sequence of partial sums of {a,} has a limit in R
if and only if fo wa(z) dx has a limit when x — +oco. In this case

o T
Zaj = lim A @al(z)de.
In particular Z;io a; converges if and only if ¢ has an improper integral

at infinity.

6.9 4. Prove Proposition 6.8. [Hint: Show that lims— 10 [y wa(z) dz exists if and only
if limy, — oo fon wa(z) dx exists and

xT n
lim A walz)de = nlimm/ Ya(z) dr

T—+00

For that, set ¢(x) := [ (z) dz and observe that for n := [z],

d(n) < p(x) < Pp(n+1) ifan >0, 6.3)
$(n+1) < $(z) < $(n) if an <0 '
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r
nouvzujs:smxs sun :wm?u’:‘nf. FONCIIONS. D I V E R G E N T
: SERIES
LECONS
G. H. I.IYA\RD\'

SERIES DIVERGENTES

Eunz BOREL,

e

CHELSEA PUBLISHING COMPANY
NEW YORK, N.Y.

1901

| o o e sy

Figure 6.4. Frontispieces of two books respectively by Emile Borel (1871-1956) and
G. H. Hardy (1877-1947) on divergent series.

d. Decimals

Every real number has a decimal representation x = g, g1, 2,93, - .., which
is defined iteratively by

o B Y o e A0
To:=1%, go:= [%o), {zﬁl e LY Vi >0
gj+1 = (1071 2;4]

where [a] is the largest integer not greater than o. Inductively we also see
that ¢; € {0,...,9} for j > 0 and that 0 < z; < 1077*1. In particular
z; — 0 as j — oco. Moreover

N

N
90+ 10] = Z —Zj41) = Qo+ T1 — IN+1 =T — TN+1
=1 g=1

hence, when N — oo

OO_J__ @, %2 | 9
20 q+10+100+1000+

or, as we commonly write, £ = go, ¢1,42,3, - - - -

The algorithm giving the decimal alignment may stop after N steps,
ie., zj = ¢; = 0 Vj > N. This clearly happens if and only if z = 7w,
k € {0,...,107 — 1}. However, even for rational numbers the decimal
alignment may be infinite as for 1/3 = 0,333333....
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Conversely, every series 3..2¢;/107, ¢; € {0,1,2,...,9}, ie., every
decimal alignment go,¢1,4qo,-- -, is (converges to) a real number. In fact,
the series converges because the sequence of partial sums is increasing and

G N9 9 1
_Zlof —zwi 10 1-1/10

with equality if and only if g; = 9 Vj > 1. The same reasoning actually
yields that, for any N > 0,

1(163 =10""  ifandonlyif ¢ =9Vj>N+1  (64)
J=N+1

We conclude proving

6.10 Proposition. Two decimal alignments qo, q1, 92, - . - and hg, hy, ha, . ..
have different sums (represent different numbers) except when there exists
an integer N such that

either gy =1+ hy, or hn =qn +1,
Qj=0, hj=9Vj>N, Qj=9,hj=0Vj>N.

; h;
Proof. Suppose that go + 3.2, & = ho + ¥, 10 ie,

If g; = h; does not hold Vj, denote by N the first index for which qn # hx. Then

h —h
‘IN N _ Z QJ i _. —Ry
j=N+1

and |gn — hn| = 1 since |Ryy| < 10~N. If for instance hyy = 1 + gy, then

q; — hy
Ry= ) <=1
N= 109
j=N+1

(6.4) then yields g; — h; =9, that is, ¢; =9 and h; =0 for all j > 1. m]

6.11 Example. 0.234765799999... and 0.2347658 are the same rational number.
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Figure 6.5. Two popular books on e and =.

6.2 Taylor Series, e and =«

A simple and natural way of generating convergent power series is by
starting with a function f :] — a,a[— R of class C*° and considering its
Taylor’s series

S 20, e

7=0 J'

which has as partial sums Taylor’s polynomials

Po(z) = E Dﬂjf'(o)
§=0
Obviously
Z = f(z)
=0

if and only if the remainder R, (z) := f(z)— P,(x) tends to zero as n — oc.
This happens to be true for quite a number of elementary functions, as we
shall see in the following examples. However, in general

f@) #3 P—Jf,(—‘” Ve £0,
n=0 ’

as shown for instance by the following
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-2 -1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Figure 6.6. The functions 1/(1 + z?) and log(1 + z) and their respective Taylor polyno-

mials of order n.

6.12 Example. It is easily seen by induction that the function

@) = exp(~1/z?) ifz#0,
0 ifz=0

has derivatives of any order and D7 f(0) = 0 Vj. Its Taylor series sums to zero while
f(z) #0 for all x # 0.

Some of the following examples have already been discussed, see e.g,
Section 5.1 of [GM1], but, for the reader’s convenience, we repeat them
here.

6.13 Example (Logarithm). Replacing z by —z in the well-known identity

k, T
= ) 6.5
l—=zx Zx +1-—z (6.5)
k=0
we get
n _pyn+1
_1ykgk 4 52 ’ 1,
1+:c ,; ) 1+z e 7
and integrating between 0 and z
log(l+z)= [ ——dt= / ke dt + Ro(x
gi+o)= | OkEOj( ) w(@)

= Z( 1)’°k—+1+Rn( )

where

. T (—t)"+l
Rn(z) = A _1+_t dt.

The remainder can be easily estimated for z > —1 by
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Figure 6.7. The functions sinz and cosz and their respective Taylor polynomials of
order 7.

|w|n+1

|Rn(@)] < max (1, 772) s

(6.6)

hence it converges to zero if —1 < z < 1. We then conclude that the Taylor series of
log(1 + z) converges if —1 < z <1 and

0 Zh+1
log(l+ ) = Z(—l)km, —“1<z<1. (6.7)
k=0

6.14 Example (The arc tangent function). Starting from (6.5), replacing = by
—z2, and integrating we get

T
- k,2k
arctan = /0 e — - dt = / E ( 1)%t%* dt + Rn(z)

where
R ( t2)"+1
() = ./ 142
Since T
n

Ru(z)| < | [ t2rt2at| = = 6.

LESTETA i ©9)
we infer that R,(x) — 0 as n — oo if |z| < 1, concluding that

2n+1
t = - <1 6.9
arctanzx = Z( 2n+1 |z < (6.9)

6.15 Example (Taylor series for %, sinx, cosx). We know that Taylor’s polyno-
mial of degree n of e* centered at O is

()

zk

prd K
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T ;
\ : arctanz —
! - Pl -
1 L Py(x) -
{

; Ps(z)
i L Pre) =7

Figure 6.8. The functions arctanz and log (%f—i) and their respective Taylor polyno-
mials of order n.

and Taylor’s formula with Lagrange remainder, see e.g., 5.5 of [GM1], yields

n :l:
i n+1
g A (n+1)'m

for a suitable &, in the interval ]0, z[ (or ]z, 0] is < 0). Therefore, for any z € R,

ok lmln+1
Zz
;? <ma.x(e ,1)m —0 as n — 00, (6.10)
thus concluding that the series 327 ’7: converges and
o0 zn
e’ = Z P Yz € R. (6.11)
n=0
Similarly, see Figure 6.7, one proves that
PR S0
(-1)" ———— =sinz, (-1 )" = cosz, vz € R. (6.12)
= 2n+1)! = (2n)!

6.16 9. Prove (6.12).

a. The number =

Approximated values of m have been known since ancient times. The first
twenty digits are

m = 3.14159265358979323846 . . . .

The first analytic representation of m was probably found by Francois Viete
(1540-1603) in 1579 as the infinite product
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Book of kings

Arithmetic book by Ahmes (1900
a.C.)

Salbasttras (500 a. C.)

Plato (V sec. a.C.)

Archimedes (III sec. a. C.) provides es-
timates from above and from below by
means of inscribed and circumscribed
polygons of 96 sides

Zhang Heng (I sec. .C.)

Ptolemy’s (~ 150 d.C.) takes in the
Archimedes approximation

Wang Fang (II sec. d.C.)

Liu Hui (~ 263 d.C.) estimates with
polygons of 192 sides

Liu Hui (~ 263 d.C.) estimates with
polygons of 3072 sides

Zhu Chong-Zhi (430-501) finds = up
to six digits with a convergent in the
continuous fraction development

Araybhata (498 d. C.) and al-Hwarizmi
(IX sec. d.C.)

Leonardo Pisano (1170-1250), called
Fibonacci estimates with polygons of
96 sides

Albrecht Diirer (1471-1528)

Ludolph Van Ceulen (1540-1610) finds
7 up to 35 digits

m~3
m~ (16/9)2 ~ 3.16

™ ~ (26/15)2 ~ 3.0044
7r~1\6§+\/§~3.14626
1
34— 3+ =
+71<1r< +7

m ~ V10 ~ 3.162
17
m~3+ — ~ 3.14166
+ 120

T 142 3.155
45

169
<AT<3144+ ——

3.14
+ 62500

62500
m ~ 3.14159

g 355 3.1415929
113 )

62832
—— = 3.1416
™~ 20000 3

™ 864 3.141818
275 )

1
~3+ =~
™ +8

3.14159. ..

Figure 6.9. The values of # computed or estimated before the infinitesimal calculus.

S

see (6.26); and John Wallis (
T_n24de
2 1-33:55-7

1,1 1+1¢T.
22222’

1616-1703) in 1655 found

2n - 2n

Cn-1)@2n+1D

see (6.29) below. In 1671 James Gregory (1638-1675) found the represen-

tation
T_, 1,11
47 35 7 ’
independently found also by Gottfried von Leibniz (1646-1716) in 1674,

Computing the Taylor series of arcsin z,
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Sn Rn
2.666666666666667 5E —01
2.895238095238096 2FE - 01

10 | 3.232315809405594 | —9E — 02

30 | 3.173842337190750 | —3E - 02
100 | 3.151493401070991 | —1E —02 3.141568715941784 2E -05
300 | 3.144914903558853 | —3E — 03 3.141590510938080 2E - 06
1000 | 3.142591654339544 | —1E ~ 03 ([ 11 | 3.141592454287646 2E - 07
3000 | 3.141925875839790 | —3E — 04 || 13 | 3.141592634547314 2E - 08
10000 | 3.141692643590535 | —1E —04 || 15 | 3.141592651733998 2E — 09
7 | 3.141592653589793 7 | 3.141592653589793

Sp, Rn
3.079201435678004 6E — 02
3.156181471569954 | —1E — 02
3.137852891595680 4E —-03
3.141308785462883 3E —-04

w =13

© N orw =3

Figure 6.10. The partial sums Sy := > 7. a; and the error Rp i= 7 — Sn: (a) on the
left, for a; := 4(—1)7 /(25 + 1); (b) on the right for a; 1= (~1)72v/3

37 (2J+1)

o0
:3--+(2n—1) z*nt!
i <
arcsinz = Ez 5 4. on on+l lz| <1,

for £ = 1/2. In 1665 Sir Isaac Newton (1643-1727) found
1 111 1311 13511

™
6§ 2t23872253272267128

The number 7 is the area of the unit circle that is, according to calculus,
1
— = / V1i-22dz
-1

(see [GML1]), or the length of the halfcircle, that, as one can prove, is given
b
g 1 \/_; L |
T= 149y (x)de = / ———dz
[ Vi+veta= [ ——

6.17 A few series that sum to 7. From (6.9) and (6.8) we find the
Leibniz—Gregory result

oo

= arctanl = Z(— )

n=0

T
4 2n +1 (6.13)

with the estimate for the rate of decay of the remainder
1

‘k_Xn;( b* 2k+1 )|_2n+3

However, the estimated rate of convergence is not fast, in accordance with
the computed values in Figure 6.10 (a).



6.2 Taylor Series, ¢ and 7 201

Sn Ry
3.140597029326061 1E-03
3.141621029325035 | —~3E — 05
3.141591772182178 9E — 07
3.141592652615309 1£-09
3.141592653588603 1E-12
3.141592653589793 4E - 16
3.141592653589793

A0 N 0w ~(3

Figure 6.11. The partial sums Sp := ¥}_;a; and the error Rn := 7 — Sn for aj =

BV Ny G S 1
4 1)]2j+1 (5‘J¢1 (239);?1)'

A better approximation of 7 than (6.13) can be obtained in several

ways. For instance, observing that Z % = arctan —= \/_, we get again from (6.9)
T > 1
= ———
6 ,;) V3 2n +1)
ie.,
Z 3" 2n +1) (6.14)

If /3 is known, then (6.14) isa far better representation than (6.13), since
(6.8) ylelds an exponential decay for the error,

S 1 1 1
k;iq(_l)k\/ﬁ%“(zk +1) = )&(ﬁ)‘ = VB@n+3)5

see Figure 6.10 (b).
An even better approximation can be obtained using a simple trick.

Recall that
tana + tan 3

1+tanatans’
Starting with a := arctan(1/5), we then get

tan(a + 8) =

5 1 1
tan 20 = — 14— 4o — =
an 2o 13 tanda =1+ 119’ tan(4a — 7w/4) 235’
if we take into account that 4a > /4. Hence
1
% =40a — (da—7/4) = 4arctané — arctan 339
and conclude by (6.9) and (6.8)
o0
™ (=1)m 1
4 ~om+1l (5n+1 B (239)n+1) (6.15)

with an exponential decay estimate for the remainder, see Figure 6.11.
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n S-n, Rn

1 | 1.000000000000000 | —3F —~ 01

3 | 0.833333333333333 | —1E 01

10 | 0.645634920634921 5E ~ 02
30 | 0.676758137691398 2E ~- 02
100 | 0.688172179310195 5E —03 0.693147179548241 | 1E — 09
300 | 0.691483291655625 2FE - 03 0.693147180549812 | 1E — 11
1000 | 0.692647430559822 S5E ~ 04 11 | 0.693147180559840 | 1E — 13
3000 | 0.692980541671060 2E-—-04 13 | 0.693147180559944 | 1F — 15
10000 | 0.693097183059958 5E - 05 15 | 0.693147180559945 | 2F — 16
log2 | 0.693147180559945 log2 | 0.693147180559945

Sn, R,
0.691358024691358 | 2E — 03
0.693004115226337 | 1E — 04
0.693134757332288 | 1E — 05
0.693147073759785 | 1E — 07

© ot w N3

Figure 6.12. The partial sums Sy, := E?:o a; and the errors Ry := log2 — Sy, for, on
the left a; := (~1)71/(j + 1), and on the right a; := 2/(3%+1(25 + 1)).

6.18 Approximations of log2. Similarly, one can find a series which converges to
log 2. In fact, the Taylor series for log(1 + x), (6.7) and (6.6), yield in particular

1k+1
log2—Z( ) = —%+

o (6.16)

W=
-

and the estimate of the rate of decay for the remainder
n
(=1F+? 1
log2 — ——— | =|Rn(1)] £ ——.
log kz::l k ’ ! "()]_n+1

This suggests that Ry (1) decays slowly to zero, as in fact is the case, see Figure 6.12 (a).
A better approximation of log2 is obtained by observing that, for 0 < x < 1,

1
log (:—:) = log(1+ z) — log(1 — z)

nZ n(—x)
—Z( Nt — nZ( D

n=0

Z

Ji i3 2p+1

+1)—2PZ2 —

hence
1+1 / 3 _

log2=log 7 3 = Z < (2n + 1)32n+1’

in this case the error decays exponentially, see Figure 6.12 (b), as

oo
> G S 5T o ¥ = e o
o (2k+1)3%k+1 7 3(2n +1) S 9% 8(2n+1) 9™

b. More on the number e
From (6.11) and (6.10) we infer
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Sn Rn
1.000000000000000 | 2E + 00
2.500000000000000 | 2E — 01
2.708333333333333 | 1E — 02
2.718055555555555 | 2E — 04
2.718278769841270 | 3E — 06
11 | 2.718281801146385 | 3E — 08
13 | 2.718281828286169 | 2E — 10
15 | 2.718281828458230 | 8E — 13
17 | 2.718281828459043 | 2E — 15

e | 2.718281828459045

© w3

Figure 6.13. The partial sums Sn := 3°7_,1/j! and the error e — Sn.
o0
1
- 6.17
=2 (617)
with
4
‘ 6.18)
> Hl< o ; (
P k (n+ 1) (n + 1)!

since 2 < e < 4. For instance, for n = 6, }: _,0 = 2.718055... approx-

imates e from below with an error not hlgher than 4/7! = 1/1260, which
yields

2.718055... < e < 2.718849....
The estimate (6.18) also implies the following.

6.19 Theorem. ¢ is irrational.

Proof. In fact, suppose on the contrary e rational, e = p/q, p, ¢ € Z, g # 0. From (6.18)
n
Py i<
—_— bt < —_——
q i 7! (n+1)!
Multiplying by n! we then get

4
Dot dS 1/t e ——
a Z A

that is, n!357_o 1/5! and n!flZ being integers for n > ¢,

a contradiction. o

=0 Vn>max(3,q),

m|,__.
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6.20 9. One can estimate the error better. Show that
=0 2 J! n

which yields, for n = 6, 2.718055... < e < 2.718287.... [Hint: Write

and observe

(n+1+N)!=@E+D(n+2(n+3)---(n+i+1)>(n+1(n+2)7]

6.3 Series of Nonnegative Terms

The problem of studying the convergence of a series (of real terms) simpli-
fies a great deal if we restrict our attention to series of nonnegative terms.
In fact, in this case the sequence of partial sums is increasing, therefore it
has a limit that can be finite or infinite. In particular we can pass to the
limit in equalities and inequalities involving the partial sums and we can
estimate the sum of the series.

For example, if a; < b; for all § > p, then

D a; <Y b Ynzp (6.19)
j=p j=p

however we cannot take the limit as n — oo until we know the existence of
the limits 3772, a; e 3272, b;. For series of positive terms (or definitively!
nonnegative, or even definitively of constant sign) the respective sequences
of partial sums are (definitively) monotone, hence the existence of the sum
is granted. We therefore can state

6.21 Proposition (Comparison test). Let .2 a; and Y 22,b; be
two series of positive terms. Suppose that a; < b; for all j > p. Then
(i) if Z;’io b; converges, then E;io a; converges,
(ii) if Y72 a; diverges, then 322 a; diverges.
In both cases
o o0
Y a; <3 b, (6.20)
j=p j=p
1 We shall say that a predicate p(n) holds definitively if there exists 7 such that p(n)

holds true for all n > 7. Notice that “definitively” is much more than “for infinitely
many indices.”
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1.2 T T T T

1

0.8
0.6

0.4
0.2

0

V23 5 4 5

Figure 6.14. The dashed area H, and the graph of 1/z, z > 0.

6.22 Example. Since

1
S <2 vz,
32 TG +1)
we infer N
n
1 1
POETL) PIEE
= < -
=i S+
hence
=1 d 1
1<) =<2 =2
< = —
i =G+

6.23 Example. Let us show that the series Y02 , logcos(1/n) is convergent.

205

Observe that all terms of the series are negative, and that cos1 < cos(1/n) < 1 Vn.

The estimates (see, e.g., Section 5.4 of [GM1])

1 1
logz > K(z—1), cosl <z <1, K:=—m,
cosl
z2
cosz‘Zl—?, zeR
yield then
1 K 1
—logcos — < — —,
B L S 2 w2
hence - o~
1 K 1
_ZIOgCOS;SEZE<+°°
n=1 n=1

by the comparison test and Example 6.22.

A variant of Proposition 6.21 is

6.24 Proposition (Asymptotic comparison test). Let Z;";O a; and

Z;io b; be two series of positive terms. Suppose that

Z—naLER.

n

(i) If 3252 a; diverges, then 3722 b; diverges.
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(i) If Y 32 b; converges, then 3 32, a; converges.

Proof. In fact the sequence a,/b, is bounded, i.e., 3M > 0 such that
an < M b, for all n. The comparison test in Proposition 6.21 then yields

> i20a; < Mz;io b;. O

a. Series of positive decreasing terms
6.25 Example (Harmonic series, I). An especially relevant series is

25

called the harmonic series, since the numbers 1, 1/2, 1/3,..., 1/n represent the ratio
of the lengths of “harmonic” vibrating strings.

There is no closed formula for the partial sums Hj, := ;‘ 1 ] . However, it is easily
seen that the harmonic series diverges, H, — 00, moreover its partial sums Hn can be
estimated by considering the improper integral associated to it.

Let ¢ : [0, +00[— R be the piecewise constant function defined by

Q|H

1
plx) = = ifj—-1<z<j
J
As we have seen, and it is evident (see Figure 6.14),
n n
Y 1i= [ e@ .
=2 !

On the other hand,

1 1
< < - V. 0,

z+1 S le) < T €=

hence
n
de < Hp,=1+ <1+/ —dz,
/0 l+z " ;_,J

ie.,

log(1+n) < H, <1+logn. (6.21)

H, is therefore asymptotic to logn, Hyp/logn — 1. In particular H, tends to
infinity quite slowly as n — oo, see Figure 6.15.

6.26 Example (Euler~Mascheroni constant). Let us now consider the difference
“n := Hp — logn. From (6.21) we see that 0 < vn < 1. Since

%=1+/1"(<p(m)—i-)dm and  @(z) < 1/z Ve,

the sequence {yn} is decreasing and has limit <. Since 1/z is convex, we also deduce

forz e [j—1,5] .
2<G7DE-5)+5

v (- ) - 2)

and, integrating on [—1,n],

hence
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n

Hrn

Hy/logn —1

Hy, —logn

10

30

100
300
1000
3000
10000
30000
100000

2.928968253968254
3.994987130920391
5.187377517639621
6.282663880299502
7.485470860550343
8.583749889959170
9.787606036044345
10.886184992119919
12.090146129863282

3E-01
2F - 01
1E -01
1E-01
8E — 02
TE —02
6E — 02
6E — 02
5E — 02

0.626383160974208
0.593789749258235
0.582207331651529
0.578881405643301
0.577715581568206
0.577382322308925
0.577265664068161
0.577232331475626
0.577220664893053
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Figure 6.15. H, =37 | 1/j, Hyn/logn — 1 and Hy, - logn.

n
'yn=1+/ln<<p(x)—i)dle—%jé(j_%—%):1——%(1—%)=—;—+%.

In conclusion we can state

Proposition. The partial sums H, of the harmonic series are asymptotic to logn.
Moreover {Hy, — logn} is a decreasing sequence with limit v €]1/2,1].

The previous constant -y is called the Euler—Mascheroni constant. It has an approximate
value of 0.57721566. . ., but it is not known if it is irrational or rational.
From
H, =logn++~+0(1)

Hn Y 1
— =1 .
logn +logn-‘-o(logn)

we see

This explains the slowness of the convergence Hy, /logn — 1 that one sees in Figure 6.15.

6.27 Example (The harmonic series, II). One can prove that the harmonic series
diverges also as follows. Observe that we have

1 = 1 < 1,
1 2 < 1+1

2 4 2 3

1 4 < 1+1+1+1

2 8 4 5" 6 7

L_ 8 < 1+1+ PRI
2 7 16 8 9 14 15’
1 2n on_y 1

2 = o < Y p

thus n

3 < Hpn_1 for all n,
in particular Han_1 — 0. Since {Han_1} is a subsequence of {H,} and Hy, is increas-
ing, we conclude H, — oo.
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6.28 Example (The generalized harmonic series, I). Consider the series 3772, 1/n%,
o # 1, and the piecewise constant function ¢ : [0, +-0co[— R defined by

1
plz) = — ifn—1<z<n
na

_“ / o(c) de.

Since 1/(z + 1)* < ¢(x) < 1/z* for all z > 0, and therefore

n 1 "1 nol
— d <§:—<1 — dz,
/o @re TS 2am S +/1 o

For n > k > 1 we have

we conclude

(m+1)"etl 1 1
) 2 —ley T

Therefore we can state

Proposition. The generalized harmonic series, 3 o, —nl—a, converges if and only if
a > 1 and

Z ia i T (6.22)

The reasoning in Example 6.27 extends to obtain

6.29 Theorem (Cauchy condensation test). Let Z;”;l a; be a series
of nonnegative and decreasing terms. Then E;’il a; converges if and only
if Z;io 27a,; converges. Moreover, the following estimates hold:

18 ) o
5 Z2’a2j < Zaj < 22]a2j. (6.23)

Proof. By the assumptions made we have

1
-2-2a2 < a1 < ay,
3dag < az + a3 < 2aq,
18ag < astas+ast+ar < day,
%16(116 < ag+tag+---+ais < 8ag,
1 2n+1_1
52"+1a2n+1 S 2j=2" aj < 2"(1271 .
Summing, we infer
n+1 2ntl_

- Z P ay < Z i 2 ay; (6.24)
j=0
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for all n > 0. We then conclude

n+1

n ) ) n )
E 2](12:' d E 2Ja2j, E 2‘70,21 - E 2‘7(12;', E a; — E a;.
j=0 i=0 j=1 j=1 j=1 j=1

2n+1_1 . n
On the other hand 3 4=1  a; is a subsequence of 37_, a;, hence

2ntlig o0
E aj — E aj.
j=1 j=1

Passing to the limit in (6.24) we get (6.23), hence the result. m]

6.30 Example (The generalized harmonic series, II). The Cauchy condensation
test yields

Proposition. The generalized harmonic series 372 = converges if and only ifa > 1.

Proof. In fact the assumptions of the Cauchy condensation test theorem are satisfied,
therefore 352 | -1 converges if and only if the geometric series

N | =, 1
Y _ Jj
> Pa5 =2 (37
=0 §=0
converges. The last converges if and only if 1/2°~! < 1, that is, a > 1. O

b. The root and ratio tests

Some comparisons are more frequent than others. They lead to rules, called
convergence tests. Here we present two of them: Cauchy’s root test and
d’Alembert’s ratio test.

6.31 Theorem (Root test). Let Y .., an, be a series of nonnegative
terms. Suppose there is a positive constant K < 1 and a natural p € N
such that for all n > p,

Ya, < K <1.

oo
Then } ., an converges and

o0 Kp
Zans K

n=p

If there is a positive constant K > 1 and a natural p € N such that for all
n>p {fan > K > 1, then Y o, an diverges.
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Proof. In fact, for j > p we have 0 < a; < K’ hence

n n ) n—p . KP
Do K=Y K S

j=p

Passing to the limit as n — oo, the claim follows.
Similarly one proves divergence if /a, > K > 1. ]

6.32 Proposition (Ratio test). Let Y .- ; a, be a series of nonnegative
terms. Suppose there is a positive constant K < 1 and a natural p € N
such that for all n > p,

Intl o g
an

Then Y o>, an, converges and

ad a
Zang l—pK'

n=p

Suppose there is a positive constant K > 1 and a natural p € N such that
fotl < K <1 for alln > p. Then Y, an diverges.

Proof. Inductively we find
Qp+1 < K Qp,

2
apr2 < Kapyy < K Qp,

) ‘
aptj < Kapyj1 S Kfapij—2 <+ < Klay,

hence, summing from p to n,

n n—p ) 1
ZajgapZKJ Sap %
i=p =0

When n — oo, we get the result.
Similarly one proves divergence if any1/an > K > 1. O

6.33 Remark. Notice that root and ratio tests are inconclusive if /a, —
1 or @ny1/an — 1, as is shown by the generalized harmonic series. Also,
because of Example 2.57, whenever the ratio test yields convergence, the
root test does, too; whenever the root test is inconclusive, the ratio test is
inconclusive, too.
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FRANCISCI VIETE
O P BeRoaA
MATHEMATICA,

In unum Volumen congelta,
ac recognita,
Operd atque fludic
FRANCISCI : SCHOOTEN Leydenfis,

Lvepynt Bavavonvy

Ex Ofic Abzahami Ef
Figure 6.16. Francois Viete (1540-1603) e
and the frontispiece of his Opera Math-
ematica.

c. Viete’s formula for =

From sinz = 2sin(z/2) cos(z/2), we infer by induction

smm—2"sm( )Hcos( )

and, since, 2" sin(z/2") — z, we find

sinz =z H cos (2k) (6.25)

On the other hand cos?(z/2) = (1 + cosz)/2, thus cos(z/2) = \/% + %cosx for z €
[0,7/2], hence

cos™ = /1 s =yfry L /L cos T =Ly 1+1\/T
s Vo 3 272V 6 N2 2V2"2V2

Therefore (6.25) with z = 7/2, yields the Viéte formula

= / 1 1 /1 1 /1
=IIC — - — -4+ = — e,
- 2n 2 273Vz2T2Vz

n=2

Notice that the Viéte sequence {xn},

n
=Hcos( = )= ! (6.26)
k=1 2k+1 2™ sin (g*n"Tr)
converges exponentially fast to 2/7; in fact we have
1

2
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6.34 4. Show that []32, cos(z/2) converges.

6.35 4. Prove (6.27). [Hint: Use that sinz > x — z3/3! holds for & > 0.]

d. Euler and Wallis formulas
From de Moivre’s formula
(cost+isint)'°=coskt+isinkt, teR, keZ,

we see that .
sinkt = sint(k coskF1¢ — (3) cosF~3 tsin2t + - )
By observing that cos?” t = (1—sin? t)”, we readily conclude that sin kt, for k = 2n+1

odd, is a polynomial in sint of degree k. Since sin((2n + 1)t) has 2n + 1 distinct zeros
tj = '2—#],_7 = —n,...,O,l,...,n,

n
sin(2n+ 1)t =C H (sint —sint;) = Csint H (sint —sint;).

j=—n j=—mn,...,n

Dividing by C and passing to the limit for ¢ — 0,
¢ JI sintj=2n+1

j=—n,..., n
J#0
and we get
sint kL sin?¢
sin(2n + 1)t = (2n + 1) sint (1- =@nu+1)sint [] (1- 222).
in(2n + 1)t = (2n 4 1) .___H sintj) (2n+1) sin I:I( sin2tj)
ji==n,..., n ]_1
J#0
Finally, replacing (2n + 1)t by = we deduce
x ud sin?(z/(2n + 1))
si =(2n+1) si 1l —r——F7——=}.
inz = ( )Sn(2n+1)j1;[1< sinz(jr/(2n+1)))
When n — oo, a “naive” passage to the limit yields
sma::wg (1—]_27), forallz £ km ke Z (6.28)
that, for = /2, yields, in turn, Wallis’s formula for 7 (see Example 2.66),
2 tr2n-12n+l ad
_=1—[ n n + or £=H 2n 2n . (6.29)
TS 2n 2n 2 it 2n—-1 2n+1

Actually, Euler’s formula for sin is equivalent, for |z| < =, to
sinz > z?
lo, = lo (1 - ——) .
g — J; g o

Since differentiation term by term is allowed in the series on the right, it turns out to
be equivalent also to

1_, — 1
cotx — o =2z, e (6.30)
j=1
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known as Euler’s formula for cotangent.

The natural context of Euler’s formulas for sin and cot is the theory of complez
functions. There they arise in a transparent and simple way. As Jacques Hadamard
(1865-1963) put it: Le plus court chemin entre deux énoncés réels passe par le com-
pleze?. Here we prove Euler’s formula for |z| < 1.

First we state the following theorem that is interesting by itself.

6.36 Theorem (of dominated convergence). Suppose that the double sequence of
numbers a; , is such that

(i) aj,n — a; asn — oo for all j,
(i) for all n we have |ajn| < ¢; with 3J7_, |ej| < oo,

Then 3772, a; converges and

e o] o0
E ajn — _s_ a; when n — oco.
i=1 i=1

Proof. First observe that, since ajn — a5, and |an ;| < ¢; Vn, j, we also have |a;| < ¢;
V4, hence 2 >~ o @ converges absolutely.
Fix € > 0 and choose p = p(e) such that 23772 ., ¢; <e. Then

oo
|Zaj,n aJ|<Z|aJ, ——a]|—2|ajn—ajl+ Z lajn — ajl
j=0 J

j=p+1
= o]
< Zlaj,n—aj|+2 > < Zlaj,n—aj|+e,
i=0 j=p+1 =0
hence
oo
hmsup|ZaJn— ajl_<_e,
=0
and finally the claim, € being arbltrary. 0

Proof of (6.28). Set for |z| < 2,

- T gy
0 if j >mn,
and 22
aj == log (1 - ]271'2).
Clearly ajn — a;. Assint > 2t Vt € [0,7/2], we have
in2 T 2
sin z
2n+1 <= V] < n
sin? 4% —lﬁ 4j

consequently

2 =)
lan,j| £ —log (1 - 4—2) =:¢j and ZC]' < 0.

Applying the theorem of dominated convergence, we conclude

2 the shortest path between two real statements is via complex
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n 1 2 3 4 5 6 7 8
an=(-)"/n | -1 | 1/2 | —1/3 174 | -1/5 | 1/6 | =177 | 1/8
a; 0| 1/2 0| 1/4 0| 1/6 0] 1/8

a, 1 0| 1/3 o| 1/5 0] 17 0

lan| 1] 1/2 1/3 |14 15 )1/6 | 1/7| 1/8

Figure 6.17. a,,, al,an e lan| per ap = (—1)"/n.

S (- 25) S ) e

2n+1
ie.,
n sin? n
H(l— 22"1+1)—‘H( 2)
j=1 sin® 2227 j=1 i*m
hence Euler’s formula for |z| < 2. o

6.4 Series of Terms of Arbitrary Sign

In the case where the terms of the series E —o0 @; are of arbitrary sign, it
is convenient to set

ot = a; if a; >0, o= = —ay if a; <0,
7 0 otherwise, J 0 otherwise.
Trivially a; = aT —a; forall j > 0, hence $7_,a; = i af -7 a7
7 J J j=0"7 =0"j j=0""j

6.37 Proposition. We have

o Z ~, @; converges if both Z —0 J * and Z i—0a; converge,

o E] -, @; diverges to 400 1fz -6, diverges to +oco and Yoo a; con-
verges,

o Y72, a; diverges to —oo if 3122 =0 ] converges and Zf—_o a; diverges to
+o0.

This way the study of the convergence of a generic series of real terms

is subsumed to that of a series with nonnegative terms, except in the case
where both Y322 a] 7 and Y 72 a; are divergent.

j=0 %j
a. Absolute convergence
6.38 Definition. We say that Z?io a; converges absolutely if the series
Yo laj| converges.
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6.39 Proposition. If} 72 a; converges absolutely, then it converges and

S0 <yl (6.31)
=0 j=0

Proof. We prove that 3~ |as| converges if and only if both 372, af
and Z;io a; converge. In fact, for j > 0, a;-" and a; are nonnegative and
a;' +a; = |a;|, hence a;f, a; < |a;|. The comparison test yields that the
series Y °2gaf and 377, a; converge, consequently 37.7,a; converges.

By the triangle inequality, we get

n n o0
Y e <Yl < lel, Va0,
=0 =0 =0
therefore we deduce (6.31) passing to the limit as n — oo. a

b. Series of complex terms

The notion of sum of a series easily extends to series of complex terms.
We say that Y. 2, converges (respectively diverges) if the partial sums
have finite (respectively infinite) limit. The sum is then defined by

oo n
E Zn = lim E Zj.
n—oo

6.40 Example (Geometric series). For z € C, z # 1, we still have
kid .
Do = (" - 1)z - 1),
—

therefore >-°°_, 2™ converges for |z| < 1 and

n=0
— 1
E = for |z} < 1.
— 1—2
n=0
If |z} > 1, since
|27t —1] > |2|*t —1 - 400 as 1 — 00,

Clearly 3°22 ;2™ does not converge if z = 1, since 3.7 27 = n + 1. Finally, it can be
proved, see Theorem 8.61, that 2, z™ does not converge for any z in the unitary
circle {z||z) = 1} C C, thus concluding that > 72 ; 2™ converges if and only if |2| < 1
to

1-2°

6.41 9. Show that 322 ; z" does not converge if |z| = 1. [Hint: Assuming z # 1, let
z:= e, § # 2km, k € Z. Show one of the following claims:

o {e'™?} does not have limit as n — oo, see Exercise 2.97.
o Ifg/(2m) = g, p, ¢ coprime integers, then {e'"®} has ¢ values.
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If t/(2n) is irrational, then {e'"?} is dense on the unit circle (see Theorem 8.61).
Thus {e'™?} has a limit iff /(2x) is integer.

Similarly, we have, see Example 6.5, that 3" ro  n2™ converges if and only if [2]| < 1
with sum }72° jnz" = ﬁ;, || < 1.

Again, we trivially have,
6.42 Proposition. If Y .~ 2, converges, then |z,| — 0.

Cauchy convergence criterion, Theorem 4.23, yields

6.43 Proposition. The series Z?:o zn, #n € C, converges if and only if
the sequence of its partial sums is a Cauchy sequence, i.e., iff Ye > 0 there

exists 7 such that ’ Zgzp zj’ < € for all p,q > 7.

6.44 Definition. We say that Z°°=0 Zn, 2n € C, converges absolutely if
the series of nonnegative terms, . |2n|, converges.

6.45 Proposition. If the series y .., 2n converges absolutely, then it

converges; moreover ’ Soep znl < Yooy |2n| for all p.

6.46 9. Prove Proposition 6.45. [Hint: Use (4.12) or Proposition 6.43.]

6.5 Series of Products

In this section we illustrate a few results concerning series of products of
complex numbers

o0

z a; bj .

i=0

In fact, the product structure of the terms helps in giving further results
of convergence.

a. Alternating series

6.47 Definition. Analternating series is a series of the type 322 o(—1)7a;,
with a; > 0 for all j > 0.

6.48 Theorem (Leibniz test). Let 3.2,(—1)’a;, a; > 0, be an alter-
nating series. If {an} is decreasing to zero, then 322 (1) a; converges
and the errors between the sum and the p-th partial sums are estimated by
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ap — a1 .

