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Preface 

This volume l aims at introducing some basic ideas for studying approxima­
tion processes and, more generally, discrete processes. The study of discrete 
processes, which has grown together with the study of infinitesimal calcu­
lus, has become more and more relevant with the use of computers. The 
volume is suitably divided in two parts. 

In the first part we illustrate the numerical systems of reals, of integers 
as a subset of the reals, and of complex numbers. In this context we intro­
duce, in Chapter 2, the notion of sequence which invites also a rethinking 
of the notions of limit and continuity2 in terms of discrete processes; then, 
in Chapter 3, we discuss some elements of combinatorial calculus and the 
mathematical notion of infinity. In Chapter 4 we introduce complex num­
bers and illustrate some of their applications to elementary geometry; in 
Chapter 5 we prove the fundamental theorem of algebra and present some 
of the elementary properties of polynomials and rational functions, and of 
finite sums of harmonic motions. 

In the second part we deal with discrete processes, first with the process 
of infinite summation, in the numerical case, i.e., in the case of numerical 
series in Chapter 6, and in the case of power series in Chapter 7. The last 
chapter provides an introduction to discrete dynamical systems; it should 
be regarded as an invitation to further study. 

We have tried to keep the treatment of topics as independent as pos­
sible even at the cost of some repetition; usually, we assume as known 
the content of [GMl], but, whenever possible, we provide an alternative 
elementary treatment in order to allow the use of part of this volume on 
sequences and series, independently from infinitesimal calculus. 

The main body is formed by Chapter 1, Sections 2 and 3, Chapter 2, 
Sections 1, 2, 3, and 4, Chapter 4, Sections 1 and 2, Chapter 6, Sections 1, 2, 
3, and 4 and Chapter 7, Sections 1 and 2 for about a third of the whole. The 
rest of the material may appear as heterogeneous; it develops in branches 
that eventually meet, from which it is easy to select several paths. However, 

1 This volume is a translation and revised edition of M. Giaquinta, G. Modica, Analisi 
Matematica, II, Approssimazione e processi discreti, Pitagora Editrice, Bologna, 
1999. 

2 We have discussed these notions in M. Giaquinta, G. Modica, Mathematical Analysis. 
Functions of One Variable, Birkhauser, Boston, 2003. In this volume we shall refer 
to this work as [GM1]. 
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we believe that the whole of the material is, besides its intrinsic interest, 
fundamentally basic for any further study of mathematical analysis. 

As in [GMl] an appropriate number of exercises are distributed in the 
text and at the end of each chapter. They are marked by the symbol'; 
the double " indicates exercises that are more difficult. 

We are greatly indebted to Cecilia Conti for her help in polishing our 
first draft and we warmly thank her. We would like to thank also Alessan­
dro Berarducci, Roberto Conti, Pietro Majer and Stefano Marmi for their 
comments when preparing the Italian edition, and Stefan Hildebrandt for 
his comments and suggestions concerning especially the choice of illustra­
tions. Our special thanks go also to all members of the editorial technical 
staff of Birkhauser for the excellent quality of their work and especially to 
the executive editor Ann Kostant. 

Note: We have tried to avoid misprints and errors. But, as most authors, 
we are imperfect authors. We will be very grateful to anybody who wants 
to inform us about errors or just misprints or wants to express criticism 
or other comments. Our e-mail addresses are 

giaquinta~sns.it modica~dma.unifi.it 

We shall try to keep up an errata corrige at the following webpage: 

http://www.sns.it/-giaquinta 

Mariano Giaquinta 
Giuseppe Modica 
Pisa and Firenze 
October 2003 
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1. Real Numbers and 
Natural Numbers 

In this chapter, after an introductory section, in Section 1.2 we shall il­
lustrate the axiomatic approach to real numbers, and, in Section 1.3, we 
shall identify the natural numbers as the smallest inductive subset of R 
Further information about natural numbers will be discussed in Chapter 3, 
while the notions of sequences and of limit of a sequence, which are spe­
cially relevant in mathematics, are discussed in Chapter 2; in Section 2.2 
we present, in particular, several equivalent formulations of the continuity 
axiom. 

1.1 Introduction 
Rudiments of mathematics, or even refined geometrical and algebraic rules 
appear in many ancient civilizations, as for instance the Babylonian, the 
Egyptian, the Hindu, the Chinese or some of the pre-Colombian civiliza­
tions. But mathematics as an organized, independent and reasoned disci­
pline, that is as a science, developed from 600 to 300BC in Greece, thanks 
probably to the democratic political system of the Greeks that must have 
encouraged the attitude toward arguing. 

Thales of Miletus (624BC-546BC) is given credit for inventing the 
mathematical proof, and, according to Diadochus Proclus (411-485), 
Pythagoras of Samos (580BC-520BC) 

changed the study of geometry into the form of a liberal educa­
tion, for he examined the principles to the bottom, and investi­
gated its theorems in an immaterial and intellectual manner. 

Most of our sources are, however, of several centuries later and refer to 
Thales and Pythagoras in a legendary and mythological way. For example 
Aristotle, reporting on the mystic-religious society of Pythagoreans, says: 

the so-called Pythagoreans applied themselves to the study of 
mathematics ... ; in so much that, having been brought up in 
it, they thought that its principles must be the principles of all 
existing things. . .. They thought they found in numbers more 
than in fire, earth, or water, many resemblances to things which 
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B=E 

A c 

D F 

Figure 1.1. Thales's theorem. 

are and become . . . . Since then, all other things seemed in their 
whole nature to be assimilated to numbers, while numbers seemed 
to be the first things in the whole of nature, they supposed the 
elements of numbers to be the elements of all things, and the 
whole heaven to be a musical scale and a number. 1 

a. Numbers and measurement 
It seems therefore that the Pythagoreans believed all bodies to be made 
up of a great number of corpuscules that were all identical and harmo­
niously arranged. They identified integer numbers with patterns of those 
atoms, thus making integers the basis of measure. Geometrical entities, 
such as lines, surfaces and solids existed, as any other aspect of reality, 
as aggregations of point-numbers. This is probably why they came to the 
conclusion that the relations of capacity between two homogeneous quan­
tities could always be evaluated in terms of the ratio of positive integer 
numbers, by counting in principle the number of corpuscules in the quan­
tities. Concluding the argument, two homogeneous quantities seem to be 
always commensurable. 

From this point of view the process of measurement becomes that of 

(i) finding (with a finite procedure) a unit of measure e, possibly the 
largest, common to the quantities to be measured, 

(ii) counting; if the quantity A is n-times e, and a quantity B is me, 
then the relation between A and B is expressed by the quotient of 
the integers nand m. 

In fact the basic proofs of some geometrically relevant facts seem to be 
in favour of the assumption of commensurability. Here are a few examples. 2 

1.1 Theorem (Thales's theorem). Let ABC and DEF be two trian­
gles with equal angles. If the segments AB and DE are commensurable 

1 Aristotle (384BC-322BC), Methaphysics. 
2 This actually only shows that some geometric constructions preserve mtionality of 

the measures of the data. 
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a 

a 

b a 

Figure 1.2. Area of a rectangle. 

with ratio min, then the pairs BC-EF and AC-DF, are commensurable 
both with ratio min. 
Proof. Since all angles are equal, possibly after a reflection, translation or rotation, we 
can assume that the two triangles have a common angle LDEF = LABC, and that 
the lines AC and DF are parallel, see Figure 1.1; we can moreover assume that A and 
C are interior points of the segments DC and EF. The commensurability assumption 
yields a segment e with the property that AB is a multiple of e with a factor m and 
DE is a multiple of e with a factor n. This way AB and DE are subdivided respectively 
into nand m pieces equal to e. If we draw the parallel lines to AC through the point of 
subdivision of DE, we obtain a subdivision of BC and EF respectively into m and n 
equal pieces. Such a quantity, which is common to BC and EC, is the common measure 
we were looking for. 

Similarly, we can show that AC and DF are commensurable. 0 

1.2 Theorem (Area of a Rectangle). Let R be a rectangle with sides 
a and b, which are commensurable with ratio min with respect to a seg­
ment e. Then R is commensurable to the square Q of side a with ratio 
min. 
Proof. In fact we have a = ne and b = me and, compare Figure 1.2, R = nm e x e and 
Q = n 2 ex e. 0 

1.3 Remark. It is the commensurability of the sides of a rectangle that 
allows us to measure the area in an elementary way. 

b 

c 
a 

Figure 1.3. Pythagorean theorem: c2 + 2ab = (a + b) 2 . 
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Figure 1.4. Frontispieces of the first printed Greek and Latin editions of the Elements 
by Euclid of Alexandria (325BC-265BC). 

1.4'. Show the geometric form of the Pythagorean theorem. That is, show with a 
straight edge and compass construction that, in a right triangle, we can decompose the 
square on the sides into parts which fit exactly into the square of the hypotenuse. 

1.5 Theorem (Pythagorean theorem). Suppose that the sides and 
the hypotenuse of a right triangle are commensurable to a segment e with 
ratios respectively min, plq and rls; then 

m 2 p2 r2 
-+-=­n2 q2 s2' 

Proof. The squares of the sides are commensurable to the square of side e with ratio 
respectively m 2 / n 2 , p2 / q2 and r2 / s2. The claim then follows from the geometric version 
of the Pythagorean theorem in Exercise 1.4, if we take into account that submultiples 
of a given quantity are commensurable. 0 

b. Never-ending processes 

The Pythagorean assumption that all pairs of homogeneous quantities are 
commensurable was probably supported by proofs such as the ones we have 
seen in the previous paragraph. The discovery of incommensurable pairs of 
segments, such as the side and the diagonal of a square (see Proposition 1.9 
of [GMlj), and its disclosure by Hyppasus, a member of the Pythagorean 
school, produced a deep crisis in the numerical foundations of geometry 
and on some of the dominant Greek culture, so much so that it cost the 
life of Hyppasus himself: according to the tradition, Hippasus was thrown 
overboard by the Pythagoreans. Obviously, it was not only a mathemat­
ical foundation that was failing, but a whole conception of the world, a 
conception meant to justify social relationships and cultural superiority. 
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TO Tl 

TO = qOTl + T2 

. T2 Tl 

D II Tl = qlT2'+ T3 

T3 

IT] 0 T2 = q2T3 + 0 

Figure 1.5. Euclid's algorithm. 

The procedure for determining a possible unit common to two mag­
nitudes, as line segments, angles, areas, can be regarded as the geometric 
equivalent of Euclid's algorithm (see, for example, 8.25). In the case of two 
line segments rO, rl, we consider the shortest one, rl, and we cover ro with 
copies of ri. If we succeed in covering ro perfectly, rl is a common unit as 
TO is a multiple of ri. Otherwise, we consider the part r2 which remains 
from ro after covering it with copies of rl, and restart the process using 
T2 as the shortest segment between, this time, rl and r2 (see, for example, 
Figure 1.5). For the Pythagoreans this process would always stop after a 
finite number of steps.3 In fact stopping after a finite number of steps is 
exactly equivalent to commensurability. However, the procedure will never 
stop in the case of the diagonal and the side of a square, as we have seen, 
or of the diagonal and the side of a pentagon (see, for example, Figures 
1.6 and 1. 7). 

The existence of incommensurable pairs made it necessary to face pro­
cesses that were treacherous as they did not stop after a finite number of 
steps, and to give up the idea of controlling continuous geometrical entities 
by rational numbers or finite processes. 

These reasons probably led Eudoxus of Cnidus (408BC-355BC) to 
introduce the notion of magnitude as opposed to numbers and develop a 
theory of comparison of magnitudes: the theory of proportions which is 
presented in Book V of Euclid's Elements. This, together with the method 
of exhaustion, due also to Eudoxus, is among the greatest achievements of 
Euclidean geometry. The method of exhaustion is presented in Book XII 
of Euclid's Elements and finds its splendour with Archimedes of Syracuse 
(287BC-212BC) and, later, with mathematicians in the Renaissance, as 
for example Francesco Maurolico (1494-1575). 

Eudoxus's idea is to consider equal mtios of pairs of magnitudes with­
out any reference to numbers. Nonending processes this way disappear 
and we capture their essence via the method of exhaustion. Using modern 
notation and numbers in a nonessential way, we can state 

3 In this context one can think of Zenon's paradoxes (about 495BC). 
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Figure 1.6. Denote by Pn , n = 1,2, ... , the n-th pentagon from the left to the right 
and by an and dn respectively the lengths of its side and diagonal. Then we have 
dn+l = an and an = dn+l = an+l + an+2. The figure shows that the process of 
construction of pentagons never ends: al and d1 are therefore incommensurable (see, 
for example, Chapter 3). 

1.6 Definition (Exhaustion principle). Tbe magnitudes a and bare 
in tbe same ratio of tbe magnitudes A and B if, given arbitrarily two 
positive numbers rn and n, we bave 

rna<nb 

rna> nb 

if and only if 

if and only if 
rnA < nB, 
rnA> nB. 

Of course the previous criterion requires "infinitely many comparisons 
of capability," but it provides a firm foundation of geometry; for instance, 
the proofs of Theorems 1.1, 1.2 and 1.5 extend easily to cover "irrational 
ratios." Though historically not correct, we can think of the exhaustion 
method as a method for approximating irrational numbers by rationals. 4 

c. Back to numbers 
In Medieval times the centrality of the numbers came up again because of 
the new trading. The algebra brought from the Arab world by Leonardo 
Pisano (1170-1250), called Fibonacci, took a relevant role in the new com­
mercial companies: any good is homogeneous to any other good, money is 
the unit of measure to which every quantity has to be referred. New prob­
lems, which require numerical solutions, arose and the continuity problem 
came again as the problem of finding square or cubic roots. Scientists rec­
ognized the irrational character of those numbers, but, unlike the Greeks, 
they learned how to live with them. 

They avoided asking themselves about the nature of these new numbers 
and were satisfied with approximations whenever irrationals appeared as 
solutions of problems. 

4 Notice that, if the ratio of magnitudes are numbers, the exhaustion principle is a 
process that leads to the equality % = ~ and amounts to showing that 

I ~-~I<~ b B n 
'In E N, n;::: 1. 
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Figure 1.7. The side and the diagonal of a pentagon are incommensurable. 

For centuries irrational numbers were used. Meanwhile other num­
bers appeared. In the fifteenth century the Italian mathematicians Niccolo 
Fontana (1500-1557), called Tartaglia, Girolamo Cardano (1501-1576) and 
Rafael Bombelli (1526-1573) used even imaginary numbers in solving alge­
braic equations of third and fourth degree, and Fran<;ois Viete (1540-1603) 
introduced literal calculus. The bursting impact of the infinitesimal calcu­
lus led to include even "infinity" and "infinitesimal" among numbers. Of 
course the development of mathematics, especially in the sixteenth and 
seventeenth centuries did not go without criticism, but in some sense, 
D'Alembert's attitude allez de l'avant: la foi vous viendm mattered more. 

At the beginning of the eighteenth century, Augustin-Louis Cauchy 
(1789-1857) tried to give solid bases to infinitesimal calculus, founding it 
on the theory of limits, that he rigourously developed in two celebrated 
treatises: the Cours d'Analyse and the Resume des le(fons sur le calcul 
infinitesimal, respectively in 1821 and 1823. However in this process of 
revision he found a series of difficulties that could be overcome, as we 
have seen in [GMl], only after a rigorous settlement of the system of real 
numbers. 

It was only fifty years later in 1872 that Georg Cantor (1845-1918) 
and Richard Dedekind (1831-1916) formulated the axiom of continuity 
(see, for example, Section 1.2) and built a model of real numbers in the 
celebrated works Uber die Ausdehnung eines Satzes aus der Theorie der 
trigonometrischer Reihen and Stetigkeit und irmtionale Zahlen. 

The system of numbers needed should be a minimal extension of the 
rationals, so that each number could be approximated by rationals. Also, 
in such a system, we should be able to compare, sum and multiply as one 
does with the geometrical continuum, but without any reference to it. 

The crucial property singled out by Dedekind to capture the intuition 
of the continuity of the line was that, in every division of the line into two 
classes of points such that every point in one class is to be to the left of 
each point in the second, there is one and only one point that produces 
the division. He carried this idea over to the existence of the supremum of 
every nonempty subset that is bounded from above. 
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Figure 1.8. Frontispieces of Johannes Herwangen Editio Princeps in Greek and Latin 
of the works of Archimedes of Syracuse (287BC- 212BC) , Basel 1594, and of one of the 
Oxford editions, Oxford 1696. 

d. An axiomatic or a constructive approach? 

The clarification of the mystery of the continuity of the real line due to 
Georg Cantor (1845- 1918) and Richard Dedekind (1831- 1916) turned out 
to be simple and consistent with the way mathematicians had dealt with 
real numbers in those years. However, the question of the existence of such 
a system of numbers still held. Actually, immediately after Dedekind's 
works, other models of real numbers appeared. They were built starting 
from the rationals as, for instance, the one due to Karl Weierstrass (1815-
1897). The idea that became dominant from then on was the following. 
Starting from the rationals one adds new numbers such that , if one chooses 
a reference on the line, they will occupy the holes left out by the ratio­
nals. Then, by using the possibility of approximating the new numbers 
with rational numbers, the operations already defined on the rationals are 
extended to the former as well. 

The constructive approach brings back the existence of the system of 
real numbers, Le., the consistency of such a system, to the consistency of 
the rationals and therefore to the one of natural numbers, in a process 
of "arithmetization of mathematics" typical of the so-called Berlin school 
around the middle of the nineteenth century, well expressed by the famous 
words of Leopold Kronecker (1823- 1891) : 

Natural numbers are the work of God, all else is the work of 
man. 

Actually this process is not at all simple and requires a theory of sets, that 
is quite abstract and complex. Furthermore, it turns out that within such a 
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Figure 1.9. Richard Dedekind (1831-1916) and Georg Cantor (1845- 1918). 

theory, one cannot establish whether these systems are consistent (Godel's 
theorem, Kurt Godel (1906- 1978)); in other words, one cannot establish 
whether the assumption that a system enjoys a number of properties will 
lead or not to unpleasant surprises: this is the question of the foundations 
of mathematics (see, for example, Section 3.3.2). 

We chose in [GM1J, and we will insist in our choice in Section 1.2, 
an axiomatic approach to real numbers: we take for granted that there 
is a system of numbers that enjoys the properties it is expected to have, 
and within this system we shall find the subsets of rational and natural 
numbers. 

1.2 The Axiomatic Approach 
to Real Numbers 

In this section we discuss the axioms of the system of real numbers and 
some of their consequences. For the sake of convenience we deal with alge­
braic and order properties in Section 1.2.1, and with the continuity prop­
erty in Section 1.2.2. 

1.2.1 Algebraic and order properties 

The algebraic properties of real numbers are conveniently subsumed in a 
minimal number of axioms that give the rules of computation. Those are 
enough to allow us to derive the usual rules of computation. 
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a. Axioms for addition 

An operation of sum is defined in the system of real numbers JR: it asso­
ciates to each pair of numbers x and y their sum denoted by x + y. In 
other words a function is defined, the sum, + : JR x JR -+ JR, (x, y) -+ x + y, 
x, y E lR. We assume that 

(All) Addition is associative: (x + y) + z = x + (y + z) for all x, y, z E lR. 
(Az) Existence of zero: JR has an element, denoted by 0, such that O+x = 

x + 0 = x for every x E lR. 
(A3) Existence of the opposite: to every x E JR corresponds an element 

y E JR such that x + y = y + x = o. 
(A4) Addition is commutative: x + y = y + x for all x, y E JR. 

From (AI)' ... ' (A4) we infer, for example, 

(i) The number 0 in (A2)' called zero or neutral element for the addition, 
is unique. In fact, for another 0' we infer 0 = 0 + 0' = 0' by applying 
(A2 ) to 0, A4 and again (A2 ) to 0'. 

(ii) The opposite y in (A3) to x is unique. In fact, if for y, z E JR we had 
x+z = x+y = 0, then z = z+O = z+(x+y) = (z+x)+y = O+y = y 
by applying (Az), (A3), (A l ), (A2) and again (AI). The opposite of 
x is usually denoted by -x and one writes x - y instead of x + (-y). 
The new operation (x, y) -+ x - Y is then called subtraction. 

Whenever in a set X an operation with the properties (AI)' ... ' (A4) 
is defined, we say that X is a commutative group. In this case, (i) and (iii) 
above read: in a commutative group there is a unique neutral element, 
and every x has a unique opposite. Axioms (A) for the reals can therefore 
be summarized by saying that JR is a commutative group with respect to 
addition. 

h. Axioms for multiplication 

A second operation, called multiplication, (x,y) -+ xv, Vx,y E JR, is as­
sumed on lR. It satisfies the following axioms: 

(M1 ) Multiplication is associative: (xy)z = x(yz) for all x, y, z E lR. 
(M2) Existence of identity: JR contains an element, denoted by 1, such 

that 1 #- 0 and Ix = xl = x for every x E lR. 
(M3) Existence of the reciprocal: to each x E JR, x #- 0, corresponds an 

element w E JR such that wx = xw = 1. 
(M4) Multiplication is commutative: xy = yx for all x, y E lR. 

Similarly to addition one easily proves that the identity is unique and 
the reciprocal of each element is unique. Usually one denotes by x-I, l/x or 
by ~ the reciprocal of x#- o. We emphasize that 0-1 or 1/0 is not defined 
and it is meaningless. It is easily seen that JR \ {O} is a commutative group 
with respect to multiplication. 
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Figure 1.10. Frontispieces of A treatise of Algebra by John Wallis (1616- 1703) and of 
Artis analyticae praxis by Thomas Herriot (1560-1621) where probably the symbols < 
and > first appear. 

1.7~. Show that rotations of the plane around a given point form a commutative 
group, the operation of sum of two rotations, respectively of angles x and y , being 
defined as the rotation of angle x + y. Since we can clearly identify rotations of the 
plane with the unit circle in JR.z, we can say in a fancy way that the circle has the 
structure of a commutative group. 

1.8 ~. Show that rotations of the space around a given point form a group which is 
however not commutative, that is, rules (Ad, (Az) , (A 3 ), but not (A4) hold. Again in a 
fancy way we can say that the unit sphere in JR.3 has the structure of a noncommutative 
group. 

c. The distributive law 
The next axiom defines the relationship between the operations of sum 
and multiplication. 

(AM) x(y + z) = xy + xz holds for all x, y, z E R 

All algebraic rules of computation follow from the axioms (A) , (M) 
and (AM). 

1.9~. Show that 
(i) O·x = 0, 

(ii) (-x)(-y) = xy , 
(iii) (-x)y = -(xy), 
(iv) (x - y)z = xz - yz , 
(v) xy = 0 if and only if either x = 0 or y = O. 

[Hint: As an example let us prove (i). We have 0 . x + x = Ox + Ix [by (Mz)] = 
(0 + l)x [by (AM) and (M4)] = 1 x [by (Az) ] = x [by (Mz)]. Summing to both sides 
-x we then infer Ox = Ox+(x+( -x)) = (Ox+x)+(-x) by (Ad = x+(-x) = 0 by (A3) .] 
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Figure 1.11. Augustin-Louis Cauchy 
(1789-1857) and the frontispiece of his 
Cours d'Analyse, 1821. 
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If X, Y E JR, X -I- 0 the quotient of y by X is defined as 

y 1 -1 
-:= y- = yx 
X X 

We also write y / X for ~, X -I- O. The ordinary rules of computation of 
fractions, as for instance 

ac 

bd 
ac 
bd' 

follow easily from the axioms for multiplication. We repeat: dividing by 
zero is not allowed. 

d. Order 

We can identify in JR a subset P, called the subset of positive numbers, by 
means of the following two axioms: 

(01 ) If X, yare positive numbers, x, YEP, then X + Y and xy E P. 
(02 ) For each X E JR only one of the following three alternatives holds: 

x E P, x = 0 or -x E P. 

(01 ) and (0 2 ) imply that 1 is positive. In fact, since 1 -I- 0, either 1 or 
-1 is positive and, as 1 = 12 = (-1)2 we conclude that 1 is positive. A 
nonzero number which is nonpositive, is called negative. We write x > 0 
to say that x is positive, while x > y or y < x mean that x - y is positive. 
Consequently x < 0 means that x is negative, and x negative, x < 0, is 
equivalent to -x is positive, -x > O. One can show that if x, yare negative, 
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Figure 1.12. Frontispieces of the Fondamenti per La teorica delle Junzioni di variabiLi 
reaLi by Ulisse Dini (1845-1918) and of the Italian translation by Oscar Zariski (1899-
1986) of Stetigkeit und irrationale Zahlen by Richard Dedekind (1831- 1916). 

then xy is positive. In fact xy = (-x)( -y) and -x and -yare positive. 
In particular the square of a nonzero real number is positive. 

From the previous axioms it is not difficult to infer the usual rules to 
deal with inequalities: 

(i) if x < y and y < z, then x < z, 
(ii) if x < y and z > 0, then xz < yz, 

(iii) if x < y and z E ~ , then x + z < y + z, 
(iv) if x < y and x > 0, then ~ < ~, 
(v) if x < y and z < 0, then xz > yz. 

Finally, since 1 is positive, also 2 := 1 + 1, 3 := 1 + 1 + 1, 1 + 1 + ... + 1, 
and so on are positive. 

1.2.2 Continuity property 

a. Supremum 

Let A be a nonempty subset of R We recall (see, for example, Section 1.1 
of [GMl]) 

o c E ~ is an upper bound of A if A C] - 00, c], L e., if x ::; c "Ix E A, 
o A is bounded above if it has an upper bound, Le., if there exists c E ~ 

such that x ::; c "Ix E A , 
o c is the greatest element of A, or a maximum of A, if c is an upper bound 

of A and c E A, 
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o c E JR. is a lower bound of A if x 2: c Vx E A, 
o A is bounded below if it has a lower bound, i.e., if there exists c E JR. such 

that x 2: c Vx EA., 
o c E JR. is the least element of A, or a minimum of A, if c is a lower bound 

and c E A, 
o c is the infimum of A if c is the greatest lower bound. 

1.10 D~finition. Let A be a nonempty subset ofJR. bounded from above. 
Tbe least upper bound of A, in sbort tbe l.u.b. of A, is also called tbe 
supremum of A and denoted by sup A. 

Whenever they exist, the maximum and the supremum are unique, 
moreover, if both exist, then they agree. Clearly the supremum is charac­
terized by the following 

1.11 Proposition. Let A c JR., A i- 0. L E JR. is tbe supremum of A if 
and only if 

(i) L is an upper bound of A, i.e., x S L Vx E A, 
(ii) VE > 0 L - E is not an upper bound of A, i.e., VE > 0 3x E A sucb 

tbat x> L - E. 

The axiom of continuity of the reals is then (see, for example, Section 1.1 
of [GM1]) 

(C) Every nonempty subset of JR. that is bounded above has a least upper 
bound. 

1.12 Remark. If c is an upper bound of A, then every number larger 
than c is again an upper bound of A. We are tempted to say that the 
upper bounds of A form a half-line, but to identify it we need the left 
extremal point! A geometric way of visualizing the axiom of continuity is 
exactly saying that if A c JR. is nonempty and bounded above, then all 
upper bounds of A are given by the numbers in [sup A, +00[. 

1.13 Example. If A =] - 00, e], e is the maximum of A. All upper bounds of A are 
given by the numbers in the closed half-line [e, +oo[ , and e = sup A. 

If A =]- 00, e[, A has no maximum, all upper bounds of A are again the numbers in 
the closed half-line [e, +00[, and e is the supremum of A. In both cases the set of upper 
bounds is given by the closed half-line [e, +00[, and the l.u.b. is e, therefore it exists. 

Similarly we have 

1.14 Proposition. Let A c JR., Ai- 0. L E JR. is tbe infimum of A if and 
only if 

(i) L is a lower bound of A, i.e., L S x Vx E A, 
(ii) VE > 0 L + E is not a lower bound of A, i.e., VE > 0 3x E 

A sucb tbat x < L + E. 

Equivalently, the axiom of continuity can be restated as 
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( C 1) Every nonempty subset A c IR which is bounded below has a greatest 
lower bound. 

b. The eXitended real line 
As we have seen in [GMl], it is convenient to introduce the symbols +00, 
-00, iii := IR U { +00, -oo} and write sup A = +00 if A is not bounded 
above, and inf A = -00 if A is not bounded below. With these agreements 
the axiom of continuity transforms into 

(C2 ) Every non empty subset of IR has supremum and infimum. 

c. Dedekind cuts of IR 

The continuity property was stated by Richard Dedekind (1831-1916) in 
terms of cuts. 

1.15 Definition. Let X be a set in which the axioms (A), (M), (AM) 
and (0) hold. A cut (A, B) of X is a subdivision of X in nonempty subsets 
A and B such that A U B = X, A n B = 0 and 

Va E A and Vb E B we have a < b. 

If (A, B) is a cut of X, we say that x E X corresponds to (A, B) or that 
it brings about this cut if a S x S b Va E A, Vb E B. 

Clearly the element that brings about a cut is unique, if it exists, and 
belongs either to A or to B. 

1.16 Theorem. Let X satisfy the axioms (A), (M), (AM) and (0). The 
following 

(i) the axiom of continuity (C) holds in X, 
(ii) to every cut of X corresponds an element of X 

are equivalent. 

Following Dedekind, we can then state the axiom of continuity also as 

(C3 ) To every cut of X corresponds an element of X. 

Proof of Theorem 1.16. (i) '* (ii). Let (A,B) be a cut in X. Clearly A is bounded 
above. Set xo = sup A. We show that xo brings about the cut (A, B). Since xo is an 
upper bound, we have a ~ Xo for all a E A. Since Xo is the least upper bound of A, 
Xo ~ b for all b E B. 
(ii) '* (i). Let E be a nonempty subset of X that is bounded above. Denote by M(E) 
the set of upper bounds of E. Clearly A:= IR\M(E) and B:= M(E) form a cut (A, B) 
of X. Denote by xo the element of X corresponding to (A, B). We then show that xo 
is an upper bound of E. Otherwise, there is an x E E such that x > xo and choosing 
Xl := (xo + x)/2, we get Xl E M(E) since Xl > Xo and Xl It M(E) since Xl < X E E, 
a contradiction. Since moreoever Xo ~ b Vb E M(E), Xo is the l.u.b. of E. D 
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The axiom of continuity is not valid in Q. For example, if A := 
{x E Q I 0 ~ x 2 < 2}, A is nonempty, bounded above, and sup A = J2 E JR; 
but, being that J2 is not in Q, A has no supremum in Q. 

1.11~. The existence of the n-th root of a nonnegative real number is a consequence 
of the continuity of the function x n , x > 0 (see, for example, 2.46 of [GM1]). Relying 
on the axiom of continuity, prove that every nonnegative real number has an n-th root. 

1.2.3 Uniqueness of reals 

We have already hinted at the fact that it cannot be decided whether the 
system of reals is consistent or not. Another important question is the 
uniqueness of such a system. This is not clear a priori; both the rationals 
and the reals satisfy the algebraic and order axioms, but Q =f. R Fortu­
nately two numerical systems 8 and T which satisfy the algebraic, order 
and continuity axioms are undistinguishable. Let us be more precise on 
this point. 

A set 8 with two operations, called addition and multiplication, which 
satisfy the axioms (A), (M), (AM), and (0), is called an ordered field. For 
example JR and Q are ordered fields. An ordered field is said to be complete 
if the axiom of continuity holds. 

An algebraic isomorphism f : 8 ---+ 8' is a bijective correspondence 
between 8 and 8' that is compatible with the operations of addition and 
multiplication on 8 and 8', that is, such that 

f(x +s y) = f(x) +s' f(y), f(x·s y) = f(x) ·S' f(y) 

for all x, y E 8. We say that the isomorphism is order preserving when 
f (x) is positive in 8' if and only if x is positive on 8, i.e., 

x <s Y if and only if f(x) <s' f(y) 'ix,y E 8. 

Finally, we say that the ordered fields 8 and 8' are isomorphic if there is 
an algebraic isomorphism f : 8 ---+ 8' that preserves the order. We then 
have 

1.18 Theorem. Every complete ordered field 8 is isomorphic to JR, con­
sequently all complete ordered fields are isomorphic. 

Proof. Since 8 is complete, any of its bounded subsets has supremum in 8. Also, if 
f : 8 -- 8' is an isomorphism between two complete ordered fields 8 and 8', then we 
have f(sup E) = sup f(E). 

We can now easily construct a bijection f : N -- 8 between N and a subset of 8 
which preserves operations and orderj 5 we can also extend this bijection to a bijection 
f of lR onto a subset 8' C 8. To conclude, it suffices to prove that f(lR) = 8. Suppose 
f(lR) f. 8, i.e., that there is x E 8 \ 8' and let IQI' := f(IQI), and consider the sets 

{x E IQI' I x < x} and {x E IQI' I x> x}. 

5 Compare the next section concerning the subset of naturals in lR. 
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They are clearly nonempty, otherwise Q' would be bounded below or above. If 

£':= sup{x E Q'lx < x}, 

we have £', L' E S' and 

and 

L' < x < £', 

L' := infix E Q'lx > x}, 

otherwise xES'. Therefore we conclude that there is p E Q' such that L' < p < l'; 
this is a contradiction, as it would imply that there are no rationals between £ and L, 
where £' := f(£), L' := f(L). 0 

1.3 Natural Numbers 
In this section we identify the subset of JR of natural numbers. 

a. Natural numbers and the principle of induction 
We commonly say that natural numbers are the numbers 0, 1, 2, 3, and 
so on, actually meaning that there is a never-ending rule producing all 
natural numbers which is 

(i) ° is a natural number, 
(ii) if x is a natural number, then adding 1 produces the next natural 

number, the "successor" x + 1 of x. 

Even more, we intend that this rule generates only natural numbers. 
To be more precise, let us state first 

1.19 Definition. A subset A c JR is said to be inductive if 

(i) ° E A, 
(ii) if x E A, then x + 1 E A. 

The entire JR, the half-lines [-1, oo[ and [0,00[, the subset 

{o, 1/2, 1, 3/2, 2, 5/2, 3, ... } 

are examples of inductive subsets of R The naive way to describe the 
naturals suggests that 

(i) the set of natural numbers is inductive, 
(ii) no proper subset of the naturals is inductive, 

(iii) the subset of naturals is the smallest inductive subset of R 

For these reasons we set 

1.20 Definition. N is the smallest inductive subset of R 

A trivial consequence is the following. 
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1.21 Proposition (Induction principle). If A c N is inductive, then 
A=N. 

TheDefinition 1.20 can be justified by naive set theory. In fact we can 
define N as the intersection of all inductive subsets of JR, 

N := n{ A c JR I A is inductive}. 

This way the existence of N leads to set theory. Then we need to show that 
N is inductive itself. Consequently N exists and is the smallest inductive 
subset of JR. 

1.22 ". Show that N := n{A c JR I A inductive} is inductive. 

To be consistent, it remains to show that the operations of JR, when 
restricted to N, yield the usual operations on N. This is summarized in the 
following 

1.23 Proposition. We have: 

(i) ifn E N, then n+ 1 EN, 
(ii) ifn, mEN, then n + m and nm E N, 

(iii) if n E Nand n > 0, then n - 1 E N, 
(iv) ifn,m E N and In - ml < 1, then n = m, 
(v) every nonempty subset A C N has a minimum, 

(vi) a subset A C N is bounded if and only if it has a maximum. 

Proof. Notice that in principle n + 1, n + m, nm, are real numbers. 

(i) It is trivial, since N is inductive. 

(ii) For n E N set An := {m E N I n + mEN}. It is easily seen that An is an inductive 
subset of R Thus by the induction principle An = N, that is n + mEN '<1m and fixed 
n. The claim follows since n is arbitrary. One can argue similarly for the product of 
naturals. 

(iii) The set A := {O} U {n E N In - 1 E N} is inductive, hence A = N, in particular 
n - 1 E N if n i- O. 

(iv) We claim that the set A := {n E N I ,a mEN, n < m < n + I} is inductive. In fact, 
if we found a natural number m with 0 < m < 1, then m - 1 < 0 and (iii) would give 
m - 1 EN, i.e., a contradiction. Similarly, we show that if there is no natural number 
between n E Nand n + 1, then there is no natural number between n + 1 and n + 2. 
By the induction principle, A = N. 

(v) Let £. := inf A. If £. is not the minimum of A, we can find (by the properties of the 
infimum) x, yEA c N with £. < y < x < £. + 1/2. A contradiction to (iv). 

(vi) Let A C N be bounded and let £.:= supA E JR. Suppose £. is not a supremum, then 
there are n, mEA such that £. - 1 < n < m < £. Since A C N, we reach a contradiction 
to (iv). 0 

1.24 Axiomatic definition of naturals. Natural numbers can also be defined ax­
iomatically independently from the reals. They are a set N with an application (f : N -> N 
called successor, satisfying the following five axioms: 

(i) 0 E N, 



Figure 1.13. Giuseppe Peano (1858-
1932) and the frontispiece of Arith­
metices Principia, Torino, 1889. 

(ii) if a E N, then O"(a) EN, 
(iii) if a EN and a = O"(b), then a i- 0, 
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(iv) 0" is injective, i.e., if the successors of a and b are equal, then so are a and b, 
(v) if A C N is such that 0 E A, and a E A implies O"(a) E A, then A = N. 

Axioms (i)-(v) were introduced by Giuseppe Peano (1858-1932), who also showed how 
one can derive from them the entire arithmetic: they are known as Peano's axiom. 
Starting from natural numbers one can build successively the system of signed integers, 
denoted by Z, of rationals Q and of reals R 

From Proposition 1.23 (vi) we in particular infer 

1.25 Theorem (Archimedean property). N is not bounded above in 
JR, i.e., given any M E JR there exists n E N such that n ~ M. 

It is convenient to state the Archimedean property of IR III several 
equivalent forms. 

1.26 Proposition. The following equivalent claims hold: 

(i) if M > 0, then there exists n E N such that n > M, 
(ii) (ARCHIMEDEAN PROPERTY) if X, Y E IR are positive numbers, then 

there is n E N such that nx > y, 
(iii) for every E > 0 there exists II E N such that l/ll < 1', 

(iv) if x E IR is such that Ixl < ~, 'tin E N, n ~ 1, then x = o. 
Proof. (i) is true by Theorem 1.25. 
(i) => (ii). It suffices to apply (i) with M := ylx. 
(ii) => (iii). It suffices to apply (ii) with y := 1 e x := E. 

(iii) => (iv) . If x f. 0, we apply (iii) with £ := Ixl and find II such that 11ll < Ixl: a 
contradiction. 
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x 
II .. 

o l/n 2/n k/n (k + l)/n 

Figure 1.14. Rationals are dense. 

(iv) => (i). Were 1'\1 bounded above, we would find L such that L > n "In E 1'\1, hence, 
according to (iv) 1/ L = 0: a contradiction. 0 

We repeat: the possibility of dividing an interval of JR in subintervals 
as small as we want is equivalent to the unboundedness of N in R 

b. Approximation of reals by rational numbers 

Starting from the natural numbers we define the (relative) integer numbers 
as 

Z := {x E JR Ilxl EN} 

and the rational numbers as 

1.27 Definition. We say that A c JR is dense in JR if for any pair of 
distinct real numbers x, y E JR, x < y, there is a E A such that x < a < y. 

Clearly the following claims are equivalent: 

o A c JR is dense in JR, 
o if € > 0, x E JR, then there is a E A such that Ix - al < €, 

o if n E N and x E JR, then there is a E A such that Ix - al < lin. 

1.28 Theorem. The subset of rationals Q c JR is dense in R 

Proof. Let n E N and let us prove that, if x > 0, then there is a rational 
r ~ 0 such that Ir - xl < lin. 

(i) If 0 :::; x < lin, we take r := 0 as Ix - 01 = x < lin. 
(ii) If x ~ lin, we define, compare Figure 1.14, 

A := {mE N, I : :::; x}. 
Since 1 E A as lin:::; x by the Archimedean property, A is nonempty. 
Moreover A is bounded above (by nx), hence it has a maximum k. 
We must have k :::; nx < (k + 1), hence 

Ix - ~I < ~. 
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Finally, if x < 0 we find r 2: 0, r E Q, such that 1- x - rl < l/n, hence 
Ix - (-r)1 = 1- x - (r)1 < l/n. 0 

1.29 Theorem. The subset of decimal fractions, written as 
{m/lOn 1m E Z, n EN}, and, more generally the subset of fractions 
of the type {m/pn 1m E Z, n EN}, where PEN, P > 1, is dense in JR. 

1.30~. Prove Theorem 1.29. [Hint: Compare the proof of Theorem 1.28 and use that, 
if n E Nand p :::: 2, then pn > n.] 

The last theorem says that if x E JR, then we can find a finite decimal 
expansion m/lOn as close to x as we want. More precisely, if we fix the 
deviation 10 > 0 and apply Theorem 1.29 in the interval]x-f, X+f[, we find 
an approximate finite decimal expansion m/lOn with 0 < x - m/lOn < f. 
Notice also that not every rational is a finite decimal: for example 1/3 
cannot be expressed as a decimal fraction. 

c. Recursive statements 
The induction principle has also the following useful formulation. 

1.31 Proposition. Suppose that for every natural number n E N we are 
given a statement p(n). 

(i) Suppose that the statement p(O) is known to be true. 
(ii) Suppose that for any n, if the statement p(n) happens to be true, 

then the statement p( n + 1) must also be true. 

Then the statement p( n) must be true for all n. 

Proof. Proposition 1.31 is quite convincing: it is equivalent to the induction principle. 
In fact the assumptions (i) and (ii) just say that the set A:== {n E Nlp(n) is true} is 
inductive, hence A = N by the induction principle. 0 

Of course we also have 

1.32 Proposition. Suppose that for every n we are given a statement 
p(n). 

(i) Suppose that there is kEN such that p(k) is true. 
(ii) Suppose that for all n, if the statements p(k), p(k + 1), ... , p(n) 

happen to be true, then p( n + 1) must also be true. 

Then the statement p(n) must be also true for all n 2: k. 

1.33 Example. We show that 2n :::: n, "In :::: O. Let p(n) be the statement "2n :::: n." 
We have 

(i) p(O) = "2° == 1 :::: 0" is true. 
(ii) From "2° = 1 :::: 0" by adding 1 to both sides we then infer 21 = 1 + 1:::: 1 +0 = 1 

i.e.,p(l) is true and, from 2n:::: nweget 2n+1 = 2·2n :::: 2n:::: n+l, i.e., p(n+l) 
is true. 

Proposition 1.31 then yields the estimate 2n :::: n for all n. 
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1.34 Example (Bernoulli's inequality). We can give a proof of Bernoulli's inequal­
ity (see, for example, 5.52 of [GMI]) that makes no use of calculus. In fact for n = 0 
we have (1 + h)O = 1 = 1 + o· h. If now n E ]'II and we assume (1 + h)n ~ 1 + nh, then 

(1 + h)n+1 = (1 + h)(1 + h)n ~ (1 + h)(1 + nh) 

= 1 + (n + I)h + h2 ~ 1 + (n + I)h. 

[since h > -1] 

1.35 Example (Arithmetic and quadratic mean). Let us show by induction that 

( )

2 
1 n 1 n 

- Eaj :::; - Ear 
n j=1 n j=1 

For n = 1 the claim is trivial. Suppose the claim true for n and let us prove it for n + 1. 
We have 

(Ll) 

From the inequality 2af3 :::; €a 2 + f3.
2 

, which holds for all a, f3 E lR and € > 0, we infer, 
for € := lin, that 

( )

2 
n 1 n 

2an+1 E aj :::; na~+1 +;;: E aj 
J=1 J=1 

(1.2) 

Formulas (1.1) (1.2) and the inductive assumption then yield 

n 

n E a; + (n + I)a~+1 
j=1 

n+l 

= (n+I) Ear 
j=1 

1.36 Example (Sum of the first n naturals). There is a closed formula for the 
sum SI(n) of the first n naturals. 

~ n(n+ 1) 
SI(n):=1+2+ ... +n=L.."j= . 

j=1 2 

This can be proved in several ways. 

(i) Writing 

+ 2 + 
n + (n -1) + 

and summing we get, 

+ (n -1) + n, 
+ 2 + 1, 

2S1(n) = (n + 1) + (n + 1) + ... + (n + 1) = n(n + 1). 

(1.3) 

(ii) Arranging squares of side 1 as in Figure 1.15, the total area of the shadow squares 
is 

SI(n) = n
2 +:: = n(n+ 1). 

2 2 2 
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~--
123 n-ln ri f-I -----i 

Figure 1.15. L:j=l j = n(n + 1)/2. 

(iii) Using the identity (a + b)2 = a2 + 2ab + b2, we can write 

12 + + 1 
22 12 + 2·1 + 1 
32 22 + 2·2 + 1 

n 2 (n - 1)2 + 2· (n - 1) + 1 
(n + 1)2 n 2 + 2· n + 1 

and, summing, 

12 + 22 + ... + (n + 1)2 = 12 + 22 + ... + n 2 + 2S1 (n) + (n + 1), 

that is, 2 Sl(n) = (n + 1)2 - (n + 1) = n(n + 1). 
(iv) By induction: the sequence Xn := n(n + 1)/2, n ~ 1, satisfies the recursion 

{

Xl = 1, 

X n +1 = Xn + (n + 1), "In ~ 1, 

which defines Sl (n). 

1.37 Example. The sum of the first n odd naturals is 

see Figure 1.16. 

n n 

2:)2j - 1) = 2 L'> - n = n(n + 1) - n = n 2
, 

j=l j=l 

2n + 1 177?l"7"7"A'";'7777V7"7V"7717"7?<7?A I 
5 

3 

1 

n 
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0 0 • 1 8. 0 1 
50 0 0 

70 • 2 4. • 2 6. 0 3 0 0 • 3 5 4 

Figure 1.17. The Josephus problem for n = 5,8. 

1.38 Example (Sum of the squares of the first n naturals). There is a closed 
formula for 

n 

82(n) := 1 + 4 + 9 + ... + n2 = L::>2. 
j=l 

In fact the method (iii) in Example 1.36 extends to the present case. Using the identity 
(a + b)3 = a3 + 3a2 b + 3ab2 + b3, we write 

13 + + 
23 13 + 3.12 + 3·1 

33 23 + 3.22 + 3·2 

n 3 (n - 1)3 + 3· (n - 1)2 + 3· (n - 1) 
(n + 1)3 n 3 + 3. n 2 + 

Summing, we then get 

that is 
382(n) = (n + 1)3 - (n + 1) - 381 (n), 

i.e., because of the value of 8l(n) in Example 1.36, 

~J'2 __ n(n + 1)(2n + 1), 
L...J "In ~ 1. 
j=l 6 

3'n 

+ 1 

+ 1 

+ 1 

+ 1 

+ 1. 

We can also prove it by induction observing that the sequence Xn := n(n + 1)(2n + 
1)/6, n ~ 1, satisfies the recursion 

{

Xl = 1, 

Xn+l = Xn + (n + 1)2 "In ~ 1 

that defines 82(n). 

1.39 Example (The Josephus problem). Consider the following variant of a story 
told by Flavius Josephus, a Jewish historian of the first century. We consider n people 
numbered from 0 to n -1, and, starting with the person labelled 1, we eliminate every 
second remaining person until only one survives, see Figure 1.17. We are asked to 
determine the position T(n) of the survivor. 

We easily see that T(I) = 0, T(2) = 0, T(3) = 2, T(4) = O. For large n we may 
argue recursively. If the number of people is even, after the first round only the even­
numbered people survive and the next to be eliminated is labelled 2. We are therefore 
in the situation of p people numbered 0,2, ... ,2p - 2. In formula, 
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T(2p) = 2T(P). 

If n = 2p + 1 is odd, after one round p people labelled 2, 4, ... , 2p - 2, 2p survive and 
the next to be eliminated is person number 2. Hence 

T(2p + 1) = 2T(P) + 2. 

Therefore the sequence of the T(n) satisfies the recurrence 

{

T(I) = 0, 

T(2n) = 2T(n), 

T(2n + 1) = 2T(n) + 2, 

This is the table of T(n) for n = 0,,1, ... ,16. 

"In ~ 0, 

"In ~ O. 

4 5 6 7 8 9 10 11 

o 2 4 6 0 2 4 6 

This suggests for T(n) the closed form 

T(n) = 2(n - 2k), 

(1.4) 

12 13 14 15 

8 10 12 14 

(1.5) 

This is in fact the case as one proves, checking that the sequence {xn } in (1.5) satisfies 
the recurrence (1.4). 

1.4 Summing Up 

Real Numbers 
The system of real numbers JR is defined axiomatically as a set of objects satisfying a 
suitable family of rules. First, we can operate on it with addition, multiplication and 
order in the usual way: this is summarized by saying that JR is an ordered field. Secondly, 
a "continuity property," that can be expressed in several equivalent forms, holds. 

o Let A C JR be nonempty. The supremum of A, denoted by sup A, is the least upper 
bound of A, that is, the unique number L E JR such that 

(i) L is an upper bound of A, i.e., x :::; L "Ix E A, 
(ii) "IE> 0 L - E is not an upper bound of A, i.e., "IE > 0 3x E A such that x > L - E. 

o Let A C JR be nonempty. The infimum of A, denoted by inf A, is the greatest lower 
bound of A, that is, the unique number" E JR such that 

(i) "is a lower bound of A, i.e., x ~ " "Ix E A, 
(ii) "IE> 0 ,,+ E is not an upper bound of A, i.e., "IE > 0 3x E A such that x < "+ E. 

o A cut (A, B) of JR is a subdivision of JR in nonempty subsets A and B such that 
A u B = JR, A n B = 0 and 

Va E A and Vb E B we have a < b. 

If (A, B) is a cut of X, we say that x E X corresponds to (A, B) if a:::; x :::; b Va E A, 
VbE B. 

The axiom of continuity of the reals can be expressed by one of the following 
equivalent statements: 
o every nonempty subset A C JR that is bounded above has supremum, sup A E JR, 
o every nonempty subset A C JR that is bounded below has infimum, inf A E JR, 
o to every cut (A, B) of JR corresponds an element of lR. 
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Natural Numbers 

A set A c JR is inductive if 0 E A and, if x E A, then x + 1 E A. The set of natural 
numbers is the subset of JR defined by 

o N is the smallest inductive subset of R 

Relevant facts about naturals are the following: 

o INDUCTION PRINCIPLE If A c N is inductive, then A = N. 
o INDUCTION PRINCIPLE Suppose that for every natural number n E N we are given a 

statement p( n) and let kEN. 
(i) Suppose that the statement p(k) is known to be true. 

(ii) Suppose that for any n ~ k, if the statement p(n) happens to be true, then the 
statement p( n + 1) must also be true. 

Then the statement p(n) must be true for all n ~ k. 
o ARCHIMEDEAN PROPERTY N is not bounded above in JR, 
o every nonempty subset A C N has a minimum, 
o a subset A C N is bounded if and only if it has a maximum. 

Rationals 

The integral numbers Z and the rational numbers IQi are defined respectively by 

Z := {x E JR !Ixl EN}, 

o IQi and the irrationals JR \ IQi are dense in R 

1.5 Exercises 

1.40 ~. Show that JR+ := {x E JR I x > O} is a multiplicative group. Establish an 
isomorphism of groups between the additive group JR and the multiplicative group JR+. 

1.41 ~. Let X be an ordered field. Show 

Proposition. Let A eX. A has a maximum if and only if A is nonempty, bounded 
above, has supremum and sup A E A. In this case max A = sup A. 

1.42 ~. Show that 

(i) inf A ~ sup A. 
(ii) If 0 #- A C Be JR, then inf B ~ inf A ~ sup A ~ supB. 

(iii) Let A, B C JR be such that a ~ b for all a E A, bE B. Then inf A ~ inf Band 
supA ~ sup'B. 
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1.43 ~. Given A, Be lR and 'Y E lR, 'Y > 0, define 

A+B:={xElR)x=a+b, aEA, bEB}, 

A· B := {x E lR I x = ab, a E A, bE B}, 

'YA := {x E lR I x = 'Ya, a E A}, 
-A := {x E lR I - x E A}. 

Show that 

sup(A + B) = sup A + supB, 

If moreover A, Be lR+, then 

sup(A· B) = sup A . sup B, 

sup("'(A) = 'YsupA, 

inf(-A) = -supA, 

inf(A + B) = inf A + inf B. 

inf(A· B) = inf A· inf B, 

inf("'(A) = 'Y inf A, 

sup -A = inf A. 

1.44~. Let X be an ordered field. Show that min A = - max( -A), sup A = - inf( -A) 
for all A C X. Deduce that the axioms (0) and (01) are equivalent. 

1.45 ~~. Prove 

Proposition. Let X C lR be such that 
(i) 0 E X, 

(ii) ifxEX,thenx+lEX, 
(iii) if 0 < x E X, then x-I E X, 
(iv) every nonempty subset A of X has a minimum. 

Then X =1'1. 

[Hint: The statements (i) and (ii) say that X is inductive, hence 1'1 C X. Assume X \ 1'1 
is non empty .... ] 

1.46~. Theorem 1.28 says that between two distinct real numbers there is a rational 
one. Show that actually there are infinite many rationals. 

1.47'. Show that irrational numbers lR \ Q are dense in lR. [Hint: Proceed similarly 
to the proof of Theorem 1.28.] 

1.48 ~. Show that 2 + va and v'2 + va are irrational numbers. 

1.49~. Given four rational numbers a, b, c and tl with ad - be =F 0 and an irrational 
number x such that ex + d =F 0, show that ~:+~ is an irrational number. 

1.50~. Let m, n be natural numbers with Vm irrational. Show that Vm + {1n is 
irrational for all kEN. 

1.51 ~. Show that, if a + bv'2 + cW = 0, then a = b = c = O. 

1.52~. Show that loglO 2 is irrational. 

1.53 ,. Show that the set of rationals B := {q E Q I q2 :::; 2} has supremum (in JR) 
given by v'2. 
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1.54 , Tarski's paradox. All numbers are equal. We proceed by induction on the 
number of numbers. The claim is trivial for one number a, a = a. Suppose that the 
claim is true for 3 numbers and let us prove it for 4 numbers, a, b, c, d. We know that 
a = b = c and b = c = d hence a = b = c = d. By induction the claim is proved. Where 
is the error? 

1.55 ,. Show Proposition 1.32. 

1.56 ,. Show that 
n! 2 2n '<In 2 4, 

2n - n 2 n 2 '<In 2 5, 

nn 2 n! '<In 21. 

1.57 , Ovals. Ovals are boundaries of convex figures in the plane. Draw in the plane 
n ovals. Suppose that each one intersects any other in exactly two points and that no 
more than three ovals meet at the same point. In how many regions is the plane divided 
by the ovals? 

1.58 ,. Let I be an interval and let <I> : I -> JR be convex. Show by induction the 
discrete Jensen inequality, compare Proposition 5.62 of [GM1]: 

(1.6) 

for all nonnegative A1, A2, ... ,An with ~~=1 Ai = 1 and all Xl, X2, ... ,Xn E I. 

1.59 , Lagrange's identity. Show that 

1.60'. Given reals Al, ... ,An with O:S Ai :S 1, show that I1~=l(I-Ad 2 l-I1~=l Ai. 

1.61". Show that nn/2 :S n!:S ((n+l)/2)n. [Hint: Show that n!2 = I1~=1 k(n+l-k) 
and that for all k, 1 :S k :S n, we have n :S k(n + 1 - k) :S i (n + 1)2.] 

1.62 ". Let R be a rotation of the plane around the origin of an angle a incommen­
surable with 7r. Denote R n the composition of R with itself, R n = R 0 R 0 R 0 ••. 0 R, 
n-times. Given a point e on the unit circle, show that the orbit of e, i.e., 

{z E JR2
1 z = Rne, n EN}, 

is dense in the circle. 

1.63". Let a E JR \ 1Ql. Show that {rna - nlrn,n E N} is dense in JR. Deduce that 
{sinn I n E N} is dense in [-1,1]. 

1.64 , Galileo. Show that 

1 1+3 1+3+5 -
3 5+7 7+9+11 



1.66'. Compute 

n 

Lj(j - 1), 
j=l 

n 

Lj(j + 1)(j + 2)(j + 3). 
j=l 

1.67 , Nicomachus's theorem. Show that 

1.68 , Catalan's identity. Show that 

1.5 Exercises 29 

n 

L(j2 -j + 1),'in ~ 1, 
j=l 

n 

Lj(j + 1)(j + 2), 
j=l 

'in ~ 1. 

n 1 2n .1 
L -. = L(-1)n-J -;-, 'in ~ 1. 
j=l n + J j=l J 

1.69'. n straight lines are said to be in a generic position if they intersect each other 
at one and only one point. Determine how many regions are delimited by n straight 
lines in generic position in the plane. 

1.70'. Show that ~j=o G) = 2n. 
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Thales of Miletus 
( 624BC-546BC) 

Pythagoras of Samos 
(580BC-520BC) 

Hippocrates of Chios 

(470BC-41OBC) 

Hippias of Elis 

( 460BC-400BC) 

Plato Aristotle Eudemus of Rhodes 

(350BC-290BC) (428BC-347BC) (384BC-322BC) 

Aristarchus of Samoa 

(310BC-230BC) 

Eudoxus of Cnidus 
( 408BC-355BC) 

Euclid of Alexandria 
(325BC-265BC) 

Eratosthenes of Cyrene 

(276BC-197BC) 

Archimedes of Syracuse 
(287BC-212BC) 

Apollonius of Perga 
(262BC-190BC) 

Diocles 

(240BC-180BC) 

Hipparchus of Rhodes 

(190BC-120BC) 

Zenodorus 

(200BC-140BC) 

Ptolemy 
(85-165) 

Nicomedes 

(280BC-21OBC) 

Menelaus of Alexandria 

(70AD-130) 

Heron of Alexandria 
(lAD) 

Nicomachus of Gerasa 
(60AD-120) 

Diophantus of Alexandria 
(200-284) 

Pappus of Alexandria Theon of Alexandria Diadochus Proc1us Anieus Boethius Eutocius of Ascalon 

(290-350) (335-395) (411-485) (475-524) (480-540) 

Figure 1.lB. A table of Greek Mathematicians. 



2. Sequences of Real Numbers 

As we have seen, we can represent any rational number, for instance v'2, by 
its successive approximations with rational numbers, ql, q2, . . .. According 
to Greek mathematicians the process which generates the approximations 
Ql, Q2, . .. never ends; for us, instead, such a process is the realization of 
v'2 as the limit of the sequence {qn}. In this chapter we shall discuss the 
notions of sequence and of limit of a sequence. 

In Section 2.1 we discuss basic properties. They may be inferred by 
analogous properties for limits of functions proved in [GM1]. However, we 
supply direct proofs for two reasons: first to be self-contained and, secondly, 
because one may want to discuss limits of sequences before limits of func­
tions. In Section 2.2 we discuss the important notion of Cauchy sequence, 
we prove the Bolzano-Weierstrass theorem and give various equivalent 
formulations of continuity of the reals. In Section 2.3 we give alternative 
simple proofs of the intermediate value and Weierstrass theorems. Finally, 
in Section 2.4 we discuss a few examples, and in Section 2.5 we give an 
alternative definition, in terms of sequences, Le., just continuity, of the 
exponential and logarithmic functions. 

2.1 Sequences 

2.1 Definition. A sequence with values in a set X, or simply a sequence 
in X, is a function x : N ---t X. 

A sequence is denoted by {xn}, n 2 0, or by {Xn}nEfII; Xn, that is x(n), 
is referred to as to the n-th term of the sequence {xn }. Accordingly, any 
enumeration of points of X by means of an index, which varies in an infinite 
subset of the integers, is called a sequence, too: for instance we say "the 
sequence l/n with n odd" for {Xn}nEfli with Xn = 1/(2n + 1). 

There are many ways to produce sequences. For example we can give 
a formula to compute Xn for all n, as 

1 
Xn = -, n 21, 

n 

n2 + sin(l/n) 
Xn = , n 21, 

n! 
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or, and this is in many respects more interesting as we shall see later in 
Chapter 8, we can give a rule which gives each term of the sequence in 
terms of the preceding terms as in 

{

XO = 1, 

xn+1 = f(xn), '<In ~ 0, 
(2.1) 

where f : IR --t IR is a given function. In this case we can compute 

Xo = 1, 
Xl = f(ao) = f(l), 
X2 = f(al) = f(l(l)), 

and it appears clearly that (2.1) defines uniquely the sequence {xn}. Ac­
tually, this is a consequence of the induction principle: the set 

A := {n E N I Xn is defined by (2.1) } 

is inductive, hence A = N, i.e., {xn} is uniquely defined for all n E N. It 
is usual to refer to (2.1) as to the recursive definition of {Xn} or to the 
recursive sequence {Xn}n. 

2.2 Example (Integer powers). If q E IR and n E N, then qn is defined as the 
product of q by itself n times, 

qn:=qqq"'q, n times. 

However this is a costly definition: we need to recompute with an increasing number 
of multiplications every time we increase the exponent. A simpler way to define all 
expressions qn, n E N, is by the recursive definition 

(2.2) 

2.3 Example (Products). Let {an}, n :::: 0, be a sequence of real numbers. The 
product of the first n-terms of the sequence is 

n n ai:= al a2 ···an · 

i=l 

The sequence Xn := 0.1=0 aj, n :::: 0, is clearly defined recursively by 

(2.3) 



Figure 2.1. Pascal's triangle. 

TRIANGLE 
ARITHMI3Tlt2jJE. 
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2.4 Example (Factorial). For all n E N, the factorial n! of n is defined as 1 if n = 0 
and as the prodUct of the first n natural numbers 

n! := n(n - 1)(n - 2) ,,· 3·2 · 1 

if n 2: 1. All factorials are, in fact, defined by 

{
XO = 1, 

Xn+l = (n + 1)xn . 

2.5 Example (Sums). The sum of the first n + 1 terms of a sequence {an}n>o, of 
real numbers ao + al + ' " + an is denoted by -

The sequence Xn := Lj=o aj is defined by 

{
SO = ao, 

Sn+l = Sn + an+l '<In 2: O. 

In LJ=o aj , the integral variable j, which va.ries from 0 to n , just enumera.tes the 
elements to be summed: it is a bound variable: we clearly have 

n n n n+2 

2:>j = 2::>k = L aj+2 = L aj-2· 
j=O k=O j+2=0 j=2 

2.6 Example (Binomial coefficients and Newton's binomial). The binomial co­
efficients (see, for example, Chapter 4 of [GM1]) are defined by 

( n) := n! = n(n - 1)(n - 2) ... (n - j + 1) 
j j!(n-j)! j! ' 

'<Ij, 0 ~ j ~ n . 

It is clearly seen that for j, n E Nand 0 ~ j ~ n we have 
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" 

Figure 2.2. Pascal's triangle. 

G) = C) = 1, 

G) = (n: j) ' 
G) = G =~) + c: 1) , 1 ~ k ~ n , 

where the last formula is known as Pascal's formula. 

G) = (n: 1) = n, 

G)=yG=:), 

As an application of the induction principle let us give a proof of the binomial 
theorem 

n 

(a + b)n = L G)an-kbk , 'Va, bE IR 
k=O 

(2.4) 

(see, for example, 5.53 of [GM1]) , which makes no use of calculus. 
The claim (2.4) is trivial if either a or b is zero. If, say, a is nonzero, by multiplying 

and dividing by an, we see that (2.4) is equivalent to 

(2.5) 

Therefore it suffices to show that the sequence Xn := 2::.1=0 (j)h j satisfies the same 
recursive definition of (1 + h)n, i.e., 

{
XO = 1, 

x n+1 = (1 + h)xn 'Vn ~ O. 

Since in fact Xo = L~=o (~)hO = 1 and 



Figure 2.3. Blaise Pascal (1623- 1662) 
and the frontispiece of his 7'raite du tri­
angle arithmethique. 

on account of Pascal's formula, the claim is proved . 

a. Limit of a sequence 
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TRAITE 
DV TRIANGLE 

ARITHMETIQVE. 
A VEe QYELQVES A VTRES 

PETITS TRAITEZ SVR LA 

MESME MATHRE. 

P.r c%Oflp~lIr PAS C.A L . 

• A PAR I 5, 
Cbu CVILL.lVWa D!s .... l., ruc:WDf bcqutJ. 

1 Same Prefper. 
M. DC. LX V. 

The notion of limit of a sequence plays a fundamental role in analysis. 

2.7 Definition (of limit). Let {xn} be a sequence of real numbers and 
let L E R We say that {xn} tends to , or converges to L, or that L is 
the limit of {xn}, and we write 

Xn -> L or lim Xn = L 
n->oo 

if 

2.8 Proposition. lin -> 0 and (_l)n In -> O. 

2.9'. Show that that Xn -+ L if and only if [xn - L[ -+ O. 

2.10,. Show that the two claims in Proposition 2.8 are both equivalent to the 
Archimedean property. 
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A THE 

TREATISE A N A L YS T· , 
Concerning the OR, A 

PRINCIPLES 0 IS C OU RS E 
OF Addl'ClTcd to an 
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and POlaU of Faith. 

By the AVTHO .. of fW Mi •• " PlJi!tJ"c,r. 

By 6<o'f,' Btr*'~' M. A. Fellow of 
rinitJ-Co 'kgeJ Dublin. F,,~/t!.:f~~:;r ::!,,','.z~ '::,7.:',,-:f,'t:. 

,}",'I')'. $.Maa.t.riL,. f . 

DVBLIN: 
LO NDO N: 

Prinrcdby AAIlONRUAIIIS, fOt'Ju uu 
h l' T A T,BookIcllerin Sl",."·,,,..,111O. 

Printed for J. TOM to M ia Ihe SIT ••. 1714. 

Figure 2.4. Frontispieces of A Treatise concerning the principles of human knowledge 
and of The Analyst by George Berkeley (1685-1753) . 

2.11 Definition. We say that {xn} diverges or tends to +00, or that +00 
is the limit of {xn}, and we write 

Xn ~ +00 or lim Xn = +00 
n-+oo 

if 
'i M > ° :3 1/ E N such that Xn > M 'in 2: 1/. 

We say that {xn} diverges or tends to -00, or that -00 is the limit of 
{xn }, and we write 

Xn ~-oo 

if 

or lim Xn =-00 
n-+oo 

'iM > ° :3 1/ E N such that Xn < -M 'in 2: 1/. 

Finally we say that {xn} has a limit if {xn} converges or diverges. 

h. Properties of limits and calculus 

We may interpret the limit of a sequence as the limit of a function. In 
fact, given {an}, fix an interval [XO,q[, q E i: (say [O,+oo[), and a strictly 
increasing sequence {xn} in [xo,q[ with Xn ~ q (say Xn = n if q = +00), 
and define the step function CPa : [Xo, q[~ IR by 

if 
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2.12 Proposition. an -t L E R if and only if CPa (x) -t L as x -t q-. 

2.13 ~. Prove Proposition 2.12. 

2.14~. Let {an}, {bn} be two sequences, {Xn} as above, and let 'Pa, 'Pb be the corre­
sponding functions. Show that 

o 'Pa+b(x) = 'Pa(x) + 'Pb(X), 
o 'Pab(X) = 'Pa(X)'Pb(X), 

Proposition 2.12 and Exercise 2.14 allow us to specialize properties and 
results we have already proved for limits of functions to limits of sequences. 
We however add the simple direct proofs, which are similar to the ones of 
the limits of functions (see, for example, Chapter 2 of [GM1)). In fact one 
might want to develop first the theory of limits of sequences and then the 
theory of limits of functions. As we shall see in Theorem 2.46 the two 
approaches are completely equivalent. 

2.15 Proposition. We have: 

(i) (UNIQUENESS) A sequence cannot have more than one limit. 
(ii) (BOUNDEDNESS) If {xn} converges, then {xn} is bounded. 

(iii) (CONSTANCY OF SIGN) Suppose that {Xn} has limit L E JR.. 
a) If L > 0 (respectively L < 0), then there exists n such that 

Xn > 0 (respectively Xn < 0) for all n ~ n. 
b) If there exists n such that Xn 2:: 0 (respectively Xn :::; 0) for all 

n ~ n, then L ~ 0 (respectively L :::; 0). 

Proof. (i) Suppose Xn -+ L1, Xn -+ L2, and L1 I- L2. If L1, L2 E JR, then for f := 
ILl - L21/2 we find Xv such that IxI' - L11 < f and IxI' - L21 < L Therefore 

2f = ILl - L21 ::; ILl - xvi + IxI' - L21 < 2f, 

a contradiction. The cases in which L1 and/or L2 are infinity are similar. 
(ii) Let {Xn} converge to L. By definition, choosing f = 1, we find n such that IXn -LI < 
1 for all n ~ n. In particular IXnl ::; IXn - LI + ILl < 1 + ILl for n ~ n. Hence 

M:= IX11 + IX21 + ... + 1:1:,,-11 + ILl + 1 

is an upper bound for {Ixn I}· 
(iii) Suppose L > O. From the definition of limit with f = L/2, we find n E N such that 
IXn - LI < L/2 for all n ~ n, that is, 0 < L/2 "" L - L/2 < Xn < 3L/2, which proves 
(a). By contradiction one then sees that (b) is equivalent to (a). 0 

2.16 ~ Sequences need not have limits. ShQW that Xn := (-l)n has no limit as 
n~oo. 