Figure 6.18.

x
ap —Gp41 < ’ > (—1)jaj‘ <aptaq, Vp,q, ¢>p.
j=p+1

The inequalitites are strict if {an} is strictly decreasing.
Proof. Let p < g € N. It is easily seen using the assumptions that
q

> (—1)ay

Jj=p

<ap+a,. (6.32)

Given € > 0, we can find 7 such that |a,| < € for all p > 7; (6.32) then

yields
q .
> (-1)a;

J=p

<2¢ forallg >p >,

i.e., the sequence of partial sums of E;‘;O(—l)j a; is a Cauchy sequence,
therefore convergent. The estimate easily follows from (6.32) letting ¢ tend
to infinity. O

An alternative proof of Theorem 6.48. For n € N set s, := Z;;o(—l)jaj.
(i) The subsequence san,, n > 0, of {sn}, is decreasing and bounded below: in fact,
82n+2 = S2n — G2n+1 + Q2nt2 < 820, VN 20,

8on = ag — a1 + (az - a3) 4ot (d2n—2 - 11271,—1) + az2n 2> ap — a1,

since {an} is decreasing.
(if) The subsequence s2p+1, 7 2> 0, of {sn}, is increasing and bounded above: in fact,
$2n+1 = S2n—1 + @2n — G2n+1 > S2n-1, VN 2 1,
s2nt1 = ao — (a1 — a2) — (a3 —aa) + -+ — (@2n-1 — a2n) + a2n — a2n41 < ao,
since an is decreasing.
(iii) Finally
S2n+1 = S2n — @2n+1 < S2n, Vn,
82n+1 — S2n, = —02n+1 — 0 for n — oo.
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y (i) and (ii)
son — L ER, 32n+1—>M€R
and by (iii)
§2n — 82n+1 —-L-M=0,
i.e., son and s2p41 have the same limit L. Since the indices of s2, (the even integers)

and the indices of s2,,+1 (the odd integers) exhaust all integers, we then conclude that
sn — L. Also

S2n+1 < L < s2n, Y¥n >0, (633)
hence
azn+1 — a2n+2 S son — L S 82n — 82n+1 = 42n+1,
a2n4+2 — a2n43 < L — s2nt1 < $2n42 — S2n41 = G2n+2,
that is,

Ii(—l)jaj’ =|L—38n_1|<an for all » € N.
j=n

6.49 Remark. We notice that there exist sequences a, > 0, a, — 0, for
which Z:‘;io(—l)J a; does not converge, i.e., we cannot omit the assumption
that {a,} is decreasing. An example is given by the series of alternating
terms

(17 = (1= 4

whose partial sums are given by

The series 372, (—1)7/1/j converges by the Leibniz test, while 332, 1
diverges. Therefore 3 72 (~1)7a; = +o0.

6.50 Remark. The example in Remark 6.49 shows also that the asymp-
totic comparison test is not valid for series of terms of arbitrary sign. In
fact,

=H* L1 n
‘/ﬁ+n=1+(_1) — lasn— o0
S Jn

and the series Y ., (—1)"/+/n converges, but > - (—1)"a, diverges.
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b. Summation by parts

6.51 Proposition (Summation by parts). Let {a,}, {b.}, be two se-
quences in C and let B, := Z?:o bj, n >0, and B_; = 0. For arbitrary
p, ¢ €N, 0<p<gq, we have

q g-1
> _asb; = (Bj — Bp-1)(a; — a;41) + ag(Bg ~ Bp-1). (6.34)
j=p i=p

In particular

q g-1
l Zajbj‘ < sup |BJ - Bp——ll {Z Iaj — a]-+1| + laql}. (635)
i=p p<i<q i=p

Proof. Set C; := Bj — Bp_1 so that Cp—1 = 0, and, b; = C; — Cj_;. Then

bl g 9 gt
Y abi =Y a;(C; = Ci1) = D a;Ci — ), anC;
i=p j=p j=p !

j=p—
q—1 q—1
= a0+ Y Cj(aj — aj41) ~ a,Cp—1 = a,Cq + Y, Cj(a5 — ajy1),
Ji=p Jj=p

that is (6.34). By (6.34) and the triangle inequality, we finally infer
q q-1
’ Zajbj’ = ’ > ((Bj — Bp-1)(a; — aj+1)) + ag(Bg — Bp—l)‘
j=p j=p

q—1
< Z (|Bj — Bp_1|la; — aj+1|> + |aql|Bg — Bp—1
j=p

p<i<q

g—1
< sup |Bj_B—1|{Z|aj_aj+1|+la<I|}'
i=p

c. Sequences of bounded total variation

6.52 Definition. We say that the sequence {an} C C has bounded total
variation if 3 37, |a; — a;4+1| converges.

6.53 Example. Let 3°22  a; converge absolutely. Then {an} has bounded total vari-
ation since for any p > 0 we have Z:;:o laj — aj+1] < 22§=0(|aj| + |aj+1]).
Notice that the sequence {(—1)"/n}, which converges to zero, does not have

bounded total variation since

[= ] y ] o0

—1)J —1)i+1 1 1
S - EE S G ) = e
R i+1 j+1

j=1 7
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The following proposition collects a few facts concerning sequences with
bounded total variation.

6.54 Proposition. We have

(i) If {an} C C has bounded total variation, then {a,} converges, a, —
¢, and

o0
lap = €1 <Y laj — aj4al, Vp 2 0.
Jj=p

(ii) Every real, monotone and bounded sequence {a,} has bounded total
variation and 372 |a; — aj41| = |ag — lim;—c0 aj].

Proof. (i) For p < q we have
g—1 g—1
lag — ap| = IZ(%‘ - aj+1)‘ <> laj — ajqal-
Jj=p j=p

If 3722 0 la; — aj11| converges, then the sequence E?=1 laj —ajyi], k €N,
is a Cauchy sequence, i.e, Ve > 0 37 such that

g—1
Z la; —ajnf <e
Jj=p

for p,q > P. From

g-1 q
lag — ap| = 1 (aj — aj+1)’ <
P

~1
laj = aj41] (6.36)
j= =p

J
we then infer |ap, — aq| < € for p,q > P, ie., {a,} is a Cauchy sequence,
hence a, — £.

(ii) For instance, assume {a,} is increasing. Then

n n
D laj —aje1l = _(a; — aj41) = ag — an_y,

and the conclusion follows when n — oo. 0
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Figure 6.19. Lejeune Dirichlet (1805-1859) and Niels Henrik Abel (1802-1829).

d. Dirichlet and Abel theorems
6.55 Theorem (Dirichlet). Let {a,} and {b,} be two complex se-
quences. Suppose that
(i) {an} has bounded total variation and a, — 0,
(ii) the partial sums of {b,}, B, := E?:o b;, are bounded, |B,| < M € R,
Vn > 0.

Then Y77, a;b; converges and
oo oo
‘Zajbj‘ §2MZ|aj-—aj+1| for allp € N.
Jj=p Jj=p

Proof. Given € > 0, from the assumptions on {a,} we infer that there

exists P such that
q

D laj— a1l +lagl <€

Jj=p
for all p,q ¢ > p > P. This, together with (6.35) and the assumption on
{b,} yields

q
’Zajbj’ < sup |Bj— Bp_1]le <2Me,
j=p p<j<q

that is, {Z?=o a;b;} is a Cauchy sequence, hence converges. Letting ¢ — oo
in (6.35) we finally get the estimate. O

6.56 Remark. Notice that the Dirichlet test, Theorem 6.55, is an exten-
sion of the Leibniz test for alternating series.

6.57 Theorem (Abel). Let {a,} and {b,} be two complex sequences.
Suppose that
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(i) {an} has bounded total variation,
(i) 3°52¢ bs converges.

Then 3 22 a;b; converges and
o o0
’Zajbjl <sup|B; - B _1|{2Z la; —ajp1| + |ap|} for allp > 1.
j=p jzp j=p

Proof. By (ii) B, = Z?:o b; is a Cauchy sequence: Ve > 0 39 € N such
that |B; — Bp1| < e for all j > 5. By (i) and (ii) of Proposition 6.54, {a,}
is convergent, hence bounded, |a,| £ M € R ¥n > 0. Therefore we deduce

from (6.35)
' q q
‘Zajbj! Se{Zlaj —aj+1|+aq}. (637)
Jj=p Jj=p

In particular the sequence of partial sums of 3522, a;b; is a Cauchy se-
quence, hence converges. Finally the estimate follows letting ¢ — oo in
(6.37), taking into account

q—1
lagl < lapl + > la; — aj1al.

I=p

6.6 Products of Series

Let P(z) = 3°%_j a;27 and Q(z) = 3°3_ b;z? be two polynomials. Recall

that
p+q

P(z)Q(z) = Z ( Z aibj)xk (6.38)

k=0 it+j=k
where we have set a; = b; = 0 for all ¢,j such that p < i < p+ g and
g<j<p+q

6.58 Definition. Given two sequences a := {a,} and b := {b,}, the
product of convolution of a and b, denoted a * b, is the sequence defined as

(axb)y := Z ab; = Zajbn_j.
7=0

i+j=n
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6.59 Example. The product of convolution is extremely useful in operating with se-
quences. We give a few examples. If 8 ,, is Kronecker’s symbol

1 ifk=n,
5k,n =
0 ifk#n,
and e, is the sequence defined by

er = {6kn}=1{0,00,0,...,1,00,...},

we have
if k
(axep)n = 0 ifn <k,
an—r ifn 2>k,
that is, the values of a * ey, are the values of {ay} shifted k positions on the right,
a = {ao, ai, a2, ..., Gn, ...}
axer,=1{0,0,0,..., 0, ag, a1, a2, -.., Gn, ...}

Similarly, if b= {1/2, 1/2, 0, 0 0, ...}, then

(@%b = ao/2 ifn=0,
(an +an—1)/2 ifn>1.

Ifo={1,1,1,...,1,...}, then
k(3
(a*b)n = Zak vn.
k=0

In terms of product of convolution, (6.38) can be restated as: the co-
efficients of P(z)Q(x) are the product of convolution of the coefficients of
P(z) and Q(z), or, better, of the sequences

a={ag, a1, az, ..., ap, 0, 0, 0,...}
b= {bo, b1, b2, ..., by, 0, 0, 0,...},
p+q
P(z)Q(z) = > (axb)ez®.
k=0

More generally, we have the following.

6.60 Theorem. Let > 22 a; and ) 32, b; be absolutely convergent. Then
Z;io (a *b); is absolutely convergent and

o0 o

Z(a*b)j = (Zaj)(ibj).

=0 =0 =0

.
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M

p/2] p ¢ i
Figure 6.20.

Proof. (i) Set A:=372,|a;| and B := 2520 lbs- If ¢ > p and n := [p/2] we have

lZ(a*b)kt< zl S oa|< X laillbs] (6.39)

k=p it+j=k pli+ji<q
<Z|a,|2|bjl+2|b |Z|‘“| <BZ|az|+AZIb |
j=n i=0 i=n 7

Given € > 0 we find B such that 5]
consequently, on account of (6.39)

lai| < € and 2_3:,, |bj| < efor all g >n > B,

i=n

q
|Z(a*b)j| <(A+B)e forallg>p>2p.
j=p

Therefore the sequence of the partial sums of ¥ 720 |(a * b);| is a Cauchy sequence,
hence converges, that is, 352 (a * b); converges absolutely.
For p > 0 we also have, similarly to (6.39),

‘Z E a;b; —]ZaJZle—l aibjl

k=0i+j=k i<p, ij<p
i+i>p
o o
< D> el < A bl + B lasl
p<i+i<2p j=n j=n
where n := [p/2]. Passing to the limit as p — oo, we get the result. a

6.61 Remark. There seems to be no known necessary and sufficient con-
dition for the convergence of the series of products. However, one can show

(i) ABEL. If 372 a;, Z;io b; and Eﬁo(a * b); converges, then

(a*b (Zaj)(Zb)

j=0

see Theorem 7.33.
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(i) MERTENS. If 372 a; converges and ) ;2 b; is absolutely conver-
gent, then 32 (axb); converges and by (i), we have 322 ((a*b); =
(E;io aj) (E;io bj)-

(iii) HARDY. If 322 ja; and 32 b; converge and the sequences {nan}
and {nb,} are bounded, then }>7Z(a *b); converges.

6.7 Rearrangements

Given an ordered enumeration of numbers, we defined their sum in the
previous section. This notion is useful to define the sum of a denumerable
set of numbers, but a priori such a sum depends on the order in which
they are listed.

A sequence {b,} is a rearrangement of {a,} if it contains the same
elements of {a,} listed in a different order. More precisely

6.62 Definition. We say that {b,} is a rearrangement of d{a,} if there
is a bijective map k : N — N such that

b, = ag, Vn.
We say that ) > b, Is a rearrangement of Y>> an.

6.63 Theorem (Dirichlet). Suppose that 3 . at and > .. ,a, are
not both divergent. Then every rearrangement

oo
P
n=0
of Yo7 . an has the same sum of 3 oo Gn,
oo oo oo o0
E b, = E an=2a,‘t—2a;.
n=0 n=0 n=0 n=0

In particular, in the case of series of nonnegative terms or of absolutely
convergent series, the sum is independent of the order of the addends.

Proof. 1t suffices to prove the theorem in the case of series of nonnegative terms. Let
k : N — N be a map which reorders {an}, set b, := aj,,, and let s, and on be the n-th
partial sums respectively of Z;”;o a; and E;?—.o b;. Being that an, by > 0, we have

o0 o
sn——+S:=Zaj, an—»2:=2 bj.
3=0 j=0

Since for every n
on=by+b1+ - +bp=ag, tax, + -tak, <Laot+ar+t-+amax(ky,.. kn) <S5

we deduce 3 < S. Being that 3 72, a; is a rearrangement of 3752 b;, we also have
S < X. In conclusion S = X. (]
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However, this is not true anymore if

oo o0

+ -
Yoaf =) aj =+c0
=0 =0

6.64 Example. Consider the series
Za, = (1 +——%)+(%+%—i)+(%+%—%)+~-

+( LIS i) +
45-3 457-1 2§
of positive terms, which is convergent since
1 1 1 8j—3 1
- + — - = - < -
47-3 45-1 25 2j(45-—-3)45—-1 252

a; =

Notice also that

1
12 <a1+a2<z_%a]<+oo

Removing the parentheses we get
o0
1 1 1 1
bj=l4+-—-=-4+=-+~-—
Z: J t3 257
which is a rearrangement of the series

> 1 1 = (-1)
Se=1-sHi-24.=d
jror 2 4 j=0'n+l

which converges by the Leibniz test to a number L between 1-1/2=1/2and 1-1/2+
1/3 = 5/6 < 11/12. The sums of the two series 3 72, a; and 3°72b; are therefore

different.

N

Wl

Of course not all rearrangements change the sums. For instance, a sum
does not change if we reorder only a finite number of terms. In general,
however, we have

6.65 Theorem (Dini—-Riemann). Suppose that {a,} is a sequence which
converges to zero and for which

o ] o0

+ _ - -
E a; = _S_ a; = 400
3=0 3=0

Then

(i) for any ¢ € R there exists a rearrangement {b,} of {a,} such that
by =,

(ii) There ex1sts a rearrangement {b,} of {a,} such that Z°° b; is in-
determinate.
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We give an idea of how to define a rearrangement with sum £,0 < £ € R.
We begin by adding in order the nonnegative terms a;-*, until we exceed ¢

(this is possible since E;io a;' = +00). At this point we start to add the
negative terms —a; until the sum falls below ¢ (and this is possible since

Z;io a; = +00), and then we repeat the procedure. The partial sums of
the rearrangement constructed this way oscillate around ¢, and actually
converge to £ since a; — 0. In other words the idea of the proof is: if
one is allowed for unlimited credits and debts and to freely defer takings
and payments, then one can decide the threshold of one’s own richness or
poverty.

We conclude this section by stating a simple consequence of the above

concerning double series.

6.66 Proposition. Given a double sequence {a;;} i, =0,1,2,..., sup-
pose that Z;’io a;; is absolutely convergent, and if

o
b= layl, i=0,1,2,...,
j=0

Yoioo bi converges. Then

ZZaij = ZZG,‘J‘. (640)

i=0 j=0 §=0i=0

6.67 9 9. Prove Proposition 6.66. Show that (6.40) does not hold in general if we
only require that Z;";O a;; converges, that 3 °2 b; converges, where this time b; :=

Z?io a,ij.

6.8 Summing Up

Definitions and basic facts
Given a sequence {an } of complex numbers, define for every n > 0 sy, := E;:o a;. The
sequence {sn} is called the series of partial sums of {an} and denoted by >332 a;. A
series is said to be convergent if {s,} has a finite limit, divergent if {s,} has an infinite
limit, and indeterminate if {sn} has no limit.
o If E;‘;O a; converges, then a, — 0 as n — oo. The converse is false, in general.
o Given a series 2;":0 aj of real terms, denote by ¢(x) the piecewise constant function

defined by

p(x) =aj; fj<z<j+1.
Then trivially

n n+1
Z a; = / p(z) dx for all n.
j=0 0
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Thus partial sums of a series are integrals. This way, the comparison test for integrals
becomes a means to estimate the partial sums of a series. Moreover, 2?’;0 a; con-
verges, diverges, or is indeterminate if and only if foz (8) ds respectively converges,
diverges or is indeterminate as © — oo.

Series with nonnegative terms
In this case the sequence {sn} of the partial sums, s, := 2;‘___0 aj,a; €ER,a; 20
Vj, is monotonically increasing, hence 2 >0 @; either converges or diverges. Conse-
quently, the comparison test, Proposmon 6.21, and the asymptotic comparison test,
Proposition 6.24, hold.
The family of the generalized harmonic series
[ o]
1
n=1 ne

is useful when using the comparison tests. They converge if and only if & > 1, and in
this case -~
S sty
o T a -1

The harmonic series E?:l - diverges. Moreover its partial sums are asymptotic to
log n, since we have

log(l +n) < Z < 1+logn.
j= 1
There are some other useful tests for convergence,
o CAUCHY’S TEST. Let {an} be nonnegative and decreasing. Then 377, a; converges

if and only if Z;io 2/a,; converges. In this case

13 . o0 o
2 E2Ja23‘ < Zaj < 22'7(12]'.
=1 i=1 j=0

o ROOT TEST. Let 377 ; an be a series with nonnegative terms.
(i) Suppose that there exist K < 1 and p € N such that ¢/a, < K < 1,foralln > p,
then 3.°° ; an converges and

oo
KP
an <
(ii) Suppose that there exist K > 1 and p € Nsuch that ¥a, > K > 1, foralln > p,
then Zn 1 an diverges.
o RATIO TEST. Let ) 72 ; an be a series with positive terms.

(i) Suppose that there exist K < 1 and p € N such that ant1/an < K < 1, for all
n > p, then 3°>° ; a, converges and

oo a

E an < 4
— "= 1_-K
n=p

(ii) Suppose that there exist K > 1 and p € N such that ant1/an > K > 1, for all
n > p, then 3°>° ; a, diverges.
Actually the root and the ratio tests essentially reduce to a comparison test with the
geometric series 3522 ) K7 for which we have

o +00 if K >1,
YK ={g if K| <1,
= is indeterminate if K < —1.
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Absolute convergence
We say that 3577 ,a; converges absolutely if 3252, |a;| converges. In case {an} is a
sequence of reals, set

+

a; := max{an,0), a,, := —min(an,0).

o if E;f’__o aj, aj € C, converges absolutely, then 2;’10 a; converges and | 2;‘;0 aj| <

00
F=0 la.
o if 37725 a; is a series with real terms, then it converges absolutely if and only if
both Z;’;O aj and Z]‘?‘;O a; converge, since 0 < at,an < lan| = at 4 a; and

an = ai — Q.

o the complex series Z;’;O a; converges absolutely if and only if the four series with
nonnegative terms > 52, R(a;)T, 352, R(a;)7, 52, S(a;)t and 3552, X(ay) ™
converge.

Series of products
An alternating series is a series of the type ﬁo(—l)j a;, where a; > 0 for all j.

o LEIBNIZ TEST. Assume that {an} is monotonically decreasing to zero. Then the al-
ternating series E;‘;O(—I)J a; converges. Moreover we have the following estimate

for the error between the sum of the series and the n-th partial sum:

et .
’ > (—1)1%'] <ant1.
j=n+1
The assumption that {a,} is decreasing cannot be avoided.

Series with general terms which are the product of two quantities can be dealt with
by two more useful tests, Dirichlet’s test, Theorem 6.55, and Abel’s test, Theorem 6.57.
Both are applications of the formula of summation by parts, Proposition 6.51.

Product of series
Let a := {an} and b := {bn}, n > 0, be two sequences. The sequence, denoted by

{(axb)n},
(a*b), := Z a;b; = Zajbn—j
i=0

i+j=n
is called the product of convolution, or Cauchy product, of a and b.
o CAUCHY’S THEOREM. If Z;’io a;j and 3772, b; converge absolutely, then

o0
Z(a * b);
=0
converges absolutely and
o0 o0 o]
Z(a*b)j = (Zaj) (Ebj)
7=0 3=0 3=0

This extends the usual formula for the product of two polynomials to a couple of
absolutely convergent series.
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N X A

dn
Figure 6.21. The problem of the pile of coins.

6.9 Exercises

6.68 9. Compute the sums of the telescoping series
oV + D SR+ iGN+ ot -1

6.69 9. A ball falls from height h onto a rigid surface. It rebounds infinitely many
times, each time reaching 75% of the height of the previous rebound. Compute the time
needed in order that the ball be at rest.

6.70 § von Koch’s curve. Starting from an equilateral triangle, erect an equilateral
triangle on the middle third of its sides. Iterate the process on each of the sides of the
polygonal figure obtained this way. The limit closed curve defined this way is called von
Koch’s curve. Show that the resulting area is finite and compute it. Show that, instead,
von Koch’s curve has infinite length.

6.71 q Cantor set. A unit square is divided in 9 squares of side 1/3, the central one
is colored black and the remaining 8 are divided each in 9 squares of side 1/9, and
each of the central squares is coloured black. By induction we now iterate the process
infinitely many times. Compute the area of the black region. The complement in the
unit square of the black region is known as a Cantor set.

6.72 9. Estimate the error we make replacing E;";l 1/42 with one of its partial sums.

6.73 4. A slow caterpillar is crawling on a rubber band at the speed of lcm per minute,
but a malevolent elf lengthens the band by 1m per minute. Will the caterpillar ever be
able to reach the end of the rubber band?

6.74 4. Make a pile of n coins of diameter 1. Dislodge them all in the same direction
as much as possible and keep them in equilibrium, as shown in Figure 6.21. What is
the horizontal distance {dn} between the centers of the first and the last coin?

6.75 9. Show the following

Proposition (Asymptotic root test). Let {a.} be a sequence of nonnegative num-
bers. If
limsup Yan, < 1,

n—oo
then 3.2, an converges. If
limsup Yan > 1,

n—oo

then 35>  an diverges.



6.9 Exercises 231

Analytical formulas for

o vibe. 2= E B+ 1R (R b Ee e

T _ TIo° 2n 2n

o WALLIS. 7 = lln=1 977 2ni1
x g0 (=D
o GREGORY, LEIBNIZ. 7 _o 2n+1

n _ o0
o NEWTON. 8 = E"=0 W
T oo 1
° 7 =2nzo(-1)" 5w @nTn
1 4 1
o I=Xato(-)"5m5y (5—n-rr) — @Eg)IT
° AREA OF THE UNIT CIRCLE. § = f1 VI —22dz

1 _ 1
o HALF THE LENGTH OF THE CIRCLE. 7 = [, —=—dx
-1 V1—gz2

The number e

o We deﬁned in [GM1] the Euler number e as the unique real number such that
fo 2 dt = 1. We know, see e.g, [GM1], that

-1
D(e*) = &%, equivalently lim & =1,
z—0 x
hence,
T\ N
e = lim (1 + —-) .
n—00 n
o We have
> n k n+1
.—_Z”’_ vz € R w1th| :"_|Smax(e¢’1) |z] 7
—o ™ k! (n+1)!
"_ :
g n
1 1 1
e=y = with0<e— S = < —.

n=0 n! = k! nn!
o e is irrational.
Viéte and Euler formulas for sin x

= 4 had 22
sinz:zHcos(yc-), Sinz:mH(l_j_?w_?)'
k=1 j=1

Figure 6.22. Analytical formulas for 7, e, and the Viéte and Euler formulas for sin z.

Figure 6.23. The first steps in the construction of the von Koch curve.
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Figure 6.24. The first steps in the construction of the Cantor set in Exercise 6.71.

6.76 §. Show the following

Proposition (Asymptotic ratio test). Let {an} be a sequence of positive numbers.

If anit1

lim sup <1,

— 00 an

then 3°°°  an converges. If
An+1

limsup >1,

n—o00 an

then Z?:o an, diverges.

6.77 9. Show that
(i) if n?(ant1 — an) — 0, then {an} converges,
(i) if 352 ; a2 converges, then >°52 | an/n converges, too.

6.78 9. Show that 3,2, 57; converges iff z € C, |z]| < 1 and z # 1, and that
(=7 22n converges if and only if z € C, |z| <1 and z # +i.

n

oo

6.79 § Pringsheim’s theorem. Let {a,} be a decreasing sequence such that >_>° 4

converges. Show that nan — 0 as n — oo.

an

6.80 9 Kronecker’s lemma. If }°>° ; an/n converges, then % Ef=1 an —0asn —
00.

6.81 9. Suppose an, — A and b, — B. Show that %(a * b} -— A B. [Hint: Write
an = A+ en.)

6.82 §. Let a, > 0 and X > 1. Show that

nz=:1 (ZZ=1 ak)/\

converges; estimate its sum. [Hint: Write the terms in function of S, = >7_; ax.]

6.83 9. Let {an} and {bn} be two monotone and infinitesimal sequences. Show that
S ansinnt, t €R, and 320, b, cosnt, t # 0, converge. [Hint: Use Dirichlet’s test.]

n=1

6.84 . Is there a sequence {an} such that 372, (an + e:—:) converges?

6.85 4. Let o > 1. Find a lower bound for s;, := 3¢ _, L

n=1 no"
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6.86 | Eisenstein series. Study the convergence of the complex series 22 , (z_'l_n -

l) i ( L +l), o (z+1n)k D g (z—ln)k , where k > 2. [Hint: Observe that,

nJ? n=1\z—n

forr>0,|zxn*>(n—r)*fork>1,neNand |z| <7 <n)]

6.87 9. Study the convergence of some of the following series, possibly dependent on
the real parameter x or on the complex parameter z:

ne 7, n~",
n! n2log(1 + n?)
(2n)! 2"n!
(3n)! — (2n)! @)’
cos TN sinn!
nlog(l +n)’ m’
arctan2™ ", ﬂk—,
(k+1)(k+2)
log?(1 + 1/n), log(1 + 1/n),
n

—_————, —1 ™ si 1 ]
narctann + 1 (=1)" sin(1/n)

6.88 9. Study the convergence of some of the following series, possibly dependent on
the real parameter z or on the complex parameter z:

. 1
nrsin{l/n)—2= 4 Vn3
n ' (1 \/ﬁ) '
(_1)n — lo;
T 1 gn,
n —logn (logn)
T (=1)"
(5 —arctann), log (1+ n ),
(-1 e
log (14 ~72), sin (7 ):
(L+z)"Fm el —1,0[,  (-2)"e ",
a"QZ", %,
n
n! . . 1/n
n_"z R (1 - sm(l/n)) ,
- 2 N
p— n ———
(=) tog (1+ ~ ), log” ——.,
1 \n? cos(2/n)\n®
1+ =) —e cosZ/mN™
( + n2) € (cos(l/n))
2 1 o —
(9 1)) Vi1,
n logn
1 1 +1
T_ arctan cos —, (a:arcta,nn+ -—2-)n y
4 n n
z/n _ n3 1
e—————l, / sin? = d,
ne n2 z
1/n : /2
/ (1 - sz) dz, / (sinz)™ dz,
0 z 0
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n+1 2 n+1
(—1)"/ t2e™t dt, n/ e Tsinzdz,
n n
nt+l ging
n x

6.89 9. For some of the previous series, estimate their sum or the order of magnitude
of their partial sums.

6.90 99 Raabe’s test. Let Y o>, an be a series of positive terms. Show that, if there
exists K > 1 such that

n( an —1)21{ Vn,
an+1

then }°7° ; an converges, while, if

n( an —1)51 n,
An+1

then 377, an diverges. [Hint: In the first case show that an43 < %(nan —(n+1)an41);
in the second show that an+1 > a1/(n+1)]

6.91 19 Gauss’s test. Let 3,20 | an be a series of positive terms. Suppose that

a K [
n =:l_'__+-_T%_
Qn+1 n nitp

where p > 0 and {0,} is a bounded sequence. Then } o2 ; an converges if K > 1 and
diverges if K < 1.

6.92 § 9. Discuss the convergence of the following series:

oo
!
Z et +'n,2.) i) o positive integer,

1-4-7---(3n—2)

<" 3.6-9---3n

(1 -7---(3n— 2))
-6-9---3n

3
Il

N

3
Il
-

6.93 9. Let un = vy 1= (—1)"/+/n+ 1. The series 3 oo.qun and 3 o2 ; vn converge,
though not absolutely. Show that the product series 372 ; wn,

wy = (—1)"

E (k+1)(n+1—k)
does not converge. [Hint: Show that |ws| > 2 +2 2n42 )

6.94 §. Let A\x > 0 and Y 32, A\ < oo. Find a sequence of positive numbers {ay},
ap — 00, such that 3°2° (arAx < oo.
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The manipulation of series reaches such levels of subtlety that is hard to
imagine even nowadays in the works of Jacob Bernoulli (1654-1705), Jo-
hann Bernoulli (1667-1748) and Leonhard Euler (1707-1783), and partic-
ularly in the Ars conjectandi by Jacob Bernoulli in Introductio in analisin
infinitorum and in Institutiones calculi by Euler. For instance in Ars con-
jectandi Jacob Bernoulli introduced the so-called Bernoulli’s numbers, see
Section 7.3 below, which may be defined by

Euler proved that

that in particular yields

n2 6’ nt 90"
n=1 n=1

Euler also proved that

o0 o0
(_1)n+1 7T2k(22k _ 1) 1 7.‘,210221;:—-1
= = B
n; n2k (2k)! |Bal, ; (2n + 1)2* ~ " 2(2k)! | Bz

that yields for example

1 1 1 2 (=)t g2
1__2+__4_2+...=Z -
n=1

22 32 nZ 12
1 1 > 1 2
1 — f — e = - -
tetet n;(znﬂ)2 8

Still Euler, introducing the so-called Euler’s numbers as?

1 We have By = 1, B; = —1/2, B, = 1/6, Bapy1 =0Vn > 1.
2 Ean—1=0Yn>1le Eap = "B, — 1/4)2711 /(2n + 1).
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ANALYSIS

Per Quantitatum

SERIES, FLUXIONES,
A C
DIFFERENTIAS:

CUM
Enumeratione Linearum
TERTII ORDINIS.

LONDINI

Figure 7.1. Leonhard Euler (1707-1783) L OB R SYOGEE

and the frontispiece of the Analysis by
Sir Isaac Newton (1643-1727).

1 ad ™
=NS"gL
coshz Z " n!

n=0
found that
(_l)n 7r2lc+1
7;) @n + 1)1~ 2282 (28)] | Bzl
from which - ,
11 3 (-)" o«
-3t 5 _;(211-&-1)3_32'

Euler, as many others, treated also divergent series finding their asymp-
totic behaviour3.

In the eighteenth century the use of series was however quite formal, not
much attention was given to their convergence, though it was not totally ig-
nored. It is only in the beginning of the nineteenth century that series were
treated correctly with Joseph Fourier (1768-1830), Carl Friedrich Gauss
(1777-1855), Bernhard Bolzano (1781-1848), Niels Henrik Abel (1802-
1829).

A satisfactory definition of convergence appeared in the Théorie analy-
tique del la chaleur, but the first rigorous definition is due to Gauss in the

3 Divergent series play a fundamental role in the study of differential equations, as, for
instance, in the study of the vibrations of membranes with Wilhelm Bessel (1784-
1846), Enrico Betti (1823-1892), Thomas Jan Stieltjes (1856-1894) and Ernesto
Cesaro (1859-1906) among others, and starting from J. Henri Poincaré (1854-1912),
in the theory of perturbations of integrable differential systems.
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JACOBI BERNOULLI, [
i Profell. Bafl. & utrinfque Societ. Reg. Scientiar. |
| Gall. & Prufl: Sodal.

Matuemarict CRUESERRIMI

| ARS CONJECTANDI, DISQVISITIONES GENERALES
CIRCA SERIEM INFINITAM

OPUS POSTHUMUM.

28 | a(atnCEr) | aler)(e+n)EEHOERS)

Accedit he s i sreror s wr e o S
! TRACTATVUS | v oo s
DE SERIEBUS INFINITIS, | CAROLO FRIDERICO GAVSS
\ el s %
EtEristoraGallict furipta PARS 1
DE LUDO PILE ‘ SOCIETAT! REGIAE SCIENTIARVE TRADITA, JAX. 30. 155,

‘ RETICULARIS
‘ ‘ 1XTRODYCTIO.

1.

Seties, qnam in hac commentatione perferutari fulcipimus, tam-
| quam fualtio quatuot guantitstum ; €, 7, x fpeftari potefl, quas
ipfins lementa vocabimus, ordine fuo elementar) primum a, fecua.
| dum €, tortium 7, quanum = difingaentes, Aavifefto clemeatara
| primum cum fecunde permutare licet: Quodfl itsqae beealsatis cauffa
| feriem noftram hoo figno F(a, €, 7, ¥) devotamus, habebimas

F(§ a7, 5) = Fla, 67 %)

2.
Tribuendo elementis =, &, y valores determiostos, feries nofica
| BASILERE, [ [ ia fuadionem vaicas vxglbflix Y quse mmn’ellg poit x;mi.
| JRY ) i, | UM 1 —a= gel 3~ G abrampitar, fie— 1 vel &~ & el ous
dmpets GHU R NISIORUM, St | | merns integer negatiuus, in calibus reliquis vero, in infiaitum excar- l
As

K o5 Iscc xiit. | | Tt

| . !

Figure 7.2. The frontispiece of Ars conjectandi by Jacob Bernoulli (1654-1705) and the
first page of the Disquisitiones by Carl Friedrich Gauss (1777-1855).

paper Disquisitiones generales in 1812, in which Gauss studies the hyper-
geometric series already discussed by Euler. Finally, it was with Bernhard
Bolzano (1781-1848) and, especially, with Augustin-Louis Cauchy (1789-
1857) in his Cours d’Analyse that the theory of series found its firm basis.
With Karl Weierstrass (1815-1897) the theory of complex power series
identifies with the theory of compler analytic functions, a theory which
is extremely relevant in physics and engineering, as well as in algebraic
geometry and analytic number theory. In connection with number theory
we should at least mention Dirichlet series

the simplest of which is

that defines for £(z2) > 1 Riemann’s zeta function, of tremendous relevance
in studying the distribution of prime numbers as

= I ==

p prime

as well as in studying the distribution of the eigenvalues of differential
operators.

Of course our goal in this chapter is a great deal more modest. We shall
develop the basic theory in the first section, where we see how power series
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preserve much of the rigidity of the polynomials, and we shall discuss some
applications in the last two sections, trying to give a flavour of their use
in the eighteenth century in Section 7.4.

7.1 Basic Theory

Given a sequence {a,} of real or complex numbers, the power series cen-
tered at 0 with coefficients {a,} is

o0 x>
E an2" == ag + E anz"”, z €C,
n=0 n=1

that is the sequence {s,(2)} of the functions
n n
sn(z) = Zakzk = ag + Zakzk, zeC.
k=0 k=1

We might as well consider the power series centered at zp with coefficients

QAn;
oo
Z an(z — 20)",
n=0

but of course the two series are related by a simple change of variables.
Also, If we restrict ourselves to the real axis x, we may as well consider
the real power series Y o a,z"™, € R.

Clearly the series » ~_, a,2" converges or diverges depending on the
choice of z. Y, ,anz" obvously converges at zero with sum ag. What
is special of power series is that to each of them is associated a disc of
convergence such that the series converges if z is in the interior of the disc
(provided the radius of that disc is positive) and diverges if z is in the
exterior of the disc.

7.1.1 Circle of convergence

7.1 Definition. Let 3>  a,2" be a power series. The number p € Ry

defined by
1
—:= limsup V/|an),

14 n—00

is called the radius of convergence of E?:o an2™. We use the conventions
1/0% = 400 and 1/ + 00 = 0.
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7.2 4. A series 3 ;2 ,anz™ has a positive radius of convergence if and only if {|an|}
growths at most exponentially, e.g., if and only if there exists M > 0 such that |a,| <
M™ ¥n.

We have the following.

7.3 Theorem. Let Y .., an2™ be a power series with radius of conver-
gence p > 0. Then

(i) if p > 0, then > oo, an2™ converges absolute]y for any z such that
|z| < p; actually, for any 0 <1 < p the series y_._, |an|r™ converges,
(ii) Yoo oanz™ does not converge if |z| > p.

Proof. The proof is essentially a repetition of the proof of the root test.

(i) Let t be such that 0 < r < t < p. Since limsup,_,,, ¥|an| = 1/p
there exists 7 such that

1
Y |an|<;

for all n > 7, hence ,
Ylan|rm < 7 < 1

A comparison with the geometric series yields the second claim and the
estimate

Z|a[r <Zh”—1ig:)—_ Vp > 7, (7.1)

and therefore (i).

(i) If |2] > p, then limsup, _, . ¥/|a.||2|® = |z|/p > 1. From the
characteristic property of limsup, if k is a number between 1 and |z|/p,

we can find a subsequence {ax,} of {a,} such that %{/|ak,|2| > h Vn, ie.,
|lak,, | |2|F> > h¥n Yn.

It follows that |ag, ||2*"| — co. In particular, a,z™ does not converge to
zero, consequently by the following.
Proposition 6.7 the series does not converge at z. a

7.4 Remark. Theorem 7.3 implies the following characterizations for the
radius of convergence p of Y oo o a,2™:

o0
p:= sup{]zl ‘ Z an2" converges absolutely}
n=0

)
= sup{lzl l E an2" converges}.
n=0
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a. The disc and the domain of convergence

Theorem 7.3 implies that the domain of convergence of a power series,
that is the set A of points in which it converges, is its disc of convergence
{z]|2| < p}, (the open interval | — p, p[ for real series) union possibly one
or more points on the circle |z| = p (one or both of —p, p for real series)

{2112 <p} CAc{z]l <1}
Let us see a few examples.

7.5 Example. We already saw several times that the geometric series 320 (=™ con-
verges if and only if [z| < 1 and that

= 1
an= 1T~, |:l?l<1
n=1 T

The domain of convergence of the geometrical series is then the open inteval } — 1, 1[.

Similarly we proved in Example 6.40 that the complex geometric series ) >, 2"
converges if and only if |z] < 1. This time the domain of convergence is the interior of
the disc of convergence, {z]]z| < 1}.

7.6 Example. The power series 3 oo 2" /n? converges absolutely, hence converges,
for all z such that |z| < 1, since in this case |z|”/n? < 1/n? for all n and 3°°° | 1/n?
converges. ; ° o x"/n? does not converge if |z] > 1 by Proposition 6.7 since m this
case |z|"/n? — occ. Thus 352 ; z™/n? converges (actually converges absolutely) if and
only if Jz| < 1. This time the doma.m of convergence is the closed interval [—1, 1].
With exactly the same computations, one can show that the complex series

0, 2™/n? converges absolutely if and only if |z| < 1 and does not converge if |z| > 1.

Thus the domain of convergence is the disc of convergence union its boundary.

7.7 Example. We saw in Example 6.13 that Y o2 ,(-1)" ”::11 converges if and only
if -1 < = < 1 with sum log(1 + z). Thus 3-%° ;(~1)"z"*1/(n + 1) has radius of
convergence p = 1, and its domain of convergence is the half-open interval ] - 1, 1].
The complex series »_>° ,(—1)" Z— 27 +1 has the same radius of convergence p = 1.
Thus it converges absolutely if |2} < 1 and does not converge if |z| > 1. It can be

proved as a trivial application of the Dirichlet test,Theorem 7.30, that >~ , (—1)" z::;

converges at any z such that |z] = 1 except z = —1. Therefore this time the domain of
convergence is {z||z] <1,z # —1}.

7.8 Example. The power series En_ =y 22" has coeflicients

0 if n is odd,

an =
27/p? if n=2p,

and radius of convergence 1/ V2 since

1 2r
- = limsup ¥a, = hm - = V2.
P nooo K/ P

We may also regard Z°° 1(27/n?)z 2" as a power series in 2z2. In other words, by
changing variable, w = 222, we get the power series in Example 7.6, 32 ; w™/n2,
that converges absolutely for all w such that |w| = 2|z/2 < 1, concluding that
300 (27 /n?)22" converges absolutely for {z| < 1/ v2 and does not converge for

|z| > 1/v2.
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7.1.2 Continuity of the sum

Let 377 ,an2™ be a power series with radius of convergence p > 0. For
any n, Sp(z) = Z?:o a;z’ is a polynomial, it is therefore natural to ask
how many properties of the functions S,(z) are preserved when passing
to the limit. In particular, is the sum of the series S(z) continuous in its
domain of definition? It is hard to resist writing

lim S(z2) = lim lim S,(2) (7.2)

z— 20 2—29 Nn—00

= lim liIIzl Sn(2) = lim S, (20) = S(20).
=00 Z2— 20 n—oo
However, it is a fact that the change in the order is not allowed, i.e., the
equality
lim lim S,(z) = lim lim S,(z)
zZ— 29 N—00 n—oo 2—2g

is in general false. For instance, if S,(z) = z™, z € [0, 1], then

lim lim z"=1lm0=0 and lim lim z" = lim 1=1.
r—1— n—oo z—1 n—o0 r—1— n—oo
(7.3)

The computation in (7.2) is therefore unjustified.

a. Uniform Convergence

The exchange of limits in (7.2} turns out to be correct in case we have a
uniform estimate (in z) for the error when replacing S(z) by S,(z). For
the relevance of this notion it is worth giving the following

7.9 Definition. Let {S,} be a sequence of functions S, : A — C defined
on a subset A of R?, and let S : A — C. We say that {S,} converges
uniformly to S in A if

Ve > 0 3 7 such that |S,(z) — S(2)| < e ¥n >T and Vz € A.

We say that a series of functions Y o, fn(2) converges uniformly in A
to f: A — C, if the sequence of its partial sums converges uniformly in A.

7.10 Remark. In comparison with the pointwise convergence in A, that
is Sp(z) — S(z) Vz € A, the uniform convergence says (requires) that the
index 7, for which the error |S,(2) — S(z)| is smaller than ¢ for all n > 7,
does not depend on the particular point z € A.

Notice that the definition does not allow us to produce a uniform limit,
but it only allows us to verify whether a function S : A — R is or is not the
uniform limit of the sequence {5y, }. According to Definition 7.9, computing
uniform limits is a two-step procedure:

o first, guess a possible limit function S: A — R,
o second, prove that S is in fact the uniform limit of {S,} in A.



242 7. Power Series

By considering the maximal error between S,(z) and S(z) when z
varies in A,

|1Sn = Slloo,a := sup |Sn(2) — S(2)|,
z€A

we can say, by comparing the explicit definitions, that S,, — S uniformly
if and only if the numerical sequence {||Sn — S||oc,a} — 0 as n — o0. Also,
from

|8n(2) ~ S(2)] < |1Sn — Sloc,4 Vz € A,

uniform convergence of {Sp} to S in A implies pointwise convergence at
each point z € A. As consequence the pointwise limit is the only possible
candidate to be the uniform limit.

The converse of the last claim is false in general, since there exist
sequences of functions that converge pointwisely but not uniformly, as the
following example shows.

7.11 Example. Consider a function ¢ : R — R that is bounded with {|¢|lcc g = M > 0
and such that ¢(z) — 0 as £ — —oo. Define Sp(z) := p(z — n), z € R. We see that
for any fixed z, Sn{z) — 0, hence {S,} converges pointwisely to 0, but {S,} does not
converge uniformly to zero since ||Zx |0,k = ||¢]loo,g = M > 0.

7.12 4. Show that the sequence {yn} of functions ¢ : [0,1] — R given by ¢(z) :=
%e"’/ ™ converges to zero in [0, 1] but not uniformly.

b. Continuity of uniform limits

7.13 Theorem. Let {S,} be a sequence of continuous functions S, : A —
C on A and suppose that {S,} converges uniformly in A to S: A — C.
Then S is continuous on A.

Proof. Let zgp € A and € > 0. Since S,(z) — S(z) uniformly, there exists
n such that |S,(z) — S(z)] < € for all z € A. Consequently

1S(2) = S(20)| = 5n(2) — Sn(20) + 8(2) — Sn(2) + Sn(20) ~ S(z0)|
< [8n(2) = Sn(20)| + [8(2) = Sn(2)| + 5(20) — Sn(20)|
< |8n(2) = Sn(20)| + 2¢.

Since S, is continuous, we also find § > 0 such that |S,(z) — Sp(z0)] < €
whenever z € A and |2—z| < 4. In conclusion we infer that |S(2)—S(z0)| <
3¢ for all z € A with |z — 29| < 6. O

Notice that the assumption of uniform convergence in Theorem 7.13
cannot be dropped. For instance, the sequence {z"}, = € [0, 1], converges
pointwisely to the discontinuous function

i <
S(z):{o fo<z<1,

1 ifz=1.
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c. Uniform convergence of power series

Going back to power series, we have the following.

7.14 Theorem. Let E;‘;O an2™ be a power series that converges abso-

lutely at zo. Then Y . ,an2" converges uniformly in {z||z| < |20|}. In
particular, if p is the radius of convergence of 3 .. a,2™ and p > 0, then
Yone o an2™ converges uniformly in {z||z| < r} for all r < p.

Proof. For |z| < |z9| and n > 1 we have by the triangular inequality

ox oo o
5@ = Sal)l =| 3 @@ < 3 lasllsl < Y laglizol, (74)
j=n+1 j=n+1 Jj=n+1
hence
sup [S(2) = Sn(2)| < Y lasllzoff =0, n—oo.
|2]<]20] j=n+1
The second part of the claim follows from Theorem 7.3. a

Theorems 7.14 and 7.13 then yield at once

7.15 Corollary. Let S(z) = > 2%, a,z" be the sum of a power series

n=0
with a positive radius of convergence p > 0. Then S(z) is continuous on

{z]lz] < p}.

Proof. Let zp be inside the disc of convergence, |29 < p, and let s be such
that |zg] < 8 < p. By Theorems 7.14 and 7.13 the restriction of S(z) to

|z| < s is continuous. Consequently S is continuous at zp, since |z| < s.
0

7.16 9. Show directly, that is, by using the definition of continuity, that the sum of a
power series is continuous on {z | |z| < p}. [Hint: Let zg be such that |zg| < p. Observe
that for o < p — |zp| and |z — z9| < o one has

o0 oo oo
| E anz™ — E anz()‘|=‘ E an(z"—z{)’)'
n=0 n=0 n=1

< lg {an(z —2) (" " 2 4422l TR 23—1)}’

8

o
< 3 lanliz - 20ln(jz0] + 0)* ™" = |z = 20| Y nlanl(|z0] + )" "]
n=1

Il
i

n
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7.1.3 Differentiation and integration

In this section we deal with the series of derivatives and integrals given
respectively by

n+1

oo
Enanz"_1 and E an
n=1

and show that in the interior of the disc of convergence the derivative and
the integral of the sum are the sums of the series of derivatives and of
integrals

foe} oo n+1
D(Zanz”) = Znanz"_l, /Zanz dz = Zan g
n=0 n=1

In doing that we deal first with the real power series and then with the com-
plex power series, since in the latter case, one needs to introduce suitable
notions of differentiation and integration for functions of complex vari-
ables. We postpone the discussion of some partial results at the boundary
to the next section.

a. Series of derivatives and of integrals
7.17 Proposition. The power series 3 a,z", Y oo na,z""!, and
Yoo g an® +11 all have the same radius of convergence.
Proof. Let p and o be respectively the radii of convergence of E 0 @n2"
and of Zn 1 Nan2™" 1 Let us prove that p = . We first prove that o' <p.
Assuming ¢ > 0 since otherw1se the claim s trivial, fix z such that |2| < o.
Since

lanlz]" <[zlnlanllz[""!,  n>1,

we deduce that ) " a,2" converges absolutely at z by the comparison
test; thus p > o.

Let us prove that p < ¢. Assuming p > 0, for any fixed |z| < p, let r
be such that |2| < r < p. We infer that 3°° ' |a,|r™ converges, so that
{lan|w™} is bounded, |a,|w™ < M, hence

-1
lanl 2 < ML)

Therefore agam the comparison test implies the absolute convergence of
Z;L'o_l nanz™ ! at z; z bemg arbitrary, we then conclude that o > p.
Finally, Y0 an n—+1 has radius of convergence p, too, since Y, - an2"™

. . . . S nti
is the series of derivatives of } " anZ 5. o
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7.18 €. Show that

. {lan—

limsup ¥/(n + 1)|an+1]| = limsup § ln—ll = limsup {/|an|
n—oo n-—+00 n n—00

inferring this way Proposition 7.17.

Iterating Proposition 7.17 we also conclude that, for every k, the series
of the k-th derivatives
o0

Zn(n . 1)(”'L - 2) T (n —k+ 1)an2n_k

n=k

has the same radius of convergence of Y oe, Gnz™.

b. Real power series
Consider a real power series Y oo 6n&" in which {a,} C R and z € R.
Notice that its domain of convergence is an interval of radius p, p being
the radius of convergence of the series, that can be either open, closed,
left-closed or right-closed.

First we state the following simple theorem concerning the exchange of
limit and integrals.

7.19 Theorem. Let {S.} be a sequence of functions S,, : [a,b] — R that
converges uniformly to S : [a,b] — R on the bounded interval [a,b]. Then

/: Sp(z) dxr — /ab S(z) dx.

Proof. This follows at once, observing that S(z) being continuous by Theorem 7.13, we
have

/ ’ (Sn(@) - 5(2)) da:‘ <(b—a) sup |Sn(e)~ S(a)|
a z€la,b]

=(b—a)||Sn — Slleo (- (7-5)
m}

7.20 Remark. Notice that both the assumptions of the uniform conver-

gence and of performing the integrals on a bounded interval cannot be
dropped in Theorem 7.19. For instance, starting with ¢(z) = ze™?,

o Choosing Sn(z) = 1p(Z), we have 1Snlloo,j0,00] = %‘;ﬂfﬂ — 0,
hence S,, converges uniformly to S(z) = 0, but

/Sn(.r)dz=/ p(x)dr >0 foralln>1
0 0

although for any a > 0,

a a/n
/ Sn(:c)da:=/ p(z)dz — 0 as n — oo.
0 0
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o Choosing S,(z) := np(nz), « € [0,1], Sp(z) converges pointwisely to 0
vz € [0,1], and

/Olsn(z)dx=/O"¢(t)dt-+/ooogo(t)dt>o.

7.21 Theorem (Differentiation and integration of power series).
Let S(z) be the sum of the power series Y oo o ana™. If 3 0” anz™ con-
verges uniformly to S on an closed interval (o, 8] C R, then

8 st B
/ S(zx)dx = Zan/ z" dx.
o n=0 o

Consequently,

(i) assuming that the radius of convergence p of ., anx™ is positive,

we have
n+1

z 00 . [+ I
n= n=0
for all z, |z| < p,
(ii) §€C>(]-p,p]) and
o0

D*S(z) = Z nn—1)---(n—k+1)z"%, lz| <p.  (7.7)

n=k

Proof. The first claim and (i) follow at once from Theorem 7.19 since S,(z) :=
2?:0 a;jz) converges uniformly to S.

(ii) From (i) and Proposition 7.17 we get

/Om (2nant”"l) dt = i (nan /0I t"_l) dt

n=1

= i anz™ = S(z) — ap = S(x) — S(0).
n=1

By the fundamental theorem of calulus, S is then differentiable on {|z| < p} and

o0
S'(z) = Z nanz™ !, |z| < p-
n=1
The proof is then easily completed by induction. [m)

7.22 4. Show the following

Proposition. Let {S,} be a sequence of functions S, : [a,b] — R of class C[a, b].
Suppose that the derivatives S}, : [a, b] — R converge uniformly to a function T : [a, b] —
R and that Sy (zo) — A € R as n — oo for some zg € [a,b]. Then

(i) {Sn} converges pointwisely to a function S : [a,b] — R,

(i) S is differentiable on {a,b], S'(z) = T(x) Yz € [a,b] and S is of class C'([a, b]).
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[Hint: Compare (ii) of Theorem 7.21.]

7.23 Remark. Theorem 7.21 extends 1mmed1ately to series Z"_O ianz"™
with a, € C and z € R. Assuming that 3 .., anz™ has a positive radius
of convergence p > 0, we have

o [e o]
i anx" = Z R(an)z™ + 1 Z Xan)z",
n=0 n=0 n=0

D( i anz") = (; %(an)x") + z(j;) S‘(an)x"),
/ Z ant™ dt = /0 ’ ni;o R(an)t" dt + 14 /0 ’ g% X(an)t" dt,

n=0
forall z e R, [z]| < p.

7.24 Example. Denote by Si: [0, 00[— R the function

Si(z) = / L
o t
By Theorem 7.21 we find

sint n t2° n z2ntl
/ -—dt / Z( 1) Z( 1) W, z >0,

n=0
and the following error estimate in the approximation Si(z) ~ 3°7_,(-1)" (57712%:1?
holds,
g2nt1 z2p+1
-1) .
InZ:p( (2n+1)(2n+1)'| T (2p+1)(2p+ 1)

c. Power series and Taylor series
From (7.7) we infer the following.

7.25 Theorem. Let Z —0anx" be a power series with positive radius of
convergence. Then it is the Taylor series of its sum S(x) := Y oo anz™,
that is,

_ D"5(0)

ap = i
n:

Vn > 0. (7.8)

Theorem 7.25 expresses the rigidity of the sums of power series: it
suffices to know S(z) in a small interval | — 4, 6[ of the real axis to know
its derivatives at 0. By Theorem 7.25 all coefficients a,, are then identified,
and in turn the sum S(z) on the entire domain of convergence. Explicit
formulas exist in some cases, but we do not pursue this point which is
nowadays part of the theory of functions of complex variables.

Another immediate consequence is the following.
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7.26 Theorem (Principle of identity of power series). Suppose that
o 0 anz™ and 3 o2 | b,x™ convergein]—p, p[, p > 0, and that 3 " a,z"
=30 obnz™ on ] — p,p[. Then a,, = b, for all n.

d. Complex series

The theorem of differentiation and integration of series extends to complex
power series provided suitable definitions of “complex derivative” and of
“integral of a complex function” are given. We do not give here fully general
definitions, as it would lead us into the theory of functions of complex
variables. Here we make only a few remarks. Let f : B C C — C be a
function defined on an open ball B centered at zero in the complex plane,
B := {z]|z] < p}. We say that f has complez derivative at 2o € B if the
following limit exists in C,

o £ = Flzo) _

z—20 Z— 20

: fI(ZQ).

We define the integral of f from O to 2 =z + iy € B as
z x Yy
/ f(w) dw :=/ f(t+i0)dt+/ fz +1t) dt.
0 0 0

7.27 Remark. Notice the following:
(i) We have
z'n+1

VzeC
n+1

z
Dz" :=nz""1, / w” dw :=
0

as one can see by a direct computation.
(ii) Because of the fundamental theorem of calculus, if f: B — C has a
complex derivative that is continuous, then

f(2) - £(0) = /O " Di(z) de (7.9)

as one can check from the definition.

(iii) From (ii) it follows: if f has a continuous complex derivative on B
and Df(z) = 0 Vz € B, then f is constant on B.

(iv) If g : B — C has a complex derivative, then the function f: B — C
defined by

1= [ otw)du,

has a complex derivative on B and Df(z) = g(z). This is actually a
key point of the theory of functions of a complex variable.

With these definitions Theorem 7.21 extends to the following.



7.1 Basic Theory 249

7.28 Theorem (Differentiation and integration of power series).
Let Zn—() anz™ converge with a pos1t1ve radius of convergence p > 0 and
let S(z) be its sum, S(2) := Y oo, an2™. Then

(i) S(z) has complex derivatives of any order in {|z| < p} and

D*S(z Znn—l (n—k+1)2"7F |z] < p.

Proof. Assuming (iv) of Remark 7.27, one can repeat the proof of Theo-
rem 7.21. Here we present a more direct proof.

(i) Fix z such that |2| < p and let & = §(z) be such that |z| < § < p.
We notice that for any A with 0 < |h| < & — |2|, we have

%h}z—__ %(ian(z—kh ianz)

n=0 n=0

= % Zan((2+h)n - z”)
n=1
00 n

— %;an(;) (Z)zkhn—k _ Zn)

= inan(zzkhn k— 1)

= i napnz""* + i G, ( izkhn"“*1>,

n=1 n=2 k=0
that is,
‘M}_ﬁi(z) - i nanz"—l\ < ‘w(z, h)‘, (7.10)

n=1

where w(z, h) := %, a, [ 2722 (M) 2khn—*-1). We then estimate w(z, h) by
n=2 k=0 \k
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n—2
’ (z,h) ’ < |h]Zlan|<k > (Z)|z|k|h[n—k—2)

h an - h|—k—2 (7.11)
||Z|| (Z( )|||| )

= |h| Zlanl ) (2] + Ry (7.12)
< |n| Z D a,l6™ = |

where C € R is the sum of } 7, @6” which converges and does

not depend on h. In conclusion, (7.10) and (7.11) yield w —
> manz"" 1 as h — 0. Since z has been chosen arbitrarily in the interior
of the disc of convergence, we then conclude that S is differentiable at each
point z with |2} < p, and

oo
= Znanz""l, 2| < p.
n=1

By induction on k we then infer (i).

(if) For |z] < p and t € [0,1], the complex series of the real variable t
Yoo o{anz™)t™ has radius of convergence larger than 1 and sum S(¢2).
From Remark 7.23 then

1n+1 n+1

z 1 oo
/OS(w)dw=z/0 S(tz)dt=27;an ——] Z n 27

7.2 Further Results

7.2.1 Boundary values

Let Y ,an2™ be a power series with radius of convergence that we as-
sume for the sake of simplicity to be 1. As we have seen, if the series
converges absolutely at some boundary point z, |2| = 1, then it converges
absolutely at every boundary point.

In some cases the following test is useful.
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7.29 Proposition (Absolute convergence at the boundary). Let
> panz™ be a power series with a positive radius of convergence p > 0
and sum S(z). Suppose that for some zy € C with |2¢| = p and for each in-
teger n, a, 2§ is a nonnegative real number and that limsup,_,;- S(rzp) <
+00. Then Y.,>  an2™ converges absolutely at all z such that |z| =

Proof In fact, if |2| = |20| = p, for any p > 0 we have Y °
Yo 0 anz3T™, hence

T
n=00n207T" =<

P p

Z lan||2|™ = Z |an]|20]™ = llm Zanz

n=0 n=0 n=0

< limsup Z an(rz0)™ = limsup S(r zp) < +00.

r—1- n=0 r—1-

a

Let 307 ;anz™ be a power series with radius of convergence 1. If the
series ) -, a,2™ does not converge at every boundary point |z| = 1, then
at those points at which it converges it does not converge absolutely. The
following theorem deals with one such case.

7.30 Theorem (Dirichlet). Let E?:o an2™ be a series with radius of

convergence 1. Suppose that the sequence {a,} converges to zero and has
bounded total variation,

o0
Z |Gnt1 — an| < 00.
n=0

Then y">°  a,2™ converges for all z with |z| =1 and z # 1 and

o0
' E anz"”
n=p

n

<

4 o0
= > lapt1 — apl, (7.13)
n=p

in particular y .o o an2™ converges uniformly on every domain D,
{z| |z| < 1,|]1 —z| > p} for all p > 0. If moreover S(z) is its sum, then
S(z) is continuous on {z}||2| €1,z # 1} and

(1-2)S(z) >0 asz— 1, |2| <1
Proof. For |z| < 1 we have

~ 1— zit! 2
27| = = <
o 1-=2 |1—z|

therefore by Dirichlet’s test, Theorem 6.55, 3 ., a,2™ converges and
(7.13) holds. We therefore infer from (7.13) the uniform convergence of
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Yoo 0anz™ on D,. This proves the first part of the theorem, and the con-
tmulty of the sum S(z) on {z|]z| <1, z # 1}.

To prove the second part, for ¢ > 0 choose n in such a way that
Y ent1laje1 — aj| < e If Sp(2) denotes the n-th partial sum, by (7.13)
we have for |z| <1,

(1 - 2) S| (L~ 2) Sul@)] + (1~ 2) (S() = Sn(2))]
== Sa@)+|1=2) D ane"|
j=n+1
< (L = 2) Sa(2)] + 4e.

Being that (1 — 2)S,(z) is a polynomial, hence a continous function, there
exists § > 0 such that |(1 — z) Sp(2)| < € for |z —1]| < 4, hence we conclude
for |z — 1] < § and |z| < 1 that |[(1 — 2)S(2)] < 5e. 0

Suppose that Y oo —o0n2" converges at a point zo of the boundary
{z||z| = 1} of its disc of convergence; is its sum continuous at zg? Of
course the answer is yes if Y o an2™ converges absolutely; in this case,
in fact, it converges uniformly in {z||z| < 1} by Theorems 7.14 and 7.13.
The next theorem gives a partial answer in the general case.

7.31 Theorem (Abel). Suppose > . ;anz" has radius of convergence
1 and converges at zg with |zg| = 1. Then the series of real powers with
complex coefficients Y- (anz)t" converges umformly on [0,1], and its
sum s(t) := S(tz), S(z) bemg the sum of Y ., an2™, is continuous on
[0,1].

Proof. Set oy = t", B, := anzy and B, := Z;l:o Bn. By assumption
> oo? o Bn converges and

iunﬂntnl: 1 ifo<t<]l,
= 0 ift=1,

since t € [0,1]. By Abel’s test, Theorem 6.57, applied with a, := oy, and
n 1= Bn, We get

o0
B> 06| < sup 1B~ Byal{2 3 1~ ¥ 4120}

j=n+1 j=n+1
<3 sup |BJ - Bp—ll, (714)
jzn+l
where B, —o Bp- On the other hand, given € > 0, there exists 7 such

that | By, — B |<efornp>n hence

| Z anz()’t”'—’ Z a]ﬁ3'<3e

j=n+1 j=n+1
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Therefore the series Y-~ (anzd)t™ converges uniformly in [0,1], and the
function s(t) := Y.~ ;(an2%)t™ is continuous in [0, 1] by Theorem 7.13. O

In particular, we can state the following.

7.32 Corollary. Let 3" a,2™ be a power series with radius of conver-
gence p > 0. If it converges at zo with |zg| = p, then its sum is continuous
when restricted on the closed segment joining 0 with zy. Moreover we have

+1
- (7.15)

20 1 ot zn
S(w) dw = S(tzg) dt = e
|7 swdw=z0 [ s(e0) Sl

As a consequence we can prove the claim (i) in Remark 6.61.

7.33 Theorem (Abel). If > " a, and > .. b, converge respectively
to A and B and the product series ) oo Cn, Cn = 3_p—q Gkbn—k, converges
to C, then C = AB.

Proof. Set f(z) =3 1 ;anz™, g(x) = Yoo buz™ and h(z) = 3 oo cr™,
0 <z < 1. Since f(x)g(xz) = h(z) for 0 < z < 1 <, see Theorem 6.60,
and f(z) — A, g(z) = B and h(z) — C by Theorem 7.31, the claim
follows. O

7.2.2 Product and composition of power
series

An immediate consequence of Theorem 6.60 is the following.

7.34 Theorem. Let 3~ an2™ and Y ., bn2™ be two power series with
respectively radii of convergence p, > 0 and p, > 0. Then the series
Yoo o Cn2™, where ¢, 1= Y p_,anbn_k, has radius of convergence p. >
max(pa, Pb) and

o0 o0 o0
5 et = (30" (See”)
n=0 n=0 n=0
for all z, |z| < min(p,, pp)-
Notice that p. is at least the mazimum of p, and ps. For instance, if

Yoo obn2™ is a polynomial, then } .2 o 2™ is a polynomial, too, hence
Pb = P = +00, no matter the size of p,.
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a. Weierstrass’s double series theorem
Suppose that all series

Sm(z): Zamkz , m=0,1,2,...,

are convergent at least for |2| < R, R > 0 and that for every p < R
o0
= 3" 5ute
m=0

is uniformly convergent on [z| < p. Then we have

7.35 Theorem. The coefficients of the power series of z in the respective
series form a convergent series and if we set

0o
= E Amk,
m=0

the series 3 e, ax2* sums to S(z) at least for |z| < R. Moreover S(z) is
infinitely differentiable and

1 k - k
HD( )8(0) = Z:OD( )8, (0).

This follows at once from Proposition 6.66

7.2.3 Taylor series: examples

Taylor series of given smooth functions (see Section 6.1) are important
examples of power series on which one can test the theory.

7.36 Example. We proved in Example 6.15 that

2n

nzzzo—;!— = €%, Z(— )— (2n+1) = sinz, Z(— )” an)! =cosz

for all z € R, thus the radius of convergence of all these series is co. Convergence to
their respective sum is uniform on every bounded interval.

7.37 Example (Geometric series). We saw at several places that the geometric se-
ries ) >2; ™ converges if and only if |z| < 1, and sums to

Zz - |z < 1.

n=0
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The convergence is uniform on every interval [—r,r] with 7 < p. Observe that the
convergence is not uniform, neither in the open interval ] — 1,1[ nor in the interval
] — 1,0] in which the sum is bounded, since the quantity

¢n+1
- = sSu - | = 1
Hl—z z Hoo,]—l,o] IG]—II),O]II_:E
7.38 Example (Logarithm). Replacing z by —z in
1 N
——=>_2" <1
- n=0
we get
1 o0
S, <,
T
n=
and integrating,
e )n z.7‘L+1
log(l1+4z) = ———dt / -1)"t"dt = 1), lz| < 1, (7.16
g(1 +2) o 1+t n_o ) nzzo( n+1 | (7.16)

an equality that we already know by an ad hoc computation (see Example 6.13). In fact
there we proved that > 02 ((—1)"Z +11 converges if —1 < = < 1, does not converge if
z = —11, and the equality (7.16) holds if -1 < z < 1.
On the other hand, the radius of convergence of Znuo( 1)
+1
limsup,,_,., ¥/1/n = 1. We then conclude that 3% ,(—1}"% +1 converges if and only
if-1<z<1and

+1
is 1 since 1/p =

= log(1l + ), z el —1,1].

S

n=0

7.39 Example (Arc tangent). Replacing z by —z2 in

1—$-Zm, |(l:l<1,

n=0

and integrating a,ccord'mg to Theorem 7.19 we get
2n+1

= 2
arctan:c—/o 1+t2 / Z( 12 gt = Z( )" T |z| < 1,

(7.17)
see Example 6.14. There we proved the convergence of the series and the equality (7.17)
also for z = +1.

We can prove the result at z = £1 by means of the theory. In fact, if z = +1 the
series reduces to > 7, (=1)" ﬁf which converges by the Leibniz test. Then Abel’s
theorem yields continuity of the sum of the series at +1, thus, passing to the limit in
both sides of (7.17) as x — =£1, we infer

o 2n+1
arctan+l =+ Z(—l)”&/—
= 2n+1

On the other hand, since |z{?"*1/(2n + 1) — +oo if |x] > 1, we conclude that
(=D 2":11 converges if and only if |z| <1, and

o T
ng%(—l) o

1= arctan z, Jrl < 1
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7.40 Example (The binomial series). We claim that

(1+2)* = f: (:)x" a€R, |z| <1, (7.18)
n=90

where

n) slo—i(a=)(azntl) fp >,

Notice that D*(1+ z)* = a(a—1) - (@ —n+1)(1+ z)>*~™, hence the series in (7.18)
is the Taylor series of (1 + z)® centered at zero.
Since
(24
‘(n+1)| _ Ja—n|
l(a)! T la—n+1]
n

—1 as n — oo

we infer, see Example 2.57, Y/|an| — 1; therefore the series in (7.18) has radius of
convergence 1.

Let S(x) := 322 (2)z™, |x| < 1. By differentiating we then find, similarly to 5.53
of [GM1],
1+2)8'(@) = a8@), el <1,
hence

(S ) _ QxS - as()
A+z)/ 1+ z)et?
Therefore we conclude that S(z) = ¢(1 + z)® for |z| < 1, ¢ being a constant; finally
from S(0) = 1 we infer ¢ = 1.

=0.

7.41 Example (The arc sine). Replacing x with —z2 and choosing @ = —1/2, in
(7.18) we get

et DL (S IE RS

and, integrating, we get

arcsinz = —dt = / Z( 1)”( 1/2)t2"dt

0 - n=0
b —1/2\ z?n+1 2n — )N g2+l
- z<—1>"( ey et (719
= n n+1 4= (2n)!! 2n+1

for |z| < 1, and that the series in (7.19) has radius of convergence 1. The series in (7.19)
actually converges absolutely if |z| = 1, hence uniformly in {z||z| < 1}. In fact, the
coefficients of the series in (7.19), that we denote by {cr}, are nonnegative, hence for
allp > 1,

P
Z|cn| Ecn= llm chr < lim chr = hm arcsmr-—g.
n=0

r—1- r—1
7.42 Example. Similarly, choosing in (7.18) a = 1/2, we get
1/2
Z( / )( e =vi—z, |z <1
n=0

and the series has a radius of convergence 1. Actually, > 27 cn2™, cp 1= ( Y 2)( nH~,
converges absolutely if |z| = 1, hence uniformly in {z||z] < 1}. We in fact have cn, < 0
¥n > 1, hence, for p > 1,
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Zlcn|—1—ch=2— lim chr

n=0 1= n=0

<2- ET—Z( 1/2)( 'r)"= llm 2—V1I—r=2.

n=0

7.43 Example. The series En—o n2z" has radius of convergence 1. Writing n22" =
n(n — 1)2" + n2"” = 22n(n — 1)2z" 2 4 znz” 1. and summing, we get, for |2| < 1,

- 2, n 2n2 — n = n 2 1 1
ngonz =zD(Zz)+zD(Zz)=z 12 =2

n=0 n=0

7.44 Example. We compute

Writing

n—1_ n—1’
multiplying by 2™ and summing we get
o0
n+2 n-1 P
—— Zz +3zz 1=1—_—z—3zlog(1—z),

n=2 n=2

by using the identities

o) 1 o n+l
2" = , = —log(l — 2), z| < 1.
Soeiln EXn-mu-s

7.45 Example. We compute

Z (n+1 (n—2) 2

Since
1 11 11
(n+1)(n—2) 3n+1 3n-2’

nultiplying by 2™ and summing, we get, for |2| < 1,

o 1 e 2ntl 2 zn—2

z
Z:(n—l—l(n—2) _3z1§n+1 3 —mn-—2

1 22 23 22
= 5(—log(1—z)—z—?— ?)+?10g(1—z).
n+1
n=0 n+1

Here we used that Y52 = —log(l — 2) if |z| < 1.

7.3 Some Applications

In this section we illustrate some applications of the theory of power series.
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7.46 Example. Conversely we may express Y .., Z" /n? as an integral. In fact for
|z| < 1 we have

x n o x z © 4n—1 T X un T

1 i 1 t log(l1—1t
> - > —/ "Lt ——/ > dt _—/ =N —at _—/ log(1=t) 4.
= n? Zinlo 0 & n o t n o t

This is easily justified since all series in the previous formulas have radius of convergence
1 and therefore converge uniformly on [0, z] (respectively {z,0] if x < 0) if |z| < 1.

7.3.1 Complex functions

7.47 Complex exponential. We defined in (4.6) the complex exponen-
tial e* by

e” :=e(cosy + isiny), z=x+1iy €C.
Proposition. We have

n

4 - z
e” = Z ) vz e C. (7.20)
n=0

Proof. Since the series of siny and cosy converge in R, we get

. i y2n i y2n+1
e¥ =cosy+isiny= ) (-1)" F+i) (D)o
- (2n) oy (2n +1)!

n

DL gk (iy)nk "\ /n z
Cn = Z—‘ ()" ;= lz (k)ac’“(iy)”"c = %(zm’y)" =

The complex differentiation theorem for series yields also
oo zn—l

o zn—l
D 2 = _— _— Z.
¢ ;n nl Zl n—1! °

n=
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7.48 The complex logarithm. We recall that the principal determina-
tion of the logarithm can be written as
log z := log |2} + { arg 2, z#0,
where arg z € [-m,n[ and arg1 = 0.

Proposition. We have

oo

log(l + 2) = Z(—l)” z

~ n+1

Proof. We observe that for z # 0,

2| < 1. (7.21)

elogz = elog |z|ezargz =2

and the function log z is continuous on {z = z +iy |y = 0, = < 0}. Similar
to the proof of the differentiability of the inverse of a real function (see
Theorem 4.16 of [GM1]), one sees that log z is differentiable at the points
at which it is continuous, i.e., on {z =z +iy|y = 0, £ < 0}, and

1
Dlogz:;, ze{z=z+iy'yF0,$SO}-

Integrating, see Remark 7.27,

z

’ i(—l)"z" dz

0 1 n=0

= Z( 1)"

n=0

log(1+2) —logl =

dz, |2| < 1.

a

7.49 9. Show that equality (7.21) holds for all z with [#| = 1, z # —1. [Hint: . Use
Abel’s theorem and the continuity of log(1 + 2).]

7.50 Complex trigonometric and hyperbolic functions. Starting from the com-
plex exponential one defines the complex sine and cosine, and the complex hyperbolic
sine and cosine by

. . eiz - e—iz eiz _*_e—iz
sinz = ——rw——r, COSZ = ———,
2i 2
. e* —e? e* +e*?
sinhz = ——, coshz = —(—
2 2

that actually means by (7.20)

n+1

cosz = Z( l)n (2n)" sinz = Z( (2n+1)11

n=0
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oo 22n s 22n+1
coshz = E —_ sinz = E —_—
Lo (2n) = @n+ 1)

Trivially the restrictions of the four previous functions to the real axis agree with the
corresponding real functions. It is possible to derive several complex “trigonometric”
identities, that are formally equivalent to the real ones:

sin? 2+ cos®z = 1, e** = cosz+isinz,
sin(—z) = —sinz, cos(—z) = cos 2,
cosh? —sinh? =1, e* = cosh z + sinh z,
sinh(—z) = —sinh 2, cosh(—2) = cosh z,
cosh(iz) = cos z, sinh(iz) = isinz.
and
cos(z + w) = cos z cosw — sin zsinw,
sin(z + w) = cos zsinw + coswsin z,
cosh(z + w) = cosh z cosh w + sinh z sinh w,
sinh(z + w) = cosh z sinh w + cosh w sinh z.
Consequently

sin z = 2sin(z/2) cos(z/2),
cos?(z/2) = (1 + cos z)/2,

sinw —sinz = 2cos(w;z)sin(w ; Z),
cosw — cosz = —2sin(w ;— z)sin(w—zr—z),

7.3.2 An alternate definition of w, e and of
elementary functions

In [GM1] we defined e, m, the exponential function e® and the trigonometric functions
sinz and cos z using several tricks that involve the infinitesimal calculus. Here we want
to point out that all these facts can be subsumed by the power series

oC
zn

ol
= a!

that converges absolutely in C. Define the complex exponential function as

oo Zn
expz::ZH vz e C.
n=0
With some work, using several theorems, including Cauchy’s theorem about product of
series, and the complex differentiation of the sums of complex power series, one may
prove
(i) ADDITION THEOREM. exp (z + w) = (exp z)(exp w),
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(ii) |expz| = exp (Rz), |expz|=1iff z =iy, y € R,
(iii) exp z is differentiable in the complex sense infinitely many times with derivatives
of any order equal to exp z.