2.11~. Show that, if Xn -+ Land Xn > 0 "In, then L need not be positive. 

2.18 Proposition (Squeezing and comparison test). Let {an}, {bn } 

and {cn } be three sequences. Suppose that there exists n such that an :::; 

bn :::; Cn \:In ~ n. If an -t Land Cn -t L, then bn -t L. 
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Proof. Suppose L E lR; we leave to the reader the discussion of the cases L = ±oo. 
Given € > ° we find n. such that L - € < an < L + € and L - € < Cn < L + €. Since 
an ~ bn ~ Cn for all n 2: n, we conclude that L - € < bn < L + € for all n 2: max(n, n.), 
that is bn -. L. D 

In the applications, Proposition 2.18 is often used in the following version. 

2.19 Corollary. Let {xn}, {Yn} be two sequences and let L E JR. If 

3 n such that IXn - LI :::; Yn, "In?: n, and Yn -0, 

then Xn - L. If 

3 n such that Xn :::; Yn "In ?: n, and Xn - +00, 

then Yn - +00. 

2.20 Proposition. Suppose {xn} and {Yn} have limits respectively Rand 
min iit Then 

(i) If R + m is well defined in iR, then Xn + Yn - R + m. 
(ii) If Rm is well defined in iR, then XnYn - Rm. 

(iii) If Rim is well defined in iR, then xnlYn - Rim. 
(iv) If Yn - 0 and Yn > 0 for all n, then llYn - +00. 

Proof. We prove (i) in the case f, mER The reader is asked to discuss the other cases. 
Given € > ° we find nx and ny such that 

IXn - fl < € for all n 2: nx IYn - ml < € for all n 2: ny, 

hence for n 2: n := max(nx,ny), the two inequalities IXn - fl < € and IYn - ml < € 

hold. By the triangle inequality we then infer 

IXn - f + Yn - ml ~ IXn - fl + IYn - ml < € + € = 2€ 

which yields the conclusion, since € is arbitrary. 

eii) If f, mE JR we write 

for all n 2: n, 

where K is an upper bound for {Ixnl} (see, for example, Proposition 2.15). This yields 
the conclusion. The cases f = ±oo and m = ±oo or m # 0, are simpler. 

(iii) If f, m E JR, m # 0, it suffices to notice that 

I Xn _ .!...I = I mXn - fm + fm - fYn I ~ _1_ (Ixn - fl + 1l lYn - ml) 
Yn m mYn IYn I Iml 

to conclude the proof. (iv) We ask the reader to prove it. D 
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EXERCICES D'ANALYSE 

PHYSIQUE IATUIATIQUE, 

Pu ...... _ £-.. c.uscUY, _._ .. _ .. _ .... __ ... _-_ .. --_ .. _ .. _----.. _ .. _-.... 

PARIS, 

BACHEL.I.ER, 1 t1'IUilEU)i-LIBI\All\.P. 
~C """"_" __ ' __ '''I_ .... 

'''~. nil!! ~"ln'.'" ... 5$, 

Figure 2.5. The frontispiece of Exercices 
d'Analyse et de Physique Mathematique 
by Augustin-Louis Cauchy (1789-1857) . 

c. Limits of monotone sequences 

1841 

2.21 Definition. A sequence {xn} of real numbers is said to be 

o bounded above if:3 c E lR such that Xn :::; c 'Vn E N, 
o bounded below if:3 c E lR such that Xn ~ c 'Vn EN, 
o bounded if:3 c E lR such that IXn I :::; c 'Vn EN, 
o increasing if'Vn we have Xn :::; Xn+b 
o decreasing if'Vn we have Xn ~ Xn+b 
o strictly increasing if'Vn we have Xn < Xn+l ' 
o strictly decreasing if'Vn we have Xn > Xn+b 
o monotone if it is increasing or decreasing, 
o strictly monotone if it is strictly increasing or strictly decreasing. 

Recall that we write 

sup A = +00 (respectively inf A = -00) 

if A is not bounded above (respectively below). An important consequence 
of the continuity of the reals, on account of Proposition 2.12 above and of 
Proposition 2.30 of [GM1] or directly, is 

2.22 Proposition (Limits of monotone sequences). All monotonic se­
quences have limits. More precisely, if {xn} is increasing, then Xn -+ 

sUPn{xn}, while if {xn} is decreasing, Xn -+ infn{xn }· 

Proof. Suppose {Xn} is increasing, and let L := sUPn {xn}, that we assume to be a real 
minimizer. Given £ > 0, the properties of the supremum read 

(i) Xn:S L, 'in , 
(ii) 3ne such that L - £ < x n . ' 
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Since {Xn} is increasing, xn, ~ Xn for all n ~ n., hence 

for all n ~ n., 

that is, Xn -> L, since t: is arbitrary. We ask the reader to prove the other cases. 0 

d. Sequences and supremum 

By comparing the properties that characterize the supremum (or infimum), 
and the definition of limit we readily see 

2.23 Proposition. Let A c IR be nonempty. A number L E IR is the 
supremum sup A of A if and only if 

(i) L is an upper bound of A, 
(ii) there exists a sequence {xn} C A that converges to L. 

A number L E IR is the infimum of A if and only if 

(i) L is a lower bound of A, 
(ii) there exists a sequence {xn} C A that converges to L. 

Notice that sup A = +00 if and only if there exists a sequence {xn} 
with values in A that diverges to +00, in fact sup A = +00 is equivalent 
to the unboundedness of A, i.e., to 

'tin > 0 3xn E A such that Xn > n. 

Similarly inf A = -00 if and only if there is a sequence of points in A that 
diverges to -00. In conclusion, regardless of boundedness of A, i.e., if A is 
nonempty, we can always claim the existence of a maximizing sequence, i.e., 
a sequence {xn} C A that tends to sup A, and of a minimizing sequence, 
i.e., a sequence {xn} that tends to inf A. 

2.24 ~. More precisely, prove the following two propositions: 

Proposition. Let A be a nonempty subset of R Then there exists an increasing se­
quence {Xn} C A that converges to supA. Moreover we can choose {Xn} to be strictly 
increasing if A has no maximum or to be constant if A has maximum. 

Proposition. Every real number is the limit of a monotone sequence of rational num­
bers. 

e. Subsequences 

Of particular relevance is the notion of subsequence of a sequence. If {xn} is 
a sequence, a subsequence of {xn} is a new sequence obtained by choosing 
its values among the values of {xn}, however not randomly, but keeping a 
strict order on the indices. 
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2.25 Definition. We say that {Yn} is a subsequence of {xn} if there is a 
function k : N ---. N strictly increasing, that is a sequence of nonnegative 
integers with kl < k2 < k3 < ... , such that 

'<InEN. 

2.26 Example. The first terms of the sequence {l/n} are given by 

1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, .... 

The terms 1, 1/3, 1/4, 1/7 may be the first terms of a subsequence of {l/n}, while no 
subsequence of {l/n} can start with 1, 1/3, 1/4, 1/2, .... 

2.27~. Notice that k n ~ n "In, since k : N --; N is strictly increasing. 

2.28 Proposition. If {xn} has limit L E iR, then any subsequence of 
{xn} has the same limit L. 

Proof. Suppose L E JR, and let E > O. By the definition of limit there exists n. such 
that IXn - LI < E for all n ~ n •. Since kn ~ n, we also have IXkn - LI < E for all n ~ n., 
i.e., Xkn --; L, E being arbitrary. The proofs in the cases L = ±oo are similar. 0 

In particular if {xn} has two subsequences with different limits, then 
{xn} has no limit. 

The following two examples, though artificially simple, may serve to 
illustrate the usefulness of Proposition 2.28. 

2.29 Example. The sequence 1/n2 ...... 0 converges to zero, since it is a subsequence 
of {l/n} (the selection map being k n = n 2 ). Similarly 1/2n ...... O. 

2.30 Example. In ...... O. In fact, since {1/ y'n} is decreasing it has a limit and 1/ y'n ...... 
i, i E R On the other hand {l/n} is a subsequence of {1y'n} (the selection map being 
kn = n 2 ), hence l/n ...... i, consequently i = 0, since the limit is unique. 

2.2 Equivalent Formulations of the 
Continuity Axiom 
a. The principle of nested intervals or Cantor's principle 

2.31 Theorem (Cantor's intersection theorem). Let Cn = [an, bnl 
be a sequence of closed intervals of lR. such that 

'<In E No 

Then there exists at least a point x common to all intervals, x E n~=l Cn. 

Proof. Clearly we have 

(i) al :::; a2 :::; a3 :::; "', i.e., the sequence {an} is increasing. 
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(ii) b1 ~ b2 ~ b3 ~ •.• , i.e., the sequence {bn } is decreasing. 
(iii) an :::; bm for all n and m. 

Consequently {an} and {bn} are bounded monotone sequences, by Propo­
sition 2.22 they have finite limits, an ii, bn 1 L, and we have 

Vn,m E N. 

In particular 
00 

[i,L] c n en. 
n=l 

o 

2.32,. Show that in the proof of Theorem 2.31 we have [i, L] = n~=l en. 

h. Cauchy criterion 
Except for monotone sequences we cannot state that a sequence converges 
without involving its limit in advance. 

2.33 Definition. We say that {xn} is a Cauchy or fundamental sequence 
if 

"If. 3 n such that IXh - xkl < f. Vh, k ~ n. 

To a given sequence {xn}, we associate a new sequence {dn} defined 
by 

dn := sup IXh - xkl· 
h,k~n 

(2.7) 

Notice that dk can be understood as the length of the interval spanned by 
all the elements of the sequence {xn} but the first k. Definition 2.33 yields 

2.34 Proposition. A sequence {xn} is a Cauchy sequence if and only if 
the corresponding sequence {dn } in (2.7) tends to zero. 

If Xn ---+ i, then dearly for any f. > 0 we have IXn - xml :::; IXn - II + 
IXm - II < f. provided n, m are large enough, i.e., n, m ~ n in such a way 
that IXn -ll < f./2 "In ~ n. In other words: every convergent sequence is a 
Cauchy sequence. 

It is an important fact that the opposite holds true. 

2.35 Theorem (Cauchy's criterion). A real sequence is convergent if 
and only if it is a Cauchy sequence. 

Proof. It remains to prove that Cauchy's sequences are convergent. We 
first show that Cauchy's sequences are bounded. In fact, choosing f. = 1, 
we find n such that 

IXn - xnl < 1 Vn~n. 
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n 

Figure 2.6. lim inf and lim sup. 

An upper bound for {Ixnl} is then given by IXII + IX21 + ... + Ix .. 1 + 1. 
Define now for n = 1, 2, 3, ... 

and observe that {en}, {Ln} are sequences of real numbers, {xn} being 
bounded. Moreover {en} is increasing, {Ln} is decreasing and en ::; Ln 
Vn E N. By Proposition 2.22 we have en ie, Ln 1 L, and 

VnEN. 

Since {xn} is a Cauchy sequence and 

Ln - en = sup IXh - xkl, 
h,k'2:n 

we get Ln - en --t 0 and therefore e = L =: x E JR. Let us finally prove 
that Xn --t X. Fix f > 0 and let ne be such that x - en, and Ln, - x be not 
greater than f. Since for all n ~ ne we have en, ::; Xn ::; Ln" we conclude 
that 

i.e., Xn --t X as n --t 00, f being arbitrary. D 

2.36 Remark. As we have seen, every real number is the limit of a strictly 
increasing (respectively decreasing) sequence of rational numbers. Consider 
the space of all Cauchy sequences of rational numbers in which we identify 
those Cauchy sequences {Pn} and {qn} if Pn - qn --t 0, i.e., if "they have 
the same limit." Cauchy's criterion then allows us, essentially, to identify 
this space with JR. 
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c. Upper and lower limits 
Consider any sequence {xn} C R The sequences {en} {Ln} previously 
defined by 

Ln := SUp{Xk} 
k?n 

are respectively an increasing sequence and a decreasing sequence of ex­
tended real numbers. Consequently they have limits in ~, 

We set 

liminfxn := lim en = lim inf{xd, 
n~(X) n~oo n-+oo k'2::,n 

limsupxn := lim Ln = lim SUp{Xk}, 
n--+oo n--+oo n-+oo k'2::.n 

and refer to them respectively as to the lower and upper limit or the limit 
inferior and the limit superior of {xn }. These new notions will be very 
useful in the sequel, here we confine ourselves to a few comments. 

2.37 Proposition. Every sequence in JR has an upper and lower limit in 
~. 

From the definition 

lim inf Xn ::; lim sup Xn, and liminf Xn = -limsup( -xn). 
n-+oo n-+oo n-+oo n-+oo 

Going to the proof of Cauchy's criterion, we also see 

2.38 Proposition. Let {xn} be a sequence in ~. Then Xn -t e E ~ if and 
only if 

lim inf Xn = lim sup Xn = e. 
n n 

The following proposition characterizes the upper limit of a bounded 
sequence. 

2.39 Proposition. Let {xn} be a sequence in JR. The number L E JR is 
the upper limit of {xn} if and only if 

(i) VE > 0 3 n such that Xn < L + E for all n 2: n, 
(ii) there exists a subsequence {Xkn } of {xn} that converges to L. 

Proof. Let L = limsuPn Xn E lR and prove that (i) (ii) hold. By definition L 
limn->oo sUPk2:n {Xk} hence for f > 0 there is n€ such that 

L-f<SUp{xd<L+f 
k2:n 

for n ? n •. 

Because of the properties of the supremum, the last inequalities hold if and only if 
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Xn ~ L + E for n 2: n., (2.8) 

for all n 2: n. there is k 2: n such that Xk > L - E. (2.9) 

Clearly (2.8) is (i). Let us show a subsequence {Xkn } of {Xn} converging to L. 
For E = 1 we choose n = n., and, on account of (2.9), we find kl > n. such that 
L - 1 < Xkl < L + 1. For E = 1/2 we choose n = max(kl + 1, n.) and again by (2.9) we 
find k2 2: kl + 1 > kl with k2 2: n. such that 

1 1 
L - 2 < Xk2 < L + 2· 

By induction we then find a subsequence {Xkn } of {Xn} such that IXkn - LI < ~ 'in 2: 1, 
hence converging to L. This proves (ii). 

Conversely, suppose that (i) and (ii) hold, and let E > O. From (i) we infer that 

sup{xd~L+E 
k~n 

'in 2: n 

and, since there is a subsequence that converges to L, 

SUp{Xk} 2: L - E 
k~n 

In conclusion there is n. such that 

for all k large enough. 

for n 2: n., 

that is, E being arbitrary, L is the upper limit of {Xn}. 

Similarly we have 

o 

2.40 Proposition. Let {xn} be a sequence of real numbers. The number 
L E IR is the lower limit of {xn} if and only if 

(i) "It > 0 :3 n such that Xn > L - t for n ~ n, 
(ii) there exists a subsequence {Xkn } of {Xn} that converges to L. 

Proof. We can give a direct proof following the scheme of the proof of Proposition 2.39 
or derived from Proposition 2.39, since 

liminfxn = -limsup(-xn ). 
n~+o.:> n-++oo 

o 

2.41 ... Show the following 

Proposition. Let {Xn} be a sequence in R 
(i) +00 is the upper limit of {Xn} if and only if {Xn} has a subsequence that diverges 

to +00. 

(ii) -00 is the upper limit of {Xn} if and only if {Xn} diverges to -00. 

(iii) -00 is the lower limit of {Xn} if and only if {Xn} has a subsequence that diverges 
to -00. 

(iv) +00 is the lower limit of {Xn} if and only if {Xn} diverges to +00. 

2.42 ... The limit values of a sequence {Xn} are the limits of the convergent subse­
quences of {xn }. Show that the upper limit (respectively the lower limit) is the supre­
mum (respectively the infimum) of the set of the limit values. 
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Figure 2.7. Bernhard Bolzano (1781-
1848) and the frontispiece of the work 
where Bolzano-Weierstrass theorem ap­
pears. 

d. Bolzano-Weierstrass theorem 
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Since every bounded sequence has a finite upper limit L and a subsequence 
converging to L, see Proposition 2.39, we can state 

2.43 Theorem (Bolzano-Weierstrass). Every bounded sequence of reals 
contains a convergent subsequence. 

e. The continuity property of the reals 

We have seen that the continuity of reals implies 

(i) the Archimedean property, 
(ii) existence of the limit of monotone sequences, 

(iii) Cantor's principle, 
(iv) Cauchy's criterion, 
(v) existence of upper and lower limits, 

(vi) that every bounded sequence has a convergent subsequence. 

Actually we also have 

2.44 Proposition. Let X be an ordered field . The following claims (i) 
and (ii) are equivalent. 

(i) The continuity axiom (C), 
(ii) The Archimedean principle and one among 

a) Cantor's principle, 
b) Cauchy's criterion, 
c) existence of limit of monotone sequences, 



2.3 Limits of Sequences and Continuity 47 

d) existence of the upper and lower limit of a sequence, 
e) every bounded sequence has a convergent subsequence. 

2.45 ~~. Show Proposition 2.44. [Hint: In order to show that every nonempty bounded 
set A has a supremum if the Archimedean property and one of the (a), (b), (c), (d) or 
(e) hold, it is convenient to take into account the following construction. Let A C lR be 
nonempty and bounded. Choose ao E A, an upper bound bo of A, and set c = (ao+bo)/2. 
If c is an upper bound of A, we set al := aO, bl := C; otherwise we can find d E A 
with d > c ~ ao and, in this case, we set al := d and bl = boo If we repeat the 
argument starting from al and bl instead of ao, bo, and continue this way, we construct 
two sequences {an} and ibn} such that for all n, an E A, bn is an upper bound of A, 
an ::; bn , an is increasing, bn is decreasing, and 

bn - an ::; (bo - ao)/2n . 

Using this construction and one of the (a), (b), (c), (d) or (e) it is not difficult to show 
the existence of the supremum of A: one needs the Archimedean property to show that 
the limits of {an} and ibn} are equal.] 

2.3 Limits of Sequences and 
Continuity 
a. Limits of sequences and limits of functions 
The definition of limit of a sequence in Section 2.2 and of limit of a function 
can be reduced one to the other. 

2.46 Theorem. Let f :]a, b[---t lR. be a function and Xo E [a, b]. The fol­
lowing two claims are equivalent: 

(i) f(x) ---t L E IR as x ---t Xo, x E]a, b[, 
(ii) for any sequence {xn} C]a,b[\{xo} withxn ---t Xo wehavef(xn) ---t L. 

Proof. We prove the theorem in the case L E lR. and leave the proof to the 
reader in the other cases. 
(i) ::::} (ii) Let 10 > O. By assumption 

:3 8 > 0: if x E]a, b[, x¥=- Xo and Ix - xol < 8, then If(x) - LI < f. (2.10) 

If {xn} converges toward xo, then there is an index II such that IXn -xol < 8 
for all n 2: II; since Xn ¥=- Xo, and Xn E]a, b[, (2.10) yields If(xn) - LI < 10 

for all n 2: II, that is f(xn) ---t L, 10 being arbitrary. 
(ii) ::::} (i) Assume that f(x) has no limit when x ---t Xo. Then there exist 
100> 0 and, for any given 8> 0, a point x E]a, b[\{xo} such that Ix-xol < 8 
while If(x) - LI > 100. Choosing 8 = 1,1/2,1/3, ... we define this way a 
sequence {xn} with values in ]a,b[\{xo} such that 

IXn - xol < l/n and If(xn) - LI > 100. 

In particular Xn ---t Xo and f(xn) does not converge to L: a contradiction. 
o 
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2.47 Example. Consider the sequence xn := y'nsin(l/y'n). Since I(x) = sin x/x --> 1 
as x -+ 0+ and Xn = I(l/y'n), Theorem 2.46 yields Xn -t 1. 

2.48 Example. Let I, 9 :]a, b[--> lR be two functions, Xo E [a, b], and I(x) --> L, g(x) --> 

M as x --> Xo x E]a, b[. We may prove that I(x) + g(x) --> L + M as x --> Xo as a 
consequence of Proposition 2.20. For any sequence {xn } C]a, b[\{xo}, which converges 
to xo, Theorem 2.46 yields I(xn) --> L, g(xn ) --> M, hence I(xn ) + g(xn ) --> L + M, 
according to Proposition 2.20. Again Theorem 2.46 then allows us to conclude that 

I(x) + g(x) --> L + M as x --> Xo, x E]a, b[. 

2.49 Example. Let us give another example proving the change of variable rule, 
Proposition 2.27 of [GMl]. 

Proposition. Let I : I -+ lR be a function defined on an interval I, let Xo be a point 
in I or one of its extremal points, and let I(x) -t L, L E iR, as x --> Xo. Let x(t) : J --> I 
be a function defined in an interval J onto I such that x(t) -+ Xo as t --> to, to being a 
point in J or one of its extremal points. If one of the following two conditions holds: 

(i) Xo E I and I is continuous at xo, 
(ii) x(t) never takes the value Xo for t i= to, 

then I(x(t)) --> Last --> to, t E J. 

Proof. Let {tn } be a sequence with values in J \ {to} that converges to to. Clearly 
{x(tn )} C I and, by Theorem 2.46, x(tn ) --> Xo. Let us prove that I(x(tn )) --> L. 

If x never takes the value Xo for t i= to, then x(tn ) C 1\ {xo} and therefore 
I(x(tn )) --> L by Theorem 2.46. 

If I(xo) = L, for the subsequence {Sn} of {tn } such that I(sn) i= Xo we have 
I(x(sn)) --> L on account of Theorem 2.46. Therefore for any € > 0 there exists n 
such that I/(x(xn )) - LI < e for any n 2: n such that x(tn ) i= xo. Since I(xo) = L, 
I/(x(tn )) - LI < e for all n 2: n. That is, I(x(tn )) --> L, € being arbitrary. 

Finally, since I(x(tn )) --> L for any sequence {xn } C J \ {to}, the claim follows 
applying once again Theorem 2.46. 0 

b. Continuity in terms of sequences 

Let f : [a, b] ---. lR be a function and Xo E [a, b]. We recall, see Chapter 2 of 
[GMI], that f is continuous at Xo, if f(x) ---. f(xo) as x ---. Xo, x E (a, b], 
or, in the E-8 language 

VE > 0 38 > 0 : if x E [a, b] and Ix - xol < 8, 

then If(x) - f(xo)1 < E. 

Theorem 2.46 yields at once 

2.50 Proposition. Let f : [a, b] ---. R f is continuous at Xo E [a, b] 
if and only if for every sequence {xn} C [a, bJ with Xn ---. Xo we have 
f(xn) ---. f(xo). 

In terms of sequences we can also give proofs of the intermediate value 
theorem and of Weierstrass's theorem that are more robust, i.e., that can 
be extended to more general contexts. 
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2.51 Theorem. Let f : [a, b) -t JR be a continuous function on [a, b). If 
f(a) < 0 and f(b) > 0, then there exists Xo E [a, b) such that f(xo) = O. 

Proof. Set ao := a, bo = band c := (ao + bo)/2. If f(c) = 0, then c is the 
zero Xo; otherwise we set 

{
a l := c, bl := b if f(c) < 0, 

al := a, bl := c if f(c) > O. 

The function f is continuous on lab bl ) C lao, bo), f(al) < 0 and f(bd > O. 
Repeating the argument with aI, bl instead of ao and bo, and proceeding 
this way, we either find c with f(c) = 0 after a finite number of steps, or 
we construct two sequences {an} and {bn} with the following properties: 

(i) ao = a, bo = b, 
(ii) an is increasing, bn is decreasing, 

(iii) f(an) < 0 and f(bn) > 0, 
(iv) Ibn - ani = !Ibn - l - an-II = 2-n lbo - aol· 

When n -t 00 an i Xo, bn 1 Yo, and Iyo - xol ~ Ibn - ani \In. Since by 
(iv) Ibn - ani -t 0, we in fact have Xo = Yo, and f being continuous, 
f(an) -t f(xo) and f(bn) -t f(xo). On the other hand, by the constancy 
of sign, according to (ii) we infer f(xo) ~ 0 and f(xo) ~ O. We therefore 
conclude that we must have f(xo) = o. 0 

2.52 Theorem (Weierstrass). Every continuous function f : [a, b)-t JR 
on a closed and bounded interval attains its maximum and its minimum 
value. 

Proof. Let us prove that f attains its minimum. Define E := f([a, b)) 
and let L := inf E and let {Yn} be a minimizing sequence for E, that 
is {Yn} C E and Yn -t L. Since E = f([a, b)), there is also a sequence 
{xn} C [a, b) such that f(x n) = Yn \In. The sequence {xn} is clearly 
bounded and therefore, by the Balzano-Weierstrass theorem, contains a 
subsequence {x k n } that converges to some point Xo E JR. Actually, [a, b) 
being a closed interval, Xo E [a, b). 

We shall now prove that Xo is a minimizer for f. Since {Xkn } is a 
subsequence of {xn}, from one side f(XkJ - Ykn -t L; on the other hand 
f(Xk n ) -t f(xo), f being continuous. Uniqueness of the limit yields f(xo) = 
L, that is the claim. 0 

2.4 Some Special Sequences 
In this section we discuss a number of sequences that turn out to be quite 
relevant for the sequel. 
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Figure 2.S. John Wallis (1616- 1703) and the frontispiece of his Opera Mathematica. 

a. Elementary limits 
2.53 Example (Geometric sequence). Let Xn := qn, n 2: 0, q E JR. If q = 1, then 
trivially qn = 1 'in and qn -> 1. If q = -1, then qn = (_I)n has no limit . 

Proposition. We have 

(i) qn -> 00 if q > 1, 
(ii) qn ---> 0 if Iql < 1, 

(iii) qn has no limit if q < -1. 

Proof. Let q > 1. Since qX -+ +00 as x ---> +00, x E JR (see, for example, [GMl]) , we 
conclude that qn ---> 00 by Theorem 2.46. 

For a direct proof, which makes no use of calculus, set q = 1 + h, h > 0, and from 
Newton's binomial, Example 2.6, or from Bernoulli's inequality, Example 1.34, we have 

thus qn -> 00 by the comparison test (see, for example, Proposition 2.18). 
If Iql < 1, we write Iql = 1/(1 + h) with h > 0 to find 

/q/ n < 1 < ~ -+ 0 
- (1 + h)n - nh 

thus qn ---> 0, again by the comparison test. Finally if q < -1, the sequence has no limit 
since its two subsequences q2n and q2n+1 have different limits 

o 

2.54 Example. ~ ---> 1. In fact, for x E JR, x > 0, we can write xl/x = exp (log x/x). 
Since the exponential function is continuous and log x/x ---> 0 as x ---> +00 (see, for 
example, [GMl]) , we then conclude that 

as x -+ +00. 
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Consequently :yin --+ 1. 
We may also proceed as follows. We observe that :yin:::: 1, therefore :yin =: 1 + hn , 

with hn :::: 0, that is 
(1 + hn)n = n. 

Using the binomial theorem, Example 2.6, we deduce 

n(n - 1) 2 n(n 1) 
n = (1 + hn)n = 1 + hn + positive terms > 1 + - h2 

2 - 2 n' 

which yields 

or 

o ::; hn = y'n - 1 ::; {!;, 
from which we get :yin --+ 1 since 1/ Vn --+ O. 

2.55 Example. ~ --+ 1 for all a > O. If a> 1, we have 

for n:::: a. 
Since :yin --+ 1, the squeezing test yields ~ --+ 1. If 0 < a < 1 we write 

1 
~=-

~ 
to get 

I . nr:: 1 1 
1m va = iff = - = 1. 

n-->oo 1 1 lim n _ 

n~oo Q. 

The claims in Examples 2.56 and 2.57 below are part of a series of 
results known as Cesaro theorems. 

2.56 Example. We have 

Proposition. If an --+ L, then ~ Ej=l aj --+ L. 

Proof. Assume L E lR and proceed similarly in the other cases. Given E > 0, we find n 
such that lai - LI < E for all i :::: n. On the other hand 

1 n 1 n 1 n 1- Lai - LI = 1- L(ai - L)I ::; - L lai - LI, 
n i=l n i=l n i=l 

hence for n > n, 

1 n 1 n-1 1 n 1 n-1 (n - n + I)E 1- L ai - LI ::; - L lai - LI + - L lai - LI ::; - L lai - LI + ; 
n i=l n i=l n i=n n i=l n 

thus we conclude that 1 ~ E~l ai - LI < 2E for n sufficiently large. o 

Notice that { ~ E~=l ai} may have a limit, while {an} has no limit, as the sequence 

{(-I)n} shows. 

2.57 Example. We have 
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Proposition. Let {an} be a sequence of positive numbers and let L E iR. If 

----> L, 

then ~ -+ L. 

Proof. Suppose 0 < L < 00; the cases L = 0 and L = +00 are simpler, and we leave 
them to the reader. Set for n 2:: 0, 

bn := log an+l 
an 

and observe that bn -+ log L and that 

1 1 ( -log(an) = - logao + (logal -logao) + (loga2 -logal) + ... 
n n 

+ (log an -log an-I)) 

1 1 n-l 
= -logao + - L bi. 

n n i=l 

Therefore ~ loge an) -+ 0 + log L, on account of Example 2.56. This proves the claim. 
Let us give a more direct proof which makes no use of logarithms. Let 0 < E < L. 

Then we can find n such that for all n 2:: n, 
(L - E) an < an+l < (L + E) an, 

and, by iteration, 

that is, 
forn2::n 

where 
and 

depend on E, but not on n. Since '\IB, V'C -+ 1, there is nl such that 

L - 2E < (L - E) '\IB, and 

for n 2:: nl. We therefore conclude for n 2:: max(n,nI), 
L - 2E < ~ < L + 2E, 

which yields the claim, since E is arbitrary. 

2.58 Example. Let Xn be the quotient of two polynomials at n, 

apnP + ap_lnP- l + ... + aln + ao 
Xn = , 

bqnq + bq_lnq- l + '" + bIn + bo 

o 

p and q being the degrees, that is, ap, bq i' O. Of course numerator and denominator 
diverge, but by factorizing n P in the numerator and n q in the denominator we find 

ap + ap-dt + ... + al pl_l + ao~ 
p-q n n 

Xn = nIl 1 
bq + bq-l n + ... + bI nq-1 + b01iJ 

The second factor, the largest fraction on the right, tends to ap/bq. We then conclude 
that 

{

+oo.sgn(ap/bq) 

Xn -+ ap/bq 

o 

ifp> q, 

ifp= q, 

ifp < q. 
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h. Powers, exponentials and factorials 
2.59 Example (Exponentials grow faster than powers). Let Xn := n k /qn with 
kEN and q > 1. We claim that 

n k 
- --+ O. 
qn 

For that, write q = 1 + h with h > 0 and apply the binomial theorem with n ~ k + 1 
to find 

( 
n ) > n(n - 1)(n - 2) ... (n - k) 

qn = (1 + h)n ~ k + 1 hk+l + positive terms - (k + I)! ' 

that is 
n k (k + 1)!nk 

0< - < . 
- qn - hk+ln(n - 1)(n - 2) ... (n - k) 

This yields the claim by comparison, since the right-hand side is the quotient of two 
polynomials respectively of degree k and k + 1, and thus tends to zero, according to 
Example 2.58. 

2.60 Example (Factorials grow faster than powers). Xn := n~ --+ O. For that 
observe that n! = n(n - 1)(n - 2)(n - 3) ... 3.2.1 ~ n(n - 1)(n - 2)(;:'" k) if n ~ k + 1. 
The comparison test and Example 2.59 then yield 

k nk 
o < ~ < --+ O. 

- n! - n(n - 1)··· (n - k) 

2.61 Example. Xn:= n!/nn --+ O. It suffices to observe that 

n! nn-I 1 1 -- ... -:::;-. 
n n n n 

2.62 Example (Factorials grow faster than exponentials). Xn:= ~ --+ O. This 
is trivial if 0 < q :::; 1. If q > 1, we observe that 

qn q q q ---
n! n n -1 1 

and that all factors qln with n > q are smaller than 1. Thus 

qn q q q q q 0< - = - - -- ... - =: c(q)-
- n! n [q) [q) - lIn 

for n ~ q, 

where [q) denotes the integer part of q, and this yields the result trivially. 

2.63 Example (Euler's number). For any x E IR we have 

lim (I+=)n=ex. 
n---+oo n 

(2.11) 

The claim is trivial if x = O. For x f. 0, recall that Dex = eX (see, for example, 
Section 4.3 of [GMI)), a claim which is equivalent to 

eX - 1 
lim -- = 1, 
x-+O x 

or to lim log(1 + x) = 1, 
x---+o x 

compare 4.3 of [GMl). By the change of variables y = lit, t > 0, this yields 

lim t log (1 + ~) = 1 
t->+oo t 

(2.12) 
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or 

lim (1+ ~)t =e, 
t+= t 

consequently 

lim (1+~)t=(lim (1+~)f)x=ex. 
t+= t t+= t 

Thus Theorem 2.46 yields (2.11). 
From (2.11) we get in particular 

e = lim (1 + ~)n (2.13) 
n-+oo n 

which in fact is trivially equivalent to (2.11). In Section 2.5 below we will deduce (2.12), 
and consequently (2.11), directly from (2.13) making no use of calculus. 

2.64 Example (Compound interest). If d is the rate of interest per cent and inter­
ests are capitalized every year, the accumulated amount of an original capital x after n 
years is given by 

{

XO = x, 

X n+l = xn(1 + d), 

which yields 
Xn = x(1 + d)n. 

If the interests are capitalized N times per year, then we have 

Xn=X(1+ !)Nn 
and for a continuous capitalization, 

. ( d )Nn nd Xn := x hm 1 + - = xe , 
N-->= N 

according to Example 2.63. 

2.65 Example (Sum of the terms of a geometric progression). Let q E JR. Let 
us compute the sum 

n 

Gq(n):= ~qj =1+q+l+···+qn. 
j=O 

If q = 1, then Gl(n) = n + 1. For q # 1 the following formula holds: 

n . 1 _ qn+l 
Gq(n):=~qJ= , 

1-q 
'<in ~ 0 

j=O 

as it is easily seen multiplying both sides by 1 - q, 

n n n 

(1 - q)Gq(n) = (1 - q) ~ qj = ~ qj - q ~ qj 
j=o j=o j=o 

(2.14) 

= 1 + q + q2 + ... + qn _ q _ q2 _ q3 _ ... _ qn+l = 1 _ qn+l. 

Formula (2.14) yields 

{
+~ if q ~ 1, 

Gq(n) ---> -- if Iql < 1, 
1-q 

does not exist if q :::; -1. 

(2.15) 
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Figure 2.9. The frontispiece of Arith­
metica infinitorum by John Wallis 
(1616-1703). 

c. Wallis and Stirling formulas 

'feb.nnis W.liifo. s s. 1b. D. 
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M.atllcCCOII Ptob1cmua. 

orONll, 
Tnt. LEON: LICRF IELD A(.I.~mle TrPOsr' Fbi. 

IDfK'U THO. ROB INSON . .I", 1 6~'. 

2.66 Example (Wallis's formula). For n = 1,2, ... , define I n by 

("/2 
I n := Jo sinn x dx. 

Since an integral of sinn x, In (x), is given (see, for example, Example 4.34 of [GMl]) by 

{
IO(X) = x, h(x) = -cosx, 

I() _n-I I () sinn-1xcosx 
n x - -- n-2 X -

n n 

we have I n = In(7r/2) - In(O), i.e., 

"In ~ 2, 

7r 

Jo = 2' 
n-l 

I n = --In -2 "In ~ 2. 
n 

Consequently 

2n -1 2n - 3 
J2n == ---

2n 2n - 2 
and 

2n 2n-2 
J2n+l = ---

2n+12n-l 

which we can write, introducing the semifactorials 

(2.16) 

2 
- . 1 
3 ' 

(2n)!! := 2n(2n - 2)···4·2, (2n + 1)1! := (2n + 1)(2n - 1) .. ·5·3· 1, 

as 
J _ (2n - I)!! 7r 

2n - (2n)l\ 2' 
(2n)!! 

J2n+l = . 
(2n + 1)l\ 

Since sin k+1 x ::; sink x for all k ~ 1, we have Jk+l ::; h "Ik, hence 

1 < ~ = 2n + 1 ~ < 1 + ~. 
- hn+l 2n hn-l - 2n 

Consequently hn/ hn+l -+ 1: this is Wallis's formula for 7r: 
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71' lim [(2n)!!]2 = lim ~~~~ ... ~ (2n) 
2 n--+oo (2n + 1)!!(2n - 1)!! n--+oo 1335 (2n - 1) (2n + 1) 

(2.17) 

Since (2n)!! = 2nn! and (2n)!!(2n - 1)!! = (2n)!, we can rewrite (2.17) as 

71' • 24n(n!)4 
- = hm 
2 n--+oo (2n)!{2n + 1) 

or equivalently 

(2.18) 

2.67 Example (Stirling's formula). In many applications, notably in statistics, an 
estimate of the order of magnitude of n! for n large is useful. This estimate is provided 
by Stirling's formula 

n! 
lim = vz;;: 

n-+(X) nne-nfo 

or, in terms of asymptotic expansions, 

n! ~ nne-nv27l'n. 

In order to prove this, set 

and observe that the real function 

f(t) := 2 + t log(1 + t), 
2t 

n ~ 1, 

0< t < 1, 

is strictly increasing, f(t) -+ 1 as t -+ 0+ and f(t) ::; 1 + t 2 /4 since log(1 + t) ::; 
t - t2 /2 + t3 /3. Therefore 

an 1 ( 1) n+l/2 1 2 1::; -- = - 1 + - = -exp (f(1/n» ::; e1/(4n ). 
an+l e n e 

(2.19) 

From (2.19) we see that {an} is strictly decreasing, thus it converges to a limit L, L ~ 0, 
and that L > 0 since ane- 1/ n is strictly increasing to L. In order to compute L, we 
observe that 

(n!)222n 

(2n)!fo' 

Passing to the limit and taking into account Wallis's formula (2.18), we find 

Notice that the limits 

i.e., L = vz;;:. 

~ -+ {o if a > e, 
nnan +00 if a < e 

are easy to obtain, instead. In fact, if an := n::~n' we have 

(n + 1)n! 

an+l = (n + 1)n71an+
1 = ~ (1 + .!.) n -+ :.. 

an ~ a n a 
nnan 

This implies that {an} grows or decays exponentially fast if a < e or a > e respectively. 
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d. Numerical integration 

Let f : [a, b] -> lR. be a Riemann integrable function, and a = Xo < Xl < 
... < Xn = b be a subdivision of [a, b]. Then the integral of f, see, e.g., 
Section 3.2.1 of [GM1], is the limit of the sums 

n-l 

2:)Xi+1 - xi)f(~'i) 
i=O 

when the length SUPi IXi+1-xil of the partition a = Xo < Xl < '" < Xn = b 
tends to zero, ~ being any point chosen in [Xi, Xi+1]' 

This allows us to find approximate formulas for the integral of f. 

2.68 The rectangle rule. Divide [a, b) into N equal parts by means of the subdivi­
sion Xi = a + i b-r/, i = 0, ... , N, and choose €i := (Xi + xi+l)/2. Then we have 

b b N-l l f(x)dx = ~ a ~ f«i) + 0(1) as N --> 00. 

Assuming that I is regular, it is possible to estimate the error 

l
b b N-l 

E(h) := I(x) dx - ---=.!!:. L I(€i) 
a N i=O 

in terms of h := (b - a)/N. Suppose for instance that f E Cl([a, b» then 

IE(h)1 ::; ~l l~i+l I/(x) _ lei \Xi+l) I dx 

::; ~l sup 1/'ll
xi

+
1 

Ix _ Xi + Xi+ll dx 
i=O )Xi,Xi+d Xi 2 
N-l 

= ~ L sup 1/'1 (Xi+l - Xi)2 
2 i=O )Xi,Xi+d 

= sup 1/'1 (b - a)2 = (b - a) sup 1/'1 !!.. 
)a,b[ 2N )a,b[ 2 

2.69 The trapezoid formula. Here we choose as approximate value of the integral 
the integral of the piecewise interpolate T of I at the points Xi := a + i bl/ ' that is of 

/(X) := I(Xi) + I(Xi+l) - I(Xi) (x - Xi), 
h 

Xi := a + hi, 

Therefore 

rb T dx = (b - a) ~l I(Xi) + I(Xi+1) . 

ia N i=O 2 

If I is of class C 2 , by integrating by parts twice and using that /(Xi) = I(Xi) Vi, 
we find 

l

Xi+l - 1 lXi+ 1 /I 
(f - f) dx = - (x - Xi)(X - Xi+l)f (x) dx, 

Xi 2 Xi 

hence, being as above h := (b - a)/N, 
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Figure 2.10. 

1 I "I ( 3 1 " 3 - sup I x,+l - x,) = - sup II I h . 
12 ]Xi,xHd 12 ]x",",+d 

In conclusion we have 

1 
fb I dx - fb j dxl ~ sup 11"1 (b - at 

Ja Ja ]a,bi 12N 

or 
b N-1 ( ) 

1 Idx=b-aElxi +f(Xi+1)+O(~). 
a N i=O 2 N 

2.70 Simpson's rule. Instead of interpolating with a piecewise linear function, we 
want to interpolate with a quadratic function. Let I : [-1,1] -+ lRj we look for 1(t) = 
At2 + Bt+ C, t E [-1,1]' in such a way that 1(-1) = 1(-1),1(0) = 1(0),1(1) = 1(1). 
We easily find 

A = f(-I) + 1(1) - 1(0), 
2 

consequently 

B = 1(1) - 1(-1) 
2 ' 

f1 jdt= ~(t(-I)+4/(0)+/Cl»). 1-1 3 

C = 1(0), 

Set now xk := a + kh, h := bl/, N = 2n + 1 odd, k = 0, ... ,2n. From the above we 
then infer Cby changing variable) 

that is 

Ib jdx = !!:.(tCa) +2 I: 1(2k) +4 I: 1(2k + 1) + I(b»). 
a 3 k=l k=O 

In conclusion we find 
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lab Idx= lab Idx+E(h) 

known as Simpson's rule. One can show that, if I E C 4 ([a, b]), then 

IE(h)1 ~ sup 1/(4)1 (b --; a)5, 
Ja,b[ 180N4 

(2.20) 

in particular E(h) = O(h4) as h -+ O. 

2.71 ". Prove (2.20). [Hint: Set 

l
x+h 

( h R(h) = _ I(x) - - (I(x - h) + 4/(x) + I(x + h») dx. 
x-h 3 

Show that R"'(h) = -~h2/(4)(e) for some e E]X - h,x + hr. From R(O) = R'(O) = 

R"(O) = 0 infer then that R(h) = - ~~ 1(4) (e) for some e E [x - h, x + h], and hence 
the result.] 

2.5 An Alternative Definition of 
Exponentials and Logarithms 
In [GMl) we defined Euler's number e, the exponential and logarithm 
functions by making use of the differential and integral calculus. For the 
sake of completeness we give in this section a more direct, though slightly 
more involved, definition, which makes use of the calculus of limits and 
of continuous functions. The procedure is as follows: we define aX for x 
rational, we then extend "by continuity" aX : Q _ JR. to a continuous 
function from JR. - JR.. Then we define the logarithm with base a as the 
inverse of aX, which turns out to be continuous because of 2.48 of [GMl). 

a. A definition of aaJ using continuity 

2.72 Rational powers. Let a > 1. Taking into account the existence of 
the n-th root of a real number, we define ar when r is rational by 

ar := {!Oi, if r = plq E Qj (2.21) 

in fact, it is not difficult to show that the result of the operation f!Qj 
depends only on the quotient plq and not on p and q (if ~ = f" then 

f!Qj = W). Thus aP/
q = f!Qj = (v'a)P. When a < 1, we set, still for 

r E Q, 

ar := G) -r, 

and, if a = 1, we set ar = F = 1 Vr E Q. This way ar is defined for a > 0 
and r E Q. 
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The computational rules for the exponentials of rational numbers are 
now an easy consequence: if x, y E JR, x, y > 0 and r, sEQ, we have 

xryr = (xy)r, xrxs = x r+s , (xr)s ="Xrs , 

if 0 < x < y and r > 0, then xr < yr, 

if 0 < x < 1 and r < s, then X
S < x r

, 

if x > 1 and r < s, then xr < x S
, 

(2.22) 

2.73 Real powers. The idea is to define aX when a E JR, a > 0 and 
x E JR as the limit ofaxn where {xn } is a sequence of rational numbers 
converging to x. For that we need, and in fact it suffices to show that: 

(i) the sequence aXn converges if Xn -+ x, 
(ii) the limit ofaxn does not depend on {xn } itself but only on the limit 

x. 

Finally, we need to show that the new function aX agrees with the old one 
if x is rational. 

Suppose a > 1. Choosing b := a1/ n - 1 in Bernoulli's inequality, 

(1 + b)n ~ 1 + nb, Vn E N, Vb ~ -1, 

we deduce 

Also, it is easily seen that 

a1/n _ 1 < a-I 
- n 

Vr E Q, 

(2.23) 

(2.24) 

since a > 1. The inequalities (2.23) and (2.24) then yield the following. 

2.74 Lemma. Ifrn is a sequence of rationals with rn -+ 0, then arn -+ 1. 

2.75 Proposition. For any sequence {xn } C Q with Xn -+ x, the se­
quence aXn has a limit that depends only on x. 

Proof. If {Xn} is an increasing sequence that converges to x, then {aXn } is increasing 
and bounded, therefore has a limit, aXn -> L. Consider now any sequence of rationals 
{Yn} so that Yn -> x, then 

Since aXn -> Land Yn - Xn -> 0, Lemma 2.74 and the comparison test yield aYn -> L. 
o 
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Because of Proposition 2.75, the function 

(2.25) 

is well defined for any X; moreover A(x) = aX for any X E Q: in fact, if we 
choose Xn := x 'lin, then 

A(x) = (by (2.25)) = lim aXn = aX (by (2.21)). 
n-oo 

Therefore A( x) extends to the reals the function aX, x E Q, and will be 
denoted again by aX, x E R 

Then one defines aX when 0 < a < 1 by 

(1)-X aX := _ 
a 

and aX = F := 1 if a = 1. 

2.76 Real powers: laws of exponents. If we take into account how 
the operation of limit behaves with respect to the algebraic operations 
and the order of JR., it is easy to extend the claims (2.22) and (2.24) to the 
case in which r, S E JR.. 

2. 77~. Show that (2.22) and (2.24) hold for T, 8 E lR. 

2.78 Continuity of the exponential. The argument in Proposition 
2.75 shows also the following. 

2.79 Proposition. If {xn} C JR., Xn ---+ x, then aXn ---+ aX. 

Theorem 2.46 then implies that aX is a continuous function in JR., Since for 
a > 1, an ---+ +00 as n ---+ 00 and aX, x E JR., is monotonically increasing, 
we also infer 

infax = 0, 
xEIR 

sup aX = +00, 
xEIR 

O<at-1. 

This way the exponential function is defined for all a > 0 and all x E JR. 
and agrees with the exponential function defined in [GMl], since both are 
continuous and agree on rationals. 
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b. Euler's number e 

Before proving the differentiability of the exponential function aX, we need 
a definition of the Euler number e. 

2.80 Proposition. The sequence Xn .- (1 + l/n)n is increasing and 
bounded, 2 :::; Xn < 3. 

Proof. In fact 

n 1( 1)( 2) ( k-1) =E,l-- 1-- ... 1---. 
k=O k. n n n 

Since each term in the sum increases with n and moreover, when n increases, new 
positive terms add to the sum, we infer that {Xn} is strictly increasing and Xn ~ Xl = 2 
"In. Equality (2.26) yields also 

(1+ .!.)n ~ t~. 
n k=O k. 

On the other hand 2k ~ k! for k ~ 4, therefore 

n 1 n . E -:;- ~ E TJ = -1 - 1/2 - 1/4 - 1/8 + G I / 2 (n) 
j=4 J. j==4 

< -1 - 1/2 - 1/4 - 1/8 + 2 = 1/8, 

if we take into account Example 2.65. We then conclude, for all n ~ 4, 

11 n 1 111 
Xn < 1 + 1 + - + - + E , < 1 + 1 + - + - + - < 2.9. 

- 2 6 k=4 k. 2 6 8 

o 

The sequence (1 + l/n)n has therefore a finite limit, as it is increasing 
and bounded. Set 

e:= lim (1 + ~)n, 
n-++oo n 

(2.27) 

and notice that 
2 < e < 2.9. 

c. Derivative of the exponential 

Finally, let us show directly that DaX = aX loge a. First we show that (2.27) 
yields 

2.81 Proposition. We have 

lim (1 + X)l/x = e. 
x-+O 

(2.28) 
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Proof. Of course we do not want to differentiate. Therefore we denote by [xl the integral 
part of x and observe that 

( 
1) [xl ( 1) x ( 1 ) [xl+l 1+-- < 1+- < 1+-

[xl + 1 - x - [xl 
and that 

( 
1 )n+l 

1 +;:; ...... e, and 

Given € > 0 we then find n E N such that 

e-€< (1+_I_)n and 
n+l ' 

and, on account of (2.29), 

e-€< (1+~r :Se+€ 
€ being arbitrary, this yields 

( 1 + _1_)n ...... e. 
n+l 

for x ~ n. 

lim (1 + .!.)X = e. 
X-+OCl x 

On the other hand, jf x < 0 and y = -x, 

for n ~ n, 

( 1) x ( 1) -y (Y) Y ( 1) Y 1+; = l- y = y-l = l+ y _l ' 

hence 
lim (1 + .!.)X = lim (1 + _1_)Y = e. 

x--oo x y_+oo Y - 1 

Changing variable x = l/y, from (2.30) and (2.31) we finally infer 

lim (1 + x)l/x = e. 
x_o± 

(2.29) 

(2.30) 

(2.31) 

o 

Since log x is continuous, as it is the inverse of a continuous function, 
(2.28) can be written as 

lim log(l + x) = 1 
x--+O x 

and, again changing variable, y = eX - 1, we get 

1
· eX - 1 1 
Im---= , 

x--+O X 

which yields that eX is differentiable and Dex eX, and also Dax 

aX loga x (see, for example, 4.3 and 4.4 of [GMl]). 

2.6 Summing Up 

Limit of sequences 
Definition 
Xn ...... L as n ...... 00 means: for every neighborhood V of L there is n such that Xn E V 
for all n ~ n. 
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Properties 
o UNIQUENESS. The limit is unique if it exists. 

o BOUNDEDNESS. If Xn -> L E JR, then {Xn} is bounded. 

o SQUEEZING TEST. If an ::; bn ::; cnand an -> Land Cn -> L, then also bn -> L. 

o COMPARISON TEST. If an ~ bn "In and bn -> +00, then also an -> +00. 
o CONSTANCY OF SIGN. If Xn -> Land L > 0, then Xn is positive for n large enough. If 

Xn ~ 0 and Xn -> L, then L ~ O. 

Limit of functions and limit of sequences 
o Let f :la, b[-> JR and Xo E [a, bl. Then f(x) -> LEi as x -> XO, x Ela, b[, if and only 

if f(xn) -> L for any sequence {Xn} Cla,b[\{xo} with Xn -> xo. 

o Let f : [a, bl -> JR. f is continuous at Xo E [a, bl if and only if f(xn) -> f(xo) for 
every sequence {Xn} C [a, bl with Xn -> Xo. 

Fundamental theorems 
{Xn} is a Cauchy sequence if "IE :3n such that IXh - xkl < E for all h, k ~ n. 

o MONOTONE SEQUENCES Every monotone sequence has limit in i. 

o MAXIMIZING AND MINIMIZING SEQUENCES For any nonempty A C JR there exist a max­
imizing sequence, that is, a sequence {Xn} C A with Xn -+ sup A, and a minimizing 
sequence, that is, a sequence {Xn} C A with Xn -> inf A. 

o CAUCHY'S CRITERION {Xn} is convergent if and only if {Xn} is a Cauchy sequence. 

o BOLZANO-WEIERSTRASS THEOREM Every bounded sequence contains a convergent 
subsequence. 

Upper and lower limits 

Definition 

liminfxn := lim inf {xd, 
n-+oo n--+oo k'2:n 

limsupxn:= lim sup{xd, 
n-+oo n-+oo k~n 

Properties 

o liminfn~oo xn, limsuPn~oo Xn always exist in i, and liminfn~oo Xn ::; limsuPn~oo Xn , 

o Xn -> L if and only if liminfn~oo Xn = limsuPn~oo Xn = L, 
o Let L E R L = limsuPn~oo Xn E JR if and only if 

(i) "IE > 0, :3 n such that Xn ::; L + E for all n ~ n, 
(ii) there is a subsequence {Xkn } of {Xn} such that Xkn -+ L. 

o Let L E R L = liminfn~oo Xn E JR if and only if 
(i) "IE> 0, :3 n such that Xn ~ L - E for all n ~ n, 

(ii) there is a subsequence {Xkn } of {Xn} such that Xkn -> L. 
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n {o if Iql < 1, q --> 
+00 if q > 1, 

\IIaI --> 1 \;fa ;6 0, 

qn 
-, --> ° \;fq 2: 0, n. 

t qj -+ 1/(1 - q) if Iql < 1, 
{

+oo if q 2: 1, 

j=O does not exist if q < -1, 

[(2n)!!j2 7r 
(WALLIS) (2n + 1)!!(2n - I)!! --> 2' 

n' 
(STIRLING) . = --> l. 

nn e-ny 27rn 

Figure 2.11. Some remarkable limits. 

2.7 Exercises 
2.82,. Let 

A:= {an E lRln EN}, 

C := {an + bn In EN}, 
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y'n --> 1, 

n k 
- --> 0, for kEN e q > 1, 
qn 

n! 
- -+0, nn 

( 1 + ;J n -+ eX \;fx E JR, 

22n(n!)2 
(WALLIS) ( )' '- -+ ..;:rr, 2n .yn 

B:= {bn E JRln EN}, 

D :== {anbn In EN}. 

(i) Show that supC:::; supA+supB. Give examples in which the inequality is strict. 
(ii) Assume an, bn 2: 0, \;fn and show that supD :::; supAsupB, observing that the 

inequality can be strict. 

2.83 ,. Find the infimum and the supremum of some of the following sets: 

{n - ~ In E N, n 2: I}, 

g - ~ lx, yE (0,1)}, 

{sinxlXE (0,7r/2)}, 

t2 ~ y21 x, y E JR \ (O,O)}, 

{ 1 - ~ In E N, n 2: 1 }, 

{(~)n+(_~)nlnEN}, 

{n2:mm2In,mEN, n, m>O}, 

{no e-
n2

1 n E N, n 2: I}, 0< > 0. 

2.84,. Show that .j21i, n, v'n2+2 are subsequences of y'n, that is, declare the se­
lection function. 

2.85 ,. Show that 

(
1 1 1 1 ) lim - + + + ... + = 2. 

n-+(x) n v'n41 v'n2+2 v'n2 + 2n 
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2.86". Compute, if they exist, the limits of some of the following sequences: 

n - sinn 

n+cosn' 

( 
1 )n! 1+ - , 
n 

~3n +5n , 

(cos ~r, 

sin(n) log(n) sin(l/n), 

'\13 + n + n 2 , 

~/Vn3+1, 
2n +3n 

n! 

J n + ,;n - J n - ,;n, 

(1+ :2r, 
C2n~6)n2 

(1+ ~r, 
,;n( v'n + 1 - v'n"='l), 

sin(l/n) 
1 - cos(l/n) , 

(sin ~r+*, 
(cosn + 3)n 

n 2 

3n+1 _ 3v'1+n2 
, 

1 
-log(n + n 2

), 
n 

n 

~8n3 - n- n' 

(1+ ~r, 
(1 + ~r2, 

2.87 ..... Compute, if they exist, the limits of the following sequences: 

2.88 ..... Let Xn := 11 - 1O-4n 2 1. Find the supremum and the infimum of the set 
A:= {Xn Ix; < 1- (Xn _1)2}. 

2.89 ..... Compute the upper and the lower limits of the following sequences: 

( 
(_I)n)n 

an := 1+ -n- , 

an := {~ n-2 
2n-9 

n odd, {
~ 

an := 2fo+3 
( _1)n/2 

n even, 

n even, n odd, 

an := distance between n and the closest square. 

2.90". Show that every sequence contains a monotone subsequence. 

2.91 ..... Show that {Xn} has limit if and only if every subsequence of {Xn} contains 
a further subsequence which has limit and all these limits are equal. 
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2.92 ~~. Show that ]R2, IR3 and in general]Rn are complete metric spaces. [Hint: Show 
that a sequence converges iff the sequences of its components converge.] 

2.93~. Discuss the following claims. 
(i) If {an} converges and {bn } does not converge, then {anbn } does not converge. 

(ii) If {an} and {bn } are monotonically increasing, then {anbn} is increasing. 

2.94~. Let an > 0 'In and an+1/an ..... L. Show that 

(i) an ..... 0 if 0 ~ L < 1, 
(ii) an ..... +00 if L > 1. 

2.95 ~ ~ Cesaro's theorems. Show that 

(i) liminfn an ~ liminfn ~ ~~=1 ai ~ limsuPn ~ ~~=1 ai·~ limsuPn an, 
(ii) liminfn(an - an-t) ~ liminfn ~ ~ limsuPn ~ ~ limsuPn(an - an-t)o 

In particular, in case {an - an-I} has limit, then 

lim an = lim (an - an-I). 
n-+oo n n-+oo 

(iii) If an 2: 0 'In, 

lim inf an ~ lim inf ~ fr ai ~ lim sup ~ fr ai ~ lim sup an i 
n--+oo n-+oo i=l n--+oo i=l n--+oo 

in particular, if {an} has limit, then 

lim ~ fr ai = lim an· 
n-+-DO 11-+00 

i=1 

2.96 ~. Discuss the convergence of the following sequences 

1 1 1 --+--+ ... +-, 
n+1 n+2 2n 

t;n 

I' n. 
sin ( 7rJ 4n2 + v'n). 

2.97~. Show that 

lim sin nx exists iff x = k7r, k E Z, 
n_oo 

lim cosnx exists iff x = 2k7r, k E Z. 
n->oo 

[Hint: Using the double-angle formula show that, if sin nx ..... L, then either L = 0 or 

L = ±¥i use then the addition formula for sin(n + 1)x to produce a contradiction if 

x'" k7r.] 

2.98 ~ Pythagorean algorithm. Set al = bi = 1, and for n 2: 1 

{
an+1 = an + bn , 

bn+1 = 2an + bn . 

Show that bn/an ..... v'2. [Hint: Show first that 
o an,bn 2: 2 'In 2: 2, 



68 2. Sequences of Real Numbers 

o {an} and ibn} are both strictly increasing, 
o an,bn -----t 00, 

o b; - 2a; = (_I)n.] 

2.99 ~ Heron's algorithm. Let Q be a positive number. Define recursively the se­
quence {Xn} by 

{

xo = Q > 0, 

Xn+1 = ~(Xn + xan)' 
(2.32) 

Show that Xn --+ va. Show also that the absolute error 5n := Xn - Va, verifies 5n+1 ~ 
2fo5~, that is 

"In ~ 0 and p ~ 1. 

[Hint: Observe that 

o Xn+1 - Va = 2;n (xn - Va? ~ 0, 
o {Xn} decreases.] 

2.10.0. ~~. Let c and Xo be positive real numbers. Show that the sequence defined 
inductively by 

Xn+1 = ~ (p - l)xn + ~1) 
P x~ 

converges to {Ye. 

2.10.1 ~ ~ Logarithm-arccosin algorithm. Consider the sequence 

8 n +l := 8 n 
8n+ Sn-1' 

(i) Fix x > O. Set 

B-1:= Hx2 - :2)' 
and prove that Sn --+ log x as n --+ 00. 

(ii) For x E [-1,1], set 

n =0,1, .... 

8-1 := xVI - x2, So := x 

and prove that Sn --+ arcsin X as n --+ 00. 

[Hint: (i) Show that 8n = S(2- n ) where S(h) := A (xh - x-h), (ii) show that 8n = 

R(2- n ) where R(h) := sin~ha) and a = arcsin x.] 

2.10.2 ~~. Given a, b > 0 set 

A(a,b) := ~, the arithmetic mean, 

G(a, b) := va,o, the geometric mean, 

H(a, b) := (a-1tb-1) -1 = ;~~, the harmonic mean. 

(i) Show that the sequences {Xn} and {Yn} defined recursively by 

{ 

xo = a, Yo = b, 

Xn+1 = A(xn, Yn), 

Yn+1 = G(xn, Yn) 

converge to the same limit, called the arithmetic-geometric mean of a and b. 



2.7 Exercises 69 

(ii) Show that the sequences {Xn} and {Yn} defined recursively by 

{ 

xo = a, Yo = b, 

Xn+i = H(xn, Yn), 

Yn+i = A(xn, Yn) 

both converge to the geometric mean G(a, b) of a and b. 

2.103 .... Stirling's formula. Set an := logn! - ! logn. Show that 

(i) f3/2log x dx < an < ft log x dx, 

(ii) On := (1 - fin log x dX) - an is decreasing and bounded below, thus has a limit 

o E JR, 
(iii) deduce that the rough formula holds 

[Hint: Compare with Example 2.67 and Section 7.4.] 

2.104 .... Singular perturbation. Let,: JR -+ R Show that 
(i) for any Y E JR and n E N the function 

has a minimum point X n , 

1 
(f(x) - y)2 + _x2 

n 

(ii) while {Xn} may be unbounded, the sequence {xnl,fii} is bounded, 
(iii) the sequence of minimum values 

has the limit as n -+ 00. 
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Leonardo Pisano 
(1170-1250), called Fibonacci 

Johannes de Sacrobosco Campanus of Novara 

(1220-1296) 

Jean Buridan Nicole d' Oresme 

(1195-1256) 

Albert of Saxony 

(1316-1390) 

Scipione del Ferro 

(1465-1526) 

(1295-1358) (1323-1382) 

Karl Feuerbach 

(1800-1834) 

Luca Pacioli 
(1445-1517) 

Nicolaus Copernicus 

(1473-1543) 

Colin MacLaurin 
(1698-1746) 

Johann Regiomontanus 

(1436-1476) 

Rudolf Stiffel 

(1487-1561) 

N iccolo Fontana Girolamo Cardano Lodovico Ferrari Rafael Bombelli 

(1526-1573) 

Christopher Clavi us 

(1537-1612) (1500-1557), called Tartaglia (1501-1576) (1522-1565) 

Fran<;ois Viete 

(1540-1603) 

Simon Stevin Bartholomeo Pitiscus 

John Napier 
(1550-1617) 

(1548-1620) 

Galileo Galilei 
(1564-1642) 

(1561-1613) 

Henry Briggs 
(1561-1630) 

Paul Guldin 

(1577-1643) 

Marin Mersenne Girard Desargues 

(1591-1661) 

Bonaventura Cavalieri 

(1588-1648 ) (1598-1647) 

Rene Descartes 
(1596-1650) 

Gilles de Roberval 

(1602-1675) 

Evangelista Torricelli 

(1608-1647) 

Pierre de Fermat 
(1601-1665) 

John Wallis 

(1616-1703) 

Christiaan Huygens 

(1629-1695) 

Vincenzo Viviani 

( 1622-1703) 

Pietro Mengah 

(1626-1686) 

[saae Barrow 

(1630-1677) 

Robert Hooke 

(1635-1703) 

Blaise Pascal 

(1623-1662) 

James Gregory 

(1638-1675) 

Sir Isaac Newton 
(1643-1727) 

Gottfried von Leibniz 
(1646-1716) 

Figure 2.12. A chronological table from Fibonacci to Newton and Leibniz. 



3. Integer Numbers: 
Congruences, Counting 
and Infinity 

In this chapter we collect a few complements to the theory of integers. 
In Section 3.1, after discussing Euclid's algorithm, and the fundamental 
theorem of arithmetic, we deal with Euler's function and some of its appli­
cations to public key cryptography. In Section 3.2 we introduce a few basic 
elements of combinatorics, that is, the calculus of arrangements of a finite 
number of objects. Finally, in Section 3.3, we illustrate the notion of cardi­
nality (or number of elements) of a (not necessarily finite) set introducing 
some of the concepts involved in Cantor's theory of infinity. 

3.1 Congruences 

3.1.1 Euclid's algorithm 

Any subset of the integers, which is bounded above, has a maximum (see, 
for example, Proposition 1.23). An easy consequence of this is division in 
the context of integers. 

3.1 Proposition. Let a, b E Z, b i= o. Then the number a uniquely de-
composes as 

a = qb+r (3.1) 

with q, r E Nand 0::::; r < Ibl. 

Proof. Suppose b > 0 and let q be the largest integer not greater than alb, 
which exists by (vi) Proposition 1.23. From p ::::; alb < p + 1 we get for 
T := a - qb that 0 ::::; T < b. 

If b < 0, choose p as the smallest integer not smaller than b/a: from 
p 2: alb > p - 1 we get for T := a - qb that 0 < T ::::; -b. 

It remains to prove that the decomposition is unique. If a = ql b + Tl = 
q2b + r2 with 0 < Tl, T2 < Ibl, then (q2 - ql)b = (Tl - T2): that is, Tl - T2 is 
an integral multiple of b. Since ITl - r21 < b, we conclude that rl - T2 = 0 
and in turn that ql = q2. 0 
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In (3.1) a is called the dividend, b the divisor, q the quotient and r the 
remainder. We write 

q =: allb, r =: a mod b, 

hence a = (allb) b + a mod b, \la, bE Z, b =f O. 
Let a, b E Z and b =f 0; we say that b divides a or that b is a divisor 

of a, if a is a multiple of b, that is, a = bq for some q E Z. In this case we 
write bla. Of course bla if and only if a mod b = 0, and, if a is a multiple of 
band b is a multiple of c, then a is a mUltiple of c. Moreover, if a and b are 
multiples of c, then ax + by is a multiple of c, too, \Ix, y E Z. In particular 
a and b are multiples of c if and only if a and a mod b are multiples of c. 

a. The greatest common divisor 
Let a, b E Z be nonzero integers. The set of common divisors of both a and 
b is nonempty and bounded. The largest of those numbers is called the 
greatest common factor or the greatest common divisor of a and b, and is 
denoted by 

g.c.d. (a, b). 

In other words, r E Z is the greatest common divisor to a and b if and 
only if 

o a and b are multiples of r, 
o if a and b are multiples of s, then s :5 r. 

Trivially g.c.d. (a, b) = g.c.d. (b, a) = g.c.d. (Ial, Ibl). Finally, we say that 
a, bE Z are prime to one another or coprime if g.c.d. (a, b) = 1. A number 
p is said to be prime if p > 1 and p has no positive divisor except 1 and p. 

3.2 ~. Show that 

(i) g.c.d. (a, b) = b if and only if b divides a. 
(ii) Let p be prime. Then either g.c.d. (a,p) = p, that is a is a multiple of p, or 

g.c.d. (a,p) = 1, that is a and p are coprime. 

We mentioned in Chapter 1 Euclid's algorithm as a method of finding 
a common submultiple to two magnitudes, discovering that in general it 
generates a process that never ends. When applied to two nonzero inte­
gers a and b, Euclid's algorithm stops after a finite number of steps and 
produces the greatest common divisor of a and b. 

3.3 Euclid's algorithm. Let a, b be positive integers with a > b. The 
algorithm consists in dividing the larger of the two numbers by the smaller, 
then the smaller by the remainder of the first division, then the remainder 
of the first division by the remainder of the second, and so on. Formally, 
we set ro := a, rl := b, and 
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#! /usr/bin/env python 

def euclid(a, b): 
rl, r2 = a, b 
while r2 != 0: 

rl, r2 = r2, rl mod r2 
return rl 

if __ name __ == ' __ main __ ': 
print euclid(168,14) 

Figure 3.1. Euclid's algorithm in Python. 

r2 := ro mod rl, 

r3 := rl mod r2, 

r4 := r2 mod r3, 

(3.2) 

Since ro > rl > r2 > r3 > ... are nonnegative integers, the process will 
terminate with remainder zero after a finite number of steps, 

We have 

rn := rn-2 mod rn-I. 

rn+l := rn-I mod rn = O. 

3.4 Theorem (Euclid). rn = g.c.d. (a, b). 

(3.3) 

Proof. Observe that if a = bq + c and c =1= 0, then r divides a and b if and 
only if r divides b and c. Consequently g.c.d. (a, b) = g.c.d. (b, c). Iterating 
this observation along the algorithm, we get 

g.c.d. (a, b) = g.c.d. (ro, rd = ... = g.c.d. (rn-2, rn-I) = rn. 