. 3 . n
Moreover, if z = z + 10 is real, then we have for expz = fozo zn—,,

D(exp (z)) = exp (z),
exp (0) = 1.

In other words the restriction of the exponential to the real axis is the exponential
function we already know. At this point we introduce the two complex functions

cosz ;= =P (12) +2exp (—iz) ’ sin 7 1= &P (iz) ;.exp (—1i2) '
i

From (7.22) we obtain exp (iz) = cos z+isin z, 2 € C, hence, formally, the Euler identity,

(7.22)

exp (it) = cost + isint.
Again from (7.22), we infer D sin 2z = cos z, D cos z = — sin 2, from which, the functions

of real variable y(z) := sin(z + 10) and z(z) := cos(z + 10) are respectively solutions of
Cauchy problems

1 — 1 —_
y' +y=0, and ¥y +y=0,
y¥(0) =0, ¥ (0) =1, y(0) =1, ¥'(0)=0.

In other words, z — sin{x + i0) and * — cos(z + i0) are the trigonometric functions
that we already know. Again from (7.22), we get

i 2211, i z2n+1

cos z = (-1)"———, sinz := (-1)"— (7.23)
= (2n)! = (2n + 1)V

which furnishes the needed developments.

Recovering the number w, and discussing the periodicity of sinz and cosz, z € R,
from the complex exponential is a litle tricky, but it can be done. One starts proving
that exp : C — C\ {0} is onto, and then one observes that exp : C — C\ {0} is a
homomorphism from the additive group C into the multiplicative group C \ {0} which
is onto but not injective: its kernel is given by

ker(exp) = {w € C‘expw = 1}.

At this point one can show? that there exists a unique positive number, that we call 7,
such that
ker(exp ) = 2miZ, ie., exp (2wk) = 1 Vk € Z.

The addition formulas for the sine and the cosine yield the 2m-periodicity of sinz and
cos .
Concluding, we may regard 7 as one of

zeros of sinz =k, k€ Z,
zeros of cosz=%+k1r, ke€Z,
periods of exp z = ker(expz) = 2kn, k€ Z,
periods of sin z = 27Z,
periods of cosz = 27Z.
4 See, e.g., the paper by E. Remmert in in H.E. Ebbinghens, H. Hermes, F. Hirzebruch,

M. Koecher, K. Meier, J. Neurich, A. Prestel, R. Remmert, Numbers, Springer, New
York, 1988.
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7.3.3 Series solutions of differential equations

Power series turn out to be very useful in solving ODEs. Without entering
the question of when or if an ODE has a series solution or whether all
solutions can be represented as a power series, we confine ourselves here
to presenting a few examples.

7.51 Example. Suppose that the equation
y// —y= 0
has a solution of the form

o0
y(z) = Z arz®
k=0

with a positive radius of convergence. We therefore have

o0 oo [e ]
0= Z k(k — Dagz* 2 - Z apz® = Z(k(k = Day — ap_2)z*"2,
k=2 k=0 k=2

hence, by the principle of identity of series,
k(k—l)ak =Aak-2, k=2,3,4,....

For k even, k = 2n, n > 1, we then find

agn = —22n=2 ie agn = —2
= on(2n—1)’ = "7 @n)l’
and, for kodd, k=2n+1,n > 1,
a = 2am-l ie agn41 = S
T on+ 1)2n’ = T @nr )
Since the series 37 % and > 00 % converge on R, we conclude that

oo 1:2n o 2:2n+1 b A R
Tr)=a —_— 4 ———— = gg coshz + a1 sin hx T €
y(=z) Ongo 2n)! a1nz=0 @n+1)! 0 1 ,

is a solution of ¥ —y = 0.

7.52 Example. Similarly, for the equation
y” -y = 0,

assuming that the series > 72 o a,x® with positive radius of convergence is a solution
of the ODE, we find

o o]
202+ Y ((k +2)(k+ Dagy2 — 1119—1)21c =0,
k=1
ie.,
az =0, (k+2)(k+1)agy2 —ap—1 =0, k=1,2,3,...,
which yield
- @& =
a3n = 2~3-5-6~~fl(3n—1)3n’ n=12...,
- 1 =
WBn+l = TrET G’ "= L2

azn4+2 =0, n=0,1,2....
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We find again two series which converge for all z € R,

oo z.371,
=1 ’
yi(z) +;2,3,5.6...(3n_1)3n
oo 3n+1
z
w@ =1+

£~ 3.4:6-7---3n(3n+1)

and such that
y(x) = aoy1(x) + a1y2(x)
solves the equation for all ag and aj.
7.53 Example. Consider the equation
2y + @ +a)y —y=0

and suppose that the series > 3o, a,x* has a positive radius of convergence and is a
solution of the equation. In this case

0= Z k(k — Dapz® + Z kagzt! + Z kapz® — i apz”
k=0

k=0

i (k(k —1) + k — Dagz® + Zkak:c

k=0 k=0
oo
= Z( k% — 1axz® + Z(k — Dag_1z"
k=0 k=1
=—ap + Z ((k:2 — Var + (k- l)ak_l)mk,

k=1

hence
ap =0, (k= 1)((k+1)ar +ax—1) =0.

In conclusion we find

(l:2 13 224
L T T S S P
2A1 z2 z3 4 e T+x—1
= (z—1+(1—:c+-27—-§'—+~——--))=2A1f, z >0,

i.e., in this case, we find only a one-parameter family of solutions.

7.54 Example. Consider the equation

3//+y 0.

k

Assuming 322 ; arx” is a solution of the equation with a positive radius of convergence

we find -
ao + Z (ak + (k - 1)(k - 2)ak_1):1;’° =0,
k=1

hence all a;, must vanish: the unique solution that is representable by a power series
with center 0 is the zero solution.

7.55 4. All ODEs in this section can be integrated explicitly by writing a first integral,
i.e., multiplying by ¥’ and obtaining a linear first order ODE for z(z) := y'(z). Of course
not all second order equations can be integrated this way.
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7.3.4 Generating functions and combinatorics

a. Generating functions

An extremely useful representa.tion of a sequence {a,}, n > 0, that grows
less than exponentlally is given by the sum of the real or complex power
series Y - anz". In fact in this case >~ anz" has positive radius of
convergence and the sum A(z) := Y., ,an2" uniquely identifies its co-
efficients, see Theorem 7.25. The function A(z) is called the generating
function of the sequence {a,}.

If we restrict ourselves to the set of bounded sequences {a,}, denoted
by ¢=(C), the corresponding series > -~ an2" converges to a function
defined at least in {z|]z| < 1}. Denoting by C the set of all maps a :
{z|]2] < 1} — C that are infinitely differentiable in the complex sense,
we then establish a map 7T : £>°(C) — C, which transforms every bounded
sequence a = {a,} into the sum of the corresponding power series

o
T{a}(z):= Zanz".
n=0
Since 7T is injective (see, for example, Theorem 7.25), though not surjective,

see Example 6.12, T{a}(z) gives a different view of the sequence {a,}.
We have

(i) 7 is linear, i.e., if A,p € C and a = {an}, b = {b} € £°(C), then
Aa + pb = {Xan + pbn} € £2°(C) and

T{)a + ub}(z) = AT{a}(2) + uT {b}(2), |z] < 1.
(i) If ex := {(0,...,0,1,0,0,...)} then T{ex}(z) := z*.
(iii) If a = {an}, alild

b:.={(0,...,0,a9,a;,as,dots
{( k 0,01, a2, dots)}

is the forward shift of k places, then
T{b}(2 Z an2"* = 2 T{a}(2), |z| < 1.
(iv) If a = {an}, and b = {antk}n is the backward shift of k places, then

T{b}(2) = Z An+k2" = (T{a}(z)—ao—alz—azzz—- c—ap_1 287
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(v) T transforms the convolution product of sequences into the product
of the transformed functions, see Theorem 7.34,

T{ax*b}(z) = Z a * b}, z" Z an2" Z bp 2™ = T{a}(2)T{b}(2).
n=0

7.56 Example. The generating function of the sequence (1,1,1,...) is

THOLLL.. )RR =D "= :
n=0

differentiating, we get

T{n+1}}z) = Z<n+1>z —an = D) ==
while, integrating
Ty =-E0=D

7.57 Example. Moreover, if T{a}(z) is the generating function of a = {an}, then

R PRI SO SN EEELIS
n=0

where @n 1= Y _,_g a). For this reason 1/(1 — 2) is often called the summing operator.

7.58 . Let a = {a,} be a sequence that grows at most exponentially fast.
We saw that 7 is injective, hence it will be possible in principle to re-
construct {a,} from the generating function 7{a}(z). Although general
formulas are available in the context of the theory of functions of com-
plex variables, it is worth noticing that an explicit formula follows from
the Hermite decomposition formula when 7T{a}(z) is a rational function.

Suppose that
S g7 = AG)
—" B(z)

in a disc around zero, A(z) and B(z) being coprime polymomials with
deg A < deg B, the roots of B are far from zero, and by Theorem 5.31

A(z) _
B = > Z (z_ (7.24)

o root of B j=1

Since

s -7 - B ()2,

on a disc around zero, (7.24) and the principle of identity of power series
yields
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ka7 N (_1Vi )
ap = Z %(Z ( nj> ( 12;')\%]) vn. (7.25)
a root of B j=1

When all the roots of B are simple, we have k, = 1 and A1 = A(e)/B'(@).
Therefore (7.25) simplifies to

Ala
an=-— 3 Eﬁ%%ﬂ (7.26)

a root of B

b. Enumerators

Generating functions are particularly useful in combinatorics. In this case
it is customary to change slightly the terminology.

7.59 Definition. The generating function of a sequence {an} of combi-
natorial numbers is called the enumerator of {a,}.

7.60 Combinations. The enumerator of the combinations, i.e., of nonordered
samples without replacement, in a population of n distinct elements,

{CF}x,

(7)) ifk<n,

Ck .=
" 0 ifk>n,

is (1 + x)™, since by Newton’s binomial
o (1) & _ =~ (n\ & - n
Z(k)z —Z(k)vv = (1+z)"
k=0 k=0

7.61 Combinations with repetitions. The enumerator of combina-
tions with repetition, or nonordered samples with replacement, from a
population of n distinct elements, CF := ("‘H,j—l), k>0,is(1—z)"". In
fact (see Example 7.40),

> (- (W)t - ()"

n=0 n=0

Enumerators are truly useful since one can code easily several selection
rules and constraints. Let us start with some examples.

7.62 Example. From three distinct objects a, b, ¢, there are three ways to sample one
object without replacement, namely a, b or ¢, three ways to sample two objects without
replacement, ab, ac, bc, and only one way to choose three objects, namely abc.

By considering the polynomial (1 + az)(1 + bx)(1 + cz) and observing that

(14 az)(1 4 bx)(1 + cx) = 1+ (@ + b+ )z + (ab + be + ac)x? + (abc)z®

we see that, replacing “or” by + and “and” by - the coefficients of the polynomial
enumerate the simultaneous selections of 0,1, 2, 3 objects.
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7.63 Example. The parallelism in the previous example is not casual. Given the four
objects a, a,b, ¢ there are three ways of sampling one object (a, b and ¢), four ways of
choosing two objects (aa, ab, ac, be), three ways of choosing three objects aab, aac, abe
and only one way of choosing four objects (aabc). If we encode the population a, a, b,
¢ by the polynomial

P(z) : = (14 az + a?z?)(1 + bx)(1 + cx)
=1+ (a+b+c)z + (a® + ab + ac + be)z? + (a®b+ a’c + abe)z® + a?bez?,

we see that the coefficient of " enumerates the selections of r objects. In particular
there are four ways to select two objects, and three ways to select three objects.

7.64 Example. The mechanism is even more general,as we can include contraints on
the allowed selections. Still with the population a, a, b, ¢, we see that, if we want to
count the selections which contain b, it suffices to consider the polynomial

(1 + ax + a®z?) bz (1 + cz) = bz + (ab + be)z? + (a2b + abc)z® + a%bex?

to enumerate the possible selections which contain b.

It is therefore conceivable that we can code the population and the
constraints on the element to be selected in a polynomial and leave the job
of enumerating the selections to the algebra of polynomials. The previous
examples actually suggest how to construct the enumerating polynomial.

Consider a population of N distinct elements aj,as,...,an but each
with multiplicity possibly infinite. For each of the a;’s consider the power
series

w .
Si(z) =Y dia"
n=0
where

5 1 if a; may appear n times in the selection,
" 0 if a; is not allowed to appear n times in the selection.

The product of these series, one for each distinguishable element of the
population, all converging in ] —1,1[, S1(z)S2(z) - - - Sn(x), is the enumer-
ator of the drawing.

7.65 Example. In the case of combinations without repetitions of a population of
n distinct elements, that is of unordered samples without repetitions, each element
may appear at most once. Thus its enumerator is (1 + =) and the enumerator of the
combinations without repetitions is

(1+z)(1+z)-~-(1+a:)l=(1+x)".

n times

7.66 Example. In the case of sampling with replacement, the population has n dis-
tinct elements, but each can occur with arbitrary multiplicity. The enumerator of each
element is then 1

l+z+a?+.. .=

T1-2z

and the enumerator of unordered samples with repetitions is
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(5 (X) ()= (T = ()"

k=0 k=0 k=0 k=0

~
n-times

7.67 9. Show that > 7 (—1)"(7) = 0, i.e., the ways of choosing an even or an odd
number of objects is equal, and equal to 271,

7.68 9. Show that Y7_o (1) = (3). [Hint: (1 +2)"(1 +2)" = (1 + 2)*"]

7.69 9. Prove Vandermonde’s formula using the identity

A+2)V =1+ 2K +2)V K,

c. Exponential enumerators

For sequences {a,}, and especially for sequences which grow faster than
exponentially, it is worth computing the enumerator of a rescaled sequence.
For instance the ezponential enumerator of the sequence {a,} is the sum

of the power series
n
z
n!

n=0

7.70 Arrangements without repetitions. The enumerator of the or-
dered samples, or arrangements, without repetitions of n distinct objects

{Dk},

n—k!

0 ifk>n

Dk .=

n

{—n’— ifk<n,

of n distinct objects is

n

] n!
Dk k=1 n: : 2 ... 1™
I;) ko +(n_1)!x+(n_2)!:r + - +nlz™,

which unfortunately has no simple closed form. However the exponential
enumerator of the same sequence DF is

n lc
ZT; =(1+z)"
k=0

7.71 Arrangements with repetitions. The exponential enumerator of
the ordered k-samples of n with repetitions of n distinct objects, { Dz},

Dk =nk is
o0
> Mt =
k=0 k
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As for nonordered samples, one can build easily from the population
and the rules of selection the exponential generator for nonordered samples,
leaving the computation to the algebra of the power series.

Suppose the population is made up of IV distinct elements, a3, ag,.. .,
an, each with infinite multiplicity. For each a;, consider the power series

© s
Si(z) == ;a;m
where

5= {1 if a; may appear n times in the selection,
n

0 if a; may not appear n times in the selection.

Then the exponential enumerator of the ordered samples with repetitions
is S1(x)S2(z) - - Sn(x).

7.72 4. Check that the previous rule yields the right result in the case of permutations
with or without repetitions.

7.73 4. Show that the exponential enumerator of the permutations of
. s . . zZP
o p identical objects is o
o two objects of one type and three of another type is
22 22 23
(L+e+ ) (14t 5+ 5)-

d. A few location problems

The exponential enumerator is particularly useful when locating distinct
objects into cells.

7.74 Distributions onto distinct cells and surjective maps. Aswe
have already stated, locating k different objects in n different cells is equiv-
alent to fixing a map from X := {1,...,k} into Y := {1,...,n}. Thus, the
number of ways of placing & distinct objects in n distinct cells with no cell
left empty is equal to the number S¥ of surjective maps from X into Y.
By Proposition 3.38,

st = }L:}‘-”" (7) =i

We give an alternate simple proof based on the use of the exponential
enumerator. Since we have n cells and each cell may contain an arbitrary
number of objects larger than 1, the exponential enumerator for each cell is

o0 k
T

x+a:2+x3+---=z —k,=€z—1,
k=1
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hence the exponential enumerator of the distribution in n cells is

(-1 =3 (?)(—l)je‘""')’

=0
=;(§(?)< 1Y(n - i)¥)

The number of k-permutations of the n cells being the coefficient of z* /k!,
we find again the value of S¥. The numbers

S(k,n) = = Sk n,2(> Y (n~ 4)F

are called Stirling numbers of second kind and (7.27) can be rewritten as
(e® — 1
) Z S(k,n)— k, (7.28)

7.75 Distributions into indistinct cells. Since there are n! ways of
distinguishing n objects Stirling number S(k,n) is the number of ways of
placing k distinct objects into n nondistinct cells, all containing at least
one element.

We also saw that there are n* ways of placing k distinct objects into n
distinct cells, when empty cells are allowed. However, the number of ways
of distributing k distinct objects in n nondistinct cells with empty cells
allowed is not n*/n!. It is

S(k,1)+ S(k,2)+---+S(k,n) fork>n

and
S(k,1)+ S(k,2)+ -+ S(k, k) for k < n,

i.e., in both cases Emm(" k) S(k,j). In fact, the ways of distributing &
objects in n nondlstmct cells with empty cells allowed equals the ways of
distributing the k objects so that one cell is not empty, or two cells are
not empty, etc.

If n > k the number Z;-c:O S(k,j) of distributions of k objects into
n-distinct cells has a closed form. In fact, since S(k,n) = 0 for n > k, we

have
k

>_S(k,4) = Zsm

=0
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consequently
> stk =3 5 -0 ()6 -mt =305 E
7=0 7=0 J n=0 n F=0n=0 n (‘7 n)
o0 _1 ki o0 -k 1 o0 .k
-EAEDH-154
=0 J Jj=0 j=0
7.29
Moreover, from (7.28) (729
oo k z [ 00 00 (Ek
YD Sk =2 Skii)gr =D Sk
k=0 j=0 k=0j= 3=0 k=0
s (ew];'w = e, (7.30)
j=0

e. Partitions of a set

The exponential enumerator is very useful also when dealing with parti-
tioning. Let X} = {1,2,3,...,k} be a set with k elements. A partition
of X is a decomposition of Xj into a finite union of disjoint subsets
C1, Cy, ..., Cp. We denote by P := {C1,Cy,...,Cp} a partition and by
P(Xy) the family of partitions of Xj. Two partitions {Ci,Cs,...,Cp} and
{D1,Ds,...,Dg} are different if p # ¢ or, if p = ¢ and for any permuta-
tion o of the indices we can find i such that C; # D, ;). The number of
partitions of X}, called the k-th Bell number, equals the number of distri-
butions of & distinct objects into r cells allowing empty cells, » > k, hence
by (7.29)

oo 1 jk
|P(Xk)| = S(k,j) = EZ =
=0 j=0 J:

We can also find such a number by means of the exponential enumerators.
For that we first state

7.76 Proposition. Let u(z) =3 oo, ak% be the exponential enumera-
tor of the sequence {an}, ag = 0. Then

(@) = ﬁwk where  Ag = Z H acys

k=0 PcP(X)) CeP

|C| being the cardinality of C.

Proof. In fact
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=0
o0
1 pFitkat -tk zr
ST mea i )1 Al
307" ko, kg =1,00 Falkst - ks
where
> % :
, = Gk, Ak, * QG ————.  (7.31)
- Ky kgt ey =r J]!klle!'--kj!
k21
We may interpret ki, ko, ..., k; as the cardinalities of a partition P =
(C1,Co,...,Cj5) of {1,2,...,7} and let Pj, . &, be the set of partitions
with j subsets of cardinality k,...,k;. Since the number of partitions of

{1,2,...,7} in j subsets, C1,Cs,...,C}, with cardinality k,...,k; is

r!
kilka!- - - kj!

(see, for example, 3.51), we conclude from (7.31) that

=i ) (H“|C|)= Y. I e

j=1P€Pjk,, . k; CEP PeP(X,)CEP
O

To compute the number of partitions of X,,, we now choose ar = 1,
k > 1, hence u(z) = > p, axz®/k! = €* — 1 and Proposition 7.76 yields

=3 1P
n=0

On the other hand by (7.30)

. 00 00 ok
e _1=Zzs(kvj)ya
k=0 j=0 :

therefore |P(X,)| = Z;’io S(n, ), and, by (7.29), |P(X,)| = % Zk =0 |

7.77 99. If in Proposition 7.76 we choose aj, = # of trees with k vertices and u(z) is
the corresponding exponential enumerator, then the coefficients Ay in

ew(®) = zAk_

represent the forests of trees with k vertices.
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7.78 Partition of integers. In how many different ways can we decom-
pose an integer as a sum of integers? For example the number 4 can be
decomposed as 4,3+1,2+2,2+1+1, 1+1+ 1+ 1. This was one of the
problems discussed by Leonhard Euler (1707-1783) in terms of generating
functions. Clearly, a partition of n is equivalent to a way of distributing n
nondistinct cells with empty cells allowed. It is not difficult to realize that
the generating function of the sequence {p(n)|p(n) := # partitions of n}
is given by
o0
Zpk$k=(1+:v+x2+--~+x’"+~-) (7.32)
k=0
(42 +azt+)
c(l+2¥+2%4)

_ ﬁ 1
= —
faie 11—z
Similarly, observing that

1
1+x+xﬂhﬁ+~«=T~—=(L+@u+z%u+xﬂ~wl+ﬁﬂ,

we infer that any integer can be expressed as the sum of a selection of
nonnegative integral powers of 2 (without repetitions) exactly in one way,
i.e., every decimal can be represented uniquely as a binary alignment.

Ut non-finitam Seriem finita coercet,
Summula, & in nullo limite limes adest:
Sic modico immensi vestigia Numinis haerent
Corpore, & angusto limite limes abest.
Cernere in immenso parvum, dic, quanta voluptas!
In parvo immensum cernere, quanta, Deum!
Jacob Bernoulli®

5 Even as the finite encloses an infinite series

And in the unlimited limits appear,
So the soul of immensity dwells in minutia

And in narrowest limits inhere.
What joy to discern the minute in infinity!

The vast to perceive in the small, what divinity!
From Jacob Bernoulli, Tractatus de Seriebus infinitis Farumgue Summa Finita et
Usu in Quadraturis Spatiorum & Rectificationibus Curvarum, in Ars Conjectands
(Translation by Helen M. Walker, from A Source Book in Mathematics by D. E.
Smith, 1929).
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7.4 Further Applications

In this section we illustrate some applications, which go back to Euler and
Johann Bernoulli (1667-1748) and are quite relevant in several contexts.

7.4.1 Euler—-MacLaurin summation formula

In this section we illustrate a general method of approximating sums found
by Euler and later rediscovered by Colin MacLaurin (1698-1746). As a
consequence we find the asymptotic development of the factorial n! and of
the partial sums of the harmonic series, H,, := EL’:l %

a. Bernoulli numbers
As we shall see, the Taylor series of the function

=1 2#0,
o(2) = { RS
1, z=0

with center in the origin plays an important role. From the theory of
complex functions one infers that g has a Taylor expansion with radius of
convergence 2, so we can write for |z| < 2,

2 N2
= ZBJ.T. (7.33)

=0

The numbers {B,} are called the Bernoulli numbers. From

we see that they are characterized by the implicit recurrence relation

By =1
{ On ’r:,+1 B, = (7’34)
Zj:o( j )Bj=0 V¥n2x1,
from which we can easily compute a few values of B,,:
1 1
BO=1, Bl=——, By = - B3=0, B4=—i B5=0.

2 6’ 30°
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7.79 . Convergence and equality in (7.34), and other consequences, can be inferred
starting from Euler’s formula for cot z, compare (6.30),

el 2
z
zCOtZ-:]."‘zkE m, 'Z| <. (7.35)
=1

On account of the Weierstrass double series theorem, we infer that

s 2
z
k=1
el 2
z 1
=1_2Z K2n2 1 _ 22
k=1 Yy
o0 [e <] 2 .
z j+1
= 1_222 (kz.,rz)

k=1;=0
oo

- 2]

=1-2 az;z
j=1

where

Q2; = Tr%(i ;:é;)

k=1
The equality (7.36) holds on |z| < w. On the other hand

z 41 z/2 —z/2
Gt hl g e (7.37)
er—1 2 e —1 2e2/2_g—2/2
cosh(2) 2 z
=z 727 _ 2 -} =
=£ smb(z) ~ 2 coth (2) w cot w, (7.38)
where 2i w := z. Equating (7.36) and (7.37), we then infer
(e 00 .
z z 2% __ z (=1) 2j
e RN B P
J=1 j=1
near zero, hence z/(e* — 1) has a Taylor expansion centered at zero,
e —1 Jrd 7!
where By = 1, By = 1/2, and, for j > 1, By;4+1 =0 and
By; -1 &1
o~ P o (7:39)
J): k=1
In particular
| B2n| 2 1 1 1
= — — <2 — , 7.40
(2n)!  (2m)2n ; k2n — kz=:1 k2 (2m)2n (7.40)

from which we infer that -~ )
23
S(z) := Z B; F

=1

has radius of convergence at least 2m. Since S(z) and z/(e* — 1) have both complex
derivatives on |z| < 27, we conclude that
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J

L _-S"BZ, jal<em
5!

Notice that (7.40) yields

oo _ i1 22j—1 7|'2j sz . )
Y = (T Y————, >
&= kz] (25)!

in particular,

Se-v Licw

b. Bernoulli polynomials
Bernoulli polynomials are defined by

Bn(z) = kz:(:) (Z) Biz"%  zeR. (7.41)

It is not difficult to show that the exponential enumerator of {B,(z)} is
te®t/(et — 1), i.e.,

oo

=Y Bn(z) ', |t < 2. (7.42)
k=0
They satisfy the relations
Bn(z +1) — By(z) = nz™ 1, (7.43)
DB,(x) = nBp_1(x). (7.44)
In particular
Bo(.’l:) = Bo = 1, Bn(l) = Bn(O) = Bn Vn 2 1,
1 z - 7.45
/ Bn(z)dz =0, / Bn_1(t)dt = Pi"-(i’-)ﬂ-fi. (7.45)
0 0

To prove (7.43) we compute

n

= " ot = n—1 t
X:;( (x+1) - B(:c))m=te =n§=:1z e

then it remains to equate the coefficients of ¢™ for all n. To prove (7.44) it
suffices to differentiate (7.41), while the rest is then trivial.
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1 \\ }”
\\\ 7’
AN ;
0.5 — A e
W 7
» 7
AN "
o F-------3 \\-\ -------------------------- -,'/ -----------
\ / (a) J—
0.5 - N\, S (b) -
> /
N \\—’// (C) --
-1 | [T~ |
0 0.2 04 0.6 0.8 1

Figure 7.3. The normalized Bernoulli polynomials By (z)/Bn, respectively (a) n = 2,
(b) n =4 and (c) n=6.

7.80 . From (7.43), we infer

m—1

Brs1(n) = Bpy1(1) = Y (Brs1(i+ 1) = Buaa () = (m+1) > 5™,
j=1

=1

.

that is,

kzzokm - m;_'_l(Bm.H(n) - Ba(1)).

7.81 . Using the properties of Bernoulli polynomials, in particular (7.44)
and (7.45), one proves inductively on n (and we leave it to the reader) that
the only possible minimum and maximum points for Bo,(z), z € R, are
0, 1 and 1/2. From

0 n z/2

T Te T x
B,(1/2)— = = -
7;) m(/)n! e —1 e®/2-1 er~1

we compute
Bom(1/2) = (2172™ — 1)By,,,

consequently

|| B2mlloo,f0,1] = sup |Bam(t)| < |Bam|. (7.46)
te[0,1]
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c. Euler-MacLaurin formula and Stirling’s approximation

7.82 Theorem. Given nonnegative integers m,p,q, m > 1, p < q, and a
smooth function f, we have

Zf(k) / f<z>dx+2 s pi- )|

+ R, (7.47)
p

where

m!

Ry = (-1)™* / " Bunle = 7)) pm (1) d.

Proof. To prove it, we first observe that it suffices to prove it in the case p = 0 and
g = 1, because we can then replace f by f(z + k) for any integer s getting

+1

h+
F(r) = /h f(z)dz+2 =% pk- 1f<z>

h+1 -

summing in h on the range p < h < g, we then get (7.47), since intermediate terms
telescope nicely. The proof when p =0 and ¢ = 1, i.e., of

7(0) = /f(x)dw+z 25 DAL (z)) + Rom,

B
R 1= (<07t [ 228 oy g
]
is by induction on m. For m = 1 it amounts to proving

1 1
10 = [ 1@ s = 00) - o)+ [ (== 1/Df @) o

which is just
1 1 1
f@%@ =/0 D((z — 1/2)f(x)) do =/0 (@) dz+/0 (z - 1/2)f' () ds.

To pass from m ~ 1 to m, m > 1, we need to show that

B
Ry = —mDm 1f(:;v)‘ + Rm

which reduces to
1 1
(—1)mBmDm‘1f(x)|(l) =m/0 Bum_1(z)D™" ! f(z) dz+/0 Bun(z)D™ f(z) da

As previously, taking into account (7.44), integrating by parts we see that this holds if
and only if

1 1
(-)"BnD™ " f(@)| | = Ba@D™ " f()| |
i.e., if and only if
(=1)™Bm = Bm(1) = Bm(0) vm > 1,
that we know to hold since B (1) = Bm(0) = Bm, and By, = 0 for m odd. [m}
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On account of (7.46) and (7.40), we can easily evaluate the remainder
and rewrite the Euler-MacLaurin formula as

p p k=1 . p
(7.48)

q—1

k=p

with
|B2m|

(2m!)
If D*™f(z) > 0 in [p,q], D*™ 1 f(z) is increasing and the integral
g
[ |D*™ f(z)| da is just Dz’”_lf(x)’ , therefore, using (7.46), we can esti-
P

mate the remainder by

[Rom| <

/ ! |D*™ f(x)| dz. (7.49)

Ra < [ BonlE Dl pom 0y a0

||B2m($ Hoo [0,1] om

< e / D™ £(2)| dz (7.50)
BQm m—

< (2772) D2 lf( )lp

7.83 . An interesting application of the Euler-MacLaurin formula is to the study of
the asymptotic development of Y 7_; f(k) when n — oo. The structure of the Euler—
MacLaurin formula is

n—1 m
> f(k)=F(n) = F(1)+ Y (Tk(n) - Te(1)) + Rm(n)
k=1

k=1

where "B
Rum(n) := / _m(L_[L])Dmf(w) dz,
0 m!
etc. Assuming D™ f(z) = O(z°" ™) as ¢ — oo for large m, it is not difficult to see that

R (n) is not small for large n, but has only a small tail, i.e.,

Ry (n) = Rm(o0) + I’:l:(n),
ﬁ;(n) = (—1)m+1 f:o %EDDmf(m) dx = O(nc"'l—m).

Therefore we can conclude that for a suitable constant C' we have

n—1 m
ST fk) = F(n) + C+ 3 T(n) + Rm(n).
k=1 k=1

7.84 Example (Harmonic series). We apply 7.83 to f(z) := 1/z. Since
D*f(z) = (-1)*kl/a**,

we deduce
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n—1 m
1 B Boy ;
S o=t SLos 22 LR
o k cEnt Ot n o 2kn + B

for some constant C. Since D?™ f(z) > 0 Vm, we can estimate the rest by
Bam+2 .
(2m 4 2)n2m+2’
adding 1/n and observing that C is the Euler-Mascheroni constant «y, see Example 6.26,
we conclude

|Ron (n)] <

1 1 i Bok Bomy2

H, = — =] _— it LA —mmTe
" g;; kBT o T 2y GknaE T O™ G ¢ 222

for some O, with |6 n] < 1.

7.85 Example (Stirling approximation). Similarly to Example 7.84, on account of
Stirling’s formula in Example 2.67, we can state

1 = Bayg
logn! =nlogn—n+ 510gn+logv27r+kz=:lm

0 Bam+2
T (9m 4 2)(2m + 1) n2mL

+

and |0m o] < 1.

7.4.2 Euler T' function

The gamma function, I'(x), defined by Euler in 1729, is surely one of
the most important special functions, as it unexpectedly appears in many
topics in analysis.

a. Definition and characterizations
For 0 < z < oo, I'() is defined as

oo
[(z) = / t*"le~tdt.
0

7.86 Proposition. I'(z) € R, and, for all z €]0, 0],

o I(z+1)=zT(x),

oI'(1)=1,T(n+1)=n!,

o logI'(z), = €]0, 00[ is convex on )0, 00|, in particular I is a continuous
function.

Proof. (i) follows easily integrating by parts. Clearly I'(1) = 1, thus (ii)
follows from (i) by induction. Applying Holder’s inequality (see [GM1]),
one easily obtains

+-=1,

S
Q|

T,y 1/p 1/q
“+2) <
P +7) <T@YrE)ve,

that is equivalent to (iii). |
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Actually these three properties characterize I'(z) completely.

7.87 Theorem. Let f :]0, 00[—]0, 0o[ be a function such that

o f(z+1) =zf(a),
o f(1)=1,

o log f is convex.

Then f(z) =T'(z) Vz > 0.

Proof. It suffices to show that (i) (ii) (iii) uniquely determines f(z) for all > 0 and
actually because of (i), for all = €]0, 1]. Set ¢ :=log f. Then

o(x+1) = p(z) + logz, ¢(1)=0 and ¢ is convex. (7.51)

By induction we see that ¢(n+ 1) = logn! for all integers n > 1. Since ¢ is convex (see,
e.g., [GM1)), we have for 0 < z < 1,

_pntl)—pm) pntl+z)—pn+l)
1 - T

< Pn+2)—pn+1)

= 1

logn

= log(n + 1), (7.52)

while iterating the first of (7.51),
e(n+1+z) =p(z) +loglz(z+1)--- (n +n)].

Subtracting logn in (7.52), we then get

xT

! 1
0 < ¢(z) —log = <“’1°€(1+;)-

z(x+1)---(x+n) ~

Since the last term tends to zero as n — oo, @(z) is uniquely determined. 0

7.88 Gauss’s formula. In the proof of Theorem 7.87 we have in fact
proved that

) n!n®
L(@) _nll»n;o z(z+1)---(z+n)
or, equivalently
. I(xz+n)
lim ———=

=1.
n—oo n% I'(n)

Actually one can prove that the previous formula is a characteristic for
gamma. We have the following.

7.89 Theorem. Let F :]0,00[—]0, 00[ be a function such that

(i) F(z+1) =z F(z),
(i) F(1) =1,
(1) limpo0 titt =1.

Then F(z) = I'(z).
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Proof. In fact,
F(n)=(n-—1)! and Fz+n)=z(x+1) - - (z+n—1)F(z),

therefore (iii) yields
1= lim F(z +n)

n—oo plpz—1

z(z+1)---(z+n-1) F(z)
n!ne-1 T Iz)’

=Fle) Jlig,
a

We can also express I'(z) as an infinite product: this is the original
definition of Euler.

7.90 Proposition. We have

1 = T\ _z/n
m=€71$g(1+;)6 /,

where v is the Euler—-Mascheroni constant.

Proof. Write g(z) for the inverse of I'(z) in the right-hand side. Taking the logarithm
we see that g(1) =1 and

—— = lim exp (:z:(1+ % +. 4 1 —logn))a:ﬁ (1 + ;)e“’/"

gl@) nooo " =
= hm exp (—zlogn)z ﬁ( )
j=1
5):

w(1+5)(1+3)(1+3)

= lim
n—oo

n!n®

9(@) = i, zz+1)---(x+n)

o
b. Functional relations
7.91 Beta function. The function
B(z,y) := /01 =1 - t)v1 dt, z,y>0
is called the beta function. It is related to the gamma function by
Proposition. We have
B@w%=£@HEQ' (7.53)

T(z+y)’
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In particular, since v(n + 1) = nl,

1
m
for all n,m € N.
Proof. Set
r
@) = 2 Bz ).
We have
(1
1= S By,

since B(1,y) = 1/y. log f is convex, since z — B(z,y) is convex: this can be proved as
in Proposition 7.86. Finally,

M(z+y+1)

flz+1)= B(z+1,y)
( Tw)
L(z+y)
=(x+y)—————B(z+1,y) =z f(z),
@+ ) y) =2 /()
since B(z + 1,y) = z"TyB(a:,y) as it is easily seen by performing an integration by
parts. Theorem 7.87 then yields f(z) := I(x). O

7.92 I'(1/2) = /m. The substitution ¢t = sin®@ in the definition of the
beta function turns (7.53) into

T@)T) ., [ . e _
Taty) —2/0 (sin 8)**~(cos #)%¥ 1 d6.

This for x = y = 1/2 gives

r(%) = 7. (7.54)

7.93 [° e~*" dz = /7. The substitution ¢ = s? in the definition of T
yields

I'(z) := 2/ sl gs.
0

The special case £ = 1/2 then gives the important

-{—oo_2 00_2
/ esds=2/ e ds = /7.
0

— 00
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7.94 Duplication formula of Legendre. It is not difficult to verify
that Theorem 7.89 applies to the function

o= TR (3) ()

this yields the so-called duplication formula of Legendre
1 12z
P(z)T (o + 5) — 21-2 /71(2z).