3.5 Remark. Euclid's algorithm can be written as 

{ 

rO = a, rl = b, 

qk = rk-d Irk, 

rk-I = qkrk + rk+I. 

for k = 1,2, ... , n as long as rk > 0, i.e., until rn+l 
qn ~ 2. 

o 

O. Notice that 
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DIOPHANTI 
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Figure 3.2. The frontispiece of the Works by Diophantus of Alexandria (200- 284) 
with comments of Claude Gaspar Bochet de Meriziac (1581- 1638) and observations by 
Pierre de Fermat (1601-1665), Tolosae 1670, and the frontispiece of Algebra by Abu al 
Khwarizmi (790- 850) . 

3.6 Corollary. Let a, b and A be integers with a, b > O. Then 

g.c.d. (Aa,Ab) = Ag.c.d. (a,b). 

Proof Let {rn}, {Sn} be the lists of remainders produced by Euclid's al­
gorithm starting respectively with a, b and A a, A b. Since A a mod ( A b) = 
A (a mod b), we deduce that Sn = A r n "In. Thus r n+l = 0 if and only if 
Sn+l = 0, and 

g.c.d. (Aa, Ab) = Sn = Arn = Ag.c.d. (a, b). 

3.7 Corollary. We have 

(i) if c divides a and b, then g.c.d. (a/c, b/c) = g.c.d. (a, b)/c, 
(ii) a/g.c.d. (a, b) and b/mcd(a, b) are coprime, 

(iii) if g.c.d. (a, b) = 1 and a divides bc, then a divides c. 

b. Integer solutions of first order equations 

o 

We discuss now the solvability in Z of first order equations with integer 
coefficients, starting from the homogeneous case 

ax + by = O. (3.4) 
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3.8 Proposition. Let a, b be nonzero integers. Then the equation (3.4) 
is solvable in Z and all solutions are given by the family of pairs (Xk' Yk) 
given by 

1 
(Xk, Yk) := k (b) (b, -a), 

max a, 
k E Z. (3.5) 

Proof. 1Hvially all pairs in (3.5) solve the equation. Conversely suppose 
that (x, y) solves (3.4). Dividing by g.c.d. (a, b) we have 

a b 
---:--:----:-:-x - Y' 
g.c.d. (a, b) - - g.c.d. (a, b) , 

in particular blg.c.d. (a, b) divides the product on the left-hand side and, 
consequently x, since alg.c.d. (a, b) and blg.c.d. (a, b) are coprime (see, for 
example, Corollary 3.7). For some k E Z we then have x = kg.c.d~(a,b)' and 
substituting into (3.4), we conclude. D 

Consider now the nonhomogeneous linear equation 

ax+ by = c, c# o. 

3.9 Theorem (Bezout's theorem). Let a, b, c be nonzero integers. The 
nonhomogeneous equation ax + by = c is solvable if and only if g.c.d. (a, b) 
divides c. 

Proof. Suppose x, Y E Z solve ax + by = c. Trivially g.c.d. (a, b) has to 
divide c. Conversely, suppose that g.c.d. (a, b) divides c. We shall just prove 
that there exist integers x and Y such that ax + by = g.c.d. (a, b). 

Consider the following recurrence scheme, known as the generalized 
Euclid '8 algorithm, 

ro = a, rl = b, 

rk+1 = -qkrk + rk-l, qk:= rk-d Irk, 

Xo = 1, Xl = 0, 

Xk+l = -qkXk + Xk-b 

Yo = 0, YI = 1, 

Yk+1 = -qkYk + Yk-b 

for k := 1,2, ... , n as long as rn > O. Of course the rk's are the remainders 
of Euclid's algorithm, and it is easily seen by induction that aXk+byk = rk 
Vk = 0,1, ... , n. Then Euclid's theorem yields 

g.c.d. (a, b) = rn = aXn + bYn 

as required. Going back to the equation ax + by = c, a solution is then 
given by 



76 3. Integer Numbers: Congruences, Counting and Infinity 

#!/usr/bin/env python 

def euclid2(a, b): 
# assume a, b>O, a>b. 
rl, r2 = a, b 
xl, x2 = 1, 0 
yl, y2 = 0, 1 
vhile r2 <> 0: 

q, r= divmod(rl, r2) 
xl, x2 = x2, xl -q*x2 
yl, y2 = y2, yl - q*y2 
rl, r2 = r2, r 

return rl, xl, yl 

if __ name __ == ' __ main __ ': 
a, b = 1224, 12*17 
c, x, Y = euclid2(a, b) 
print 'gcd=' , c 
print x, a, y, b 
print a*x+b*y 

Figure 3.3. A Python implementation of the generalized Euclid's algorithm that com­
putes a solution of ax + by = g.c.d. (a, b). 

D 

3.10 Remark. We also remark that Euclid's algorithm is quite efficient. 
Suppose that we perform two successive divisions 

r2 = ro mod rl, 

r3 = rl mod r2, 

(3.6) 

then r3 < rI/2. In fact, either r2 ::; rI/2 and r3 < r2 ::; rI/2, or r2 > rI/2, 
that is 2r2 > rl, hence q3 = 1 and again r3 = rl - r2 < rI/2. 

Euclid's algorithm in (3.2) requires at most n + 2 divisions in order 
to stop at a zero remainder, thus, if we denote by p the integral part of 
(n + 1)/2, we have in the worst case 

1::; rn-I ::; rn-2/2 ::; ... ::; b/2P , 

i.e., p < log2 b. Therefore (n + 1)/2 ::; p + 1/2 ::; log2 b + 1/2, that is, 
n ::; 2log2 b. We then conclude that Euclid's algorithm stops after at most 
2 times the number of digits in the binary representation of b. For an 
optimal estimate, see Corollary 8.9. 

3.11 ~. Show that g.c.d. (a, b) is the minimum of the set 

A := {n E N In> 0 and n = ax + by, for some x, y E Z}. 
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Figure 3.4. Pierre de Fermat (1601-1665) and Leonhard Euler (1707-1783). 

3.1.2 Prime factorization 
3.12 Theorem (The fundamental theorem of arithmetic). Every 
integer n ;::: 2 decomposes as a product of primes, and, apart from rear­
rangement of factors, such a decomposition is unique. 

Proof. We proceed by induction on n. If n is prime there is nothing to 
prove; otherwise, if P is the smallest of its divisors, P has to be prime as 
n = mp. Since m < n, by induction m and in turn n are a product of 
primes. 

To prove uniqueness of the factorization, recall that by Corollary 3.7 if 
P is prime and P divides nm, then p divides n or m. Suppose PIP2 ... Pr = 
qlq2'" qs where PI,··· ,Pn ql,"" qs are prime. For each j = 1, ... , r, Pj 
and the factors qi are coprime, thus necessarily Pj is one of the qi. It follows 
that r :::; s, and, changing the p's with the q's, we get r = s, and, apart 
from rearrangement, Pi = qi for all i = 1, ... , r. 0 

If we arrange the factors of the decomposition of n E N in increasing 
order, we obtain that every integer decomposes uniquely as 

n = pr'p~2pr3 . .. p~k 

where 2 :::; PI < P2 < ... < Pk are prime, and al ,"" ak ;::: 1. 

3.13 Theorem (Second Euclid's theorem). The number of primes is 
infinity. 

Proof. Suppose p prime. Let 2, 3,5 , ... ,p be the set of primes up to p; and 
let 

n ;= 2·3 .. · (p - 1)p + l. 
Then n is not divisible by any prime between 2 and p. On the other hand 
n has a decomposition in primes; therefore either n is prime or divisible 
by a prime between P and n. In either case there is a prime greater than 
~ 0 



78 3. Integer Numbers: Congruences, Counting and Infinity 

3.14,. Show that g.c.d. (a, b) is the product of factors common to a and b, i.e., is the 
greatest common factor to a and b. 

How do we identify the list of primes? 
The simplest method consists in relying upon the definition of prime 

numbers. If n = ab, then a and b cannot exceed v'n; therefore any number 
that is not prime is divisible by a prime p which does not exceed v'n. In 
order to decide whether p is prime, it suffices then to divide n by all primes 
less than v'n. Notice that the method allows us to factorize p if p is not 
prime. In principle all is fine, but the method is impracticable even for 
numbers that are not very large: to conclude we need to do roughly v'n 
divisions: if 10-9 seconds is the time needed to carry out a division, the 
time necessary to factorize a number of 100 digits is around 250- 20 = 230 

seconds, i.e, about 32 years. 
A variant of the previous method is a procedure known as the sieve of 

Emtosthenes that allows us to find all primes not greater than n once we 
know all primes smaller than v'n. It works as follows. Suppose we have a 
list {Ps(n)} of all primes less than v'n. From Ps(n) + 1, Ps(n) + 2, ... , n 
we strike out successively all multiples of PI. P2, .•. , Ps(n) (up to n). The 
remaining numbers are all primes. In fact, if q is one of these numbers, it is 
not divisible by any of the primes less than v'n, and consequently less than 
n. Also the sieve of Erathostenes, though requiring multiplications instead 
of divisions, requires a number of multiplications of order v'n. One says 
that the computational complexity of the sieve of Emtosthenes is O(2N/2), 
N := log2 n being the number of digits of n. 

In the eighteenth century eventually the idea of looking for a com­
plete description of primes was given up, and research moved toward a 
kind of statistical approach. The fundamental result in this direction is 
the remarkable prime number theorem, first conjectured by Adrien-Marie 
Legendre (1752-1833) and then proved by Jacques Hadamard (1865-1963) 
and Charles de la Vallee-Poussin (1866-1962) 

3.15 Theorem (The prime number theorem). Let 7r(x) denote the 
number of primes not greater than x. Then 

lim 7r(x) = 1. 
x .... +oo x/log x 

There seems to be evidence that x/logx is a good approximation of 
7r(x): a celebrated conjecture, Riemann's conjecture, states that 

7r(x) = _x_ + o(x!+e) 
log x 

for some E > 0, but it has not been proved or disproved up to now. Inci­
dentally, observe the unexpected relation between prime numbers and the 
Euler's number stated by the prime number theorem. 
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3.1.3 Linear congruences 

Let pEN. We say that a is congruent to b modulo p and write 

a = b (mod p) 

if a mod p = b mod p. Equivalently a = b (mod p) if and only if a-b = hp 
for some h E Z. It is easily seen that 

(i) if a = b (mod p) and a' = b' (mod p), then a + a' = b + b' (mod p) 
and a a' = b b' (mod p) 

and that congruence (mod p) is an equivalence relation, i.e., it is 

(i) REFLEXIVE. a = a (mod p), 
(ii) SYMMETRIC. if a = b (mod p), then b = a (mod p), 

(iii) TRANSITIVE. if a = b (mod p) and b = c (mod p), then a = c 
(mod p). 

Equivalence classes of congruent numbers form a partition of all the 
integers into classes of numbers with the same remainder of the division 
by p. These classes can therefore be represented by the remainders of the 
division by p. Formally, one defines the set of remainder classes modulo p 
as 

Zp := {O, 1,2, ... ,p - I} 

and the map x ---> x mod p, whose image is Zp, yields a way to introduce 
the sum and the product modulo p in Zp by 

a +p b := (a + b) mod p a·p b:= (ab) mod p. 

Congruences turn out to be quite important in everyday life. Here we 
confine ourselves to basic facts. From the results on the solvability in Z of 
linear equations, we readily infer 

3.16 Proposition. Consider the equation in x E Z, 

ax = c (mod p). (3.7) 

(i) If c = 0, then all solutions of(3.7) are given by the family of integers 
{xd given by 

P 
Xk - k 

- g.c.d. (a,p) , 
k E Z. 

(ii) If c i= 0, (3.7) has a solution if and only if g.c.d. (a, p) divides c, and 
all the solutions are given by the sequence of integers {Xk} 

Xk = P k+ c x 
g.c.d. (a,p) g.c.d. (a,p) , 

kEZ, 

where x is such that a x + p Y = 1 for some y E Z, and can be 
computed by the generalized Euclid's algorithm. 
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In doing computations with congruences modulo a composite number, 
the following theorem is quite useful. 

3.17 Theorem (Chinese remainder theorem). Let PbP2,'" ,Pk be 
coprime. 

(i) x E Z is a solution of tbe system 

{ ~. ~ 0 (mod pd, 

x == 0 (mod Pk), 

if and only if x == 0 (mod PIP2'" Pk). 
(ii) For any (b1 , b2, . .. ,bk) E Zk, tbe system 

r=b
1 (mod PI), 

x == b2 (mod P2), 

x == bk (mod Pk), 

is solvable in x E Z. 

(3.8) 

More precisely, for any i = 1, ... , k, denote by Mi tbe product of all 
primes {Pi} but Pi, and let ai be sucb tbat Mi ai = 1 (mod Pi). Tben 
x := 2:7=1 Mi bi ai is a solution of (3.8), and two solutions of (3.8) 
differ by a multiple of PIP2 ... Pk. 

Proof (i) It suffices to observe that, if P and q are coprime, then a is a 
multiple of both P and q if and only if a is a multiple of pq, and proceed 
inductively. 

(ii) For any i = 1, ... , k, observe that M j == 0 (mod Pi) for j i- i, and, 
since Mi and Pi are coprime, there exists ai E Z such that 

Consequently 

Miai == 1 (mod Pi). 

k 

X == L ajbjMj == aibiMi == bi (mod Pi)' 
j=l 

Finally, (i) implies that the difference of two solutions of (3.8) is a multiple 
of PIP2'" Pk. 0 

Of particular relevance in the theory of congruences is the multiplica­
tive subgroup Z; of the nonzero elements of Zp, and the discrete exponen­
tial map x ---; aX mod P from Zp into Z;. As we can see in the table in 
Figure 3.5, we get a6 = 1 for all a i- 0 in Z7. This is a general fact first 
observed by Pierre de Fermat (1601-1665) 
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a a1 a2 a3 a4 as a6 

1 1 1 1 1 1 1 
2 2 4 1 2 4 1 

3 3 2 6 4 5 1 

4 4 2 1 4 2 1 

5 5 4 6 2 3 1 

6 6 1 6 1 6 1 

Figure 3.5. The table of a -> an for 2:7. 

3.18 Theorem (Fermat minor theorem). Ifp is prime, then aP - 1 == 1 
(mod p) Va =1= O. 

The original proofs of many of the claims of Fermat were never found. The 
following proof is due to Euler (1739). 

Proof By the binomial theorem (see, for example, Example 2.6), 

where m := p(p-l)(p-!l",(p-k+l). Since p is prime and k is less than p, all 

binomial coefficients (~), k = 1, ... ,p - 1 are multiples of p. Therefore 

(1 + a)P == aP + 1 (mod p) VaEZ. 

Using the previous equality, it is not difficult to show by induction on a 
that aP == a (mod p). In fact, trivially 1P == 1 (mod p), and, if bP == b 
(mod p), then 

(b + 1)P == bP + 1 == b + 1 (mod p). 

Finally, if a =1= 0, g.c.d. (a,p) = 1, consequently, choosing x E Z such that 
ax == 1 (mod p), we conclude 

aP-
1 == aP == ax == 1 (mod p). 

o 
A different proof was given then by James Ivory (1765-1842) in 1808 

and presented again by Lejeune Dirichlet (1805-1859) in 1828. 

A different proof of Theorem 3.18. If a 'f 0 is a multiple of p, the theorem is trivial. If 
a is not divisible by p, the numbers 

a, 2a, 3a, ... , (p - l)a 

are not pairwise congruent modulo p. After rearrangement they are then congruent to 
1, 2, ... , p - 1. Thus 

a· 2a· 3a· .. (p - 1) a == 1·2·3 .. · (p - 1) (mod p), 

that is, 



82 3. Integer Numbers: Congruences, Counting and Infinity 

22 -1 = 3= 3 
24 -1 = 15 = 5·3 
26 -1 = 63 = 7·9 
28 -1 = 255 = 51·5 

210 - 1 = 1023 = 11· 63 
212 -1 = 4095 = 13·315 

Figure 3.6. The values of 2n - 1 - 1 for n = 3,5,7,9,11 and 13. 

1· 2·3··· (p-l)aP -
1 == 1· 2·3··· (p-l) (mod p). 

Since 2·3· .. (p - 1) is not divisible by p, (v) yields 

aP- 1 == 1 (mod p) 

and in conclusion aP = a (mod p). 0 

3.19 Pseudo-primes. One says that p is a pseudo-prime if aP == a 
(mod p) for all a E Z. Of course primes are pseudo-primes, but there exist 
pseudo-primes that are not prime: they are called Carmichael's numbers, 
and the smallest is 561. Carmichael's numbers are quite rare, only 255 are 
not greater than 108 . Therefore it is likely that a number that is chosen 
randomly and verifies Fermat's test, is prime with probability close to 1. 
This means that the test aP-

1 == 1 (mod p) Va E Z, is a good indication 
that p is prime. 

Fermat's test with a = 2 was actually the genesis of Fermat's theorem. 
Consider the table in Figure 3.6. It shows that 2n - 1 - 1 is divisible by 
n if n is 3, 5, 7, 11, 13. After many calculations Gottfried von Leibniz 
(1646-1716) conjectured that 2n - 1 - 1 is divisible by n if and only if n is 
prime. Fermat's theorem proves that 2n

-
1 is divisible by n if n is prime, 

but F. Edouard Lucas (1842-1891) in 1819 showed that the converse is 
not true. He showed that 

(mod 11), 

(mod 31), 

being that 25 == -1 (mod 11) and 25 == 1 (mod 31). Consequently 2340 == 1 
(mod 341), i.e., 2340 -1 is divisible by 341 = 11· 31, which is not prime. In 
recent years, the probability has been computed that a number n satisfies 
Fermat's test with a = 2 but is not prime. It turned out that this proba­
bility is quite small: for a randomly chosen number of, say, 200 bits, it is 
of the order 2.6· 10-8 . 

3.1.4 Euler's function 4J 
Given an integer n ~ 2, we denote by ¢(n) the number of integers not 
greater than and prime to n (and therefore greater than 2), and we set 
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Al A2 A3 A4 A5 A6 A7 AS A9 AlO All Al2 Al3 Al4 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 4 8 1 2 4 8 1 2 4 8 1 2 4 

3 9 12 6 3 9 12 6 3 9 12 6 3 9 

4 1 4 1 4 1 4 1 4 1 4 1 4 1 

5 10 5 10 5 10 5 10 5 10 5 10 5 10 

6 6 6 6 6 6 6 6 6 6 6 6 6 6 

7 4 13 1 7 4 13 1 7 4 13 1 7 4 

8 4 2 1 8 4 2 1 8 4 2 1 8 4 

9 6 9 6 9 6 9 6 9 6 9 6 9 6 

10 10 10 10 10 10 10 10 10 10 10 10 10 10 

11 1 11 1 11 1 11 1 11 1 11 1 11 1 

12 9 3 6 12 9 3 6 12 9 3 6 12 9 

13 4 7 1 13 4 7 1 13 4 7 1 13 4 

14 1 14 1 14 1 14 1 14 1 14 1 14 1 

Figure 3.7. The map x ..... AX mod 15. 

¢(O) = ¢(1) = 1. The function ¢ : N ---; N defined this way is called Euler's 
function ¢. Clearly, 

¢(p) = p-1 if p is prime. 

Suppose that p and q are coprime. Since p and q have no common divisors, 
we get that Euler's function is multiplicative, Le., 

¢(pq) = ¢(p)¢(q) if p, q are coprime. (3.9) 

In particular 

¢(pq) = (p - l)(q - 1) if p, q are two distinct primes. 

Now we shall compute ¢(pk), p prime. Noticing that z ~ 2 divides pk jf 
and only if z is a divisor of p, we compute 

# {x ~ 21 gcd( x, pk) -11 } = # { h 12 :S h p < pk } 

= #{ h 11 < h < pk-l } = pk-l - 1, 

and consequently 

(3.10) 

The unique factorization of any number in primes, (3.9) and (3.10) finally 
yield 



84 3. Integer Numbers: Congruences, Counting and Infinity 

3.20 Theorem (Euler). If n = prlp~2 ... p~k is the decomposition in 
primes of n, n ~ 2, then 

¢(n) = n( 1 - :1) (1 - :2) ... (1 - :k)' 
We also prove 

3.21 Theorem (Euler). If a and n are coprimes, then 

a<!>(n) == 1 (mod n). 

Proof. Observe that, a and n being coprimes, x is coprime with n if and only if ax is 
coprime with n. Moreover ax and ay are congruent modulo n if and only if x and y are 
congruent modulo n. In other words, the map x --+ ax mod n is a bijection of the set 

E := {x E {I, ... , n - I} I x and n are coprime}, 

into itself. In particular 

n x = n (ax) = a<p(n) n x, 
xEE xEE xEE 

that is, 
a<p(n) == 1 (mod n). 

3.1.5 RSA Cryptography 

o 

Cryptography deals with the confidential transmission of data. Basically 
the sender codes the message M to a new object C = f(M) by an injective 
map f defined on all possible messages, so that the addressee can decode 
the message by the inverse map, M = f-1(C). The function f is called the 
cryptographic function. For several reasons, for instance because any cryp­
tographic function becomes less secure by use, it is important to change it 
from time to time and consider instead a cryptographic system, that is a 
family UdkElC of cryptographic functions indexed by a parameter called 
a key. Moreover, it is convenient to consider the cryptographic system as 
public and to ground the confidentiality of the system on the key. 

One of the oldest ways of communicating secretly reduces to choosing 
openly a cryptographic system and then exchanging secretly a common key 
to code and decode messages. We then get a bilateral communication, that 
is the subjects are both senders and addressees. Among the recent algo­
rithms for confidential connections between computers based on a common 
key, let us quote the AES (Advanced Encryption Standard) system, which 
is public, fast, and well discussed in the literature. 

Exchanging a key is quite simple when the two subjects can meet in a 
safe place to physically exchange the key. Otherwise, they have to find a 
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safe channel of communication to send the key, but this leads us back to 
the starting point. 

In 1976 Diffie and Hellman proposed a method that, in principle, en­
ables people A (Alice) and B (Bob) to exchange safely a secret key, using 
an unsafe channel. It is based on modulo p arithmetic and on the different 
times necessary to compute the discrete exponential 

x --+ y:= aX modp 

and the discrete logarithm, that is, to solve the inverse problem of finding 
x E Z such that 

aX = ymodp. 

In fact, on the one hand the modular power operation can be computed 
with few multiplications. Writing x in binary form, that is x = L:~=o xi2i, 
Xi = 0 or 1, it is easy to see that the computation of MX mod n resolves 
in shifts and a number of multiplications of the order of the number of 
bits of x. On the other hand, the best known algorithm to solve aX mod p 

needs 2N1
/

3 
multiplications. 1 For large N, the second operation cannot be 

performed in a few years even using very powerful computers. 
The procedure is as follows. Suppose that Alice and Bob want to ex­

change a numerical key k through a nonsafe public channel. First Alice 
and Bob openly choose a prime number p that is large enough and a 
number between 2 and p - 1. Then Alice chooses a number x that she 
keeps to herself and openly sends Bob C := aX mod p. Analogously, Bob 
chooses a number y that he, too, keeps to himself and openly sends Alice 
D := aY mod p. Alice and Bob are now able to build the common key by 
combining their secret number with the datum received from the other 
user: Alice computes 

D X modp = aYX modp 

and Bob computes 
CY mod p = aXY mod p. 

The two keys are identical. Nobody else will be able to recover x or y 
starting from p, a, C and D, without inverting the modular exponential. 

In 1978 Rivest, Shamir, and Adelman proposed an algorithm that is 
now used in many programs for the so-called public key cryptography. Let 
us start with the following generalization of Fermat's theorem that is a 
key point in the RSA cryptographic system (see, for example, Figure 3.7). 

3.22 Theorem. Let p, q be two distinct primes and let n := pq. Then for 
all x and k E Z, 

a1+k¢(n) == a (mod n), 

¢(n) being the Euler's function, ¢(n) := (p - 1)(q - 1). 

1 Well, if aX < p, then the answer is immediate. 
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Proof. If a is not a multiple of p, by Fermat's theorem we have aP -
1 == 1 (mod p), 

hence 
a1+k¢(n) == a (mod p). 

If a is a multiple of p, then aT == 0 == a (mod p) for all r, in particular ak¢(n) == 0 == a 

(mod p), thus a1+k¢(n) == a (mod p). In all cases we infer 

a1+k¢(n) == a (mod p). 

Similarly 
a1+k¢(n) == a (mod q), 

and, by the Chinese remainder theorem, a1+k¢(n) == a (mod n). o 

3.23 Corollary. Let p, q be two distinct primes and let n := pq. Let e, d 
be such that ed == 1 (mod ¢(n)). Then the maps 

X --t xd mod n, Y --t ye mod n 

from Zn into Zn are each the inverse of the other. 

Proof. In fact ed = 1 + k¢(n), hence, by Theorem 3.22 

(xe mod n)d == xed == X1+kq,(n) == x (mod n). 

o 

Assume that A (Alice) wants to communicate a secret to B (Bob). First 
Bob does the following: 

(i) he selects two primes p, q, and computes the modulus n := pq, and 
the Euler's function ¢(n) := (p - l)(q - 1), 

(ii) he selects a third prime e and computes d such that ed == 1 
(mod ¢(n)), e.g., by the generalized Euclid algorithm, 

(iii) he publishes as public key the pair (n, e) and keeps as a private key, 
his secret, the pair (n, d). 

Assume that Alice (or anybody else) wants to send a confidential message 
to Bob. Firstly, she gets the public key (n, e) of Bob, then codes the mes­
sages as a number M < n, and finally she sends Bob C := Me mod n. Bob 
is then able to recover M by computing Cd mod n, according to Corol­
lary 3.23. 

Besides the ability of Bob to decode the message, it is worth discussing 
the possibilities for an attacker to read the message, or, worse, to find the 
secret key (n, d). We make only a few remarks. 

o To decide if a given random number of around 256 digits is prime, Fer­
mat's test with base a = 2 is usually sufficient, even if not totally secure. 
As a by-product, Fermat's test is fast, being based on modular powers. 
Recently, a fast algorithm of order O(N7) N = log2 p was found that 
decides if a number p is prime or not. The algorithm does not exhibit a 
prime factor of p in case p is not prime, however. 
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o As we have already seen, computing aX mod n uses a number of mul­
tiplications of order O(b), b being the number of bits of x. Assuming 
that the public and the secret exponents are between 0 and n, we con­
clude that the computational complexity of coding and of decoding the 
message is of order O(N), N := log2 n. 

o Computing n := pq requires one multiplication, while finding the fac­
tors p, q from n, while in principle feasible, requires too much work for 
numbers n = pq of, say, 256 bits. The sieve of Erathostenes is too slow 
requiring 2N/2 multiplications, N = log2 n, and even the better meth­
ods of factorization based on the LLL algorithm of Lenstra, Lenstra and 
Lovasz, predict a number of multiplications of order 22.88Nl/3(log N)2/3, 

roughly 255 for numbers n of 256 bits. Of course, this estimate holds for 
products of primes randomly chosen, while for special products the time 
of factorization can be shorter. Concluding, the choice of the primes p 
and q is somewhat critical, but generally speaking, choosing p, q in a 
random way with around 128 bits each, makes it practically infeasible 
to lind in it short time the factors p, q from pq, and therefore impossible 
to get ¢( n) and d from n this way in a short lapse of time. 

o The RSA algorithm is clearly less secure than the factorization of inte­
gers, since it publishes also the number e. In fact a clever attack can be 
made to find d if d is small enough. 

3.24 Theorem (Wiener, 1981). Let p, q be primes with p < q < 2p. 
Let n = pq, and let 0 ::; e, d < ¢(n) be such that ed == 1 (mod ¢(n)). If 

d< ~rn, 
then one can find d with an algorithm of computational complexity of 
O(N), N := log2 n. 

Proof. We have 0 ::; ed - 1 = k¢(n) < d¢(n), from which we infer 
o ::; k < d and g.c.d. (k, d) = 1. Moreover p + q ::; 3Vn, therefore we can 
infer 

I; - ~I = Ide ;nknl 

_ Ide - k¢(n) + k(¢(n) - n)1 _ 11 + k(¢(n) - n)1 
- dn - dn 

k (n - ¢(n)) 3 
<- <-
- d n Vn 

and 

Ie kl 1 
;;:;-d <2d2 ' 

since 1/ {In < 1/ ( V6d). Therefore k / d is one of the reduced continuous 
fractions of e/n, see Theorem 8.35. Since they can be all computed easily 
with O(N) complexity by Euclid's generalized algorithm, the proof is 
concluded. 0 
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o A low exponent e, especially e = 2,3, can be trouble, too, but the 
published flaws are far from a total break. Choices of e with around 17 
bits are usually made. 

o The RSA systems yields a way to make confidential communications 
from many to one. For a communication that involves two people, or two 
computers, the AES ecryption standard, or other algorithms based on a 
common key, are preferred since they are by far faster than RSA. Thus 
RSA is often used for the only purpose of transmitting a secret key; then 
the actual communication is encrypted by the AES or similar algorithms. 
In this respect, the confidentiality of the transmitted message by RSA 
has to be analyzed, too. Despite 25 years of use of RSA, very few results 
are known on this subject. The basic question, whether inverting the 
RSA coding function is computationally equivalent to the factorization 
of n := pq, seems today a largely open issue. 

The RSA algorithm can be useful also for authentication purposes. 
Assume that Bob codes a given public message with his secret key. Then 
anyone else can decode the coded version of the original message by Bob's 
public key, rediscovering the original message. In principle nobody can code 
the original message in such a way that the coded message, if decoded 
by Bob's public key, agrees to the original, unless the coding was done 
by Bob's secret key. This way, Bob can authenticate himself. However, 
the lack of mathematical evidence of the security of the RSA algorithm 
for authentication purposes and several documented breaks on some of 
the actual implementations, confines the RSA digital signature scheme to 
applications that need a mild form of authentication. 

3.2 Combinatorics 

We recall that a set X is said to be finite if there is a one-to-one correspon­
dence of X with a subset of integers of the type {I, 2, ... , n}. In this case, 
the number n of elements of X is called the cardinality of X and denoted 
by IXI or #X. In other words, every finite set X has IXI elements and it 
can be ordered by given indices 1,2, ... , IXI to its elements. 

Starting from one or several finite sets we can construct new sets either 
by selecting or arranging some of their elements or by taking unions, inter­
sections or products. One refers to the procedures that allow computation 
of the number of elements of these new sets as combinatorics. This is a 
fascinating branch of mathematics with many applications, for instance, 
in engineering and social sciences. Here we confine ourselves to a few basic 
concepts. 
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3.2.1 Samples, mappings and subsets 

Given n objects, how many different ways of selecting k objects from n do 
we have? In other words we want to compute the cardinality of the set of 
the selections of k objects out of n. The question is of course vague unless 
we specify 

o whether the objects are all of the same type or how many objects belong 
to each type, 

o the procedure according to which we make the choice, 
o how we count the selected configurations. 

a. Ordered samples and mappings 

3.25 Definition. A list, or an ordered sample, {Xj}j=O,l, ... ,k-l of size k 
from a set X, an ordered k-sample in short, is an ordered selection of k 
elements from X. 

Two lists {Xj} and {Yj} are equal if Xj = Yj Vj = 0,1, ... , k - 1, that 
is, if they contain the same elements arranged in the same order. 

An ordered k-sample can be obtained by selecting its elements one 
after the other in many ways: for instance, we make the selection of each 
object from the entire population, so that the same element can be drawn 
more than once (sampling with replacement), or, an element once chosen 
is removed from the population (sampling without replacement). In the 
first case we are using arrangements with repetitions, in the second case 
arrangements without repetitions. 

3.26 Arrangements without repetitions. What is the number of or­
dered k-samples without replacement from a population of n objects, called 
also arrangements without repetitions or k-permutations of n distinct ob­
jects? We have n choices for the first element, n - 1 for the second, ... , 
(n - k + 1) for the k-th. Consequently the number of ordered k-samples 
without replacement from n objects is 

D~ := IVn,kl = n(n - 1)(n - 2)··· (n - k + 1), 1 ::; k ::; n. 

For convenience we define also D~ := Dg := 1. 

3.27 Permutations. An ordered n-sample from n objects is called a 
permutation. The set of permutations Pn of a set of n elements has the 
cardinality 

Pn := IPnl = D~ = n(n - 1)···3·2·1 = n!. 

We agree that the empty set has only one possible permutation, so that 
Po := 1 =: O!. 
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3.28 Arrangements with repetitions. In the case of ordered samples 
with replacement, the number of choices for the first element of a list as 
well as for the others is always n, thus the cardinality of the set of ordered 
k-samples with replacement from n objects, called also permutations with 
repetitions of k objects from n, is 

1:::; k:::; n. 

We also set for convenience D~D := DoD := 1. 

3.29 Maps. Ordered k-samples from n-elements with repetitions can be 
of course identified with the maps f : {I, 2, ... , k} -+ {I, ... , n}, since 
every such map is defined by the list of its values 

(f(I), f(2), ... , f(k)). 

From 3.28 the next proposition follows. 

Proposition. Denote by F(X, Y) the set of all maps from X to Y. If 
#X = k and #Y = n, then F(X, Y) has n k elements. 

Example. Given A c X, the chamcteristic function of A is defined by 

() 
{

I if x E A, 
CPA x := ° if x rf. A. 

The correspondence A C X with the map CPA : X -> {a, I} is clearly one-to-one. 
Therefore subsets of X are as many as the maps from X into {a, I}, that is P(X) = 2n. 

3.30 Injective maps. Also k-samples without repetitions from n ob­
jects can be of course identified with maps, the injective maps from 
{O, 1, ... , k - I} to {O, 1, ... ,n -I}. Consequently from 3.26 and 3.27 we 
get 

Proposition. Denote by I(X, Y) the set of maps from X to Y that are 
injective. If #X = k and #Y = n, then 

#I(X, Y)\ = D~ = n(n - 1)(n - 2) ... (n - k + 1) 

In particular the number of bijective maps from X into itself is 

#I(X,X) = k! 
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b. Nonordered samples and subsets 
We often sample k elements from n objects, but the actual order of the 
elements in the resulting arrangement is unimportant, that is, two samples 
may be considered equal if they contain the same elements, irrespectively 
of the order. We then speak of nonomered samples. 

3.31 Nonordered samples without replacement. As we have seen, 
the number of ordered k samples with replacement from n objects is D~ 
(see, for example, 3.26). Since we have k! different ordered samples of the 
same k objects, the number of nonordered k-samples without replacement 
is 

k '= n(n - 1) ... (n - k + 1) = (n) 
en· k! k ' 1 ~ k ~ n. 

We also set for convenience e~ = eg = 1. Nonordered k-samples without 
replacement from n objects are also called k-combinations of n distinct 
objects. 

The binomial coefficients are defined for all a E Rand kEN as 

(
a).= a(a-1)(a-2) .. ·(a-k+1) 
k . k! 

and the following formulas hold 

(~) - k!(nn~ k)! Vk, n E N, 

(-k
a

) =(_1)k(a+~-1) VkEN, aER, 

(~) = (~) = 1, 

(~) = (n: 1) = n, and (~) = (n: k) Vk, 1 ~ k ~ n, 

(~) = ~(~=D' Vk= 1,2, ... ,n, 

(~) = (~=~) + (a~1). 
The last formula is called Pascal's formula. 

3.32 Subsets of finite sets. A nonordered k-sample without replace­
ment from a set X of n elements, is merely a subset A C X of k elements. 
Therefore, from 3.31 we get 

Proposition. Let #X = n. The number of subsets A of X with k ele­
ments is 

I{ A E P(X) IIAI = k}1 = e~ = (~). 
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In particular, the number of subsets of X, including the empty set, i.e., 
the cardinality of P(X), is 

on account of the binomial theorem. 

c. Ordered lists 

3.33 Definition. Let X be an ordered set by ~. A monotonic k-list 
{ Xi} c X is also called an ordered list. 

3.34 Increasing lists. Let X be an ordered finite set. It is not restrictive 
to assume that X = {I, 2, ... , n}. Let us compute the number L~ of the 
increasing lists of k numbers between I and n, i.e., of the type 

hi < hHl Vi = 1, ... ,k - 1. 

Thinking of k lists from n objects as maps from {I, ... , n} to {I, ... ,n}, 
it is easy to see that ordered k-lists correspond to the strictly increasing 
maps. Since there is a unique way of listing k numbers in an increasing 
order, ordered k-lists are equal in number to the subsets of k elements of 
X, that is 

k k (n) Ln = en = k . 

3.35 Nondecreasing lists. Let us compute the number L~k of non­
decreasing ordered lists of k objects from n, i.e., of k-uples {hi} with 
hi S; hH 1 Vi = 1, ... , k - 1. This time the elements of a list {hd are not 
necessarily distinct. However, we can associate in a one-to-one fashion to 
each such nondecreasing k-list from n objects a strictly increasing k-list 
from n + k - I objects by means of the map 1> defined as 

It is easily seen that 1> maps the nondecreasing k-lists from {I, ... , n} to 
the increasing k-lists from {I, ... ,n+k-I} and that <P is one-to-one. Thus 

Thinking of k lists from n objects as maps from {I, ... , n} to {I, ... , n}, it 
is easy to see that nondecreasing k-lists correspond to nondecreasing maps 
from {l, ... ,k} to {I, ... ,n}. 
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Figure 3.B. The frontispieces of the Ars conjectandi by Jacob Bernoulli (1654- 1705) and 
a modern treatise about discrete mathematics. 

3.36 Nonordered samples with replacement. Since the nonordered 
k-samples with replacement from n objects are clearly as many as the 
nondecreasing k-lists from the same objects, we conclude that the number 
of nonordered k-samples with repetitions, also called k-combinations with 
repetitions from n is 

1 ::; k ::; n. (3.11) 

d. The formula of inclusion and exclusion 
Let A, Ben be finite and disjoint subsets of n; then we have IA U BI = 
IAI + IBI , and, more generally, in the case An B =I- 0, 

IA U BI = IAI + IBI - IA n BI· (3.12) 

The formula (3.12) extends to the case of more than two subsets and 
is very useful in computing for example the probability of incompatible 
events. The reader will check that in the case of three subsets we have 

IAI U A2 U A31 = IAII + IA21 + IA31-IAI n A21-IA2 n A31-IAI n A31 
+IA l nA2 nA31· 

Let AI , A2, ... , An be finite subsets of nand 1 ::; k ::; n. Since the 
intersection of k of the sets AI , A2, ... , An is commutative, we index the 
intersection Ail n Ai2 n ... n Aik by an increasing list of indices i l < i2 < 
.. . < i k. It is not difficult to show that we have 
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3.37 Proposition (Inclusion-exclusion formula). Let AI, A 2, ... , An 
be finite subsets of n. Then 

n 

IAI U A2 U··· U Ani = ~)_l)k+1 L IAil n Ai2 n··· n Aikl· 
k=l I::oil <i2<···<ik::On 

e. Surjective maps 

Denote by S(X, Y) the family of surjective maps from X into Y. Trivially 
IS(X, Y)I = 0 if IXI < WI while in the case IXI 2: WI we have 

3.38 Proposition. Let X = {I, 2, ... , k}, Y = {I, 2, ... ,n} and n ::s; k. 
Then 

Proof. Let F(X, Y) be the family of all maps f : X ---+ Y and, for j = 
1, ... , n, Aj denote the family of maps f : X ---+ Y the ranges of which do 
not contain j. Trivially 

hence the inclusion-exclusion formula yields 

IS(X, Y)I = IF(X, Y)I-IAI U··· U Ajl 

(3.13) 

For every j-ple (i I , ... , i j ) with distinct elements, Ail n ... n Aij is the 
family of maps whose images contain at most n - j elements; consequently 

and 

L IAil n ... n Aij I = (n - j)k L 1 
l::Oil<···<ij::On l::Oil<···<ij::On 

= (n _ j)k (;). 

(3.14) 

The result then follows from (3.13) and (3.14). o 
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k 0 1 2 3 4 5 6 
D~k 1 5 25 125 625 3125 0 

D~ 1 5 20 60 120 120 0 

Ck 
n 1 5 10 10 5 1 0 

C· k 
n 1 5 15 35 70 126 0 

Figure 3.9. The values of Dsk, Dg, Csk, cg. 

3.2.2 Drawings 
3.39 Drawing in succession. The drawings in succession of k elements 
from n with replacement are as many as the ordered k-samples with re­
placement from n objects, D~k = n k (see 3.28), while the drawings in 
succession of k elements from n without replacement are as many as the 
ordered k-samples without replacement from n objects, i.e., D~ = (n~!k)! 
(see 3.26). 

3.40 Simultaneous drawings. Making a simultaneous drawing of k ob­
jects from n is clearly the same as choosing a subset of k elements from 
n. Therefore the simultaneous drawings of k elements from n are as many 
as the subsets with k elements in a set with n elements, that is, C~ = (~) 
(see, for example, 3.32). 

3.41 Simultaneous drawings with repetitions. Suppose instead we 
have a population of infinitely many elements of type 1, infinitely many 
elements of type 2, ... , infinitely many elements of type n. The simulta­
neous drawings of k elements from this population are as many as the 
nonordered k-samples with replacement, that is, C~k = (n+Z-l).The same 
result holds provided the initial population has at least k elements of each 
type. 

The table in Figure 3.9 shows how results can be different. 

3.2.3 Location problems 
How many ways do we have of placing k balls into n cells? Again the 
question is quite vague unless we specify how to distinguish the resulting 
arrangements and the rules to fill the cells. In this respect we look at 

o whether the balls are distinct, 
o how many balls can be placed into a cell. 

These kinds of problems arise typically in statistical mechanics. Several 
situations left vague by the previous description are quite relevant. The 
next examples describe some of them: they refer to the case of distinct 
cells. 
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3.42 Maxwell-Boltzmann statistics. The balls have a label which 
renders them distinct, moreover there is no limit to the number of balls 
that can be placed in one of the n cells. In this case the number of ways of 
placing A: balls into n cells equals the number of maps / : {1 ,2 , . . . , fc} —• 
{1,2 , . . . , n } , that is nfc. 

If we instead require that only one of the distinct balls can be placed in a 
cell, we have as many possibilities as the injective maps / : {1 ,2 , . . . , fc} —• 
{1 ,2 , . . . , n} are, that is, D* = >^L, , 1 < fc < n. 

3.43 Bose-Einstein statistics. The fc balls are all black, and there is 
no limit on the number of balls we can place in a cell. In this case each ar­
rangement can be regarded as a sequence of black balls separated by white 
balls, which represent the cells. We therefore have as many possibilities as 
the number of the subsets of n — 1 elements in a set of n - 1 + fc elements, 

Another way of thinking is that any such arrangement be regarded as a 
nondecreasing map from { 1 , . . . , fc} into { 1 , . . . , n} . 

3.44 Fermi-Dirac statistics. The fc balls are nondistinct, and we can­
not place more than one ball in each of the n-cells. In this case 1 < fc < n 
and the number of possibilities are as many as the injective maps from 
{ 1 , . . . ,fc} into {1, . . . , n } , i.e., the subsets of fc elements in {1,2 , . . . , n } , 

to-
3.45 1 5 . A physical system consists of some identical particles. The total energy of 
the system is 4Eo, Eo = const > 0. Each particle may possess a level of energy kEo, 
k = 0 ,1 ,2 ,3 ,4 , and a particle of energy k EQ may occupy one of the k2 + 1 states 
corresponding to this energetic level. How many different configurations, according to 
the energetic state of the particles, can the system assume? Answer the same question 
assuming that (a) at the energy level k EQ there are 2(fc2 + 1) energetic states, (b) two 
particles are not allowed to occupy the same energetic state. 

3.46 Example . How many lists of k integers exist with sum n? In other words, what 
is the cardinality of the set 

| ( x 1 , i 2 f - , x f c ) | x i + • • • - fx j t = n | ? 

Interpret x i , . . . , z* as the number of nondistinct balls placed respectively in the cells 
{ 1 , . . . , k). Then the initial problem reads as: in how many ways can n nondistinct balls 
be placed in k cells? The answer is 

( * - i ) = ( „ ) = ( ' 1 ) ( * ) • 

The table in Figure 3.16 at the end of this chapter summarizes the 
different models of counting we have discussed in this section. 



THE 

DOCTRINE 
OF 

CHANCES: 
0'. 

A Me'hod of C.lcula'ing tbe Prob.bili,)' 
of Eveats in PI.y. 

By A. D, M,i.,.,. F. R. S. 

LON D 0 IV: 

l)rlntcd by 11'. P,Ilr!CII. (or {he ..... ulilor. M DCCXVIlI. 

3.2 Combinatorics 97 

An Introduction 

to Probability Theory 

and Its Applications 

WILLIAM FELLER (1906· t97O) 

.&w- HitIifI' ,.,.-1{ AI""'" 
~t.'wi-u7 

VOLUME I 

THIRD EDmON 

JOHN WILEY .. SONS 

New York. Chk:hHMr· BrI.,.. ·Toronto 

Figure 3.10. The frontispieces of the Doctrine of Chances by Abraham de Moivre (1667-
1754) and a modern treatise on probability. 

3.2.4 The hypergeometric and multinomial 
distributions 
The birth of probability is dated back to Blaise Pascal (1623- 1662) and to 
his correspondence with Pierre de Fermat (1601- 1665) about a number of 
questions connected to the games of cards posed by the knight de Mere, 
who was a dogged gambler with mathematical velleity. The first published 
treatise, De Ratiociniis in ludo aleae, appeared in 1647 and is due to Chris­
tiaan Huygens (1629-1695) ; it was followed by the Ars conjectandi of 1713 
by Jacob Bernoulli (1654- 1705) and by The Doctrine of Chances of 1718 
by Abraham de Moivre (1667- 1754). 

There are several definitions of probability. The first, and for this rea­
son it is referred to as classical, is due to Blaise Pascal (1623-1662). The 
probability is the ratio between the favorable events and all possible events, 
provided all events are equiprobable. It is convenient to imagine the events 
as subsets A of a set 0 of the possible cases, and it is usual to assign 
probability 1 to the certain event O. The classical probability of the event 
A is then 

IAI 
P(A) = 1nI' 'tACO, 

this way reducing to a problem of counting. 

3.47 The hypergeometric distribution. In this context a typical prob­
lem is the following. We are given a set X of N distinct balls: K of them 
are white and N - K black. We simultaneously draw n balls from X. What 
is the probability for exactly k of them to be white? 
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We assume that the drawings are random, that is, all outcomes are 
equally probable. Therefore the probability is the ratio between the favor­
able and possible events, the possible events on the drawings of n balls 
from N, i.e., (~). 

Denote by Ak the set of simultaneous drawings that contain exactly k 
white balls, k $ n. Clearly IAkl = ° either if k > K, since in this case 
there are not enough white balls, or if n - k > N - K, as in this case 
there are not enough black balls to produce an event with k white balls. 
If max(O, n - N + K) $ k $ min(n, K), we instead have IAkl =F 0. 

Given one such k, the number of simultaneous trials of k white balls 
from K white balls is (~) and, for each of them, there are (~=f) different 
ways of choosing n - k black balls. Therefore 

if max(O, n - N + K) $ k $ min(n, K), 

otherwise, 

thus the probability of drawing n balls with exactly k white balls in the 
trial from our set X is 

B(N K )(k) = (~) (~=f) 
, ,n (~) (3.15) 

The (3.15) is called the hypergeometric distribution. 
Notice that the sets Ak are pairwise disjoint and their union yields all 

possible drawings. Therefore we have 

3.48 Proposition (Vandermonde formula). Let N, K, n E N; then 

Proof. In fact 

(N) min(n,K) (K) (N -K) 
n =1!lI=LIAkl= L k n-k· 

k k=max(O,n-N+K) 

3.49 ,. Write a proof of Vandermonde's formula using the identity (1 + a)N 
(1 + a)K(l + a)N-K. 

o 

3.50 1 Quality inspection. In an industrial production of 1000 items, 2% of them 
are defective. Choosing at random 25 items, what is the probability of finding two or 
more defective items? 
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3.51 The multinomial distribution. Let 0 be a set; a partition of 0 
is a decomposition of 0 in pairwise disjoint sets AI, A2 , ... ,Ap , 

Let n := 101 and ki := IAil, i = 1, ... ,po Of course k1 + k2 + ... + kp = n. 
Denote by C(kI, k2, ... , kp) the number of possible decompositions of 0 in 
p subsets drawing respectively kI, k2, ... , kp elements with k1 + k2 + ... + 
kp = n. We then have 

n! 
C ( k1' k2' ... , kp) = k 'k I. .. k ,. 

1· 2· p. 

In fact, we have (,;:) different ways of choosing k1 elements of 0, then 

(nk2kl) ways of choosing a further k2 elements from 0, ... , and, finally, 

(n-(k 1 +k2t·+Kp-d) ways of choosing the remaining kp elements of O. 
p 

Therefore 

C(k1,k2, ... ,kp) 

n! (n - kd! 
k1!(n - k1)! k2! 

n! 

(n - (k1 + k2 + ... + kp-d)! 
kp ! 

3.52 ~. 52 cards are distributed to four players. How many hands are possible? 

3.3 Infinity 

3.3.1 The mathematical analysis of infinity 
Already Galileo Galilei (1564-1642) remarked that the squares of natu­
ral numbers are as many as the natural numbers themselves. In Discorsi 
intorno a due nuove scienze he wrote 

Interrogando io ... quanti siano i numeri quadrati, si puo con 
veritO, rispondere, loro esser tanti quanti sono le proprie radici, 
avvenga che ogni quadrato ha la sua radice, ogni radice il suo 
quadrato, ne quadrato alcuno ha piu d 'una sola radice, ne radice 
alcuna piu d 'un quadrato solo. 2 

2 Asked ... how many are the squared numbers, one can verily say they are as many 
as the square roots, in fact every square number has its square root and every square 
root its square, nor any square has more than a square root nor any square root has 
more than a square. 



100 3. Integer Numbers: Congruences, Counting and Infinity 

DISCORSI 
E 

DIMOSTRAZIONI 
MATEMATICHE, 

intorno 4. due nuotu ftim~1 
Acccnenri alia 

MECANICA & i MOVIMENTI LOCALT, 

JtlSip'y 

GAL I LEO GAL I LEI L [ N C £ 0, 
Tllofofoe Mar(Jn2tico priuurio ddScreniffimo 

Grand Duo di Tofcana. 

C'IJ 1JIUAIl,tuliuJrltt1lly,4IIrAllilJtI.ulI1I;S,liJJ. 

IN LEIDA, 

ApprclTo gli Elfcvirii. M. D. C. XXXVIII. 

GRUNDLAGEN 

ALWK.lIKINBN 

MANNIOHFALTIGKEITSLEHRE. 

ILIT11EIATIOOII·llnLOSOPIIlSCHBR '&!!SUCH 

[,f,IUE DES U'BHDLJOBBK. 

I)JL OBOBa C ... B'I'OR • .. --_ ............... , .. .....-,. .... 

LIlPZJG, 

'"' 
Figure 3.11. The frontispieces of the Discorsi intorno a due nuove scienze by Galileo 
Galilei (1564- 1642) and a book by Georg Cantor (1845-1918) about infinity. 

For a long time the only notion of infinity really accepted by mathemati­
cians was Aristotles 's notion of potential infinity, in the sense of never 
ending: the natural numbers as 0, 1 and so on is an example of poten­
tial infinity. But the use of actual infinity was either avoided or used as 
a source of contradictions, and according to the mathematical and philo­
sophical Greek tradition: infinitum actu non datur.3 

But the development of mathematics, especially in the eighteenth and 
nineteenth centuries, led mathematicians to confront themselves not only 
with the idea of potential infinity in the sense of infinite processes as in 
the infinitesimal calculus, but also with the need of understanding the 
structure of infinite sets. 

a. Cardinality 
At the end of the eighteenth century Georg Cantor (1845- 1918), in a series 
of papers, set the foundations of the theory of sets and, in particular, 
analyzed the concept of infinity on the basis of the principle of one-to-one 
correspondence. 

3.53 Definition. Two sets A and B are said to be equivalent or to have 
the same power or the same cardinality, and we write card A = card B or 
A ,....., B , if and only if they are in a one-to-one correspondence with each 
other. 

It is easily seen that,....., is an equivalence relation, i.e., it is 

3 Actual infinity is not given. 
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(i) REFLEXIVE. A '" A, 
(ii) SYMMETRIC. A", B if and only if B '" A, 

(iii) TRANSITIVE. If A '" B and B '" C, then A", C. 

The equivalence classes are called the cardinals: if A belongs to the equiv­
alence class 0:, we say that 0: is the cardinality of A and we write 0: := IAI 
or 0: := card A; and, existence of a cardinal 0: means the existence of a set 
A with cardA = 0:. 

Sets A that have the same power of {O, 1, 2, 3, ... , n - I} are said to 
have cardinality n; the empty set has cardinality 0 by definition. This way 
natural numbers become cardinals: they are called finite cardinals, all other 
are called tmnsfinite cardinals. 

If A and B are disjoint sets of cardinality 0: and /3, the cardinality of 
A U B and of Ax B depends only on 0: and /3 and is denoted by 0: + /3 
and 0:/3; in particular, if 0: = 0:1 and /3 = /31 then 0: + /3 = 0:1 + /31' The 
cardinality 0: + /3 agrees with the ordinary sum of integers if 0: and /3 are 
finite cardinals. 

If A =I 0, the set of mappings from A into B is denoted by BA, and 
its cardinality by/3o.. If 0: and /3 are finite, then /30. is the ordinary power 
with integers, see Section 3.2. 

The set of naturals N is infinite and its cardinality is denoted by No 
(aleph, N, is the first letter of the Hebrew alphabet). A set that has cardi­
nality No, that is in one-to-one correspondence to N, is called denumemble 
or countable. 

Of course a set has cardinality No if and only if it is possible to enu­
memte it. 

3.54,. Show that 
(i) card {2n I n E N} = card {2n + 11 n E N} = No, 

(ii) card{n E N I n 2:: n} = No, 

(iii) n+No=card({O,I, ... ,n-l}UN) =No, 

(iv) No + No = No, 
(v) nNo = No for all n = 1,2,3, .... 

[Hint: Show a bijection between the sets involved. To prove (iii) notice that a bijection 
{O, 1, ... , n - I} x N -+ N is given by (i, k) -+ i + nk.j 

3.55 Definition. Let 0:, /3 be cardinals. We say that 

(i) O::S /3 if we can find sets A and B such that A c B, card A = 0: and 
cardB = /3. 

(ii) 0: < /3 if 0: :s /3 and 0: =I /3. 

Trivially card A :s card B if A c B. If A is infinite and B c A is finite, 
obviously, A \ B is infinite. Consequently we can inductively choose a1 E A, 
a2 E A \ {a1}, a3 E A \ {al, a2}, and so on; therefore A contains a subset 
that has the same power of N. We conclude 

3.56 Proposition. A set A is infinite if and only if it contains a denu­
merable subset. A cardinal 0: is transfinite if and only if 0: ;::: No. 
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Figure 3.12. Two pages from two of Cantor's papers about infinity that appeared re­
spectively in 1895 and 1897 in Mathematische Annalen. 

If A is infinite, according to Proposition 3.56, we can write 

with 

Since Al has the same power as a strictly included subset, A has the same 
cardinality as its proper subset BI U A2 , hence we can state 

3.57 Proposition. A set is infinite if and only if it has the same power 
as one of its proper subsets. 

h. Cantor-Bernstein theorem 

In principle two cardinals are not comparable. However the following the­
orem states that (); = f3 if and only if (); :::; f3 and f3 :::; ();. 

3.58 Theorem (Cantor-Bernstein). If A is equivalent to a subset of 
Band B is equivalent to a subset of A, then A and B are equivalent. 

Proof. Let h : A --+ Bl C Band k : B --+ Al C A be the one-to-one correspondence 
between A and Bl :"" h(A) C B and between B and Al :"" k(B) C A , and let A2 :"" 
k(Bl). Writing E ~ F for card E "" card F , by assumption A ~ B, and, by construction, 
B ~ A2; hence A2 ~ A. The map 'P :"" k 0 h : A --+ A2 is one-to-one; set Ao :"" A and 

\:In 2: 1. 

Since A2 C Al C Ao , we have An+l C An \:In 2: 0, hence 
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and 

(An \ An+!) ~ cp(An \ An+d = An+2 \ An+3' 

Since the sets A 2j \ A2j+l, j = 0, 1, ... , are pairwise disjoint, also the subsets 

H := U~o (A2j \ A2i+1) , and cp(H) = U~I (A2j \ A 2j+!) 

have the same power. On the other hand trivially 

A = H U (AI \ A2) U n~OAi =: H U L, 

Al = cp(H) U (AI \ A2) U n~OAi =: cp(H) U L, 

hence A ~ AI, consequently A ~ B. o 

An immediate consequence of the Cantor-Bernstein theorem and of 
Proposition 3.56 is 

3.59 Proposition. ~o is the first transfinite cardinal, i.e., a < ~o if and 
only if a is finite. 

We notice that Proposition 3.59 does not follow directly from Proposi­
tion 3.57 since a priori a < ~o is not alternative to ~o :::; a. 

c. Denumerable sets 
Since the subset of primes in N is infinite, it is denumerable. Similarly the 
set 

is denumerable. Since A is in one-to-one correspondence with N x N, we 
infer 

More generally, the set 

{PIP~'" P~ I Pl,P2,··· ,Pn prime} 

is denumerable, hence ~o = ~o. The previous relation can be inferred 
by means of the following procedure known as the first Cantor diagonal 
method. Let In = {ailiEN be a countable family of denumerable sets. 
Enumerating UnIn as follows 

1 2 132 1 432 1 al,al,a2,al,a2,a3,al,a2,a3,a4"'" 

compare with Figure 3.13, we see that 

card U~=l In = ~o. 

3.60~. Show that 
(i) zn, n;:::: 1, is denumerable; 

(ii) Q is denumerable; 
(iii) the set of polynomials with integer coefficients is denumerable; 
(iv) a real number is said to be an algebraic number if it is a root of a polynomial 

with integer coefficients. Show that the set of algebraic numbers is countable. 
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Figure 3.13. The first Cantor diagonal method. 

d. The axiom of choice 
Let A be a set; a partial order on A, denoted by ~, is a relation on A with 
the properties 

(i) REFLEXIVE. x ~ x \:Ix E A, 
(ii) SYMMETRIC. if x, YEA, x ~ y and y ~ x, then x = y, 

(iii) TRANSITIVE. if x, y, z E A, x ~ y and y ~ z, then x ~ z. 

Notice that we do not require that necessarily either x ~ y or y ~ x. If 
this last property occurs, we say that ~ is a (total) order on A. On a tree, 
there is a natural partial order, in lR. there is an order. The set of parts 
P(X) of a set X is partially ordered by the inclusion: If A, B c X, then 
A, BE P(X), and we can say that A ~ B in P(X) if and only if A c B. 

Because of the Cantor-Bernstein theorem, the relation ~ defines a 
partial order on the family of cardinals. Does it define a total order? In 
other words, given two ordinals, is it true that either 0: ~ (3 or (3 ~ o:? The 
question is equivalent to the following: given a set A with card A = 0:, and 
a cardinal (3, such that (3 ;:::: 0: does not hold, can we construct a subset 
B c A with card B = (3? Of course the construction of B involves the 
choice of elements of A, and, in the case (3 = No, we actually constructed 
a countable set B by induction, see Proposition 3.57. 

In 1904, Ernst Zermelo (1871-1951) showed, but we are not going to 
present the proofs here, that the answer is positive, i.e., the following 
theorem holds. 

3.61 Theorem. We have card A ~ card B or card B ~ card A for every 
pair of sets A and B if and only if we admit the following axiom of choice. 

3.62 Axiom (Zermelo's axiom). Let A be a family of nonempty and 
pairwise disjoint sets. Then there exists a set C such that C n A consists 
exactly of one element for each A E A. 

Nowadays Zermelo's axiom is widely accepted as one of the standard 
mathematical tools, though in the years many attempts have been made 
to avoid its use in many mathematical theories. 

There are many equivalent ways of expressing Zermelo's axiom and 
often the equivalence is not at all detectable at first sight. 



3.63 Theorem. The following claims are equivalent 

(i) Zermelo's Axiom 3.62. 
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(ii) AXIOM OF CHOICE. Let {XihEJ be a family of nonempty sets with 
indices in a set I. Then there exists a function choice r.p defined on 
each i E I such that r.p(i) E Xi Vi E I, that is, we can choose an 
element Xi = r.p( i) in each Xi and consider the set {XdiEJ. 

(iii) CARTESIAN PRODUCT. The Cartesian product of the family {XihEJ, 
I1iEJ Xi, is empty if and only if one of the factors Xi is empty. 

Suppose a partial order :::; is defined on A, and let C c A. In this situation 
we can easily introduce the notions of upper bound, supremum and maxi­
mum of C. An upper bound for C is an element m such that c:::; m Vc E C; 
the supremum of C is, if it exists, the lowest of the upper bounds m of C; 
Co E A is the maximum of C if Co E C and c :::; Co "Ie E C. Moreover, we 
say that Co is a maximal element for C if there is no b E A such that a :::; b 
and b i=- a; finally, a totally ordered subset of C is called a chain of C. 

With the previous definitions we can now formulate two other equiva­
lent forms of Zermelo's axiom. 

3.64 Theorem (well-ordering). On every set X there is an order such 
that every nonempty subset has minimum. 

3.65 Theorem (Zorn's lemma). Let A be a partial ordered set by:::;, 
and suppose that every chain of it has supremum. Then for every a E A 
there exists a maximal element X E A such that a :::; x. 

e. The power of the continuum 

3.66 Theorem (Cantor). Let A be a countable set. The family P(A) of 
subsets of A has the same power as the family 2A of mappings r.p : A -+ 

{O, I}, i.e., 2No , and it is strictly larger than ~o. 

Proof. The map that associates to each subset E c A its characteristic 
function XE(X) (defined by XE(X) = 1 if x E E and XE(X) = 0 if x tJ. E) 
clearly defines a bijection between P(A) and 2A. It remains to show that 
2No > ~o, that is, one cannot enumerate the family of sequences with values 
o and 1. We shall prove this using the second Cantor diagonal method. 
Suppose we are able to enumerate all sequences of 0 and 1. In this case we 
can form the table 

where the a; are either 0 or 1. We now define a new sequence with values 
in {O, I} which is not listed in the previous table, a contradiction. For that, 
define 
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Xk = {
I ifaZ=O, 

o if aZ = 1. 

Clearly {Xk} does not agree with any of the lines in the table. o 

If we now observe that whenever card A > ~o, B c A with card B = ~o, 
then card A \ B = card A, and if we represent the reals in a binary basis, we 
easily conclude that card [0, 1] = 2No. Also since tan(1T(x -1/2)), x E]O, 1[, 
is a bijection between ]0, 1[ and lR, we infer that 

cardlR = 2No 

i.e., 2No is the power of the continuum. Finally by the first Cantor diagonal 
method we have card lRn = 2No, too. We can then summarize 

3.67 Theorem. The sets [0, 1], [0, l]n, n ~ 2, and lRn have all the power 
of the continuum. 

3.68 ~. The real numbers that are not algebraic (see, for example, Exercise 3.60) are 
called transcendental. Show that the set of transcendental numbers has the power of 
the continuum. 

The claim that the segment [0,1] and the n-dimensional cube have 
the same power deserves a few comments. The claim in Theorem 3.67 
means that there exists a one-to-one map between [0,1] and [o,l]n. As 
paradoxical as it may appear, it says in particular that the concept of 
power or cardinality and of dimension, that is, in its intuitive form, the 
number of independent variables needed to describe a particular situation, 
are unrelated: for example it is not enough to describe an object in a one­
to-one way with two parameters in order for it to be a surface. Actually 
the notion of dimension is related to more refined structures than just 
counting points, as, for instance, continuity. 

f. The continuum hypothesis 
More generally one shows that 2<> > a for any cardinal a. This way we 
can construct a hierarchy of transfinite cardinals 

card N < card P(N) < card (P(P(N))) < .... (3.16) 

The natural question of whether such a hierarchy exhausts all transfinite 
cardinals naturally arises. 

The hypothesis that the cardinality of the continuum is the smallest 
nondenumerable cardinal, i.e., that no other cardinal lies between ~o and 
2No is called the continuum hypothesis, while one refers to the assump­
tion that the hierarchy in (3.16) exhausts all transfinite cardinals as the 
generalized continuum hypothesis. 

In 1939 Kurt Godel (1906-1978) showed that the generalized contin­
uum hypothesis (in particular the continuum hypothesis) is consistent with 
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Figure 3.14. Bertrand Russell (1872- 1970) and David Hilbert (1862-1943). 

the standard axioms of set theory; in 1963 Paul Cohen (1934- ) showed 
that also its negation (or the negation of the continuum hypothesis) is con­
sistent with the same axioms. In other words, the continuum hypothesis is 
independent from the axioms of set theory and we can develop a set theory 
in which it is valid and a set theory in which it is not valid. 

3.3.2 Some information on the theory of sets 
In the second half of the eighteenth century mathematicians realized that 
a reasonable theory of sets was necessary for the development of mathe­
matics. It is commonly agreed that the creator of the theory of sets was 
Georg Cantor (1845-1918) who developed the theory in many papers and 
made use of it in several contexts, and especially in the study of cardinal 
and ordinal numbers. 

At the same time as Cantor, Gottlob Frege (1848-1925) developed a 
formal theory of the higher order calculus of predicates. This theory may 
be regarded as a theory of sets based on two axioms: 

o AXIOM OF EXTENSIONALITY. Two sets are equal if they contain the 
same members. 

o AXIOM OF ABSTRACTION. Given a predicate p(x), there exists the set 
of x that satisfy p( x). 

Frege's axioms in connection with sets that are too large lead to several 
paradoxes. Cantor himself observed that the set of all sets should have a 
maximum cardinality K contradicting the fact that 2K > K. A similar 
observation had already been made by Cesare Burali-Forti (1861-1931) in 
connection with the theory of ordinals. In 1902 Bertrand Russell (1872-
1970) observed that the axiom of abstraction is contradictory; in fact, if 
R is the set of all sets that are not members of themselves, then R is a 
member of itself. 
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What is the reason for paradoxes and how can we avoid them? A first 
reason was found by J. Henri Poincare (1854-1912) and Bertrand Russell 
(1872-1970), and consists in the use of so-called impredicative notions, 
that is, in the use of quantifiers acting on all members of the set in order 
to define a new element. A first attempt to make up for this was the 
theory of types developed by Bertrand Russell (1872-1970) and Alfred 
N. Whitehead (1861-1947) in Principia Mathematica. However, excluding 
impredicative notions has some consequences, for instance the definition 
of the supremum for subsets of ~ is impredicative. Another reason for 
the occurence of paradoxes was seen by L. E. Brouwer (1881-1966) and 
the intuitionists in the principle of excluded middle (tertium non datur): 
either p or not p. They say that such a principle holds in correspondence 
of finite sets, but not in situations in which we use quantifiers on infinite 
sets. For the intuitionists the fact that "p(x) holds'Vx" does not hold does 
not imply that "there is x such that p(x) does not hold." They in fact 
interpret (or better pretend that one should interpret) the existence of x 
as the procedure or the exhibit of an x. On this basis the intuitionists 
started a program of reformulation of mathematics, that later on turned 
out to be of extreme relevance for information science, but doing that they 
also came to unsatisfactory conclusions such as, for instance, that every 
real function that exists in their sense is continuous. 

Nobody, or hardly anybody, is willing to give up Cantor's results, as 
Hilbert put it "no one will expel us from the paradise which Cantor created 
for us," and Bertrand Russell describes Cantor's work as "probably the 
greatest of which the age can boast." However, in order to compare two 
cardinals 0: and f3 (i.e., say whether f3 = 0:, 0: ::; f3 or f3 ::; 0:) Cantor had 
to assume that every set can be well-ordered, a counter-intuitive claim. 

In 1904 Ernst Zermelo (1871-1951) showed that every set can be well­
ordered. In 1908 he analyzed the assumptions from which the theorem 
follows and which do not allow inference of the old paradoxes, though it 
does not answer the question of whether the new axioms would give rise 
to new paradoxes. 

Zermelo gives up Frege's axiom of abstraction (which is contradictory) 
and replaces it with rules that produce admissible sets (by means of union, 
intersections and powers) and with a weaker form of the axiom of abstrac­
tion, the 

o AXIOM OF SEGREGATION. Given a set X and a predicate p(x), there 
exists the subset {x E X I p( x)}. 

In the previous axiom p may be impredicative, i.e., may contain quantifiers 
on all X. 

With these axioms, Zermelo was able to produce finite sets such as 

{0,{0},{{0}},{0,{0}}} 
but cannot produce infinite sets. For this reason Zermelo assumes also 

o AXIOM OF INFINITY. There exists a set that contains the empty set and 
contains {x} if it contains x. 
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Notice that the axiom of infinity states, in terms of sets, the existence 
of the natural numbers as an actual infinite set and not just as a potential 
infinite set. Finally, Zermelo states 

o AXIOM OF CHOICE. Given a family of disjoint nonempty sets {Xo:}, then 
there exists a set C which has as its members one and only one element 
from each Xo:, 

which is crucial for the proof of the well-ordering theorem. 
The previous axioms, slightly modified by Abraham A. Fraenkel (1891-

1965), are Zermelo-Fraenkel axioms of the theory of sets that allow one 
to prove the well-ordering theorem. Zermelo's idea is: if we accept those 
claims, then we also have to accept the well-ordering theorem. 

In contrast with the intuitionists, David Hilbert (1862- 1943) started 
a new program. For Hilbert "forbidding a mathematician to make use of 
the principle of excluded middle is like forbidding an astronomer his tele­
scope." For Hilbert we need to distinguish between the formalism, which is 
jinitistic, and interpretations of the formalism which may be nonjinitistic: 
for example, the calculus of polynomials is finitistic, but the interpretation 
of the formalism of polynomials as polynomial functions is nonjinitistic. 
Hilbert's idea is then that formalism, being finitistic, always works, how­
ever, a part of it has a meaning which is accepted by everybody, i.e., real 
sentences, but ideal sentences may have a meaning which is not unani­
mously accepted, but, in any case, ideal sentences can be used to infer real 
sentences. From this point of view the fundamental question is that of the 
consistency of the system and the central question becomes the question 
of the consistency of the Zermelo- Fraenkel axioms. 
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Without getting into many details it is worth saying something more 
about the meaning of ideal and real sentences. Roughly speaking, a 
real sentence stands for a generalization of particular observations, thus 
"p(x, y) holds "Ix, y E X" is a real sentence, while ""Ix E X 3y E X 
such that p(x, y) holds" is an ideal sentence. Corresponding to real and 
ideal sentences we have finitary and nonfinitary proofs. A finitary proof 
is essentially a proof that uses only arguments on finite sets or inductive 
arguments, while a nonfinitary proof is for instance one which makes an 
essential use of the axiom of infinity. 

In principle the proof of consistency should be finitary: for all d, d is not 
a proof of a contradiction. Therefore it should be possible not only to prove 
theorems of relative consistency (reducing the proof of the construction 
of the reals to that of rationals and, in turn, to that of naturals and of 
the theory of sets), but, in the context designed by Hilbert, it should be 
possible to prove a theorem of absolute consistency. Hilbert's idea was that 
in order to prove consistency it suffices to find a property, that is satisfied 
by the axioms, preserved by the inference rules, but that is not satisfied 
by a contradictory sentence. This way the proof of consistency could be 
carried out by induction. 

Hilbert (as many other mathematicians) was worried by the fact that 
paradoxes, confined for the time to areas away from the kernel of mathe­
matics, would enter the field of mathematical analysis, just refounded on 
nonfinitary arguments of set theory. On the other hand he firmly believed 
that every proof, even nonfinitary proofs, could be formally analyzed as 
a finite sequence of symbols on formulas, worked out according to precise 
synctactical rules (instead of as a flow of ideas, meanings and concepts), 
and consequently could be handled in a finitary way. 

Hilbert's program reached a crisis when in 1931 Kurt G6del (1906-
1978) proved his celebrated incompleteness theorems, a consequence of 
which being that one can exhibit real sentences (in the sense of Hilbert) 
that can be proved only with nonfinitary means using the same axioms 
except the one asserting the existence of an infinite set. Later it was proved 
that one can exhibit a polynomial (in more than one variable) with integer 
coefficients without integer roots, a finitary claim, that however requires 
in an essential way the use of the axiom of infinity. 

But there is more. Modulo coding numbers, G6del proves that the claim 
of consistency of the Zermelo-F'raenkel axioms is not provable not only 
with finitary but even with nonfinitary means. However, the sum of knowl­
edge acquired leads and tranforms into the study of formal systems, that is 
into a new branch of mathematics, though, as Hermann Weyl (1885-1955) 
states, 

the question of the ultimate foundations and the ultimate mean­
ing of mathematics remains open; we do not know in what direc­
tion it will find its final solution or even whether a final objec­
tive answer can be expressed at all. "Mathematizing" may well 
be a creative activity of man, like language or music, of primary 
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originality,,,4 whose historical decisions defy complete objective 
rationalization. 

3.4 Summing Up 

Integer arithmetic 
Integral numbers 
The integral division of integers leads naturally to the notions of prime and coprime 
numbers and of greatest common divisor of two numbers as well as to Euclid's algorithm 
for finding the greatest common divisor of two numbers. An extension, Euclid's gener­
alized algorithm, produces a solution (x, y) E Z2 of the equation ax + by = g.c.d. (a, b), 
which allows computation of all solutions of the linear equation with integral coefficients 

ax + by = c, 

see Bezout's theorem, Theorem 3.9. 
o FUNDAMENTAL THEOREM OF ARITHMETIC. Every integer n ::::: 2 decomposes as a 

product of primes and, apart from rearrangement of factors, that decomposition is 
unique. 

Congruences 
Bezout's theorem solves linear first order congruences modulo p: 
o ax == c (mod p) is solvable if and only if c is a multiple of g.c.d. (a,p). In this case 

one is able to find all the solutions, see Proposition 3.16. 
o ax == 1 (mod p) is always solvable with a unique solution x E {O, ... ,p - 1} if pis 

prime. Thus the ring of the remainders modulo p, Zp, is a field if p is prime. 
o CHINESE REMAINDER THEOREM. Given Pl, P2, ... ,Pn coprimes, the system 

{

X == bl 

X == b2 

x ==bn 

(mod Pl), 

(mod P2), 

(mod Pn) 

is solvable for any bl, b2, ... , bn , and two solutions differ by a multiple of PlP2 ... Pn. 
The Chinese remainder theorem is often used to solve ax = b (mod n) when n is a 
product of distinct primes. 

A useful tool to analyze the multiplicative structure of the ring Zn, is the exponential 
modular function from Zn into Zn given by x --> aX (mod n). We have 

o FERMAT'S MINOR THEOREM. If P is prime, then aP == 1 (mod p) Va E Zn, a of O. 
o EULER'S THEOREM. Denote by q,(n) the number of integers ~ n that are coprime with 

n. Then a<P(n) == 1 (mod n) for all a coprime with n. 
o Let P and q be prime. Set n := pq and let e and d be such that ed == 1 (mod q,(n)). 

Then the two modular power maps from Zn into Zn given by 

x --> a€ (mod n) 

are one the inverse of the other. 

and x --> ad (mod n) 

The latter sentence is the foundation of the RSA public key cryptography. 

4 And usefulness, we add. 
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Model Arrangements Drawings Mappings Locations Statistical 
Physics 

n population number of cardinality of cells states 
balls the range 

k samples drawn balls cardinality of balls particles 
the domain 

n k ordered k- number of number of number of Maxwell-
samples with drawings in mappings ways of locat- Boltzmann 
replacement succession of{l, ... ,k} -+ ing k distinct statistics 
from n k balls with {I, ... ,n} balls in n 

replacement cells 
from n 

n! ordered number of number of (n-k)! 
k-samples drawings in ways of locat-
without re- succession ing k distinct 
placement of k balls balls in n 
from n without re- cells, with at 

placement most one ball 
from n per cell 

(-l)k( t) unordered k- number of Bose-
samples with ways of 10- Einstein 
replacement eating k statistics 
from n nondistinct 

balls in n 
cells 

(~) unordered number of number of number of Fermi-Dirac 
k-samples simultaneous injective ways of 10- statistics 
without re- drawings of k maps from eating k 
placement balls from n {I, ... , k} to nondistinct 
from n {I, ... ,n} balls in n 

cells, with at 
most one ball 
per cell 

Figure 3.16. Samplings in different models of counting. 

Combinatorics 
The table in Figure 3.16 summarizes the numbers of ordered and nonorderd samples in 
the various models of counting: arrangements, sets and maps, drawings and locations. 

Cardinals 
Cardinality is a way to count elements in a set. Two sets have the same cardinality if 
there is a bijection between them, and cardinals are simply the equivalence classes of 
sets which are in a one-to-one correspondence. 

One distinguishes sets with finite cardinality, or simply finite, that is the sets which 
are in a one-to-one correspondence with bounded sets of N. The cardinality of such sets 
is just the number of elements they have. The other sets are called infinite, and their 
cardinals are said to be transfinite. Among these sets, the sets which are in a one-to 
one correspondence with N are called denumerable or countable, and their cardinality 
is denoted by ~o. These sets are obviously infinite. 
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The inclusion relation between sets defines a relation on cardinals: a ~ {3 if and 
only if there exist sets A and B such that card A = a, card B = {3, and A C B. We also 
set a < {3 iff a ~ {3 and a ~ {3. The relation ~ between cardinals is obviously reflexive 
and transitive, while the symmetry is given by the 

o CANTOR-BERNSTEIN THEOREM. Let a and {3 be two cardinals. If a ~ {3 and {3 ~ a, 
then a = {3. 

It then follows 

o The relation ~ between cardinals is a partial order. 
o Let A c N. Then, either A is finite or it is in a one-to-one correspondence with N. 

Equivalently, No is the first transfinite cardinal. 
o Z, Q, and for n ~ 1, Nn, zn, Qn are denumerable. 

At the beginning of the nineteenth century, Zermelo showed that the partial order 
relation ~ between cardinals actually is a total order, that is, given sets A and B we 
have either card A ~ card B or card B ~ card A, provided we assume the following: 

o ZERMELO'S AXIOM OF CHOICE. Let A be a family of nonempty and pairwise disjoint 
sets. Then there exists a set C such that C n A consists exactly of one element for 
each A E A. 

Nowadays the axiom of choice is tacitly accepted, hence the possibility to compare 
different cardinals. 

o CANTOR. Let a := card (A). Denote by 2" the cardinality of the set of all maps 
<p : A ~ {O, I}. Then 2" > a. In particular 2No > No. 

o [0, 1 J c JR, JR and more generally, for every n ~ 2, JRn have cardinality 2No. It is 
therefore impossible to distinguish sizes and "dimensions" by counting points. 

3.5 Exercises 
3.69 ,. Find a number that is divisible by 7 and that, divided by 2, 3, 4, 5 or 6, yields 
always a remainder 1. 

3.70,. The least common multiple of two positive integers a and b is the least positive 
number that is divisible by both a and b. It is denoted by l.c.m (a, b). Show that 

l.c.m (a, b) g.c.d. (a, b) = abo 

3.71 ,. If p and q divide a and g.c.d. (p, q) = 1, then pq divides a. 

3.72 ,. Find the g.c.d. (a, b) and the l.c.m (a, b) for each of the following pairs of inte­
gers: 

(15000, 32768), (46035, 47430), (17795, 43291), (2295, 1989). 

3.73 ,. Solve ax + by = g.c.d. (a, b), x, y E Z for the pairs (a, b) that follow: 

(1542, 2102), (2287, 442), (1485, 1547), (38,127). 

3.74,. Show that p is prime if and only if g.c.d. (a,p) = 1 for all a, 2 ~ a < p. 
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3.75~. Let dEN, d 2: 2. Show that each n E N can be uniquely represented as 

k 

n = ao + aId + a2d2 + ... + ak dk = L ak dk 

j=O 

with 0 :S ai :S d - 1 Vi, known as the representation of n in bases d. 

3.76 ~. Let a and b be coprime. Show that 

with x, y E Z. 

1 x y 

ab=~+b 

3.77~; Show that every rational number r 
representation of the form 

p/q, p, q E Z, q 1= 0, has a unique 

r=~+~+···+..::.!:... 
pa, pa2 pak 

where C"1, 002, ... , OOk are integer coefficients, and PI, P2, Pk are distinct primes. 

3.78 ~. If p is prime, show that (a + b)P == aP + bP (mod p). 

3. 79 ~. Show that 

(i) n is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3, 
(ii) n is divisible by 9 if and only if the sum of its digits (in base 10) is divisible by 9. 

(iii) n = 2:7=0 aj 10j is divisible by 11 if and only if the alternate sum of its digits 

ao - al + a2 - a3 + ... + (-l)kak is divisible by 11. 

3.80 ~ ~. Show that for every N > 1 there exists N consecutive numbers none of which 
is prime. [Hint: If p is prime and p > N, consider the numbers p! + 2, p! + 3, ... , p! + p.] 

3.81 ~~. Deduce from the prime number theorem that, if Pn is the n-th prime number, 
then 

lim~=l. 
n~oo n/logn 

3.82 ~. Let {OOk} be a sequence of real numbers in binary representation. Cantor's 
diagonal procedure then produces a real number a ff. {OOk}. In particular, every sequence 
of algebraic numbers produces a nonalgebraic number. 

3.83 ~. Find the probability that two persons chosen at random were born on a Mon­
day. 

3.84~. In how many different ways 

(i) can 8 persons be seated in 5 seats? 
(ii) can 5 persons be seated in 8 seats? 

3.85 ~ Poker. Find the probability for a poker hand to be three of a kind or a full 
house. 

3.86 ~ Mere paradox. Show that it is more probable to get at least one ace with 
four dice than at least one double ace in 24 throws of two dice. 
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3.87 'If. Drawing successively with replacement c balls from n labeled from 1 to n, 
what is the probability of drawing k different balls? 

3.88 'If. From a box containing n distinct balls, what is the probability that a sample 
of size k, obtained with replacement, contains two equal balls? 

3.89 'If Birthdays. What is the probability that in a population of n people the birth­
day of at least two people will fallon the same day, assuming equal probability for each 
day? Compute the probability for n = 10,25,50. Suppose n = 12; what is the probabil­
ity that the birthday of the twelve people will fall in twelve different months? 

3.90 'If. What is the probability that a random number between 1 and n divides n? 

3.91 'If. Though Robin Hood is a wonderful archer (he hits the mark 9 times out of 
10), he faces a difficult challenge in this tournament. In order to win, he must hit the 
center of the mark at least 4 times with the next 5 arrows. On the other hand, if he hit 
the mark 5 times out of 5, the county sheriff would recognize him. Let us suppose he 
can miss the mark at will: what is the probability of his winning the tournament? 

3.92 'If. A drug smuggler mixes drug pills with vitamin pills, hoping customs officers 
won't find him out. Of a total of 400 pills, only 5% are illegal ones. If the officers check 
5 pills, what is their probability of finding an illegal one? 

3.93 'If. A box contains 90 balls numbered from 1 to 90. We sample without replacement 
5 balls. What is the probability that they contain the balls 1, 2 and 3? Suppose we add 
three more balls numbered 1,2 and 3 to the original 90 balls. What is now the probability 
that after producing a sample of size 5 the trick is discovered? 

3.94 'If. Let n ~ k ~ T ~ 0 be natural numbers and let X be a set of cardinality n, 
IXI = n. Define 

Pk,r(X) := {(A, B) I Be A c X, IBI = T, IAI = k}. 

Show that 

3.95 'If. Show that the number of strings of characters of k letters from an alphabet of 
n letters is nk. 

Show that the number of strings of characters with n letters from an alphabet A = 
{Al' A2, ... ,Ar} where the letter Ai appears ki times with ki ~ 0 and E~=l ki = n is 

n! 

3.96 'If. Show that 
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(~1) = (-l)k, 

C"n) = (-l)kC+: -1), 

k fa G)n - kk - jtj 
= G) (1 + t)k, 

t (~) ( ~.) = (a + b), 
j=O J n J n 

n (2n)! (2n) 2 fa j!2(n - j)!2 = n ' 

(~2) = (_I)k(k + 1), 

(2;)2- 2n = (-I)nC~2), 

~(2n-2)2-2n+1 = (_I)n-I(I/2), 
n n-l n 

n 

~)Ck)2 = c~n. 
k=O 

3.91,.. Let IXI = n and let Pk(X) := {A c X IIAI = k} C P(X) be the set of 
k-subsets of X and Ilk (X) the set of k-partitions of X, i.e., of subsets {AI, ... , Ak} of 
X which are disjoint and such that X = Uf=1 Ai. Show that 

II(X, {I, 2, ... , k})1 = kllPk(X)I, IS(X, {I, 2, ... , k})1 = kllIlk(X)I· 

Moreover show that 

[Hint: Notice that the k-partitions of X U {xo} divide into the ones for which {xo} is 
one of the sets and the ones where xo is properly contained in one of the k-subsets.] 

3.98,.. N balls numbered from 1 to N are successively located in N cells numbered 
from 1 to N starting from the first. What is the probability that a ball is located in 
the cell with the same number? [Hint: Compute first the probability that k balls are 
located in the corresponding cells.] 

3.99 ,.,.. Let EI, ... , En be finite sets such that the intersection of k of them has 
always the same power, i.e., for all il < i2 < ... < ik we have lEi! n Ei2 n··· n Eik 1= 
c(k). Show that 

In particular show that, if Pn denotes the family of permutations of n objects without 
fixed points, 

Pn = {u E Pn lUi i- i} 

we have 
n 1 

IPnl = n! L(-I)k_. 
k=O k! 

[Hint: Write Pn \ Pn = Ui'=1 Ei with Ei = {u E Pn I Ui = i}.] 

3.100 ,.,. Graphs. Many problems, both theoretical as well as of practical interest, 
often translate into graph problems. 

Definition. A (symmetric) graph with vertices V is a subset G of V x V such that if 
(u, v) E G, then (v, u) E G, and (v, v) ~ G for all v E V. 
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Figure 3.17. Passing from a tree r to a word 1r. 

Two graphs (V, G) and (V', G/) are said to be isomorphic if there is a bijection 
cp: V -+ V' such that (u,v) E G if and only if (cp(u),cp(v)) E G' . Of course we can 
always decide if two finite graphs are isomorphic or not, however, the needed time can 
be very large in presence of many vertices: the best al~orithms are just slightly more 
efficient than comparing the n! bijections from V and V'. 

To make the comparison more efficient, it is convenient to look at invariants. One 
such invariant is the number of connected components <>f a graph. 

Definition. The connected component of v in G is the set 

[v] := {w E V i3uQ,Ul,'" ,Ur E G 

such that UQ = v, Ur = w, and (Ui_l, Ui) E G Vi = 1, ... , r}. 

The number of connected components of G, c(G), is clearly the same for isomorphic 
graphs. In particular, G is said to be connected if it has only one connected component: 
being connected is an invariant. 

Another invariant is the chromatic polynomial irltroduced by George Birkhoff 
(1884-1944) in 1912. 

Definition. A coloring of a graph (V, G) with x E N colors is a mapping X : V -+ 

{1,2, ... ,x} such that X(u) '" X(v) whenever (u,v) E G, that is, such that adjacent 
vertices are colored differently. 

The least number of distinct colors needed to color a graph is called the chromatic 
number, ')'(n), of the graph. Given a graph with n vertices and x:::: ')'(n), show that the 
number of coloring of G with x colors is given by a polynomial in x of degree n = lVI, 
called the chromatic polynomial of G 
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Figure 3.18. Passing from a word 7!' to a tree r. 

PG(X) := L (_1) W1 xc(r) 

reG 

where the sum is taken on all subgraphs r of G (including 0 and G).5 [Hint: Compute 
the number of wrong colorings.] 

3.101 'If 'If Trees. A tree r is a connected graph without cycles, a cycle being a sequence 
of distinct vertices Ul, ... ,Un, n 2:: 2, with (Uk,Uk+d E G and (un,uo) E G. 

Theorem (Cayley). The number of trees with n vertices is the number of words with 
n - 2 letters from an alphabet of n letters, i.e., nn-2. 

Figures 3.17 and 3.18 show how to construct a word from a tree r and a tree from a 
word. 

5 There exist efficient algorithms to compute the chromatic polynomial of a graph. 
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3.102 " The Pigeonhole Principle. Prove 

Proposition. Let X and Y be nonempty tinite sets and let cp : X -> Y. There exists 
y E Y such that the tiber cp-l(y) contains at least lXI/WI elements. 

Despite its simplicity, it is one of the most powerful methods of combinatorics. However, 
it is not always easy to understand how to use it. As an example of its applications we 
state, without proof, the following theorem. 

Theorem (Erdos-Szekeres). Let a, bEN, n := ab + 1 and let Xl. X2" Xn be any 
n-sample of real numbers. Then the sequence contains either an increasing sequence of 
a + 1 numbers or a decreasing sequence of b + 1 numbers. 
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Sir Isaac Newton 
(1643-1727) 

Gottfried von Leibniz 
(1646-1716) 

Jacob Bernoulli 
(1654-1705) 

Johann Bernoulli 
(1667-1748) 

Michel Rolle 
(1652-1719) 

Guillaume de I'Hopital 

(1661-1704) 

Jacopo Riccati 

(1676-1754) 

Guido Grandi 

(1671-1742) 

Giulio Fagnano 

(1682-1766) 

Abraham de Moivre 

(1667-1754) 

Daniel Bernoulli 

(1700-1782) 

Marie Jean Condorcet 

(1743-1794) 

Brook Taylor 

(1685-1731) 

James Stirling 

(1692-1770) 

Leonhard Euler 
(1707-1783) 

Jean d'Alembert 
(1717-1783) 

Alexis Clairaut 

(1713-1765) 

Johann Lambert 

(1728-1777) 

Joseph-Louis Lagrange 
(1736-1813) 

Pierre-Simon Laplace 
(1749-1827) 

Adrien-Marie Legendre 

(1752-1833) 

Joseph Fourier 
(1768-1830) 

Lazare Carnot 

(1753-1823) 

Colin MacLaurin 

(1698-1746) 

Etienne B'ezout 

(1730-1783) 

Sylvestre Lacroix 

(1765-1843) 

Figure 3.19. Infinitesimal analysis: a chronology from Newton and Leibniz to Fourier. 



4. Complex Numbers 

As already stated, the process of formation of numerical systems has 
been very slow. For instance, while Heron of Alexandria (lAD) and 
Archimedes of Syracuse (287BC-212BC) essentially accepted irrational 
numbers, working with their approximations, Diophantus of Alexandria 
(200-284) thought that equations with no integer solutions were not solv­
able; and only in the fifteenth century were negative numbers accepted 
as solutions of algebraic equations. 1 In the sixteenth century complex 
numbers enter the scene, with Girolamo Cardano (1501-1576) and Rafael 
Bombelli (1526-1573), in the resolution of algebraic equations as surnes 
numbers, that is numbers which are convenient to use in order to achieve 
correct real number solutions. But Rene Descartes (1596-1650) rejected 
complex roots and coined the term imaginary for these numbers. Despite 
the fact that complex numbers were fruitfully used by Jacob Bernoulli 
(1654-1705) and Leonhard Euler (1707-1783) to integrate rational func­
tions and that several complex functions had been introduced, such as 
the complex logarithm by Leonhard Euler (1707-1783), complex numbers 
were accepted only after Carl Friedrich Gauss (1777-1855) gave a convinc­
ing geometric interpretation of them and proved the fundamental theorem 
of algebra (following previous researches by Leonhard Euler (1707-1783), 
Jean d'Alembert (1717-1783) and Joseph-Louis Lagrange (1736-1813)). 
Finally, in 1837 William R. Hamilton (1805-1865) introduced a formal 
definition of the system of complex numbers, which is essentially the one 
in use, giving up the mysterious imaginary unit A. Meanwhile complex 
functions reveal their importance in treating the equations of hydrody­
namics and electromagnetism, and, in the eighteenth century develop into 
the theory of functions of complex variables with Augustin-Louis Cauchy 
(1789-1857), Karl Weierstrass (1815-1897) and G. F. Bernhard Riemann 
(1826-1866). 

1 For example, Antoine Arnauld (1612-1694) questioned that -1 : 1 = 1 : -1 by 
asking how a smaller could be to a greater as a greater to a smaller. 
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Figure 4.1. Girolamo Cardano (1501- 1576) and Niccolo Fontana (1500-1557), called 
Tartaglia. 

4.1 Complex Numbers 

The development of the notion of complex numbers goes through their 
use in algebraic and differential problems and the understanding of their 
geometric properties. An a posteriori motivation is that they allow the 
solution of algebraic equations, as for instance x 2 + 1 = 0, that is not 
solvable in R 

a. The system of complex numbers 
4 .1 Gauss plane. The set of complex numbers, denoted C, is the Gauss 
plane, that is the Cartesian plane JR2 with the operations of sum, 

(a, b) + (c, d) := (a + c, b + d) , 

that is, the usual rule of summing vectors in JR2, and of product, defined 
by 

(a , b) . (c, d) := (ac - bd, ad + bc) . 

If we identify the axis of abscisses with JR in such a way that (0,0) = ° and 
(1 , 0) = 1, and we introduce the imaginary unit i to indicate the vector 
(0, 1), we see, on account of the computation rules previously defined, that 
i 2 = i . i = -1, that z = (a, b) = a(l , 0) + b(O, 1) is written as z = a + ib, 
and that the product of two complex numbers is written as 

(a + ib)(c + id) = ac + iad + ibc + i2 bd = (ac - bd) + i(ad + bc). 

It is easily seen that the properties (A), (M) and (AM) of the real 
system JR, relative to the sum and the product, continue to hold in C, 0 
and 1 being this time respectively ° := 0+ iO, 1 := 1 + iO. The inverse 1/ z 
of the complex number z = x + iy i= ° is then given by 



Figure 4.2. The frontispiece of the Lec­
tures on Quaternions by William R. 
Hamilton (1805- 1865). 

1 X - iy 
---= 
X + iy (x + iy)(x - iy) 

X - iy 
X2 + y2 
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Consequently we can summarize saying that C is a commutative field. 
Moreover, since the sum and product of complex numbers reduce to the 
sum and product of real numbers on the real axis, we can state that JR. ~ 
{x + iy E C! y = O} is a sub field of C. 

Of course there are several ways of ordering complex numbers; for in­
stance, we can order them lexicographically: (a, b) -< (c, d) if a < c or 
a = c and b < d. However, none of all possible orderings is compatible 
with the field structure of C and the order of JR.. Otherwise, we would have 
either i >- 0 or i -< 0, as i ¥- 0 being 0 E JR. and i ~ JR., thus, in both cases 
-1 = i 2 > 0: a contradiction. For this reason inequalities between complex 
numbers are meaningless. 

4.2 Conjugation. Let z := a + ib E C. The numbers a and b, denoted 
also a =: ?Rz and b =: D'z, are called the real part and the imaginary part 

z = a + ib 
ib '" .. . .... . .....• 

z+w 
. . ',. 

w .•. .. 
z 

1 a 

Figure 4.3. The sum of complex numbers. 
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-z z 
z 

Izl 

•..................• 
!Rz -z 

Figure 4.4. (a) !Rz, ~z, Izl and the argument () of z. (b) Relative locations of ±z and 
±z. 

of z. The conjugate of z is defined by 

z := a - ib = lRz - i~z. 

Of course lRz = lRz and ~ = -~z. Consequently z is the symmetric of z 
with respect to the real axis. The symmetric point of z with respect to the 
imaginary axis is -z, and the symmetric of z with respect to the origin is 
-z. Moreover, 

4.3 ~. Show that 

z= z, 

lRz = z+z 
2 ' 

z-z 
~z=--. 

2i 

z+w=z+w, 

(~J = ~ if w # o. 

z·w=z·w, 

4.4 Absolute value or modulus. Let z = a + ib E C. Its absolute 
value, or modulus, is defined as the nonnegative real number 

Izl := va2 + b2 = V(lRz)2 + (~z)2. 
Clearly Izi is the Euclidean length of z in the Gauss plane (Le., the distance 
between z and the origin) and agrees with the modulus in lR. if z is real. 
Clearly 

(i) Izi ~ 0, lzl = ° if and only if z = 0, 
(ii) TRIANGLE INEQUALITY. Iz + wi :::; Izl + Iwl. 

4.5 ~. Show that for all z and wEll: the following hold: 

Izl2 = zz, 
l!Rzl ::; 14 
1 z 'f ~ 0 :;=j;i21 Z, . 

Izwl = Izllwl, 
I~zl::; Izl, 

Izl = Izl, 
Ilzl - Iwll ::; Iz - wi, 
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4.6 Hermitian product. The Hermitian product of z and w is simply 
zw. If w = a + ib and z = c + id, then 

zw = (c + id)(a - ib) = (ac + bd) + i(ad - bc) 

from which we easily infer 

o zz = x2 + y2 = Iz1 2, 
o ~(zw) is the scalar product of z and w in JR2, in particular z and w are 

perpendicular if and only if ~(zw) = 0, 
o the area of the triangle T with vertices 0, z and w is 

Area(T) = ~Iad - bcl = ~1~(zw)l. 
For the last claim, denote by rp the angle between the segments Oz and Ow 
at the origin, and recall that ac + bd = Izllwl cos rp and that Area(T) = 
Izllwll sinrpl· Therefore 

Area(T)2 = Iz121w12(1 - cos2 rp) (4.1) 

= (c2 + d2)(a2 + b2) - (ac + bd)2 = ... = (ad - bc)2. 

4.7 Polar form of complex numbers: Argand's plane. A complex 
number z = a + ib E C, z #- 0, can be represented in polar coordinates 
(r,O) with center at the origin, r being the modulus of z and 0 the angle 
between the real positive axis and the half-line from the origin through z, 
"measured counterclockwise and in radiants," that is, 

a=lzlcosO, b = Izl sinO (4.2) 

Le., 
z = Izl(cosO + isinO). (4.3) 

Notice that the previous equality holds for all z E C. It is the polar repre­
sentation of z. The number 0 is called the argument or phase of z. Clearly, 
fJ is determined by z up to an integer multiple of 21l', in particular fJ(l) = 0 
modulo 21l'. The argument of z, denoted by Arg (z), must be understood 
as a multivalued function and not as a real-valued function. If we insist in 
considering the argument of z as a function from C \ {O} to JR, we have to 
choose a determination: that is, an interval [a, a+21l'[ where a unique value 
of the angle must be read. The restriction of the argument to this interval, 
called a determination of the argument, is denoted by arg (a) (z). Among 
all determinations, two standard choices are a = 0, that is fJ E [0, 21l'[, 
often called the principal determination, commonly denoted by arg z, and 
a = -1l', that is fJ E [-1l',1l'[. 

However, choosing a determination has drawbacks: first we have a dis­
continuity of the argument function arg (a)(z) along the half-line through 
the origin that forms an angle a with the positive x-axis, where a jump 
of 21l' between the values of the two sides of the half-line exists; secondly, 
addition formulas just do not hold for a determination, we in fact have 
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z 

Figure 4.5. Multiplication of complex numbers. 

where 

c=a+ {
o if 2a ~ arg (a) Zl + arg (a) Z2 < 2a + 27r, 

27r if arg (a) Zl + arg (a) Z2 2: 2a + 27r. 

4.8'. Show that 

arctan ~ if x> 0, 
1r if x = ° and y > 0, "2 

9(z) = arctan ~ + 11" if x < ° and y > 0, 

arctan 1! - 11" x if x < ° and y ::; 0, 
.,.. 

is x = ° and y < 0, -"2 

where z = x + iy, is the determination of the argument on [-11",11"[. 

4.9 Multiplication in polar coordinates. If Z = p(cosO+isinO) and 
w = r(cos"1 + i sin "1), on account of the addition formulas for the trigono­
metric functions and of the rule of multiplication for complex numbers, we 
get 

zw = pr[( cos 0 cos "1 - sin 0 sin "1) + i( cos 0 sin "1 + cos "1 sin 0)] 

= pr[cos(O + "1) + isin(O + "1)]. 
(4.4) 

That is, the modulus of the product is the product of moduli, while the 
argument of the product is the sum of the arguments of the factors. Ge­
ometrically, multiplying a vector Z E C by w:= Iwl(cos"1 + isin"1) means 
dilating the vector by a factor Iwl and rotating it anticlockwise through 
an angle "1. For instance iz is the anticlockwise rotation of z by 90 degrees. 
Thus dilations and rotations for plane geometry can all be expressed by 
complex multiplication, a useful fact in plane geometry (see, for example, 
Section 4.3.2). 
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4.10 de Moivre's formula. A trivial consequence of (4.4) is that 

z2 = p2 (cos 2B + i sin 2B) 

if z = p( cos B+i sin B), and, proceeding by induction, the following formula, 
de Moivre's formula, holds for every n EN, 

zn = pn(cosnB + isinnB). (4.5) 

4.11 Complex exponential. Set f(B) := cosB + isinB, B E JR. The 
multiplication rule yields the formula 

which is analogous to aX! aX2 = aX! +X2. We then define the complex expo­
nential as the map eZ 

: C ---- C also denoted by exp, given by 

eZ = exp (z) := elRZ(cosC;:Sz + isinC;:Sz), (4.6) 

e being Euler's number. It is readily seen that 

v z,W E C, 

lezi = elRz
• 

Clearly, if z is real, the complex and real exponential (with base e) agree; 
the novelty is in the definition 

ei8 = cos B + i sin B, (4.7) 

which allows the use of an exponential notation for the trigonometric func­
tions sin B and cos B. Notice the very famous Euler's identity 

Actually, observing that for all B E JR we have 

ei8 = cos B + i sin B, e-i8 = cos B - i sinB, 

we easily infer the following Euler's formulas: 

ei8 + e-i8 

cosB= 2 ' 
ei8 _ e-i8 

sin{} = 2i 

Finally, observe that (4.7) allow us to write any complex number in the 
shorter polar form 

I I 
iarg(a)z 

Z = Z e , Va E JR, V z E JR. 
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b. The n-th roots 

4.12 Proposition. Let wEe, w =F 0, n E N, n ~ 1. The equation 
zn = w has exactly n distinct roots Zo, Zl, ... , Zn-l given by 

I Il/n (. arg (w) + 2k7r) 
Zk:= w exp z~~~----

n 
k = O,l, ... ,n- 1. (4.8) 

Proof. If Z is a root of zn = w, then 

and Argzn = Argw. 

The first equality yields Izi = Iwll/n, while the second yields 

A 
Argw + 2k7r 

rgz = , 
n 

k E Z, 

as Arg zn = nArg z. Therefore 

Il
l/n (.arg(w)+2k7r) z=wexpz , 

n 
Vk EZ. 

Since the values (arg ( w) + 2k7r) In repeat periodically with period 211'1 n, 
the only distinct values in [0,211'[ correspond to k = 0,1, ... , n - 1. Thus 
we conclude that z ought to be one of the Zk'S. Finally, one checks that all 
the Zk'S are solutions of zn = W. 0 

The n distinct solutions Zo, Zl, ... , Zn-l of the equation zn = w in (4.8) 
are called the complex or algebmic n-th roots of w. 

Proposition 4.12 applies also to w = a E JR.. If a > 0, we have a = lal = 
lalexp (i· 0), thus 

yfa = lall/nexp (i2:k) k = O,l, ... ,n- 1. 

If a < 0, we have a = lalexp (i7r), hence 

( 
(2k + 1)11') yfa = lal1/nexp i n k = 0,1, ... , n - 1. 

In particular, for a > 0, we rediscover the arithmetic root a l / n correspond­
ing to k = 0, and, in case n is even, for k = nl2 we also find 

yfa = al/n(cos 11' + i sin 11') = _al /n , 

as n-th root of a, that is the negative real n-th root of a. If a < ° and n is 
odd, n = 2h + 1, then for k = h y'a = lall/n(coS7r + isin7r) = -Ial l /n is 
one of the complex roots and is the only real n-th root of a. 

Notice that for every k = 0, ... , n-1 the argument of Zk is the argument 
of Zk-l plus 211' In. Consequently, the n-th roots of a complex number w 
represent a regular n-sided polygon, inscribed in a circle at 0, with radius 
Iwl l /n and one vertex at lwll/neiarg(w)/n. 
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w 
'. 

'.' 
••.. ,' Zl 

argw/5 

....... 
•... -

Z5 

Figure 4.6. The 5th roots of a complex number. 

4.13 Roots of unity. In particular Proposition 4.12 yields that the n 
solutions of zn = 1 are given by 

(
.27rk) 

Wn,k := exp ~--;:;- , k = 0, ... ,n-1. 

Let W := Wn,l = ei27r / n. Then the n-th roots of unity are the numbers 

(4.9) 

Notice that obviously wn = 1. Moreover, comparing with (4.8), if Zl := 
Iwl1/nexp (iarg (w)jn), then the n-th roots of w can be written as 

(4.10) 

c. Complex exponential and logarithm 
The exponential function Z -+ eZ is actually a map from C into C. Observe 
that eZ f. 0 everywhere since lez I = eRz f. O. 

4.14 Proposition. The complex exponential is periodic with period 27ri, 
i.e., 

exp (z + 27ri) = exp (z) v z EC. 

Moreover for any a E JR, the restriction of the exponential map eZ to 

Ia := { z E C I a ::; ~z < a + 7r } 

is a bijective map onto C \ {O}. 

Proof. Formula (4.7) yields 

exp (i(y + 2k7r)) = exp (iy) Vy E JR, 

that is, eZ is 27ri-periodic. Fix a E JR and assume that eZ1 = eZ2
, i.e., 

eZ1
-

Z2 = 1. Then Zl - Z2 = 2k7ri, from which we infer Zl = Z2, since 
Zl,Z2 E Ia. 0 
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Given Z E C, Z # 0, every w E C such that eW = z is called a natural 
logarithm of z. More precisely, 

4.15 Definition. For any a E JR, The inverse function of the restriction 
of the complex exponential eZ to 

fa := {z I a :::; ~z < a + 211" } 

is called a determination of the complex logarithm, 

log(a) : C \ {O} ~ fa C C. 

When a = -11", we denote log(-71) w by logw and call it the principal 
logarithm. 

By definition 

'v'w E C \ {O} 

and 
if and only if 

4.16 Proposition. For any a E JR and wE C \ {O} we have 

log(a) w = log Iwl + i arg (a)w. (4.11) 

Proof. Let z : x + iy = log(a) w. Then w = eZ and z E fa if and only if 

{
w = eX eiy , 

a:::; y < a + 211", 
if and only if . w 

{
iwi = eX, 

e'Y= wl,a:::;y<a+211", 

from which we infer x = log Iwl and y = arg (a)w = arg (a) z. D 

4.17 Example. Since i = cos ~ + isin~, i.e., argi = ~, we have logi = i~ or ii = 
e- rr / 2 . 

On account of Proposition 4.16, all determinations of the logarithm 
are discontinuous as the corresponding determination of the argument. In 
particular log(a) w is singular along the half-line that has an angle a with 
the positive x-axis, with a jump of 211"i along this half-line. Also, some care 
is necessary to compute with logarithms since the argument of a product 
is not in general the sum of the arguments. In fact, if z, w E C \ {O}, we 
have 

loga(zw) = log (a) z + log(a) w - ic 

where 

c=a+ {
o if arg (a)(z) + arg (a)(w) < 2a + 211", 

211" if arg (a)(z) + arg (a)(w) 2 2a + 211". 
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GRUNDLAGEN 
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Figure 4.7. The frontispieces of a treatise on functions of complex variables by 
G. F . Bernhard Riemann (1826-1866) and of a popular book about v'-T. 

4.2 Sequences of Complex Numbers 
a. Definitions 
The limit of a sequence of complex numbers is defined similarly to the real 
case. 

4.18 Definition. Let {zn} C C be a sequence of complex numbers. We 
say that {zn} converges to the complex number Zo if IZn - zol --+ 0, that is 

"If> 0 :3 n such that IZn - zol < f "In ~ n. 

We say that {zn} C C diverges iflznl --+ +00 as a sequence of real numbers. 

As in the real case 

4.19 Definition. We say that a sequence {zn} C C is a Cauchy sequence 
if "If > 0 there is n such that IZn - zml < f for all n, m ~ n. 

From the inequalities 

lxi, Iyl ::; Izi = JX2 + y2 ::; Ixl + IYI (4.12) 

for all Z = x + iy E C, we easily infer 

4.20 Proposition. Let {zn}, Zn := Xn + iYn, be a sequence of complex 
numbers, and let Zo := Xo + iyo E C. Then 

(i) Zn --+ Zo E C if and only if Xn --+ Xo and Yn --+ Yo· 
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(ii) Zn is a Cauchy sequence in C if and only if {xn} and {Yn} are Cauchy 
sequences in JR. 

From Proposition 4.20 we easily infer for instance 

4.21 Proposition. Let {zn} and {wn} be two sequences of complex num­
bers such that Zn ~ Z E C and Wn ~ W E C. Then 

(i) AZn + J.Lwn ~ AZ + J.LW for all A, J.L E C, 
(ii) ZnWn ~ ZW, 
(iii) ifwn =f. 0 and W =f. 0, then zn/Wn ~ z/w, 
(iv) IZnl ~ Izl, and zn ~ Z. 

4.22 ,. Prove Propositions 4.20 and 4.21. 

Finally, we have the following. 

4.23 Theorem (Cauchy test). A sequence of complex numbers con­
verges if and only if it is a Cauchy sequence. 

This follows again from Proposition 4.20 if we take into account the Cauchy 
test for real sequences. For the same reasOn the Bolzancr-Weierstrass the­
orem, Theorem 2.43 extends to complex sequences 

4.24 Theorem (Bolzano-Weierstrass). Any bounded sequence of com­
plex numbers has a convergent subsequence. 

h. Weierstrass's theorem 
At this point we could introduce the notions of limit and of continuity for 
functions of a complex variable and develop a theory similar to the real 
case. Instead, we prefer to postpone this study in the context of metric 
spaces. Here we confine ourselves to defining continuity for functions J : 
C ~ lR. A function J : C ~ JR is said to be continuous at Zo if for every 
sequence {zn} converging to Zo we have J(:'>;n) ~ J(zo); and J is continuous 
if it is continuous at each Zo E C. Finally we say that J(z) ~ +00 as 
Izi ~ +00 if 'riM > 0 there exists r > 0 such that J(z) > M for all Z such 
that Izi > r. 

4.25 Theorem (Weierstrass). Let J : C ~ JR be a continuous function 
such that J(z) ~ +00 as Izi ~ 00. Then f attains its minimum at a point 
Zo E C. 

Proof Let L := inf{f(z) I Z E C}. It suffices to show that J(zo) = L. From 
the characterization of the infimum we infer -00 ::; L < +00, the existence 
of a minimizing sequence {Yn} C J(C) C JR such that Yn ~ L and of a 
sequence {Zk} C C such that J(Zk) = Yk. The sequence {zd is bounded, 
otherwise we could find a subsequence {Znk} of {zd with IZnkl ~ 00, 
hence J(znk) ~ +00. Since Ynk = J(Znk) ~ L, we would get L = +00: 
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a contradiction. The Bolzano-Weierstrass theorem, Theorem 4.25, then 
yields a subsequence {Znk} which converges to some Zo E C. We then 
have Ynk = !(Znk) ~ !(zo). Since by construction Yn ~ L, we conclude 
L = !(zo), as wanted. 0 

4.3 Some Elementary Applications 
In this section we present a few elementary applications. 

4.3.1 A few applications of the complex 
notation 
When dealing with trigonometric formulas, but actually in many instances, 
the complex notation simplifies computations a great deal. 

4.26 Uniform circular motion. Recall that the harmonic motion of a 
point pet) on the unit circle of JR2, that starts at t = 0 from (1,0) with 
angular velocity w, is given by 

{
X(t) = coswt, 

yet) = sinwt, 

see, e.g, Proposition 6.25 of [GM1]. Thus, introducing complex notation, 
the uniform circular motion on the unit circle is described by the function 
P : JR ~ C given by pet) = eiwt . This formula already appears as a great 
simplification of the description of the harmonic motion on the unit circle. 

However the simplification that can be obtained using complex numbers 
and complex notation is even more evident if one notices that it is easier to 
compute with powers than with sine and cosine. For instance, if we define 
for z(t) : JR ~ C, z(t) = x(t) + iy(t), 

then we have 

z'(t) = Dz(t) := x'(t) + iy'(t), 

it z(s) ds:= it xes) ds + i it yes) ds, 

i t . eiwt - 1 
e,wsds= ---

o iw 

for all w E JR. Clearly these formulas are handier than D(eat cos(bt)) 
aeat cos(bt) - beat sin(bt), and D( eat sin(bt)) = aeat sin(bt) + beat cos(bt) , or 
the corresponding formulas for the primitives. 
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4.27 Example. Euler's formulas yield that the sine and cosine function are just a 
superposition of two uniform circular motions with opposite angular velocities of ±l. 

4.28 Complex solutions of the oscillation equation. Consider the 
differential equation 

ax"(t) + bx'(t) + C = 0 

and look for solutions x : IR -+ C. The characteristic equation 

aA2 +bA+C= 0 

has two roots Al and A2 that are either distinct or equal. In the first case, 
Al #- A2, eA1t and eA2t are solutions and, on account of the principle of 
superposition 

cleA1t + C2eA2t, Cl, C2 E C 

are solutions,too. In the second case, Al = A2 =: A, the functions eAt and 
teAt are solutions as well as all functions of the type 

Exactly as in the real case (see, e.g., Section 6.1.3 of [GM1]), one can 
then conclude that, in fact, these are all solutions. 

4.29 Prostapheresis formulas. In complex notation they are writ­
ten as 

and can be easily deduced. In fact, writing 

a+(3 a-(3 
a= -2-+-2-' 

it suffices to note that 

(3
- a+(3 a-(3 
------

2 2 

Therefore they are a trivial consequence of Euler's formulas. 

(4.13) 

4.30 Beating phenomenon. This is a phenomenon which occurs when 
we sum two sinusoids of slightly different pulses, compare, e.g., 6.13 of 
[GM1]. As a simple example, let us show that the same phenomenon 
appears when we sum sinusoidal signals with different amplitudes. If 
!1(t) = AlCOS(Wlt + 'Pl), !2(t) = A2 COS(W2t + 'P2), we have 

!1(t) = R(cleiw1t
), !2(t) = R(c2eiw2t ) 
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h(t) + h(t) = ~(Cleiwlt + c2eiw2t ). 

Factoring out the mean oscillation WI !W2 we then find 

Cle'WI + C2e'W2 = e' CleO 2 + C2e -' 2 • 
. t . t . "'I t"'2 t { . "'I -"'2 t . "'I -"'2 t} (4.14) 

The explicit computation of the real part is of course complicated, but, 
without performing such a computation, we see that we are in the presence 
of a signal with pulse WI !W2 and amplitude varying periodically with pulse 
IWI-W21 

2 

4.3.2 A few applicatons to elementary 
Euclidean geometry 
Translations, dilations and rotations are the typical transformations of 
Euclidean geometry of the plane. As we have seen, after introducing an 
orthonormal reference frame, they have a natural algebraic counterpart in 
the operation of sum and product in the Gauss plane. Therefore it is not 
surprising that the use of complex numbers permits a particularly simple 
algebrization of the geometry in the plane. 

4.31 Straight line through two points a :f b E C. The point z E C 
is in the line through a and b if and only if z - a is a real multiple of b - a, 
equivalently if and only if (z - a)j(b - a) is real, that is 

z-a z-a 
--=----, 
b-a b-a 

or ~(z-a) =0. 
b-a 

Consequently the two open half-planes bounded by that line are described 
by 

and 

4.32 Perpendicular lines. Let a, b, C be three distinct points in the 
plane. Since an anticlockwise rotation by 90 degrees translates into a mul­
tiplication by i, the lines through a and b and through a and C are perpen­
dicular if and only if C - ajb - a is purely imaginary, that is 

or 

c-a c-a 
b-a=-b-a 

~((C - a)(b - a)) = o. 
Consequently the line through a and perpendicular to the line through a 
and b is 

{z E C I (b - a)(z - a) + (b - a)(z - a) = o}. 
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4.33 Similarity of two triangles. Let 81,82,83 E C and tl, t2, t3 E C 
be the vertices of two triangles Sand T. We recall that S and T are similar 
(with the ordered vertices) if the dilation and rotation which moves t2 - t1 

to 82 - 81 moves also t3 - h onto 83 - 81. Since rotations and dilations 
translate into a complex multiplication, Sand T are similar if and only if, 
for some bEe we have W2-W1 = b(Z2-Z1), then also W3-W1 = b(Z3-zd, 
that is, 

= 

a. Special points of a triangle 

4.34 Circumcenter. The perpendicular bisectors to the three sides af an arbitrary 
triangle meet at a point. It is called the circumcenter of the triangle, and it is the center 
of the circumcircle of the triangle. 

Let a, b, c E IC be the vertices. The middle points of the three sides are respectively 
(a + b)/2, (a + c)/2 and (b + c)/2. The equations of the bisectors are consequently 

{ 
(b - c)z + (b - c)z = IW - Ic1 2 , 

(15 - a)z + (c - a)z = Icl 2 -laI2 , 

(a - b)z + (a - b)z = lal 2 -lbI 2 , 

that, solved in z, give for the circumcenter 

lal 2 (b - c) + Ibl 2 (c - a) + Icl 2 (a - b) 
0= . 

a(b - c) + b(c - a) + c(a - b) 

4.35 Barycenter or centroid. The three medians (the lines connecting each vertex 
to the middle point of the opposite side) meet at a point. If a, b, c are the vertices, 
(b+ c)/2, (a + c)/2 and (a + b)/2 are the midpoints of the corresponding opposite sides. 
The intersection point of two medians can be obtained solving in .>., J.£ E lR the system 

{
z =.>.a + (1- .>.)~, 
z=J.£c+(l-'>')~. 

Subtracting, we easily infer, since the triangle is nondegenerate, that the previous system 
has one solution given by .>. = J.£ = 1/3, thus concluding that the barycenter is 

a+b+e 
z= ----

3 

z belonging also to the third median. Notice that is is easy now to prove that the 
intersection of the medians is two thirds of the way along from each of their vertices. 

4.36 Orthocenter. The altitudes of a triangle (that is the perpendiculars dropped 
down from vertices onto the opposite side) intersect at a single point: the orthocenter. 
Fix a reference with origin at the circumcenter 0 of the triangle, and, in this reference, 
let a, b, c E IC be the three vertices of the triangle, so that lal = Ibl = lei. We claim that 
the point 

p=a+b+e 

is the orthocenter. In fact, since p - a = b + e, and Ibl = lei, p - a is perpendicular to 
the side bc. By simmetry, p is also on the perpendicular from b to ca and from e to abo 
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Figure 4.8. (a) Euler's line. (b) The nine-point circle. 

4.37, Incenter. Show that the three angle bisectors of a triangle meet at a point 
called the incenter. 

4.38 Euler's line. In any triangle, the circumcenter, the orthocenter and the barycen­
ter lie on a stmight line. In fact in a reference in which the circumcenter is the origin, 
the barycenter m and the orthocenter are respectively 

by 4.35 and 4.36. 

1 
m=-(a+b+c) 

3 
and p = a+ b+c, 

We also have the following theorem due to Karl Feuerbach (1800-1834), but proba­
bly already known to Charles Brianchon (1783-1864) and Jean-Victor Poncelet (1788-
1867). 

4.39 Theorem (The nine-point circle). Let a, b, c E C be the vertices of a triangle 
that for convenience we think to be inscribed in a unitary circle, i.e., that is lal = Ibl = 
Icl = 1. Let q be the midpoint of the segment connecting the circumcenter and the 
orthocenter, that is, in the chosen frame, 

a+b+c 
q:= 2 

Then the circle with center q and radius 1/2 goes through 
(i) the midpoints of the three sides, 

(ii) the midpoints of the segments joining the orthocenter with the three vertices, 
(iii) the feet of the three perpendiculars from the vertices to the opposite sides. 

Proof. It suffices to show that each of those points has distance 1/2 from q. The distance 
of the midpoint of bc from q is 

The midpoint of the segment joining the orthocenter p with a is (a + (a + b + c»/2 = 
(a + 2q)/2, hence 

Iq- a~2ql = I~I = i· 
Finally, one sees that the foot of the perpendicular from a to bc is 

1)= (a+b+c _ bC) 
2 2a 
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Figure 4.9. Napoleon's theorem. 

hence 

Iq-"'I = Ibcl = ~ =~. 
2a 21al 2 

o 

h. Equilateral triangles 

4.40 Proposition. Let Zl, Z2, Z3 be the vertices of a triangle (listed antic1ockwise) and 
let W := exp (i21l"/3) be the second of the 3rd roots of unity. Then the triangle ZlZ2Z3 

is equilateral if and only if 
Zl + WZ2 + w 2 

Z3 = o. 

Proof. In fact, ZlZ2Z3 is equilateral if it is similar to the triangle of the 3rd roots of 
unity, 1, W, w2 . Then, according to 4.33, 

Z3 - Zl w 2 - 1 --- = --- =w+1, 
Z2 - Zl w-1 

i.e., Z3 + WZl - (w + 1)Z2 = 0. Since w 2 + w + 1 = 0, we infer 

Z3 + WZl + w 2 
Z2 = 0 

and, multiplying by w2 , the conclusion. o 

4.41 Napoleon's theorem. It is said that Napoleon stated and proved the following 
result. On each side of an arbitrary triangle draw the exterior equilateral triangle. Then 
the barycenters ofthese three equilateral triangles are the vertices of a fourth equilateral 
triangle. In fact, listing the vertices anticlockwise, if Zl, Z2, Z3 are the vertices of the 
triangle and W3Z2Z1, W1Z3Z2, W2Z1Z3 are the exterior equilateral triangles, we have 

{

Z2 + WZl + W 2W3 = 0, 

Wi + WZ3 + w 2 
Z2 = 0, 

Z3 + WW2 + w 2 Zl = 0, 

and the barycenters of the exterior triangles are given by 
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A 

.........•••••.•. i7 •• : ..... . 
.. - . .". 

B , ..... . e 
Figure 4.10. Morley's equilateral triangle. 

{

1]3 := Zl + Z~ + W3 , 

Z2 + Z3 +W1 
1]1 := 3 ' 

Zl + Z3 + W2 
1]2 := 3 . 

Therefore 

1 W w2 

1]1 + W1]2 + W 2
1]3 = -(W1 + Z2 + Z3) + -(Z3 + W2 + Zl) + -(Z2 + Zl + W3) 

3 3 3 

= ~ (W1 +WZ3 +w2Z2) + (Z3 +WW2 +w
2zt) + (Z2 +WZ1 +w2W3)) 

=0. 

The following result, discovered by Frank Morley (1860-1937), is quite surprising 

4.42 Theorem (Morley). The intersections of the adjacent pairs of angle trisectors 
of an arbitrary triangle are the vertices of an equilateral triangle. 

4.43 Lemma. Suppose that tt, t2, t3, t4 are points on the unit circle. Then the exten­
sions of the chords joining the points t1, t2 and t3, t4 meet at 

"it +t2 -h - t4 
Z= 

4.44~. Prove Lemma 4.43. 

Proof of Morley's theorem. For the sake of convenience assume that the triangle ABe 
is inscribed in the unit circle, A = 1, LAOB = 3,)" LAOe = 3j3, j3 < 0, and LBOe = 
3a. Since circumferential angles are half the corresponding central angles, in order to find 
the intersections of the trisectors of vertex angles it suffices to trisect the corresponding 
central angles. We then call B = c3 in such a way that the intersection of the trisectors 
of the angle in c with the circle are the points c and c2 • Similarly we set e = b3 , ~b < 0, 
in such a way that the corresponding intersections are band b2 . The arguments of the 
intersections of the trisectors of the angle in A are 

27r 
a + 3')' = -j3 + 2')' + -, 

3 

consequently the intersections of the trisectors of the angle A with the circle are the 
points wb2 c and wbc2 where W := ei27r / 3 , see Figure 4.11. 
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e 

A 

b 

Figure 4.11. Intersections of the angle trisectors with the circumscribed circle. 

If P, Q, R are the vertices of the triangle obtained intersecting adjacent trisectors, 
we compute, on account of Lemma 4.43, 

p= 

q= 

r= 

Finally, we infer 

b- 2 + e-3 _ b-3 _ e-2 

b- 2e-3 - b-3 e- 2 

be3 + b3 _ e3 - b3 e 

b-e 

= (b2 + be + e2
) - be(b + e), 

1 + b- 2e- 1w- 2 - b-3 - e- 1 b3 e + bw - e - b3 

b- 2e- 1w- 2 - b-3 e- 1 bw - 1 

= w2 (e(b2 + bw2 + w) - b(b + w2 »), 

b- 1e- 2w- 1 - b- 1e-3 cw2 - 1 

= w(b(e2 + cw + w2
) - e(e +w»). 

p + wq + w2 r = b2 + be + e2 
- b2 e - be2 + b2 e + bcw2 

= cw - b2 
- bw2 + be2 + bcw + bw2 - e2 - cw = 0, 

and the claim follows from Proposition 4.40. 

4.4 Summing Up 
Complex numbers 

o 

Complex numbers are points in the plane JR2: one identifies 1 to (1,0) and denotes by 
i the number corrsponding to (0,1). Complex addition then coincides with the sum of 
plane vectors. Any complex number z = (x,y) then is written as x + iy and complex 
multiplication reduces to standard rules plus i 2 = -1. 

If z = x + iy E C, then 

iR(z) := x, 

iR(z) = z+z, 
2 

B«z) := y, 

B«z) = z - z 
2i ' 

z :=x-iy, 
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Polar form 
Every complex number z =I- 0 appears in polar form as z = Izl(cosO + isinO) where 0, 
which is defined modulo a multiple of 21l', is called the argument of z. We have 
o for z = Izl(cosO + i sin 0) and w = Iwl(cos';? + i sin ';?), zw = Izllwl(cos(O + ';?) + 

isin(O + ';?)). 
o DE MOIVRE'S FORMULA. zn = Izln(cosnO+isinnO). 
o The argument' of a complex number z =I- 0 is not uniquely defined. In order to 

consider the argument as a real function arg (z) : C \ {O} ---+ JR., we need to choose a 
determination, that is an interval of size 21l' in which to read the argument: a common 
choice is the principal determination arg : C \ {O} ---+ [0, 21l'[. 

The n-th roots 
If w E C \ {O}, there are n distinct n-th roots of w, i.e., n distinct solutions of the 
equation zn = w, given by 

j = 0, 1, ... , n - 1, 

where w := e i 2: . The numbers 

Zj := wj, j=0,1, ... ,n-1 

are the n-th roots of unity, i.e., the solutions of zn = 1. 

Complex exponential 
Define the complex exponential by 

eZ := eX (cos y + isin y), 

o We have 

o EULER'S FORMULAS. If t E JR., then 

for all z = x + iy E C. 

eit := cos t + i sin t, 
eiwt + e-iwt 

coswt = -----
2 

eiwt _ e- iwt 
sinwt = -----

2i 

Complex notation appears as a great simplicification of the description of the harmonic 
functions. 
o the uniform circular motion on the unit circle with angular velocity w passing through 

1 at t = 0, is described by t ---+ eiwt , t E R 
o for A E C formulas 

t iAt r eiA8 ds= ~,A=l-O, Jo 2A 

are handier than D(eat cos(bt)) = aeat cos(bt) - beat sin(bt), and D(eat sin(bt)) 
aeat sin(bt) + beat cos(bt), or the corresponding formulas for the primitives. 

o PROSTAPHERESIS FORMULAS. 

{

' '(3 " (3 , !!±i! e'" + e' = 2 cos -T- e' 2 , 

"(3 ,,(3!!±i! e'" - e' = 2i sin -T- e' 2 • 

They clearly explain the beating phenomenon between two oscillators, even with 
different amplitudes, 

qe,w1t + c2e,w2 = e' 2 qe' 2 + C2e-' 2 . 
. . t 'Wj +W2 t { ,Wj -W2 t . Wj -W2 t} 
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4.5 Exercises 
4.45 1. Write the following complex numbers in polar form: 

5-5i, 1 + iva, 2-5i, I-i. 

4.46 1. Determine the points in the complex plane such that 

!Rz-l=O 
z+ 1 ' 

Iz - il + Iz + il < 4, 1 ~I=k. z - Z2 

Describe algebraically the sets 
(i) of the points that have distance at most 1 from the imaginary axis; 

(ii) of the points in the positive half-plane, with distance at least 2 from the origin. 

4.47 1. Write in the form a + ib the numbers 

2-i 

1 + 2i' 

448 • C 11-il 
• 11· ompute 11+i/· 

4.49 1. Verify the following: 

cos 38 = cos3 8 - 3 cos 8 sin2 8, 

sin 38 = 3cos2 8sin8 - sin3 8, 

cos 48 = cos4 8 - 6cos2 8sin2 8 + sin4 8 = 1- 8cos2 8sin2 8, 

sin 48 = 4cos3 8sin8 - 4 cos 8 sin2 8. 

4.501. Compute 

4.511. de Moivre's formula allows us to express cosn8 and sinn8 by means of cos 8 
and sin8. Find those formulas. [Hint: Use Newton's binomial.] 

4.52 1 Fagnano formula. Show that 2i log ~:;; = 7r. 

4.53 1. Infer the following equalities from Euler's formulas: 

1 3 
cos3 

X = - cos 3x + - cos x, 
4 4 

.4 1 1 2 3 sm x=-cos4x=-cos x+-
8 2 8' 

·5 1.
5

5. 3 5. 
sm x = 16 sm x - 16 sm x + 8 smx. 

4.54 1. Prove that 

sin !!:±l 8 . n8 
sin 8 + sin 28 + sin 38 + ... + sinn8 = . 29 sm-

sm 2 2 ' 

sin(n + 1)8 
1 + cos 8 + cos 28 + cos 38 + ... + cos n8 = 9

2 

2 sin 2 

[Hint: Recall ei9 = cos 8 + isin8 and de Moivre's formula.] 
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4.55 ,. Compute 

~, R, Vi, '1'2 - 2i, {j 1 + iv'3, ~8 - 8i, ~. 

4.56 ". Denote'by fQ, ... , fn-l the n-th roots of unity. Show that they form a mul­
tiplicative group of finite order n, (i.e., only the first n - 1 roots are distinct. We say 
that e E On is a generator of On if the elements 1, e, e2, ... , fn-l are distinct. Show 
that eh is a generator of On if and only if h and n are coprime. 

4.57,. Show that the sum of the n-th roots of a number is zero. 

4.58 ,. Solve the equations 

Z2 + 3iz + 4 = 0, z2 = z, 

Z2 + 2z +i = 0, 

zlzl - 2z - 1 = 0, z4 = z3, 

Izl2z2 = i, ~z4 = Iz14 , 

z2+ zz =1+2i, ~z=~lzI2. 

Z2 + iz = 1, 

Z3 = izz, 

zlzl - 2~z = 0, 

4.59 ,. Show that z and cz are orthogonal in JR.2 '" C if and only if c is purely imaginary. 

4.60,. Verify that 

log( -5) = log 5 + i7l", 

log(-v'3 + i) = log 2 + i~7I"' 

log(7 + 7i) = log 7 + ~ log 2 + i~. 

4.61 ,. Interpret in complex notation the two-squares theorem of Diophantus of 
Alexandria (200-284) 

('11.2 + v2)(x2 + y2) = (ux _ vy)2 + (uy + vx)2. 

4.62,. Let Zl, Z2, Z3, Z4 be four points on a circle centered at the origin. Show that 
the following claims are equivalent: 

(i) Zl, Z2, Z3, Z4 are the vertices of a rectangle, 
(ii) Zl + Z2 + Z3 + Z4 = 0, 

(iii) Zl, Z2, Z3, Z4 are the roots of an equation of the type (z2 - a2)(z2 - b2) = 0 
with lal = Ibl # o. 

4.63 "l'. 0 I: C ---+ C is said to be an isometry or is distance preserving if I/(w)­
l(z)1 = Iz - wi 'iz, w E C. Show that 1 is distance preserving if and only if I(z) := 
1(0) + bz or I(z) = 1(0) + bz with Ibl = 1. 

o I: C ---+ C is said to be JR.-linear if I(z) = ~z 1(1) + ~z I(i). Show that 1 is JR.-linear 
if and only if I(z) = az + bz with a, bE C. 

o An JR.-linear map 1 : C ---+ C is said to be orthogonal if ~(J(z)/(w)) = ~(zw) for all 
z, w E C. Show that 1 is orthogonal if and only if I(x) = az or I(z) = az with a E C 
and lal = 1. 

[Hint: For the first claim, consider g(z) = (J(z) - 1(0))/(J(1) - 1(0)), and show that 
Ig(z)1 2 = Izl2 and Ig(z) _11 2 = Iz -112.] 
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Abu al Khwarizmi 

(790-850) 

Abu al Kindi Hunayn ibn-Ishaq Abu al Mahani ibn Qurra Abu'l Thabit 

(805-873) (808-873) (820-880) (826-901) 

Abu Shuja Kamil Abu al-Battani Sinan-ibn-Thabit Abu Jafar al Khazin 

(850-930) (850-929) (880-943) (900-971) 

Abu'l at UqIidisi 

(920-980) 

al-Buzjani Abu'l Wafa 

(940-998) 

Abu al Quhi 

(940-1000) 

al Karkhi 

(953-1029) 

Abu Ali at Haytham 

(965-1039) 

Abu al Biruni 

(973-1048) 

ibn Sina. Avicenna 

(980-1037) 

ibn Tahir AIBaghdadi 

(980-1037) 

Omar-Khayyam 
(1048-1122) 

Ibn al Samawal 

(1130-1180) 

Nasir-at Tusi al Farisi Kamal 

(1260-1320) 

Ghiyath al Kaahi 

(1390-1450) (1201-1274) 

Figure 4.12. The arab renaissance. 

Leone Alberti 
(1404-1472) 

Filippo Brunelleschi 
(1377-1446) 

della Francesca Piero 
(1412-1492) 

Andrea Mantegna 
(1431-1506) 

Leonardo da Vinci 
(1452-1519) 

Albrecht Diirer 
(1471-1528) 

Figure 4.13. Mathematics and art in the Renaissance period. 

Ulugh-Beg 

(1393-1449) 



5. Polynomials, Rational 
Functions and Trigonometric 
Polynomials 

In this chapter we want to illustrate the relevance of complex numbers 
in some elementary situations. After a brief discussion of the algebra of 
polynomials in Section 5.1, we prove the fundamental theorem of algebra 
and discuss solutions by radicals of algebraic equations in Section 5.2. 
In Section 5.3 we present Hermite's decomposition formulas for rational 
functions, which are useful for the integration of rational functions, see 
Chapter 4 of [GM1]. Finally, in Section 5.4, we discuss some basic facts 
about trigonometric polynomials and, more generally, sums of sinusoidal 
signals. In particular we shall see that the spectrum of a signal completely 
identifies the signal itself, we shall prove the energy identity and present a 
sampling formula. 

5.1 Polynomials 
Let ][{ be a field as, for instance, C, JR, Q>, or a finite field as, for example, 
the residue class Zp, p prime. A polynomial with coefficients in ][{ in the 
indeterminate x is an expression of the form 

p 

P(x) := ao + alX + a2x2 + ... + apxP = L ajxj , 
j=O 

1 

where aj E ][{ for all j = 0, ... ,p. The class of all polynomials with coeffi­
cients in ][{ in the indeterminate x will be denoted by][{[x]. 

Presently a polynomial P(x) E ][{[x] is not a function defined in some 
domain, but, instead, a formal expression defined essentially by the list of 
its coefficients. In fact we say that two polynomials P(x) = L:j=o ajxj and 

Q(x) = L:';=o bjxj are equal if aj = bj 'Vj = 0, ... , min(n, m) and aj = 0 
'Vj = min(n, m) + 1, ... ,n and bj = 0 'Vj = min(n, m) + 1, ... ,m. 

We can therefore extend, if this is convenient, the list of the coeffi­
cients of a polynomial by adding zeros as coefficients of higher order terms 
without changing the polynomial itself. 

1 ao + L:}=l ajxj is the actual meaning of the sum! 
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Figure 5.1. The frontispieces of Ars Magna by Girolamo Cardano (1501-1576) and of 
Albebm by Rafael Bombelli (1526-1573). 

If P(x) = 2:7=0 ajxj E K[x], the largest integer j for which aj =F­

a is called the degree of P and is denoted by deg P. Nonzero constant 
polynomials have degree 0, and the zero-polynomial, that is the polynomial 
with aj = a 'tIj, is given degree -00. 

Polynomials in K[x] can be added and multiplied. If P(x) = 2:~=0 ajxj 
and Q(x) = 2:J=o bjxj E K[x], and assuming for instance p ~ q, we define 
the sum of P and Q by 

p 

P(x) + Q(x) := 2:)aj + bj)xj 
j=O 

where we have set bj = a for j = q + 1, ... ,p. Of course deg(P + Q) < 
max(degP,degQ). The product of P and Q is then defined by 

P(x)Q(x) = 

where 

or, explicitly, 

p q p+q 

= L L aibjxixj := L CkX k 

i=Oj=O k=O 

Ck:= L aibj 
i,j 

i+j=k 
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Figure 5.2. Frontispieces of the first and fifth parts of the Geneml 1'rattato sui numeri 
of Niccolo Fontana (1500-1557), called Tartaglia. 