7.95 Formula of complementary arguments. Performing the change
of variable t = s/(1 + s), we get

sa:—l

1 +o0
— z-101 _ p\y—1 — 2 ds.
B(z,y) /0 T -tV de /0 ATs)™ ds

In particular if 0 < z < 1,
sz—l

ds.
1+ss

F@)I'(1-z)=B(x,1-x)= /000

If £ = 2241 m > n, performing another change of variable, t = /27,

co gkl o gam 1
/ ds=2n/ —25ds=7r——————;
0 o l+z sin (Mgn 171')

see Example 5.36. Therefore,

I(z)I'(1 —z) = B(z,1 —x) =

sin{r z)
if £ = (2m + 1)/(2n), n > m. Since {(2m + 1)/2n|n > m} is dense in
10,1[, and I is continuous, we conclude

s

MNz)Y(l1-z)=B(z,1-z)= Sn(rz)

also for any z €]0, 1[.

7.96. Taking logarithms on both sides of (7.51) we get

logl(z) = —logz—'ya:—i (log (1—+—%) — %) (7.55)

n=1

Expanding the logarithms occurring in the infinite series we get

l0g (z) = ~log — o+ 3 > (-1 (£

n=1j=2
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and hence, by Weierstrass’s double series theorem and the relation
Iz +1) =zI(x),

=™

logI‘(x+1)=—’yx+Z ¢(m) 2™
m=2

with {(m) = o0, L.

7.97 The function ¥. The Gaussian psi function or digamma is defined
as the logarithmic derivatjve of the gamma function

I(x)

I'(z)

¥(x) = DlogT(z) =

From (7.55) we obtain

the series being absolutely and uniformly convergent in any bounded closed
interval of ]0, oo[. In particular we have

Y(1) = —v

since Y o, (1/(1 + k) — 1/k) = —1. By logarithm differentiation we can
easily translate relations of the I' function into relations for the 1. For
instance, we have

et 1)~ e =

and therefore for any n € N, n > 1,

n

1
Y +n)—yY(z) = ;m,
also
Y(z) — (1 — z) = —7 cot mz,

21082 + (z) + vz + %) — 29/(22),

in particular

$(1/2) = -y — 2log?2,
k=1

U |
1/2) = —y — 2log2+2Y  ——.
$(n+1/2) = —y —2log2 + ;%_1
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7.98 An integral representation of 1. We conclude this section by
giving an integral representation of 1. We have

I
|
g~
|
[]e
—~
8
+ |~
ol
|
=
—

Y(z) +v

) - e_t””) dx.

Il
|
N
8
3]
|
g
U
8
)
T8
o\g
—~
ﬂ’I
£
+
8

Reversing the order of summation and integration and using the formula
for the sum of a geometric series we then can easily conclude

-t _ ,—tx

w(x)-l-’y=/0 € ~° 4

1—et

7.99 An integral representation of ¢’. Finally, the formula for ¢’ is
very useful. It is obtained by differentiating under the integral sign

Y (z) = /0 LR (7.56)

1—-et

Actually, in the above, reversing the order of summation and integration
and differentiating under the integral sign require some justification. One
can provide ad hoc justification, but we prefer not doing it since it becomes
much simpler in the context of Lebesgue integration.

c. Asymptotics of " and ¢

Suppose that f(t) : [0,00[— R is a smooth function which has, together
with its derivatives, at most a polynomial growth near infinity. Then

p(z) = /0 e " f(t) dt, x>0

is well defined. We are interested in its asymptotic expansion near infinity.
Integrating by parts n times we infer

S DRF@)e™|T 1 [ s
plz) == xk+)1 +zn+1/0 e StD™Lf(¢) dt
k=0
_ D) | ralx)
_Z rk+1 + zntl’
k=0

If we also assume that
/ | D™ £(t)| dt < 400,
0

we readily conclude
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n—1
¢($)=2Dkf(0)+0( ! ) as r — oo.

k+1 Zn+l
k=0

The previous remarks apply, as it is easily verified, to the derivative of the

¥ function o ;
/ _ —xt .
1/:(:1:)—/0 e <t+——et_1)dt,

as D*(t/(e* — 1)) = By, we then conclude

n—1 sz 1
Y’ (x) = 2:c2 +Z 2k+1 ( 2n+1)'

Integrating twice over ]0, co|, we obtam
1 & B 1
W(z) = A+logz — ——Z2k;’;k+o( =) (7.57)
logl'(z)=B+(A-1)z+ (x - 5) logz (7.58)

n—1 sz o 1
+ ; 2k(2k — 1) z2+-1 + (a:2n—1)

where A and B are two constants. In particular we have

logI‘(a:)=B+(A—1)w+(.7:—1/2)10g:1:+0(:—1-) as T — oo.
From the relation I'(z + 1) — I'(z) — log z = 0 it follows that
1 1 1
A—1+(:c+§)10g(:v+1)—-(x—i)logx=0(;) as T — 00,

which implies A = 0. Similarly from the duplication formula of Legendre
we infer that B = (log2n)/2. Therefore we conclude with the asymptotic
representations for I and ¢: For alln € N, n > 1, we have, when n — oo,

n-1
Bog 1
W(z) = logz — 2 S+ ( -), (7.59)
logT'(z) = zlogz — z — log\/_+ log V21 (7.60)
Bk

+ Z < 2K(2k — 1) g2 1 + O(zzia);

in particular

T(z+1)= \/%(i) (1+ o +O(—15))

and, for z = n, Stirling’s formula,
n n
nl ~ 27rn(—) .
e
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7.5 Summing Up

Convergence and continuity of the sum
o The radius of convergence p of a power series 302  anz™ is defined by

1
= :=limsup Vlanl,
—00

14 n

where we have adopted the conventions 1/c0 =0, 1/0t = co. If p > 0, equivalently,

if the sequence {|an|} grows at most exponentially, then 3 >°  a,2" converges abso-

lutely in the interior of the disc of convergence {z € C||z| < p} and does not converge

if |z| > 1. Therefore the domain A C C in which 72 ;an2z™ converges, that is the

domain in which the sum S(2) = Y 77 anz™ exists as a complex number, is the disc
of convergence union eventually part of or the whole boundary {z € C||z| = p}.

o Powers series converge uniformly on any disc {z € C||z| < r}, Vr < p. This means
that for any r < p the error we get substituting the sum with a partial sum

o0
|3 ane|

n=p

is bounded by a quantity c(k,r) that goes to zero as p — oo and is independent of z
provided |z| < r. This is equivalent to saying that

o0
M(p,r):= sup |Zanz"|—>0 as p — oo.

z€[—r,7] n=p

Uniform convergence on all discs strictly included in |z| < p, is less than the uniform
convergence on {z||z| < p}. However, it suffices to prove that
o the sum S(2) := > 77, anz™ is continuous on the interior of the disc of convergence.

Differentiation and integration of power series

Let 3> ; anz™ be a complex power series with a positive radius of convergence p > 0,

and sum S(z). Then

o S(z) has a complex derivative on {z € Cljz| < p} and DS(z) = 3°2°  nanz""1,
that is, the sum of power series can be differentiated term by term in the interior of
the disc of convergence.

o Actually S(z) has complex derivatives of any order on {z]|z| < p} and

D*S(z) = i nn—1)---(n—k+1)z""k,

n=1

o We have a; := D*S(0)/k! Vk, that is, each power series with a positive radius of
convergence s the Taylor series of its sum.

o The sum of a power series can be integrated term by term in the interior of the disc
of convergence: if p > 0 denotes the radius of the disc of convergence of 3 o0 ; anz™,
then, if (2| < p, we have

zn+1

/0 S(2)dz = ;ann+1.

n=0

The symbol foz is the classical oriented definite integral in case z € R, while it is
suitably defined when z € C, see Section 7.1.3.
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Boundary values

Let 3°>° ,anz™ be a complex power series with a positive radius of convergence p > 0,
and sum S(z). Two cases can occur: either the series converges absolutely at a point
zg with |2g| = p, or the series eventually converges, but not absolutely, at some points
with |z] = p. In the first case, which implies the uniform convergence of the series
and the continuity of the sum on the closed disc {z||z] < p}, the convergence test of
Proposition 7.29 may be useful. In the second case, some information at the boundary
is provided by Dirichlet’s and Abel’s theorems, Theorems 7.30 and 7.31. A consequence
of Abel’s theorem is that Ay C Ay C Ag if A;, As and Ag are respectively the domains

of convergence of 3 o0 ; nanz" "1, 20 janz™ and 3520 g an n:: .
*
7.6 Exercises
7.100 §. Show that
o0 ) 1
(n+1)z" = ———, nz" ,
z o L
ad 22+ 2 = 1
n = , -1)"z" = ,
2= 20 =
[ ]
-1)" 1
San- >Er-t
n=0 n=0 n €
= 2" 3

7.101 §. Compute the sums of the following series

f: cos(l + 2n)

i (<1 sin(1 + 2n)

= n! = (2n)!
ad 2n o _3n+2
z z
PG e > =
n=0 nl n=0 n!
i z2n oo z2n+1
1
—n+1 =0 "
o _2n+1 i 2m
Zntl = n(n+1)’
X 2" )
z ey Z log(cos(z/2*)).
n=0 n=1
[Hint: For the last series, show that
sinz

[T cos (Z) =
k=1

27 sin(z/2")
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ez=iz— z€C,

n!’

oo
log(l + z) = Z(— , 2| €1, z # -1,
—_ —_ n

sinz = 2—:( 1) (2n+1)" z2€C,
n=0
o 22n+1

sinhz = —_ z€C,
= (2n 4+ 1)

cos z = Z(— " (27:;' zeC,

z
coshz:Z—-—, z€C,
=t (2n)!
(2n — It g2ntl
arcsinz = Z @t Tl 2] €1,
(2n — 1) z2"+1
sinh~lz = Hr——_— z| <1, z# £1,
nz_:o( ) @)l 2n+1° lFl <1, 2
arccosz = ;—r — arcsin z, |z| €1,
+1
arctanz = Z( s |z] <1, z# %,
n=0
oacd 2n+1
z
tanh™lz= ) — |zl €1, z # £1,
= 2n+1
1 oo
- n
I_Z—Zz, 2] < 1,
n=0
2\ ra
(1+z)°‘—Z( )z", lz| <1
n=0

where

ifn=0,

2n)ll = { 2n+1)1 = (2n+1)(2n—1)---5-3-1
M@2n—12).--4-2 ifn>1,

and for « € R

(a) - a(a—l)(a—2)--~(a——n+1).

n n!

Figure 7.4. A table of Taylor series of some elementary functions.



7.6 Exercises 291
7.102 9. Let f(z) :=|sinz|/z, z >0, and for n =0,1,..., let

0 otherwise.

fal@) = {f(x) if nr <z < (n+ D7,

Show that
(1) Xnlo fn(®) = f(z) V& >0,
(i) SUp;>o | E;;";HH fk(x), — 0,
(iil) 3202 8UPz>o |fn(2)| = +oo.

7.103 9. Show that 322 (z™ + (~1)"*!/n) converges uniformly in [0,1/2], but it
does not converge absolutely.

7.104 9. Show that z + > jog (kze—km"’ — (k+ l)ze—(k+1)x2) converges, the limits
of the sum are the sum of the limits, but it is not uniformly convergent.

7.105 §. Show the following

Proposition. Suppose > oo anz™ converges uniformly on |z| = 1. Then 3 >7 ; anz"
converges uniformly on |z| < 1.

[Hint: Reread the proof of Abel’s theorem.]

7.106 9. Let f(2) = 3.2 ;an2™ on |z| < r. Then f(z) is representable as power
series 3 °° o bn(z — z0)™ with center any zg with |z9| < r and domain of convergence
that contains {2z ||z — 70| < r}. [Hint: Set z = z0 + h and p := |z0] — |h|, and write

S ot = 3 ol > (5Y1zolt—4101%)
k=0 k=0 t=0

7.107 99 Composition of power series. Suppose that S{z) = 3 77 ,anz" and
T(y) := 3.2, bay™ are two power series with T(0) = 0 and, respectively, with positive
radii of convergence p(S) and p(T). Show that the composition S o T is the sum of a
power series with positive radius of convergence. More precisely show that, if r > 0 is

such that Y°°° o |bn| 7™ < p(S), then the radius of convergence of SoT is at least r.

7.108 9 9 Inverse of a power series. Let S(z) = > 77 anz™ be a power series
with S(0) # 0 and positive radius of convergence. Show that there is a power series
T with radius of convergence 1 such that S(z)T(z) = 1.

7.109 99 Reciprocal power series. Let S(z) =} 22 ;anz™ be a power series with
$(0) = 0, 8’(0) # 0 and positive radius of convergence. Show that there is a power series
T with T(0) = 0 and positive radius of convergence such that S(T'(z)) = = [Hint: see
e.g., Cartan, Théorie élementaire des fonctions analytiques d’une ou plusieurs variables
complezes, Hermann, Paris, 1961.]

7.110 99. Let f : N — R be a function such that f(1) # 0, f(z1z2) = f(z1)f(z2)
Vzi,z2 and 3 o0, | f(n)| < co. Show that

(1) f(1)+ X% If(m)]* < oo, T2 (1 = f(p) < oo,  J e} #(m < ¢ and finally
1

————:w k f—a 2 .
) ,;,f P =1+f@) + @+ .
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(ii) If {pn} is the sequence of primes and

B 1 1 1 _ 2 > By
Poi= 1-f(p1) 1- f(p2) 1~ f(pn) H(1+kz=:1f(p) ”

r=1

then

Pn:Zf<N)a
N

the sum being taken on all naturals N which decompose in prime factors con-
taining only the primes pi,p2,...,pn.

(iii) Ewuler’s formula
o 1
nz:‘lf(n) = 11 1- f(p)’

p prime

(iv) If f(n) =1/n°, with s > 1, then

> 1 1
>o==1I
n=1

b
—p—s
P prime 1 P

the product being taken on all primes. The function
[e o]
1
¢(s) == =
n=1 n
is actually well defined for all s € C with ®s > 1 and is called Riemann’s {-
Sfunction.

7.111 9 Euler. Let {p;} be the sequence of primes. Then > 2, % = +oo. [Hint: If
721 1/pi < 00, then for some m € Nwehave 3, 1/p; < 1/2. Setting o := [[72, ps,
p; divides 1 + no at most for ¢ > m, hence

> 1 > S |
Zl-l—nOLSE(ZP_»,) 522215221]

n=1 £=1 i>m

7.112 4. Find the series solutions of the differential equations

v —zy' +y=0, ¢’ -z*y=0.
7.113 4. Find the series solutions of the Cauchy problems

V' +(@@-1)y —(z-1y=0, (1+a?)y" +y =0,
y(1) =1, y'(1) =0, y(0) =9y'(0)=1.
7.114 4. The equation
y// + e(ty = 0
has a solution of the form y(z) = 3"¢2  arz® that satisfies y(0) = 1, ¥'(0) = 0. Find
some of its first terms.
7.115 § Legendre’s equation. Find the series solutions of the ODE
(1-22)y" —2xy +Ay=0

called Legendre’s polynomials. [Hint: y(z) = ag (1 - %1,2 - %24 + ) +ay (:1: +

2:) .2 (12—=2)(2—x
Tt + W as 4 )
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7.116 § Hermite polynomials. Find the series solutions of the ODE
y' 22y’ +2y=0,

called Hermite’s polynomials.

7.117 q Euler equation. Show that there is no series solution except 0 of the equa-
tion

2y +azy +By=0.
Show that y(z) = x7 where ~ satisfies y(y — 1) + ary + 8 = 0, is a solution.

7.118 q Frobenius’s method. Examples 7.53 and 7.54 suggest that the power series
method may not work if the higher order coefficient of the second order linear ODE
vanishes at £ = 0. In this case we may try solutions of the form

oo
7 Z apz®, v ER.
=0
Try the method with the following Bessel’s equation
1
mzy"+zy'+(22—z)y=0

and Laguerre’s equation
zy’ +(1-2)y +y=0.

7.119 §. Let A(x) and E(z) be respectively the enumerator and the exponential enu-
merator of {an}. Show that

Az) = /Ooo e *E(sz)ds.

7.120 9. Let {p,} be a sequence in [0, 1] and let P(z) be the enumerator of {pn}. The
k-moment of {pn} is defined by

o0
my = ijpj-
)
Assuming that m; is finite for all £ > 0, show that the enumerator of {my} is
M(z) = P(e).

7.121 §. Show that the binary numbers of 2n bits are (2:)
7.122 4. Show that 3°7_,7(7) =n27~1.

7.123 9. Show that

(1- zl)m+1‘ = kZ:% (m'r::,- k)zk’ % = g:% (:,)zk'

7.124 9. Show that

n!

o
e2tz—t2 - Z Hn(-"'")tn
n=0

where H,(z) solves y'' —2zy’ +2ny =0.
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7.125 9. Show that the enumerator for the selection of r objects out of n objects,
r > n, with unlimited repetitions but with each object included in the selection, is

(Z)" =2 ()

k=1 rT=n

7.126 € 9. Show that the number of ways in which r nondistinct objects can be dis-
tributed in n distinct cells, with the condition that no cell contains less than g nor more

than ¢+ 2z —1 objects, is the coefficient of "™ in the expansion of ((1 —-z%)/(1 —z:))n.

7.127 4 9. Show that a convex polygon of n + 2 sides can be divided into

eni=—= ()

triangles by means of diagonals that do not intersect. The numbers cr, are called Catalan
numbers. [Hint: Notice that cn41 = Yoo CkCnk, hence, if c(x) = 307 cna™, we
have c?(z) = 302 ; cnt12™ and zc?(x) = c(z) — 1.]

7.128 4 9. Show that the exponential enumerator for the distribution of  or less ob-
jects into n distinct cells, with objects in the same cell ordered, is expz/(1 — z).
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B

George Green

Carl Friedrich Gauss
(1777-1855)

ernhard Bolzano Siméon Poisson Wilhelm Bessel
(1781-1848) (1781-1840) (1784-1846)

Augustin-Louis Cauchy
(1789-1857)

Mikhail Ostrogradski Niels Henrik Abel Jean-Charles-Frangois Sturm Carl Jacobi

(1793-1841) (1801-1862) (1802-1829) (1803-1855) (1804-1851)
Lejeune Dirichlet William R. Hamilton Joseph Liouville
(1805-1859) (1805-1865) (1809-1882)

Karl Weierstrass
(1815-1897)

George Gabriel Stokes Eduard Heine Joseph Bertrand Charles Hermite
(1819-1903) (1821-1881) (1822-1900) (1822-1901)
Leopold Kronecker Enrico Betti
(1823-1891) (1823-1892)
Richard Dedekind Edmond Laguerre Eugenio Beltrami
(1831-1916) (1834-1886) (1835-1899)
Camille Jordan Gaston Darboux Giulio Ascoli
(1838-1922) (1842-1917) (1843-1896)

Georg Cantor
(1845-1918)

Hermann Schwarz Ulisse Dini Cesare Arzela Luigi Bianchi
(1843-1921) (1845-1918) (1847-1912) (1856-1928)
J. Henri Poincaré David Hilbert
(1854-1912) (1862-1943)

Figure 7.5. Infinitesimal analysis: a chronology from Gauss to Poincaré and Hilbert.






8. Discrete Processes

The laws of classical physics are deterministic: if we know ezactly the
state of a system at a given instant, we know its state for all times. Such a
principle, which mathematically corresponds to the existence and unique-
ness theorem for the Cauchy problem, has been (and is) a key idea in
scientific thought. Pierre-Simon Laplace (1749-1827) wrote in his Essai
philosophique sur les probabilités.

Nous devons donc envisager 1'état présent de 1'Univers comme
leffet de son état antérieur, et comme cause de celui qui va
suivre. Une intelligence qui pour un instant donné connaitrait
toutes les forces dont la nature est animée et la situation re-
spective des étres qui la composent, si d’ailleurs elle était as-
sez vaste pour soumettre ses données a 'analyse, embrasserait
dans la méme formule les mouvements des plus grands corps
de 'Univers et ceux du plus léger atome : rien ne serait incer-
tain pour elle, et I’avenir, comme le passé, serait présent a ses
yeux. L’esprit humain offre dans la perfection qu’il a su donner
A I'astronomie une faible esquise de cette intelligence.!

But this principle is often contradicted by everyday experience, when
some facts seem to take place unpredictably and at random, as is the case
with metereology.

From the point of view of predictability, since there will always be a
certain degree of uncertainty on the initial situation, things will be pre-
dictable if two initially close states evolve closely, otherwise one has to ex-
pect chaotic behavior: close states evolve into paths that are very far from
each other. Probably the first to have stated precisely the phenomenon of
sensitive dependence on initial conditions were Jacques Hadamard (1865
1963), who studied the flux of geodesic lines on a surface, and Pierre Duhem

1 Therefore we have to consider the present state of the universe as the effect of its
previous state and cause of its future state. An intelligence that at a given instant
could know all the forces that animate nature and the respective situations of all
the beings that constitute it, an intelligence that, moreover, could be large enough
to be able to analyze all these data, could contain in the same formula both the
movements of the largest bodies in the universe and of the smallest atom: nothing
would be uncertain for it and the future, as well as the past, would be present to its
eyes. The human spirit offers just a feeble trace of this intelligence in the perfection
it was able to give to astronomy.
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MECANIQUE CELESTE,

PAR P. S, LAPLACGE,
Membre de 'Institut national de France , et du Bureau
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Che 3, B M. DUPRAT, Libwsire pour fos Muhémmatiques ,
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Figure 8.1. Pierre-Simon Laplace (1749-
1827) and the frontispiece of his
Méchanique céleste.

(1861-1916), who observed how the sensitive dependence on initial con-
ditions made long term previsions illusory for the systems considered by
Hadamard?. The fact that these systems are no exception seems clear to
J. Henri Poincaré (1854-1912) who writes in Science et méthode

Une cause tres petite, qui nous échappe, détermine un effet con-
sidérable que nous ne pouvons pas ne pas voir, et alors nous
disons que cet effet est dii au hasard. Si nous connaissions ex-
actement les lois de la nature et la situation de I’Univers a
Iinstant initial, nous pourrions prédire exactement la situation
de ce méme Univers a un instant ulterieur. Mais, lors méme que
les lois naturelles n’auraient plus de secret pour nous, nous ne
pourrions connditre la situation initiale qu’approximativement.
Si cela nous permet de prévoir la situation ulterieure avec la
méme approximation, c’est tout ce qu'il nous faut, nous dis-
ons que le phénomene a été prévu, qu’il est régi par des lois;
mais il n’en est pas toujours ainsi, il peut arriver que de pe-
tites différences dans les conditions initiales en engendrent de
tres grandes dans les phénomenes finaux ; une petite erreur sur
les premieres produirait une erreur énorme sur les derniers. La
prédéct-ion devient impossible et nous avons le phénomene for-
tuit.

2 See La théorie physique, son object et sa structure, Editions Chevalier et Riviere,
1906.

3 A very small cause that escapes our attention determines a notable effect that we
cannot fail to see, and in this case we say that it is due to hazard. If we knew exactly
the laws of nature and the situation of the universe at the initial moment, we could
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He also adds

Comment devons-nous nous représenter un récipient rempli de
gaz 7 D’innombrables molecules, animées de grande vitesses, sil-
lonnent ce récipient dans tous les sens; & chaque instant elles
choquent les parois, ou bien elles se choquent entre elles; et ces
chocs ont lieu dans les conditions les plus diverses. Ce qui nous
frappe surtout ici, ce n’est pas la petitesse des causes, c’est leur
complexité. Et cependant, le premier élement se retrouve encore
ici et joue un role important. Si une molécule était deviée vers
la gauche ou vers la droite de sa trajectoire, d’'une quantité tres
petite, comparable au rayon d’action des molécules gazeuses,
elle éviterait un choc, ou elle le subirait dans des conditions
différentes, et cela ferait varier, peut-étre de 90° ou de 180°, la
direction de sa vitesse apres le choc.

Et ce n’est pas tout, il suffit, nous venons de le voir, de dévier
la molécule avant le choc d’une quantité infiniment petite, pour
qu’elle soit déviée, aprés le choc, d’une quantité finie.*

This somehow explains how a deterministic and regular behavior may

generate chaos; but on the other hand it may suggest that a chaotic be-
havior may create order, possibly on a different scale from the macroscopic
behavior of the gas.

Chaotic behavior may be generated by sensitive dependence on the

parameters of the system, as well as by sensitive dependence on the initial
data. For instance, the behavior of water coming out of a slightly open
tap is regular, while it gets chaotic if the tap is completely open. In the
same way, the behavior of a fluid between two rotating cylinders is regular
when they rotate and gets more and more chaotic as the rotation speed
increases.

Poincaré wrote also

predict exactly the situation of the same universe at a succeeding moment, but even

IS

if it were the case that the natural laws had no longer any secret for us, we could
still only know the initial situation approximately. If that enables us to predict the
succeeding situation with the same approzimation, that is all we require, and we
should say that the phenomenon has been predicted, that it is governed by laws. But
it is not always so: it may happen that small differences in the initial conditions
produce very great ones in the final phenomena. A small error in the former will
produce an enormous error in the latter. Prediction becomes impossible, and we
have the fortuitous phenomenon.

How should we represent a container full of gas? Innumerable molecules race inside
the container in all directions; at every instant they hit the container’s sides or collide
with one another; and all these collisions take place in the utmost diverse conditions.
What strikes us in this case is not the smallness of the causes but mainly their
complexity. And yet, the first element is still present and plays an important role.
If a molecule were to be diverted to its left or right by a small quantity comparable
to the range of action of a gas molecule, it could avoid a collision or undergo the
collision under different conditions, and this could change its direction by 90 or
maybe 180 degrees. And this is not all, we have just seen that it is sufficient to divert
the molecule of an infinitesimal quantity before the collision in order to divert it,
after the collision, of a finite quantity.
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Figure 8.2. J. Henri Poincaré (1854-

1912) and the frontispiece of his e
Méthodes nouvelles de mécanique
céleste.

Pourquoi les météorologistes ont-ils tant de peine & prédire le
temps avec quelque certitude ? Pourquoi les chutes de pluie, les
tempétes elles-mémes nous semblent-elles arriver au hasard, de
sorte que bien de gens trouvent tout naturel de prier pour avoir
de la pluie ou le beau temps, alors qu’il jugeraient ridicule de de-
mander une éclipse par une priére ? Nous voyons que les grandes
perturbations se produisent généralement dans les régions ot
I’atmosphére est en équilibre instable, qu'un cyclone va naitre
quelque part, mais ou ? Ils sont hors d’état de le dire ; un dixiéme
degré en plus ou en moins en un point quelconque, le cyclone
éclate ici et non pas 14, et il étend ses ravages sur des contrées
qu’il aurait épargnées. Si on avait connu ce dixieme de degré, on
aurait pu le savoir d’avance, mais les observations n’étaient ni
assez serrées, ni asses précises, et c’est pour cela que tout semble
di & I'intervention du hasard.®

5 Why do meteorologists have such a hard time in foreseeing the weather with a rea-
sonable degree of precision? Why do showers and storms seem to occur at random,
so that many people find it absolutely natural to pray for rain or good weather, while
they would find praying for an eclipse utterly ridiculous? We see that great pertur-
bations generally occur in regions where the atmosphere is unstable. Meteorologists
are well aware of the instability of the equilibrium and that somewhere there will
be a hurricane, but where? They cannot tell, because a tenth of a degree more or
less at any point will determine a hurricane here instead of there, and there will be
devastations in areas that would have been spared. If one had known this tenth of a
degree one could have foreseen the event, but observations were neither sufficiently
frequent nor sufficiently precise, and for this reason everything seems to be due to
the intervention of hazard.
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Even though mathematicians have always known that dynamical sys-
tems may behave in unexpected and complicated ways, it is only with
the invention of computers and the increasing interests in mathematical
models for population dynamics, biology, electronic circuits with nonlinear
components, astronomy and metereology that the study of deterministic
chaos has acquired importance to the point of becoming a fashionable
subject not only among mathematicians and physicists. Particularly rele-
vant in this process are the contribution of Hendrik Lorentz (1853-1928),
meteorologist at MIT, who published in 1963 a simplified model of fluid
that shows the rapid growth of errors in dependence on initial conditions,
and the work of the two mathematicians, D. Ruelle and F. Takens, who,
in 1971, conjectured that hydrodynamic turbulence may be represented
by strange attractors, mathematical objects that describe evolutions with
sensitive dependence on initial conditions.

One may have the impression that complex dynamics is typical of dis-
persive or nonconservative dynamics. But this is not true, as is shown by
the question of the stability of the solar system.

It is commonly agreed that in Newton’s opinion gravitational inter-
actions among planets were so strong that they could compromise the
stability of the system and that probably for this reason he formulated the
hypothesis that it was God who controlled these instabilities in order to
ensure the existence of the solar system; Newton writes in his Principia

It is not to be conceived that mere mechanical causes could
give birth to so many regular motions. ... This most beautiful
system of the sun, planets, and comets, could only proceed from
the council and dominion of an intelligent powerful Being.

During the Age of Enlightenment, Lagrange, Laplace, and Poisson pro-
vided mathematical reasons in favour of the stability of planetary orbits,
showing, for instance, absence of polynomial growth in time of the major
axis of the orbit up to third order with respect to the planetary masses.
More recently Poincaré and George Birkhoff (1884-1944) showed that in
the dynamics of planets one may encounter instabilities that make the no-
tion in the phase space quite complex and the more recent contributions
of A. N. Kolmogorov, V. A. Arnold, and J. Moser suggest the coexistence
of both stability and instability. All the same, many questions regarding
n-bodies are still unresolved.®

So far we have always referred to continuous dynamical systems. How-
ever, discrete dynamical systems are naturally associated to continuous
ones, for instance in the form of discretization or of a Poincaré map. They
also naturally occur in the study of population dynamics and are the ap-
propriate models for computers and often show a chaotic behavior even
when the corresponding continuous system does not.

6 See the paper by Jacques Laskar in A. Dahan Delmedico, J. L. Chabert, K. Chemla,
Eds, Chaos et Déterminisme, Editions du Seuil, Paris, 1992, and S. Marmi, Chaotic
behavior in the solar theory, Séminaire Bourbaki 5™° année, 1998-1999, n. 854.



302 8. Discrete Processes

In this chapter we shall describe the behavior of a few simple discrete
dynamical systems with the aim of showing some paths leading to chaos. In
fact, a wider and more precise analysis cannot avoid a wider and more de-
tailed study of ordinary differential equations and further technical tools.
In Section 1 we discuss first and second order linear difference equations,
some nonlinear examples of recurrences and continued fractions; in Sec-
tion 2 we shall then illustrate some aspects of one-dimensional dynamical
systems.

8.1 Recurrences

In the previous chapters we encountered on several occasions recursive
relations, some of which lead to closed form sequences while some do not,
and we studied in some detail the process of summing with the analysis of
series. In this section we discuss a few more classical recurrences that from
a dynamical point of view, that is from the point of view of the behavior
at infinity, are quite regular.

8.1.1 Linear difference equations
In this section, we discuss first order linear difference equations. They are

the discrete version of the first order ODE and can be solved in closed
form.

a. First order linear difference equations
We recall (see Example 2.5) that, given {f,}, the recurrence

o given,
Tn+1 = Tp + fn+11 Vn _>. 07

is equivalent to
n
Tn = To + Z fi-
j=l
Moreover, we have the following.

8.1 Proposition. Given a € R and {f,}, the solution of

xy given, (8.1)
Tntl = aTpn + foy1, YR 20,
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is
n
Ty i=a"zo + Za"‘jfj. (8.2)
j=1
In fact, the sequence {x,} given by (8.2) verifies the recurrence relations
(8.1). The solutions of (8.1) have a structure, which is quite similar to the

structure of the solutions of first order linear ODE (see, e.g., Chapter 5 of
[GM1]):

o the sequence u = {un}, given by u, = a™ solves

ug = 1, Upyl =0U, 1 2>0,
o if f := {fn}, then the product of convolution of u and f, {u * f},
) = Y |- Un—;fj solves
{xo = fo,
Tpt1 = AZn + foyi, V0 >0,
since

n+1

(u* flng1 = Zun-i—l ifi= Z "+1_jfj+fn+1=a(u*f)n+fn+1;

3=0
o consequently, z,, := u,(xo — fo) + (u* f), solves (8.1).

Similarly, we easily see that first order linear difference equations with
varying coefficients are uniquely solvable, and we have the following.

8.2 Proposition. Let {a,} and {f,} be two sequences. Then

(i) The sequence u := {un},

Uug = 1 Tg = ].,
solves
un—HJ 105, n>1, Tntl = Qa1 Tn, 7 >0,

(ii) The sequence {2}, Tn = un ) ;_ 0 , solves

{xO = fO’
Tptl = Qn41Tn + fn+1, n > 0.
(i) Consequently, {z,},
f:
Tn = un(To — fo) + un Z
=0 J

solves
o given,
T4l = On4l Tn + frta, n 2> 0.
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b. Second order homogeneous difference equations
A generic second order difference equation has the form

G Zpya +bzpy +cxn =0, (8.3)

where a,b and ¢ are constants and a # 0. We are interested in finding all
solutions of (8.5), or, equivalently, in solving explicitly the recurrence

g = «, .7312,6, (84)
ATt +b0Tpy1 +cxn =0, n>0,

for any given « and 8 € R. As in the case of ODEs (compare, e.g., [GM1]),
(i) if {z,,} and {y,} solve (8.3), then also {c1z, + coyn }n solves (8.3) for
any ci,c3 € C,
(i) if A is a solution of the characteristic equation
aX’ +bA+c=0,
then {A™} solves (8.3): in fact,
aX™2 AT L e = A (aA? + DA +¢) = 0.

Let A1, A2 be the two solutions of the characteristic equation. Corre-
sponding to the three cases of real and distinct roots, repeated real roots
and conjugate complex roots, define the two sequences {u,}, {vp,} by

’U,n=>\711, U,L:/\g if A, X2 €R, )\175)\2,
Up = /\?, Up = n)\’f if )\1 = )\2, (85)
Up, = |A1]" cos(ny), vp, = |A1|" sin(ny) otherwise.

The latter occurs if A, A are complex conjugate, and in this case we

have set '
)\1 = ])\1|e“/’.

We have the following.

8.3 Proposition. The solution of (8.4) is the sequence {z,} given by
Ty = €1 Un + C2 U, Where c1, ¢y solves

ClUp +Covg =@, cruy +cavy = 0. (86)

Proof. (1) Real and distinct roots. By linearity {z,}, T, = ¢1 AT + coAZ,
solves (8.3). Moreover, since A1 # Ag, for any «, 3 € R, one can then solve
for ¢1, co the system in (8.6).

(ii) Complex conjugate roots. Let X := A1 ,and A = Xo. Similarly to (i), all
complex valued sequences {z,} z, = c1A™ + el c1, ¢ € C, solve (8.3).
For given «, 8 we then solve in C, since A # ), (8.6) to get the solution
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Tp=cl A" +co N

of (8.4), an a priori complex function.
But ¢, 3 being reals, when solving (8.6), we get c2 = €1, hence the
solution found is real and written as

R(c1 A™),
or, setting ¢ = a — ib, a,b € R, by de Moivre’s formula,
R(c1 A™) = aR(A™) + bS(A™) = a | A" cos(nyp) + b|A|" sin(nyp).

(iii) Repeated real roots. Let Ay = A2 = A. Since in this case 2aA +b =0,
we have

a(n+2)2A"2 —p(n+ DA™ —cnA”
= nA"(aA? + b + ¢) + A\"(2a) + b) =0,

i.e., {nA"} solves (8.3). Therefore all sequences {Zn}, Z, = A"(c1 +con) =
C1Un + CoUn, €1, c2 € R, solve (8.3). Since the system in (8.6) yields ¢; and
¢z, we find the solution of (8.4). O

c. Second order nonhomogeneous difference equations
Consider the recurrence

{CL'O =Q, 11 = IB’ (87)

0Tni2 +0Tnt1 +cTn = frt1,

where a,b,c € R and {f,} is a given sequence.

8.4 Proposition. Let {w,} be the sequence that solves the homogeneous
recurrence

Wo = 01 w, = 17 (8 8)
awn+2+bwn+1+cwn=07 n 2> 0.

Then the sequence {z,} given by
1 1
=0
solves

{330 = O, 1y = fO/a;

QZpy2+bTnt1 +cxp = fne1, n20.
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Proof. In fact,

n+2 n+l n
a)_Wniaify + b3 Wnirofy+ e} wasf;
3=0 j=0 7=0

= awg fo+2 + awr frn+1 + bwo frp1
n
+ Z(awn+2_j + bwny1-5 + cwn—j) f;
Jj=0
= afn+1.

0

By linearity, with the notation of Propositions 8.3 and 8.4 we conclude

8.5 Theorem. The solutions of the linear second order recurrence
ATnt2 +bTni1 +cTn = fni1

are given by the two-parameter family of sequences
1
Tn = Clln +C2Un + (W* fln, 2 €R,

where {u,} and {v,} are defined in (8.5) and {w,} in (8.8).

d. Z-transform and Laplace transform

Linear difference equations can be solved also using the method of gen-
erating functions or, better, a slight modification of it known as the Z-
transform, see 8.7 below.

Let a = {an} be a sequence of complex numbers which grows at most
exponentially, |a,| < CM™ for some M > 0. The Z-transform of {a,} is
the complex-valued function

= 1
Z{a}(2) := Z an—
n=0
that is defined at least in {z}|2] > M}. Of course

1
2{a}(z) = T{a}(2),
T (a) being the generating function of a = {a,}. Using properties of power
series, we see that

(i) Z{a} uniquely determines {a,},
(if) Z is linear, ie., if A\,u € C and a = {a,}, b = {b,} grow at most
exponentially, then

Z{da + pb}(z) = AZ{a}(z) + pZ{b}(2), |z| large.
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(iii) If e := {(0,...,0,1,0,0,...)} is the Kronecker sequence then
ey e’

Z{ex}(z) := =
(iv) If a = {a,,}, and

m{a} := {(0 .,0,a0,a1,0az,...)}
k

is the forward shift by k places, then
= 1 1
Z{nda}}e) = 3 on—ar = ¢ Z{a}a).
n=k

(v) Ifa = {an}, and 7_g{a} := {an+x}n is the backward shift by & places,
then

Z{m{a}}(z) = Zan.,.k— =z (Z{a}(z) ag———— — = zk—_l)

n=0

(vi) Z transforms the convolution product of sequences into the product
of the transformed functions, see Theorem 7.34,

Z{axb}(z) = Z(a*b (Zan n)(z "zin)

n=0 n=0 =0
= Z{a}(2)Z2{b}(2).