Co = aobo, 

Cl = albo + aObl , 

C2 = a2bo + albl + aOb2, 

Notice that we have extended the list of the coefficients of the polynomials 
by setting aj := 0 for j = p+l, ... , p+q, and bj := 0 for j = q+l, . . . , p+q. 
It is easy to see that deg(PQ) = degPdegQ. 

5.1 ~. Show that the product of two polynomials is zero if and only if one of the two 
polynomials is zero. This is expressed by saying that lK[x] is an integral domain. 

5.1.1 The Division Algorithm 
Given two polynomials A(x) = L;=o ajxj and B(x) = L,~o bjx j E lK(x1 
with deg B = m :::; n, we observe that 

Al(X) := A(x) - :: xn - m B(x) E lK[x] 

has degree less than n. Proceeding inductively, it is not difficult to show 
that 
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Figure 5.3. The frontispiece of the Opere Matematiche by Paolo Ruffini (1765-1822) 
and the first page of the first chapter of the Teoria generale delle equazioni in cui si 
dimostra impossibile la soluzione algebrica delle equazioni di grade superiore al quarto 
by Paolo Ruffini (1765-1822) . 

5.2 Theorem (Division algorithm). For given A, B E lK[x] with B #-
0, there are uniquely defined polynomials Q, R E lK[x] such that 

A = BQ+R and degR < degB. 

The polynomial Q in Theorem 5.2 is called the integral quotient of A by 
B, and R is called the remainder of A divided by B. 

a. Euclid's algorithm and Bezout identity 

Let A, BE lK[x] be two nonzero polynomials. We say that B divides A or 
that B is a divisor of A if A = BQ for some Q E lK[xJ. Notice that, if B is 
a divisor of A, then )"B for)" E lK, ).. #- 0, is a divisor of A, too. Notice that 
this contrasts with the notion of integral divisor of an integral number. 
We shall say that A is irreducible in lK if it has no divisors. In this case if 
A = BQ, then either B or Q reduces to a constant polynomial. 

We now look for the common divisors of A and B. Clearly polynomials 
of degree zero are common divisors of A and B; also, every common divisor 
to A and B divides PA + QB for all polynomials P, Q. 

We say that a subset I C lK[x] is an ideal of lK[x] if I is a subgroup with 
respect to the addition, and it is closed with respect to the multiplication 
with any element, that is, PQ C I VP E lK[x], VQ E I. 
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5.3 Proposition. Every nonzero ideal :r of polynomials with one inde­
terminate is a principal ideal, that is, it contains only multiples (in OC[x]) 
of a polynomial that is unique up to a multiplication by a constant. 

Proof. Let B be a polynomial in I with minimal degree and let A be 
any other element in I. By dividing A by B we have A = BQ + R, thus 
R = A - BQ belongs to I. Since degR < degB, we conclude that R = 0, 
i.e., A = BQ. Suppose now that B' E I and degB' = degB; B' = BQ 
yields deg Q = 0, i.e., B' = >"B, >.. E C. 0 

Since 

I:= {PA+QB I P,Q E OC[xl} 

is an ideal of OC[xJ, we conclude that there exists a polynomial D, uniquely 
defined modulo a multiplicative constant, such that every polynomial PA+ 
QB in I is a multiple of D. In particular 

o D = AP + BQ for some P, Q, 
o A = AD and B = BD, since 1· A + ° . B, 0· A + 1 . B E I. 

We therefore conclude that every common divisor of A and B divides D 
and that every divisor of D divides both A and B. That is, D is the (up 
to a multiplicative constant) greatest common divisor of A and B. With 
some abuse of notation, it is denoted by g.c.d. (A, B). 

As for integers, Euclid's algorithm and Euclid's generalized algorithm 
yield a way to compute the greatest common divisor of A and B together 
with polynomials U, V such that AU +BV = g.c.d. (A, B). Assume deg A ~ 
degB and define the three sequences {Rk}, {Uk}, {Vk} by 

until Rn+l ¥- 0. 

flo:= A, RI := B, 

Rk+l = Rk-l - QkRk, 

Uo := 1, U1 := 0, 

Uk+l = Uk-l - QkUk, 

Vo := 0, VI := 1, 

Vk+l = Uk-l - Qk Vk, 

5.4 Theorem (Euclid). We have Rn := g.c.d. (A, B), and 

g.c.d. (A, B) = Rn = A Un + B Vn. 

Proof. In fact, noticing that C divides A and B if and only if C divides B 
and the remainder R:= A - BQ, by induction one proves 
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gocodo (A, B) = goc.d. (Ra, RI ) = g.c.d. (RI' R2 ) 

= ... = g.c.d. (Rn-I, Rn) = Rn. 

(ii) It suffices to check by induction that Rk = A Uk + B Vk \:Ik = 0, ... ,n. 
D 

h. Factorization 
Two polynomials that have a constant polynomial as greatest common 
divisor are said to be coprime, and a polynomial is said to be prime or 
irreducible over lK if it has no divisors except for the nonzero constants. 

From Euclid's algorithm, it is easy to see that g.c.d. (AC, BC) = 
g.c.d. (A, B) C. This implies the following. 

5.5 Theorem (Euclid). If A divides BC and A and B are coprime, then 
A divides C. 

This, in turn, allows us to prove as for integers the following. 

5.6 Theorem (Unique factorization). Every polynomial in lK[x] can 
be uniquely written as a product of irreducible factors. 

Thus irreducible factors play in lK[x] the same role as prime numbers 
in arithmetic. 

5.1 Remark. We notice that the notion of irreducible polynomial de­
pends on the field lK of coefficients. For instance, x 2 - 4 is not prime in 
Q[x], x 2 - 2 is prime in Q[x] but not in R[xJ, nor in Clx], and x 2 + 1 is 
prime in R[x] but not in Clx]. 

c. The factor theorem 

A polynomial P(x) = "£;=0 ajxj E lK[x] may be also regarded as a function 
P : lK - lK which maps z E lK - P(z) := "£;=0 ajzj , which we call the 
polynomial function of P. In general, two different polynomials may have 
the same polynomial function, for instance x + 1 and x3 + 1 on Z2, but, 
as we shall see in a moment, two polynomials are identical if and only if 
they have the same polynomial function, provided the field lK is infinite. 

We say that a E lK is a zero of a polynomial P E lK[x] if pea) = O. 
From the division algorithm theorem we infer at once 

5.8 Theorem (Ruffini). Let P(x) = "£;=0 ajxj E lK[x] be a polynomial 
of degree p and let a E K Then P(x) = (x - a)Qa(x) + pea) \:Ix E lK 
where Qa(x) = "£;':5 bjxj with 

{
bp - I = ap , 

bj_l=aj+abj (inlK, \:Ij=p-l,p-2, ... ,1. 
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Proof. In fact, 
p-l p-l p-l 

(x - a)Q,,(x) = E bjxi+1 - a E bjxj = bp-1XP + E(bj-l - abj)xj - abo 
j=l j=O j=l 

p-l 

= apxP + E ajxj - abo = P(x) - (ao - abo). 
j=l 

Theorem 5.8 yields the following. 

o 

5.9 Theorem (Factor theorem). Let P E lK[x] and a E K Then x - a 
divides P(x) if and only if a is a root of P, P(a) = O. 

If we know k distinct roots xI, X2,"" Xk of P, we can write inductively 
P(x) = (x - Xl)Ql(X), P(x) = (x - Xl)(X - X2)Q2(X) as Ql(X2) = 0, ... , 
and finally 

(5.1) 

where deg Qk = deg P - k. In particular we cannot exceed deg P, that is, 
every polynomial of degree n has at most n roots. 

5.10 Theorem (Principle of identity of polynomials). Two polyno­
mials P and Q E lK[x] of degree at most n are equal in lK[x] if and only 
if their polynomial functions take equal values in at least n + 1 distinct 
points of K In particular, if P has degree n and its polynomial function 
vanishes in at least n + 1 distinct points, then P = 0 in lK[x]. 

5.11 P(x) in the indeterminate x-a. By using the factor theorem, 
it is easy to rewite P E lK[x] as a polynomial in the indeterminate x-a. 
We have the following. 

Proposition. Let P be a polynomial of degree p and let a E K Let 
Qp, Qp-I, ... , Ql be the polynomials ofdegreesrespectivelyp,p-1, ... , 2, 1 
obtained iteratively by Ruffini's rule, i.e., 

{ Qn :=P, 

Qj(z) - Qj(a) = (z - a)Qj-l(Z) Vj = n - 1, ... ,2,1. 

Then P(x) = P(a) + 2:;=1 Qp_j(a)(x - a)j. 

Proof. In fact, 

Qo(x) = Qo(a), 

Ql (x) = Ql (a) + (x - a)Qo(x), 

Q2(X) = Q2(a) + (x - a)Ql (x) = Q2(a) + (x - a)Ql (a) + (x - a)2Qo(a), 

p 

P(x) = Qp(x) = E Qp_j(a)(x - a)j. 
j=O 

o 
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Figure 5.4. The Italian Renaissance is probably the turning point for the development 
of modern western culture. The knowledge of artists , technicians and merchants merges 
with school education. Luca Pacioli (1445- 1517) writes for "curious and ingenious en­
gineers and for any scholar of philosophy, perspective, painting, sculpture, architecture, 
music and other mathematics." 

5.12 Complex derivative. Let P(z) = 'L.7=0 aj(z - a)j E C[z] . The 
complex derivative of P is defined as the polynomial of degree n - 1, 

n 

DP(z) = P'(z) := Ljaj(z _ a)j-1. 
j=l 

k {tj(j -1)·· · (j -k + l)aj(z - a)j-k 
D P(z) = j=k 

o 

jf k :s; n, 

if k > n. 

In particular for 0 :s; k :s; n, Dk A(a) 
compare Taylor's formula jn [GMIJ, 

k!ak. Consequently we infer, 

P( ) _ ~ DjP(a) ( )j 
z - ~ ., z-a. 

j=O J. 
(5.2) 



Figure 5.5. The famous architect Leon 
Battista Alberti (1404-1472) was the 
theorist of mathematical perspective. 
His ideas were presented in De Pictura, 
1511, while in Ludi Mathematici he dis­
cussed applications of mathematics to 
various practical problems. The fron­
tispiece of his De re aedijicatoria, or­
ganic summa of the architecture of his 
time. 
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5.1.2 The fundamental theorem of algebra 

Finding the irreducible polynomials in lK[x] is obviously a key point of the 
algebra of polynomials. We shall restrict ourselves to factorization in the 
fields lR and Co 

a. Factorization in C 

Let P(z) = L~=o akzk be a polynomial in iC[t] of degree n, i.e., an i= O. 
Trivially every root of P(z), that is a point ~ E C such that P(~) = 0, is a 
minimum point for the real-valued function z ~ IP(z)l. An interesting fact 
discovered by Jean d'Alembert (1717-1783) and Jean Argand (1768-1822) 
is that the converse holds true. 

5.13 Proposition. Let ~ be a local minimizer for IP(z)l, i.e., there is a 
disk B(~, p) of radius p and center ~ such that IP(~) I :s: IP(z) I Vz E B(~, p); 
then IP(OI = o. 

This is a consequence of the following. 

5.14 Lemma (d'Alembert). Let Zo E C be such that P(zo) i= 0; then 
for any f > 0 we can find hE C with Ihl < f such that IP(zo+h)1 < IP(zo)l . 

In order to prove d'Alembert's lemma we make the following remarks. 
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o Let P(z) = 2:7=0 ajzj and let a E C. As we have seen, in 5.11, we can 
write P(z) as 

p 

P(z) - P(a) = LAj(z - a)j 

where the coefficients Aj depend on the coefficients of P and a but 
not on z. Denote by m the smallest integer such that Aj =I- O. Clearly 
1 ~ m ~p and 

p 

P(z) - P(a) = L Aj(z - a)j. (5.3) 

o From (5.3) and the triangle inequality, we infer 

p p 

IP(z) - P(a)1 = I L Aj(z - a)jl ~ L IAjllz - alj, 
j=m j=m 

therefore for all z with Iz - al < 1 we have 

p 

IP(z) - P(a)1 ~ k Iz - aim k:= L IAjl· (5.4) 
j=m 

Proof of Lemma 5.14· According to the above, for h E C we write 

n 

P(zo + h) = P(zo) + L Ajhj , (5.5) 
j=1 

and, if m is the smallest integer with Am =I- 0 and 

n 

Q(h):= L Ajhj , 
j=m+l 

we rewrite (5.5) as 

P(zo + h) = P(zo) + Amhm + Q(h). 

We now choose ho in such a way that Amho is in the opposite direction 
of P(zo), 

(5.6) 

i.e., we choose ho as one of the m-th roots of -P(zo)/Am, which is possible, 
since we are working in C. Then we set h = pho, p small and precisely 
plhol = Ihl < 1). From (5.6) we then infer 

IQ(h)1 ~ klhlm+1 = ~l~IIAmllholm pm+1 = ~l~lpm+llp(zo)1 
hence 
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Figure 5.6. Jean d'Alembert (1717-1783) and Carl Friedrich Gauss (1777-1855) . 

1 
IQ(h)1 < 2pmIP(zo)l, 

if, moreover, p < IAml/(2klhol}. Finally, from (5.5) and the triangle in­
equality we conclude 

IP(zo + h)1 ~ (1 - pm)IP(zo)1 + IQ(h)1 
1 

~ (1 - pm + 2pm )IP(zo)1 < IP(zo)l. 

Besides Proposition 5.13 we also have 

o 

5.15 Lemma (Coercivity). Let P(z) = 2::~=o akzk be a polynomial of 
degree n ~ 1. Then 

lim IP(z)1 = +00. 
1%1-+00 

Proof. Factoring out the term of highest degree, we have 
n 

P(z) = anzn(1 + Q(I/z», Q(w) := I)an-i/an)wi. 
i=1 

If k := 2::7=1 lan-i/anl , Izl > 1 and Izl > 2k, applying (5.4) to Q we get 

IQ(I/z)1 = IQ(I/z) - Q(O)I ~ 1:1 ~ ~. 
Consequently, using the triangle inequality 11 + ql ~ 11 -Iqll, 

IP(z)1 = lanllzlnll + Q(I/z)1 ~ lanllzlnll -IQ(I/z)11 
1 

= lanllzln(1 -IQ(I/z)l) ~ 2lanllzln; 

this yields the result at once. o 
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Figure 5.7. The first pages of two of the papers dedicated by Carl Friedrich Gauss 
(1777-1855) to the fundamental theorem of algebra. 

On account of coercivity, d'Alembert thought that the existence of a 
minimum point for the function IP(z)1 was evident and concluded 

5.16 Theorem. Every nonconstant polynomial with complex coefficients 
has at least a complex root. 

However, existence of a minimizer of IP(z)1 is not at all evident and 
trivial. It is a consequence of the continuity of polynomial functions and of 
the continuity or completeness of C. In fact, from Weierstrass's theorem, 
Theorem 5.16, and the factor theorem, Theorem 5.9, we readily conclude 

5.17 Theorem (Fundamental theorem of algebra). Every complex 
polynomial of degree n ~ 1 factorizes as a product of n polynomials of 
first degree, 

b. Simple and multiple roots of a polynomial 

5.18 Definition. Let P E lK[x], 0: E lK, and let k ~ 1. We say that 0: 

is a root of P of multiplicity k, 1 ::::: k ::::: n, if (x - o:)k divides P(x) and 
(x - o:)k+l does not divide P. A simple root of P is a root of multiplicity 1. 

Notice that, from the factor theorem, 0: is a root of multiplicity k if 
and only if 

P(x) = (x - o:lQ(x), Q(o:) of O. 

Let Zl, ... , Zk be the roots of P and assume that they have multiplici­
ties respectively nl , ' .. , nk. Then the fundamental theorem is rewritten as 
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every polynomial P E C[z] of degree n has exactly n roots, when counted 
with their multiplicities, i.e., 

The roots of a polynomial and of its derivative are related. It is easy 
to prove the following: 

o A simple root of a polynomial P is not a root of its derivative P'; 
consequently P and P' are coprime if and only if all the roots of P 
are simple. 

o A root of multiplicity k of a polynomial is a root of its derivative of 
multiplicity k - 1. 

o Let P be a polynomial. Then Po := Plg.c.d. (P,P') has the same set of 
zeros of P but all its roots are simple. 

The following claims are easy consequences of Rolle's theorem: 

o If all roots of a real polynomial are real, then all roots of its derivative 
are also real. 

o If all roots of a real polynomial P are real and of those p are positive, 
then P' has p or p - 1 positive roots. 

c. Factorization in R 

If P(z) = L:~=o akzk E C[z], the conjugate polynomial is defined by 
P(z):= L:~=oakzk. Of course 

n 

P(z) = Lakzk = P(z). 
k=O 

It follows: a is a root of P with multiplicity h if and only ifo is a root for 
P of multiplicity h. Since P = P for polynomials with real coefficients, we 
deduce 

5.19 Proposition. Every real polynomial ha.s n complex roots when 
counted with their multiplicities; an even number of them are nonreal 
and come in couples of conjugate complex numbers. 

As a corollary, on account of the fundamental theorem of algebra, we 
have proved again that every real polynomial with odd degree has at least 
one real root. 

Let P be a polynomial of degree n with real coefficients and let 
aI, a2,"" a p be its real roots with respective multiplicities kl, k2"'" kp • 

Moreover, let {3l, {32,"" {3q be its complex roots with positive imaginary 
parts and multiplicities hI, h2, ... ,hq. Since also /31' /32, ... ,/3q are roots 
of P with multiplicities hI, h2 , • .• , hq , we find, on account of the funda­
mental theorem of algebra, that kl + ... + kp + 2hl + ... + 2hq = n, 
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p q 

P(z) = an II (z - O!j )kj II (Z - /3j)h j (Z - /3j)h j , 
j=1 j=1 

and, writing /3j =: bj + iCj, so that 

we conclude 
p q 

P(x) = an II (x - O!j)k
j II ((x - bj )2 + c;)hj 'V x E R 

j=1 j=1 

We therefore have the following. 

5.20 Proposition. Every real polynomial can be factorized as a product . 
of first and second order irreducible polynomials in JR. 

5.2 Solutions of Polynomial Equations 
The Italian Renaissance marks a tremendous renewal of interest in nature, 
and also in mathematics. Artists studied and employed mathematics in­
tensively, among them let us mention Filippo Brunelleschi (1377-1446), 
Paolo Uccello (1397-1475), Masaccio (1401-1428), Leon Battista Alberti 
(1404-1472), and Piero della Francesca (1410-1492), who set forth the 
mathematical principle of perspective. The development of banking and 
commercial activities called for an improved arithmetic. The Summa by 
Luca Pacioli (1445-1517) and the General trattato dei numeri e misure by 
Niccolo Fontana (1500-1557), called Tartaglia, contained many problems 
on what one could call numerable mathematics. 

With respect to the topic we are discussing, the new flourishing of 
mathematical studies led to the discovery of formulas for solving alge­
braic equations of degree 3 and 4 and the consequent introduction of the 
imaginary unity. These developments are connected to the names of Scipi­
one del Ferro (1465-1526), Niccolo Fontana (1500-1557), called Tartaglia, 
Girolamo Cardano (1501-1576) and Rafael Bombelli (1526-1573) and are 
presented in Cardano's Ars Magna and Bombelli's Algebra. 

5.2.1 Solutions by radicals 

Equations of second degree 

az2 + bz + c = 0, a, b, c E C, a '" 0, (5.7) 
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Figure S.B. The first page of Traite des substitutions et des equations algebriques by 
Camille Jordan (1838- 1922) and of Teoria dei gruppi di sostituzioni by Luigi Bianchi 
(1856-1928). 

can be easily solved in C as everybody knows. In fact, completing the 
square we get 

b b2 b2 
a(z2 + 2-z + -) + c - - = 0, 

2a 4a2 4a 

hence 

(2a(z + :a) f + 4ac - b2 =: 0. 

Thus solutions are given by 

Zl,2 = 
-b±w 

2a 

where wand -ware the roots of w2 = b2 - 4ac. 

5.21 Third degree equations. Complex numbers were introduced as 
an intermediate step to solve the third degree equation 

x 3 - 3px - 2q = 0, p, q E JR, p =I- 0, (5.8) 

that, as we know, has at least a real solution. Set x = u + v, p = uv , so 
that (5.8) becomes 

hence 
u6 _ 2qu3 + p3 = 0, 

since v = p/u. The last equation is solved by 

(5.9) 
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while (5.9) yields 

Thus 

x = u + v = ~ q + J q2 - p3 + ~ q - J q2 - p3 

is a solution of (5.8). This is of course correct if q2 - p3 ~ 0, otherwise 
the solving formula is meaningless (at least for the Renaissance people). 
However, if we introduce the imaginary unit i := A in the case q2_p3 < 
0, we have 

{
u3 = q + iJp3 _ q2, 

v3 = q _ iJp3 - q2. 
(5.10) 

If u = a + ib is a cubic root of q + iJp3 - q2, we see from (5.10) that 
v := a - ib is a cubic root of q - iJp3 - q2, therefore the imaginary parts 
cancel if we sum u + v, finding a real root. 

5.22 Example. If we consider the equation 

x 3 - 15x - 4 = 0, p = 5, q = 2, (5.11) 

we find x = .v2 + lli + .v2 - lli. If we try to express 2 + lli as the cube of a complex 
number, we find (2 + i)3 = 8 + 12i + 6i2 + i3 = 2 + lli, while (2 - i)3 = 2 - lli, hence 
x = 2 + i + 2 - i = 4 is a solution of (5.11). 

An adjustment of the method just presented allows us to solve third 
degree equations. We want to solve in C, 

We see that P"(a) = 0, if a := -ad(3ao), hence 

P(z) = ao(z - a)3 + P'(a)(z - a) + pea), 

and z solves (5.12) if and only if y := z-a solves aoy3+P'(a)y+P(a) = O. 
Therefore it suffices to solve equations of the form 

Z3 +pz+q = 0, p,q E C. (5.13) 

The idea is to look for solutions of the form z = u + v. Inserting z = u + v 
in (5.13), we see that z is a solution if u and v satisfy 

{
uv = -p/3, 

u3 +v3 = -q, 

or 
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This happens if u3 and v 3 are the two solutions rl, rz of the second degree 
equation 

rZ + qr - p3/27 = O. 

The numbers u and v are then to be chosen among the cubic roots of rl 
and rz. Set 

Then the solutions of (5.13) are among the numbers 

i,j=0,1,2. 

Since uowivowj = uovowi+j = -p/3 only for i + j = 3 we conclude that 

i = 0, 1,2, 

are the three solutions of equation (5.13). 

5.23 Fourth degree equations. Suppose we want to solve 

ai E C, ao i- O. (5.14) 

We observe that, if 0= -at/4ao, then plII(a) = 0 , hence 

4 P"(a) z, 
P(z) = ao(z - a) + -2!-(z - a) + P (a)(z - a) + P(a), (5.15) 
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and z solves (5.14) if and only if Y := Z - 0: solves (5.15). Therefore it 
suffices to solve 

Z4 + pz2 + qz + r = 0, p,q,r E JR. (5.16) 

We look for solutions of the type z = u+v+w. Inserting into the equation 
we find 

Z4 _ 2(u2 + v2 + w2)z2 _ 8uvwz + (u2 + v2 + w2)2 

- 4( u2v2 + u2
W

2 + v2w2) = 0, 

therefore z = u + v + w is a solution if 

{

U
2 + v2 + w2 = -p/2, 

uvw = -q/8, 

u2v2 + v2W 2 + u2w2 = (p2 - 4r)/16. 

By computation, see Exercise 5.61, u2, v2 and w2 are the three solutions 
Yl, Y2, Y3 of the third degree equation 

p p2 _ 4r q2 
y3 + 2y2 + 16 Y - 64 = O. 

Consequently u, v, w are to be chosen among the square roots ±uo, ±vo, 
±wo of Yb Y2, Y3. If we choose Wo in such a way that UoVoWo = -q/8, then 
we conclude that 

!
Zl = Uo + Vo + Wo, 

Z2 = Uo - Vo - Wo, 

Z3 = -uo + Vo - Wo, 

Z4 = -uo - Vo + Wo 

are the four solutions of equation (5.16). 

5.24 Solutions by radicals. The study of algebraic equations and, es­
pecially, the research of a procedure for solving algebraic equations, i.e., 
finding the roots of a given equation from its coefficients by means of a fi­
nite number of rational operations and extraction of radicals, continued till 
the end of the eighteenth century. In 1770 a fundamental work by Joseph­
Louis Lagrange (1736-1813) appeared in the Nouv. Mem. de l'Acad. de 
Berlin. There he analyzed the methods for solving equations of degree at 
most 4 and set a new basis for the study of higher order equations. In 
1799 Carl Friedrich Gauss (1777-1855) provided a first rigorous proof of 
the fundamental theorem of algebra (incomplete proofs had been given 
by Jean d'Alembert (1717-1783), Leonhard Euler (1707-1783), and Gauss 
himself). From 1799 with the treatise Teoria generale delle equazioni in 
cui si dimostra impossibile la soluzione algebrica delle equazioni di grado 
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Figure 5.10. Niels Henrik Abel (1802-
1829) and the frontispiece of a Memoria 
by Paolo Ruffini (1765- 1822) . 
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superiore al quarto until 1813, Paolo Ruffini (1765-1822) made several at­
tempts to prove that general equations of degree higher than four could 
not be solved by radicals. Finally in 1824 the Memoire sur les equations 
algebriques, ou l 'on demontre l'impossibilite de la resolution de l'equation 
generale de cinquieme degre by Niels Henrik Abel (1802-1829) appeared, 
where a complete proof of Ruffini's attempts was given. 

The problem then became that of deciding whether a specific equation 
was or was not solvable by radicals, and, if not, finding more complicated 
formulas : the fundamental ideas in this direction are due to Evariste Ga­
lois (1811-1832) with further contributions, among others, by Enrico Betti 
(1823- 1892) , Charles Hermite (1822-1901), Leopold Kronecker (1823-
1891) which led to the in some sense definitive treatise by Camille Jordan 
(1838-1922). But this would lead us far away from our main path. 

5.2.2 Distribution of the roots of a 
polynomial 

Let P be a polynomial of degree n with real coefficients, P( x) = E~=o akxk. 
Without solving the equation P(x) = 0 we would like to obtain information 
about the distribution of its roots. For instance, we would like to determine 
whether it has real roots, and if it does, how many; or how many positive 
roots it has, or how many real roots lie between given limits a and b. 
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a. Descartes's law of signs 

In his book Geometria Rene Descartes (1596-1650) proved the following. 

5.25 Theorem. Let P(x) be a real polynomial. If all its roots are real, 
then the number of its positive roots, counted with multiplicity, is equal 
to the number of changes of sign in the sequence of its coefficients. 

The number of changes of sign is defined as follows: we list all coef­
ficients in order of decreasing power index, including an and ao, cancel 
out the zeros, and consider all pairs of successive numbers in the list so 
obtained: if in such a pair the signs of the numbers are different, then we 
call this a change of sign. 

Proof. Of course we can assume an > O. We start by observing that the sign of the first 
nonzero coefficient of Pis (-l)P, p being the number of positive roots of P, counted 
with their multiplicities. We can in fact write 

P(x) = anxn + ... + akxk = anxk(x - Xl)'" (X - xp)(x - Xp+l)'" (X - Xk) 

if P has 0 as a root of multiplicity k, Xl, X2, ... ,Xp are the positive roots of P and 
xp+l, ... ,Xn-k are the negative ones. 

The proof now proceeds by induction on the degree of P. The claim is trivial for 
n = 1. Let us suppose it for polynomials of degree n - 1 and consider a polynomial 
P(x) = ~~=o akxk of degree n. 

If ao = 0, then P(x) = xQ(x). Since the number of positive roots and the number 
of changes of sign of P and Q are equal and the claim holds for Q, it holds for P. 

Suppose ao "!- O. It is clear that the number of changes of sign in P(x) is equal to the 
analogous number for the derivative PI(x), if the sign of ao and the last coefficient of 
pI coincide, or it is one more if the signs are opposite. By the remark at the beginning 
of the proof, in the first case the numbers of positive roots of P and pI have the same 
parity (are both even or odd), and in the second case they have opposite parity. On 
the other hand the number of positive roots of P can be either equal to the number of 
positive roots of pI, or one more. Therefore in both cases the difference between the 
changes of sign and the number of roots of P and pI is the same. 

Since the number of positive roots of pI is equal to the number of changes of sign 
in the coefficients of pI, by inductive assumption, the claim is proved also for P. 0 

5.26 Remark. Actually one could also show: if P(x) has also complex roots, then the 
number of positive roots is equal to, or an even number less, than the number of changes 
in sign in the coefficients. 

h. Sturm's theorem 

Descartes's law of signs does not give an answer to our initial question to 
know the number of real roots of a given polynomial in a given interval. 
After many attempts, this problem was solved by Jean-Charles-Franltois 
Sturm (1803-1855) in 1835. He considers the problem of localizing the 
sets of zeros of a polynomial disregarding multiplicities. For this problem 
it suffices to consider the case of polynomials with only simple roots, since 
for any polynomial P, Po := P(x)/g.c.d. (P(x), pI (x)) has the same set of 
roots of P, and Po and Po are coprime. So we can and do assume from 
now on that P and pI are coprime. 
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We now apply Euclid's algorithm to P and pi with a slightly different 
notation to find the list of polynomials {Qd given by 

{
Qo(X) = P(x), Q1(X) = PI(x), 

Qk-1(X) = qk(X)Qk(X) - Qk+l(X), 
(5.17) 

till the last one, Qt(x), that is nonzero. P and pi being coprime, QI(X) is 
a nonzero constant. The list of polynomials 

{Qo(X), Q1(X), ... , QI(X)} 

is called the Sturm's sequence of P. 
For a E lR. we denote by V (a) the number of changes of sign in the list 

{Qo(a), Q1(a), ... , Ql(a)} 

not counting possible zeros. 

5.27 Theorem (Sturm). The number of roots of P in [a, b] is equal to 
V(a) - V(b). 

Proof. The idea is to look at how V(e) changes when e moves from a 
to b. Let I be the interval between two consecutive roots of the Qi'S, 
i = 0, ... , i - 1. By continuity sgn (Qi(e)) is constant in I, from which we 
infer V(e) is constant in I. Thus V(e) is a piecewise constant function on 
[a, b] that eventually jumps at the roots of one of the Qi'S. 

Let us now look at V (e) when e, moving from a to b, passes through 
one of the roots of the polynomials Qo, ... , Qt-1. First we observe that if 
Qi(e) = 0, then Qi-1(e) and QH1(e) are nonzero, since Qj(e) = Qj+1(e) = 
o and (5.17) would give Qj+2(e) = 0, ... , Ql(e) = 0: a contradiction. 
(i) Assume then 

Qob) = 0, Q1b) ::f 0, ... , Ql-1b) ::f 0, Qlb) ::f 0. 

The continuity of the Qi'S yields a 8> ° such that 

for i = 1, ... ,i. 

Since Q1('Y) ::f 0, Qo is monotone in a neighborhood of 'Y, we may assume 

sgnQob - 8) = -sgnQ1b - 8) 

In this case, we therefore conclude 

sgnQob + 8) = sgnQlb + 8). 

Vb - 8) - Vb + 8) = 1. 

(ii) If instead 'Y is a root of 

Qi(X) = ° for some i = 1,2, ... ,I! - 1, 

then (5.17) yields Qi-1b) = -QH1b), therefore Qi-1 and Qi+l have 
opposite sign in a neighborhood of 'Y, say ['Y - 8, 'Y + 8], since they are not 
zero. Hence the following two tables are possible 
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x ,-6 , ,+6 X ,-6 , ,+6 
Qi-1 + + + Qi-1 
Qi ± 0 ± Qi ± 0 ± 
Qi+1 Qi+1 + + + 

In this case we then conclude that 

Vb - 6) - vb + 6) = O. 

From (i) (ii), we infer that V(e) jumps at , if and only if, is a root 
of Qo, and the jump is +1, thus concluding that V(a) - V(b) equals the 
number of zeros of Qo = P. 0 

5.3 Rational Functions 
5.28 Definition. A rational function R(z) is the quotient R(z) = 
A{z)j B{z) of two polynomial functions A, B : C -+ C. R{z) is therefore 
defined for all z E C such that B{z) i= o. 

a. Decomposition in C 
Hermite's formula allows to decompose every rational function A{z)j B(z) 
as the sum of a polynomial (which is nonzero if and only if deg A 2: deg B) 
and of simple rational functions, that is of functions of the type 

(z - o:)k 

where .\ E C, kEN, and 0: is a root of B. 
Of course we can assume that A and B are coprime. Also, if deg A 2: 

degB, we may divide A by B obtaining A{z) = B(z)Q(z) + R(z) with 
deg R(z) < deg B(z), i.e., 

A(z) R(z) 
B{z) = Q(z) + B(z)' degR < degB. 

Therefore in the sequel of this section we shall always assume that A and 
B are coprime and deg A < deg B. 

Let 0:1, 0:2, ... , O:p be the roots of B with multiplicities kb k 2 , ... , kp 

so that 

k1 + k2 + ... + kp = n. 

Fix one of the roots, denote it by 0: and denote its multiplicity by k, so 
that 
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while Qo;(!3) = 0 for any root f3 of B with f3 =f. 0:. Notice also that, by 
Taylor's formula, 

Q ( ) 
= DkB(o:) 

0; 0: k!· 

Hermite's decomposition formula is a consequence of the following 
lemma, which allows us to decrease the degree of the denominator. 

5.29 Lemma. Let 0: be a root of B with multiplicity k, and let Qo;(z) be 
such that B(z) = (z - o:)kQo;(z). We have 

where 

A(z) 
B(z) 

Ao;,k + R(z) 
(z - o:)k (z - 0:)k-1Qo;(Z) 

A(o:) k!A(o:) 
Ao;,k := Qo;(O:) = DkB(o:)' 

R(z) := A(z) - Ao;,kQ(Z). 
z-o: 

Moreover deg R < deg B-1 and R( z) and Q 0; are coprime. 

Proof. We have 

(5.18) 

A(z) AQo;(Z) A(z) - AQo;(Z) A A(z) - AQo;(Z) 
-B (-z) = B (z ) + B ( z ) = (z - 0:) k + --;-( z-'--_'--o:--;-)'---:k Q=-o;-+( z-7-)" 

Since A(o:) - AQo;(O:) = 0 if A = Ao;,k, we have A(z) - Ao;,kQo;(Z) 
R(z)(z - 0:), proving (5.18) and that deg R < deg B - 1. It remains to 
prove that Rand Qo; are coprime. In fact, if f3 is a common root to R 
and Qo;, then A(f3) = A(f3) - Ao;,kQo;(f3) = R(f3)(f3 - 0:) = 0, hence f3 is a 
common root to A and B, a contradiction. D 

Iterating Lemma 5.29 we get the following. 

5.30 Theorem. Let A, B be coprime polynomials with deg A < deg B 
and let 0: be a root of B with multiplicity k. Then we can find Ao;,k, 
Ao;,k-1, ... , Ao;,1 E C and a polynomial Ro; coprime with Qo;(z) with 
deg Ro; < deg B - k, such that 

k 
A(z) '" Ao;,j Ro;(z) 
B(z) = f=r (z - o:)j + Qo;(z)· 

Actually {>.o;,k} and Ro; can be computed as follows: Let Qo;(z) be such 
that B(z) = (z - o:)kQo;(z), Qa(O:) =f. O. Set Ro;,k(Z) := A(z), compute 
iteratively for j = k, ... ,2,1, 

{
Ao;,j := Ro;,j(o:)/Qo;(O:), 

Ro;,j-l(Z) := (Ro;,j - Ao;,jQo;(z))/(z - 0:), 
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Figure 5.11. Charles Hermite (1822-
1901) . 

and set R,,(z) := Ra,o(z). 
Finally, observe that, for any root 13 =f a, we have 

A(j3) 
Ra(j3) = (13 _ a)k ' (5.19) 

5.31 Theorem (Hermite). Let A, B be coprime polynomials in qzj 
with deg A < deg B =: n. Let k( a) be the multiplicity of the root 
a of B . Then we can find uniquely determined complex numbers )..a,j , 

j = 1, ... , k(a) such that 

A(z) 
B(z) 

k(a) ).. . 
"" "" a ,] ~ ~ (z-a)j 

a root of B j=l 

(5.20) 

where the )..a,j can be computed as follows: let Qa(z) be such that 
B(z) = (z-a)k(a)Qa(z) , Qa(a) =f O. Set Ra,k(a)(Z) := A(z) , then compute 
iteratively for j = k(a), .. . , 2,1 

{
)..a ,j := Ra,j(a)/Qa(a), 

Ra,j-l(Z) := (Ra ,j - )..a,jQa(z»/(z - a). 

Proof. Uniqueness. Let a be a root of B with multiplicity ka ' Multiplying 
(5.20) by (z - a)k", we characterize )..a,k" by 

\ ._ I' A(z)(z - a)k" _ A(a) 
Aa,k" .- z~ B(z) - Qa(a)' 

Proceeding iteratively, the uniqueness of the decomposition follows. 
Existence. The existence of the decomposition follows applying Theo­
rem 5.30 to the roots of B(z) ordered in an arbitrary order. Moreover, 
because of the uniqueness, we get the same decomposition starting from 
an arbitrary root, hence the algorithm. 0 
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5.32 Remark. If the roots of B are distinct, Hermite's formula becomes particularly 
simple. Let A and B be coprime and deg A < deg B. Denote by a1, a2, ... ,an the roots 
of B, and set 

so that 
(5.21) 

then we have 
A(z) _~~ 
B(z) - ~ z-a' 

J=1 J 

where 
Aj:= A(aj) = A(aj) . 

Qj(aj) B'(aj) 

A direct proof of Hermite's formula in this case can be done as follows. Write 
l/(z - aj) = Qj (z)/ B(z) so that 

t ~ = I:j=1 AjQj(Z) . 
j=1 Z - aj B(z) 

(5.22) 

The degree of the polynomial C(z) := I:j=1 AjQj(Z) is less than n, moreover for all 
i = 1, ... , n (5.21) yields 

Since C and A agree on n points, we have C = A and the claim follows from (5.22). 

5.33 Example. Suppose we want to decompose 

1 
(Z2 + l)(z - 1)3' 

We start with the root 1 with multiplicity 3. In the algorithm of Theorem 5.30 A(z) = 1, 
Q1(Z) = z2 + 1 and R3(Z) = A(z) = 1. Then we compute 

A _ A(l) _ 1 
1,3 - Q1(1) - 2' 

1 
R2(Z) = (R3(Z) - 2Q1(z)) : (z -1) 

= (1 - ,!,(z2 + 1)) : (z - 1) = _,!,(z2 - 1) : (z - 1) = -.!.(z + 1), 
222 

1 
A1,2 = R2(1)/Q1(1) = -2' 

1 
R1(Z) = (R2(Z) + 2(z2 + 1)) : (z -1) 

1 1 1 1 = (- -(z + 1) + - (z2 + 1)) : (z - 1) = -z(z - 1) : (z - 1) = -z, 
2 2 2 2 

1 
A1,1 = R1(1)/Q1(1) = 4' 

R(z) = R<J(z) = (R1(Z) - ,!,(z2 + 1)) : (z - 1) = -.!.(z _1)2: (z - 1) = -.!.(z -1), 
4 4 4 

finding 
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1 111111 
(z2 + 1)(z - 1)3 = "2 (z - 1)3 -"2 (z - 1)2 + 4 z - 1 

It remains to decompose 
z-1 

4(z2 + 1)' 

z-1 
4(z2 + 1) . 

As z2 + 1 = (z - i)(z + i), the roots of the denominator are i and -i with multiplicity 
1. Therefore it suffices to compute 

-(z - 1)/4 . 
.A 1 = for z = ~ 

~, z + i ' 
-(z - 1)/4 . 

.A-i,l = . for z = -~, 
z-~ 

that is .Ai,l = -~(1 + i), .A-i,l = -~(1- i), to conclude 

1 1 1 1 1 1 1 II+i ll-i 
-:--;::--,..,-,--~=- ----- ---+- ---- ----
(z2 + 1)(z - 1)3 2 (z - 1)3 2 (z - 1)2 4 z - 1 8 z - i 8 z + i 

Alternatively, we can proceed as follows. From Hermite's rule we know the existence 
and uniqueness of a decomposition 

1 abc d e 
-:--;::--,..,-,--~ = --- + --- + -- + -- +-­
(z2 + l)(z - 1)3 (z - 1)3 (z - 1)2 Z - 1 z - i z + i 

for suitable a, b, c, d, e E C. We can compute those coefficients by reducing to the com­
mon denominator. This way the polynomials in the numerators have to be equal, hence 
their coefficients have to be equal, by the principle of identity of polynomials. This 
yields a system of five linear equations in a, b, c, d, e that, once solved, yields the values 
of a, b, c, d, e. 

h. Decomposition in lR 

If A(x), B(x) E lR[x] are two polynomials with real coefficients, one can 
decompose A(x)j B(x) as a sum of a polynomial (that is not zero if and only 
if deg A ~ deg B) and of simple rational functions with real coefficients. 
In fact, recalling that nonreal roots of B come in couples of conjugate 
complex numbers, by the complex Hermite's formula, Theorem 5.31, we 
infer 

A(z) 
B(z) 

k(a) A . L L a,J 

0: root of B j=:l (z - o:)j 
<>EiR 

k(a) A k(a) A 
+ '" '" a,j. + '" '" a,j. ~ ~ (x - a)J ~ ~ (x - a)J 

0: root of B j=l 0; root of B j=1 
(}C<»>O (}C<»>O 

(5.23) 

for all z E C with B(z) #- O. Going through the iterative scheme in The­
orem 5.31 which yields the Aa,j, taking into account that A and B have 
real coefficients, we infer 

Aa,j = Aa,j, 

hence from (5.23) the Hermite decomposition formula in lR 
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A(x) 
B(x) 

for x E lR with B(x) =f. O. 

(5.24) 

Notice that if all roots of B are simple, formula (5.24) reduces to 

A(x) 
= 

B(x) 
.xa L (.xa .xa ) --+ --+--

x-a x-a x-a 
Q" root of B 0: root of B 

aEiR 'l(a»O 

where .xa := ;iY:J) for every root a of B. Therefore 

5.34 Corollary. Let A(x) and B(x) E lR[x] be coprime real polynomials 
with degA < degB. Suppose that B(x) has only simple roots. Then 

A(x) 
B(x) 

L _.x_a + L fa(x - Pa) + ma 
a root of B X - a a root of B X

2 
- 2Pax + qa ' 

aEiR 'l(a»O 

where.xa := ;i,(t;}) for every root a E C of Band, ifs:5(a) > 0, 

c. Integration of rational functions 
Of course, Hermite's decomposition allows us to integrate and express 
the indefinite integral of every rational function in terms of elementary 
functions. Here we just state the following. 

5.35 Proposition. Under the assumptions and with the notation of 
Corollary 5.34, we have 

f A(x) " B(x) dx = ~ .xa log Ix - al 
Q:root oEB 

aEiR 

5.36 Example. Let us compute 

1
+00 x2m 

--dx 
-00 1 + x2n ' 

m,nEN, m<n. 

The roots of B{x) = 1 + x2n are the 2n-th roots of -1, 

2· + 1 
{3j := exp (i7r J

2n 
), j = 0, ... ,2n - 1. 
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The roots with positive imaginary part are {3j, j = 0, ... , n - 1. According to Propo­
sition 5.35, we need to compute the numbers}J.j := x2m / D(1 + x2n) at x = {3j. Since 
{3Jn = -1 we get 

where 

We remark that 

hence 

{3;m 1 {32m+ 1 1 ( . (. » 
J.Lj := 2n{32n 1 = - 2n j ::: - 2n exp tel< 2} + 1 

J 

2m+l 
a:= ---7r. 

2n 

a(2j + 1) + a2(n - 1 - j) + 1 = 7r(2m + 1), 

arg (J.Lj) + arg (J.Ln-l-j) = 7r. 

Also, since lJ.Lj I = 1 Vj, we have rR(J.Lj) = -rR(J.Ln-l-j). Finally, taking into account 
that Pn-j-l = rR({3n-l-j) = -rR({3j) = -Pj, Proposition 5.35 yields 

j +OO x2m 
---dx 

-00 1 + x2n 

n-l n-l 

= -27r L "S(J.Lj) = -27r"S( L J.Lj). 
j=O j=O 

It remains to computeL:j~~ J.Lj. Set k:= exp(ia) and q:= exp(i2a), so that 

n-l k n-l. 1 k(1 _ qn) L J.Lj := - L qJ = - . 
j=O 2n j=O 2n 1 - q 

Since qn = exp(i7r22~tln) = exp(i7r(2m+ 1» =exp(i7r) = -1, we deduce 

2i 

1 -i 

2n sina 

(5.25) 

(5.26) 

Therefore from (5.25) and (5.26) we conclude that, for n, mEN, m < n, we have 

1+00 x2m 7r 1 7r 1 

-00 l+ x2n dx=; sina""; . (2m+l)' sm ---7r 
2n 

(5.27) 

5.37 'If 'If. Following the same path of the Hermite formula for complex rational func­
tions, prove the following. 

Lemma. Let A, B be two polynomials with real coefficients which are coprime in lR[x] 
with deg A < deg B, and let a be a nonreal root of B of multiplicity k. Then 

A(z) a(z - p) + b + R(z) 
B(z) = (z2 - 2pz + q)k (z2 - 2pz + q)k-1Q(z) 

where, if>. := A(a)/Q(a), then a = ;i~j, b = ~(>.), and 

R(z) := A(z) - (a(z - p) + b)Q(z) 
z2 - 2pz + q 

is a real polynomial with deg R < deg B-2. 
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Iterating the previous lemma over k and all roots of B, show the following. 

Theorem. Let A, B be two polynomials with real coefficients which are coprime in 
lR[x] with degA < degB. Assume that B has no real root and denote by k(a) the 
multiplicity of the root a of B. Then 

A(z) 

B(z) 

where p", = !R(a), q", = lal 2 , and the a""j and b""j can be computed by the following 
procedure: Set Q",(z) = B(z)/(z2 - 2p",z + q",)k. Set R""k(Z) := A(z) and compute for 
j = k, k - 1, ... , 1, 

e A""j:= R""j({3)IQ",(a), 
e a"',j := ~(A""j)/~(a), b""j = !R(A""j), 

e R""j-l(Z):= (R""j(z) - (a"',j(z - p",) + b""j)Q",(z))/(z2 - 2p",z + q",). 

5.38,. Prove the following. 

Theorem. Let A, B be two polynomials with real coefficients which are coprime in 
lR[x] with degA < degB. Let N := g.c.d. (B,B') and S := BIN. Then there exist 
polynomials M and R with real coefficients with deg M < deg N, deg R < deg S such 
that 

A(x) = ~(M(X)) + R(x). 
B(x) dx N(x) S(x) 

[Hint: Use Hermite's formula (5.23).] 

5.4 Sinusoidal Functions and Their 
Sums 

The existence in nature of periodic phenomena, i.e., phenomena that recur 
after some time, attracted the attention and the interest of man and prob­
ably was one of the main starting points for organized knowledge. Next to 
the totally fortuitous events of life, there stood out a number of more or 
less regular phenomena that were predictable. Seasons, the apparent mo­
tion of the moon, of the sun, of fixed stars and planets could be predicted 
by everyone. On the other hand, other phenomena such as solar and lunar 
eclipses could be predicted only by a few people, usually the high priests. 

With the creation of modern science and the systematic use of calculus 
to investigate reality, several periodic phenomena were studied in detail 
(oscillations, vibrations, waves) and, once more, the ondulatory model be­
came relevant in the nineteenth century in order to understand the nature 
of light and electromagnetic radiation. 
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5.4.1 Trigonometric polynomials 

An elementary periodic phenomenon is clearly the uniform circular motion, 
described as we know (compare, e.g., [GMI]) by the functions sine and 
cosine. 

5.39 Definition. A sinusoidal signal, or a circular or harmonic function 
of pulse or angular frequency w is a solution of the equation of simple 
harmonic motion x"(t) + w2 x(t) = O. 

All harmonic functions with pulse w f. 0 have the form 

acoswt + b sin wt, a,b E JR, 

compare [GMI], or, if we set A := JO,2 + b2 and tp is such that costp = 
a/va2 +b2 , sintp:= -b/va2 +b2 , all functions of the form 

x(t) = Acos(wt + cp), A 2:: O. 

A is the amplitude and tp the phase at time t = 0 of the circular motion 
x(t). As we have seen, complex notation yields simpler formulas, since, by 
Euler's formulas 

x(t) = Aei'Peiwt . 

The phase is of course defined modulo an integer multiple of 211', there­
fore, if we want to have a definite number, we need to fix a determination 
of the angle. 

a. Periodic functions 
5.40 Definition. A function 1 : JR ~ ~ is said to be periodic of period T 
if I(t + T) = I(t) \:I t E JR. 

If 1 and 9 are periodic with period T, then 1 + 9 and Ig are periodic of 
the same period T; moreover if 1 is differentiable, then f' is also periodic 
of period T. 

5.41 ,. In general, the primitive of a periodic function is not periodic, for instance, 
1 + cos t is 21T-periodic, but t + sin t is not. Show the following. 

Proposition. Let J be a periodic, continuous function with period T. Then foX J(t) dt 

is periodic of period T if and only if f has integral mean zero over a period, ft f (t) dt = 
o. 

If 1 is a periodic function of period T, then 1 is also periodic with 
periods kT, kEN, k 2:: 1. A sinusoidal signal with pulse w, I(t) := 
A cos(wt+tp) has a minimum period T :== 211' /w, and then it is periodic with 
all the periods ::r k, kEN, k 2:: 1. Notice however that not every periodic 
function has a minimum period. For instance the Dirichlet function 
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D(x) = {I if x E Q, 
o ifx~Q 

is periodic with period q for all q E Q+. The "minimum period" should 
then be zero, but this is meaningless. 

b. Trigonometric polynomials 

As we shall see in Theorem 5.55, the sum of sinusoidal signals of pulses WI 

and W2 is periodic if and only if wI! W2 is rational, that is, if both pulses 
are integer multiples of a fundamental pulse. 

5.42 Definition. A trigonometric polynomial of degree n and period T 
is a periodic function of the form 

P(t) = ~o + t (a k cos (:; kt) + bk sin (:; kt)), 
k=l 

t E lR, (5.28) 

with ak, bk E R 

Notice that the quotients of the frequencies kiT of the components are 
rational. The terminology that follows comes from acoustics. The human 
ear considers as harmonic the sounds that have rational quotients of pulses 
and, actually, with quotient pi q with p, q small. Then 

(i) ao/2, or more precisely the constant function x ---+ ao/2, is the con­
tinuous component of P, 

(ii) the function t ---t al cos (~t) + bl sin (~t) is the fundamental har­
monic of P; the function t ---+ ak cos (2; kt) + bk sin (~ kt), k ~ 2, is 
the k-th harmonic of P. 

If we set 

if k = 0, 

if k = 1, ... , n 

and CPk is such that 

we can write P as 

n 2 
P(t) = Ao + L Ak cos ( ; kt + CPk). 

k=l 

The lists {Ak}, k = 0, ... ,n, and {CPk}, k = 1, ... ,n, are called respectively 
the amplitude and the phase spectrum of P. 



176 5. Polynomials, Rational Functions and 'frigonometric Polynomials 

When dealing with trigonometric polynomials, the complex notation is 
useful to write formulas which are handier to manipulate. In fact, taking 
into account Euler's formulas, we can write P(t) in (5.28) as 

n 

P(t) = L ckei 2,; kt, t E ~ (5.29) 
k=-n 

where 

{ 

ak - ibk = Ake-i'Pk if k 2 1, 

Ck = ao __ 2 Ao 2 if k = 0, 

C-k ifk~-l. 

Observe that, while each term is complex, the sum 

is real for each k E {-n, ... , n}. 
More generally, we set the following. 

5.43 Definition. A complex trigonometric polynomial of degree n and 
period T is a periodic function with complex values, P : ~ ~ C, of the 
type 

P(t) = t CkexP (i:; kt), t E~, 
k=-n 

(5.30) 

where Ck E C for k = -n, ... ,n. The vector {cd -n::;k::;n E c 2n+l is called 
the complex spectrum, or simply the spectrum of P. 

The class of all complex trigonometric polynomials is denoted by'Pn,T. 

Notice that f + 9 and >..f E 'Pn,T if f, 9 E 'Pn,T and>" E C, or, as we 
say, 'Pn,T is a complex vector space. Finally, notice that P(Ert) E 'Pn,27r if 
P E 'Pn,T. 

c. Spectrum and energy identity 
By definition, a complex trigonometrical polynomial is defined uniquely 
by its spectrum, and the surjective map <P : c2n+l ~ 'Pn,T given by 

(5.31 ) 

is linear. Thus 'Pn,T is a vector space of dimension less than or equal to 
2n + 1. A relevant fact is that one can compute the complex amplitudes 
of the harmonics from the sum of the harmonics, thus proving that <P is 
injective and therefore that the dimension of 'Pn,T is 2n + 1. 
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5.44 Proposition. Let P(t) = L:~=-n Ckei 2.; kt E Pn,T' 

(i) For all k = -n, ... ,n we have 

liT . 2"kt Ck = - P(t)e- t -r dt 
T 0 

Consequently Pn,T has complex dimension 2n + 1. 
(ii) The energy equality holds 

(5.32) 

(5.33) 

The proof of Proposition 5.44 is a simple consequence of the following 
computation. 

5.45 Lemma. Let k E Z. Then 

1 iT i ~kt d {O if k i= 0, - e T t = 
T 0 1 if k = O. 

Proof. If k = 0, we have ei kt = 1, hence ~ JOT ei 2; kt dt = 1. If k i= 0, 

writing ei 2.; kt = cos (2.; kt) + i sin (2.; kt) and noticing that cos () and 
sin () have zero mean average over an interval of size 27r, we conclude that 
~ JOT ei 2; kt dt = O. 0 

Introducing the Kronecker symbol rShk , 

1: {1 ifh=k, 
Uhk = 

o if h i= k, 

Lemma 5.45 yields 

1 iT i 2" (h-k)t d 1: - e T t = Uhk 
T 0 

'tIh, k E Z. (5.34) 

Proof of Proposition 5.44. (i) From (5.34) 

(ii) We have 
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n n 

IP(tW= (L ckei2;kt) (L Chei¥ht) = L Ckchei 2.;(k-h)t. 
k=-n h=-n h,k=-n,n 

Thus we conclude from (5.34) that 

~ loT IP(tW dt = L CkChi5kh = t CkCk = t ICkI 2
• 

h,k=-n,n k=-n k=-n 

o 

5.46 Remark. Let f E G°(lR) be periodic with period T. The energy of 
f is defined to be 

.!. rT 
If(t)l:t dt. 

T 10 
Of c<mrre th(', (',n(',rgy of th(', contin\lO\lS compon(',nt of P is '1C\)\2, whil(', th(', 
energy of the k-th harmonic of P(t) is 

~ loT ICkei 2; kt + C-ke- i 2.; ktl2 dt = ICkl 2 + IC_kI2 • 

The energy identity can therefore be restated as: the energy of a trigono­
metric polynomial is the sum of the energies of its components. 

d. Sampling 

Let P(t) = L~=-n Ckei 2; kt E Pn,T be a. complex trigonometric polyno­
mial of order n. Trivially P(t) = R(exp(i~t)), where R is the rational 
function 

n 

R(z):= L Ck zk 

k=-n 

Observing that R(z) = N(z)jzn where N is a polynomial of degree 2n, 
and taking into account the principle of identity of polynomials, we infer 
the following. 

5.47 Proposition. Let P, Q E Pn,T. Suppose that P and Q agree on 
2n + 1 distinct points in [0, T[. Then P(t) = Q(t) for all t E JR. 

Not only is this true, but there is an interpolation formula that permits 
to reconstruct P(t) from its values on a suitable choice of 2n + 1 points in 
[0, T[. This is an easy version of the sampling theorem of Claude Shannon 
(1916-2001). In order to show that formula, we introduce Dirichlet's kernel 
of order n as the trigonometric polynomial in P n,21r defined by 

n 1'1 

Dn(t):= L eikt = 1 + 2 z= coskt, t E JR. (5.35) 
k=-n k,:=l 
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5.48 Proposition. We have 

(i) Dn(t) is an even function Dn( -t) = Dn(t), 
(ii) Dn(O) = 2n + 1 and Dn(7r) = (-1)n, 

(iii) for t #- 2k7r, k E IE, we have 

D (t) = sin((n + 1/2)t) 
n sint/2' 

(iv) Dn(t) vanishes at tj = 2~~lj if j E IE and j is not a multiple of 
2n + 1. In particular, if j E [-2n,2nJ, then 

D ( 
27r .) _ {O if j #- 0, 

n --] -
2n + 1 2n + 1 if j = 0. 

Proof. (i), (ii), and (iv) are trivial. (iii) can be proved by induction or even 
directly. In fact, on account of 

p 1 - zp+l 
~ zk = 1 + z + z2 + ... + zp = , 
~ 1-z 
k=O 

z #- 1, 

one computes 
1- z2n+2 

Dn(t) = ( ) , zn 1- z 

hence 

. 1 - ei (2n+l)t 
D (t)=e-mt 

. = n 1 _ e,t 

z:= eit
, 

sine (n + 1/2)t) 
sin(t/2) 

(5.36) 

D 

5.49 Theorem. Let Q(x) E Pn,T. Set pet) :== Q(i:rt) E Pn,27r. Then 

Vi E~, 

h 27r . . { } were tj := 2n+l]'] E -n, ... ,n . 

In other words, we can reconstruct pet) from the values P(tj) of P 
at tj. 

Proof. Since the formula is linear with respect to P, it is enough to prove 
it only for the functions eihx , h = -n, . .. ,n, that form a basis for Pn ,27r. 

From the definitions of Dn and of {t j }, we deduce 
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n n n L e ihxj Dn(x - Xj) = L L eihxjeik(x-xj) 

j=-n j=-nk=-n 

j=-nk=-n k=-n j=-n 

Since h - k E [-2n,2n], (iv) of Proposition 5.48 yields 
211" 

Dn (2n + 1 (h - k)) = (2n + 1)8hk 

hence n 

L e
ikx Dn( 2n2: 1 (h - k)) = (2n + l)e

ihx
. 

k=-n 

5.50 Example (Euler's formula). Let us prove that 

tx) sint dt = ~. 
10 t 2 

We recall that the integral in (5.37) exists as an improper integml, 

In
oo 

• InY • smx dx:= lim smx dxj 
o x Y->OO 0 X 

o 

(5.37) 

see, e.g., Example 4.81 of [GMl]. Therefore it suffices to compute the limit of J;'n Si~ t dt 
as n -+ 00 where {Xn} is a sequence that diverges to +00. 

From (5.35) and (5.36) we infer 

sin(2n + l)t 1 2 ~ 2k --'-----'- = + L..- cos t 
sin t k=1 

and, integrating over [0,11"/2], 

r/2 
sin(2n + l)t dt = ~ + 2 t sin(2kt) Irr / 2 

= ~. 
10 sin t 2 k=1 2k 0 2 

Therefore 
11 1n(2n+1)~sint lrr/2sin«2n+l)t) lrr/2sin(2n+l)t 
-- -dt= dt- dt 
2 0 t 0 sin tot 

In
rr / 2 t - sint 

= --. -sin(2n+ l)tdt 
o tsmt 

(5.38) 

rrr/2 
= 10 J(t) sin(2n + l)t dt 

where J(t) = t;~~n/. Since J(t) is of class 0 1 in [0,11/2], we can integrate by parts the 
last integral in (5.38) finding 

r/2 
J(t) sin(2n + l)t dt = _ J(t) cos(2n + l)t Irr /

2 
+ rrr/2 J'(t) cos(2n + l)t dt -+ 0 

10 2n + 1 0 10 2n + 1 
as n ~ 00, i.e., 

1
(2n+1)~ sint 11 

--dt -+-. 
o t 2 
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5.4.2 Sums of sinusoidal functions 
5.51 Definition. A finite sum of complex sinusoidal functions is a func­
tion f : JR -+ e of the form 

n 

f(t) = L cjexp (iWjt) , t E JR, 
j=l 

where Cj E e, Wj E JR, Wi =F Wj for i =F j and j = 1, ... , n. Each addend 
is referred to as a component of f, Cj is the amplitude of the component 

and the vector 1:= (Cll ... , Cn) E en is the spectrum of f. 

The sum of complex sinusoidal functions identifies again the coefficients 
of its components. In fact, we have the following. 

5.52 Theorem. Let f : JR -+ e be the finite sum of complex harmonic 
functions 

n 

f(t) = L cjexp (iwjt). 
j=l 

Then for any W E JR, 

1 jN {c. lim 2N f(t)exp (-iwt) dt = J 
N_+oo -N 0 

if W = Wj for some j = 1, ... ,n, 
otherwise. 

The claim in Theorem 5.52 follows easily from the following 

5.53 Lemma. For all W E R we have 

1 jN {o lim 2N exp (iwt) dt = 
N_+oo -N 1 

ifw =F 0, 

if £..I = o. 
Proof. If W = 0 the claim is trivial. Suppose W =F 0, let T := 27r / wand let 
k be the largest integer such that kT < N, 80 that N - kT < T. Since 
exp (iwt) has zero average over one period interval we deduce 

hence 

j
kT 

exp (iwt) dt = 0, 
-kT 

\ i: exp (iwt) dt\ = \ i:T 

exp (iwt) dt + 1; exp (iwt) dt\ 

S j-kT lexp (iwt)1 dt + iN lexp (iwt)1 dt 
-N kT 

S 2T. 

Therefore we conclude 12~ J~N exp (iwt) dtl S ft -+ 0 as N -+ +00. 0 
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Proof of Theorem 5.52. Since 

1 jN n 1 jN 
2N -N f(t)exp (-iwt) dt = f; Cj 2N -N exp (i(wj - w)t) dt, 

the conclusion follows from Lemma 5.53. D 

In particular, Theorem 5.52 yields the following. 

5.54 Corollary. If the finite sum of complex sinusoidal functions is zero 
in JR, then the coefficients of all components are zero. 

Another proof of Corollary 5.54. We give here a direct alternative proof based on in­
duction on the number of components. The claim is trivial for n = 1. Let us prove it 
for n = 2. Suppose 

Multiplying by exp (-iw2t) we find CIexp (i(WI - W2)t) + C2 = 0 and differentiating 

iCI(wl-w2)exp(i(wI-W2)t) =O'v't 

which yields C! = 0 since W2 of WI. Consequently also C2 = O. 
Suppose the theorem holds for the sum of n - 1 complex harmonic functions and 

let 
n 

f(t) = L cjexp (iwjt) = O. 
j=1 

Multiply by exp (-iwnt) and differentiating we find 

n-I 
L iCj(wj - wn)exp (iwjt) = 0; 
j=1 

therefore Cj(Wj - wn ) = 0 for all j = 1, ... , n - 1, because of the inductive assumption. 
Since Wj of Wn , we infer Cj = 0 for all j = 1, ... , n -1 and consequently also Cn = O. 0 

Though sinusoidal signals are periodic, finite sums of sinusoidal signals 
are periodic if and only if the sum is a trigonometric polynomial. In fact, 
we have the following. 

5.55 Theorem. The sum of sinusoidal signals is periodic if and only if 
the quotients of the pulses of the components are rational. 

Proof. Let f(t) = 'L?=I cjexp (iwjt) be the sum of sinusoidal signals with 
Wi =I- Wj for i =I- j and Cj =I- O. Write Tj = 27r/wj for the period of the j-th 
component. 

We may and do assume that WI =I- O. If Wj = WIPj/qj for j = 1, ... , n, 
then pjTj := qjTI . Each T j is then a submultiple of T := q2 . q3'" qnTI' 
Consequently every component is periodic of period T, hence f(t) is peri­
odic of period T. 

Conversely suppose that f(t) is periodic of period T > O. We have 
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n 

f(t + T) - f(t) = L::>j(exp (iwjT) - l)exp (iwjt) = 0, 
j=l 

then Corollary 5.54 implies exp (iwjT) = 1. It follows that for every 
j = 1, ... , n, there exists an integer kj such that wjT = 2kj 7r, i.e., the 
component's pulses have rational quotients. 0 

5.5 Summing Up 

Polynomials 

Let A, B E lK[x] be two polynomials with coefficients in the field lK. B divides A if 
A = BQ. A is said to be irreducible if no polynomial divides A but the constants. 
Two polynomials A and B are coprime if they do not have a common divisor but the 
constants. The greatest common divisor of A and B, g.c.d. (A, B), is the divisor of A and 
B of highest degree. All greatest common divisors differ by a multiplicative constant, 
and one of them can be quickly computed by Euclid's algorithm. 

o DIVISION ALGORITHM. Assume that A and B are two polynomials in lK[x] with deg A < 
degBj then there exist uniquely defined polynomials Q and R such that A(x) = 
B(x) Q(x) + R(x) with deg R < deg B. 

o BEZOUT IDENTITY. Given two polynomials A and B, there exist polynomials U, V E 
K[x] such that A(x)U(x) + B(x)V(x) = g.c.d. (A, B)(x). 

o UNIQUE FACTORIZATION THEOREM. Any polynomial in K[x] is the product of its irre­
ducible factors. The decomposition is unique apart from the order of the factors. 

o FACTOR THEOREM. a E K is a root of P E lK, i.e., P(o) = 0, if and only if x - a 
divides P(x). Therefore P(x) has at most n distinct roots if deg P = n. 

o PRINCIPLE OF IDENTITY OF POLYNOMIALS. Two polynomials P, Q with degree at most 
n must be equal if their polynomial functions coincide on n + 1 distinct points in lK. 

o FUNDAMENTAL THEOREM OF ALGEBRA A polynomial P(z) = I::j=o ajzj of degree n 
in IC[z] factorizes as a product of n polynomials of first degree 

inlC[z]. 

o FACTORIZATION IN lR[x]. A polynomial with real coefficients of degree n in lR[x] fac­
torizes as a product of first and second order irreducible polynomials in lR[x]. 

Polynomial equations 
There exist algebraic procedures that fully solve in C the polynomial equations of third 
and fourth degree, see 5.21 and 5.23. Polynomial equations of degree higher than five 
cannot be solved by radicals in general. There are however simpler rules to compute the 
number of real, positive roots of a real polynomial, see Theorem 5.25, and the number 
of zeros of a real polynomial in a given interval [a, b] of lR, see Theorem 5.27. 
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Rational functions 
Rational functions are quotients of complex polynomials 

R( ) .= C(z) 
z. D(z)' 

They are defined on C \ {z I D(z) = O}. By the division algorithm, R(z) decomposes 
as a sum of a polynomial, which is nonzero if and only if deg C ~ deg D, and of a 
rational function S(z) := A(z)/ B(z) such that deg A < deg B. We can now decompose 
A(z)/B(z) in simpler fractions, once the roots of B are known. 

o HERMITE'S DECOMPOSITION FORMULA IN IC. We have 

A(z) 

B(z) 

k(a) A . 
'"' '"' a,J L. L. (z - a)j 

a root of B j=l 

(5.39) 

where the Aa,j can be computed as follows: Set Qa(Z) be such that B(z) = (z -
a)k(a)Qa(z). We then have Qa(a) ~ o. Set Ra,k(a)(Z) := A(z), then compute 
iteratively for j = k( a), ... ,2, 1, 

{
Aa,j := Ra,j(a)/Qa(a), 

R a ,j-1(Z):= (Ra,j - A""jQa(z»/(z - a). 

o HERMITE'S DECOMPOSITION FORMULA IN IR. Let A(x) and B{x) E lR[x] with degA < 
deg B. Let deg B =: n and denote by k{a) the multiplicity of the root a of B. Then 

k(a) A . k(a) 
A(x) '"' '"' a,J + 2 '"' '"' ~( Aa,j .) 
B(x) = L. L. (x - a)j L. L. (x a)J 

a: root of B j=l 0: root of B j=l -
"Ell 'l"(a»O 

(5.40) 

for all x E lR such that B(x) ~ O. The constants Aa,j are the same as in (5.39) 

Trigonometric polynomials 
A (complex) trigonometric polynomial is a function of the type 

P(t) = t CkexP(i 2
;k t), tElR 

k=-n 

where T > 0 and, for k = -n, ... ,n, Ck E C. The numbers Ck are called the spectrum 
of P and obviously fix P. 

o The spectrum can be recovered from P by 

1 rT 
·2". kt 

ck = T 10 P(t)e-
t 

T dt, k = -n, ... ,n, 

o the energy equality holds 

o SAMPLING. The trigonometrical polynomial pet) E Pn,21r and its spectrum {Ck}, 

k E {-n, ... , n}, can be computed by sampling P at the points tk := 27rk/(2n + 1), 
k E {-n, ... , n}. We have 
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1 n . 
Ck = --- L: P(tj )etktj

, k = -n, .. . , n 
2n+l. J=-n 

where 
n 

Dn(t):= L: 
k=-n 

ikt sin((n + 1/2)t) 
e = -~~~~~ 

sin(t/2) 

is the Dirichlet's kernel of order n. 

5.6 Exercises 

5.56". Let P(z) = a2z2 +a1Z+ao and let 0<1, 0<2 be its two complex roots. Show that 

5.57". Let P(z) = a3z3 + a2z2 + aiZ + ao and let 0<1, 0<2, 0<3 be its three complex 
roots. Show that 

5.58 ... Suppose that the coefficients of anXn + an_iXn - i + ... + aix+ ao are integers 
and that an = 1. Suppose that such a polynomial has a real root x. Show that either x 
is an integer or x is irrational. In the case x is an integer, notice that x divides ao. 

5.59 ... Suppose that the equation x 3 + px2 + qx + r = 0 has three real roots. and let 
d be the difference between the largest and the smallest root. Show that 

5.60". Let xo be a root of xn + an_iXn - i + ... + ao = O. Show that Ixol ::; 1 + laol + 
... + lan-il. [Hint: Consider separately the case Ixol < 1 and Ixol ~ 1.] 

5.61 ... Let P(z) = L:~=o akzk be a polynomial of degree n and let 0<1, ..• , O<n be the 
n roots. Show that 

where O'k(O<l, ..• , O<n) is the sum of all possible products of k roots, called the symmetric 
k-function. 

5.62 ... Every real polynomial which is nonnegative for all real x may be written in the 
form p 2(x) + Q2(x) where P and Q are real polynomials. [Hint: Observe (p2 + q2)(r2 + 
s2) = (pr + qs)2 + (ps - qr)2.] 
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5.63 ~ Lagrange's interpolating polynomials. Given n+l points in C, Xo, X!, .•. , Xn 

and n + 1 values Yo, Yl, ... ,Yn in C, show that a polynomial P of degree n such that 

P(xd = Yi i = 0, 1, ... , n 

necessarily has the form 
n 

P(x) = L Lj(X)Yi 
j=O 

where the Lj(x) are the unique polynomials of degree n, called Lagrange's interpolating 
polynomials, such that 

i,j=O,I, ... ,n, 

Oij being the Kronecker symbol. Write explicitly the L'l(x)'s. 

5.64 ~, Trigonometric solution of third degree equations. Consider the equa­
tion x 3 + px + q = 0 where p, q E JR. 

(i) If q2/4 + p3/27 < 0 and p > 0, replace X with rx to obtain 

3 p q 
Y + r2 Y + r3 = O. 

Comparing with the trigonometric identity 

3 <p 3 <p 1 
cos 3' - 4 cos 3' - 4 cos <p = 0, 

write the roots in terms of trigonometric functions of <p. 
(ii) If q2/4+ p3/27 > 0 and p > 0, set 

tan<p:=-(~t~, 0<<p<1I', 

and find the roots as functions of 'I/J. 
(iii) If q2 + p3/27 > 0 and p < 0, set 

and find the roots in function of <p. 

tan'I/J:= «tan 'f;" 

5.65 ,. A hydrostatic approach to solve third order equations was proposed in 1898 by 
A. Demanet. Consider two communicating vessels, one being a circular cone of radius 
r and altitude a, the other a cylinder with basis of 1 square centimeter. If 

!:._~3 - , 
a 11' 

and if h is the altitude that is reached by c cubic centimeters of liquid, show that h 
solves the equation 

x 3 +x = c. 



6. Series 

Processes of infinite summation or infinite series, or, simply, series have 
appeared since ancient times. Aristotle (384BC-322BC) in his Physics 
seems to be aware that the geometric series 

1+q+q2+ q3+ ... 

has a finite sum if Iql < 1. Later Franc;ois Viete (1540-1603) in fact com­
puted (in 1593) 

23 1 
l+q+q +q +"'=--. 

1-q 

Zeno's paradox of dichotomy clearly concerns the decomposition of 1 into 
the infinite series 

1 1 1 
1 = 2 + 22 + 23 + .... 

In medieval times, Nicole d' Oresme (1323-1382) showed that the harmonic 
series 

1 1 1 
1+ 2 +"3+4+'" 

diverged. However, it was in the seventeenth century with the Calculus of 
Sir Isaac Newton (1643-1727) and Gottfried von Leibniz (1646-1716) that 
infinite series pervaded mathematics tremendously, especially as power se­
ries. 

For Gottfried von Leibniz (1646-1716) and Sir Isaac Newton (1643-
1727) and their contemporaries such as John Wallis (1616-1703), James 
Gregory (1638-1675), Brook Taylor (1685-1731), James Stirling (1692-
1770), and Colin MacLaurin (1698-1746), functions were essentially infi­
nite polynomials or power series, and with them one operated to differenti­
ate and to integrate or compute areas, to calculate special quantities such 
as e and 7r and the logarithmic and trigonometric functions, to interpolate 
series of data (which was particularly useful for navigation). For example, 
Leibniz found 

7r 111 
4=1-"3+"5-7+'" 

the right-hand side of which is now called a Leibniz series, and Newton, in 
De analysi per equationes numero terminorum infinitas, found the series 
of log(l + x), sinx, cosx, arcsinx, eX, ... : as, for instance, 
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Euler (1707- 1783) . 

1 2 1 3 
log(l + x) = x - 2 x + 3x +"' , 

from which 
1 1 1 

log 2 = 1 - 2 + 3 - 4 + ... ; 

James Gregory (1638- 1675) found 

x3 x 5 
arctan x = x - - + - - ... 

3 5 

nowadays called a Gregory series, the special case of which with x = 1 is 
a Leibniz series. 

In this chapter we illustrate methods for the study of the convergence of 
numerical series, while in the next we shall deal with basic facts concerning 
power series. 

6.1 Basic Facts 

Given a sequence {an}, n = 0, 1, 2, . .. , of real or complex numbers, the 
recurrence 

{ So = ao , 

sn+l = Sn + an+l, "in ~ 0 
(6.1) 
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Figure 6.2. The first page of the paper by Carl Friedrich Gauss (1777- 1855) and the 
frontispiece of G. F . Bernhard Riemann's (1826- 1866) paper on hypergeometric series . 

defines by induction a unique sequence {Sn}, 

n 

Sn := aO + al + a2 + ... + an = L aj, 
j=O 

see Example 2.5. The sequence {sn} is called the sequence of partial sums 
of {an} or just the series of {an}. We use the symbol 

00 

in order to indicate the sequence {sn}. The presumption let us consider 
the series 2:;:0 aj, is therefore a shorthand for let us consider the sequence 

of partial sums {2:7=oaj} of the sequence {an}· 

a. Definitions and examples 

Let 2::=0 an, an E ~, be a series of real numbers, and let {Sn}, Sn 
L:Z=o ak, be the sequence of partial sums. 

6.1 Definition. If {sn} converges to L , we say that the series converges 
and that L is the sum of the series. 

Actually, three alternative situations are possible: 

(i) limn _ oo 2:7=0 aj does not exist; we then say that the series is inde­

terminate. This is the case of the series 2::=0 ( -1) n . 
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-1 o 1 

Figure 6.3. Summing the diameters of the internal circles, one sees that ~);"=1 k(k~l) = 1. 

(ii) limn _ oo 2:.7=0 aj = L E JR, the series converges to L and we write 

for 2:.7=0 aj ----> L, n ----> 00. 
(iii) limn _ oo 2:.7=0 aj = +00 (resp. -(0). In this case we say that the 

series diverges to +00 (resp. -(0) and we write 

00 00 

Lan = +00 (resp. Lan = -(0). 
n=O n=O 

6.2 ~. Show that ~f=1 j and ~f=1 j2 diverge to +00. 

6.3 Example (Geometric series). We saw in Example 2.65 that 

Gq(n) := t qj = {:n~~ -1 
)=0 q - 1 

consequently the geometric series 

00 

Ecfi 
j=O {

converges to l~q 
diverges to + 00 

is indeterminate 

if q = 1, 

otherwise, 

if /q/ < 1, 

if q 21, 
ifq:::;-1. 

6.4 Example (Telescoping series). These are series for which the general term an 

can be expressed in the form 
an = bn - bn -1 

for a suitable sequence {bn }. In this case 

n 

E aj = (bn - bn -1) + (bn -1 - bn -2) + ... + (b3 - b2) + (b2 - b1) = bn - b1. 
j=l 

An example is given by Mengoli's series ~f=1 j(j~l)' named after Pietro Mengoli 

(1626-1686). In fact 



1 

j(j + 1) 
1 1 
j- j+l' "Ij ~ 1, 

hence Ej=l j(j~l) = 1 - n~l for all n ~ 1. We therefore get 

see an illustration in Figure 6.3. 

00 1 
L .(. + 1) = 1; 
)=1 J J 
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Actually, the telescoping trick allows us to regard every sequence as the partial sum 
of a series. In fact, if {an }n;:C:l is given and we set ao = 0, we have 

n 

L(aj - aj-l) = an - ao = an, "In ~ 1, 
j=l 

consequently we see that the series E~o(aj - aj-l) converges, diverges or is indeter­
minate according to whether {an} converges, diverges or has no limit. In the first two 
cases 

00 

"'(aj - aj-l) = lim an. L..-J n~oo 
j=l 

6.5 Example (Arithmetic-geometric series). There is a closed formula also for 
n 

S(n) := Ljqi, n ~ 1, q E IC, q # 1. 
j=l 

In fact, multiplying S(n) by 1 - q2, we get 

n n n 
(1- q)2S(n) = Ljqj - 2 Ljqi+l + Ljqi+2 

j=O j=O j=O 

= q + t ((j - 2(j - 1) + (j - 2))qj) - 2nqn+1 + (n _1)qn+l + nqn+2, 
j=2 

that yields 
n .' nqn+2 _ (n + l)qn+1 + q 
L Jq3 = (1 _ )2 . 
)=1 q 

Since nqn -+ 0 as n -+ 00 if and only if Iql < 1, see Example 2.59, E~ojqj converges 
if and only if Iql < 1 and in this case 

00 
",.j q 
L..J Jq = (1 _ )2' 
)=0 q 

6.6 Infinite product. We can define the infinite product of a sequence 
of positive numbers {an}, 

00 n 

II ai:= lim II ai, 
n-+oo 

i=l i=l 

when it exists. Trivially, n:l ai exists if and only if the series I::l1og ai 
converges and 

00 00 

II ai = exp (2:1ogai)' 
i=l i=l 
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h. A necessary condition for convergence 

6.7 Proposition. If 2::=0 an converges, then an -..; o. 
Proof In fact 

n n-l 

an = L aj - L aj -+ L - L = 0, 
j=O j=O 

if L is the sum of 2::=0 an. o 

However, the condition an -..; 0 is not sufficient to ensure convergence 
of 2::=0 an. For instance, we shall see in Example 6.27 that the harmonic 

. ~oo 1 d· senes L..m=l n Iverges. 

c. Series and improper integrals 

The concept of sum of a series can be seen as a particular case of an 
improper integral (see Section 4.5.2 of [GMl]), and this is quite a useful 
remark, see, for instance Example 6.25. To a sequence {an}, n 2: 0, of real 
numbers, we associate the piecewise constant function 'P : [0, +00[-"; ~ 
defined by 

ifn:Sx<n+l. 

Clearly 'P is measurable and, for all n 2: 0 we have 

(6.2) 

Actually 

6.8 Proposition. The sequence of partial sums of {an} has a limit in i: 
if and only if fox 'Pa(X) dx has a limit when x --; +00. In this case 

00 l x 

Laj = lim 'Pa(x)dx. 
j=O X-->OO 0 

In particular 2:j:0 aj converges if and only if 'P has an improper integral 
at infinity. 

6.9,. Prove Proposition 6.8. [Hint: Show that lim",_+oo Je': <pa(X) dx exists if and only 
if limn_ oo Jon <pa(X) dx exists and 

lim (X <pa(X) dx = lim r <pa(X) dx. 
x--++oo 10 n---+oo 10 

For that, set <J>(x) := JJ: <p(x) dx and observe that for n := [x], 

{
<J>(n):s <J>(x):S <J>(n + 1) if an 20, 

<J>(n + 1) :S <J>(x) :S <J>(n) if an :S 0.] 
(6.3) 
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DIVERGENT 
SERIES 

O. H. HARD Y __ ... PnII ... _ .... 

"' ... ... ".-.... ........... -

CHELSEA PUBUSRlNG COMPANY 
NEW YORK. N. Y. 

Figure 6.4. Frontispieces of two books respectively by Emile Borel (1871-1956) and 
G. H. Hardy (1877- 1947) on divergent series. 

d. Decimals 

Every real number has a decimal representation x = qo, ql, q2, q3, ... , which 
is defined iteratively by 

Xo := x, qo:= [Xo], 

where [a] is the largest integer not greater than a. Inductively we also see 
that qj E {O, ... , 9} for j > 0 and that 0 :::; Xj < IO-j+l. In particular 
Xj ----t 0 as j ----t 00. Moreover 

N N 

qo + L l~j = qo + L(Xj - Xj+!) = qo + Xl - XN+! = X - XN+! 
j=l j=l 

hence, when N ----t 00 

or, as we commonly write, x = qo, qI, q2, q3, . ... 
The algorithm giving the decimal alignment may stop after N steps, 

i.e., x j = qj = 0 V j > N. This clearly happens if and only if X = ION' 
k E {O, ... , ION - I}. However, even for rational numbers the decimal 
alignment may be infinite as for 1/3 = 0,333333 . ... 
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Conversely, every series 2::;:0 qj/l0j
, qj E {O, 1, 2, ... ,9}, i.e., every 

decimal alignment qo, ql, q2,.··, is (converges to) a real number. In fact, 
the series converges because the sequence of partial sums is increasing and 

~JL<~~=~ 1 =1 
~ lOj - ~ lOj 10 1 - 1/10 

with equality if and only if qj = 9 'V j 2: 1. The same reasoning actually 
yields that, for any N 2: 0, 

00 

L l~j = lO-
N if and only if (6.4) 

j=N+l 

We conclude proving 

6.10 Proposition. Two decimal alignments qo, ql, q2,.·· and ho, hI, h2, ... 
have different sums (represent different numbers) except when there exists 
an integer N such that 

{
hN = qN + 1, 

or 
qj = 9, h j = 0 'Vj > N. 

P '~S h t + ,",00 .!li... - h + ,",00 .!:J.. . roOJ. uppose t a qO LJj=l 103 - 0 LJj=l 103' I.e., 

00 q'-h. 
qo - ho + L _J __ ._J = O. 

j=l 10J 

If qj = hj does not hold Vj, denote by N the first index for which qN i: hN. Then 

and IqN - hNI = 1 since IRNI ::; 1O-N . If for instance hN = 1 + qN, then 

00 q'-h' 
RN = L _J __ ._J = 1; 

j=N+1 101 

(6.4) then yields qj - hj = 9, that is, qj = 9 and hj = 0 for all j 2: 1. 

6.11 Example. 0.234765799999 ... and 0.2347658 are the same rational number. 

o 
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6.2 Taylor Series, e and 1r 

A simple and natural way of generating convergent power series is by 
starting with a function f :] - a, a[- lR of class Coo and considering its 
Taylor's series 

~ Dj f(O) j 
~ ., x , 
j=O J. 

x E JR, 

which has as partial sums Taylor's polynomials 

Obviously 

f Dj !,(O) x j = f(x) 
j=O J. 

if and only if the remainder Rn(x) := f(x) - Pn(x) tends to zero as n -> 00. 

This happens to be true for quite a number of elementary functions , as we 
shall see in the following examples. However, in general 

'c/x =f. 0, 

as shown for instance by the following 
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, 
'\ 

1/(1 + X 2 ) 

PO(X) 
P2(X) 

- - - - -f'4Ex7 ~~.-­
P6(X) _ .. 

f ';\ 
..... i ...... : ..... ~ ....................... . 

.i . r 
.' 
\' .' 
I' .' 

" 
" 
" " 

-2 -1 ° 1 2 3 4 5 -1 ° 1 2 3 4 5 

Figure 6.6. The functions 1/(1 +x2 ) and log(l +x) and their respective Taylor polyno­
mials of order n. 

6.12 Example. It is easily seen by induction that the function 

I(x) = {eXP (-1/X
2) ifx;fO, 

° ifx=O 

has derivatives of any order and Dj 1(0) = ° \/j. Its Taylor series sums to zero while 
f(x) ;f ° for all x ;f O. 

Some of the following examples have already been discussed, see e.g, 
Section 5.1 of [GM1], but, for the reader's convenience, we repeat them 
here. 

6.13 Example (Logarithm). Replacing x by -x in the well-known identity 

1 n xn+l 
__ = '" xk + __ , 
I-x LJ I-x 

k=O 
(6.5) 

we get 
1 n ( )n+l 

__ = L(-I)kxk + -x , 
1 +x k=O 1 + x 

x;f 1, 

and integrating between ° and x, 

l
x 1 lx n log(l+x)= -dt= L(-l)ktkdt+Rn(x) 

o 1 + t 0 k=O 

n k+l 
= L(-l)k_

X 
- + Rn(x) 

k=O k + 1 

where 

l x (_t)n+l 
Rn(x) := dt. 

o 1 + t 
The remainder can be easily estimated for x > -1 by 
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I ' 
I ' 

I ' 
I ' 

I 
I 

I 

I : 
I :sinx­

I . 
I :Pl(X)--

I • 
I :P3(X)---

/ !P5(X)'-'" 
/ j P,(x) ---

I : 

I.', "./ 

, I 

Figure 6.7. The functions sinx and cosx and their respective Taylor polynomials of 
order n. 

1 ) Ixl't+l 
IRn(x)1 ::; max (1, -- ---, 

l+x n+l 
(6.6) 

hence it converges to zero if -1 < x ::; 1. We then conclude that the Taylor series of 
log(1 + x) converges if -1 < x ::; 1 and 

00 k+l 
log(1 +x) = E(_I)k_

X
_, 

k=O k + 1 
-1<x::;1. (6.7) 

6.14 Example (The arc tangent function). Starting from (6.5), replacing x by 
_x2 , and integrating we get 

In
x 1 1x v arctan x = --2 dt = E(-I)kt2k dt + Rn(x) 

o 1 + t 0 k=O 

n x 2k+1 
= E(-I)k_-dt+Rn(x) 

k=O 2k + 1 

where 

Since 

IRn(x)1 ::; I foX t2n+2 dtl = 1;~2:+:, (6.8) 

we infer that Rn(x) ---> 0 as n ---> 00 if Ixl ::; 1, concluding that 

00 x2n+l 
arctan x = E(-I)n_--, 

n=O 2n+ 1 
Ixl ::; 1. (6.9) 

6.15 Example (Taylor series for eX, sin x, cosx). We know that Taylor's polyno­
mial of degree n of eX centered at 0 is 

n f(k)(O) k n xk 
Pn(x):=E--x =E-

k=O k! k=O k! 
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Figure 6.S. The functions arctan x and log (~:::~) and their respective Taylor polyno­

mials of order n. 

and Taylor's formula with Lagrange remainder, see e.g., 5.5 of [GM1J, yields 

for a suitable ~n in the intervallO, x[ (or lx, O[ is x < 0). Therefore, for any x E JR, 

I

n xk I Ixl n +l 

eX - E I" :S max(eX
, 1)-( --, -+ 0 

k=O k. n + 1). 

thus concluding that the series ~::;='=O ~~ converges and 

x ~ xn 
e =L...J­

n=O n! 

Similarly, see Figure 6.7, one proves that 

'<Ix E JR. 

as n ~ 00, 

00 x 2n+ l 

E(-l)n ( ) = sinx, 
n=O 2n + 1 ! 

00 2n 

E(-l)n_
x
_ = cos x, 

n=O (2n)! 
'<Ix E IR. 

6.16 ,. Prove (6.12). 

a. The number 7r 

(6.10) 

(6.11) 

(6.12) 

Approximated values of 7r have been known since ancient times. The first 
twenty digits are 

7r = 3.14159265358979323846 .... 

The first analytic representation of 7r was probably found by Franc;ois Viete 
(1540-1603) in 1579 as the infinite product 



Book of kings 
Arithmetic book by Ahmes (1900 
a.C.) 
Salbasutras (500 a. C.) 
Plato (V sec. a. C.) 

Archimedes (III sec. a. C.) provides es­
timates from above and from below by 
means of inscribed and circumscribed 
polygons of 96 sides 
Zhang Heng (I sec .. C.) 

Ptolemy's (~ 150 d. C.) takes in the 
Archimedes approximation 

Wang Fang (II sec. d. C.) 

Liu Hui (~ 263 d.C.) estimates with 
polygons of 192 sides 
Liu Hui (~ 263 d.C.) estimates with 
polygons of 3072 sides 

Zhu Chong-Zhi (430-501) finds 7r up 
to six digits with a convergent in the 
continuous fraction development 

A.raybhata (498 d. C.) and al-HwarizmI 
(IX sec. d. C.) 

Leonardo Pisano (1170-1250), called 
Fibonacci estimates with polygons of 
96 sides 

Albrecht Diirer (1471-1528) 

Ludolph Van Ceulen (1540-1610) finds 
7r up to 35 digits 
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7r~3 

7r ~ (16/9)2 ~ 3.16 

7r ~ (26/15)2 ~ 3.0044 

7r ~ v'2 + V3 ~ 3.14626 
10 1 

3+-<11"<3+-
71 7 

11" ~ v'W ~ 3.162 
17 

11" ~ 3 + - ~ 3.14166 
120 

142 
11"~ - ~3.155 

45 64 169 
3.14 + 62500 < 7r < 3.14 + 62500 

11" ~ 3.14159 

355 
11" ~ 113 ~ 3.1415929 

62832 
7r ~ 20000 = 3.1416 

864 
11" ~ 275 ~ 3.141818 

1 
7r~3+-

8 
3.14159 ... 

Figure 6.9. The values of 7r computed or estimated before the infinitesimal calculus. 

see (6.26); and John Wallis (1616-1703) in 1655 found 

7r 2 . 2 4· 4 6· 6 2n . 2n 
2 1 . 3 3· 5 -5 ·-7 ... ~(2-n---1:-:-)~(2-n-+-1:-:-) 

see (6.29) below. In 1671 James Gregory (1638-1675) found the represen­
tation 

7r 111 
4=1- 3+ 5 - 7 + ... 

independently found also by Gottfried von Leibniz (1646-1716) in 1674. 
Computing the Taylor series of arcsin x, 
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n Sn Rn n Sn Rn 
1 2.666666666666667 5E-OI 1 3.079201435678004 6E-02 

3 2.895238095238096 2E-OI 2 3.156181471569954 -IE-02 

10 3.232315809405594 -9E-02 3 3.137852891595680 4E-03 

30 3.173842337190750 -3E -02 5 3.141308785462883 3E-04 

100 3.151493401070991 -IE-02 7 3.141568715941784 2E-05 
300 3.144914903558853 -3E -03 9 3.141590510938080 2E-06 

1000 3.142591654339544 -IE- 03 11 3.141592454287646 2E-07 

3000 3.141925875839790 -3E- 04 13 3.141592634547314 2E-08 

10000 3.141692643590535 -IE- 04 15 3.141592651733998 2E-09 

7r 3.141592653589793 7r 3.141592653589793 

Figure 6.10. The partial sums Sn := I:j=o aj and the error Rn := 7r - Sn: (a) on the 

left, for aj := 4 (-I)j /(2j + 1); (b) on the right for aj := (-I)j2V3 33 (2~+1)' 

. Loo 
1· 3··· (2n -1) X

2n+1 

arCSlllX- --
- 2 . 4 ... 2n 2n + 1 ' 

n=O 

Ixi :::; 1, 

for x = 1/2. In 1665 Sir Isaac Newton (1643-1727) found 

1r 1111131113511 
6 = 2 + 2 3 8 + 2 4 5 32 + 2 4 '6 '7 128 + .... 

The number 1r is the area of the unit circle that is, according to calculus, 

~=11 ~dx 
2 -1 

(see [GM1]), or the length of the halfcircle, that, as one can prove, is given 
by 

1r = 11 VI + yl(x)2 dx = 11 h dx. 
-1 -1 1- x2 

6.17 A few series that sum to 1r. From (6.9) and (6.8) we find the 
Leibniz-Gregory result 

00 1 
~ = arctan 1 = L(-l)n_-
4 n=O 2n + 1 

(6.13) 

with the estimate for the rate of decay of the remainder 

00 1 1 
I L (_l)k 2k + 11 = IRn(1)1 :::; 2n + 3' 

k=n+1 

However, the estimated rate of convergence is not fast, in accordance with 
the computed values in Figure 6.10 (a). 
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n Sn Rn 
1 3.140597029326061 1E-03 

2 3.141621029325035 -3E- 05 

3 3.141591772182178 9E-07 

5 3.141592652615309 1E-09 

7 3.141592653588603 1E-12 

9 3.141592653589793 4E-16 

7l" 3.141592653589793 

Figure 6.11. The partial sums Sn := I:.J=o aj and the error Rn := 7l" - Sn for aj = 

. 1 ( 4 1) 4( -1)1 2j+1 5J+T - (239)3+1 . 

A better approximation of 7r than (6.13) can be obtained in several 
ways. For instance, observing that ~ = arctan ~, we get again from (6.9) 

~ _ ~(_l)n 1 
6 - :::a y'32n+l(2n + 1)' 

i.e., 

(6.14) 

If y'3 is known, then (6.14) is a far better representation than (6.13), since 
(6.8) yieLds an exponential decay for the error, 

I f (-l)k 1 I = IRn(~)1 < 1 
k=n+l y'32k+l(2k + 1) y'3 - y'3 (2n + 3) 3"" 

see Figure 6.10 (b). 
An even better approximation can be obtained using a simple trick. 

Recall that 
tan a + tan (3 

tan(a + (3) = . 
1 + tan a tan (3 

Starting with a := arctan(1/5), we then get 

5 1 
tan2a = 12' tan4a = 1 + 119' 

1 
tan(4a - 7r/4) = 239' 

if we take into account that 4a > 7r / 4. Hence 

7r 1 1 
4' ~ 4a - (4a - 7r/4) = 4 arctan 5 - arctan 239 

and conclude by (6.9) and (6.8) 

7r 00 (_1)n ( 4 1) 
4' = L 2n + 1 5n+1 - (239)n+l 

n=O 
(6.15) 

with an exponential decay estimate for the remainder, see Figure {l.ll. 
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n Sn Rn n Sn Rn 
1 1.000000000000000 -3E -01 1 0.691358024691358 2E-03 
3 0.833333333333333 -lE-01 2 0.693004115226337 1E-04 

10 0.645634920634921 5E-02 3 0.693134757332288 1E-05 
30 0.676758137691398 2E-02 5 0.693147073759785 1E-07 

100 0.688172179310195 5E-03 7 0.693147179548241 1E-09 
300 0.691483291655625 2E-03 9 0.693147180549812 1E-ll 

1000 0.692647430559822 5E-04 11 0.693147180559840 1E-13 
3000 0.692980541671060 2E-04 13 0.693147180559944 1E-I5 

10000 0.693097183059958 5E-05 15 0.693147180559945 2E-16 
log 2 0.693147180559945 log 2 0.693147180559945 

Figure 6.12. The partial sums Sn := ~j=o aj and the errors Rn := log2 - Sn for, on 

the left aj := (-I)j 1/(j + 1), and on the right aj := 2/(321+1 (2j + 1». 

6.18 Approximations of log 2. Similarly, one can find a series which converges to 
log2. In fact, the Taylor series for log(1 + x), (6.7) and (6.6), yield in particular 

00 (_1)1<:+1 1 1 1 
log 2 = L = 1 - - + - - - + ... 

k=l k 2 3 4 
(6.16) 

and the estimate of the rate of decay for the remainder 

n ( 1)1<:+1 I log 2 - L - 1= IRn(l)1 ~ _1_. 
"=1 k n + 1 

This suggests that Rn(l) decays slowly to zero, as in fact is the case, see Figure 6.12 (a). 
A better approximation oflog 2 is obtained by observing that, for 0 < x < 1, 

(
1 + X) log -- = log(1 + x) -log(l- x) 
I-x 

00 n+1 00 ()n+1 
= L(-l)n_x __ L(_I)n-'----'x_ 

n=O n + 1 n=O n + 1 
00 n+1 00 2p+1 

= L _x _«_I)n + 1) = 2L _x_, 
n=O n + 1 p=O 2p + 1 

hence 
1 + 1/3 00 1 

log2=log-- =2" . 
1 - 1/3 !::o (2n + 1)32n+1 ' 

in this case the error decays exponentially, see Figure 6.12 (b), as 

00 1 1 00 1 3 1 

~ (2k + 1)321<:+1 ~ 3(2n + 1) ~ 9" = 8(2n + 1) 9n ' 

b. More on the number e 

From (6.11) and (6.10) we infer 
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n Sn Rn 
1 1.000000000000000 2E+00 
3 2.500000000000000 2E-Ol 

5 2.708333333333333 lE-02 

7 2.718055555555555 2E-04 

9 2.718278769841270 3E-06 

11 2.718281801146385 3E-08 

13 2.718281828286169 2E-1O 

15 2.718281828458230 8E-13 

17 2.718281828459043 2E-15 

e 2.718281828459045 

Figure 6.13. The partial sums Sn := 2:j=o 1Jj! and the error e - Sn. 

with 

00 1 e=L-, 
n=O n! 

00 1 e 4 

i L k!i:s (n+1)! < (n+1)!' 
k=n+l 

(6.17) 

(6.18) 

since 2 < e < 4. For instance, for n = 6, 2:~""o ~ = 2.718055. .. approx­
imates e from below with an error not higher than 4/71 = 1/1260, which 
yields 

2.718055 ... < e < 2.718849 .... 

The estimate (6.18) also implies the following. 

6.19 Theorem. e is irrational. 

Proof. In fact, suppose on the contrary e rational, e = p/q, p, q E Z, q -; O. From (6.18) 

p n 1 4 --L-<--' 
q j=O j! (n + I)! 

Multiplying by n! we then get 

n 4 
~n! -n!LIJj! <-­
q j=O n + 1 

that is, n! 2:j=o 1/ j! and n! ~ being integers for n ?: q, 

a contradiction. 

n 1 
E=,",_=o 

~'I q j=o J. 
"In ?: maJC(3, q), 

o 
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6.20 ~. One can estimate the error better. Show that 

nil 
e-L:-<­

j=O j! - nn! 

which yields, for n = 6, 2.718055 ... < e < 2.718287 .... [Hint: Write 

n 1 00 1 00 1 
e - L: ~ = L: ~ = L: -:-( -1-+-'-:-C), 

j=o J. j=n+l J. j=O n + J . 

and observe 

(n + 1 + j)! = (n + 1)!(n + 2)(n + 3)· .. (n + j + 1) 2 (n + 1)!(n + 2)j.J 

6.3 Series of Nonnegative Terms 
The problem of studying the convergence of a series (of real terms) simpli­
fies a great deal if we restrict our attention to series of nonnegative terms. 
In fact, in this case the sequence of partial sums is increasing, therefore it 
has a limit that can be finite or infinite. In particular we can pass to the 
limit in equalities and inequalities involving the partial sums and we can 
estimate the sum of the series. 

For example, if aj ~ bj for all j 2 p, then 

n n 

I>j ~ Lbj Vn 2p; (6.19) 
j=p j=p 

however we cannot take the limit as n ---+ 00 until we know the existence of 
the limits L~l aj e L~l bj . For series of positive terms (or definitivelyl 
nonnegative, or even definitively of constant sign) the respective sequences 
of partial sums are (definitively) monotone, hence the existence of the sum 
is granted. We therefore can state 

6.21 Proposition (Comparison test). Let L~o aj and L~o bj be 
two series of positive terms. Suppose that aj ~ bj for all j 2 p. Then 

(i) if L~o bj converges, then L~o aj converges, 
(ii) if L~o aj diverges, then L~o aj diverges. 

In both cases 
00 00 

Laj ~ Lbj . (6.20) 
j=p j=p 

1 We shall say that a predicate p( n) holds definitively if there exists n such that p( n) 
holds true for all n 2 n. Notice that "definitively" is much more than "for infinitely 
many indices." 
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0.2 

O~~~~~~~~~ 

-0.20 2 3 4 5 

Figure 6.14. The dashed area Hn and the graph of l/x, x> O. 

6.22 Example. Since 

we infer 

hence 

~< __ 2_ u 

j2 - j(j + 1)' vj ~ 1, 

n 1 n 1 
'" - < 2"'-­L..J '2 - L..J.(. + 1) , 
j=l J j=l J J 

00 1 00 1 
1 ~ L -=2 < 2 L .(. + 1) = 2. 

j=l J j=l J J 

Actually, compare 7.79, we have ~~1 1jj2 = 7r
2 /6. 

6.23 Example. Let us show that the series ~~=llogcos(l/n) is convergent. 
Observe that all terms of the series are negative, and that cos 1 ~ cos(l/n) < 1 "In. 

The estimates (see, e.g., Section 5.4 of [GM1]) 

yield then 

hence 

log x ~ K(x -1), cos 1 ~ x ~ 1, 

x 2 

cos x > 1 - - x E lR - 2 ' 

K := _ log(cos 1) , 
cos 1 

1 K 1 
-logcos- < -­

n - 2 n 2 ' 

00 1 K 00 1 
- '" log cos - ~ - '" - < +00 L..J n 2 L..J n 2 

n=l n=l 

by the comparison test and Example 6.22. 

A variant of Proposition 6.21 is 

6.24 Proposition (Asymptotic comparison test). Let E~o aj and 
L~o bj be two series of positive terms. Suppose that 

an 
b

n 
~ L E lR. 

(i) IfE~o aj diverges, then E~o bj diverges. 
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(ii) If "£;:0 bj converges, then "£;:0 aj converges. 

Proof. In fact the sequence an/bn is bounded, Le., 3 M > 0 such that 
an :S M bn for all n. The comparison test in Proposition 6.21 then yields 
"£;:0 aj :S M "£;:0 bj . 0 

a. Series of positive decreasing terms 
6.25 Example (Harmonic series, I). An especially relevant series is 

00 1 

L-:' 
j=l J 

called the harmonic series, since the numbers 1, 1/2, 1/3, ... , l/n represent the ratio 
of the lengths of "harmonic" vibrating strings. 

There is no closed formula for the partial sums Hn := 2:.';=1 y. However, it is easily 
seen that the harmonic series diverges, Hn -> 00, moreover its partial sums Hn can be 
estimated by considering the improper integral associated to it. 

Let <p : [0, +00[-> IR be the piecewise constant function defined by 

1 
<p(x) = -: 

J 
if j -1 ~ x < j. 

As we have seen, and it is evident (see Figure 6.14), 

On the other hand, 

hence 

i.e., 

n In L 1/j = <p(x) dx. 
j=2 1 

1 1 -- < tn(x) <­
x+l- T -x 

Vx>O, 

I
n 1 n 1 In 1 
-- dx ~ Hn = 1 + L -: ~ 1 + - dx, 

o 1 + X jo=2 J 1 X 

log(1 + n) ~ Hn ~ 1 + logn. (6.21) 

Hn is therefore asymptotic to logn, Hn/logn -> 1. In particular Hn tends to 
infinity quite slowly as n -> 00, see Figure 6.15. 

6.26 Example (Euler-Mascheroni constant). Let us now consider the difference 
'Yn := H n - log n. From (6.21) we see that 0 < 'Yn < 1. Since 

r 1 
'Yn = 1 + i1 (<p(x) - ;) dx and <p(x) ~ l/x "Ix, 

the sequence {'Yn} is decreasing and has limit 'Y. Since l/x is convex, we also deduce 
for x E [j - l,j] 

hence 

; - <p( x) ~ G -j ~ 1) ( x - ~); 
and, integrating on [-1, n] , 
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n Hn Hn /logn-l Hn -logn 

10 2.928968253968254 3E-Ol 0.626383160974208 

30 3.994987130920391 2E-0l 0.593789749258235 

100 5.187377517639621 lE-OI 0.582207331651529 

300 6.282663880299502 IE -01 0.578881405643301 

1000 7.485470860550343 8E-02 0.577715581568206 

3000 8.583749889959170 7E-02 0.577382322308925 

10000 9.787606036044345 6E-02 0.577265664068161 

30000 10.886184992119919 6E-02 0.577232331475626 

100000 12.090146129863282 5E-02 0.577220664893053 

Figure 6.15. Hn = 2:j=ll/j, Hn/ logn - 1 and Hn -logn. 

!,n ( 1 ) 1 n (1 1 ) 1 ( 1 ) 1 1 'Yn = 1 + 'P(x) - - dx 2: 1 - - L -. - - -:- = 1 - - 1 - - = - + -. 
1 X 2 j=2 J - 1 J 2 n 2 2n 

In conclusion we can state 

Proposition. The partial sums Hn of the harmonic series are asymptotic to logn. 
Moreover {Hn -logn} is a decreasing sequence with limit 'Y E]I/2, 1[. 

The previous constant 'Y is called the Euler-Mascheroni constant. It has an approximate 
value of 0.57721566 ... , but it is not known if it is irrational or rational. 

From 
Hn = logn + 'Y + 0(1) 

we see 

Hn =1+~+o(_I_). 
logn logn logn 

This explains the slowness of the convergence Hn/ log n ---+ 1 that one sees in Figure 6.15. 

6.27 Example (The harmonic series, II). One can prove that the harmonic series 
diverges also as follows. Observe that we have 

1 1 :::; 1, 

1 2 1 1 
- - < 2" + 3' 2 4 
1 4 1 1 1 1 
- - < 4+:5+6+7"' 2 8 
1 8 1 1 1 1 
- < 8 + 9 + ... + + 14 + 15' 2 16 

1 2n 2n_l 1 
2n+1 < 2:k =2n- 1 k' 2 

thus n 
- < H2n-l 2 - for all n, 

in particular H2n-l ---+ 00. Since {H2n-d is a subsequence of {Hn} and Hn is increas­
ing, we conclude Hn ---+ 00. 



208 6. Series 

6.28 Example (The generalized harmonic series, I). Consider the series E~1 l/nD., 

0: i' 1, and the piecewise constant function <p : [0, +00[-+ lR defined by 

1 
<p(x) = -

n'" 
if n - 1 :S x < n. 

For n 2 k 2 1 we have n 1 in 2: -:;:; = <p(x) dx. 
j=k J k-1 

Since l/(x + 1)'" :S <p(x) :S l/x'" for all x > 0, and therefore 

l
n 1 n 1 In 1 

dx< -<1+ -dx 
o (x + 1)'" - :; j'" - 1 xC> ' 

we conclude 
(n + 1)-",+1 - 1 n 1 n-"'+1 - 1 
-'--'--- < 2:- < 1+ . 

-0: + 1 - j=1 j'" - -0: + 1 

Therefore we can state 

Proposition. The generalized harmonic series, E:::"=1 n
1
"" converges if and only if 

0: > 1 and 
1 00 1 1 

-- < 2: - < 1 + --. 
0: -1 - n'" - 0:-1 

n=1 

(6.22) 

The reasoning in Example 6.27 extends to obtain 

6.29 Theorem (Cauchy condensation test). Let Ej:1 aj be a series 
of nonnegative and decreasing terms. Then Ej:1 aj converges if and only 
if Ej:o 2j a2j converges. Moreover, the following estimates hold: 

1 00 00 00 

"2 L 2j 
a2j ::; L aj ::; L 2j 

a2j . 
j=1 j=1 j=O 

(6.23) 

Proof By the assumptions made we have 

1 
- 2a2 < a1 < ab 
2 
~4a4 < a2 +a3 < 2a2, 

~8as < a4 + a5 + a6 + a7 < 4a4, 

~16a16 < as + ag + ... + a15 < 8as, 

Summing, we infer 

2n+l_1 n 

L aj::; L 2ja2j (6.24) 
j=1 j=O 
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for all n 2 O. We then conclude 

n 00 n+1 00 n 00 

L 2ja2j --+ L 2ja2j , L 2j 
a2j --+ L 2i a2j , Laj --+ Laj. 

j=O j=O j=l j=l j=l j=l 

2n +1 1 n On the other hand 2:j =1 - aj is a subsequence of 2:j =1 aj, hence 

2n+l_1 00 

L aj --+ Laj. 
j=l j=l 

Passing to the limit in (6.24) we get (6.23), hence the result. o 

6.30 Example (The generalized harmonic series, II). The Cauchy condensation 
test yields 

Proposition. The generalized harmonic series E~l n1Q converges if and only if a > 1. 

Proof. In fact the assumptions of the Cauchy condensation test theorem are satisfied, 
therefore E~=l n1Q converges if and only if the geometric series 

00 . 1 00 1 . "2J- =" (_)J L..J 2<>j L..J 2<>-1 
j=O j=O 

converges. The last converges if and only if 1/2<>-1 < 1, that is, a> 1. o 

b. The root and ratio tests 

Some comparisons are more frequent than others. They lead to rules, called 
convergence tests. Here we present two of them: Cauchy's root test and 
d'Alemberl's ratio test. 

6.31 Theorem (Root test). Let 2::=1 an be a series of nonnegative 
terms. Suppose there is a positive constant K < 1 and a natural pEN 
such that for all n ;::: p, 

~~K<1. 

Then 2::=1 an converges and 

If there is a positive constant K > 1 and a natural pEN such that for all 
n 2 p ~ 2 K > 1, then 2::=1 an diverges. 
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Proof In fact, for j 2 p we have 0 ::; aj ::; Kj hence 

n n n-p KP 
'" a· < '" Kj = '" Kp+j < --. L..J-L.. L.. -l-K 
j=p j=p j=O 

Passing to the limit as n -+ 00, the claim follows. 
Similarly one proves divergence if .y'(Ln 2 K > 1. o 

6.32 Proposition (Ratio test). Let 2:~=1 an be a series of nonnegative 
terms. Suppose there is a positive constant K < 1 and a natural pEN 
such that for all n 2 p, 

an +l < K < 1. 
an -

Then 2:~=1 an converges and 

Suppose there is a positive constant K > 1 and a natural pEN such that 
a~!l ::; K < 1 for all n 2 p. Then 2:~=1 an diverges. 

Proof Inductively we find 

ap +1 ::; K ap , 

ap+2 ::; Kap+l ::; K 2ap, 

hence, summing from p to n, 

n n-p 

L aj ::; ap L Kj ::; ap 1 ~ K' 
j=p j=O 

When n -+ 00, we get the result. 
Similarly one proves divergence if an+I/an 2 K > 1. o 

6.33 Remark. Notice that root and ratio tests are inconclusive if .y'(Ln -+ 
1 or an+I/an -+ 1, as is shown by the generalized harmonic series. Also, 
because of Example 2.57, whenever the ratio test yields convergence, the 
root test does, too; whenever the root test is inconclusive, the ratio test is 
inconclusive, too. 
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Figure 6.16. Fram;ois Viete (1540--1603) 
and the frontispiece of his Opera Math­
ematica. 

c. Viete's formula for 7r 

From sin x = 2 sin(x/2) cos(x/2), we infer by induction 

FRANCISCI ViET .... 

OPERA 

MATHEMATICA, 
In unum Volumen congcll:a. 

O""J·'ot"fl"Jj, 
n.ANCISCI Ii SCHOOTEN Lcyil"ftli', 

MM .... reosPto£dOrU. 

L"G."101 0 ... -: AVOIo ... "-

Ex OllW:inl BoN,VOIX1lr1r. Abulu.n:u EI..mriotclln. 

~ 

sin x = 2n sin ( :) fI cos ( :) 
2 k=l 2 

and, since, 2n sin(x/2n ) -> x, we find 

sin x = x fi cos ( :). 
k=l 2 

On the other hand cos2 (:t/2) = (1 + cosx)/2, thus cos(x/2) 

[0, tr /2], hence 

(6.25) 

J ~ + ~ cos x for x E 

cos ~ = !I 
4 V 2' cos~=V~+~ !I 

8 2 2 V 2' 
tr 

cos- = 
16 

~+~V~+~ !I .... 
2 2 2 2 V 2' 

Therefore (6.25) with x = tr /2, yields the Viete formula 

~ = fi cos (~ ) = !I V ~ + ~ !I 
tr n=2 2T1 V 2 2 2 V 2 

Notice that the ViHe sequence {Xn}, 

n tr 1 

Xn := n cos Ck+l) = n • ( " )' 
k=l 2 sm F+T 

converges exponentially fast to 2/tr; in fact we have 

2 
0< Xn - - < C 

tr 4n 

(6.26) 

(6.27) 
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6.34,. Show that I1k=l cos(x/2k ) converges. 

6.35 ,. Prove (6.27). [Hint: Use that sinx > x - x 3/3! holds for x ~ O.J 

d. Euler and Wallis formulas 

From de Moivre's formula 

(cost + iSint)k = coskt + i sin kt, t E R, k E Z, 

we see that 

sinkt = sint(kcosk- 1 t - (:) cosk-3 tsin2 t+ ... ). 

By observing that cos2n t = (1- sin2 t)n, we readily conclude that sin kt, for k = 2n + 1 
odd, is a polynomial in sin t of degree k. Since sin((2n + l)t) has 2n + 1 distinct zeros 
tj := 2n"'-tl j , j = -n, ... ,0, 1, .. . ,n, 

n 

Bin(2n+l)t=C n (Bint-sintj)=:=CBint n (Bint -Bintj). 
j=-n j=-n, .. ,n 

j",O 

Dividing by C and passing to the limit for t -> 0, 

C· TI sintj = 2n + 1 
j=-n, ... ,n 

j",O 

and we get 

. TI ( sin t ) . TIn ( sin
2 

t ) sin(2n + l)t = (2n + 1) sm t 1 - -.- =:= (2n + 1) sm t 1 - -'-2- . 
j=-n, ... ,n slntj j=l sm tj 

#0 

Finally, replacing (2n + l)t by x we deduce 

. (2 ). ( x ) TIn ( sin
2
(x/(2n + 1)) ) sm x = n + 1 sm --- 1 - . 

2n+l j=l sin2(f7l'/(2n+l)) 

When n --> 00, a "naive" passage to the limit yields 

for all x # k7r, k E Z (6.28) 

that, for x = 7r/2, yields, in turn, Wallis's formula for 7r (see Example 2.66), 

~ = :fi 2n - 1 2n + 1 or 
7r n=l 2n 2n 

7r TICX) 2n 2n 
'2 = n=1 2n - 1 2n + 1 . 

(6.29) 

Actually, Euler's formula for sin is equivalent, for Ixl < 7r, to 

sin x ~ ( X2) log-- = ~log 1- -.- . 
X j=l J 2 7r2 

Since differentiation term by term is allowed in the series on the right, it turns out to 
be equivalent also to 

1 CX) 1 
cot x - - = 2 xL '2 2 2 ' 

X j=l J 7r - X 

(6.30) 
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known as Euler's formula for cotangent. 
The natural context of Euler's formulas for sin and cot is the theory of complex 

functions. There they arise in a transparent and simple way. As Jacques Hadamard 
(1865-1963) put it: Le plus court chemin entre deux enonces reels passe par Ie com­
plexe2 • Here we prove Euler's formula for Ixl < 1. 

First we state the following theorem that is interesting by itself. 

6.36 Theorem (of dominated convergence). Suppose that the double sequence of 
numbers aj,n is such that 

(i) aj,n ---+ aj as n ---+ 00 for all j, 
(ii) for all n we have laj,n I ~ Cj with 'L,J=l ICj I < 00, 

Then 'L,~1 aj converges and 

00 00 

Laj,n ---+ Laj when n ---+ 00. 

j=l j=l 

Proof. First observe that, since aj,n ---+ aj, and lan,j I ~ Cj "In, j, we also have laj I ~ Cj 
Vj, hence 'L,~o aj converges absolutely. 

Fix E > 0 and choose p = p(E) such that 2 'L,~p+1 Cj < E. Then 

ex:> 00 00 P <Xl 

I L aj,n - L aj I ~ L laj,n - aj I = L laj,n - aj I + L laj,n - aj I 
j=O j=O j=O j=O j=p+1 

poop 

~ L laj,n - aj I + 2 L Cj ~ L laj,n - aj I + E, 
j=o j=p+1 j=O 

hence 

lim sup I Eaj,n - Eajl ~ E, 
n~oo j=o j=O 

and finally the claim, E being arbitrary. 

Proof of (6.28). Set for Ixl < 2, 

{ 

( 
8in2 _" ) 

log 1- . 2~ 
aj,n:= 0 8m 2n+l 

if j ~ n, 

if j > n, 

and 

aj :=:= log (1 - j::2)' 
Clearly aj,n ---+ aj. As sint 2": ~t Vt E [0,71'/2]' we have 

consequently 

sin
2 

2:+1 < _x_2 
-. -::2:-='7j ",=-=- - 4J'2 
sm 2n+1 

Vj ~ n; 

and 
00 

LCj < 00. 

j=l 

Applying the theorem of dominated convergence, we conclude 

2 the shortest path between two real statements is via complex 

o 
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n 1 2 3 4 5 6 7 8 
an = (-l)n/n -1 1/2 -1/3 1/4 -1/5 1/6 -1/7 1/8 

a;t 0 1/2 0 1/4 0 1/6 0 1/8 
a;; 1 0 1/3 0 1/5 0 1/7 0 

lanl 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 

Figure 6.17. an, a;t, a;; e lanl per an = (-l)n/n. 

as n ..... 00, 

i.e., 
n ( sin2 _X_ ) n 2 n 1 - 2n+1 ..... II (1 - ~) 

. sin2 ~ . j27r2 
J=l 2n+1 J=l 

hence Euler's formula for JxJ < 2. o 

6.4 Series of Terms of Arbitrary Sign 

In the case where the terms of the series L;o aj are of arbitrary sign, it 
is convenient to set 

if aj > 0, 

otherwise, 

6.37 Proposition. We have 

{
-a' a:- '= J J . 

° 
if aj < 0, 

otherwise. 

o L~o aj converges if both L~o at and L~o aj converge, 
o L~o aj diverges to +00 if L~o at diverges to +00 and L~o aj con­

verges, 
o L~o aj diverges to -00 ifL~o at converges and L~o aj diverges to 

+00. 

This way the study of the convergence of a generic series of real terms 
is subsumed to that of a series with nonnegative terms, except in the case 
where both L~o at and L~o aj are divergent. 

a. Absolute convergence 

6.38 Definition. We say that L~o aj converges absolutely if the series 
L~o laj I converges. 
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6.39 Proposition. If2:-~o aj converges absolutely, then it converges and 

I fajl ~ f lajl· (6.31) 
j=o j=o 

Proof. We prove that 2:-:'=0 lanl converges if and only if both 2:-~0 at 

and 2:-~0 aj converge. In fact, for j ~ 0, at and aj are nonnegative and 

at + aj = lajl, hence at, aj ~ lajl. The comptll'ison test yields that the 
series 2:-~0 at and 2:-~0 aj converge, consequently 2:-~0 aj converges. 
By the triangle inequality, we get 

I t aj I ~ t laj I ~ f laj I, Vn ~ 0, 
j=O j=O j=O 

therefore we deduce (6.31) passing to the limit as n ~ 00. D 

b. Series of complex terms 

The notion of sum of a series easily extends to series of complex terms. 
We say that 2:-:'=0 Zn converges (respectively diverges) if the partial sums 
have finite (respectively infinite) limit. The sum is then defined by 

00 n 

"" Zn:= lim "" Zj. ~ n--+ooL..J 
n=O j=O 

6.40 Example (Geometric series). For z E IC, z f. 1, we still have 

n 

L zj = (zn+l - 1)(z - 1), 
j=O 

therefore 2:~0 zn converges for Izl < 1 and 

If Izl > 1, since 

00 1 

L zn 
= l-z 

n=O 

for Izl < 1. 

Izn+l - 11 > Izl n +1 - 1 -+ +00 as n -+ 00, 

Clearly 2:~=0 zn does not converge if z = 1, since 2:';=0 zj = n + 1. Finally, it can be 
proved, see Theorem 8.61, that 2:~=0 zn does not converge for any z in the unitary 
circle {z Ilzl = 1} c IC, thus concluding that 2:~=0 zn converges if and only if Izl < 1 

to l~Z' 

6.41 ~. Show that 2:~=0 zn does not converge if Izl = 1. [Hint: Assuming z f. 1, let 
z := e i9 , () f. 2k7r, k E Z. Show one of the following claimS: 

o {ein9 } does not have limit as n -+ 00, see Exercise 2.97. 
o If (}/(21r) = ~,p,q coprime integers, then {ein9 } has q values. 
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If t/(27rJ is irrational, then {e inll } is dense on the unit circle (see Theorem 8.61). 
Thus {em} has a limit iff 9/(27r) is integer. 

Similarly, we have, see Example 6.5, that 2::::"=0 nzn converges if and only if Izl < 1 
with sum 2::::"=0 nzn = (z~1)2' Izl < 1. 

Again, we trivially have, 

6.42 Proposition. IfL::=o Zn converges, then IZnl- o. 
Cauchy convergence criterion, Theorem 4.23, yields 

6.43 Proposition. The series L:7=o Zn, Zn E C, converges if and only if 
the sequence of its partial sums is a Cauchy sequence, i.e., iff'rlf. > 0 there 

exists n such that I L:J=p Zj I < f. for all p, q 2: n. 

6.44 Definition. We say that L:;'o Zn, Zn E C, converges absolutely if 
the series of nonnegative terms, L:n=O I Zn I, converges. 

6.45 Proposition. If the series L::=o Zn converges absolutely, then it 

converges; moreover I L::=p Zn I ~ L::=p I Zn I for all p. 

6.46 ,. Prove Proposition 6.45. [Hint: Use (4.12) or Proposition 6.43.] 

6.5 Series of Prod uets 
In this section we illustrate a few results concerning series of products of 
complex numbers 

00 

Lajbj . 
j=O 

In fact, the product structure of the terms helps in giving further results 
of convergence. 

a. Alternating series 
6.4 7 Definition. An alternating series is a series of the type L:}:o ( -l)j aj, 
with aj 2: 0 for all j 2: o. 

6.48 Theorem (Leihniz test). Let L:}:o( -l)jaj, aj 2: 0, be an alter­
nating series. If {an} is decreasing to zero, then L:}:o ( -l)j aj converges 
and the errors between the sum and the p-th partial sums are estimated by 
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012 

Figure 6.18. 

00 

a p - a p+! ::=; I L (-l)j aj I ::=; a p + a q , 

j=p+l 

n 

Vp,q, q > p. 

The inequalitites are strict if {an} is strictly decreasing. 

Proof. Let p < q E N. It is easily seen using the assumptions that 

1t.(-l)jajl ::=;ap+aq. (6.32) 

Given € > 0, we can find 71 such that lapl < € for all p ~ 71; (6.32) then 
yields 

I t.(-l) jaj
l < 2€ for all q > p ~ 71, 

i.e., the sequence of partial sums of E~o ( -l)j aj is a Cauchy sequence, 
therefore convergent. The estimate easily follows from (6.32) letting q tend 
to infinity. 0 

An alternative proof of Theorem 6.48. For n E N set Sn := L::j=o(-l)jaj. 

(i) The subsequence S2n, n 2: 0, of {Sn}, is decreasing and bounded below: in fact, 

S2n+2 = S2n - a2n+1 + a2n+2 :::; S2n, 'In 2: 0, 

S2n = ao - al + (a2 - a3) + ... + (a2n-2 - a2n-l) + a2n 2: ao - aI, 

since {an} is decreasing. 
(ii) The subsequence S2n+l, n 2: 0, of {Sn}, is increasing and bounded above: in fact, 

82n+1 = S2n-1 + a2n - a2n+1 2: S2n-l, 'In 2: 1, 

S2n+1 = ao - (al - a2) - (a3 - a4) + ... - (a2n-1 - a2n) + a2n - a2n+1 :::; ao, 

since an is decreasing. 
(iii) Finally 

S2n+1 = 82n - a2n+1 :::; S2n, "In, 

S2n+1 - S2n = -a2n+1 -+ ° for n -+ 00. 
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By (i) and (ii) 

82n -+ L E JR, 82n+l -+ M E JR 

and by (iii) 

82n - 82n+l -+ L - M = 0, 

i.e., 82n and 82n+l have the same limit L. Since the indices of 82n (the even integers) 
and the indices of 82n+l (the odd integers) exhaust all integers, we then conclude that 
8 n -+ L. Also 

hence 

that is, 

a2n+l - a2n+2 ~ 82n - L ~ 82n - 82n+l = a2n+l, 

a2n+2 - a2n+3 ~ L - 82n+l ~ 82n+2 - 82n+l = a2n+2, 

00 I I)-1)jajl = IL - 8 n-ll ~ an for all n E N. 
J=n 

(6.33) 

o 

6.49 Remark. We notice that there exist sequences an ?: 0, an -+ 0, for 
which E~o( -1)jaj does not converge, i.e., we cannot omit the assumption 
that {an} is decreasing. An example is given by the series of alternating 
terms 

whose partial sums are given by 

n . n (-1)j n 1 I) -1)1aj = L -. + L -;. 
j=l j=l v'J j=l J 

The series E~l ( -1)j / v'J converges by the Leibniz test, while E~l J 
diverges. Therefore E~l ( -1)j aj = +00. 

6.50 Remark. The example in Remark 6.49 shows also that the asymp­
totic comparison test is not valid for series of terms of arbitrary sign. In 
fact, 

(-1)n 
=1+-- -+ 1 as n-+ 00 

Vn 
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b. Summation by parts 
6.51 Proposition (Summation by parts). Let {an}, {bn}, be two se­
quences in C and let Bn := 2:,7=0 bj , n ~ 0, and B-1 = O. For arbitrary 
p, q E N, 0 ::; p ::; q, we have 

q q-l 

L ajbj = L(Bj - Bp_1)(aj - aj+l) + (lq(Bq - B p- 1)' (6.34) 
j=p j=p 

In particular 

(6.35) 

Proof. Set Cj := B j - B p- 1 so that Cp - 1 = 0, iJ,nd, bj = Cj - Cj - 1. Then 

q q q q- .... 

Lajbj = Laj(Cj - Cj - 1) = LajCj - L: aj+1Cj 
j=p j=p j=p j~p-l 

q-l q-l 

= aqCq + L Cj(aj - aj+d - apCp- 1 = aqCq + L Cj(aj - aj+d, 
j=p j=p 

that is (6.34). By (6.34) and the triangle inequality, we finally infer 

q q-l 

I L ajbj I = I L (Bj - Bp_1)(aj - aj+l)) + aq(Bq - Bp-d I 
j=p j=p 

q-l 

::; L (IBj - Bp_11laj - aj-l-11) + laqllBq - Bp-11 
j=p 

c. Sequences of bounded total variation 

o 

6.52 Definition. We say that the sequence {an} C C has bounded total 
variation if 2:,~0 laj - aj+ll converges. 

6.53 Example. Let L~o aj converge absolutely. Then {an} has bounded total vari­

ation since for any p 2: 0 we have L;=o laj - aj+1l::; 2L;=oClajl + laj+ll)· 
Notice that the sequence {C -1) n / n }, which converges to zero, does not have 

bounded total variation since 

~1(-l)j (_l)j+ll_~ 1 1)_ 
~ -- - _ ~ (- + ~- - +00. 
j=l j j + 1 j=l j j + 1 
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The following proposition collects a few facts concerning sequences with 
bounded total variation. 

6.54 Proposition. We have 

(i) If {an} C C has bounded total variation, then {an} converges, an -t 

P, and 
00 

lap - PI::; L laj - aj+1l, Vp ~ O. 
j=p 

(ii) Every real, monotone and bounded sequence {an} has bounded total 
variation and E~o laj - aHll = lao -limj-+oo ajl· 

Proof. (i) For p < q we have 

q-l q-l 

laq - apl = ! L(aj - aHl)! ::; L laj - aHll· 
j=p j=p 

If E~o laj - aHll converges, then the sequence E;=llaj - aHll, kEN, 
is a Cauchy sequence, i.e, Vf. > 0 315 such that 

for p, q ~ 15. From 

q-l 

L laj - aj+11 < f. 
j=p 

q-l q-l 

laq - apl = ! L(aj - aj+1)! ::; L laj - aHll 
j=p j=p 

(6.36) 

we then infer lap - aql ::; f. for p, q ~ 15, i.e., {an} is a Cauchy sequence, 
hence an -t P. 

(ii) For instance, assume {an} is increasing. Then 

n n 

L laj - aj+11 = L(aj - aHl) = ao - an-I, 
j=O j=O 

and the conclusion follows when n -t 00. o 
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Figure 6.19. Lejeune Dirichlet (1805-1859) and Niels Henrik Abel (1802-1829) . 

d. Dirichlet and Abel theorems 
6.55 Theorem (Dirichlet). Let {an} and {bn } be two complex se­
quences. Suppose that 

(i) {an} has bounded total variation and an --+ 0, 
(ii) thepartialsumsoE{bn }, Bn:= 'L-?=obj , are bounded, IBnl:::; MER, 

Vn:::: 0. 

Then 'L-~o ajbj converges and 

CXl CXl 

I Lajbjl :::; 2ML laj - aj+11 for all pEN. 
j=p j=p 

Proof. Given to > 0, from the assumptions on {an} we infer that there 
exists p such that 

q 

L laj - aj+ll + laql :::; to 
j=p 

for all p, q q :::: p :::: p. This, together with (6.35) and the assumption on 
{bn } yields 

q 

I Lajbjl:::; ~u~ IBj - Bp-11 to:::; 2M to, 
j=p P_J_q 

that is, {'L-?=o ajbj } is a Cauchy sequence, hence converges. Letting q --+ 00 

in (6.35) we finally get the estimate. D 

6.56 Remark. Notice that the Dirichlet test, Theorem 6.55, is an exten­
sion of the Leibniz test for alternating series. 

6.57 Theorem (Abel). Let {an} and {bn } be two complex sequences. 
Suppose that 
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(i) {an} has bounded total variation, 
(ii) .E;:o bj converges. 

Then .E~o ajbj converges and 

00 00 

I L ajbjl ~ ~up IBj - Bp-11{ 2 L laj - aj+ll + lapl} 
j=p J~P j=p 

for all p 21. 

Proof. By (ii) Bn := 'L;=o bj is a Cauchy sequence: "If > 0 3.11 E N s1l1ch 
that IBj - Bp_11 ~ E for all j 2 p. By (i) and (ii) of Proposition 6.54, {an} 
is convergent, hence bounded, Ian I ~ M E lR "In 2 O. Therefore we deduce 
from (6.35) 

q q 

I Lajbjl ~ f {L laj - aj+ll + aq}. 
j=p j=p 

(6.37) 

In particular the sequence of partial sums of 'L~o ajbj is a Cauchy se­
quence, hence converges. Finally the estimate follows letting q ---+ 00 in 
(6.37), taking into account 

q-l 

laql ~ lapl + L laj - aj+1l· 
j=p 

o 

6.6 Products of Series 

Let P(x) = 'L;=o ajxj and Q(x) = 'LJ=o bjxj be two polynomials. Recall 
that 

p+q 
P(x)Q(x) = L ( L aibj )xk (6.38) 

k=O i+j=k 

where we have set ai = bj = 0 for all i, j such that p < i ~ p + q and 
q < j ~ p+ q. 

6.58 Definition. Given two sequences a := {an} and b := {bn}, the 
product of convolution of a and b, denoted a * b, is the sequence defined as 

n 

(a * b)n:= L aibj = Lajbn- j . 
i+j=n j=O 
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6.59 Example. The product of convolution is extremely useful in operating with se­
quences. We give a few examples. If Ok,n is Kronecker's symbol 

{

1 if k = n, 
Ok,n = ° if k l' n, 

and ek is the sequence defined by 

ek := {Ok,n} = {O, 0, 0, 0, ... ,1, 0, O, ... }, 

we have 

( ) {
o if n < k, 

a* ek n = 
an-k ifn ~ k, 

that is, the values of a * ek are the values of {an} shifted k positions on the right, 

a = {ao, al, a2, ... , an, ... } 

a*ek={O, 0, 0, ... , 0, ao, al, a2, ... , an, ... }. 

Similarly, if b = {1/2, 1/2, 0, ° O, ... }, then 

(a * b)n = {ao/2 if n = 0, 
(an + an-l)/2 if n ~ 1. 

If b = {1, 1, 1, ... ,1, ... }, then 

n 

(a * b)n = L ak 'in. 
k=O 

In terms of product of convolution, (6.38) can be restated as: the co­
efficients of P(x)Q(x) are the product of convolution of the coefficients of 
P(x) and Q(x), or, better, of the sequences 

a={ao, al, a2, ... , ap , 0, 0, O, ... } 
b = {bo, bl, b2 , ... , bq , 0, 0, O, ... }, 

p+q 

P(x)Q(x) = 2)a * bhxk. 
k=O 

More generally, we have the following. 

6.60 Theorem. Let L:;:o aj and L:;:o bj be absolutely convergent. Then 
L:;:o(a * b)j is absolutely convergent and 

f(a * b)j = (faj) (fbj ). 
j=O j=O j=O 
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j j 

[P/2] P q p 2p 

Figure 6.20. 

Proof. (i) Set A := L:~o laj I and B := L:~o Ibj I. If q > p and n := [P/2] we have 

q q 

\L)a*b)kl~El E aibjl~ E laillbjl (6.39) 
k=p k=p i+j=k P~i+j~q 

q q q q q q 

~ ElailElbjl + E Ibjl"L:la;1 ~ BEla;1 +A E Ibjl· 
i=n j=O j=n i=O i=n j=n 

Given f > 0 we find p such that L:i=n lai I < f and L:J=n Ibj I < f for all q > n 2: p, 
consequently, on account of (6.39) 

q 

IE(a*b)jl ~(A+B)f 
j=p 

for all q > p > 2p. 

Therefore the sequence of the partial sums of L:~o I(a * b)jl is a Cauchy sequence, 
hence converges, that is, L:~o(a * b)j converges absolutely. 

For p > 0 we also have, similarly to (6.39), 

00 00 

~ E lai Ilbj I ~ A E Ibj I + B E laj I 
p<i+j~2p j=n j=n 

where n := [P/2]. Passing to the limit as p -+ 00, we get the result. o 

6.61 Remark. There seems to be no known necessary and sufficient con­
dition for the convergence of the series of products. However, one can show 

see Theorem 7.33. 
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(ii) MERTENS. If 2:;:0 aj converges and 2:;:0 bj is absolutely conver­
gent, then 2:;:0 (a * b) j converges and by (i), we have 2:;:0 (a * b) j = 

( 2:;:0 aj) ( 2:;:0 bj ) . 
(iii) HARDY. If 2:;:0 aj and 2:;:0 bj converge and the sequences {nan} 

and {nbn} are bounded, then 2:;:0 (a * b)j converges. 

6.7 Rearrangements 
Given an ordered enumemtion of numbers, we defined their sum in the 
previous section. This notion is useful to define the sum of a denumerable 
set of numbers, but a priori such a sum depends on the order in which 
they are listed. 

A sequence ibn} is a rearrangement of {an} if it contains the same 
elements of {an} listed in a different order. More precisely 

6.62 Definition. We say that ibn} is a rearrangement of d{ an} if there 
is a bijective map k : N ---. N such that 

bn = akn "In. 

We say that 2::=0 bn is a rearrangement of 2::=0 an. 

6.63 Theorem (Dirichlet). Suppose that 2::=0 a;i and 2::=0 a;; are 
not both divergent. Then every rearrangement 

00 

(X) 00 ex:> 00 

Lbn = Lan = La;i - La;;. 
n=O n=O n=O n=O 

In particular, in the case of series of nonnegative terms or of absolutely 
convergent series, the sum is independent of the order of the addends. 

Proof. It suffices to prove the theorem in the case of series of nonnegative terms. Let 
k : N ...... N be a map which reorders {an}, set bn := akn , and let Sn and (Tn be the n-th 
partial sums respectively of ~~o aj and ~~o bj . Being that an, bn ~ 0, we have 

Since for every n 

00 

Sn ...... S:= Laj, 
j=O 

00 

(Tn ...... ~:= Lbj. 
j=O 

(Tn = bo + b1 + ... + bn = aka + ak, + ... + akn :::; ao + al + ... + amax(k" ... ,kn ) :::; S, 

we deduce ~ :::; s. Being that ~~o aj is a rearrangement of ~~o bj , we also have 
S :::; ~. In conclusion S = ~. 0 
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However, this is not true anymore if 

00 00 

Laj = La; = +00. 
j=O j=O 

6.64 Example. Consider the series 

00 (1 1) (1 1 1) (1 1 1) j; aj:= 1 + 3" - 2 + "5 + "7 - 4 + 9 + 11 - 6 + ... 

+ (_1_ + _1 __ 2-) + ... 
4j - 3 4j - 1 2j 

of positive terms, which is convergent since 

1 1 1 8j - 3 1 
a·:=--+----= <-. 