The notion of Z-transform (and of generating function) is very useful
in several fields: in combinatorics, as we have seen, in probability, in data
sampling, in the study of digital filters, just to mention a few. The Z-
transform is known, especially to engineers, as the discrete version of the
Laplace transform, which is particularly useful when studying the Cauchy
problem for linear ODE.

The Laplace transform of a continuous function that grows at infinity
less than exponentially is defined by

L{f}e) = /0 T ftetdt, R o.

If f is the piecewise constant function defined by f(t) = a, if n <t < n+1,
then

—nz 1 —Ze‘z Z{a}(e?).

L{f}z) =

n=0

Also, if for all h € N we set
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a, fn<t<n+i
fa):=q¢" . n
0 otherwise,

then
1-—e

—hz
{35 }0) = T 2{a}(e)
therefore )
. 21} = 2t

The functions (1/h) f, may be thought of as approximations of “impulses”
concentrated at the integers.

e. Fibonacci’s numbers

The simplest possible recurrence in which each number depends on the
previous two is the one defining Fibonacci’s numbers. They occur in a
wide variety of situations. Here is how Leonardo Pisano (1170-1250), called
Fibonacci, came to them.

Assume that every month every couple of rabbits gives birth to a couple
of rabbits that can reproduce from their second month of life on. How many
couples of rabbits are there after n months if we start with a newborn
couple? If {f,} is such a number, of course, f1 = fa = 1, moreover with a
newborn living at the n-th month, f,, are the ones of the previous month
plus those generated by the rabbits who were alive two months before,

fn+2 = fn+1 + fn
Fibonacci's sequence {f,,} is defined by
{fO = 07 fl = 17
fn+2 = fn+1 + fna n 2> 0.
If we write the characteristic equation

22—2-1=0

of the recurrence to get its solutions, A = 5% and u = —¥35—=, we
conclude on account of Section 8.1.1 that

I :Clxn'{'c%un n >0,

where c¢1, ca solve

fo=ec14+c2=0,
fi=cad+er=1

Therefore
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LIBER ABBACI i b
" LEONARDO PISANO e ety b ol

PUBBLICATO

SECUNDS ut me\' i CODCE RAGLIABECRANG
Badia. Fiooenting, 0. 1.

BALDASSARRE BONCOMPAGNI

Springer

Figure 8.3. Frontispieces of the first printed edition and the first English translation of
Liber Abaci of Leonardo Pisano (1170-1250), called Fibonacci.

8.6 Proposition (Binet’s formula). We have
1
n=—7(A"—p" Vn > 0.
f \/5( p")

Since |u|™/Vv/5 €]0,1/2[, and u is negative if n is odd and positive if n
is even, f, is the integer part of A"/ V5 if n is odd, and the integer part of
A"/+/5 plus 1 if n is even. In any case, f, is the closest integer to A" /+/5.

8.7 Fibonacci’s numbers by Z-transform. One can solve the Fibo-
nacci recurrence also using the Z-transform. In fact, multiplying the n-th
recurrence relation by —217 and summing, we get

z an+2z"+2 an+lzn+1 anzn =0,

n=0 n=0

that is
2(2(06) - fo- 1) - 2(21}0) - fo) - 2L} =0,

ie.,
z

e =m——1

Notice that the denominator of Z{f}(z) is the characteristic equation of
the Fibonacci recurrence. By Hermite’s decomposition formula
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1 1 1
= B
22—z-1 z—A + z2—u
with 1 1 1 1
= —— B == -
A 22-1 /5 2u—1 V5
and consequently, recalling that liz = Z?:o ",
z 1 1
z = =A B
{f}z) 22—z-1 1—)\/z+ 1—p/z
_ Lo im L g s max(I ).
V5 Z"

n=0
Hence, we find again
1
= —— A" — u™).
f \/5( w)

In terms of Fibonacci numbers one can give a sharp estimate of the
number of steps needed to end Euclid’s algorithm.

8.8 Proposition. Let a,b € N with 0 < b < a. If Euclid’s algorithm on a
and b ends in n steps, then a > fpy9 and b > fri1.

In other words, if b < fh41 or a < fp42, then Euclid’s algorithm ends in
at most n — 1 steps.

Proof. Write Euclid’s algorithm as

{r-l =a, 190 =0",
Ti+1 = Ti-1 ~ 4575
until 7,41 = 0, so that Euclid’s algorithm has n steps. Observe that
Totl—j = fj vj e {~1,0,...,n+1}.
Since we have rp,4+1 =0 = fo, rn = g.c.d. (a,b) > 1 = f1, and by induction
Tntlej = Gn—jTn—j +Tn_j—1 = fi—1+ fi—2 = f;,

we infer
a=r_1 2fn+21 and b=7"02fn+1~

]

Notice that the estimate on the number of steps of Euclid’s algorithm
in Proposition 8.8 is sharp, since for a = fn,42 and b = f,41, we have
1 = fny T2 = fa1, g€d. (fat2y frg1) = = f1 = 1, Tny1 = fo = 0.
Thus Euclid’s algorithm stops in n steps.

8.9 Corollary (Lamé). The number of steps needed to end Euclid’s al-
gorithm does not exceed five times the number of the (decimal) digits of
the divisor.
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3
o

Figure 8.4.

Proof. Let n be the number of steps of Euclid’s algorithm to divide a by b, and let k
be the number of digits of the divisor. From Proposition 8.8,

10F > b > faq1.

On the other hand, it is easily seen by induction that

2 (3)"

Since (8/5)% > 10 we have
8\ 5(n—1)
Sk~ (2 n—1
105% > (5) >10m71,
that is n — 1 < 5k. ]

8.10 9. The number 7 = H%E is the golden ratio” of Greek geometers. With reference
to Figure 8.4, show that, if 1 is the side, then

(i) the length of the diagonal is the golden ratio T,
(ii) the side of the internal pentagon is 77 2.

8.1.2 Some nonlinear examples

a. Simple examples
8.11 Example. Consider the recurrence

xo=a>0, (8 9)
Tn+l = /Tn, n2>0. .

If @« = 1, then zn = 1 Vn. If @ > 1, we see by induction that z, > 1 Vn, hence
Tntl = /Tn < ZTn, Vn, ie., {xn} is decreasing, therefore £, —» L and 1 < L < o;

actually, passing to the limit in (8.9), we see that L = /T, i.e.,, L = 1. Similarly, if
a < 1, then z, < 1 Vn, {z,} is increasing and zn — 1. We conclude that for any
a > 0, the sequence {xn} defined by (8.9) converges to 1.

Alternatively, it is easily guessed and proved that the sequence defined by (8.9) is

Ty = az_n, n > 0, thus z, — 1.

7 The golden ratio is the inverse of the golden mean, which is the proportion of the
division of a segment so that the smaller is to the larger as the larger is to the whole.
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8.12 Example. Consider the recurrence

zo=0a>0, ( )
1 8.10
T = n>0.
n+1 \/x—nv =
Ifa=1, then z, =1 V¥n. Also, if a > 1 we havez, > 1ifniseven and z, <1 ifn is
odd. Moreover 1
Ton4o = = Yxa,.
nt VI2n+1 "

We deduce 725, = a*” ", n > 0, hence
1 \47"
o= ()
n-+4 o )

concluding that z2,,z2,4+1 — 1 and z, — 1 since even and odd integers exhaust all
integers.

8.13 Example. A limit situation occurs for the recurrence

ro=a>0,
1
Tpnpr1=— n2=0
Tn

Clearly =, = o if n is even and z,, = 1/a if n is odd. We conclude that {z,} has limit
if and only if a = 1.

b. Evaluating algorithm performance

In evaluating the performance of algorithms one considers a characteristic
time as a function T'(n) of a parameter n which describes the size of data
on which the algorithm works. Often, due to the structure of the algorithm,
one gets recursive estimates on T'(n) of the type®

T(2n) < 2T(n) + n, vn.

One can prove that in fact this estimate is equivalent to the estimate
T(n) < Cnlogn, i.e., using the Landau notation, to

T(n) = O(nlogn).

8.14 Proposition. Let T : N — R be a positive increasing function such
that

T(tn) < *T(n) + Bn?, VYn >0, (8.11)
wheret € N, 7> 2, B> 0, a > 0 and 8 > 0 are independent of n. Then

(i) if @ # B, then T(n) = O(n™>(*B)) je., there exists a constant
C = C(a, 8,7,T(1), B) such that T(n) < Cn™2x(*0) yn,

(ii) if a = B, then T(n).= O(n“logn), i.e.,, T(n) < Cn®*logn Vn > 2 for
a suitable constant C depending on T(1),B,a and 7.

8 See e.g., A. Aho, J. H. Hopcroft and J. D. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.
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Proof. We deduce from (8.11)
T(r) < °T(1) + B,
T(r?) < 7°T(r) + B? < r2*T(1) + Br* + BrP,
and inductively

k
T (5t < 7(ktDap (1) 4 BrH6 er(‘!_ﬁ), Vk. (8.12)
Jj=0

(i) If o < B, (8.12) yields

- 1)—-1
kBT(a B)(k+1) <

- C*8
reB—-1 =

T(rh+1) < 7+ Der(1) 4 Br
where C := TT(I) -+ Bﬁ—_l.
Given n € N, we can choose k in such a way that 7* <n <7 k+1, and conclude
T(n) < T(xk+1y < G < gnP,
since T'(n) is increasing. Similarly, if a > 3, (8.12) yields

—B)(k+1)—1
kB Fla=B)(kt1) <
Ta—B8 —1 -

T(r*+1) < rk+Der1) + Br T

where C := 7T(1) + BzZ5—;. Thus (i) is proved.
(ii) If a = B, (8.12) yields
T(r*+1) < 7(+Dap(1) 4 Brike)(n 4 1) < 78 (+T(1) + B(n + 1)),
hence, if k is chosen in such a way that 7% < n < 75+1, je., k <log,. n < k+1, we find
T(n) < T(r**1) < 7% (72T (1) 4 B(log, n + 1)) < n®(* + B + Blog, n),
T(n) being increasing, hence,
T(n) <Cn®%logn VYn>2
for a suitable constant C. u]
8.15 QuickSort. The average number of comparison steps Cn made by the QuickSort

algorithm for sorting n random elements is given by

n—1

2
Co=0, Cp=n+1+=-SCjHn>L
o =1+ +n§] s

Multiplying by n we get for n > 1,

nCp =n?+n+2¥ 720 Cj,

N+ 1)Cry1=n+1)2+(n+1)+237-0Ci
and subtracting the first term from the second

n+2
Cn+2.
T n +

Cn+1 =

This is written, for s, 1= Cr/(n + 1), as
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Figure 8.5.

so =0,
Snt1 = sn +2/(n+2),

or sn =327, T+2— —2=377_,2/(j +1). According to the above

n
1
Cr:=(n+1)sn =2(n+1)zm =2n+1)Hpyq —1
=1

where Hy, :=>.7 . 1/j is the n-th partial harmonic sum. Consequently (6.21) yields
=1

Cn ~2(n+1)log(n+1) vn or Cr, = O(nlogn).

c. Rate of convergence

8.16 Newton’s approximation method. Let f : [a,b] — R be a con-
tinuous function with f(a) < 0 and f(b) > 0. Theorem 2.51 states that
f has at least one zero, and the proof provides an algorithm to approxi-
mate that zero. In the case in which f is also convex or concave, Newton’s
method turns out to be more efficient.

Assume f convex, continuous in [a,b], f(a) < 0, f(b) > 0 so that f has
a unique zero c € [a, b], and (see, e.g., Chapter 4 of [GM1])

f(z) >0, fl(x)> f'(¢c) >0  for z €c,b] (8.13)

Let {z,} be the sequence defined by the recurrence

To = b,
Tnt1 = Tp — _ff/‘((‘zn'n y

Clearly x,41 is the point where the tangent to the graph of f at the
point (z,, f(x,)) intersects the z-axis. Since f is convex, ¢ < z,, Vn and
by (8.13), zny1 < zn Vn. Thus the sequence {z,} converges to a point
L € [c,b] that, as we see passing to the limit in the recurrence, is given by
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{zn} is therefore a sequence of approximants of ¢ from above. A sequence
of approximations {y, } from below can be obtained by defining yo = a and
Yn+1 as the point at which the secant through (yn, f(yn)) and (zn, f(z,))
intersects the z-axis.

Notice that Heron’s algorithm in Exercise 2.99 is Newton’s method
applied to f(z) = 2% — o

Let g : [a,b] — [a,b] be a function of class C?([a,b]) and let {z,} be
defined by the recurrence

{.’L‘o = a € [a, b], (8.14)
Tn+l = g(.’L’n)

If {z,} converges, then z, — L € [a,b] with L = g(L), that is L is a
fized point of g. From Taylor’s formula with Lagrange remainder (see, e.g.,
(GM1]),

Tn+1 = 9(zn) = 9(L) + ¢'(§n)(zn — L), §=¢(y) € [y, L},
we infer for the error 6, := |z, — L},
bnt+1 = |Tnt1 — L| = |g(zn) — L| < M|z — L| = M6,

where M := sup,¢(, 4 |9'(z)|- Since we assumed 8, — 0, we have 6, <
(1/2)™ and {8,,} decays exponentially to 0.

If moreover ¢'(L) = 0, Taylor’s formula with Lagrange remainder yields
also

g"(n
o(an) = o(0) + L) o, 1y,
hence
dnt1 = |Zns1 — L] = |g(s) — 9(L)| < Nlzn — L* = NG,

where N := sup,¢(,,4) |9”()|- Therefore, we find for p€ Nand n > 1,
1 n
Snip < 37 (Ms,)*". (8.15)

We say that a sequence {x,} converges rapidly to L € R if |z, — L| < a®"
definitively, with a < 1. From the previous argument we then conclude the
following.

8.17 Proposition. Let g € C%([a,b]), let L € [a,b] be a fixed point
of g, g(L) = L, and let {z,} be the sequence defined by (8.14). If
liminf, oo |£n — L| = 0, (in particular if {z,} converges to L), then {z,}
converges rapidly to L.
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Figure 8.6. A classical introduction to
number theory.

In the case of Newton’s approximating sequence

{zo = € [a,b)],

if {x,} converges, then the limit L is a fixed point of the function

. f .
9(y) =y )’ y € [a,d].

Assuming moreover that f € C3([a,b]) and f’(L) # 0. Then g € C?([a, b])
and ¢’(L) = 0. Therefore, if {x,} converges to L, then {x,} converges
rapidly to L.
8.18 9. Let {z,} be a sequence of positive real numbers such that

Tn4+1 < C’B":ci[*’E

with C > 0, B > 1ande > 0. If g < C“l/eB_l/ez, then zn < B~™/€zg, hence
Tn — 0.

8.1.3 Continued fractions

a. Definitions and elementary properties

The finite continued fraction operation consists in computing, starting from
n + 1 nonnegative numbers {ag, ..., an}, which are all positive except for
ap, the number
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+—
QA

One refers to the result as to the (finite) continued fraction of ag,...,an.
Since the previous notation is heavy, one prefers lighter notation, as

1 1 1
ar+ ag+ an_1+ an’

ao +

or, as we shall do,

[ao, ces ,an].
The numbers ay, ..., an are called the quotients of the continued fraction
[ag, .. .,ays], while for 0 < k < n, the continued fraction [ag,...,ax] is
called the k-th convergent of [ag,...,an].
Observe that [ag] = ao,? [a0, a1] = ao + %, and more generally
1
[a(]) e 7an] = [O‘O’ vy n_2,0n-1 + a_] = [a07 ceeyn—2, [a"n.—la an]]a
n
1
an] =g ——— = ean]l, 8.16
lao, ..., an] = a0 + or o] [ao, [a1,. .., a.]] (8.16)
[ag,...,an] = [ao,---, 8k, [@k+1, - - - Qn]] Yk, 0 <k <n.

Finally, observe that the map
(@oy---,an) — [ag,...,an)

is strictly increasing in each of the variables with an even index and strictly
decreasing in each of the variables with an odd index.

Computing [ag, . .., a,] by its definition consists in the following: start
from the last a,,, take the inverse 1/a,, add a,—1, compute the inverse of
the result, add a,_2 and so on by downward induction until one adds ag.
The following iterative scheme,

[a]=a_0 [a a]=a0a1+1 [a a a]=a0a1a2+a2+a0
0 1’ 0, 41 a1 y 0, &1, 42 (12(11+1 3
computes [ag, ..., a,] by upward induction, and reduces the computation
of [ag,...,as] to a sum.

Let [aq, - - . , an] be a continued fraction. Define py, ..., pn, and qo, ..., qn
by

{PO = aop, {Pl = aoa1 + ]-a (8 17)
dgo = 17 q1 = ai,

9 In this context [@a0] = ao and not, as usual, the integral part of ag. We denote instead
the floor of z by z//1, // being the integral division.
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and, for k=2,...,n,

{Pk = agPk—1 + Pr—2, (8.18)
Q= O0kGk—1 + Qr—2.

Then g, > 0 Yk and we have the following,.

8.19 Proposition. We have

Pk _lag,...,a), VE=0,1,...,n. (8.19)
gk
Moreover
Pegk-1 — D1k = (-1)F7Y,  k=1,...,n (8.20)
PrQe—2 — Pr—20k = (—1)*ay, k=2,...,n. (8.21)
In particular
k—1 ;
—1)J
a0, ..., ax] = 22 + CEV o1 (8.22)
90 =0 9i95+1

Proof. We first prove (8.19) by induction on k. Of course, (8.19) holds true
for k =0, 1. By induction assume the claim true for k, then

[ao, a1y ,ak+1]
1 (ar + ak1+1 JPk—1+ Pr—2
= |ag,Q1,...,Qk-1,0k + = 7
Qk+1 (ax + Yak-1+ k-2

Q41
ak+1(0kPr—1 + Pr—2) + Pr—1 _ Gk41Pk +Dk-1 _ P
ar+1(0kqr—1 + Gr—2) + Qo—1  Gk41Qk + Q-1  Gk+1

Then (8.19) follows. As

PkQk—1 — Ph—19k = (@kPr—1 + Pk—2)qk—1 — Pk—1(akqk—1 + qk—2)
= _(pk—IQk—2 —Pk—2Qk—1),

by repeating the argument, we get
Prgr—1 — Pe—10x = (=1)**}(p1g0 - poq1) = (-1)*7,
i.e., (8.20). Also
PrGk-2 ~ Pk—2qk = (akPr—1 + Pk—2)qk—2 — Pk—2(0kqr—1 + qr—2)
= ak(PE-19k—2 — Pr—2qk-1) = (—1)*ax.

ie., (8.21).
Finally, (8.20) is written as
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n Pn/gn Pn/qn
0 | 0.000000000000000 0/1
1 | 1.000000000000000 1/1
2 | 0.666666666666667 2/3
3 | 0.750000000000000 3/4
4 | 0.743691099476440 143/191
5 | 0.748704663212435 289/386
6 | 0.748701973001038 721/963
7 | 0.748702422145329 1731/2312
1731/2312 = 0.748702422145329 = [0,1,2,1,47,2,2,2]

Figure 8.7. The continued fraction expansion of 1731/2312.

P pe1 _ (-DF?

dk dr—1 qrqK—1

for k=1,...,n, hence
k .
—1)i-1
Pe _Po (T
I T 9591
hence (8.22), by taking into account (8.19). 0

In the rest of this section we are interested in simple continued frac-
tions, that is, in continued fractions in which all the quotients are integers.
Clearly in this case the continued fraction is a rational number.

8.20 Definition. A continued fraction {ay, ..., an) is simple if a; € N Vi
anda; > 1Vi>1.

For simple continued fractions, Proposition 8.19 is particularly useful.
We have the following,.

8.21 Proposition. Let [ao,...,a,] be a simple continued fraction, and
let pr/qk == [ao, .. .,ax] be irreducible. Then

(i) {px} and {qi} are the numbers defined in (8.17), (8.18),
(i) g1 > go and gx > gr—1 Yk > 2,
(i) gx > k Vk, and qx > k Vk > 3.

Proof. The numbers py, ... ,px and qo, - .., qr defined by (8.17), (8.18) are
integers by definition, moreover they are coprime by (8.20) and px/qx =
[@o,...,ax] by (8.19). Thus (i) follows. Finally we have g, = angn-1 +
Gn-2 = qn-1+ 1 if n > 2, hence (ii), while (iii} follows at once since
Gn 2 Gn-1+Gn—2>gn1+12nifn >3, a
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A continued fraction does not fix its quotients as, for instance,

’ [ao,...,an]=[ao,...,an_l,an—l,l] if ap, > 1,
[ag,. .. an] =[ag,...,an_1 + 1] ifa, = 1.

However a simple continued fraction fixes its quotients apart from the
previous ambiguity. More precisely, we have the following.

8.22 Proposition. Let |hg,...,hy] and [ao,...,an] be two simple con-
tinued fractions. Suppose that [ho,...,h,] = [ao,...,am] and, for conve-
nience, m > n. Then

o eitherm=mnand h; =a; Vi=0,...,n,
corm=n+1,h;=a;Vi=1,...,.n—1, h,=0a,+1anda,, =1.

Proof. We proceed by induction on n. Let n = 0. Either m = 0, hence hg = [ho] =
[ao] = ag, or m > 0. In this case we have

1

ho = [ho] = [0, . ., am] = ag + —————
[a1,-..,am]
from which we infer [a1,. .., am] = 1, which in turn implies m = 1, a1 = [a1,...,am] =1
and hg = ag + 1.

Assuming now the claim true for simple continued fractions with n quotients, let
us prove it for a simple continued fraction with n + 1 quotients. Assuming n > 1, by
(8.16), we have

[Ro,[R1s-- ., An]] = [a0, a1, - .., am]]

hence by the inductive assumption hg = ap and [h1,...,hn] = [a1, ..., am]. Using again
the inductive assumption, we reach the conclusion.

8.23 Corollary. Let [aq,...,a,] and [by, ..., by] be two simple continued
fractions. Suppose that an, by, > 2, and that [ag,...,an] = [bo,...,bm].
Thenn=m and a; = b;, Vi=0,...,n.

8.24 Definition. Let {a,}, n = 0,1,... be a list of real numbers such
that ag > 0 and a; > 0. We refer to the sequence

{[ao,...,an]|n=0,1,...}

as to an infinite continued fraction, and we write it as [ag, ..., an,...]. For
any integer n, the (finite) continued fraction [ag, . .., an] is called the n-th
convergent of [ag,...,0n,...]. If [@g,...,a,] — z € R as n — oo, we also
write £ = [ag,...,Qn,.-.].
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b. Developments as continuous fractions
The following algorithm leads us to simple continued fractions. Let x be a

real number. Let ag be its integral part, ap := z//1, and let oy := z — aq
be its fractional part, so that
T = ag + o, ao €N, a9 >0, ale[O,l[.

If a3 # 0, we can write

1

r=a9+ 5,

ar

and, since 1/a; > 1, we can reiterate the procedure,

a1 :=1/a1//1, ag:=1/0; — ay,

1 1
- =a1+a2=al+T,= [a07a1+a2]
[43] -CE
to write
1
r=ag+oy =ag+ =q+ —=--.
a1 + ag a4
! az + a3
= [ag,al,...,ak +ak+1] (8.23)

for £k = 1,2,... as long as ay > 0. Thus the algorithm either ends at
the first k = n at which a1 = 0, and in this case z = [ao, ..., ay], or
eventually continues indefinitely.

All the a;’s we find in this way are nonnegative integers and a; > 1
Vi > 1, thus the resulting continued fractions are simple. We refer to that
algorithm as to the continued fraction expansion algorithm and to the
resulting list of continued fractions when applying the algorithm to x as
to the continued fraction expansion of x.

Finally, we recall that, since (ag, ...,a,) — [ao,...,ay) is strictly in-
creasing in the variables with even index and decreasing in the variables
with odd index,

[ao,...,azk] <zg= [ag,...,azk_l,a2k+ ] (8.24)
Q2k+1
= lag, ..., 02k, G2k 41 +
Q2k+2
< [ao, ..., a2k+41]

as far as the continued fraction expansion algorithm continues.

8.25 Euclid’s algorithm. Let x > 0. Euclid’s algorithm is a means to
find iteratively, if it exists, a common submultiple of x > 0 and 1, see
Section 1.1 and Figure 1.5, by
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Start with z € R, then compute {a;} and ap with

Br =1/ oy,
@0 = ag = Br//1,
Qg1 = S — ak
for k=0,1,..., as far as ax+1 # 0.
By construction
x=ag+ap = [ap + o] = [ap,a1 + 1] =--- =[ap,a1,...,ak + Oky1] = ...
for k =0,1,..., as far as the algorithm continues. Eventually the algorithm stops

at the first k =: n for which ag4; = 0. In this case we also have

T = [ag,a1,...,an). (8.25)

Figure 8.8. The continued fraction expansion algorithm.

ro=zz, 1 =1,
g; = (rj-1/r5)//1, (8.26)

Tj-1= T T Ti+1,

for j = 1,..., as long as r; > 0. We refer to it as to Fuclid’s algorithm
starting from (x,1). The algorithm eventually stops at the first k¥ =: n for
which 7,41 = 0. In this case x = srp, 1 = try, 8, € N, and = = s/t
is rational. Moreover, the last quotient g, is larger than or equal to 2. If
conversely z is rational, then Euclid’s algorithm surely stops after a finite
number of steps. In fact, if £ = p/q, p, ¢ coprime, the remainders are 1/¢
times the corresponding remainders of Euclid’s algorithm starting with
(p,q), which form a list of strictly decreasing integers, see Section 3.1.1.
Thus Fuclid’s algorithm, starting with (z,1), i.e., (8.26), stops after a
finite number of steps if and only if x is rational.

The development of z as a continued fraction is a rewriting of Euclid’s
algorithm (8.26). We in fact have the following.

8.26 Theorem. Let {a;}, and {c;} be the numbers produced by the con-
tinued fraction expansion algorithm of z, and let {q;}, {r;} be respectively
the quotients and the remainders of Euclid’s algorithm (8.26) starting with
(z,1). Then

q; = aj, Ti+1 = 102 .. Q541

Thus the continued fraction algorithm starting with x > 0 produces

o either the quotients of a finite simple continued fraction [ao, . . ., an] such
that x = [ao, ..., an], if z is rational; in this case, if ¢ = p/q, p, q coprime,
we have z = [ay,...,an] where n is the number of steps in Euclid’s

algorithm to compute g.c.d. (p,q) and a,, > 2;
o or an infinite continued fraction [ag, ..., Qn,...| if  is irrational.
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n pn/qn Pn/gn 1/(gngn+1)
1 | 3.000000000000000 3/1 le + 00
2 | 2.666666666666667 8/3 3e —01
3 | 2.750000000000000 11/4 8e — 02
5 | 2.718750000000000 87/32 4e — 03
7 | 2.718309859154930 193/71 4e — 04
9 | 2.718283582089552 1457/536 4e — 06
11 | 2.718281835205993 23225/8544 le — 07
13 | 2.718281828735696 | 49171/18089 6e — 09
e = 2.718281828459045 = [2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,...]

Figure 8.9. The continued fraction expansion of Euler number e.

If z is rational, then the continued fraction expansion [ay,...,an| of
z is the only simple continued fraction with a,, > 2 which equals z, see
Corollary 8.23.

8.27 §. Write a detailed proof of Theorem 8.26.

c. Infinite continued fractions
From Propositions 8.19 and 8.21 we easily get the following.

8.28 Theorem. Let [ap,...,an,...] be a simple infinite continued frac-
tion, and let p,,/q,, be the irreducible representation of the n-th convergent
[ag, ... an]. Then {p,/gn} converges to z € R,

z=1[ag,.. ,qny-..],
where -
Ti=ay+ Z q(_ql)J
j=0 Y9+l
Moreover,

(1) = — pn/gn is positive if n is even and negative if n is odd, so that

Pan <r< Iﬂ“:}_, (8.27)
q2n @2n+1
(ii) we have
1 Pr 1

<

1 ,
@n(qn + Gnt1) gn Gnqn+1
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(iii) we have

(_1)n5n
In+1
where 0 < 4, <1,
(iv) the differences
|lgnz — pnl, |x—&
an

are strictly decreasing as n increases.

Proof. From Proposition 8.21 the sequence {g;q;+1} diverges and is strictly
monotone V3. Moreover (8.20) yields

[ao,...,an]—— +Z I)J

P o b (IJ+1

Since the series o )
(-1)
=0 1%+1

is alternating and the absolute values of the terms tend strictly to zero,
the Leibniz test applies, hence p, /g, — «, where

T=a9+ i (-1 , (8.28)

and (i) and the estimate from above of |z —p, /g,| in (ii) hold. The estimate
from below in (ii) follows also from the Leibniz test since

1 1 _ On+1

QnQn-f-l - Gn+19n+2 B gn(@nt1qn+1 + @n)
1

- Qn(Qn+1 + Qn) '

€T — ——

‘ Pn
an

(iii) follows from (ii).
(iv) From (ii) we infer
1 _ n
Gn+2  Gn(@n+20n + dni1)

|gn+1Z — Png1| <

Spn—— < T —
n @n(gn + @nt1) |¢In pnl

thus {{g.x — pn|} is strictly decreasing. As a consequence {|z — pn/qn|} is
strictly decreasing, too.

The next proposition shows that a simple infinite continued fraction is
completely identified by its limit.
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n Pn/qn Pn/dn 1/(gngnt1)
1 | 2.000000000000000 2/1 e+ 00
2 | 1.500000000000000 3/2 5¢ — 01
3 | 1.666666666666667 5/3 2e — 01
5 | 1.625000000000000 13/8 3¢ — 02
7 | 1.619047619047619 34/21 4e—03
9 | 1.618181818181818 89/55 5e — 04
11 | 1.618055555555556 | 233/144 8e — 05
13 | 1.618037135278515 | 610/377 le — 05
15 — 1,618033988749895 = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]

Figure 8.10. The continued fraction expansion of the golden ratio.

8.29 Proposition. Let[ap,...,a,,...] and [by,...,by,...] be two infinite
simple continued fractions that have the same limit. Then a, = b, ¥n.

Proof. For i =0,1,2,..., denote by x; the real numbers
T; = [aiy. .0, 8n,y. .. ] = nli_}n;[w,...,a,,]
which exist by Theorem 8.28. We first observe that
1<a;<z;<a;+1 Vi, (8.29)

is

in fact, since an infinite continued fraction never ends, z; = a; + v
7

strictly larger than a; Vi. Consequently z; = a; + z—tl+—1 <a;+ ai1+1 <a;+1.
Then (8.29) yields

1
<l<—1—§1 Vi > 1.
a; +1 T; a;

0<

In particular, 1/z; < 1. If now [ag,...,an,...] =[bo,...,bn,...], then
1 1
ag+ — =bg+ —.
T n
Since ag, by € N and 1/x;1,1/y; €]0, 1], we then infer agp = by and
[al,...,an,...]=[b1,...,bn,...].

We then iterate the previous argument to get a; = by, ag = be, .... a

We therefore conclude the following.

8.30 Theorem. Let = be irrational. Then there is a unique simple con-
tinued fraction that converges to z: the continued fraction expansion of x.
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Proof. Let [ag,...,an,...] be the continued fraction expansion of z. By
Theorem 8.28, [ag, . .., an,...] converges to y € R and

[ag, ..., a2n] £y < [ag,...,a2n41)-
Since also

[a(), . ,agn] S T S [ao, e ,a2n+1]

by construction, we infer y = x letting n — oco. The uniqueness is stated
as Proposition 8.29 a

d. Irrationals and approximations by rationals

Actually the n-th convergent p, /g, = [ao, ..., an] of the continued fraction
expansion of x is the best approximation of z among all fractions whose
denominator does not exceed g,.

8.31 Theorem (Best rational approximations). Let z be irrational
and let p, /g, be the n-convergent of the continued fraction development
of x. Then ¥n > 2, Vp,q € N coprime with q < ¢, and p/q # pn/qn, we
have

T — —

Ian —pnl < qu _p|1 ’ Pn
qn

<2
q
Proof. We have already proved that

an:(} "pnl < |Qn—1x _pn—ll;vn >0,

hence the claim follows by downward induction if we prove it for p, g such

that gn_1 < ¢ < ¢ and p/q # pn/dn.
If ¢ = g, we have [p — pn| > 1 and gn4; > 2, hence

1
S —_
Qne1 ~ 2

If g1 < q¢ < g, and p/q # pn/qn we also have p/q # Pn_1/qn-1.
Write

1 1 1
lgnz — pn| < S§tpn—pls~|qnw—pn|+§Iqw—pl~

{p = app—1 + Bpn,
q = agn-1+ Bgn,
that is

{a(pnqn-l — @nPn—1) = Pgn — qPn,
ﬂ(pnq'n—l - ann—l) =Pqn-1 — 4Pn-1,

ie.,
a=(-1)""'pgn —qps),  B=(-1)""Hpgn_1 — qPn-1),

in particular & and 3 are nonzero integers. Since ¢,—1 < ¢ = agn—1+8¢n <
Gn, @ and B must have opposite signs, while p, — ¢, and p,—1 — ¢n—1%
do have opposite signs. Thus
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a(pn-l - Qn—lz') and Ig(Pn - in')

have the same sign; hence

Ip—qz| = |a(Pr—1 — @n-12)| +1B(Pn — @rZ)| 2 |Pr—1 — Gn—12Z| > |Pr — gnz|.
o

8.32 Example. According to the definition of the continued fraction expansion algo-
rithm, one easily sees that [1,1,...,1,...] is the continued fraction expansion of the

golden ratio, Li-_2~/5 Moreover pn = fn—1, gn = fn, {fn} being the sequence of Fi-
bonacci numbers. Since in this case

QO=1,111=1y P0=1,P1=2y
Gn+2 = gnt1 + qn, Pn+2 = Pnt1 + Pn,
we deduce
fn—l 1+\/_ 1+\/__1+z( 1)n
fn 2 fn,fn+1
We also have
1
5(\/5+1) =[1,1,1,1,...]=:11,7),
v2=101,2,2,2,..]=:[1,7),

V5 =1{2,4,4,4,..) = [2,3],

V7=[2,1,1,1,4,1,1,1,4,.. .} = [2,1,1, 1, 4].
Finally, as proved by Leonhard Euler (1707-1783),

e=[2,1,2,1,1,3,1,1,4,1,.. ] = [2,1,n,1)5%,,

k/2
T =3k k=12
F7T

Instead, no formation rule for the continued fraction of 7 is known.

From Theorem 8.30 we readily infer that for the n-th convergents of z,
we have

-2

in particular, if « is irrational, then there exist infinitely many rationals
p/4, p,q coprime, such that

‘z - -‘ <= (8.30)
Moreover if z is rational, = a/b # p/q, we have

,x_£‘=la_q—_bpl>.1_
q bq

thus, assuming (8.30), we get ¢ < b and in turn (8.30) has a finite number
of solutions. In conclusion, we have the following.
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8.33 Theorem (Dirichlet). « is irrational if and only if the inequality
1
lga —p| < =
q

is satisfied by infinitely many integers (p,q), ¢ > 0.

However, the estimate (8.30) is not sharp in the following sense. It can
be easily proved that of any two consecutive convergents of x, one at least

satisfies the inequality

1
'x - 3] <—. (8.31)

In particular, there are infinitely many convergents which satisfy (8.31).
More can be stated in this direction. For instance, it has been proved that
for any three consecutive convergents to x one at least satisfies

1 ] < \/_lq,l , (8.32)

and therefore we have the following.

8.34 Theorem (Hurwitz). Every irrational x admits infinitely many ra-
tional approximations p/q such that

1
VBg2

The constant +/5 in the Hurwitz theorem is sharp. It can be easily
proved that if p,/q, denotes the irreducible representation of the n-th

convergent of (1 4+ 1/5)/2, then ¢2|z — pn/gn| — 1/+/5, and that

1++v5 pn 1

2 Aqn

'z-_

holds only for a finite numbers of convergents if 4 > /5.
We conclude observing that (8.31), that is satisfied by at least half of
the convergents, characterizes the convergents. We have the following.

8.35 Theorem. Let x be a positive real number. Assume that p,q are
coprime integers. If (8.31) holds, then p/q is one of the convergents of the
continued fraction development of x.

Proof. By assumption

where ¢ = +1 and 0 < & < 1. Let [ag, ..., a,] be the continued fraction
expansion of p/q, n being such that (—1)"~! = ¢, and let px/gx be the
k-th convergent of [aq,...,as], in particular p = p,, ¢ = g,. Write x as
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z =lag,...,0n,2|

for a suitable z; according to Proposition 8.19 we have

_ ZPn + Pn-1
Zqn +qn-1’
© thus
€ax _Pn__ Z(Pndn—1—=Pn-19n)
% n 2qn + gn—1
ie.,
qn
. E—
2qn + qn—1
that is, z > 1. Thus the continued fraction expansion of z is a simple finite
or infinite continued fraction [bg,...,bp,...] with bg > 1. We then infer
that
[@0,---18n, b0,y bn,y...]
is a stmple continued fraction, and
z = [ag,...,an,2] = [ao,...,an,b0,...,bn,...].
Hence p/q = [aqg, - . ., an] is one of the convergents of the continued fraction
development of x. ad

8.36 Periodic continued fractions. The reader may have already no-
ticed that v/2, v/5, /7 have periodic expansions as continued fractions. This
is a general fact. Furthermore, we have the following.