J 4j-3 4j-1 2j 2j(4j-3)4j-1 2j2 

Notice also that 
11 00 

- < al + a2 < E aj < +00. 
12 j=O 

Removing the parentheses we get 

which is a rearrangement of the series 

00 1 1 1 00 (_l)n E Cj = 1 - - + - - - + ... = E --, 
j=O 2 3 4 j=O n + 1 

which converges by the Leibniz test to a number L between 1-1/2 = 1/2 and 1-1/2 + 
1/3 = 5/6 < 11/12. The sums of the two series E~o aj and E~o bj are therefore 
different. 

Of course not all rearrangements change the sums. For instance, a sum 
does not change if we reorder only a finite number of terms. In general, 
however, we have 

6.65 Theorem (Dini-Riemann). Suppose that {an} is a sequence which 
converges to zero and for which 

00 00 

Laj = La; = +00. 
j=O j=O 

Then 

(i) for any f E iR there exists a rearrangement {bn} of {an} such that 
L~obj = f. 

(ii) There exists a rearrangement {bn} of {an} such that L~o bj is in­
determinate. 
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We give an idea of how to define a rearrangement with sum I!, 0 ::; I! E ~. 
We begin by adding in order the nonnegative terms at, until we exceed I! 
(this is possible since 2:;:0 at = +00). At this point we start to add the 
negative terms -aj until the sum falls below I! (and this is possible since 
2:;:oaj = +00), and then we repeat the procedure. The partial sums of 
the rearrangement constructed this way oscillate around I!, and actually 
converge to I! since aj -+ o. In other words the idea of the proof is: if 
one is allowed for unlimited credits and debts and to freely defer takings 
and payments, then one can decide the threshold of one's own richness or 
poverty. 

We conclude this section by stating a simple consequence of the above 
concerning double series. 

6.66 Proposition. Given a double sequence {aij} i, j = 0,1,2, ... , sup­
pose that 2:;:0 aij is absolutely convergent, and if 

00 

bi := L laijl, i = 0,1,2, ... , 
j=O 

2::0 bi converges. Then 

00 00 00 00 

LLaij = LLaij. (6.40) 
i=O j=O j=Oi=O 

6.67 ,.,.. Prove Proposition 6.66. Show that (6.40) does not hold in general if we 
only require that ~~o aij converges, that ~~o bi converges, where this time bi := 

~~Oaij. 

6.8 Summing Up 

Definitions and basic facts 
Given a sequence {an} of complex numbers, define for every n :::: 0 Sn := ~j=o aj. The 
sequence {Sn} is called the series of partial sums of {an} and denoted by ~~o aj. A 
series is said to be convergent if {Sn} has a finite limit, divergent if {Sn} has an infinite 
limit, and indeterminate if {Sn} has no limit. 

e If ~~o aj converges, then an ...... 0 as n ...... 00. The converse is false, in general. 
e Given a series ~~o aj of real terms, denote by r,o(x) the piecewise constant function 

defined by 
ifj~x<j+1. 

Then trivially 
n rn +1 

L aj = in r,o(x) dx 
j=O 0 

for all n. 
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Thus partial sums of a series are integrals. This way, the comparison test for integrals 
becomes a means to estimate the partial sums of a series. Moreover, :L~o aj con­
verges, diverges, or is indeterminate if and only if J; cp(s) ds respectively converges, 
diverges or is indeterminate as x -+ 00. 

Series with nonnegative terms 
In this case the sequence {Sn} of the partial sums, Sn := :Lj=o aj, aj E JR, aj 2:: 0 
Vj, is monotonically increasing, hence :L~o aj either converges or diverges. Conse­
quently, the comparison test, Proposition 6.21, and the asymptotic comparison test, 
Proposition 6.24, hold. 

The family of the generalized harmonic series 

00 1 

L n'" n=l 
is useful when using the comparison tests. They converge if and only if a > 1, and in 
this case 

1 00 1 1 
-- < L - <1+--. 
a-I - n=l n'" - a-I 

The harmonic series :L;:'=1 ~ diverges. Moreover its partial sums are asymptotic to 
log n, since we have 

n 1 
log(l + n) < L -: < 1 + logn. 

j=l J 

There are some other useful tests for convergence, 
o CAUCHY'S TEST. Let {an} be nonnegative and decreasing. Then :L~1 aj converges 

if and only if :L~o 2j a2i converges. In this case 

100. 00 00. 

- L 2Ja2i ::; Laj::; L2Ja2i' 
2 j=l j=l j=O 

o ROOT TEST. Let :L;:'=1 an be a series with nonnegative terms. 
(i) Suppose that there exist K < 1 and pEN such that ~::; K < 1, for all n 2:: p, 

then :L;:'=1 an converges and 

00 KP 
Lan::; 1-K' 
n=p 

(ii) Suppose that there exist K > 1 and pEN such that ~ 2:: K > 1, for all n 2:: p, 
then :L;:'=1 an diverges. 

o RATIO TEST. Let :L;:'=1 an be a series with positive terms. 
(i) Suppose that there exist K < 1 and pEN such that an+1/an ::; K < 1, for all 

n 2:: p, then :L;:'=1 an converges and 
00 

"" ap ~an::; 1-K' 
n=p 

(ii) Suppose that there exist K > 1 and pEN such that an+1/an 2:: K > 1, for all 
n 2:: p, then :L;:'=1 an diverges. 

Actually the root and the ratio tests essentially reduce to a comparison test with the 
geometric series :L~o Kj for which we have 

00 {+oo ifK2::1, 
LKj = l.!K if IKI < 1, 

j=O is indeterminate if K ::; -1. 
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Absolute convergence 
We say that ~~Oaj converges absolutely if ~~o lajl converges. In case {an} is a 
sequence of reals, set 

a;t := max(an, 0), a:;; := - min(an , 0). 

o if ~~o aj, aj E C, converges absolutely, then ~~o aj converges and I ~~O aj I ::; 
~~o lajl· 

o if ~~o aj is a series with real terms, then it converges absolutely if and only if 

both ~~O at and ~~o aj converge, since ° < a;t, a:;; ::; Ian I = a;t + a:;; and 

an = a;t - a;;:. 
o the complex series ~~o aj converges absolutely if and only if the four series with 

nonnegative terms ~~o~(aj)+, ~~o~(aj)-, ~~o~(aj)+ and ~~o~(aj)­
converge. 

Series of products 
An alternating series is a series of the type ~~o ( -1)j aj, where aj ~ ° for all j. 

o LEIBNIZ TEST. Assume that {an} is monotonically decreasing to zero. Then the al­
ternating series ~~o ( -1)j aj converges. Moreover we have the following estimate 
for the error between the sum of the series and the n-th partial sum: 

I f: (-l)jajl::; an +l· 
j=n+l 

The assumption that {an} is decreasing cannot be avoided. 

Series with general terms which are the product of two quantities can be dealt with 
by two more useful tests, Dirichlet's test, Theorem 6.55, and Abel's test, Theorem 6.57. 
Both are applications of the formula of summation by paris, Proposition 6.5l. 

Product of series 
Let a := {an} and b .- {bn }, n ~ 0, be two sequences. The sequence, denoted by 
{(a * b)n}, 

n 

(a * b)n:= L aibj = L ajbn_j 
i+j=n j=O 

is called the product of convolution, or Cauchy product, of a and b. 

o CAUCHY'S THEOREM. If ~~o aj and ~~o bj converge absolutely, then 

converges absolutely and 

This extends the usual formula for the product of two polynomials to a couple of 
absolutely convergent series. 
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dn 

Figure 6.21. The problem of the pile of coins. 

6.9 Exercises 
6.68 ... Compute the sums of the telescoping series 

00 1 

L '("+1)("+2)' )=1) ) ) 

00 1 

L )'2 -1' 
J=2 

6.69 ... A ball falls from height h onto a rigid surface. It rebounds infinitely many 
times, each time reaching 75% of the height of the previous rebound. Compute the time 
needed in order that the ball be at rest. 

6.70 .. von Koch's curve. Starting from an equilateral triangle, erect an equilateral 
triangle on the middle third of its sides. Iterate the process on each of the sides of the 
polygonal figure obtained this way. The limit closed curve defined this way is called von 
Koch's curve. Show that the resulting area is finite and compute it. Show that, instead, 
von Koch's curve has infinite length. 

6.71 .. Cantor set. A unit square is divided in 9 squares of side 1/3, the central one 
is colored black and the remaining 8 are divided each in 9 squares of side 1/9, and 
each of the central squares is coloured black. By induction we now iterate the process 
infinitely many times. Compute the area of the black region. The complement in the 
unit square of the black region is known as a Cantor set. 

6.72". Estimate the error we make replacing ~~1 1/j2 with one of its partial sums. 

6.73 ... A slow caterpillar is crawling on a rubber band at the speed of 1cm per minute, 
but a malevolent elf lengthens the band by 1m per minute. Will the caterpillar ever be 
able to reach the end of the rubber band? 

6.74 ... Make a pile of n coins of diameter 1. Dislodge them all in the same direction 
as much as possible and keep them in equilibrium, as shown in Figure 6.21. What is 
the horizontal distance {dn } between the centers of the first and the last coin? 

6.75 ... Show the following 

Proposition (Asymptotic root test). Let {an} be a sequence of nonnegative num­
bers. If 

limsup ~ < 1, 
n~oo 

then ~~=o an converges. If 
limsup ~ > 1, 
n~oo 

then ~~=o an diverges. 
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o VIETE .£ - II J 1 + 1 II ·7r-V'i. 2 2V'i. 

W 7r - n°o 2n 2n 
o ALLIS. "2 - n=l 2n-l 2n+l 

G L 7r ,",00 (_l}n 
o REGORY, EIBNIZ."4 = Lm=O 2n+l 

N 7r _ ,",00 1 
o EWTON. "6 - Lm=O (2n+l)22nf! 

7r _ ,",00 (l)n 1 
o 2V3 - Lm=O - 3n (2n+l) 

o i = L:::"=O(_1)n 2n~1 (5nt1) - (239)nfl 

o AREA OF THE UNIT CIRCLE. ~ = J~l ~dx 

o HALF THE LENGTH OF THE CIRCLE. 71" = J~l ~ dx 
V l-x2 

The number e 
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o We defined in [GM1] the Euler number e as the unique real number such that 
J; t dt = 1. We know, see e.g, [GM1], that 

hence, 

o We have 

00 n 

eX = 2::: ::..- '<Ix E lR 
n=O n! 

00 1 
e= ];~ 

o e is irrational. 

equivalently 
eX - 1 

lim --- = 1, 
x~o x 

eX = lim (1 + ~)n. 
n--+oo n 

I
n xk I Ixln +1 

with eX - 2:::, ~ max( eX, 1) -( --)-, ' 
k=O k. n + 1 . 

nIl 
with 0 < e- 2::: - < --. 

k=O k! nn! 

Viete and Euler formulas for sin x 

sinx = x fi cos (:), 
k=l 2 

Figure 6.22. Analytical formulas for 71", e, and the Viete and Euler formulas for sin x. 

Figure 6.23. The first steps in the construction of the von Koch curve. 



232 6. Series 

• • • • • • • • • • • • ••••••••• • • • • • • • • • • • • • • • • • ••• ••• • • • • • • 
• • • • • • • • • • • • ••••••••• • • • • • • • • • 

Figure 6.24. The first steps in the construction of the Cantor set in Exercise 6.71. 

6.76 ~. Show the following 

Proposition (Asymptotic ratio test). Let {an} be a sequence of positive numbers. 
If 

then L:~=o an converges. If 

then L:~=o an diverges. 

6.77~. Show that 

lim sup an+l < 1, 
n--+oo an 

lim sup an+l > 1, 
n--+oo an 

(i) if n 2 (an+l - an) ....... 0, then {an} converges, 
(ii) if L:~=1 a; converges, then L:~=1 an/n converges, too. 

6.78 ~. Show that L:~=1 z: converges iff z E C, Izl ~ 1 and z '" 1, and that 

L:~=1 (_l)n z:n converges if and only if z E C, Izl ~ 1 and z '" ±i. 

6. 79 ~ Pringsheim's theorem. Let {an} be a decreasing sequence such that L:~=o an 
converges. Show that nan -+ 0 as n ....... 00. 

6.80 ~ Kronecker's lemma. If L:~=1 an/n converges, then k L:;;=1 an -- 0 as n ....... 
00. 

6.81 ~. Suppose an -+ A and bn ....... B. Show that :!;(a * b)n -+ AB. [Hint: Write 
an:= A+€n.] 

6.82 ~. Let an ;:: 0 and A> 1. Show that 

f: an 
n=l (L:k=l ak),\ 

converges; estimate its sum. [Hint: Write the terms in function of Sn := L:k=l ak'] 

6.83~. Let {an} and {bn } be two monotone and infinitesimal sequences. Show that 
L:~=1 an sin nt, t E JR, and L:~1 bn cos nt, t '" 0, converge. [Hint: Use Dirichlet's test.] 

6.84~. Is there a sequence {an} such that L:~=1 (an + e:: ) converges? 

6.85 ~. Let a > 1. Find a lower bound for Sk := L:~=1 n:' . 
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6.86 , Eisenstein series. Study the convergence of the complex series L:;:='=l (z~n -

~), L:~1 (z~n + ~), L:;:='=o (z+ln)k , L:;:='=o (z_ln)k , where k ~ 2. [Hint: Observe that, 

for r > 0, [z ± n[k ~ (n - r)k for k ~ 1, n E Nand [z[ < r < n.] 

6.87,. Study the convergence of some of the following series, possibly dependent on 
the real parameter x or on the complex parameter z: 

ne- n , -n n , 

n! n 2 10g(1 + n 2 ) 

(2n)! ' vnr 
(2n)! 2nn! 

(3n)! - (2n)!' (2n)! ' 

cos 1Tn sinn! 

nlog(l + n)' n(n + 1)' 

arctan2-n , 
(_l)kk 

(k + l)(k + 2) , 

log2(1 + l/n), 10g(1 + l/n), 
n 

(_l)n sin(l/n), 
narctann + l' 

6.88 ,. Study the convergence of some of the following series, possibly dependent on 
the real parameter x or on the complex parameter z: 

nn7f sin(l/n)-27f , 

( _l)n 

n-logn' 

(~ -arctann), 

(_1)n 
10g(1+ Vn ), 

(1 + x)n(l+l/n), x E] - 1,0[, 

n! n -z 
nn ' 

(-l)n log (l+ (_~)n), 

1 )n2 (1 + n 2 - e, 

(
. 1)2cos(l/n) 

Sln- , 
n 

1T 1 4" - arctan cos;:; , 

ex / n - 1 

nx 

l
l
/

n 
( SinX) 1- -- dx, 

o x 

(logn)-log n, 

(_l)n) 
10g(1+-

n
- , 

(_l)n 
sin ( Vn ), 

(_2)ne- nX , 

zn 
nn' 

( )
l/n 

1 - sin(l/n) , 

2 n 
log --1' n+ 

(
Cos(2/n))n

3 

cos(l/n) , 

~-1 

logn ' 

( 
1 )n+l 

x arctan n + n 2 ' 
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{n+1 2 
(_I)n 1n t2e- t dt, 

1
n +1 sinx 

Vii -2 dx. 
n x 

6.89,. For some of the previous series, estimate their sum or the order of magnitude 
of their partial sums. 

6.90 "II" Raabe's test. Let E~=l an be a series of positive terms. Show that, if there 
exists K > 1 such that 

n(~ - 1) ~ K "In, 
an+1 

then E~=l an converges, while, if 

then E~=l an diverges. [Hint: In the first case show that an+1 ~ i(nan - (n+l)an +1)i 
in the second show that an+1 ~ a1/(n + 1).] 

6.91 "II" Gauss's test. Let E~=l an be a series of positive terms. Suppose that 

an K 9n 
--=1--+-­
an+1 n n 1+p 

where p > 0 and {9n } is a bounded sequence. Then E~=l an converges if K > 1 and 
diverges if K ~ 1. 

6.92 "II". Discuss the convergence of the following series: 

00 n! 

]; (0 + 1)(0 + 2) ... (0 + n) , 
o positive integer, 

f 1 . 4 . 7 ... (3n - 2) , 

n=l 3·6·9 .. · 3n 

f (1.4.7 ... (3n-2))2. 
n=l 3·6·9 .. · 3n 

6.93 "II. Let Un "" Vn := (_I)n /v'n + 1. The series E~o Un and E~=o Vn converge, 
though not absolutely. Show that the product series En=o Wn, 

n 1 

Wn := (_I)n E (k + 1)(n + 1 - k)' 

does not converge. [Hint: Show that Iwnl ~ 2:::22.] 

6.94,.. Let Ak ~ 0 and Ek=O Ak < 00. Find a sequence of positive numbers {Ok}, 

Ok --+ 00, such that Ek=o OkAk < 00. 



7. Power Series 

The manipulation of series reaches such levels of subtlety that is hard to 
imagine even nowadays in the works of Jacob Bernoulli (1654-1705), Jo­
hann Bernoulli (1667-1748) and Leonhard Euler (1707-1783), and partic­
ularly in the Ars conjectandi by Jacob Bernoulli in Introductio in analisin 
infinitorum and in Institutiones calculi by Euler. For instance in Ars con­
jectandi Jacob Bernoulli introduced the so-called Bernoulli's numbers, see 
Section 7.3 below, which may be defined by 

00 n 

-x--I:B ~l. - n , 
eX -1 n! 

n=O 

Euler proved that 

that in particular yields 

Euler also proved that 

00 (_1)n+l 7T2k(22k -1) 
~ n2k = (2k)! IB2kl, 

that yields for example 

1 1 1 00 (_1)n-l 
1 - 22 + 32 - 42 + ... = I: n2 

n=l 
1 1 00 1 7T2 

1 + 32 + 52 + ... = I: (2n + 1)2 = S' 
n=l 

Still Euler, introducing the so-called Euler's numbers as2 

1 We have Bo = 1, Bl = -1/2, B2 = 1/6, B2n+l = 0 "In ~ 1. 
2 E2n-l = 0 "In ~ 1 e E2n = 42n+1(Bn - 1/4)2n+l /(2n + 1). 
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Figure 7.1. Leonhard Euler (1707-1783) 
and the frontispiece of the A nalysis by 
Sir Isaac Newton (1643-1727). 

found that 

from which 

ANALYSIS 
Per Qua"titatllm 

SERIES, FLUXIONES, 
A C 

DIFFERENTIAS: 
CUM 

Enumeratione Linearum 
TERTII ORDINIS. 

LON l) J N I . 

11. Ofi3dna p.'~' O I'lIH" ..b.w MOCCXL 

1 1 00 (_l)n 1T3 

1 - 33 + 53 - ... = L (2n + 1)3 = 32· 
n=l 

Euler, as many others, treated also divergent series finding their asymp­
totic behaviour3 . 

In the eighteenth century the use of series was however quite formal, not 
much attention was given to their convergence, though it was not totally ig­
nored. It is only in the beginning of the nineteenth century that series were 
treated correctly with Joseph Fourier (1768-1830), Carl Friedrich Gauss 
(1777- 1855), Bernhard Bolzano (1781- 1848), Niels Henrik Abel (1802-
1829). 

A satisfactory definition of convergence appeared in the Theorie analy­
tique del La chaleur, but the first rigorous definition is due to Gauss in the 

3 Divergent series playa fundamental role in the study of differential equations, as, for 
instance, in the study of the vibrations of membranes with Wilhelm Bessel (1784-
1846) , Enrico Betti (1823- 1892), Thomas Jan Stieltjes (1856- 1894) and Ernesto 
Cesaro (1859- 1906) among others, and starting from J . Henri Poincare (1854-1912) , 
in the theory of perturbations of integrable differential systems. 
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DISQVISITIONES GENERALES 
CIRCA SERIEM INFIl\'ITAM 

CAttOLO FRIOERICO GAVSS. 

PAR. Ii I. 

SOC1ItTATJ Q:G[At .sCI£NTIARVa:i TRADITA,lAfI:.JCl. II"· 

INTltoDYCrllJ. 

r. 
SerIes. qmlllIl# hn. ~ommllnUllolle perfullttri {"fclpmltl •• t'IIl' 

qutm fuo81o qo.~tltOt' qUlolllawm _ .. :, ,.. :11: {pta.n poten. qUal' 

~J:'(~.~:;o;~lIiq~:~:~d~n~~~:~~~:'!lIM4~:';olUe~:n~:~~ 
prlmum t1lto kc:ulld. pernwtJrll liter. Ijuodli itlqlllt bcft1IItUs (lull". 
tuitln ~ftt.1XI 'hoc li,ll'o FCc, C.,., It) dCIIO!AIXIUJ, hl~IIIQ' 
F<C ... 7. x):;: ,(.,,,,. s). .. 

Trih'Ddo el,~lItit., C. ')' .. IOlts delermllittOf. (we aoar. 
fa {UCl8ioQem l'lUc.l nrl.blllJ Jf tranlh. qllit muffetio pof! f~,rol_ 
IlIUU '-:--'- ... , I_~ .brllmp!lur, n.- I nl 1:-1 tort DU_ 

QlHIUi Illle,er O.,.IIIIIIJ , 111 eal'bDI nHqu:c uto, !IlIDfioJWIlI uw.r· 
II. I fit. 

Figure 7.2. The frontispiece of Ars conjectandi by Jacob Bernoulli (1654~ 1705) and the 
first page of the Disquisitiones by Carl Friedrich Gauss (1777~1855). 

paper Disquisitiones generales in 1812, in which Gauss studies the hyper­
geometric series already discussed by Euler. Finally, it was with Bernhard 
Bolzano (1781- 1848) and, especially, with Augustin-Louis Cauchy (1789-
1857) in his Cours d'Analyse that the theory of series found its firm basis. 
With Karl Weierstrass (1815-1897) the theory of complex power series 
identifies with the theory of complex analytic junctions, a theory which 
is extremely relevant in physics and engineering, as well as in algebraic 
geometry and analytic number theory. In connection with number theory 
we should at least mention Dirichlet series 

the simplest of which is 
00 1 

((z) := """ -~nz 
n=l 

that defines for R(z) > 1 Riemann's zeta junction, of tremendous relevance 
in studying the distribution of prime numbers as 

1 
((z)= II 1-p-z ' 

P prIme 

as well as in studying the distribution of the eigenvalues of differential 
operators. 

Of course our goal in this chapter is a great deal more modest. We shall 
develop the basic theory in the first section, where we see how power series 



238 7. Power Series 

preserve much of the rigidity of the polynomials, and we shall discuss some 
applications in the last two sections, trying to give a flavour of their use 
in the eighteenth century in Section 7.4. 

7.1 Basic Theory 

Given a sequence {an} of real or complex numbers, the power series cen­
tered at 0 with coefficients {an} is 

00 00 

LanZn
:= ao + LanZn, z E C, 

n=O n=l 

that is the sequence {sn (z)} of the functions 

n n 

sn(z) = L ak zk := ao + L akzk, ZEC. 

k=O k=l 

We might as well consider the power series centered at Zo with coefficients 

00 

L an(z - zo)n, 
n=O 

but of course the two series are related by a simple change of variables. 
Also, If we restrict ourselves to the real axis x, we may as well consider 
the real power series 2::~o anxn, x E R 

Clearly the series 2::n=O anzn converges or diverges depending on the 
choice of z. 2::~=o anzn obvously converges at zero with sum ao. What 
is special of power series is that to each of them is associated a disc of 
convergence such that the series converges if z is in the interior of the disc 
(provided the radius of that disc is positive) and diverges if z is in the 
exterior of the disc. 

7.1.1 Circle of convergence 

7.1 Definition. Let 2::~=o anzn be a power series. The number p E iR+ 
defined by 

1 
- := lim sup v'lan I, 
p n-+oo 

is called the radius of convergence of 2::~=o anzn. We use the conventions 
1/0+ = +00 and 1/ + 00 = o. 
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7.2,. A series I:::"=o anZn has a positive radius of convergence if and only if {Ianl} 
growths at most exponentially, e.g., if and only if there exists M > 0 such that lanl ~ 
MnVn. 

We have the following. 

7.3 Theorem. Let 2::=0 anzn be a power series with radius of conver­
gence p ~ O. Then 

(i) if P > 0, then 2::=0 anzn converges absolutely for any z such that 
Izl < p; actually, for any 0 < r < p the series 2::=0 lanlrn converges, 

(ii) 2::=0 anzn does not converge if Izl > p. 

Proof. The proof is essentially a repetition of the proof of the root test. 

(i) Let t be such that 0 < r < t < p. Since limsuPn--++oo v'lanl = lip 
there exists n such that 

for all n ~ n, hence 

from which 
for all n ~ n. 

A comparison with the geometric series yields the second claim and the 
estimate 

Vp~n, (7.1) 

and therefore (i). 

(ii) If Izl > p, then lim sUPn--+oo v'lanllzln = Izil p > 1. From the 
characteristic property of lim sup, if h is a number between 1 and I z I I p, 

we can find a subsequence {akn} of {an} such that Vlaknizl ~ h "In, i.e., 

lakn Ilzlkn ~ hkn "In. 

It follows that lakn Ilzkn I ---t 00. In particular, anzn does not converge to 
zero, consequently by the following. 

Proposition 6.7 the series does not converge at z. 0 

7.4 Remark. Theorem 7.3 implies the following characterizations for the 
radius of convergence p of 2::=0 anzn: 

00 

p: = sup{ Izil L anzn converges absolutely} 
n=O 

00 

= sup{ Izil L anzn converges}. 
n=O 
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a. The disc and the domain of convergence 
Theorem 7.3 implies that the domain of convergence of a power series, 
that is the set .:l of points in which it converges, is its disc of convergence 
{z Ilzl < p}, (the open interval]- p, p[ for real series) union possibly one 
or more points on the circle Izl = p (one or both of -p, p for real series) 

{ z Ilzl < p} c .:l c {z Ilzl ::; I}. 

Let us see a few examples. 

7.5 Example. We already saw several times that the geometric series ~~=o xn con­
verges if and only if Ixl < 1 and that 

00 1 
Lxn = --, Ixl < 1. 
n=l 1 - x 

The domain of convergence of the geometrical series is then the open inteval] - 1,1[. 
Similarly we proved in Example 6.40 that the complex geometric series ~~=o zn 

converges if and only if Izl < 1. This time the domain of convergence is the interior of 
the disc of convergence, {z Ilzl < I}. 

7.6 Example. The power series ~;::O=O xn /n 2 converges absolutely, hence converges, 
for all x such that Ixl ~ 1, since in this case Ixln /n2 ~ l/n2 for all n and ~~=11/n2 
converges. ~~=o xn /n2 does not converge if Ixl > 1 by Proposition 6.7 since in this 
case Ix In /n --> 00. Thus ~~=1 xn /n2 converges (actually converges absolutely) if and 
only if Ixl ~ 1. This time the domain of convergence is the closed interval [-1, IJ. 

With exactly the same computations, one can show that the complex series 
~~=1 zn /n2 converges absolutely if and only if Izl ~ 1 and does not converge if Izl > 1. 
Thus the domain of convergence is the disc of convergence union its boundary. 

n+l 
7.7 Example. We saw in Example 6.13 that ~~=o(_l)nxn+l converges if and only 

if -1 < x ~ 1 with sum log(l + x). Thus ~~=o( _l)nxn+l /(n + 1) has radius of 
convergence p = 1, and its domain of convergence is the half-open interval J - 1, 1J. 

n+l 
The complex series ~;::O=O( _1)n ~+1 has the same radius of convergence p = 1. 

Thus it converges absolutely if Izl < 1 and does not converge if Izl > 1. It can be 

proved as a trivial application of the Dirichlet test,Theorem 7.30, that ~~=1 (_I)n z;::: 
converges at any z such that Izl = 1 except z = -1. Therefore this time the domain of 
convergence is {z Ilzl ~ 1, z ~ -I}. 

7.8 Example. The power series ~~=1 ~z2n has coefficients 

and radius of convergence 1/../2 since 

if n is odd, 

ifn = 2p, 

1 ~P - = lim sup ~ = lim 2 2" = ../2. 
P n-+oo P---+OO p 

We may also regard ~~1 (2n /n2)z2n as a power series in 2Z2. In other words, by 

changing variable, w := 2z2, we get the power series in Example 7.6, ~~=1 wn /n2, 
that converges absolutely for all w such that Iwl = 21z12 ~ 1, concluding that 
~;::O=l (2n /n2)z2n converges absolutely for Izl ~ 1/../2 and does not converge for 

Izl > 1/../2. 
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7.1.2 Continuity of the sum 

Let 2::=0 anzn be a power series with radius of convergence p > O. For 
any n, Sn(Z) := 2:7=0 ajzj is a polynomial, it is therefore natural to ask 
how many properties of the functions Sn(z) are preserved when passing 
to the limit. In particular, is the sum of the series S(z) continuous in its 
domain of definition? It is hard to resist writing 

lim S(z) = lim lim Sn(z) 
z ........ zo Z-+Zo n-+oo 

(7.2) 

= lim lim Sn(z) = lim Sn(ZO) = S(zo). 
n-+oo Z-+Zo n-+oo 

However, it is a fact that the change in the order is not allowed, i.e., the 
equality 

lim lim Sn(z) = lim lim Sn(z) 
%-+Zo n-+oo n-+oo %-+zo 

is in general false. For instance, if Sn(x) = xn, x E [0,1), then 

lim lim xn = lim 0 = 0 and lim lim xn = lim 1 = 1. 
x-+l- n-tOO x-+l n-+oo x-+l- n--+oo 

(7.3) 
The computation in (7.2) is therefore unjustified. 

a. Uniform Convergence 
The exchange of limits in (7.2) turns out to be correct in case we have a 
uniform estimate (in z) for the error when replacing S(z) by Sn(z). For 
the relevance of this notion it is worth giving the following 

7.9 Definition. Let {Sn} be a sequence of functions Sn : A - C defined 
on a subset A of JR.2, and let S : A-C. We say that {Sn} converges 
uniformly to S in A if 

tiE > 0 3 Ti such that ISn(z) - S(z)1 < E tin 2: Ti and tlz E A. 

We say that a series of functions 2::=1 fn(z) converges uniformly in A 
to f : A - C, if the sequence of its partial sums converges uniformly in A. 

7.10 Remark. In comparison with the pointwise convergence in A, that 
is Sn(Z) - S(z) tlz E A, the uniform convergence says (requires) that the 
index Ti, for which the error ISn(z) - S(z)1 is smaller than E for all n 2: Ti, 
does not depend on the particular point z E A. 

Notice that the definition does not allow us to produce a uniform limit, 
but it only allows us to verify whether a function S : A - JR. is or is not the 
uniform limit of the sequence {Sn}. According to Definition 7.9, computing 
uniform limits is a two-step procedure: 

o first, guess a possible limit function S : A - JR., 
o second, prove that S is in fact the uniform limit of {Sn} in A. 
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By considering the maximal error between Sn(z) and S(z) when z 
varies in A, 

IISn - Slloo,A := sup ISn(z) - S(z)l, 
zEA 

we can say, by comparing the explicit definitions, that Sn ---+ S uniformly 
if and only if the numerical sequence {IISn - Slloo,A} ---+ 0 as n ---+ 00. Also, 
from 

ISn(z) - S(z)1 S IISn - Slloo,A Vz E A, 

uniform convergence of {Sn} to S in A implies pointwise convergence at 
each point z E A. As consequence the pointwise limit is the only possible 
candidate to be the uniform limit. 

The converse of the last claim is false in general, since there exist 
sequences of functions that converge pointwisely but not uniformly, as the 
following example shows. 

7.11 Example. Consider a function cp : 1R -> 1R that is bounded with iicpiioo,1R = M > ° 
and such that cp(x) -> ° as x -> -00. Define Sn(x) := cp(x - n), x E R We see that 
for any fixed x, Sn(x) -> 0, hence {Sn} converges pointwisely to 0, but {Sn} does not 
converge uniformly to zero since IIEnlloo,lR = IIcplloo,lR = M > 0. 

7.12,. Show that the sequence {CPn} of functions cpn : [O,lJ -> 1R given by cp(x) := 
~e-x/n converges to zero in [O,lJ but not uniformly. 

h. Continuity of uniform limits 

7.13 Theorem. Let {Sn} be a sequence of continuous functions Sn : A ---+ 
C on A and suppose that {Sn} converges uniformly in A to S : A ---+ C. 
Then S is continuous on A. 

Proof. Let Zo E A and € > O. Since Sn(z) ---+ S(z) uniformly, there exists 
n such that ISn(z) - S(z)1 < € for all z E A. Consequently 

IS(z) - S(zo)1 = ISn(z) - Sn(ZO) + S(z) - Sn(z) + Sn(ZO) - S(zo)1 
S ISn(z) - Sn(zo)1 + IS(z) - Sn(z)1 + IS(zo) - Sn(ZO) I 
S ISn(z) - Sn(ZO) I + 2€. 

Since Sn is continuous, we also find 8 > 0 such that ISn(z) - Sn(zo)1 < € 

whenever z E A and Iz-zol < 8. In conclusion we infer that IS(z)-S(zo)1 < 
3€ for all z E A with Iz - zol < 8. 0 

Notice that the assumption of uniform convergence in Theorem 7.13 
cannot be dropped. For instance, the sequence {xn}, x E [0,1]' converges 
pointwisely to the discontinuous function 

S(x) = {o ~f 0 S x < 1, 
11fx=1. 
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c. Uniform convergence of power series 

Going back to power series, we have the following. 

7.14 Theorem. Let L::=o anzn be a power series that converges abso­

lutely at zoo Then L:~o anzn converges uniformly in {z Ilzl ::; Izol}. In 
particular, if p is the radius of convergence of L::=o anzn and p > 0, then 
L::=o anzn converges uniformly in {z Ilzl ::; r} for all r < p. 

Proof For Izl ::; Izol and n ~ 1 we have by the triangular inequality 

00 00 00 

18(z) - 8n(z)1 = / L ajz
j

/::; L lajllzlj ::; L lajllzolj , (7.4) 
j=n+l j=n+l j=n+l 

hence 

sup /8(z) - 8n(z)1 ::; 
Izl:<::lzol 

00 

j=n+l 

The second part of the claim follows from Theorem 7.3. 

Theorems 7.14 and 7.13 then yield at once 

n -+ 00. 

o 

7.15 Corollary. Let 8(z) = L::=o anzn be the sum of a power series 
with a positive radius of convergence p > O. Then 8(z) is continuous on 
{zllzl <pl· 

Proof. Let Zo be inside the disc of convergence, Izol < p, and let s be such 
that /zol < s < p. By Theorems 7.14 and 7.13 the restriction of S(z) to 
Izl ::; s is continuous. Consequently 8 is continuous at Zo, since Izol < s. 

o 

7.16,. Show directly, that is, by using the definition of continuity, that the sum of a 
power series is continuous on {z Ilzl < pl. [Hint: Let Zo be such that Izol < p. Observe 
that for a < p - Izol and Iz - zol < a one has 

If: an zn - f: anzgl = I f: anCzn - zg)1 
n=O n=O n=l 

00 

:s I L {anCZ - zo)Czn- 1 + zn-2 zo + ... + zz~-2 + z~-l)}1 
n=l 

00 00 

:s L lanll z - zolnClzol + a)n-l = Iz - zol L nlanlClzol + a)n-l.] 
n=l n=l 
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7.1.3 Differentiation and integration 

In this section we deal with the series of derivatives and integrals given 
respectively by 

00 

L nanzn- 1 and 
n=l 

and show that in the interior of the disc of convergence the derivative and 
the integral of the sum are the sums of the series of derivatives and of 
integrals 

00 00 

D( L anZn) = L nanzn- 1
, 

n=O n=l 

In doing that we deal first with the real POWer series and then with the com­
plex power series, since in the latter case, one needs to introduce suitable 
notions of differentiation and integration, for functions of complex vari­
ables. We postpone the discussion of som() partial results at the boundary 
to the next section. 

a. Series of derivatives and of integrals 

7.17 Proposition. The power series I:~=o anzn , 2:~=1 nanzn- 1
, and 

",",00 n+l h d' f 
Lm=O an ~+l all have t e same ra JUs 0 convergence. 

Proof. Let p and (T be respectively the radii of convergence of 2:~=o anzn 

and of 2:~=1 nanzn- 1
. Let us prove that fJ = (T. We first prove that (T :::; p. 

Assuming (T > 0 since otherwise the claim is trivial, fix z such that Izl < (T. 

Since 
n ~ 1, 

we deduce that 2:~=o anzn converges ab~olutely at z by the comparison 
test; thus p ~ (T. 

Let us prove that p :::; (T. Assuming p > 0, for any fixed Izl < p, let r 
be such that Izl < r < p. We infer that 2:~=o lanlrn converges, so that 
{Ianlwn} is bounded, lanlwn :::; M, hence 

Therefore again the comparison test implies the absolute convergence of 
2:~=1 nanzn- 1 at z; z being arbitrary, W6, then conclude that (T ~ p. 

Finally, 2:~=o an ~n:; has radius of conVergence p, too, since 2:~=o anzn 

. h . f d . t' f ",",00 zn+] IS t e senes 0 enva Ives 0 L..m=O an n+l-' D 
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7.18 ~. Show that 

limsup yt(n + l)lan+ll = lim sup 1/ lan- 11 = limsup vlaJ 
n-+oo n-+oo n n-+oo 

inferring this way Proposition 7.17. 

Iterating Proposition 7.17 we also conclude that, for every k, the series 
of the k-th derivatives 

00 

L n(n - l)(n - 2)··· (n - k + l)anzn- k 

n=k 

has the same radius of convergence of E:'=o anzn. 

b. Real power series 

Consider a real power series E:'=o anxn in which {an} C JR and X E JR. 
Notice that its domain of com'ergence is an interval of radius (J, (J being 
the radius of convergence of the series, that can be either open, closed, 
left-closed or right-closed. 

First we state the following simple theorem concerning the exchange of 
limit and integrals. 

7.19 Theorem. Let {Sn} be a sequence of fun.ctions Sn : [a, b] -+ JR that 
converges uniformly to S : [a, b]-+ JR on the bOllnded interval [a, b]. Then 

lb Sn(x) dx -+ lb S(x) dx. 

Proof. This follows at once, observing that S(x) being continuous by Theorem 7.13, we 
have 

1 
rb (Sn(x) - S(x)) dxl ::; (b - a) sup ISn(x) - S(:I;) I 

la xE[a,b] 

= (b - a) IISn - Slloo,[a,b]' (7.5) 

o 

7.20 Remark. Notice that both the assumptions of the uniform conver­
gence and of performing the integrals on a bounded interval cannot be 
dropped in Theorem 7.19. For instance, starting with cp(x) = xe-x , 

o Choosing Sn(X) := ~cp(~), we have IISnlloc,,[o,oo[ II",II:-[o,oo[ -+ 0, 
hence Sn converges uniformly to S(x) = 0, but 

looo Sn(x) dx = looo cp(x) dx > ° for all n 2: 1 

although for any a > 0, 

loa Sn(x) dx = loaln cp(x) dx -+ ° as n -+ 00. 
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o Choosing Sn(x) := ncp(nx), x E [0,1], Sn(x) converges pointwisely to 0 
Vx E [0,1], and 

11 Sn(X) dx = 1n 
cp(t) dt -+ 100 

cp(t) dt > O. 

7.21 Theorem (Differentiation and integration of power series). 
Let S(x) be the sum of the power series 2:::=0 anxn. If 2:::=0 anxn con­
verges uniformly to S on an closed interval [a,,BJ c JR, then 

l
f3 

00 lf3 S(x) dx = Lan xn dx. 
a n=O a 

Consequently, 

(i) assuming that the radius of convergence p of 2:::=0 anxn is positive, 
we have 

(7.6) 

for all x, Ixl < p, 
(ii) S E COO(] - p, p[) and 

00 

DkS(x) = L n(n -1).·· (n - k + l)xn- k, Ixl < p. (7.7) 
n=k 

Proof. The first claim and (i) follow at once from Theorem 7.19 since 8n (x) := 
2::;'=0 ajxj converges uniformly to 8. 

(ii) From (i) and Proposition 7.17 we get 

00 

= L anxn = 8(x) - ao = 8(x) - 8(0). 
n=l 

By the fundamental theorem of calulus, 8 is then differentiable on {Ixl < p} and 

00 

8'(x) = L nanxn- 1
, 

n=l 

The proof is then easily completed by induction. 

7.22,.. Show the following 

Ixl < p. 

o 

Proposition. Let {8n } be a sequence of functions 8 n : [a,b] -+ JR of class C1[a,b]. 
Suppose that the derivatives 8~ : [a, b] -+ JR converge uniformly to a function T : fa, b] -+ 

JR and that 8 n (xo) -+ )" E JR as n -+ 00 for some Xo E fa, b]. Then 

(i) {8n } converges pointwisely to a function 8: fa, b] -+ JR, 
(ii) 8 is differentiable on fa, b], 8'(x) = T(x) "Ix E fa, b] and 8 is of class Cl(fa, bJ). 
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[Hint: Compare (ii) of Theorem 7.21.] 

7.23 Remark. Theorem 7.21 extends immediately to series E~=o ianxn 

with an E C and x E JR. Assuming that E:'=o anxn has a positive radius 
of convergence p > 0, we have 

00 00 00 

L anxn = L ~(an)xn + i L ~(an)xn, 
n=O n=O n=O 

D( f: anxn) = (f: ~(an)xn) + i( f: ~(an)xn), 
n=O n=O n=O 

for all x E JR, Ixl < p. 

7.24 Example. Denote by Si: [0,00[-+ IR the function 

S·() l"sint d IX:= - t. 
o t 

By Theorem 7.21 we find 

-dt = -1 n __ dt = -1 n 1" sin t 1" 00 t 2n 
00 x2n+l 

o t o];() 2n+ 1 ];() (2n+ 1)(2n+ I)!' 
X> 0, 

and the following error estimate in the approximation Si(x) '" L:~=o( _1)n (2n;:)~;~+1)! 
holds, 

00 x2n+1 x 2p+ 1 

I ~ (_I)n (2n + 1)(2n + I)! I :::; (2p + 1)(2p + I)!' 

c. Power series and Taylor series 

From (7.7) we infer the following. 

7.25 Theorem. Let E::'=o anxn be a power series with positive radius of 
convergence. Then it is the Taylor series of its sum S(x) := E:'=o anxn, 
that is, 

Vn 2: O. (7.8) 

Theorem 7.25 expresses the rigidity of the sums of power series: it 
suffices to know S(x) in a small interval] - 8, 8[ of the real axis to know 
its derivatives at O. By Theorem 7.25 all coefficients an are then identified, 
and in turn the sum S(x) on the entire domain of convergence. Explicit 
formulas exist in some cases, but we do not pursue this point which is 
nowadays part of the theory of functions of complex variables. 

Another immediate consequence is the following. 
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7.26 Theorem (Principle of identity of power series). Suppose that 
2:::'=0 anxn and 2:::'=0 bnxn converge in ]-p, p[, p > 0, and that 2:::'=0 anxn 

= 2:::'=0 bnxn on ] - p, pl. Then an = bn for all n. 

d. Complex series 
The theorem of differentiation and integration of series extends to complex 
power series provided suitable definitions of "complex derivative" and of 
"integral of a complex function" are given. We do not give here fully general 
definitions, as it would lead us into the theory oj functions oj complex 
variables. Here we make only a few remarks. Let J : Bee ---+ C be a 
function defined on an open ball B centered at zero in the complex plane, 
B := {z Ilzl < pl. We say that J has complex derivative at Zo E B if the 
following limit exists in C, 

lim J(z) - J(zo) =: J'(zo). 
Z-+Zo z - Zo 

We define the integml oj J from 0 to z = x + iy E B as 

foZ J(w) dw:= fox J(t + iO) dt + 1Y 

J(x + it) dt. 

7.27 Remark. Notice the following: 

(i) We have 

j z zn+l 
wndw:= -­

o n+1 

as one can see by a direct computation. 

Vz E C 

(ii) Because of the fundamental theorem of calculus, if J : B ---+ C has a 
complex derivative that is continuous, then 

J(z) - J(O) = 1z 

DJ(z) dz (7.9) 

as one can check from the definition. 
(iii) From (ii) it follows: if J has a continuous complex derivative on B 

and DJ(z) = 0 "iz E B, then J is constant on B. 
(iv) If 9 : B ---+ C has a complex derivative, then the function J : B ---+ C 

defined by 

J(z):= 1z 

g(w) dw, 

has a complex derivative on B and DJ(z) = g(z). This is actually a 
key point of the theory of functions of a complex variable. 

With these definitions Theorem 7.21 extends to the following. 
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7.28 Theorem (Differentiation and integration of power series). 
Let L~=o anzn converge with a positive radius of convergence p > 0 and 
let S(z) be its sum, S(z) := L~=o anzn. Then 

(i) S(z) has complex derivatives of any order in {Izl < p} and 

00 

DkS(z) = L n(n - 1)··· (n - k + l)zn-k, Izl < p. 
n=k 

(ii) 

Proof. Assuming (iv) of Remark 7.27, one can repeat the proof of Theo­
rem 7.21. Here we present a more direct proof. 

(i) Fix z such that Izl < p and let 8 = 8(z) be such that Izl < 8 < p. 
We notice that for any h with 0 < Ihl < 8 -Izl, we have 

S(z + h) - S(z) _ .!. (~ ( h)n _ ~ n) 
h - h ~ an z + ~ anz 

n=O n=O 

1 00 

= h Lan (z + h)n - zn) 
n=l 

loon ( ) = h ~ an (t; ~ zk h
n
-

k 
- zn) 

00 n-l 

= Lnan(LZkhn-k-l) 
n=l k=O 
00 00 n-2 

= Lnannzn- 1 + Lan(LZkhn-k-l), 
n=l n=2 k=O 

that is, 

I
S(Z+h)-S(Z) _ ~ n-11 < I ( h)1 h ~ nanz _ w .z, , 

n=l 

(7.10) 
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Iw(z, h)1 ~ Ihl ~ lanl (~ (~}zlklhln-k-2) 

= Ihl~lanln(n2-1) (~(n~2)IZlklhln-k-2) (7.11) 

= Ihl f lanl n(n 2- 1) (Izl + Ihl)n-2 (7.12) 
n=2 

~ Ihl f n(n
2
- 1) lanl8n = C Ihl 

n=2 

where C E IR is the sum of 2:::=2 n("2-
1

) 8n which converges and does 

not depend on h. In conclusion, (7.10) and (7.11) yield S(z+hZ-S(z) -> 

2:::=1 nanzn- 1 as h -> O. Since z has been chosen arbitrarily in the interior 
of the disc of convergence, we then conclude that S is differentiable at each 
point z with Izl < p, and 

00 

DS(z) = L nanzn-l, Izl < p. 
n=l 

By induction on k we then infer (i). 

(ii) For Izl < p and t E [0,1], the complex series of the real variable t 
2:::=o(anZn)tn has radius of convergence larger than 1 and sum S(tz). 
From Remark 7.23 then 

o 

7.2 Further Results 

7.2.1 Boundary values 

Let 2::::0 anzn be a power series with radius of convergence that we as­
sume for the sake of simplicity to be 1. As we have seen, if the series 
converges absolutely at some boundary point z, Izl = 1, then it converges 
absolutely at every boundary point. 

In some cases the following test is useful. 
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7.29 Proposition (Absolute convergence at the boundary). Let 
2::=0 anzn be a power series with a positive radius of convergence p > 0 
and sum S(z). Suppose that for some Zo E C with Izol = p and for each in­
teger n, anzo is a nonnegative real number and that lim suPr .... l- S(rzo) < 
+00. Then 2::=0 anzn converges absolutely at all z such that Izl = p. 

Proof. In fact, if Izl = Izol = p, for any p ~ 0 we have 2:~=0 anzorn :::; 
,\,00 n n h L..m=O anzo r , ence 

p p p 

L lanllzln = L lanllzoln = lim Lanzgrn 
r .... l-

n=O n=O n=O 
00 

:::; lim sup L an (rzo)n = limsupS(r zo) < +00. 
r-+l- n=O r .... l-

o 

Let 2::=0 anzn be a power series with radius of convergence 1. If the 

series 2::=0 anzn does not converge at every boundary point Izl = 1, then 
at those points at which it converges it does not converge absolutely. The 
following theorem deals with one such case. 

7.30 Theorem (Dirichlet). Let 2:7=0 anzn be a series with radius of 
convergence 1. Suppose that the sequence {an} converges to zero and has 
bounded total variation, 

00 

L lan+l - ani < 00. 

n=O 

Then 2::=0 anzn converges for all z with Izl = 1 and z # 1 and 

(7.13) 

in particular 2::=0 anzn converges uniformly on every domain Dp := 
{z Ilzl :::; 1,11 - zl ~ p} for all p > O. If moreover S(z) is its sum, then 
S(z) is continuous on {zllzl:::; l,z #1} and 

(1 - z) S(z) - 0 

Proof. For Izl < 1 we have 

as z - 1, Izl :::; 1. 

I

n '1 11 - zj+1
1 

2 
zJ = <--' ~ 1- z - 11- zl' 

therefore by Dirichlet's test, Theorem 6.55, 2::=0 anzn converges and 
(7.13) holds. We therefore infer from (7.13) the uniform convergence of 
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2:::'=0 anzn on Dp. This proves the first part of the theorem, and the con­
tinuity of the sum S(z) on {z Ilzl ::::; 1, z =f I}. 

To prove the second part, for f > ° choose n in such a way that 
2::~n+llaj+l - ajl < f. If Sn(z) denotes the n-th partial sum, by (7.13) 
we have for Izl ::::; 1, 

1(1 - z) S(z)1 ::::; 1(1 - z) Sn(z)1 + 1(1- z) (S(z) - Sn(z)) I 
00 

= 1(1- z) Sn(z)1 + 1(1- z) L anZnl 
j=n+l 

::::; 1(1 - z) Sn(z)1 + 4(':. 

Being that (1- z)Sn(z) is a polynomial, hence a continous function, there 
exists 0> ° such that 1(1- z) Sn(z)1 < f for Iz -11 < 0, hence we conclude 
for Iz - 11 < 0 and Izl ::::; 1 that 1(1 - z)S(z)1 ::::; 5f. 0 

Suppose that 2:::=0 anzn converges at a point Zo of the boundary 
{z II z I = I} of its disc of convergence; is its sum continuous at zo? Of 
course the answer is yes if 2:::'=0 anzn converges absolutely; in this case, 
in fact, it converges uniformly in {z Ilzl ::::; I} by Theorems 7.14 and 7.13. 
The next theorem gives a partial answer in the general case. 

7.31 Theorem (Abel). Suppose 2:::'=0 anzn has radius of convergence 
1 and converges at Zo with Izol = 1. Then the series of real powers with 
complex coefficients 2:::'=o(anz~)tn converges uniformly on [0,1]' and its 
sum s(t) := S(tzo), S(z) being the sum of2:::'=oanzn, is continuous on 
[O,IJ. 

Proof. Set an := tn, j3n := anz~ and Bn .- 2::7=0 j3n. By assumption 
2:::'=0 j3n converges and 

if 0< t < 1, 
if t = 1, 

since t E [0, IJ. By Abel's test, Theorem 6.57, applied with an := an and 
bn := j3n, we get 

00 00 

1 L ajj3jl::::; sup IBj - Bp-11{ 2 L It
j 

- t
j
+11 + WI} 

j=n+l J~n+l j=n+l 

::::; 3 sup IBj - Bp-11, (7.14) 
j~n+l 

where Bp := L::~=o j3p. On the other hand, given f > 0, there exists n such 
that IBp - Bn I < f for n, p 2 n, hence 

00 00 

1 L anz~tnl = 1 L ajj3jl::::; 3f. 
j=n+l j=n+l 
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Therefore the series 2::'=o(anz~)tn converges uniformly in [0,1), and the 
function s(t) := 2::'=o(anz~)tn is continuous in [0,1) by Theorem 7.13. 0 

In particular, we can state the following. 

7.32 Corollary. Let 2::'=0 anzn be a power series with radius of conver­
gence P > o. If it converges at Zo with Izol = p, then its sum is continuous 
when restricted on the closed segment joining 0 with zo0 Moreover we have 

1
Z0 11 00 zn+1 

S(w)dw = Zo S(tzo)dt = Lan~l· 
o 0 n=O n + 

(7.15) 

As a consequence we can prove the claim (i) in Remark 6.61. 

7.33 Theorem (Abel). If 2::'=~n and 2::'=0 bn converge respectively 
to A and B and the product series .L:'=o cn, Cn := 2:~=0 akbn-k, converges 
to C, then C = AB. 

Proof. Set f(x) = 2::'=0 anxn , g(x) = 2::'=0 bnxn and h(x) = 2::'=0 Cnxn , 
o ~ X ~ 1. Since f(x)g(x) = h(x) for 0 ~ x < 1 <, see Theorem 6.60, 
and f(x) -+ A, g(x) -+ Band h(x) -+ C by Theorem 7.31, the claim 
follows. 0 

7.2.2 Product and composition of power 
series 

An immediate consequence of Theorem 6.60 is the following. 

7.34 Theorem. Let 2::'=0 anzn and 2::'=0 bnzn be two power series with 
respectively radii of convergence Pa > 0 and Pb > o. Then the series 
~:=o Cnzn , where en .- 2:~=0 anbn-k, has radius of convergence Pc 2: 
max(Pa, Pb) and 

Notice that Pc is at least the maximum of Pa and Pb. For instance, if 
2::=0 bnzn is a polynomial, then 2::'=0 Cnzn is a polynomial, too, hence 
Pb = Pc = +00, no matter the size of Pa. 



254 7. Power Series 

a. Weierstrass's double series theorem 
Suppose that all series 

00 

Sm(z) := LamkZk, 
1=0 

m = 0,1,2, ... , 

are convergent at least for Izl < R, R> 0 and that for every p < R 

00 

S(z) := L Sm(z) 
m=O 

is uniformly convergent on Izl :::; p. Then we have 

7.35 Theorem. The coefficients of the power series of z in the respective 
series form a convergent series and if we set 

00 

ak:= L amk, 
m=O 

the series L~o akzk sums to S(z) at least for Izl < R. Moreover S(z) is 
infinitely differentiable and 

This follows at once from Proposition 6.66 

7.2.3 Taylor series: examples 

Taylor series of given smooth functions (see Section 6.1) are important 
examples of power series on which one can test the theory. 

7.36 Example. We proved in Example 6.15 that 

00 n 00 2n 

"'"' ~ = eX L..J, ' 
n=O n. 

00 x2n+l 
L(-I)n ( = sinx, 
n=O 2n+ I)! 

L(-l)n (x )' = cos x 
n=O 2n. 

for all x E JR, thus the radius of convergence of all these series is 00. Convergence to 
their respective sum is uniform on every bounded interval. 

7.37 Example (Geometric series). We saw at several places that the geometric se­
ries L:~=1 xn converges if and only if Ixl < 1, and sums to 

00 1 

L xn 
= I-x' 

n=O 
Ixl < 1. 
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The convergence is uniform on every interval [-r, r] with r < p. Observe that the 
convergence is not uniform, neither in the open interval ] - 1, 1 [ nor in the interval 
] - 1,0] in which the sum is bounded, since the quantity 

II 
1 n ;en+1 I 

-- - xk = sup --- = 1. 
1 - x E 1100,l-1,Ol xEl-1,oll t - x 

7.38 Example (Logarithm). Replacing x by -x in 

we get 

1 00 
I-x = L

xn
, 

n=O 

Ixl < 1, 

Ixl <:: 1, 

and integrating, 

l z 1 lX 00 00 xn+1 
log(l+x)= -dt= L(-I)ntn dt=L(-l)n_, 

C\ 1 + t C\ n=O n=O n + 1 
Ixl < 1, (7.16) 

an equality that we already know by an ad hoc computation (see Example 6.13). In fact 
n+, 

there we proved that 2:~=0 ( -1) n xn+ 1 converges if -1 .c. x ~ 1, does not converge if 
x = -11, and the equality (7.16) holds if -1 < x ~ 1. 

On the other hand, the radius of convergence of 2:~=0( _1)n xn
n
: 1, is 1 since II p = 

lim sUPn~oo y'i7n = 1. We then conclude that 2:~=0 (-l)n ':~1' converges if and only 
if -1 < x ~ 1 and 

00 n+1 
L(_I)n_

x
_ = log(1 +x), 

n=O n + 1 
x E:]-I,I]. 

7.39 Example (Arc tangent). Replacing x by _x2 in 

1 00 
__ =~xn, 
I-x L..J 

n=O 
Ixl < 1, 

and integrating according to Theorem 7.19 we get 

lo
x 1 loX 00 00 x2n+1 

arctan x = --2 dt = L(-I)nt2n dt = L(-l)n_-, 
o 1 + t 0 n=O n=O 2n + 1 

Ixl < 1, 

(7.17) 
see Example 6.14. There we proved the convergence of the series and the equality (7.17) 
also for x = ±1. 

We can prove the result at x = ±1 by means of the theory. In fact, if x = ±1 the 
series reduces to ± 2:~1 (_I)n 2n1+1 which converges by the Leibniz test. Then Abel's 
theorem yields continuity of the sum of the series at ±1, thus, passing to the limit in 
both sides of (7.17) as x -t ±1, we infer 

00 (±1)2n+1 
arctan±1 = ± L(-I)n----. 

n=O 2n + t 
On the other hand, since IxI 2n+1 /(2n + 1) -t +00 if Ixl > 1, we conclude that 

,,",00 ( )n x2n+l 
wn=O -1 2n+1 converges if and only if Ixl ~ 1, and 

00 x2n+1 
L(-1)n--- = arctan x, 
n=O 2n + 1 

,1;z;1 ~ 1. 



256 7. Power Series 

7.40 Example (The binomial series). We claim that 

where 

a E JR, Ixl < 1, 

(~) := {~(<>-1)(<>-2).--(<'-n+l) 
n! 

ifn= 0, 

ifn2:1. 

(7.18) 

Notice that Dn(1 + x)<> = a(a -1)··· (a - n + 1)(1 + x)<>-n, hence the series in (7.18) 
is the Taylor series of (1 + x)<> centered at zero. 

Since 

as n --> 00 

we infer, see Example 2.57, ~ --> 1; therefore the series in (7.18) has radius of 
convergence 1. 

Let S(x) := 2::;'=0 (~)xn, Ixl < 1. By differentiating we then find, similarly to 5.53 
of [GM1J, 

(1 + x)S'(x) = as(x), Ixl < 1, 

hence 

( 
S(x) )'= (l+x)S'(x)-aS(x) =0. 

(1 + x)<> (1 + x)<>+l 

Therefore we conclude that S(x) = c(l + x)<> for Ixl < 1, c being a constant; finally 
from S(O) = 1 we infer c = 1. 

7.41 Example (The arc sine). Replacing x with _x2 and choosing a = -1/2, in 
(7.18) we get 

_1_ = f (-1/2)(_1)n X2n, 
v'"f=X2 n=O n 

and, integrating, we get 

Ixl < 1 

l
x 

1 l x 
00 ( 1/2) arcsin x = 0 --- dt = ~ ( -1) n - t 2n dt 

v'"f=t2 0 n=O n 

~ n (-1/2) x2n+l 00 (2n - I)!! x2n+l 
= f::o(-l) n 2n + 1 =]; (2n)!! 2n + 1 

(7.19) 

for Ixl < 1, and that the series in (7.19) has radius of convergence 1. The series in (7.19) 
actually converges absolutely if Izl = 1, hence uniformly in {z Ilzl < I}. In fact, the 
coefficients of the series in (7.19), that we denote by {cn }, are nonnegative, hence for 
all p 2: 1, 

p p p 00 

~ Icnl = ~ Cn = lim ~ cnrn::; lim ~ Cnrn = lim arcsinr = ~. 
n=O n=O r~l- n=l r---+l- n=O r---+l- 2 

7.42 Example. Similarly, choosing in (7.18) a = 1/2, we get 

f C~2)(-1)nXn = vT=X, 
n=O 

Ixl < 1 

and the series has a radius of convergence 1. Actually, 2::;'=0 cnzn , Cn := (-!!2) (_l)n, 
converges absolutely if Izl = 1, hence uniformly in {z Ilzl ::; I}. We in fact have Cn < 0 
'in 2: 1, hence, for p 2: 1, 
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p p p 

L Icnl = 1- L Cn = 2 - lim_ L cnrn 
n=O n=l r--+l n=O 

00 -1/2 
::; 2 - lim L ( ) (_r)n = lim 2 -~ = 2. 

r--+l- n=O n r--+l-

7.43 Example. The series E~=o n 2 zn has radius of convergence 1. Writing n 2 zn = 
n(n - l)zn + nzn = z2n (n - 1)zn-2 + znzn-l. and summing, we get, for Izl < 1, 

7.44 Example. We compute 

Writing 
n+2 3 
-- =1+--, 
n-1 n-1 

multiplying by zn and summing we get 

00 + 2 00 00 n-l 2 L ~zn = L zn + 3z L _z __ = _z_ - 3zlog(1- z), 
n-1 n-1 1-z n=2 n=2 n=2 

by using the identities 

~ n_ 1 
L.,z ---, 

1-z n=O 

00 n+l L _z_ = -log(l- z), 
n=O n + 1 

7.45 Example. We compute 

00 1 
'" zn f::s (n + l)(n - 2) . 

Since 
1 1 1 1 1 

(n + l)(n - 2) = 3" n + 1 - 3" n - 2' 

nultiplying by zn and summing, we get, for Izl < 1, 

00 1 n 1 00 zn+l z2 00 zn-2 

~(n+1)(n_2)z =3z~n+1-3~n-2 

Izl < 1. 

1 ( z2 Z3) z2 = - - log(l - z) - z - - - - + -log(l - z). 
3z 2 3 3 

n+l 
Here we used that E~=o ~+l = -log(l - z) if Izl < 1. 

7.3 Some Applications 
In this section we illustrate some applications of the theory of power series. 
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7.46 Example. Conversely we may express L:~=l xn /n2 as an integral. In fact for 
Ixl < 1 we have 

This is easily justified since all series in the previous formulas have radius of convergence 
1 and therefore converge uniformly on [0, x) (respectively [x, 0) if x < 0) if Ixl < 1. 

7.3.1 Complex functions 

7.47 Complex exponential. We defined in (4.6) the complex exponen­
tial eZ by 

eZ 
: = eX ( cos y + i sin y) , z =: x + iy E C. 

Proposition. We have 

Vz E C. (7.20) 

Proof. Since the series of sin y and cos y converge in JR, we get 

00 2n 00 2n+l 
eiY=cosY+isinY=2)-1)n(y),+i2)-1)n(: 1)' 

n=O 2n . n=O n + . 
00 (iy)2n 00 (iy)2n+1 00 (iy)n 

= ~ (2n)! + ~ (2n + I)! = ~--;:!' 
i.e., our claim for z = iy, y E R Therefore by Theorem 6.60 we infer 

00 n 00 (.)n 00 

ex +
iy 

= eX e
iy 

= "" ~ "" ~ = "" Cn ~n!~ n! ~ 
n=O n=O n=O 

where 

~Xk (iy)n-k 1 ~(n) k. n-k 1 . n zn 
Cn := ~ k! ( _ k)' = ,~ k x (zy) = ,(x + zy) = ,. 

k=O n . n. k=O n. n. 

o 

The complex differentiation theorem for series yields also 

00 n-l 00 n-l 
Z ""z ""z z De = ~ n-,- = ~ ( _ 1)' = e . 

n=O n. n=l n . 
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7.48 The complex logarithm. We recall that the principal determina­
tion of the logarithm can be written as 

log z := log Izl + i arg z, 

where arg z E [-7T, 7T[ and arg 1 = 0. 

Proposition. We have 

00 n+l 

log(1 + z) = z) _1)n~, 
n=O n+ 

Proof We observe that for z =f. 0, 

z =f. 0, 

Izl < 1. (7.21) 

and the function log z is continuous on {z = x + ivl y = 0, x ::; O}. Similar 
to the proof of the differentiability of the inverse of a real function (see 
Theorem 4.16 of [GM1]), one sees that log z is differentiable at the points 
at which it is continuous, i.e., on {z = x + iy I y ~ 0, x::; O}, and 

1 
Dlogz = -, 

z 

Integrating, see Remark 7.27, 

z E { z = x + iy I y ~ 0, x::; O}. 

1% d 1% CJO log(1 + z) -log 1 = _z_ = r:( _1)n zn dz 
° z + 1 0 n""O 

00 n+l 

= 2)-I)n~1 dz, 
n=O n+ 

Izl < 1. 

o 

7.49,. Show that equality (7.21) holds for all z with Izl = 1, z f. -1. [Hint: . Use 
Abel's theorem and the continuity of log(1 + z).] 

7.50 Complex trigonometric and hyperbolic functions. Starting from the com­
plex exponential one defines the complex sine and cosine, and the complex hyperbolic 
sine and cosine by 

eiz _ e-iz 
sin z = --,---

2i 
eZ _ e- z 

sinhz = , 
2 

that actually means by (7.20) 

00 2n 
cosz = E(-I)n_%-

n=O (2n)!' 

00 z2n+l 

sinz=E(-I)n(2 )1' 
n=O n+ 1. 
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00 2n 

coshz = E _(z )" 
n=O 2n. 

00 Z2n+l 

sinz=E( ). 
n=O 2n + 1 ! 

Trivially the restrictions of the four previous functions to the real axis agree with the 
corresponding real functions. It is possible to derive several complex "trigonometric" 
identities, that are formally equivalent to the real ones: 

and 

Consequently 

sin2 z + cos2 
Z = 1, 

sin( -z) = - sin z, 

cosh2 - sinh2 = 1, 

sinh( -z) = - sinh z, 

cosh(iz) = cosz, 

eiz = cos z + i sin z, 
cos(-z) = cosz, 

eZ = cosh z + sinh z, 

cosh(-z) = coshz, 

sinh(iz) = isinz. 

cos(z + w) = coszcosw - sinzsinw, 

sin(z + w) = cos zsinw + cosw sin z, 

cosh(z + w) = cosh z coshw + sinhzsinhw, 

sinh(z + w) = coshzsinhw + coshwsinhz. 

sin z = 2 sin(z/2) cos(z/2), 

cos2 (z/2) = (1 +cosz)/2, 

. (w+z) . (w-z) sinw-smz=2cos -- sm --, 
2 2 

2 . (w+z) . (w-z) cosw - cosz = - sm -2- sm -2- , 

7.3.2 An alternate definition of 7r, e and of 
elementary functions 
In [GM1] we defined e, 7r, the exponential function eX and the trigonometric functions 
sin x and cos x using several tricks that involve the infinitesimal calculus. Here we want 
to point out that all these facts can be subsumed by the power series 

00 n 

E:, 
n=O • 

that converges absolutely in C. Define the complex exponential function as 

00 n 

expz:= E ~ 
n=O n! 

Vz E C. 

With some work, using several theorems, including Cauchy's theorem about product of 
series, and the complex differentiation of the sums of complex power series, one may 
prove 

(i) ADDITION THEOREM. exp(z+w) = (expz)(expw), 
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(ii) lexp zl = exp (~z), lexp zl = 1 iff z = iy, Y E JR, 
(iii) exp z is differentiable in the complex sense infinitely many times with derivatives 

of any order equal to exp z. 

Moreover, if z = x + iO is real, then we have for exp x = L:~=o ~~ , 

{
D(eXp (x)) = exp (x), 

exp (0) = 1. 

In other words the restriction of the exponential to the real axis is the exponential 
function we already know. At this point we introduce the two complex functions 

exp (iz) + exp (-iz) 
cosz:= 2 ' 

. exp (iz) - exp (-iz) 
smz:= . 

2i 
(7.22) 

From (7.22) we obtain exp (iz) = cos z+i sin z, z E 1(:, hence, formally, the Euler identity, 

exp (it) = cos t + isin t. 

Again from (7.22), we infer D sin z = cos z, D cos z = - sin z, from which, the functions 
of real variable y(x) := sin(x + iO) and z(x) := cos(x + iO) are respectively solutions of 
Cauchy problems 

{

yll +y = 0, 

y(O) = 0, y'(O) = 1, 
and 

{

yll +y = 0, 

y(O) = 1, y'(O) = o. 

In other words, x --> sin(x + iO) and x --> cos(x + iO) are the trigonometric functions 
that we already know. Again from (7.22), we get 

00 2n 
cosz:= E(-l)n_(z )" 

n=O 2n. 

00 z2n+l 
sinz:= E(-l)n ( ) , 

n=O 2n+ 1 ! 
(7.23) 

which furnishes the needed developments. 
Recovering the number 7r, and discussing the periodicity of sinx and cos x, x E JR, 

from the complex exponential is a litle tricky, but it can be done. One starts proving 
that exp : I(: --> I(: \ {O} is onto, and then one observes that exp : I(: --> I(: \ {O} is a 
homomorphism from the additive group I(: into the multiplicative group I(: \ {O} which 
is onto but not injective: its kernel is given by 

ker(exp) = {w E I(: I expw = 1 }. 