Theorem (Lagrange). A periodic continued fraction is a quadratic surd,
i.e., an irrational root of a quadratic equation with integral coeflicients.

e. Order of approximation and transcendental numbers
We say that o is approxzimable by rationals to order n if there is a constant
k = k(a) depending on o for which
k(o)

qn
has infinitely many solutions. As we have seen, every rational is approz-
imable to order 1 and not to a higher order, while every irrational is ap-

proxzimable of order two (see Theorem 8.34). This way we separate the
irrationals in classes that are further and further away from rationals.

£-d|<
q

8.37 Theorem (Liouville). A real algebraic number'® of degree n is not
approximable to any order greater than n.

10 We recall that an algebraic number is a solution of an algebraic equation with integral
coefficients. If x satisfies an equation of degree n, but none of lower degree, then it
is said to be of degree n.
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Proof. Let £ be a root of
&) =aef* +a1" '+ +a, =0
with a; € Z, and let p/q # £ be an approximation of £. We can assume
that p/q lies in ]&€ — 1,£€ + 1], and is nearer to ¢ than any other root of
f(z) =0, so that f(p/q) # 0. Trivially there exists M (£) such that
Iff@)<ME) Vzelf-1,¢+1],

and

lf(fﬁ)i _ laop" +aip" g+ ap" 2 4| 1
q i g
since the numerator is a positive integer. Also by Lagrange’s theorem

1(o/a) = ela)~ 16 = (£ - £) £'(a)

for some z lying between p/q and . Therefore we conclude

p L @l 11
e-d=-Farzma

O

We can translate Liouville’'s theorem into the principle that rapidly
converging sequences of rationals converge to a transcendental number,
and simple irrationals like v/5 — 1 or v/2 cannot be rapidly approximated
by rationals: from the point of view of rational approximation the simplest
numbers are the worst.

Liouville’s theorem of course allows us to construct transcendental
numbers easily.

8.38 Example. If

o0
£ =0,110001000... = 10" + 107 +107% +... = " 107¥,
k=1

and
n
_ p p
€n = 1070 = = &,
we have
o0
0<e-Lot-en= 3 107H <2100 < 2g7N
q k=n+1

for n > N. Consequently ¢ is not an algebraic number of degree less than N. N being
arbitrary, we conclude that £ is transcendental.

8.39 9 9. Show that the number [1,10,102,10%',10%,.. ] is transcendental.
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Of course, it is more difficult to decide whether a given number is
transcendental or not. For instance, only in 1873 Charles Hermite (1822—
1901) proved that = is transcendental, and in 1882 Carl von Lindemann
(1852-1939) proved that e is transcendental, too. Even nowadays only few
classes of transcendental numbers are known, for example,

e, m, sinl, log2, log3/log2, €™, 9v2
are transcendental, but it is not known whether
28, 27, ¢t
are transcendental or not; actually not even whether they are rational or

irrational. We only state without proofs

8.40 Theorem (Roth, 1958). The order of approximation of any alge-
braic rational is 2. In other words, given an algebraic number o and k > 2,
there are only finitely many rational numbers p/q solving @ —p/q| < c/q*.

8.41 Theorem (Lindemann—Weierstrass). Let a,...,a, be n dis-
tinct complex numbers. If

/Bleol1 +"'+/3nean =Oa lBj GC,

then either at least one of the coefficients 3; is transcendental or all 3;
vanish.

8.2 One-Dimensional Dynamical
Systems

Roughly, a dynamical system consists of a set of possible states, together
with rules that determine the present state in terms of the past states. The
system is said to be continuous or discrete according to whether the rule
is applied at continuous or discrete times.

Let I be a closed interval in R or I =R, and f : I — I be a mapping
from I to I. A typical discrete dynamical system is

o =1,
Tpt1 = f(zn) n2>0.

The sequence f™(x) := fo fo---o0 f(z) of the iterates of f is called
the orbit of £ under f. A point z € I such that f(z) = z is called a
fized point of f. According to the principle of induction, the orbit {x,}
is uniquely determined by the initial value x¢; nevertheless, for nonlinear
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maps, even just quadratic maps, the sequence {z,} may have a behavior,
or dynamics, quite complicated, with effects due to nonlinearity, such as
absence of convergence, presence of oscillations, sensitive dependence on
initial conditions which lead to a complex distribution of the values {z,},
often referred to as deterministic chaos. Such dynamical systems occur in
many contexts and, in particular, when discretizing differential equations
or when studying mathematical models, as, for instance, population models.

8.2.1 Discretization and models

Given a smooth function f: R — R, Cauchy’s problem

{I(O) = %o (8.33)
Z'(t) = f(z(t))

has a unique solution at least in a short interval [0, T[. Discrete methods
allow us to approximate such a solution.

a. Euler’s method

If we assume a small h as discrete approximation step, and replace in the
differential equation the derivative with the differential quotient (z(t+h)—
z(t))/h, we find
z(t+ h) — z(t)
h
This suggests as approximate solution

e (t) .= xx + (bt — k)zppr  t € [k/h, (k+1)/h), k=0,1,2,...

= f(x(?)).

where

Tky1 = Tk + hf(zk).

In other words x4+ is the arrival point after time h if we start from x
and move with constant speed f(xy), while £(*)(¢) is the linear interpolate.
The discretization error

{”0 = %o (8.34)

z(t+ hzl— z(t) F(a(®)

clearly is infinitesimal as h — 0: in fact, we have the following.

e(z(t),h) :=

8.42 Proposition. The sequence of functions {z\"(t)} converges uni-
formly to the solution z(t) of (8.33) on every bounded interval in which
z(t) exists.
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This easily follows from
8.43 Proposition. Let M := supjo 7( |f(z)|, L := supjo rp |f'(z)| and

h:=T/N. Then

leny — z(T)| < %(eLT —1)A.

Proof. From the equation z’(t) = f(z(t)) we get

lo( —J:s)|</ £ (2(r))| dr = M]s — ¢, (8.35)
(k+1)h
z((k + L)h) = z(kh) +h/kh f(z(s))ds, k=0,1,...,N-1

If zg := 2(0), Zp+1 := zk + hf(zk) and §k := |z — z(kh)|, we then infer

(k+1)h
Guss < 8+ Blf(a(kh) = f@ol+ [ (£(ao) - Fokh)) ds

(k+1)h LM
< (1+Lh)k + L / [2(s) — 2(kh)| ds < (1+ Lh)3e + “o b2,

kh

Iterating, we finally obtain

LMR2 =2 . LMR? (14 Lh)* —
< (1+ Lh)*s 1+ Lh) =
6 < (o4 L+ S5 (0 LY = =5 a—

since 6 = 0, and for £ = N the conclusion. g

Proof of Proposition 8.42. In fact for s € [kh, (k + 1)h], we have
2™ (s) — 2(s)| < 12™ (5) = zk| + |z — z(kh)| + |z(kh) — 2(s)| < Ch,

since |:c(h)(s) — k| < |Tk41 — x| < Mh by definition, |z(kh) —z(s)| < Mh
by (8.35) and |zx — z(kh)| < Ch by Proposition 8.43. 0

The first formal description of this numerical method for approximating
solutions of an ODE seems due to Leonhard Euler (1707-1783), while
the proof of convergence is due to Augustin-Louis Cauchy (1789-1857).
However, it is worth noticing that the method had already been used by
Sir Isaac Newton (1643-1727).
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b. Runge-Kutta method
Differentiating the equation z’ = f(z) we find
2'(t) = f(z(2)),
2"(t) = f'(z(t)) f(=(1),
2" (t) = f"(2(2)) f2(2(t)) + (' (z(£))) f(z(t)),
thus, defining

B(e, ) = £(@) + 5 /@) @) + o (7"(@) @) + (@) 5 @)

we may set up the iteration scheme

Zo = Zo,
Tp+1 = Tk + h®(zk, h).

Using the second order Taylor polynomial, similarly to the above one can
show that this scheme converges and yields a better approximation than
Euler’s method. And we can get even better approximations using higher
order terms.

But, from the numerical point of view, the computation of high deriva-
tives is costly since it corresponds to computing a function at many points
with higher accuracy. Therefore, while in principle we can get better and
better approximations using higher order Taylor polynomials, this is not
convenient as it leads to algorithms which are not very efficient. Thus, let
us come back to the question of a good choice of ¢(x,h) in the iteration

Tr41 = Tk + h®(zk, h).

We have

z(t+h) =z +hf(z)+ gf’(:c)f(x) + o(h?),

®(z, h) = ®(z,0) + h®'(z,0) + O(h?),
the discretization error is then

e(z,h) = f(z)+ gf’(:c)f(x) + o(h?) — ®(x,0) — h®'(x,0) + o(h?),

that is, of order o(h?), if we have

flz)+ -gf’(a:)f(x) - ®(z,0) — hd'(z,0) = 0. (8.36)
For example the choice

®(z,h) i= Af(z) + Bf(x + Chf(z)), with A+B =1, BC=%

gives a family of solutions of (8.36) which yield approximating methods of
order two



8.2 Omne-Dimensional Dynamical Systems 335

o The modified Euler method or middle point method corresponds to
A=0, B =1, c=1/2.
o The method of Heun corresponds to
A=1/2, B =1/2, C=1

Similarly, one can construct methods of approximation of order 3, 4 or
higher. The method of Runge-Kutta is a fourth order method defined by

1
®(z,h) = g(ml + 2mg + 2m3 + my),

my = f(x), mg = f(zx + gml),
mg = f(z + gmr_»), my = f(z + hmg).

8.44 9. The global error of approrimation is defined by
E(h) = sup |z(t) — 2™ (t)].
[0,T)

Show that in the case of Heun’s method and Euler’s method E(h) = O(h?), while in
the case of Runge-Kutta E(k) = O(h%).

c. Models

Processes of the real world are often mathematically modelled in order
to capture some of their characteristic and/or relevant aspects; from this
point of view a model that is too close to reality may happen to be in-
tractable and consequently useless, while a model which, though far from
reality, identifies relevant specific aspects may be very useful: modelling is a
kind of compromise. Industrial mathematics, biology, economics and social
sciences are the context in which new models develop according to specific
needs. Though fascinating, discussing even a few examples is not possible
here, therefore we confine ourselves to presenting very briefly two classical
examples in population dynamics: the logistic model and Lotka—Volterra
models.

8.45 The logistic model. Let z¢ denote the initial size of a population
and let {z,} be the size after n years. The rate of change is then

Tnt+l — Tn
Tn

If such a rate is constant, say «, the dynamics is described by
Tnt+1 = (1 + O!).’En;

the size of the population after n years is z, = (1 + a)"zg,that is, the
population increases exponentially if a > 0. Such a model describes the
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Figure 8.11. The iterates of f(x) = z2 + c starting from zg = 0 with, from the left
c=-1,¢=-15c¢c=-2.

ideal situation in which no external influence is present. More realistic
models should take into account influences of the environment. In 1845
P. F Verhulst, starting from the assumption that the environment may
only allow the survival of a threshold population P, that we take to be 1,
formulated the hypothesis that the rate of change is proportional to 1 —x,,.
In this case the dynamics becomes

Tnt1 = (1 + @)z, — azl. (8.37)
This is the logistic model; see, e.g., Section 4.2 of [GM]1].

8.46 q. Show that Euler’s method with step & = 1 for the equation
' = a(z — %)

leads to (8.37).

8.47 Lotka—Volterra models. These are models often used to simulate
the interaction between two or more populations. In the case of two species,
because of the finiteness of resources, the rate of change, per individual,
is adversely affected by high levels of its own species (as in the logistic
model) and by the other species with which it is in competition. We have

.’Z:I

-;=A(E—x)——By

and, a similar equation for the second population y, i.e.,
{w’ = Az(E — z) — Bzy,
y' = Cy(F —y) — Dzy.

A special case is the so-called predator-prey model

{m’ = az — bxy,

/ —_—

y = —cy+dzy
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Figure 8.12. (a) The iterates of (a) /% starting from xo = 0.2 and of (b) 1/(2z + 1)
starting from zg = 0.2.

that, in its discrete version, becomes

zp1 = (1 + @)z — bxy,
Y1 = (1 — )Yk + drryk.

8.2.2 Examples of one-dimensional dynamics

In this section we illustrate some typical features of one-dimensional dis-
crete processes. Let

Tp+l = f (fvn),
be such a system, f : R — R being a given smooth function. The orbit of

an initial point z¢ is given by the sequence {z,},

ZTn =.f0f0fo-..of($el, or simply Tn = f™(z0).

n—times

A graphic representation of the sequence {z.} may be given by the
points (n,z,) in the plane, possibly linearly interpolated, see Figure 8.11.

Alternatively, we plot in the (z,y) plane the graph of y = f(z). We
travel vertically from (xo,zo) till (o, f(zo)) on the graph of f, then hori-
zontally until we reach the diagonal, (f(zo, f(20)) =: (z1,%1), and finally,
we reiterate starting from (z1, 1), (¥2,*2), etc., see Figure 8.12.

Our first two examples concern very simple dynamics.



338 8. Discrete Processes

a. Expansive dynamics

Let £ > 1 and let

Tpt1 = KTy,
This simple dynamics, that we have already encountered several times, has
a closed form description:

T, = k"zg.
The f™(x¢) separate exponentially in time. Also starting from slightly
different data xg,yo, then z, — y, = k™(xo — ¥0), i.e., the orbits of zy and
yo separate exponentially in time. Different of course is the case 0 < k < 1:
all initial points tend to zero: they are “attracted” by zero; zero is called
a sink.

b. Contractive dynamics: fixed points

A contraction map or simply a contraction on an interval I C R is a map
f : I — I which shrinks distances uniformly, i.e., for which there exists
a constant L, 0 < L < 1, such that |f(z) — f(y)| < Lz ~y| Vz,y € I.
Of course a contraction map is a Lipschitz map, in particular contraction
maps are continuous on 1.

8.48 Theorem (Contraction mapping theorem). Let I be a closed
subset of R, for instance a closed interval, a closed half-line, a finite union
of closed intervals, or R, and let f : I — I be a contraction with contraction
factor L < 1. Then f has a unique fixed point xq € I. Moreover, the orbit
of any point x € I converges at least exponentially to xg,

7"(@) ~ 2ol < o |f(@) ~2|  Vn. (3.38)

Proof. Uniqueness. If z,y € I are two fixed points, we have
|z -yl = |f(z) - f)| < Liz -y,

hence x =y, since L < 1.
Existence. For any x € I, consider its orbit {z,}, z, := f*(z). We then
have

[2kt1 — zk| < Ll ~— 2p-1] < -+ < L¥|z1 — 20| = L¥|f(z) — 2|

hence, for g > p > 1,

g—1 g-1
e
l2g =25l < 3 lokss =2l < Y LM (@) — o] < 1f(@) 2l T, (8.39)
h=p h=p

since L < 1. Since the right-hand side converges to zero as p — oo, {z,} is
a Cauchy sequence and therefore converges to some ¢ € R. Passing to the
limit in £,4+1 = f(zn), We see that xo is a fixed point for f, thus proving
that f has a fixed point, hence a unique fixed point, and that each orbit
converges to it. Finally, (8.38) follows passing to the limit as ¢ — o0 in
(8.39). O
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Figure 8.13. The iterates of f(z) = 2.8z(1 — z) starting from z = 0.8.

c¢. Sinks and sources

Let us begin by illustrating a number of phenomena associated to generic
maps.

8.49 Example. Let f(z) := 2z(1 — z), z € [0,1]. Clearly, f : [0,1] — [0, 1] has two
fixed points, 0 and 1/2, and the orbit of every point z € [0, 1], = # 0, converges to 1/2;
in fact, {f"(z)} is increasing, and passing to the limit in z,4+1 = f(zr), necessarily,

f™(z) — 1/2.

Trivially we have

8.50 Proposition. Let f : I — I be a continuous map, and let {f*(x)}
be the orbit of x € I. Then

(i) if f*(z) — p as k — +oo, then p is a fixed point, f(p) = p.
(ii) if f*(x) = p for some n, and p is a fixed point, then f*(x) = p Vk > n.

Example 8.49 then suggests

8.51 Definition. Let f : I — I be a continuous map, and let p be a fixed
point of f. We say that

(i) p is stable if Ve > O there is 6 > 0 such that |f*(z) — p| < € Vn if
|il7 - p| < 67

(ii) p is a sink or an attracting point if there exists § > 0 such that
f¥(x) — p for all x with |z — p| < 6. If p is a sink, the basin of
attraction of p is the subset of points on I whose orbits converge to
p,

(iii) p is unstable if p is not stable, i.e., if for some ¢y > 0 there exists a
sequence {z} such that z, — p, and for each k an integer ny, such
that |f™ (z) — p| > €0,

(iv) p is a source or a repelling point if for some ¢y > 0 and for each x
such that 0 < |z — p| < & there is n, such that |f™ (z) — p| > €o.
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If p is stable and a sink, then p is said to be an asymptotically stable fixed
point.

Of course, by definition sources are unstable fized points. Trivially the fixed
point of a contraction on I is a stable fixed point and a sink, and its basin
of attraction is the whole I.

In Example 8.49, 0 is a source, 1/2 is a sink, and the basin of attraction
of 1/2 is ]0,1]. In general, we have

8.52 Theorem. Let p be a fixed point for a continuous map f : I — I,
and assume that f is differentiable at p.

(i) If |f'(p)| < 1, then p is a stable fixed point and a sink, that is, p is
asymptotically stable.
(i) If |f'(p)| > 1, then p is a source, in particular p is an unstable fixed
point.
Proof. (i) Since limg—p Li@)=f )l - | f/(p)}, there is L < 1 and § > O such that

lz—pl
|f(z) —pl = |f(z) — f(P)| < Llz — p| < |z - pl
if £ € I and |z — p| < 6. In particular, if |T — p| < 6, then |f(z) — p| < § Vn, hence p

is stable. Moreover
|f" i) —pl S LIf" (@) —pl  Vn,

and, by iteration, we therefore conclude that
|f™(z) —pl < L™z - pl,
hence {f™(x)} converges exponentially to p as n — oo.

(ii) Similarly to (i), there is L > 1 and 8§ > 0 such that | f(z) —p|] > Lz —p) if ]z —p| < 8.
If p were not a source, for any € > 0 we could then find z arbitrarily close to p such
that |f*(z) — p| < € ¥n. Choosing € = § we would find z such that [f*(z) —p| < §
Vn and setting o, := |f"(z) — p|, on < § ¥n. But on the other hand by assumption
On+1 = Lon Vn ie., o, — 00: a contradiction. O

8.53 Remark. We notice that, if p is a fixed point of f, f is twice differ-
entiable at p and f/(p) = 0, then the orbit {f"(z)} converges to p rapidly.
In fact, in this case the second order Taylor formula yields 6,41 < Mo?2,
on = |f"(z) — p|, see (8.15).

d. Periodic orbits

In dependence on the parameter a, the dynamics of the logistic map
fo(x) = ax(l — z), z € [0,1], is significantly different. Observe that the
map g(z) := azx(l — ), z € R, has two fixed points in R, 0 and (a — 1)/a.

For instance, if 0 < @ < 1, then |f.(z)}| < a < 1 and f, is a contraction
with the unique fixed point z = 0. For @ = 1 the map f; still has 0 as a
unique fixed point, and it is easy to check that 0 is a sink. For 1 < a < 3,
fa has two fixed points: 0 that is a source, and (a — 1)/a that is a sink
with ]0, 1] as basin of attraction.
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Figure 8.14. The iterates of f(z) := 3.3z(1 — z).

For a = 3.3, f, has two fixed points, 0 and 22/33, and both are sources.
Therefore the orbits cannot converge. Numerical experiments show that
the values of the iterates oscillate between two values of the order of 0.4794
and .8236, see Figure 8.14, and moreover f{0.4794) = .8236 and f(.8236) =
4794, modulus roundings. This suggests that the two alternating values
are fixed points of f2. Actually, one easily proves that g(z) := f o f(z)
has exactly three fixed points 0, p1,ps, Figure 8.15, with p; := 0.47%4...
and p, := .8236..., and that both are sinks. The same holds if 3 < a <
1+v6=3.34494....

8.54 Definition. Let f : I — I be a continuous map. A k-periodic point
is a fixed point of f*, k > 1, that is not a fixed point of f* for any h < k.
A k-th periodic orbit is the orbit {f™(p)} of a k-periodic point p.

Of course, a k-th periodic orbit consists of k distinct points that are
k-periodic points.

8.55 Example. The origin is the unique fixed point of f(z) = —z, = € [-1,1]; any
other point is a 2-periodic point, since f o f(z) = —(~z) = z, and the 2-periodic orbit
of z is the sequence {(—1)"z}.

The stability of k-periodic orbits can now be discussed exactly in the
same terms in which we discussed the stability of fixed points.

8.56 Definition. Let f : I — I be a continuous map on a closed interval
I and let p be a k-periodic point of f. We say that the k-periodic orbit of
p is a k-periodic sink or a k-periodic attractor if p is a sink for the k-th
iterate f* of f.

V‘;’e say that the k-periodic orbit of p is a periodic source if p is a source
for f*.

Finally, we say that the k-periodic orbit of a k-periodic point p is stable,
asymptotically stable, unstable if respectively p is a stable, asymptotically
stable, unstable fixed point of f*.
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Figure 8.15. On the left f(z) = 3.3z(1 — z) and on the right f%(z).

8.857 9. Let f : I — I. An orbit {f"(z)} is said to be asymptotically k-periodic if
|f™(z) — f*(p)| — 0 as n — oo for some k-periodic point p. Show that p is a k-periodic
sink if and only if there is § > 0 such that {f"(x)} is asymptotically periodic for all =
with |z — p| < 4.

Let p be a k-periodic point of f that we assume to be differentiable at
p. Denote by po, .. .,Pk—1, Po *= p, the k distinct values of the orbit f*(p);
since we have

D(f*)p) = F(FF @) (f*2 () - £ (F () f (p)
= f'(pr-1)f (pr=2) - - f' (p0),

from Theorem 8.48 we infer at once the following.

8.58 Theorem. Let f : I — I be differentiable. If pg, ..., pg-1, po := D,
are the k values of a k-periodic orbit then

@) if |f' (o) f'(p1) - f'(pe=1)| < 1, the orbit is asymptotically stable,
that is, the orbit is a sink and is stable.

(ii) if |f'(po)f'(p1) - f'(pk—1)| > 1, the orbit of p is a source, hence
unstable.

8.59 Example. In the case f(z) = 3.3z(1 — z), = € [0, 1], none of the two fixed points
0.4794 and 0.8236 is a fixed point of f. The corresponding 2-orbit is a periodic sink,
since {f/(0.4794) f(0.8236)| < 1, see Figures 8.14 and 8.15.

e. Periodic-doubling cascade transition to chaos

If we increase the parameter a in the logistic map, the dynamics becomes
more and more complex. The so-called bifurcation diagram of f, is plotted
in Figure 8.16. The diagram has been obtained printing the parameter a
as abscissa, computing the iterates f¥(zo) and plotting on the line z = a
the values of the k-orbit of zg for 200 < k& < 400. The values of zg and
of f¥(zg) for 1 < k < 200 have been neglected in order to eliminate the
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Figure 8.16. The iterates of the logistic map f(z) := Az(1l — z).

dependence from the initial data as much as possible. The figure suggests
that for a = 3.45, there is a 4-orbit which sinks: this can in fact be proved
along the same lines as Theorem 8.58. As a increases, one gets an 8-orbit,
a 16-orbit and actually an entire sequence of 2™-orbits, n = 1,2, ... which
sink, until a reaches a limiting value aq, := 3.5699456 . . .. Such a sequence
is called a periodic-doubling cascade and is one of the routes to chaos since
in fact, for @ > a the orbits appear to randomly fill out the entire interval
or a subinterval: they are quite complicated, hard to describe and quite
irregular. But before that chaos, there is some regularity, which in fact is
universal. In fact, set f, := af(z) for any continuous map f : [0,1] — [0, 1]
with a unique maximum point, and f(0) = f(1) = 0, and denote by a,
the value at which the n-th bifurcation occurs. Then it has been proved
that there is a constant &, called the Feigenbaum constant, such that

lim 2”91 _ 5 4.66920161.. ..

n=00 Gni1 — Gn

This is an example of order in the transition to chaos.

1 1 1
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Figure 8.17. The map f(z) := 4z(1 — z) and the graphs of f(z), f3(z), f3(x).
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Figure 8.18. The intermittency phenomenon due to a thin channel.

8.60 Example. The map f(z) =4x(1—=x), z € [0,1], has two fixed points, x = 0, 3/4,
but no sink. The map f? has four fixed points = = 0, p1, 3/4, p2, two of which are the
fixed pomts of f and the other two are 2-periodic sinks f(p2) = p1 and f(p2) = p;.
The ma.p f3 has eight fixed points: 0, 3/4, the 2-periodic sinks are not fixed points
for f3, the remaining six points form 2-orbits of period 3, see Figure 8.17. For more
complicated orbits, compare Proposition 8.75.

f. The intermittency phenomenon
Consider the map

if z €[0,1/a],
f(z) = {_1(1 ~z) ifz€ll/a,l].

For a > 1, one sees that f has no stable fixed point or orbit, and the
orbits become quite complex; for a long period the process is regular, then
the iterates oscillate around the unstable fixed point z° := /(20— 1), for
some time after which they go away and the process restarts again more
or less similarly, see Figure 8.19.

A similar phenomenon can be observed for the maps go(z) := g(z — a)
in Figures 8.19 and 8.20.

For o > ay, x, quickly get close to a fixed point, while for a < o«
and a ~ «g, the iterates will remain for some time in a “channel,” then
they jump outside the channel, after which they move back in for a long
interval which in general depends on the point at which the iterate enters
the channel.

In the formulas of logistic maps fo = az(1 —z) and of the map above,
when o varies, as we have seen we experience a transition from a regular
regime to a “chaotic” regime: they may be regarded as two examples of
transition to chaos.
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Figure 8.19. The iterates of (a) g(x — 0.6) and of (b) g(z — 0.5) where g(z) = e — 1/2
until it reaches 1 and then decays linearly.

g- Ergodic dynamics
Let us consider the dynamical system

Tp+1 = Zp +w mod 1 (8.40)

associated to the map ¢, : {0,1] — [0,1], pu(z) = z +w (mod 1), that
maps z into the fractional part of z + w.

Clearly, it can be regarded as a dynamical system on the circle S*.
In fact, if we identify R/Z with S! with the map ¢ — exp (i27t) and set
2p := €27 we have

2n = ez21rnwz, z = ei21rz'

In other words, 2,41 is the point z,, rotated counterclockwise to the angle
2w,

If w is rational, w = p/q, p, q coprime, the orbits of the system are all
g-periodic and consist of a finite number of points z; := = + L mod (1).

2 2
1.5 — 1.5 —

1 — 1
0.5 \ 0.5 W/\/\/

0 — 0 =
0.5 -0.5 —

-1 [ T A | 1 L 1 | |

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure 8.20. Here g(r) = €* — 1/2 until it reaches 1 and then decays linearly. From the
left, the iterates of g(z — 0.6}, g(z — 0.5), and of g(z — 0.45).
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8.61 Theorem (Jacobi). If w is irrational, all orbits of ¢,, are dense in
[0,1].

Proof. Let w be irrational and let z € [0,1]. First we notice that the
points {@(x)} are distinct. In fact, if 7 (z) = ¢ (z), then (n — m)w €
Z, consequently n = m, w being irrational. The infinite distinct points
of an orbit admit a convergent subsequence, by the Bolzano—Weierstrass
theorem, hence for any e > 0, we can find two distinct elements ¢7(x) and
¢ (z) such that |¢%(z) — ¢ ()| < e. Since @,, preserves the distances on
the circle, we deduce

[ph(z) —pu(z)| <€ forp=|n—m|,
consequently

0 < |¢h(2) = pu(@)] = el P (2) — pP ()] <e.

We conclude that the sequence @2 (z), p2P(z), p3P(z), ... divides S? in arcs
of length uniformly bounded from below and not larger than e: this shows
that the orbit of z is dense. o

The dynamics of (8.40), though quite complex, has relevant regularity
properties. The time mean of a continuous function f : [0,1] — R or
f :]0,1] — C, also called an observable along the orbit, is defined as the
limit

1 N
£1@)= Jim 5 3 fena)

if it exists, while its mean is called the phase mean
1
f= / f(z)dz.
0

8.62 Theorem (Ergodic theorem). Letw be irrational. Then the limit
@ (z) exists for all z and ¢, (x) = 7,1

In other words, the time mean of an observable along the orbit is in-
dependent of the orbit itself, equivalently on the initial value, and equals
the phase mean.

Theorem 8.62 can be obtained as a consequence of the Hermann Weyl
(1885-1955) theorem on the uniform equidistribution of the fractional
parts of w, 2w, 3w, ..., nw for n large, if w is irrational.

8.63 Theorem (Weyl). Let w be an irrational.

11 Actually one refers to a dynamics associated with a map f : [0,1] — [0,1] as to
an ergodic dynamics if f*(z) = f for almost every point = € [0,1] in the sense of
Lebesgue.
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(i) For every continuous and 1-periodic function, we have

N 1
%Z flnw) — / F(t)dt. (8.41)
n=1 0

(i) f0<a<b<1, then

#Hrll<n<N nwelodl}
N e d

where, we recall, #A denotes the number of elements of A.

—a

The proof of the Weyl theorem we present here uses the following density result
that we do not prove.

8.64 Theorem. Trigonometrical polynomials in [0,1] are dense in the class of con-
tinuous and l-periodic functions, i.e., given a continuous function f : [0,1] — R with
f(0) = f(1), and a positive € > 0, there is a 1-periodic trigonometric polynomial such
that

|f(t) - P@t)|<e Vte[o,1].

Proof of Theorem 8.63. (i) For increasingly complex f we shall prove that
1 & f
Gn(f) = ﬁ;f(nw) —O/f(t)dt —0 as N — oo.

N 1
1
(a) If f(t) =1, then clearly Gn(1) = N El 1 —/ldt =0.
0

(b) Suppose f(t) = exp(i2wkt), k € Z, k # 0, so that fol Ff@)dt = 0. Since w is
irrational, exp (i2rkw) # 1, hence

1 N . 1 i N-1 )
IGn(f)| = _l Z€z2wnkw| = = |ei2mhw Z ez21rnkw|
N4 N 3

12 Nsw

1 2
- N I]_ - ei21rkw|

_ __]'_'ei27rkw 1-e
- N 1 — ei2mhkw

—0as N — oo.

(c) Suppose now that f is a trigonometric polynomial of period 1, P(t) =
h=—p cke??™kt We have G (P) = ¥ cx, G (exp (i2wkt)) hence (ii) yields Gy (P) — 0
as N — oo.

(d) For a continuous and 1-periodic function f : R — C, given € > 0, by the density
theorem, Theorem 8.64, we find a trigonometric polynomial P(t) such that |f(f) —
P(t)| < eV t. Thus

IGN(f) ~GN(P) <2 VN, Vt.

According to (c), we can find Ny such that |Gy (P)| < € for all N > Np. Therefore, we
conclude for N > Np,

IGN (DI S IGN(P) +|GN(f) — GN(P)| < 36,
ie., Gn(f) > 0as N — oo.

(ii) Given € > 0, let f_ and fi be two continuous functions such that



348 8. Discrete Processes

Figure 8.21. Aleksandr Lyapunov (1857-

1918).
- <1< £+ () Vi€ ]a,b]
f-@®)=0,  f+(t)=20 Vt¢la,b],
1 1
(b—a)—e< [ f-dt< [ frdt<(b—a)+e.
[rs]
Trivially

N

N
Zf_(nw) <#{n|1<n <N, nw€ [a,b]} < Zf+(nw).
1 1

On the other hand, by (i), for N > Ny = No(e) we have |Gn(f+)|, Gn(f-)| < ¢, hence

< gy
/f d—e< Hnllsn Iévnweab /f+dt+e

and therefore

#{n|1<n <N, nw € [a,b]}

—a)—2<
(b—a)—2e< N

< (b—a)+ 2e.

We notice that the conclusions of Theorem 8.62 would be false if w were rational.
Therefore Theorem 8.62 characterizes the irrationals as the reals w for which either
(8.41) holds or the fractional parts of {nw} are equidistributed.

8.2.3 Chaotic dynamics

Let us discuss now some of the characteristic features of chaos.
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Sous la direction de E
A. Dahan Dalmedico,
J.-L. Chabert, K. Chemla

Chaos et
THE FRACTAL GEOMETRY OF NATURE déterminisme
Benoit B. Mandelbrot

INTERNATIONAL BISINESS MACHINES
THOMAS §. WATSON RESEARCH CENTER

W. H. FREEMAN AND COMPANY B
: Inédit

Figure 8.22. Frontispieces of two stimulating books.

a. Sensitive dependence on initial conditions and the Lyapunov
exponent

8.65 Definition. Let f : I — I be a map defined on a closed interval
I C R. We say that a point zq € I has sensitive dependence on initial
conditions or is a sensitive point if there exist €y > 0 and sequences {zx}
and {ny} such that zx — z¢ and |f™(zx) — f™ (z0)| > €o.

It is not difficult to show that sources of any power of f are sensitive points.

In the case in which points near zo become separated by the action of
the map f, a measure of such a separation is provided by the Lyapunov
exponent. If the separation is exactly exponential, that is | f™(z) — f™(2¢| =
q"™|z — zo|, the Lyapunov number is q. In the general case, the Lyapunov
number at xzq is defined by

L(zy) := nli’ngo lim sup
T—TQ

<|f”(x) —f”(wo)l)l/"

|z — zo|
and the Lyapunov exponent,
)‘(:BO) = IOgL(QIo),

is a measure of the (exponential) separation of the orbits starting close to
xg, provided, of course, the limit as n — oo exists.
If f is differentiable near zy, the Lagrange mean value theorem yields

L(zo) = lim [ @) "

or, since (f™)(zo) = [Tz, f/(2s), zi := fi(z0),
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1

0.8 —

0.6 —
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0.2 —

o1 1V
0 02 04 06 08 1

Figure 8.23. Bernoulli’s shift.

. n , 1/n
L(zo) = lim ([ 1£'(@))
=1
and consequently
1
Azo) = log L(zo) = Jim " Zlog Lf ().
i=1

In particular, the Lyapunov exponent A(z;) of a fixed point z, of a
smooth function f is log|f’(z1)|, while the Lyapunov exponent of a k-
periodic orbit, at each of the values of the orbit, 1, z2,...,2k, Ti41 =

flxe), i £ x; Vi#j, xp =11, i8

k
Mz1) = Azz) = = AMzk) = %Zlog|f’(a:i)l.
i=1

8.66 Proposition. Let f : I — I be of class C*, and let {z,}, {yn},
zn = f*(z), yn = f™(y) be the orbits of z and y respectively. Suppose
that

(i) {zn} and {y,} are asymptotic to each other, |z, —y,| — 0 asn — oo,

(i) f'(zn) #0, f'(yn) # 0 Vn,
(i) |f'(za)] = X €R.

Then the Lyapunov exponents of f at x and y exist and A(z) = A(y) = A.
Proof. In fact, Cesaro’s theorem (see Example 2.56) yields

\o) = Jim 3 g (@) = Jim logl (@)l = A

Since the two orbits are asymptotic,
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nlgx;o log |f'(f™(z))| = nll»n;o log | f'(f™(v))|
hence

My) = Tim = > log|f('(w))] = lim log | f'(£"(¥)] = A
i=1

b. Chaotic orbits
8.67 Definition. Let f : I — I be a smooth map. We say that the orbit
{z1,22,...} of f is chaotic if
(i) {x1,z2,...} is bounded,
(it} {z1,x2,...} is not asymptotically periodic,
(iii) the Lyapunov exponent A(z1) is positive.

More complex and with less unanimous agreement is the definition
of chaotic dynamical system. Usually, the presence of bounded orbits is
required, with exponential separation and density to grant irreducibility,
that is, that we are not in the presence of two assembled independent
dynamical systems. We now illustrate a few examples.

c¢. Bernoulli’s shift
Let us consider the process z,41 = o(z,) associated to the map

o(r) =2z mod (1), z € [0,1],

see Figure 8.23. In order to describe its action, it is convenient to work
with numbers in [0, 1] in their binary representation. We write

=]
T = E 04'2_1 = 0, aija2as. ..
i=1

where a; has the value 0 or 1. For z < 1/2, we have a; = 0 while z > 1/2
implies a; = 1. Therefore

o(z) = 2z ifa; =0,
2c -1 ifa; =1,

or
0(0,apa10z ...} =0,a1aza3. ..,

that is, the action of ¢ on the binary representation of z is to delete the
first digit and shift the remaining sequence to the left.

The process o shows sensitive dependence on the initial condition. If
two numbers differ starting only from the n-th digit, such a difference
becomes amplified under the action of ¢™ by 2": the n-th iterates differ
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1 1
0.8 — 0.8 —
0.6 — 0.6 —
04 — 04 —
0.2 0.2 —
0 | | l | 0 L J | |
0 02 04 06 08 1 0 02 04 06 08 1

Figure 8.24. The triangular map f1(x) and its third iterate f3(z).

in the first digit. More precisely, we compute the Lyapunov exponent at a
point x whose orbit never goes through 0,1/2,1 as

R . 1¢
AMz) = nll'rr;oZlog |f/(z:)| = nan;o - Zlog2 =log 2.
=1 i=1

On the other hand periodic points are the numbers with a repeating
binary representation, and the asymptotically periodic orbits are those
with an initial point with a repeating binary representation starting from
a suitable digit. Therefore an asymptotically periodic orbit starts at x if
and only if x is rational. Hence the orbits starting from an irrational are
bounded, are not asymptotically periodic and have Lyapunov exponent
log 2 > 0. So we conclude

8.68 Theorem. z € [0,1] has a chaotic orbit under Bernoulli’s shift if
and only if x is irrational.

One can also prove the following properties of Bernoulli’s shift o
(i) The sequence of the iterates ¢™(x1) has the same random properties as the suc-
cessive tosses of a coin. In fact, a sequence of coin tossings is equivalent to the
choice of a point in [0, 1],
(i) One can show!? that almost all’® irrationals in [0,1] contain in their binary
representation any finite sequence of digits infinitely often and uniformly distribu-
ted, i.e.,

1 X h
N;F(a(nw)) - 0/ F(t) dt.

Bernoulli’s shift contrasts with the additive process we discussed before,
Tnt+l = Tn +w mod 1, w irrational, (8.42)

12 See, e.g., G.H. Hardy, E.M. Wright The theory of numbers Oxford University Press,
Oxford 1938.

13 in the sense of Lebesgue.
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1 1
0.8 T» 0.8 r»
06 - 0.6
04 - 0.4
02 |- 0.2
0 L1 0 1 B S A
0 02 04 06 08 1 0 02 04 06 08 1

Figure 8.25. The triangular map f;(z) and its third iterate f3(x).

that we cannot qualify as chaotic. In fact, it has no periodic orbits and
consequently no asymptotically periodic orbit, each orbit is dense, but the
Lyapunov exponent of each orbit is zero.

8.69 Definition. A bounded orbit that is not asymptotically periodic and
does not show sensitive dependence on the initial data is called almost-
periodic.

The orbits of (8.42) are almost periodic.

d. The triangular map
Consider the family of triangular maps

2 if 1/2
frl@)=3"" sk ,  z€[0,1].
2r(l—z) ifz>1/2

For r < 1/2, z* = 0 is the only stable fixed point to which all points in
[0,1] are attracted. For 7 > 1/2 two unstable fixed points (sources) emerge,
and the behaviors of the process for 1/2 < » < 1 and r = 1 are similar.
The map f; shows sensitive dependence on initial conditions. In fact, the
n-th iterate of fi is piecewise linear, with slopes +2™ except at the points
j-27™,5=0,1,...,2" Consequently the separation of “almost all points”
xp grows exponentially with Lyapunov exponent A(xo) = log 2. In general,
the Lyapunov exponent of f,. is for almost all points zg,

A(@o; fr) = log2r,

and, for r > 1/2, we have A(zq, fr) > 0, that is we “lose information” on the
position of z after n iterations, while for r < 1/2, we have A(zg, f) < 0
and we “gain information” as the iterates of x¢ converge to 0.

On the other hand, one can show that the periodic orbits do not attract
any orbit, inferring this way the following.
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8.70 Proposition. The triangular map f1 has infinitely many chaotic
orbits.

e. Conjugate maps

8.71 Definition. Two continuous maps f and g are said to be conjugate
if there is a continuous and 1-to-1 continuous change of variable C' such
that Co f =goC.

8.72 Proposition. Let f and g be conjugate by C. If z is k-periodic for
f, then C(x) is k-periodic for g. If moreover f, g and C are of class C!
and never vanish along the k-periodic orbit of x, then

(9")(C(2)) = (£*) ().
8.73 Proposition. The triangular map fi and the logistic map g(x) =
4z(1 — x) are conjugate.
8.74 9. Show Proposition 8.73. [Hint: For z € [0,1/2] choose C(z) := H%]
Taking into account Propositions 8.72 and 8.73 one could also show the
following.
8.75 Proposition. Let g(z) := 4z(1 — z) be the logistic map.

(i) All periodic points of g are sources.
(ii) g has chaotic orbits.

8.76 § 9. Show that the process associated to the logistic map g is ergodic and for
all F

RN FOR()
N;F(g 2 = .O/m/t—t2 -

8.77 §. Show that
2
(i) the maps (a4 1)z — az? and 22 + ¢, ¢ := 1_2"‘ , are conjugate,
(i) the maps ax(l —z) and 22 +¢, c= £(1 - F), are conjugate.

[Hint: (i) o(zx) := H'T"‘ — az, (i) p(z) := § — ax.]

8.2.4 Chaotic attractors, basins of attraction

Let us start with a few definitions.

The forward limit of x is the set of points the orbit converges to, that is,
the set of points to which the orbit with initial condition = comes infinitely
often arbitrarily close to, i.e.,

w(z) = {v| liminf |"(z) ~ y| = 0}.

The following is trivial:
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Figure 8.26. (a) The map f(z) = 2 arctanz. (b) The map in Example 8.80.

™

(i) if {f™(x)} converges to p, then w(z) = {p},
(ii) if z is a fixed point, w(z) = {z}, actually, if w(zx) contains a stable
fixed point Z, then w(z) = {z},
(iil) if y € w(x), then f™(y) € w(x) Vn > 0,
(iv) if z is a k-periodic point, then w(z) is the set of values of the periodic
orbit originating from z.

When the forward limit is a set of fixed points or of periodic points, then
it is often called the stable manifold.

8.78 Definition. Let w(z) be the forward limit of a point x. We say that
w(zx) attracts y if w(y) C w(xo). The basin of attraction of w(zx) is the set
of points which are attracted by w(z). We say that w(z) is an attractor if
it attracts a substantial number of points, more precisely if it attracts a
set of points of positive Lebesgue measure.

We then say that w(x) is a chaotic set if the orbit of z is a chaotic orbit
and z € w(z). Finally w(z) is a chaotic attractor if w(z) is both a chaotic
set and an attractor.

8.79 Example. The map
4
f(z) = — arctanz
m
has three fixed points —1,0 and 1. From Figure 8.26 we see that —1, 1 are sinks, while
0 is a source. The attractors are therefore {—1}, {1}, and their basins of attraction are
respectively the negative half-line and the positive half-line.

8.80 Example. Consider the map in polar coordinates

f(r,0):=(r%,0 —sinf) r>0, 0<0<2n.

It has three fixed points, (0,0), (1,0) and (1,w). The origin and infinity are two at-
tractors: iterations move every interval point of the unit disk to the origin and every
extremal point to infinity. On the circle the dynamics moves all points but (1, ), that
is a source, to (1,0), see Figure 8.26.
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1
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Figure 8.27. (a) The triangular map with slope 3. (b) The map W.

8.81 Example (The triangular map with slope 3). The following example shows
that the basin of attraction of an attractor can be quite a complex set. Let us consider
the triangular map f : R — R in Figure 8.27 (a). Clearly, the orbits with initial condi-
tions either in ] — oo, 0[ and |1, oo[ converge to —oo. Also orbits with initial conditions in
]11/3,2/3[ converge to —oo since the first iteration maps this interval in [1, oo[. It should
then be clear that the basin of attraction of —oco under the map f is the complement
in R of the Cantor middle-third set defined below.

8.82 Example. Let us consider the map f(r,8) := (r!/2,28). The origin is a source
and w(0) = 0. Taking into account that (1,26) describes Bernoulli’s shift on S, we see
that the unit circle is the forward limit set of an orbit with Lyapunov exponent log 2
for almost all initial points in the circle, consequently the unit circle is a chaotic set.
Finally all points but the origin are attracted to the unit circle; we therefore conclude
that the unit circle is a chaotic attractor.

8.83 Example (The W map). Let us consider the piecewise linear map f : [0,1] —
[0,1] in Figure 8.27 (b). Restricting our attention to the interval [1/4,3/4], the map
acts as the triangular map with slope 1, while the points in [0, 1]\ [1/4, 3/4] are mapped
by the first iteration in [1/4,3/4]. We therefore conclude that [1/4,3/4] is a chaotic
attractor.

8.84 Example (The baker’s map). Let us consider the area-preserving map given by

1/2yn if0<zn<1/2,

Tnt+1 = 2Tn  (mod 1), Yn+1 =
1/2+1/2yn if1/2 < zn <1,

and illustrated in Figure 8.28. Since the first component is Bernoulli’s shift, we easily
conclude that the entire square is a chaotic attractor.

] — —— —

Figure 8.28. The baker’s map.
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Figure 8.29. The dissipative baker’s map.
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8.85 Example (The baker’s dissipative process). Consider now the process, sim-
ilar to the baker’s process,

ayn if0<z, <1/2,

Tn4+1 =22n  (mod 1), Yntl = )
1/24+ayn if1/2<z, <1,

where a < 1/2, see Figure 8.29. This process is dissipative, that is, it does not preserve
the area. The baker’s dissipative process has still a chaotic attractor which is made now
by a huge set of horizontal lines. As we shall see below, compare Example 8.99, this
strange attractor is a fractal, in the sense that its “dimension” is strictly between 1 and
2.

8.86 Example. A process that is very similar to the baker’s dissipative process is the
one associated to the map

(%m,Zy) fo<y<1/2,
f(z,y) = (8.43)

(%z+%,2y—l>, if1/2<y<1.

The first iteration maps the square into the first and last third of the square, as shown
in Figure 8.30. The figure shows also the second iteration. Clearly the attractor of the
full square is again a chaotic attractor which is a strange attractor, being a set of lines
which has a “noninteger dimension.”

8.2.5 Cantor sets and other self-similar sets

a. Measure and dimension

8.87 Box counting dimension. A simple way to compute a “dimen-
sion” of a bounded subset of R? is the following. Assume that A is con-
tained in a rectangle R. Then divide each side of R in 2* pieces, thus

AN I\Nii
722 % N AN
0 1 0 1/3 2/31 0 1/3 2/3 1

Figure 8.30. The first two iterations of the process in Example 8.86.
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Figure 8.31.

dividing R into 4* rectangles. Let N (k) be the number of rectangles which
touch A. If A is a line, then for k large N (k) is of order 2%, while if A has
an interior part, then N(k) is of order 4% thus it is reasonable to set the
box counting dimension of A at scale 2% as

log, N(k) _ log N(k)

k klog2

and the box counting dimension as

dimg(A) := lim log N (k)

—=— 44
k—oo klog2 (8.44)

provided the limit exists.

8.88 Hausdorff measure and Hausdorff dimension. Usually, dimen-
sion is associated to changes in measure under dilations: under a dilation
in R™ of factor A, points do not change, segment and curve lengths are
multiplied by A, square and surface area are multiplied by A%, while vol-
umes are multiplied by A3. So another possible definition of dimension goes
through the definition of a measure that scales suitably under dilations.
There are many different measures in R™, n > 1, that are invariant
under translations, yield the same measure for regular sets, and scale with
a given power less than n under dilations. Among the many possibilities,
the Hausdorff measure, introduced in 1918 by Felix Hausdorff (1869-1942),
is sufficient and suited to our purposes.
Let us describe the Hausdorff measure H® in R™, n > 1. It is usual to
define for any nonnegative real number s > 0,
71'8/2
Wy 1= ——,
s0(3)
I being the gamma function, since, as one can show, for integral values of
s, ws is the volume of the unit ball in R*.

8.89 Definition. Let A C R™. For any § > 0 we define
s diam Cy \ °
H3(A) = mf{zk:ws<T> ’ Uk Cx D 4,

{Cy} are n-balls with diam Cj, < 8, C C R”}.
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The spherical Hausdorff measure H* of A is then defined by

H'(4) = limH3(4), Y ACR™

We notice that, H® is well defined, since H] is increasing with §; more-
over we notice that the naive definition

ﬁ3=inf{2ws(g_iar;l—ck)s | ACUka}

k

would not work, see Figure 8.31.
It is easily seen:

(i) H5(AA) = A*H*(A), A > 0, where A = {\z |z € A},

(i) H°(A) = #A is the measure that counts the elements of A in R™
(iii) if s > n, then H*(A) =0 VA C R",

(iv) if : R®* — R" is Lipschitz-continuous, then H*(f(A4)) <
sz(f)sHs(A),

(v) H? is invariant under translations and rotations.

Finally, we notice that

5(4) < (g) HY(A), f0<s<m

that is, if 0 < s < r, then

(a) H*(A) = +oo if H™(A) > 0,
(b) H7(A) = 0 if H*(A) < co.

In particular H®(A) may be positive and finite only for one value of s.
8.90 Definition. The Hausdorff dimension of A C R™ is then defined as
dimy A = inf{s > 0 ] #e(4) =0},

From the previous remarks, one easily infers
dimy A = sup{s >0 ‘ H(A) = +oo}
and that dimy A = s if 0 < H3(A4) < o0.

8.91 Definition. Sets in R™ with nonintegral dimension are called frac-
tals.
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Figure 8.32. The sets Eg, E1, E2 and E3 in the construction of the Cantor set C; /3

b. Cantor sets

Cantor sets are a family of subsets of R among which the Cantor middle-
third set is a prototype. They are obtained as follows. Choose § €]0,1/2],
(0 = 1/3 for the Cantor middle-third), and set E; = [0,1]. In the first
step we define E; by removing from Ej an open interval, centered at the
middle point, of length 1 —2§. E; is then the union of two intervals of size
4. By induction, we define E11 by removing from each of the intervals of
E a centered interval of length 6*(1 — 26). This way we get a decreasing
sequence of sets {Ey}, Ex being the union of 2F intervals of size 6*. The
Cantor set associated to § is defined as

Cs = () Ex. (8.45)
k=0

It is not difficult to show the following.

8.92 Proposition. The Cantor middle-third set C' 3, corresponding to
& = 1/3, consists of all numbers in [0,1] that have a ternary expansion
involving only the digits 0 and 2.

Another way to look at Cantor sets is useful. Consider the two maps,
actually two contractive similitudes, Sy, : [0,1] — [0,1] given by

S1(z) = oz, Sa(x) :=dz+1 -39,

and for any set A C [0, 1], set S(A) := S1(A) U S2(A).
Then observe that the sets {Fy} in (8.45) are actually produced by the
following dynamical system acting on sets,

{Eo = [0,1],
E]c+1 = S(Ek),
ie.,
By :=SoSo---05([0,1)) =: §¥([0,1))
k

from which, taking also into account that Ey, 1 C Ej Vk, we infer
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Cs= () Ex= [ S(Ex) = (since Exy1 C Ex)
= (N0 Bx) = S(Cs). (8.46)

8.93 Definition. A system S := (S1, So,...,Sn) of N contraction maps
on R™ is called an iterated function system, an IFS for short. A set C' C R™
such that

C=|JS:(C), and S;(C)NS;(C)=0 Vi#j

is called a self-similar set.

8.94 Remark. The terminology becomes clearer when (S, Sa,...,SN)
are contractive similitudes. Assuming for instance N = 2, and that S; and
So contract by a factor 4, conditions

C=8,(C)USC), S1(C)NS(C)=0 (8.47)

say that C is the union of two pieces which are each a scaled down copy
of C itself, that is C is self-similar at the scale §. Moreover from (8.47) we
also have

C= (51 ° 51(0)) U (sl o 52(0)) U (52 o 51(0)) U (52 ° 52(0)),
S;08;(CYNSLoSK(C)=10 V(i,5) # (h, k),
that is, C' is also the union of four pieces that are scaled down versions of
C of factor §2. Proceeding by induction, for any k, C is also the union of

2% pieces each of which is a scaled down copy of C by a factor §%. This is
self-similarity.

8.95 . A more explicit description of the Cantor set Cj is the following one. If the base
points of the Cantor set are defined by induction by
8by,,; ifj=1,...,2%,
bo1 =0, bpyr;=4 ’ " k
1-6+8by,; ifj=2F+1,...,261

then
D1 =bg_1,; +87161-6), j=1,...,28° 1

are the intervals to be deleted from Ey_; to get E; at the k-step, and
Jk:,j = bk,3+5k[0,1], j:l,,..,?k,
are the intervals whose union is Ex. We have set a[a, b] := [aa, ab]. Consequently

e = () (U ).

k=0 ‘j=1
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Figure 8.33. Helge von Koch (1870-1924) and Waclaw Sierpinski (1882-1969).

This shows again that C is self-similar, and more precisely that

b,j +6%Cs = Cs N Iy ;. (8.48)
In fact,
t€Jy; ifandonlyif 6z € Jhikj VR K,
hence
5kEh = Ep+x N[0, 5k], ie., by, ; + 5kEh =Enyx NIk, j,

for all b,k >0, =1,...,2%; and (8.48) follows by taking into account the intersection
on h.

c. Iterated function systems

Self-similarity is even more evident in the two-dimensional Cantor set,
known also as Sierpinski’s square, obtained by dividing the unit square in
3" squares and removing the central square from each of the squares left at
the n-th, see Figure 8.34, or as the so-called Sierpinski’s carpet, obtained
by removing the central cross (see, for example, Figure 8.37), or in the
Sierpinski’s gasket (see Figure 8.35).

Another “1-dimensional” example is the von Koch curve; compare Fig-
ure 6.23. The curve of von Koch, contrary to regular curves and similarly
to the examples above, has the property that any enlargement or blow-up

Figure 8.34. The first steps in the construction of Sierpinski’s square.
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Figure 8.35. Another step in the construction of Sierpinski’s square.

of it does not simplify, instead it leaves the complex structure unchanged.
This may be presented as an informal definition of self-similarity.

All these examples are defined following the same pattern. One starts
with an IFS system of contractions (S1,...,Sn) on R™, and, as proved by
Felix Hausdorff (1869-1942), one can show (but we shall not do it here)
that there is a unique nonvoid, bounded and closed set C such that

C =UN,8(C).

We refer to it as to the invariant set of the IFS (51, S2,...,Sn). Cisin
fact a fixed point for the map A — U, S;(A) on the so-called Hausdorff
space. Moreover, introducing a suitable notion of “distance between sets,”
C can be found as the limit of the sequence of sets { F} defined by

{FO an arbitrary closed bounded and nonvoid set,
Fyi1 1= UL, Si(Fy).

The reader will recognize the iterative procedure as the same defining
Cantor sets C, C R.

In general the invariant set is not self-similar, but it is under suitable
sufficient conditions.

d. Dimension of the invariant set
We restrict ourselves to an IFS Sy, Sa,..., SN of contractive similitudes

|Si(z) — Si(y)| = Lilx —y| Ve,yeR"i=1,...,N.

v

Figure 8.36. The first steps in the construction of Sierpinski’s gasket.
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Figure 8.37. The first steps in the construction of Sierpinski’s carpet.

We define the geometric dimension of that IFS as the unique nonnegative
real number D such that

N
dIP =1 (8.49)
i=1

In general the geometric dimension has no relation with the more geometric
definitions of dimension. However, we have the following.

8.96 Proposition. If the invariant set C of an IF'S of contractive simili-
tudes is self-similar and for some s we have 0 < H*(C) < 400, then s is
the geometric dimension of the IFS.

Proof. In fact,
N N
H(C) =) H(Si(C)) =H(C) D LS,
i=1 =1

ie., Zfil L? =1, since 0 < H*(C) < 0. O

Of course, going in the opposite direction is more useful. We state
without proof the following theorem which gives a full description of some
IFSs of contractive similitudes.

8.97 Definition. One says that an IFS of contractive similitudes satisfies
the open set condition if there exists an open set Q C R™ such that

A O R e

Figure 8.38. Three iterates going to von Koch’s curve starting with the segment of
vertices (0, 0) and (1,0).
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S( 7& \(f(:(f\#%f\ .‘mmm

Figure 8.39. The second, third, and fifth iterate going to von Koch’s curve starting with
the segment of vertices (0,1) and (1,0).

{Ui Si(Q) c
S)NS; (=0  Vi#]j

8.98 Theorem. Let (S1, Sa,...,Sn) be an IFS of contractive similitudes
which contract respectively of L1, ... Ly, let C be the invariant set of the
IFS, and let d be the geometrical dimension of the IFS, Zfil LE=1.

If the IFS satisfies the open set condition, then

(i) 0 < H%(C) < +o00, hence dimy (C) = d,
(ii) HYS(C)N S;(C)) =0Vi#j.

Moreover, each piece of C' has the same dimension, and d is also the box-
counting dimension of C.1*

Theorem 8.98 yields a way to conclude that the invariant set of the IFS
of contractive similitudes that satisfy the open set condition is essentially
self-similar since C is a union of N scaled down copies of C itself that can
overlap but in a nonessential way, as the intersections have zero measure.
As a by-product we have a formula, the geometric dimension, to compute
effectively the dimension of C.

8.99 Example (Cantor set in R). As we have seen, this is the invariant set of the
two contractive similitudes of R,
S1(x) = bz, So(z) =6z +1-4.

(S1,52) satisfies the open set condition, € being the open interval ]0, 1[. Therefore the
Cantor set is self-similar and by Theorem 8.98 has dimension d given by

log2
26% =1, e, d=4d(6)= .
e ©) = fogt/a)

Notice that 0 < d(§) < 1 being that 0 < § < 1/2. See Figure 8.32 for the first iterations
starting from the segment {0, 1].

14 Gee, e.g., J. E. Hutchison, Fractals and self-similarity, Indiana Univ. Math. J. 30,
713-747 (1981).
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Figure 8.40. The first three iterates going to Sierpinksi’s gasket starting from the triangle
of vertices (0,0), (1,0) and (0, 1).

8.100 Example (Sierpinski’s gasket). This is the invariant set for the IFS of con-
tractive similitudes of R? defined by

s(2)-(z2)+(12),
s(2)-(z2)+(.2):
(3)-()-("2)

(S1, 82, S3) satisfies the open set condition, 2 being the open triangle of vertices (0, 0),
(0,1) and (1,0). By Theorem 8.98 Sierpinski’s gasket is essentially self-similar and has
a nonintegral dimension d given by

1\a It
3(—) =1, e, d= 83,

log2

See Figure 8.40 for the first iterations starting from the triangle Ep of vertices (0,0),
(0,1) and (1,0).

8.101 Example (Sierpinski’s square). This is the invariant set for the IFS of eight
contractive similitudes of R? defined by

+(3)=3(2)+(3)

Figure 8.41. The first three iterates going to Sierpinksi’s square starting from the square
of vertices (0,0), (1,0), (1,1) and (0, 1).
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Figure 8.42. The first three iterates going to a Sierpinski’s carpet that contracts to 1/4
starting from the square of vertices (0,0), (1,0), (1,1) and (0, 1).

where (a;,b;) is one of (0,0) (1/3,0), (2/3,0), (0,2/3), (1/3,2/3), (2/3,2/3), (0,1/3),
(2/3,1/3). (81, Sa,. .., Sg) satisfies the open set condition,  being the open square of
vertices (0,0), (0,1) (1,0) and (1,1). By Theorem 8.98 Sierpinski’s square is essentially
self-similar and has a nonintegral dimension d given by

8(3)d=1, ie., d=iZ§§.

Notice that 1 < d < 2. See Figure 8.41 for the first iterations starting from the rectangle
Ey of vertices (0,0), (0,1), (1,1) and (1,0).

8.102 Example (Sierpinski’s carpet). This is the invariant set for the IFS of four
contractive similitudes of R? defined by

“(3)=() ()

where ¢ < 1/2 and (a;,b;) is one of (0,0) (1 — ¢,0), (0,1 — q) and (1 — q,1 — q).
(S1, S2,...,854) satisfles the open set condition, 2 being the open square of vertices
(0,0), (0,1) (1,0) and (1,1). By Theorem 8.98 Sierpinski’s carpet is essentially self-
similar and has dimension d given by

log(1/4
4t =1, e, d=iiM.
ogq

Notice that for ¢ = 1/4, we get a set of dimension 1. See Figure 8.42 for the first
iterations starting from the rectangle Ey of vertices (0,0), (0,1), (1,1) and (1,0).

8.103 Example (Snowflake). This is the invariant set for the IFS of nine contractive
similitudes of R? defined by

s(3)-5(2)+ ()
s(3)-3(3)+ ()

where (ai, b;) is one of (0, 0) (0,7/8), (7/8,0), (7/8,7/8),(1/8,1/8), (1/8,3/4), (3/4,1/8),
(3/4,3/4). (S1, S2,...,S9) satisfies the open set condition, 2 being the open square of

and for i = 2,...,9,
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vertices (0,0}, (0,1) (1,0) and (1,1). By Theorem 8.98 the snowflake is essentially self-
similar and has dimension d given by

1yd | _/1Nd ,
1.(5) +g(§) =1, e, d=12599%....

See Figure 8.43 for the first iterations starting from the rectangle Eq of vertices (0, 0),

(0,1) (1,1) and (1,0).

8.104 Example (von Koch’s curve). This is the invariant set for the IFS of con-
tractive similitudes of R? defined by

.

82

@ 8B @ 8
SN—’
I
Wl
TN
< 8
SN—

< < 8
Na—’

| I

1 Wl =
~~

|

@l

~—

N e 8

S2
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8
SN—
|
Wi
TN
8
~——
+
N
)
oW
SN—

Y

where R(8) denotes the rotation matrix by an angle # measured counterclockwise

R(8) = cos —sind
sin@ cosf J°
(81,82, 83, 54) satisfies the open set condition, 2 being the open triangle of vertices

(0,0), (0,1) and (1/2,+/3/2). By Theorem 8.98 the von Koch curve is essentially self-
similar and has a nonintegral dimension d given by

d
4(1) =1, e, d=18%,
3 log 3

See Figure 8.38 for the first iterations starting from the segment [0, 1] on the real axis.

H P
A K

Figure 8.43. The first three iterates going to snowﬂake starting from the square of
vertices (0,0), (1,0), (1,1) and (0, 1).
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Figure 8.44. Some stable configurations: beehive, snake, long boat, longship.

8.3 Two-Dimensional Dynamical
Systems

Of course, we have no chance here to discuss multidimensional discrete pro-
cesses. We confine ourselves to commenting two quite popular processes:
the game of life and the dynamics of complex maps

P.(z):=2*+c (8.50)

8.3.1 Game of life

The game of life is a well-known dynamical system that was conceived in
the 1960s by John Conway in Cambridge and has attracted many people,
especially biologists. A comprehensive presentation of it can be found in
E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways, New York,
1982. Therefore, here we confine ourselves to saying a few words about it.

Imagine that the plane is decomposed into square cells, and that each
of these cells can be left vacant or can be filled with a black disc. A state
of our system is a distribution of black discs into a finite number of cells.
The denumerable family of all states is denoted by X. The transition law
from z to T'(z) is defined by applying successively the following three rules
to z:

(i) two or three neighbors keep you alive. A cell that is occupied in the
state = will be occupied in T(z) if and only if it has two or three
neighbors that are occupied in the state z.

Figure 8.45. Two 2-periodic states: blinken and beacon.
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Figure 8.46. The Julia sets of Ko, K_1, K_2.

(ii) three neighbors create life. A cell that is vacant in the state z will
be occupied in the state T'(z) if and only if it has precisely three
neighbors that are occupied in z.

(iii) you die if you are alone or in the crowd. If neither (i) nor (ii) apply
to a given cell, this cell will be vacant in the state T'(x).

Figure 8.44 shows some of the fixed points of T, while Figure 8.45 shows
two 2-periodic states.

But the game of life has a very rich dynamics. For instance, one can
show:

(i) the game of life can simulate any computer,
(ii) there exists at least one garden of Eden, i.e., a configuration that has
no predecessor.

8.3.2 Fractal boundaries

Let us discuss now very briefly some of the dynamics of the maps (8.50).

As we saw, when restricted to the real case, they are conjugate to the
logistic maps. The complexity of the maps in (8.50) in C therefore may
better motivate the complexity of the logistic map.

Let us begin with the case ¢ = 0. The map has a sink at z = 0 with
basin of attraction the unit disc {z||z| < 1}. Points of S := {z||z] = 1}
are mapped into S! with double argument, while the orbit of any exterior
point z, |z| > 1, diverges to infinity.

Quite more complicated is the case ¢ # 0. The study of the iterates
of complex maps begins with the works of Pierre Fatou (1878-1929) and
Gaston Julia (1893-1978). With reference to the maps P.(z) = 22 + ¢, a
natural question to ask is: which points in C have unbounded orbits?
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K; Ko.340.5:

Figure 8.47. The Julia sets of K; and K¢.340.5:.

a. Julia sets

8.105 Definition. We denote by J. the set of points in C which have
bounded orbits

K.:= {z | P™(2) /> oo}.
The boundary'® P, of K, is called a Julia set.

8.106 §. As we have seen Ky = {z | |z| < 1}. Show then that K_5 = [-2,2].

The Julia sets corresponding to ¢ = 0, —2 are the only ones that are
geometrically simple; for all other values of ¢ the corresponding Julia sets
are fractal.

The following theorems, that we state without proof, are due to Fatou
and Julia. The first shows that the dynamics is fairly controlled by critical
points.

8.107 Theorem (Fatou). Every attracting cycle of a polynomial map P
attracts at least one critical point.

For instance, a quadratic polynomial has infinitely many periodic cir-
cles, however at most one may be attractive, as there can only be one
attractive critical point. The map P_; := 22 — i has a repelling period 2
point, as P2,(i) = —1 — i, consequently it has no attractor.

8.108 Theorem (Julia). Let K, := {z | P¥(2) /4 oo}. Then

(i) K, is connected'® if and only if the origin belongs to K,
(ii) K, is a Cantor type set if the origin does not belong to K.

15 A point z is in the boundary of K. if in every ball centered at z there are both points
of K. and of C\ K.

16 We recall that a set in C is connected if any two of its points can be joined by a
continuous curve that is in the set.
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Figure 8.48. (An approximation of) Mandelbrot’s set.

b. Mandelbrot set
In consideration of the relevance of the orbit of the origin,

8.109 Definition. We define the Mandelbrot set as

M .= {c ’ 0 is not in the basin of attraction of Pc}.

8.110 4. Show that 0, —i € M, while —1 ¢ M.

It is worth noticing that Julia sets for P, are never empty and that the
Mandelbrot set is extremely complex, as it is connected and has a fractal
boundary.

8.3.3 Fractals on the computer

Julia and Mandelbrot sets exert a tremendous esthetic fascination when
represented on the screen of a computer, and, probably for this reason,
they have become very popular.

8.111 The sets K,.. Given ¢, we can visualize (approximately) the or-
bits of each z as follows. We choose a grid of points in the plane and
compute a fixed number k (say 100, 300 or 1000) of iterates of each point
of the grid. If the iterates P(z), k < k, remain bounded, |P*(z)| < |c|+1,
we colour z in black; if the orbit becomes unbounded, |P¥(z)| > |c| +1 for
some k, we colour z in white. Notice, in fact, that if |Pc’g (2)] > |e| + 1 for
some k, then |P¥(z)| — oo as k — oo.



8.4 Exercises 373

Figure 8.49. A picture of the Mandelbrot set by a computer program.

8.112 Mandelbrot set. In order to visualize the Mandelbrot set, we
proceed similarly. But now the points in the grid refer to ¢ and the initial
value of the orbit is always zero.

8.113 Julia and Mandelbrot sets in colour. Ifc ¢ M, then P*(0) —
00 as n — oo. We colour the point ¢ in the grid according to the number

of iterates needed to leave a disk of prescribed radius R. We can proceed
similarly for Julia sets.

8.4 Exercises

8.114 §. Show that

6+1/6+vV6+ - =3, 1+y/1+vVit =14 ——

8.115 9. Discuss the recurrence

1
$n+1=x—2 n 2> 0.
n

8.116 ¥ Campanato’s lemma. Let ¢ :]0,1] — R be an increasing function such that
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o(r) < A(%)aﬂR) +BR®  forallo<r R<1,

where A, B, a, 8 are nonnegative constants and 0 < o < 8. Show that
$(r) < Cr,
C being a constant depending only on e, 8, ¢(R).

8.117 § A useful lemma. Let ¢ :]0,1] — R be an increasing function such that
¢(r) < A(R—r)"%+ B+ 8¢(R) forall0<r, R<1,
where A, B, a, § are nonnegative constants, 0 < a and 0 < 8 < 1. Show that

#(r) < c(A(R -y B),

C being a constant depending only on «, 8. [Hint: Apply the assumption to r = ry,
R = rp+1, {pn} being a suitable increasing sequence that converges geometrically to

8.118 9. Many identities involving Fibonacci numbers {fr} are known. The following
exercises list some of them. Show the following.

() Xj=1fi=Frra -1

(i) ?:1 sz = fnfas1.

(iii) CASSINI IDENTITY. fn—1fn+1 — f2 = (-1)™

(iv) 7o ("77) = fn.

(v) Cesiro. 37 (7)fs = fon.

(vi) Lucas. g.cd. (fp, fg) = fg.c.a. (p,9)"

(vii) For all n > 1, the numbers f2 + f2 4+1 and 12 41 F2_, are Fibonacci numbers.
(visl) 3527 fifi1 = £,

(%) fo41/fn — 7= (1+V5)/2.

(x) ™ = 7fn + fn—1 where 7 = (1 + V/5)/2.

(xii) 3552,(=1)771 f,-f1j+1 =772, r:=(1+V5)/2
(xiii) 352, fl =4 -1, 7:=(1++5)/2.
J

8.119 9. Let {zp} be the Heaviside sequence, n, = 1 Vn. Show that Z{z}(z) =
z/(z—1).

8.120 9. Let {x,} be the linear increasing sequence, zn = an VYn. Show that
Z{z}(2) = az/(z — 1)%.

8.121 . Suppose that the Z-transform of a sequence a = {an} is a rational function
near infinity, Z{a}(z) = A(z)/B(z), A(z), B(z) being polynomials . Find the sequence
a = {an} in terms of A and B. [Hint: Use the Hermite decomposition formula.}
8.122 9. Let {z,} be the impulse sequence
@n=(0,...,0,1,...,1,1,1,...).
N
h k

Show that Z{z}(2) = ;h_+1k___l_z:+11
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8.123 §. Let {x,} be a sequence and let k > 1. Define the sequence m := {m,} to be
the sequence of traveling k-means by
mg = X0,
zo + 1

m1 = 2 s

_ zo+x1 4+ +TR_1
k

mp_1 ¢

and for any n > k,
Tn—k+1 + Tn—ky2+ -+

k

My, 1=

Compute Z{m}(z).

8.124 9. Let {xn} be the orbit of a dynamical system governed by a second order
difference equation. Show that the orbits are asymptotically stable if both the roots of
the characteristic equation A1, A2 satisfy |A1], |A2| < 1. Show that the system is stable
if and only if either |A1],|A2] < 1 or [A1] = |Az| =1 with X; # As.

8.125 9 9. Let R be a rectangle of sides 1 and h < 1. From R we cut a square of side
h and we are left with a rectangle of side h and 1 — h. Then we reiterate the procedure.
Under what conditions on h will the process never end?

8.126 §. Assuming that for |z| < 1,

ez

=ao+arz+a22? ++

1—-2
show that an = 3 ¢ % [Hint: Notice that an — an—1 = 1/nl)
8.127 4. Assuming that a solution of
(622 — 5z + 1)y +2(12z — 5)y’ + 12y =0,
y(0) =1,
y'(0) =0

can be written as Y ¢° anz™, find the an. [Hint: Show that any2 — 5ant1 + 6an =0
vV n]

8.128 §. Check that

log(l+2) < - _ - (="
_l_z_=¥a"z" with an—l-{-;n_i_l.

8.129 4. Study fixed points of the maps

flz) = %:1:3+§, fz) = z* — 322 + 3z.

8.130 9. In dependence on the initial value xg, discuss the behavior at co of

Tk 4 —
=gty Tht1 = 2ape R/,
2 —_ 1
Tk+1 = Tk — Ly Th+1 = 2~z
~ Tk
2 Ty
Tp4+1 =1 — i + s Tpy1 =

14+,/1+22
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8.131 9 9. Show that the fractional part of (L%@)n is not equidistributed, since

#{n|1<n <N, (M8)" ¢ (1/4,3/4) o
N

[Hint: Use that un = ((1 + v/5)/2)" + (1 — v/5)/2)™ is an integer.]

as mn — o0,
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Martin Kutta (1867-1944)
Joseph-Louis Lagrange (1736-1813)
Pierre-Simon Laplace (1749-1827)
Adrien-Marie Legendre (1752—
1833)

Gottfried von Leibniz (1646-1716)
Carl von Lindemann (1852-1939)
Hendrik Lorentz (1853-1928)
Alfred Lotka (1880-1946)

F. Edouard Lucas (1842-1891)
Aleksandr Lyapunov (1857-1918)
Colin MacLaurin (1698-1746)
Francesco Maurolico (1494-1575)
Pietro Mengoli (1626-1686)
Frank Morley (1860-1937)

Jurgen Moser (1928-1999)

Sir Isaac Newton (1643-1727)
Nicomachus of Gerasa (60AD-120)
Nicole d’ Oresme (1323-1382)
Luca Pacioli (1445-1517)

Blaise Pascal (1623-1662)
Giuseppe Peano (1858-1932)

A. Mathematicians and Other Scientists

J. Henri Poincaré (1854-1912)
Jean-Victor Poncelet (1788-1867)
Alfred Pringsheim (1850-1941)
Diadochus Proclus (411-485)
Pythagoras of Samos (580BC-
520BC)

Joseph Raabe (1801-1859)

G. F. Bernhard Riemann (1826-
1866)

David Ruelle (1935 )

Paolo Ruffini (1765-1822)

Carle Runge (1856-1927)
Bertrand Russell (1872-1970)
Claude Shannon (1916-2001)
Waclaw Sierpinski (1882-1969)
Thomas Jan Stieltjes (1856-1894)
James Stirling (1692-1770)
Jean-Charles-Frangois Sturm
(1803-1855)

Niccold Fontana (1500-1557),
called Tartaglia

Brook Taylor (1685-1731)

Thales of Miletus (624BC-546BC)
Charles de la Vallée-Poussin (1866—
1962)

Pierre Verhulst (1804-1849)
Frangois Viete (1540-1603)

Vito Volterra (1860-1940)

John Wallis (1616-1703)

Karl Weierstrass (1815-1897)
Hermann Weyl (1885-1955)
Alfred N. Whitehead (1861-1947)
Oscar Zariski (1899-1986)

Ernst Zermelo (1871-1951)

Max Zorn (1906-1993)

There exist many web sites dedicated to the history of mathematics, we
mention, e.g., http://www-history.mcs.st-and.ac.uk/ history.
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