At this point one can show4 that there exists a unique positive number, that we call 7r, 
such that 

ker( exp ) = 27riZ, i.e., exp (27rk) = 1 Vk E Z. 

The addition formulas for the sine and the cosine yield the 27r-periodicity of sin x and 
cosx. 

Concluding, we may regard 7r as one of 

zeros of sin z = k 7r, k E Z, 

zeros of cosz = ~ + k7r, k E Z, 

periods of exp z = ker(exp z) = 2 k7r, k E Z, 

periods of sin z = 27rZ, 

periods of cos z = 27rZ. 

4 See, e.g., the paper by E. Remmert in in H.E. Ebbinghens, H. Hermes, F. Hirzebruch, 
M. Koecher, K. Meier, J. Neurich, A. Prestel, R. Remmert, Numbers, Springer, New 
York, 1988. 
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7.3.3 Series solutions of differential equations 
Power series turn out to be very useful in solving ODEs. Without entering 
the question of when or if an ODE has a series solution or whether all 
solutions can be represented as a power series, we confine ourselves here 
to presenting a few examples. 

7.51 Example. Suppose that the equation 

y"-y=O 

has a solution of the form 
00 

y(x) = Lakxk 
k=O 

with a positive radius of convergence. We therefore have 

00 00 00 

0= L k(k - 1)akxk - 2 - L akxk = L(k(k -l)ak - ak_2)xk- 2, 
k=2 k=O k=2 

hence, by the principle of identity of series, 

For keven, k = 2n, n 2 1, we then find 

a2n = 2n(2n - 1)' 

and, for k odd, k = 2n + 1, n 2 1, 

a2n-l 
a2n+l = (2n + 1)2n' 

i.e., 

i.e., 

k = 2,3,4, .... 

a2n+l = (2n + I)!· 

. . "'"'(X) x2n ""'OC> x2n+l 
Smce the senes L.m=O (2n)! and L..m=O (2n+l)! converge on JR, we conclude that 

00 x2n 00 x2n+ 1 . 

y(x) = ao L -( )' + al L ( )' = ao cosh x + al smhx, 
n=O 2n. n=O 2n + 1 . 

xEJR 

is a solution of y" - y = O. 

7.52 Example. Similarly, for the equation 

y" - xy = 0, 

assuming that the series ~~=o akxk with positive radius of convergence is a solution 
of the ODE, we find 

2a2 + f: (k + 2)(k + 1)ak+2 - ak-l )xk = 0, 
k=l 

i.e., 
(k + 2)(k + 1)ak+2 - ak-l = 0, k = 1,2,3, ... , 

which yield 

{

a3n = 2.3.5.6 .. ~(~n-l)3n' 
a - at 

3n+l - 3.4.6.7 .. . 3n(3n+l) , 

a3n+2 = 0, 

n = 1,2, ... , 

n = 1,2, ... , 

n=0,1,2 .... 
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We find again two series which converge for all x E JR, 

and such that 

00 X 3n 

YI (X) := 1 + L 2 . 3 . 5 . 6 ... (3n - 1)3n ' 
n=1 

<Xl x 3n+1 

Y2 (x) := 1 + L --------,------:­
n=1 3·4·6·7··· 3n(3n + 1) 

y(x) = aOYI(x) + aIY2(x) 

solves the equation for all ao and al. 

1.53 Example. Consider the equation 

x 2y" + (x2 + x)Y' - Y = 0 

and suppose that the series Ek=O akxk has a positive radius of convergence and is a 
solution of the equation. In this case 

00 00 00 00 

0= L k(k -1)akxk + L kakxk+1 + L kak xk - L ak xk 

k=O k=O k=O k=O 
<Xl 

= L(k(k - 1) + k - l)akxk + L kakxk+1 
k=O k=O 

<Xl <Xl 

= L(k2 - l)ak xk + L(k -1)ak_Ixk 

k=O k=1 

= -ao + f ((k2 - l)ak + (k - l)ak-1 )xk, 
k=1 

hence 
ao =0, (k - 1)((k + l)ak + ak-I) = O. 

In conclusion we find 

x 2 x 3 x4 
y(x) = AI(X - 3 + H - 3.4.5 + ... ) 

2AI ( x 2 x 3 x4 ) e- x + x-I 
= - x-I + (1 - x + - - - + - - ... ) = 2AI , 

x 2! 3! 4! x 
x> 0, 

i.e., in this case, we find only a one-parameter family of solutions. 

1.54 Example. Consider the equation 

x3 y" +y = O. 

Assuming Ek=O akxk is a solution of the equation with a positive radius of convergence 
we find 

aO + f (ak + (k - 1)(k - 2)ak_1 )xk = 0, 
k=1 

hence all ak must vanish: the unique solution that is representable by a power series 
with center 0 is the zero solution. 

1.55 ~. All ODEs in this section can be integrated explicitly by writing a first integral, 
i.e., multiplying by y' and obtaining a linear first order ODE for z(x) := y'(x). Of course 
not all second order equations can be integrated this way. 
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7.3.4 Generating functions and combinatorics 

a. Generating functions 
An extremely useful representation of a sequence {an}, n ~ 0, that grows 
less than exponentially is given by the sum of the real or complex power 
series 2::'=0 anzn. In fact in this case 2::'=0 anzn has positive radius of 
convergence and the sum A(z) := 2::'=0 anzn uniquely identifies its co­
efficients, see Theorem 7.25. The function A(z) is called the generating 
function of the sequence {an}. 

If we restrict ourselves to the set of bounded sequences {an}, denoted 
by £00 (C), the corresponding series 2::'=0 anzn converges to a function 
defined at least in {z Ilzl < I}. Denoting by C the set of all maps a : 
{z Ilzl < I} ~ C that are infinitely differentiable in the complex sense, 
we then establish a map T: £00(C) ~ C, which transforms every bounded 
sequence a = {an} into the sum of the corresponding power series 

00 
T{a}(z) := L anzn. 

n=O 

Since T is injective (see, for example, Theorem 7.25), though not surjective, 
see Example 6.12, T{a}(z) gives a different view of the sequence {an}. 

We have 

(i) T is linear, i.e., if )..,J.L E C and a = {an}, b = {bn} E £00(C)' then 
)..a + J.Lb := {)..an + J.Lbn} E £00(C) and 

T{)..a + J.Lb}(z) = )"T{a}(z) + J.LT{b}(z) , 

(ii) If ek := {(O, ... ,0,1,0,0, ... )} then T{ ek}(z) := zk. 
"-v-'" 

k 

(iii) If a = {an}, and 

is the forward shift of k places, then 

00 

Izl < 1. 

T{b}(z) = L anzn+k = zk T{a}(z), Izl < 1. 
n=k 

(iv) If a = {an}, and b = {an+k}n is the backward shift of k places, then 
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(v) T transforms the convolution product of sequences into the product 
of the transformed functions, see Theorem 7.34, 

n=O n=O n=O 

7.56 Example. The generating function of the sequence (1,1,1, ... ) is 

differentiating, we get 

00 1 
T{{(l, 1, 1, ... )}}(z) = L zn = -j 

1-z 
n=O 

00 00 1 1 
T{{n+ l}}(z) = L(n+ l)zn = L nzn-l = D(-) = ---2' 

n=O n=l 1 - z (1 - z) 

while, integrating 
T{{_l_}} = _log(l- z), 

n+l z 
Izl < 1. 

7.57 Example. Moreover, if T{a}(z) is the generating function of a = {an}, then 

T{ }() 00 00 00 n 

1 ~ ZZ = ~ zn ~ anz
n = ~ (E ak)xn = T{a}(z) 

where an := l:~=o ak. For this reason 1/(1 - z) is often called the summing opemtor. 

7.58 . Let a = {an} be a sequence that grows at most exponentially fast. 
We saw that T is injective, hence it will be possible in principle to re­
construct {an} from the generating function T { a }( z). Although general 
formulas are available in the context of the theory of functions of com­
plex variables, it is worth noticing that an explicit formula follows from 
the Hermite decomposition formula when T { a }( z) is a rational function. 
Suppose that 

~ n A(z) 
~anz = B(z) 
n=O 

in a disc around zero, A(z) and B(z) being coprime polymomials with 
deg A < deg B, the roots of B are far from zero, and by Theorem 5.31 

Since 

A(z) 
B(z) 

k", A' 
""' ""' 01. ,1 ~ ~ (z-a)F 

01. root of B j=l 

1 . = (-l)j (1- ':')-j = (-l)j ~ (-j) zn, 
(z - a)J a1 a a1 ~ n an 

n=O 

(7.24) 

on a disc around zero, (7.24) and the principle of identity of power series 
yields 
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'in. (7.25) 

When all the roots of B are simple, we have ko. = 1 and Ao.,l = A(a)j B'(a). 
Therefore (7.25) simplifies to 

b. Enumerators 

" A(a) 
an = - L.t an+1 B'(a)' 

0. root of B 

(7.26) 

Generating functions are particularly useful in combinatorics. In this case 
it is customary to change slightly the terminology. 

7.59 Definition. The generating function of a sequence {an} of combi­
natorial numbers is called the enumerator of {an}. 

7.60 Combinations. The enumerator of the combinations, i.e., of non ordered 
samples without replacement, in a population of n distinct elements, 
{C~h, 

if k ~ n, 

if k > n, 

is (1 + x)n, since by Newton's binomial 

7.61 Combinations with repetitions. The enumerator of combina­
tions with repetition, or nonordered samples with replacement, from a 
population of n distinct elements, C~k := (n+Z-1), k ~ 0, is (1- x)-n. In 
fact (see Example 7.40), 

f: (n + k -l)xk = f: (-n) (_x)k = (~)n. 
n=O k n=O k 1 x 

Enumerators are truly useful since one can code easily several selection 
rules and constraints. Let us start with some examples. 

7.62 Example. From three distinct objects a, b, c, there are three ways to sample one 
object without replacement, namely a, b or c, three ways to sample two objects without 
replacement, ab, ae, be, and only one way to choose three objects, namely abc. 

By considering the polynomial (1 + aX)(1 + bx)(1 + ex) and observing that 

(1 + aX)(1 + bx)(1 + ex) = 1 + (a + b + c)x + (ab + be + ae)x2 + (abe)x3 

we see that, replacing "or" by + and "and" by . the coefficients of the polynomial 
enumerate the simultaneous selections of 0, 1, 2, 3 objects. 
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7.63 Example. The parallelism in the previous example is not casual. Given the four 
objects a, a, b, c there are three ways of sampling one object (a, b and c), four ways of 
choosing two objects (aa, ab, ac, bc), three ways of choosing three objects aab, aac, abc 
and only one way of choosing four objects (aabc). If we encode the population a, a, b, 
c by the polynomial 

P(x) : = (1 + ax + a2 x 2 )(1 + bx)(1 + ex) 

= 1 + (a + b + c)x + (a2 + ab + ac + bc)x2 + (a2 b + a2 c + abc)x3 + a2 bex4
, 

we see that the coefficient of xr enumerates the selections of r objects. In particular 
there are four ways to select two objects, and three ways to select three objects. 

7.64 Example. The mechanism is even more general,as we can include contraints on 
the allowed selections. Still with the population a, a, b, c, we see that, if we want to 
count the selections which contain b, it suffices to consider the polynomial 

(1 + ax + a2x 2
) bx (1 + ex) = bx + (ab + bc)x2 + (a 2b + abc)x3 + a2 bcx4 

to enumerate the possible selections which contain b. 

It is therefore conceivable that we can code the population and the 
constraints on the element to be selected in a polynomial and leave the job 
of enumerating the selections to the algebra of polynomials. The previous 
examples actually suggest how to construct the enumerating polynomial. 

Consider a population of N distinct elements al, a2, ... , aN but each 
with multiplicity possibly infinite. For each of the ai's consider the power 
series 

00 

Si(X) := L c5~xn 
n=O 

where 

if ai may appear n times in the selection, 

if ai is not allowed to appear n times in the selection. 

The product of these series, one for each distinguishable element of the 
population, all converging in ]-1, 1[, Sl(X)S2(X)'" SN(X), is the enumer­
ator of the drawing. 

7.65 Example. In the case of combinations without repetitions of a population of 
n distinct elements, that is of unordered samples without repetitions, each element 
may appear at most once. Thus its enumerator is (1 + x) and the enumerator of the 
combinations without repetitions is 

n times 

7.66 Example. In the case of sampling with replacement, the population has n dis­
tinct elements, but each can occur with arbitrary multiplicity. The enumerator of each 
element is then 

2 1 l+x+x + ... =-­
I-x 

and the enumerator of unordered samples with repetitions is 
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(XI 00 00 00 1 
(2: Xk ). (2:Xk) ... (2: Xk ) = (2: Xk )n = (~)n. 

k=O k=O k=O k=O , ... " 

n-times 

7.67~. Show that L:~=o(-lrG) = 0, i.e., the ways of choosing an even or an odd 
number of objects is equal, and equal to 2n-l. 

7.68 ~. Show that L:~=o (~)2 = e:). [Hint: (1 + z)n(1 + z)n = (1 + z)2n.] 

7.69 ~. Prove Vandermonde's formula using the identity 

(l+z)N =(I+z)K(I+z)N-K. 

c. Exponential enumerators 
For sequences {an}, and especially for sequences which grow faster than 
exponentially, it is worth computing the enumerator of a rescaled sequence. 
For instance the exponential enumerator of the sequence {an} is the sum 
of the power series 

7.70 Arrangements without repetitions. The enumerator of the or­
dered samples, or arrangements, without repetitions of n distinct objects 
{D~h, 

{ 

n! 

D~:= ;-k! if k ::; n, 

if k > n 

of n distinct objects is 

n " '"' k k _ n. n. 2 • • • ,n 
~Dnx -1+(n_l)!x+(n_2)!x + +n.x, 
k=O 

which unfortunately has no simple closed form. However the exponential 
enumerator of the same sequence D~ is 

7.71 Arrangements with repetitions. The exponential enumerator of 
the ordered k-samples of n with repetitions of n distinct objects, {D~k}, 
D~k = nk, is 
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As for nonordered samples, one can build easily from the population 
and the rules of selection the exponential generator for nonordered samples, 
leaving the computation to the algebra of the power series. 

Suppose the population is made up of N distinct elements, al, a2, ... , 
aN, each with infinite multiplicity. For each ai, consider the power series 

where 

if ai may appear n times in the selection, 

if ai may not appear n times in the selection. 

Then the exponential enumerator of the ordered samples with repetitions 
is Sl(X)S2(X)'" SN(X). 

7.72 ,. Check that the previous rule yields the right result in the case of permutations 
with or without repetitions. 

7.73'. Show that the exponential enumerator of the permutations of 

o p identical objects is z~, p. 

o two objects of one type and three of another type is 

( 
X2) ( x

2 
X

3
) l+x+, l+x+,+,' 2. 2. 3. 

d. A few location problems 
The exponential enumerator is particularly useful when locating distinct 
objects into cells. 

7.74 Distributions onto distinct cells and surjective maps. As we 
have already stated, locating k different objects in n different cells is equiv­
alent to fixing a map from X := {1, ... , k} into Y := {1, ... , n}. Thus, the 
number of ways of placing k distinct objects in n distinct cells with no cell 
left empty is equal to the number S~ of surjective maps from X into Y. 
By Proposition 3.38, 

S~ = f) -l)i (~) (n _ j)k. 
j=O J 

We give an alternate simple proof based on the use of the exponential 
enumerator. Since we have n cells and each cell may contain an arbitrary 
number of objects larger than 1, the exponential enumerator for each cell is 

00 k 
2 3 ""'X x X + X + X + ... = ~ kf = e -1, 

k=l 
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hence the exponential enumerator of the distribution in n cells is 

(7.27) 

The number of k-permutations of the n cells being the coefficient of Xk Ik!, 
we find again the value of S~. The numbers 

S(k,n) := ~ S~ = ~ t (~) (-I)j(n - j)k 
n. n. j=O J 

are called Stirling numbers of second kind and (7.27) can be rewritten as 

(eX _ l)n 00 xk 
-'------:,--'-- = L S (k, n) 7J . 

n. k=O . 
(7.28) 

7.75 Distributions into indistinct cells. Since there are n! ways of 
distinguishing n objects Stirling number S(k, n) is the number of ways of 
placing k distinct objects into n nondistinct cells, all containing at least 
one element. 

We also saw that there are n k ways of placing k distinct objects into n 
distinct cells, when empty cells are allowed. However, the number of ways 
of distributing k distinct objects in n nondistinct cells with empty cells 
allowed is not nk In!. It is 

S(k, 1) + S(k, 2) + ... + S(k, n) for k > n 

and 
S(k, 1) + S(k, 2) + ... + S(k, k) for k :::; n, 

i.e., in both cases '£.j~~(n,k) S(k,j). In fact, the ways of distributing k 
objects in n nondistinct cells with empty cells allowed equals the ways of 
distributing the k objects so that one cell is not empty, or two cells are 
not empty, etc. 

If n ~ k the number '£.;=0 S(k, j) of distributions of k objects into 
n-distinct cells has a closed form. In fact, since S(k, n) = 0 for n > k, we 
have 

k 00 

L S(k,j) = L S(k,j) 
j=O j=O 
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consequently 

(7.29) 
Moreover, from (7.28) 

00 k k 00 00 k 00 00 k 

LLS(k,j)~! = LLS(k,j)~! = LLS(k,j)~! 
k=O J=O k=O J=O J=O k=O 

= ~ (eX -l)j = ee"'-l. 
~ j! 

(7.30) 
j=O 

e. Partitions of a set 

The exponential enumerator is very useful also when dealing with parti­
tioning. Let X k := {I, 2, 3, ... , k} be a set with k elements. A partition 
of X k is a decomposition of Xk into a finite union of disjoint subsets 
C1 , C2 , •.• , Cpo We denote by P := {C1 , C2 , •.. , Cp } a partition and by 
P(Xk) the family of partitions of Xk. Two partitions {C1, C2 , . .. , Cp } and 
{D1, D2"'" Dq} are different if p =f. q or, if p = q and for any permuta­
tion a of the indices we can find i such that C i =f. Du(i)' The number of 
partitions of Xk, called the k-th Bell number, equals the number of distri­
butions of k distinct objects into r cells allowing empty cells, r ~ k, hence 
by (7.29) 

00 1 00 ·k 

IP(Xk)1 = LS(k,j) = - L~' 
j=O e j=O J. 

We can also find such a number by means of the exponential enumerators. 
For that we first state 

7.76 Proposition. Let u( x) := L:~=1 ak %~ be the exponential enumera­
tor of the sequence {an}, ao = O. Then 

u(X) _ ~ Ak k 
e - ~ k! x 

k=O 

ICI being the cardinality of C. 

Proof. In fact 

where Ak = L II alGI' 
PEP(Xk) GEP 
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where 
r 

A .- '"' r·-~ 

j=l 

(7.31) 

We may interpret kl , k2 , .•• , k j as the cardinalities of a partition P = 
(Gl,G2 , ... ,Gj ) of {1,2, ... ,r} and let Pj,kl, ... ,kj be the set of partitions 
with j subsets of cardinality kl , ... , k j • Since the number of partitions of 
{I, 2, ... , r} in j subsets, Gl , G2 , ••• , Gj , with cardinality kl"'" kj is 

r! 
kl !k2 !··· kj ! 

(see, for example, 3.51), we conclude from (7.31) that 

r 

Ar = L L ( II alGI) = L II alGI' 
j=l PEPj,k 1 , ... ,k j GEP PEP(Xr ) GEP 

o 

To compute the number of partitions of X n , we now choose ak = 1, 
k?: 1, hence u(x) = 2::~=1 akxk /k! = eX - 1 and Proposition 7.76 yields 

On the other hand by (7.30) 

00 00 k 

eX_l '"' '"' S( .) x e = ~~ k,J k!' 
k=OJ=O 

therefore IP(Xn)1 = 2::;:0 S(n,j), and, by (7.29), IP(Xn)1 = ~ 2::~=0 t7· 
7.77 ..... If in Proposition 7.76 we choose ak = # of trees with k vertices and u(x) is 
the corresponding exponential enumerator, then the coefficients Ak in 

00 k 
eU(x) = L A k ::'-

k=O k! 

represent the forests of trees with k vertices. 
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7.78 Partition of integers. In how many different ways can we decom­
pose an integer as a sum of integers? For example the number 4 can be 
decomposed as 4,3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. This was one of the 
problems discussed by Leonhard Euler (1707-1783) in terms of generating 
functions. Clearly, a partition of n is equivalent to a way of distributing n 
nondistinct cells with empty cells allowed. It is not difficult to realize that 
the generating function of the sequence {p(n) I p(n) := # partitions of n} 
is given by 

00 

LPkXk = (1 + x + x2 + ... + xr + ... ) 
k=O 

Similarly, observing that 

. (1 + x 2 + x4 + ... ) 

. (1 + x 3 + x6 + ... ) 

00 1 

= II 1- x k ' 
k=l 

(7.32) 

1 
1 + x + x 2 + x3 + ... = -- = (1 + x)(1 + x2)(1 + x4) ... (1 + x2r ), 

I-x 

we infer that any integer can be expressed as the sum of a selection of 
nonnegative integral powers of 2 (without repetitions) exactly in one way, 
i.e., every decimal can be represented uniquely as a binary alignment. 

Ut non-finitam Seriem finita cOercet, 
Summula, & in nullo limite limes adest: 

Sic modico immensi vestigia Numinis haerent 
Corpore, & angusto limite limes abest. 

Cernere in immenso parvum, dic, quanta voluptas! 
In parvo immensum cernere, quanta, Deum! 

5 Even as the finite encloses an infinite series 
And in the unlimited limits appear, 

So the soul of immensity dwells in minutia 
And in narrowest limits inhere. 

What joy to discern the minute in infinity! 

Jacob Bernoulli 5 

The vast to perceive in the small, what divinity! 
From Jacob Bernoulli, 'J1ractatus de Seriebus injinitis Earumque Summa Finita et 
Usu in Quadraturis Spatiorum & Rectijicationibus Curvarum, in Ars Conjectandi 
(Translation by Helen M. Walker, from A Source Book in Mathematics by D. E. 
Smith, 1929). 
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7.4 Further Applications 
In this section we illustrate some applications, which go back to Euler and 
Johann Bernoulli (1667-1748) and are quite relevant in several contexts. 

7.4.1 Euler-MacLaurin summation formula 
In this section we illustrate a general method of approximating sums found 
by Euler and later rediscovered by Colin MacLaurin (1698-1746). As a 
consequence we find the asymptotic development of the factorial n! and of 
the partial sums of the harmonic series, Hn := 2::~=1 t. 

a. Bernoulli numbers 
As we shall see, the Taylor series of the function 

g(z) := {ez~l' Z =f. 0, 
1, z = 0 

with center in the origin plays an important role. From the theory of 
complex functions one infers that 9 has a Taylor expansion with radius of 
convergence 271', so we can write for Izl < 271', 

(7.33) 

The numbers {Bj } are called the Bernoulli numbers. From 

we see that they are characterized by the implicit recurrence relation 

{
BO:= 1, 

2::7=0 (njl)Bj = 0 "in ~ 1, 
(7.34) 

from which we can easily compute a few values of Bn: 

Bo = 1, Bs =0. 
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7.79. Convergence and equality in (7.34), and other consequences, can be inferred 
starting from Euler's formula for cot z, compare (6.30), 

00 2 

z cot z = 1 - 2 L 2 ~ 2 ' 
k=l k -rr - z 

Izl <-rr. 

On account of the Weierstrass double series theorem, we infer that 

where 

00 2 

zcotz=1- 2 L 2 ~ 2 
k=l k -rr - z 

00 z2 1 
= 1 - 2 L k2-rr2 1 _ z2 

k=l ~ 

= 1- 2 f f ( ~2 2y+1 
k=l j=O k-rr 

00 

'"' 2' = 1- 2 ~0<2jZ J 

j=l 

1 00 1 
0<2j := -rr2j (L k2j ) . 

k=l 

The equality (7.36) holds on Izl < -rr. On the other hand 

z z eZ + 1 ez/ 2 + e-z / 2 
-- + - = ~ -- = ~ -",-----= 
eZ _ 1 2 2 eZ _ 1 2 ez/2 _ e-z/2 

Z cosh(~) z (Z) = 2-:---h(Z) = - coth - = w cot w, 
sm 2 2 2 

where 2i w := z. Equating (7.36) and (7.37), we then infer 

z z ~ 2 z ~ (-1)j 2 
e Z -1 = 1 - 2" - 2 ~ 0<2jW J == 1- 2" - 2 ~ ----;V-0<2jZ J 

j=l j=l 

near zero, hence z/(e Z 
- 1) has a Taylor expansion centered at zero, 

z 00 zj 

eZ -1 = LBj-J.' 
j=O . 

where Bo = 1, Bl = 1/2, and, for j 2 1, B2j+l = 0 and 

B2j (_1)j-l 00 1 

(2j)! := 22j- 1 -rr2j L k2j . 
k=l 

In particular 
IB2n I 2 00 1 00 1 1 

( 2n)! = (2-rr)2n L k2n ::; 2 L k2 (2-rr)2n ' 
k=l k=l 

from which we infer that 
00 zj 

S(z) := L Br1" 
j=l J. 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

(7.40) 

has radius of convergence at least 2-rr. Since S(z) and z/(eZ 
- 1) have both complex 

derivatives on Izl < 2-rr, we conclude that 
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Notice that (7.40) yields 

z 00 zj 
--"B·­z 1 - ~ J .,' 
e - j=o J. 

Izl < 21T. 

~ _1_ = (_I)j_122j-l1T2j B2j J' >_ 1', 6 k2j (2j)!' 

in particular, 

h. Bernoulli polynomials 

Bernoulli polynomials are defined by 

x E lR. (7.41) 

It is not difficult to show that the exponential enumerator of {Bn(x)} is 
text j(et - 1), i.e., 

It I < 27r. 

They satisfy the relations 

Bn(x + 1) - Bn(x) = nxn-\ 

DBn(x) = nBn-l(X), 

In particular 

Bo(x) = Bo = 1, 

10
1 

Bn(x) dx = 0, 

To prove (7.43) we compute 

(7.42) 

(7.43) 

(7.44) 

(7.45) 

then it remains to equate the coefficients of t n for all n. To prove (7.44) it 
suffices to differentiate (7.41), while the rest is then trivial. 
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1 " 

0,5 

o 

-0,5 

~ " '\ ,/ 

~\ I;' 
\, , 
\~\ I~ 
'\ ,;' 

--------- ~--------------------------l-----------

" /' 

I 
I 

(a) 
(b) 
(c) 

-1 ~ ____ ~ ____ ~~~~ ____ L_ __ ~ 

o 0,2 0.4 0,6 0,8 1 

Figure 7.3. The normalized Bernoulli polynomials Bn(x)/Bn, respectively (a) n = 2, 
(b) n = 4 and (c) n=6, 

7.80 . From (7.43), we infer 

m-1 n 

Bm+1(n) - Bm+1(1) = L (Bm+1(j + 1) - Bm+1(j)) = (m + 1) Ljm, 
j=l j=l 

that is, 

7.81 . Using the properties of Bernoulli polynomials, in particular (7.44) 
and (7.45), one proves inductively on n (and we leave it to the reader) that 
the only possible minimum and maximum points for B2m (x), x E ~, are 
0, 1 and 1/2. From 

00 xn xex / 2 x x "B (1/2)------ --
~ m n! - eX -1 - ex / 2 - 1 eX - 1 
n=O 

we compute 

consequently 

(7.46) 
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c. Euler-MacLaurin formula and Stirling's approximation 
7.82 Theorem. Given nonnegative integers m,p,q, m ~ 1, p ~ q, and a 
smooth function f, we have 

q-l q m B I
q 

t;f(k) = l f(x)dx+ ~ k~Dk-lf(x) p +Rm (7.47) 

where 

Proof. To prove it, we first observe that it suffices to prove it in the case p = 0 and 
q = 1, because we can then replace f by f(x + h) for any integer h getting 

l
h +1 

m B Ih +1 

f(h) = f(x) dx + L -T Dk - 1 f(x) 
h k=1 k. h 

_ (_l)m lh+1 Bm(x - [xl) D m f(x) dx; 
h m! 

summing in h on the range p ~ h < q, we then get (7.47), since intermediate terms 
telescope nicely. The proof when p = 0 and q = 1, i.e., of 

1n
1 m B 1 

f(O) = f(x) dx + L -TDk- 1 f(x)1 + Rm, 
o k=1 k. 0 

Rm := (_l)m+1 r1 
Bm(x) D m f(x) dx 

10 m! 

is by induction on m. For m = 1 it amounts to proving 

1n1 1 1n1 
f(O) = f(x) dx - -(1(1) - f(O» + (x -1/2)f'(x) dx 

o 2 0 

which is just 

f(l) + f(O) 1n1 1n1 1n1 
"--'---'-----=~ = D((x - 1/2)f(x» dx = f(x) dx + (x - 1/2)f'(x) dx. 

2 0 0 0 

To pass from m - 1 to m, m > 1, we need to show that 

Bm m-l 11 Rm-l := -D f(x) + Rm 
m! 0 

which reduces to 

As previously, taking into account (7.44), integrating by parts we see that this holds if 
and only if 

i.e., if and only if 
(-l)mBm = Bm(l) = Bm(O) "1m> 1, 

that we know to hold since Bm(1) = Bm(O) = B m , and Bm = 0 for m odd. 0 
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On account of (7.46) and (7.40), we can easily evaluate the remainder 
and rewrite the Euler-MacLaurin formula as 

q-l m '" lq 

1 I
q 

'" B2k 2k-l I
q 

~ f(k) = f(x) dx - '2f(x) p + ~ (2k)!D f(x) p + Rm, 
k=p p k=l 

(7.48) 

with 

IR2ml ~ ~~~~~ iq 

ID2m f(x)1 dx. (7.49) 

If D2m f(x) ~ 0 in [p, q), D2m-l f(x) is increasing and the integral 

J,q ID2mf(x)1 dx is just D2m-l f(x)l
q
, therefore, using (7.46), we can esti-

p p 

mate the remainder by 

(7.50) 

7.83 . An interesting application of the Euler-MacLaurin formula is to the study of 
the asymptotic development of E~=l f(k) when n ~ 00. The structure of the Euler­
MacLaurin formula is 

n-l m 

L f(k) = F(n) - F(l) + L(Tk(n) - Tk(l)) + Rm(n) 
k=l k=l 

where 
Rm(n):= rn Bm(x - [xl) D m f(x) dx, 

10 m! 

etc. Assuming D m f(x) = O(xc - m ) as x ~ 00 for large m, it is not difficult to see that 
Rm(n) is not small for large n, but has only a small tail, i.e., 

Therefore we can conclude that for a suitable constant C we have 

n-l m 

L f(k) = F(n) + C + LTk(n) + l'i:(n). 
k=l k=l 

7.84 Example (Harmonic series). We apply 7.83 to f(x) := l/x. Since 

Dkf(x) = (_1)kk!/xk+ 1 , 

we deduce 
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n-l 1 Bl m B2k I L - = logn+C+ - - L ~ + Rm(n) 
k=l k n k=l 2kn 

for some constant C. Since D 2m !(x) 2: 0 \;1m, we can estimate the rest by 

IR' ( )1 < B2m+2 
m n - (2m + 2)n2m+2 j 

adding lin and observing that C is the Euler-Mascheroni constant 'Y, see Example 6.26, 
we conclude 

~ 1 1 ~ B2k B2m+2 
Hn := ~ -k = logn + 'Y + -2 - ~ 2k 2k + 8m,n (2 + 2) 2m+2 

k=l n k=l n m n 

for some 8m ,n with 18m,nl ::; 1. 

7.85 Example (Stirling approximation). Similarly to Example 7.84, on account of 
Stirling's formula in Example 2.67, we can state 

1 ~ ~ B2k 
logn!=nlogn-n+-logn+logv27T+ ~ k( k ) 2k-l 

2 k=12 2 - 1 n 

+ 8 B2m+2 
m,n (2m + 2)(2m + 1) n 2m+1 

and 18m,nl ::; 1. 

7.4.2 Euler r function 
The gamma function, f(x), defined by Euler in 1729, is surely one of 
the most important special functions, as it unexpectedly appears in many 
topics in analysis. 

a. Definition and characterizations 

For ° < x < 00, f(x) is defined as 

f(x):= 100 

tx-1e-t dt. 

7.86 Proposition. r(x) E lR+ and, for all x E]O, 00[, 

o f(x + 1) = xf(x), 
o f(I) = 1, f(n + 1) = n!, 
o logf(x), x E]O, oo[ is convex on ]0,00[, in particular f is a continuous 

function. 

Proof. (i) follows easily integrating by parts. Clearly f(I) = 1, thus (ii) 
follows from (i) by induction. Applying Holder's inequality (see [GMI]), 
one easily obtains 

f(~ + ~) ~ f(X)l/Pf(y)l/q, 

that is equivalent to (iii). 

1 1 - + - = 1, 
p q 

o 
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Actually these three properties characterize r( x) completely. 

7.87 Theorem. Let f :]0, 00[-t]0, oo[ be a function such that 

o f(x + 1) = xf(x), 
o f(l) = 1, 
o log f is convex. 

Then f(x) = r(x) 'ix > 0. 

Proof. It suffices to show that (i) (ii) (iii) uniquely determines f(x) for all x > 0 and 
actually because of (i), for all x EjO, 1[. Set cp := log f. Then 

cp(x + 1) = cp(x) + log x, cp(l) = 0 and cp is convex. (7.51) 

By induction we see that cp(n + 1) = log n! for all integers n 2': 1. Since cp is convex (see, 
e.g., [GMl]), we have for 0 < x < 1, 

logn = cp(n + 1) - cp(n) < cp(n + 1 + x) - cp(n + 1) 
1 - .:.-O..---x"----'--''-----'-

:<::: cp(n + 2) ~ cp(n + 1) = log(n + 1), (7.52) 

while iterating the first of (7.51), 

cp(n + 1 + x) = cp(x) + log[x(x + 1)··. (n + n)j. 

Subtracting log n in (7.52), we then get 

n!n
X (1) 0:<::: cp(x) - log ( ) ( ) :<::: x log 1 + - . xx+l ... x+n n 

Since the last term tends to zero as n --> 00, cp(x) is uniquely determined. 0 

7.88 Gauss's formula. In the proof of Theorem 7.87 we have in fact 
proved that 

n'nX 

r(x) = lim . , 
n--+oo x(x + 1)··· (x + n) 

or, equivalently 

lim r(x+n) =1. 
n--+oo nxr(n) 

Actually one can prove that the previous formula is a characteristic for 
gamma. We have the following. 

7.89 Theorem. Let F :]0, 00 [-t]0, oo[ be a function such that 

(i) F(x + 1) = x F(x), 
(ii) F(l) = 1, 

( ... ) 1· F(x+n) 1 
III Imn --+ oo nX F(n) = . 

Then F(x) = r(x). 
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Proof. In fact, 

F(n) = (n - 1)! and F(x + n) = x(x + 1)··· (x + n - 1)F(x), 

therefore (iii) yields 

1 = lim F(x + ~) = F(x) lim x(x + 1) ... (x + n - 1) = F(x). 
n-+oo n!nX - n-+OCl n!nx- 1 r(x) 

o 

We can also express r(x) as an infinite product: this is the original 
definition of Euler. 

7.90 Proposition. We have 

1 00 x 
- = e'Yxx II (1 + _)e-x/n , 
r(x) n=l n 

where '"Y is the Euler-Mascheroni constant. 

Proof. Write g(x) for the inverse of r(x) in the right-hand side. Taking the logarithm 
we see that g(1) = 1 and 

1 1 1 n x 
- = lim exp (X(1 + - + ... + - -logn))x IT (1 + -=-)e- x

/
n 

g(x) n-oo 2 n j=l J 

i.e., 

n 

= lim exp(-xlogn)x IT (1 +~) 
n_oo j=l J 

= lim x(1+I)(1+~) ... (1+~) 
n-+oo nX 

n'nx 
g(x) = lim ---:----,-.--:----:­

n-oo x(x + 1) ... (x + n) 

b. Functional relations 
7.91 Beta function. The function 

x,y> 0 

is called the beta function. It is related to the gamma function by 

Proposition. We have 

B( ) = r(x) r(y) . 
X,Y r(x + y) , 

o 

(7.53) 
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In particular, since 'Y(n + 1) = n!, 

for all n,m E N. 

Proof. Set 
rex + y) 

f(x):= r(y) B(x, y). 

We have 
r(l + y) 

f(l):= r(y) B(l, y), 

since B(l, y) = l/y. log f is convex, since x -+ B(x, y) is convex: this can be proved as 
in Proposition 7.86. Finally, 

f(x + 1) = rex ;(~)+ 1) B(x + 1, y) 

rex + y) 
= (x + y) r(y) B(x + 1, y) = x f(x), 

since B(x + 1, y) = X~y B(x, y) as it is easily seen by performing an integration by 
parts. Theorem 7.87 then yields f(x) := rex). 0 

7.92 r(1/2) = -Jii. The substitution t = sin2 0 in the definition of the 
beta function turns (7.53) into 

r(x)r(y) = 2 r/2(sinO)2X-l(cosO)2Y-ldO. 
r(x+y) Jo 

This for x = y = 1/2 gives 

rG) = Vir· (7.54) 

7.93 1000 e-x2 dx = -Jii. The substitution t = 8 2 in the definition of r 
yields 

r(x) := 2100 

S2x-l e-s
2 

ds. 

The special case x = 1/2 then gives the important 
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7.94 Duplication formula of Legendre. It is not difficult to verify 
that Theorem 7.89 applies to the function 

f(x):= 2;lf(~)f(X;I); 

this yields the so-called duplication formula of Legendre 

f(x) f( x + ~) = 21
-

2x Jrrf(2x). 

7.95 Formula of complementary arguments. Performing the change 
of variable t = s/(1 + s), we get 

1
1 1+00 sx-l 

B(x,y) = t X
-

1(I-t)y- 1 dt= ( )x+ ds. 
o 0 l+s Y 

In particular if 0 < x < 1, 

f(x)r(1 - x) = B(x, 1- x) = _s_ ds. 1
00 x-I 

o l+s 

If x = 2~;tl, m > n, performing another change of variable, t = slj2n, 

1
00 s 2~p -1 100 x2m 1 
--- ds = 2n ds = 1r ; 

o l+s ol+x2n sin (2';:;tl1r) 

see Example 5.36. Therefore, 

1r 
f(x)f(l - x) = B(x, 1 - x) = . ( ) 

SIn 1r x 

if x = (2m + 1)/(2n), n > m. Since {(2m + 1)/2n In> m} is dense in 
]0,1[, and f is continuous, we conclude 

1r 
r(x)f(l - x) = B(x, 1 - x) = . ( ) 

sm 1rX 

also for any x E]O, 1[. 

7.96. Taking logarithms on both sides of (7.51) we get 

00 
log f( x) = - log x - I'X - L ( log ( 1 + ;) - ;). (7.55) 

n=1 

Expanding the logarithms occurring in the infinite series we get 

00 00 1 . 
logf(x) = -logx -I'X + L L( -l)j -;- (;Y 

n=1 j=2 J 
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and hence, by Weierstrass's double series theorem and the relation 
r(x + 1) = x r(x), 

00 ( l)m 
logr(x + 1) = -')'X + L ---«(m) zm 

m=2 m 

with «(m) := L::=l rt~· 
7.97 The function 'ljJ. The Gaussian psi function or digamma is defined 
as the logarithmic derivative of the gamma function 

r'(x) 
'ljJ(x) = Dlogr(x) = r(x) . 

From (7.55) we obtain 

1 00 1 1 
'ljJ(x) +')' = -~ - (; (x+k - k)' 

the series being absolutely and uniformly convergent in any bounded closed 
interval of ]0, 00[. In particular we have 

'ljJ(I) = -')' 

since L:~l (1/(1 + k) - l/k) = -1. By logarithm differentiation we can 
easily translate relations of the r function into relations for the 'ljJ. For 
instance, we have 

1 
'Ij;(x + 1) - 'Ij;(x) = -

x 
and therefore for any n E N, n :2: 1, 

also 

in particular 

n 1 
'ljJ(x+n)-'ljJ(x)=" k ; 

L...- x + -1 
k=l 

'ljJ(x) - 'ljJ(I- x) = -7r cot7rX, 

2log2 + 'ljJ(x) + 'ljJ( x + ~) = 2'ljJ(2x), 

'ljJ(1/2) = -')' - 2 log 2, 

n 1 
'ljJ(n + 1) = -')' + L k' 

k=l 

n 1 
'ljJ(n + 1/2) = -')' - 2log2 + 2'"' --. 

L...- 2k-l 
k=l 
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7.98 An integral representation of 'IjJ. We conclude this section by 
giving an integral representation of 'IjJ. We have 

1 00 1 1 
'IjJ(x) +/' = -- - L (- --) 

x x+k k k=l 

100 00 100 

= - e-tx dx - L (e-t(k+X) - e-tx ) dx. 
o k=l 0 

Reversing the order of summation and integration and using the formula 
for the sum of a geometric series we then can easily conclude 

100 e-t - e-tx 
'IjJ(x) +/' = 1 -t dt. 

o -e 

7.99 An integral representation of 'IjJ'. Finally, the formula for 'IjJ' is 
very useful. It is obtained by differentiating under the integral sign 

100 t 
'IjJ'(X) = 1 -t dt. 

o -e 
(7.56) 

Actually, in the above, reversing the order of summation and integration 
and differentiating under the integral sign require some justification. One 
can provide ad hoc justification, but we prefer not doing it since it becomes 
much simpler in the context of Lebesgue integration. 

c. Asymptotics of rand 1/J 
Suppose that J(t) : [0,00[--+ lR is a smooth function which has, together 
with its derivatives, at most a polynomial growth near infinity. Then 

<p(x) := 100 

e-xt J(t) dt, x>O 

is well defined. We are interested in its asymptotic expansion near infinity. 
Integrating by parts n times we infer 

<p(x) = _ ~ Dk J(t)e-
xt 

1

00 

+ _1_100 

e-xt Dn +1 J(t) dt 
~ xk+l xn+l 
k=O 0 0 

= ~ Dk J(O) + Tn(X) 
~ xk+l x n +1 . 
k=O 

If we also assume that 

we readily conclude 
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as X -+ 00. 

The previous remarks apply, as it is easily verified, to the derivative of the 
'l/J function 

(Xl t 
'l/J'(x) = 10 e-xt(t + et -1) dt; 

as Dk(t/(et - 1)) = Bk, we then conclude 

, 1 1 ~ B2k (1) 
'l/J (x) = ;; + 2X2 + L.J x2k+1 + 0 x2n+l . 

k=l 

Integrating twice over JO, 00[, we obtain 

1 n-l B2k 1 
'l/J( x) = A + log x - 2x - L 2 k x2k + 0 (x2n ) , 

k=l 

(7.57) 

log r (x) = B + (A - 1) x + (x - ~) log x (7.58) 

n-l B2k 1 

+ E 2 k(2k - 1) x2k- 1 + O(X2n- 1 ) 

where A and B are two constants. In particular we have 

logr(x) = B + (A - 1) x + (x -1/2) log x + O(~) as x -+ 00. 

From the relation rex + 1) - rex) -logx = 0 it follows that 

A-I + (x + ~) log ( x + 1) - (x - ~) log x = 0 (~ ) as x -+ 00, 

which implies A = O. Similarly from the duplication formula of Legendre 
we infer that B = (log 21l')/2. Therefore we conclude with the asymptotic 
representations for rand 'l/J: For all n EN, n :2: 1, we have, when n -+ 00, 

1 n-l B2k 1 
'l/J(x) = log x - 2x - L 2 kx2k + 0(x2n )' (7.59) 

k=l 

log r(x) = x log x - x - log Vx + log -v'2rr (7.60) 

n-l B2k 1 
+ L 2 k(2k - 1) x2k- 1 + 0(X2n- 1 ); 

k=l 

in particular 

rex + 1) = v'21l'x(~r (1 + l~X + 0(:2)) 
and, for x = n, Stirling's formula, 

n! '" v'21l'n(;f. 
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7.5 Summing Up 

Convergence and continuity of the sum 
o The radius of convergence p of a power series L~=o anzn is defined by 

1 
- :=limsup~, 
P n----.oo 

where we have adopted the conventions 1/00 = 0, 1/0+ = 00. If p > 0, equivalently, 
if the sequence {Ian I} grows at most exponentially, then L~=o anzn converges abso­
lutely in the interior of the disc of convergence {z E C Ilzl < p} and does not converge 
if Izl > 1. Therefore the domain ~ C C in which L~=o anZn converges, that is the 
domain in which the sum S(z) = L~=o anzn exists as a complex number, is the disc 
of convergence union eventually part of or the whole boundary {z E C Ilzl = pl. 

o Powers series converge uniformly on any disc {z E C Ilzl :S r}, Vr < p. This means 
that for any r < p the error we get substituting the sum with a partial sum 

is bounded by a quantity c(k, r) that goes to zero as p -+ 00 and is independent of z 
provided Izl :S r. This is equivalent to saying that 

M(p,r):= sup IE anznl-+ 0 
zE[-r,r] n=p 

as p -+ 00. 

Uniform convergence on all discs strictly included in Izl < p, is less than the uniform 
convergence on {z Ilzl < pl. However, it suffices to prove that 

o the sum S(z) := L~=o anzn is continuous on the interior of the disc of convergence. 

Differentiation and integration of power series 
Let L~=o anzn be a complex power series with a positive radius of convergence p > 0, 
and sum S(z). Then 

o S(z) has a complex derivative on {z E iCllzl < p} and DS(z) = L~=l nanzn-l, 
that is, the sum of power series can be differentiated term by term in the interior of 
the disc of convergence. 

o Actually S(z) has complex derivatives of any order on {z Ilzl < p} and 

00 

DkS(z) = L: n(n -1)··· (n - k + l)zn-k. 
n=l 

o We have ak := DkS(O)/k! Vk, that is, each power series with a positive radius of 
convergence is the Taylor series of its sum. 

o The sum of a power series can be integrated term by term in the interior of the disc 
of convergence: if p > 0 denotes the radius of the disc of convergence of L~=o anzn , 
then, if Izl < p, we have 

l
z 00 zn+l 

S(z)dz = L: an--· 
o n=O n + 1 

The symbol Joz is the classical oriented definite integral in case z E JR, while it is 
suitably defined when z E C, see Section 7.1.3. 
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Boundary values 
Let E~o anzn be a complex power series with a positive radius of convergence p > 0, 
and sum S(z). Two cases can occur: either the series converges absolutely at a point 
Zo with Izo I = p, or the series eventually converges, but not absolutely, at some points 
with Izl = p. In the first case, which implies the uniform convergence of the series 
and the continuity of the sum on the closed disc {z Ilzl ~ p}, the convergence test of 
Proposition 7.29 may be useful. In the second case, some information at the boundary 
is provided by Dirichlet's and Abel's theorems, Theorems 7.30 and 7.31. A consequence 
of Abel's theorem is that ~l C ~2 C ~3 if ~l, ~2 and ~3 are respectively the domains 

f f ,",00 n-l ,",00 n d ,",00 zn+l o convergence 0 L....n=l n an Z , L....n=O anz an L....n=O an n+l . 

7.6 Exercises 
7.100,.. Show that 

00 1 
L(n + l)zn = -( --)2' 
n=O 1- Z 

00 

""' nzn = ~2 ' L... l-z 
n=O 

00 2 n z2 + Z 

L n z = (1 _ z)3 ' 
n=O 

00 1 
L(-I)nzn = -, 
n=O 1 + z 

00 1 L z2n = ---, 
n=O 1- z2 

00 (_I)n 1 L-, =-, 
n=O n. e 

00 (_I)n 2 

L~=3' 
n=O 

7.101 ,. Compute the sums of the following series 

E COS(ln~ 2n) , 

00 2n 

L(-1)n -=--r-, 
n=O n. 

00 z3n+2 

L-" n=O n. 
00 2n 

]; 2~+ l' 
f: z2n+l, 

n=O n 

00 z2n+l 

L n+l' 
n=O 

f: z:, 
n=O n 

00 

L log(cos(x/2k)). 
n=l 

[Hint: For the last series, show that 

n . 

n (X) smx 1 
k=l cos 2k = 2n sin(x/2n)' 
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where 

(2n)!! = 

= n 

eZ = L =-, 
n=O n! 

z E IC, 

= n+1 
log(1 + z) = L(-1)n_

z
_, Izl :S 1, z i -1, 

n=O n+ 1 

= z2n+1 
sinz = 2)-1)n ( )" z E IC, 

n=O 2n + 1 . 

= z2n+1 

sinh z = L ( )" z E IC, 
n=O 2n + 1 . 

= 2n 
COSZ=L(-1)n_(Z )" zEIC, 

n=O 2n. 

= 2n 

coshz = L _(z )" 
n=O 2n. 

z E IC, 

. = (2n - 1)!! z2n+1 
arcsmz = L ( )" ---, 

n=O 2n.. 2n+ 1 
Izl :S 1, 

= (2 1)" 2n+1 
. -1 '" ( 1)n n - .. z smh z = L..J - ---

n=O (2n)!! 2n + l' Izl :S 1, z i ±l, 

arccos z = ~ - arcsin z, Izl :S 1, 

= z2n+1 
arctanz = L(-1)n_-, Izl:S 1, z i ±i, 

n=O 2n + 1 

= z2n+1 
tanh- 1 z = L --, Izl :S 1, z i ±1, 

n=O 2n + 1 

1 = 
-- = Lzn, Izl < 1, 
1- z n=O 

= 
(1 + z)<> = L (:)zn, Izl < 1, 

n=O 

{

1 

2n(2n - 2) .. ·4 . 2 

ifn=O, 

ifn ~ 1, 
(2n+1)!! = (2n+1)(2n-1) .. ·5·3·1 

and for 0< E lR 

(
0<) := 0«0< - 1)(0< - 2) '" (0< - n + 1) . 
n n! 

Figure 7.4. A table of Taylor series of some elementary functions. 



7.102 ,. Let f(x) := I sin xlix, x > 0, and for n = 0,1, ... , let 

fn(x) := { ~(x) 
Show that 

(i) ~~=o fn(x) = f(x) 'Ix 2: 0, 
(ii) sUPx~o I ~r=n+l A(x)I--> 0, 

(iii) ~~=o sUPx~o Ifn(x)1 = +00. 

if n7r :::; x < (n + 1)7l", 

otherwise. 
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7.103 ,. Show that ~~=l (xn + (_I)n+l In) converges uniformly in [0,1/2]' but it 
does not converge absolutely. 

7.104,. Show that x + ~r=o (kxe- kX2 - (k + l)xe-(k+l)X
2

) converges, the limits 

of the sum are the sum of the limits, but it is not uniformly convergent. 

7.105 ,. Show the following 

Proposition. Suppose ~~=o anzn converges uniformly on Izl = 1. Then ~~=o anzn 

converges uniformly on Izl :::; 1. 

[Hint: Reread the proof of Abel's theorem.] 

7.106". Let fez) = ~~=oanzn on Izl < r. Then fez) is representable as power 
series ~~=o bn(z - zo)n with center any Zo with Izol < r and domain of convergence 
that contains {z liz - zol < r}. [Hint: Set z = zo + hand p:= Izol-Ihl, and write 

7.107 " Composition of power series. Suppose that Sex) = ~~=o anxn and 
T(y) := ~~=o bnyn are two power series with T(O) = 0 and, respectively, with positive 
radii of convergence peS) and peT). Show that the composition SoT is the sum of a 
power series with positive radius of convergence. More precisely show that, if r > 0 is 
such that ~~o Ibnl rn < peS), then the radius of convergence of SoT is at least r. 

7.108" Inverse of a power series. Let Sex) = ~~=l anxn be a power series 
with S(O) f 0 and positive radius of convergence. Show that there is a power series 
T with radius of convergence 1 such that S(x)T(x) = 1. 

7.109 " Reciprocal power series. Let Sex) = ~~=o anxn be a power series with 
S(O) = 0, S' (0) f 0 and positive radius of convergence. Show that there is a power series 
T with T(O) = 0 and positive radius of convergence such that S(T(x» = x [Hint: see 
e.g., Cartan, Theorie elementaire des fonctions analytiques d'une ou plusieurs variables 
complexes, Hermann, Paris, 1961.] 

7.110 ". Let f : N --> lR be a function such that f(l) f 0, f(XIX2) = f(xI)f(X2) 
VXl,X2 and ~~=llf(n)1 < 00. Show that 

(i) f(l) + ~~l If(n)lk < 00, I1~1 (1 - f(p» < 00, n~l l-}(P) < 00 and finally 
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(ii) If {Pn} is the sequence of primes and 

1 1 
Pn := .,--1----=-f(.,--p--.,.1) 1 - f(P2) 

then 
Pn = Lf(N), 

N 

the sum being taken on all naturals N which decompose in prime factors con­
taining only the primes P1,P2, ... ,pn. 

(iii) Euler's formula 

n=l 

00 

Lf(n)= I1 _1_ 
p prime 1 - f(p) 

(iv) If f(n) = Iln s, with s > 1, then 

00 1 1 

L nS = I1 1 _ p-s ' 
n=l p prime 

the product being taken on all primes. The function 

00 1 
((8):= L-

n=l n
S 

is actually well defined for all s E IC with ~8 > 1 and is called Riemann's (­
function. 

7.111 ~ ~ Euler. Let {p;} be the sequence of primes. Then E~1 -f;; = +00. [Hint: If 

E~1 1/Pi < 00, then for some mEN we have Ei>m 1/Pi < 1/2. Setting 0: := n~1 Pi, 
Pi divides 1 + no: at most for i > m, hence 

00 1 00 1 fool 

L 1 + no: ::; L (L pJ ::; L 2f = 1.J 
n=1 f=1 '>m f=1 

7.112~. Find the series solutions of the differential equations 

y" - XV' + y = 0, 

7.113~. Find the series solutions of the Cauchy problems 

{

yll + (x - l)y' - (x - l)y = 0, 

y(l) = 1, y' (1) = 0, 

7.114~. The equation 
y" + eXy = 0 

{

(1+X2)yll+y=0, 

y(O) = y'(O) = 1. 

has a solution of the form y(x) = Ef=o akxk that satisfies y(O) = 1, y'(O) = O. Find 
some of its first terms. 

7.115 ~ Legendre's equation. Find the series solutions of the ODE 

(1 - x 2) y" - 2 x y' + >. y = 0 

called Legendre's polynomials. [Hint: y(x) = ao (1 - ~x2 - t3~ x4 + ... ) + a1 (x + 

Bx2 + (12-.\)(2-,\) x 5 + ... ) 1 
3·2 5·4·3·2 . 
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7.116 ~ Hermite polynomials. Find the series solutions of the ODE 

y" - 2 X y' + 2 y = 0, 

called Hermite's polynomials. 

7.117, Euler equation. Show that there is no series solution except 0 of the equa­
tion 

x 2 y" + 0. X y' + /3 y = O. 

Show that y(x) = x"l where 'Y satisfies 'Yb - 1) + 0.'Y + /3 = 0, is a solution. 

7.118 ~ Frobenius's method. Examples 7.53 and 7.54 suggest that the power series 
method may not work if the higher order coefficient of the second order linear ODE 
vanishes at x = O. In this case we may try solutions of the form 

00 

x"l Eakxk , 
k=O 

'Y E JR. 

Try the method with the following Bessel's equation 

and Laguerre's equation 

1 
x 2 y" + X y' + (x2 

- -) y = 0 
4 

xy" + (1- x)y' + y = O. 

7.119~. Let A(x) and E(x) be respectively the enumerator and the exponential enu­
merator of {an}. Show that 

A(x) = 100 

e- S E(sx) ds. 

7.120 ~. Let {Pn} be a sequence in [0, 1[ and let P(x) be the enumerator of {Pn}. The 
k-moment of {Pn} is defined by 

00 

mk:= Ejkpj . 

j=O 

Assuming that mk is finite for all k ?: 0, show that the enumerator of {md is 

M(x) = P(eX
). 

7.121 ~. Show that the binary numbers of 2n bits are e:). 
7.122~. Show that L:~=o r(~) = n2n-l. 

7.123 ~. Show that 

m m k z _ ~ ( )zk 
(l-z)m - 6 m . 

7.124~. Show that 

2tx-t2 ~ Hn(x) n 
e =~--t 

n=O n! 

where Hn(x) solves y" - 2xy' + 2ny = O. 
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7.125 ~. Show that the enumerator for the selection of r objects out of n objects, 
r 2 n, with unlimited repetitions but with each object included in the selection, is 

7.126 ~~. Show that the number of ways in which r nondistinct objects can be dis­
tributed in n distinct cells, with the condition that no cell contains less than q nor more 

than q+z-l objects, is the coefficient of x r- qn in the expansion of ((l-xZ)/(I-X)) n. 

7.127 ~~. Show that a convex polygon of n + 2 sides can be divided into 

cn := _1_ (2n) 
n+ 1 n 

triangles by means of diagonals that do not intersect. The numbers Cn are called Catalan 
numbers. [Hint: Notice that Cn+l = L:~=o CkCn-k, hence, if c(x) = L:~=o cnxn, we 
have c2(x) = L:~=o Cn+1Xn and xc2(x) = c(x) -1.) 

7.128 ~~. Show that the exponential enumerator for the distribution of r or less ob­
jects into n distinct cells, with objects in the same cell ordered, is expx/(I- x). 



Bernhard Balzano 

(1781-1848) 

Carl Friedrich Gauss 
(1777-1855) 

Simeon Poisson 

(1781-1840) 

Augustin-Louis Cauchy 
(1789-1857) 
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Wilhelm Bessel 

(1784-1846) 

George Green 

(1793-1841) 

Mikhail Ostrogl'adski Niels Henl'ik Abel Jean-Chal'les-Fl'an«;ois Sturm Carl Jacobi 

(1801-1862) (1802-1829) (1803-1855) (1804-1851) 

Lejeune Dirichlet 

(1805-1859) 

William R. Hamilton 

(1805-1865) 

Karl Weierstrass 

(1815-1897) 

Joseph Liouville 

(1809-1882) 

George Gabriel Stokes 

(1819-1903) 

Eduard Heine 

(1821-1881) 

Joseph Bertrand 

(1822-1900) 

Charles Hermite 

(1822-1901) 

Leopold Kronecker 

(1823-1891) 

Richard Dedekind 

(1831-1916) 

Camille Jordan 

(1838-1922) 

Edmond Laguerre 

(1834-1886) 

Gaston Darboux 

(1842-1917) 

Georg Cantor 
(1845-1918) 

Enrico Betti 

(1823-1892) 

Eugenio Beltrami 

(1835-1899) 

Giulio Ascoli 

(1843-1896) 

Hermann Schwarz Ulisse Dini Cesare Arzela Luigi Bianchi 

(1856-1928) (1843-1921) (1845-1918) 

J. Henri Poincare 
(1854-1912) 

(1847-1912) 

David Hilbert 
(1862-1943) 

Figure 7.5. Infinitesimal analysis: a chronology from Gauss to Poincare and Hilbert. 





8. Discrete Processes 

The laws of classical physics are deterministic: if we know exactly the 
state of a system at a given instant, we know its state for all times. Such a 
principle, which mathematically corresponds to the existence and unique­
ness theorem for the Cauchy problem, has been (and is) a key idea in 
scientific thought. Pierre-Simon Laplace (1749-1827) wrote in his Essai 
philosophique sur les probabilites. 

Nous devons done envisager l'etat present de I'Vnivers comme 
l'effet de son etat anterieur, et comme cause de celui qui va 
suivre. Vne intelligence qui pour un instant donne connaitrait 
toutes les forces dont la nature est animee et la situation re­
spective des etres qui la composent, si d'ailleurs elle etait as­
sez vaste pour soumettre ses donnees it I 'analyse , embrasserait 
dans la meme formule les mouvements des plus grands corps 
de I'Vnivers et ceux du plus leger atome : rien ne serait incer­
tain pour elle, et l'avenir, comme Ie passe, serait present it ses 
yeux. L'esprit humain offre dans la perfection qu'il a su donner 
it l'astronomie une faible esquise de cette intelligence. l 

But this principle is often contradicted by everyday experience, when 
some facts seem to take place unpredictably and at random, as is the case 
with metereology. 

From the point of view of predictability, since there will always be a 
certain degree of uncertainty on the initial situation, things will be pre­
dictable if two initially close states evolve closely, otherwise one has to ex­
pect chaotic behavior: close states evolve into paths that are very far from 
each other. Probably the first to have stated precisely the phenomenon of 
sensitive dependence on initial conditions were Jacques Hadamard (1865-
1963), who studied the flux of geodesic lines on a surface, and Pierre Duhem 

1 Therefore we have to consider the present state of the universe as the effect of its 
previous state and cause of its future state. An intelligence that at a given instant 
could know all the forces that animate nature and the respective situations of all 
the beings that constitute it, an intelligence that, moreover, could be large enough 
to be able to analyze all these data, could contain in the same formula both the 
movements of the largest bodies in the universe and of the smallest atom: nothing 
would be uncertain for it and the future, as well as the past, would be present to its 
eyes. The human spirit offers just a feeble trace of this intelligence in the perfection 
it was able to give to astronomy. 
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Figure 8.1. Pierre-Simon Laplace (1749-
1827) and the frontispiece of his 
Mechanique celeste. 
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(1861- 1916), who observed how the sensitive dependence on initial con­
ditions made long term prevision~ illusory for the systems considered by 
Hadamard2 . The fact that these systems are no exception seems clear to 
J. Henri Poincare (1854- 1912) who writes in Science et methode 

Une cause tres petite, qui nous echappe, determine un effet con­
siderable que nous ne pouvons pas ne pas voir, et alors no us 
disons que cet effet est dfr au hasard. Si nous connaissions ex­
actement les lois de la nature et la situation de l'Univers a 
l'instant initial , no us pourrions predire exactement la situation 
de ce meme Univers a un instant ulterieur. Mais, lors meme que 
les lois naturelles n'auraient plus de secret pour nous, nous ne 
pourrions connaitre la situation initiale qu 'approximativement. 
Si cela nous permet de prevoir Ia situation uiterieure avec la 
me me approximation, c'est tout ce qu'il nous faut, nous dis­
ons que Ie phenomene a ete prevu, qu'il est regi par des lois; 
mais il n 'en est pas toujours ainsi, il peut arriver que de pe­
tites differences dans les conditions initiales en engendrent de 
tres grandes dans les phenomenes finaux; une petite erreur sur 
les premieres produirait une erreur enorme sur les derniers. La 
prediction devient impossible et nous avons Ie phenomene for­
tuit. 3 

2 See La theorie physique, son object et sa structure, Editions Chevalier et Riviere, 
1906. 

3 A very small cause that escapes our attention determines a notable effect that we 
cannot fail to see, and in this case we say that it is due to hazard. If we knew exactly 
the laws of nature and the situation of the universe at the initial moment , we could 
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He also adds 

Comment devons-nous nous representer un recipient rempli de 
gaz? D'innombrables molecules, animees de grande vitesses, sil­
lonnent ce recipient dans tous les sens; It chaque instant elles 
choquent les parois, ou bien elles se choquent entre elles; et ces 
chocs ont lieu dans les conditions les plus diverses. Ce qui nous 
frappe surtout ici, ce n'est pas la petitesse des causes, c'est leur 
complexite. Et cependant, Ie premier element se retrouve encore 
ici et joue un role important. Si une molecule etait deviee vers 
la gauche ou vers la droite de sa trajectoire, d'une quantite tres 
petite, comparable au rayon d'action des molecules gazeuses, 
elle eviterait un choc, ou elle Ie subirait dans des conditions 
differentes, et cela ferait varier, peut-iltre de 900 ou de 1800

, la 
direction de sa vitesse apres Ie choc. 
Et ce n'est pas tout, il suffit, nous venons de Ie voir, de devier 
la molecule avant Ie choc d'une quantite infiniment petite, pour 
qu'elle soit deviee, apres Ie choc, d'une quantite finie. 4 

This somehow explains how a deterministic and regular behavior may 
generate chaos; but on the other hand it may suggest that a chaotic be­
havior may create order, possibly on a different scale from the macroscopic 
behavior of the gas. 

Chaotic behavior may be generated by sensitive dependence on the 
parameters of the system, as well as by sensitive dependence on the initial 
data. For instance, the behavior of water coming out of a slightly open 
tap is regular, while it gets chaotic if the tap is completely open. In the 
same way, the behavior of a fluid between two rotating cylinders is regular 
when they rotate and gets more and more chaotic as the rotation speed 
increases. 

Poincare wrote also 

predict exactly the situation of the same universe at a succeeding moment, but even 
if it were the case that the natural laws had no longer any secret for us, we could 
still only know the initial situation approximately. If that enables us to predict the 
succeeding situation with the same approximation, that is all we require, and we 
should say that the phenomenon has been predicted, that it is governed by laws. But 
it is not always so: it may happen that small differences in the initial conditions 
produce very great ones in the final phenomena. A small error in the former will 
produce an enormous error in the latter. Prediction becomes impossible, and we 
have the fortuitous phenomenon. 

4 How should we represent a container full of gas? Innumerable molecules race inside 
the container in all directions; at every instant they hit the container's sides or collide 
with one another; and all these collisions take place in the utmost diverse conditions. 
What strikes us in this case is not the smallness of the causes but mainly their 
complexity. And yet, the first element is still present and plays an important role. 
If a molecule were to be diverted to its left or right by a small quantity comparable 
to the range of action of a gas molecule, it could avoid a collision or undergo the 
collision under different conditions, and this could change its direction by 90 or 
maybe 180 degrees. And this is not all, we have just seen that it is sufficient to divert 
the molecule of an infinitesimal quantity before the collision in order to divert it, 
after the collision, of a finite quantity. 
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Figure B.2. J. Henri Poincare (1854-
1912) and the frontispiece of his 
Methodes nouvelles de mecanique 
celeste. 
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Pourquoi Ies meteorologistes ont-ils tant de peine a predire Ie 
temps avec queIque certitude? Pourquoi les chutes de pluie, les 
tempetes elles-memes nous semblent-elles arriver au hasard, de 
sorte que bien de gens trouvent tout naturel de prier pour avoir 
de la pluie ou Ie beau temps, alors qu'il jugeraient ridicule de de­
mander une eclipse par une priere? Nous voyons que les grandes 
perturbations se produisent generalement dans les regions ou 
l'atmosphere est en equilibre instable, qu'un cyclone va naitre 
queIque part, mais ou ? Ils sont hors d'etat de Ie dire; un dixieme 
degre en plus ou en moins en un point quelconque, Ie cyclone 
eclate ici et non pas la, et il etend ses ravages sur des contrees 
qu'il aurait epargnees. Si on avait connu ce dixieme de degre, on 
aurait pu Ie savoir d'avance, mais les observations n'etaient ni 
assez serrees, ni asses precises, et c'est pour cela que tout semble 
dli a I'intervention du hasard. 5 

5 Why do meteorologists have such a hard time in foreseeing the weather with a rea­
sonable degree of precision? Why do showers and storms seem to occur at random, 
so that many people find it absolutely natural to pray for rain or good weather, while 
they would find praying for an eclipse utterly ridiculous? We see that great pertur­
bations generally occur in regions where the atmosphere is unstable. Meteorologists 
are well aware of the instability of the equilibrium and that somewhere there will 
be a hurricane, but where? They cannot tell , because a tenth of a degree more or 
less at any point will determine a hurricane here instead of there, and there will be 
devastations in areas that would have been spared. If one had known this tenth of a 
degree one could have foreseen the event, but observations were neither sufficiently 
frequent nor sufficiently precise, and for this reason everything seems to be due to 
the intervention of hazard. 
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Even though mathematicians have always known that dynamical sys­
tems may behave in unexpected and complicated ways, it is only with 
the invention of computers and the increasing interests in mathematical 
models for population dynamics, biology, electronic circuits with nonlinear 
components, astronomy and metereology that the study of deterministic 
chaos has acquired importance to the point of becoming a fashionable 
subject not only among mathematicians and physicists. Particularly rele­
vant in this process are the contribution of Hendrik Lorentz (1853-1928), 
meteorologist at MIT, who published in 1963 a simplified model of fluid 
that shows the rapid growth of errors in dependence on initial conditions, 
and the work of the two mathematicians, D. Ruelle and F. Takens, who, 
in 1971, conjectured that hydrodynamic turbulence may be represented 
by stmnge attmctors, mathematical objects that describe evolutions with 
sensitive dependence on initial conditions. 

One may have the impression that complex dynamics is typical of dis­
persive or nonconservative dynamics. But this is not true, as is shown by 
the question of the stability of the solar system. 

It is commonly agreed that in Newton's opinion gravitational inter­
actions among planets were so strong that they could compromise the 
stability of the system and that probably for this reason he formulated the 
hypothesis that it was God who controlled these instabilities in order to 
ensure the existence of the solar system; Newton writes in his Principia 

It is not to be conceived that mere mechanical causes could 
give birth to so many regular motions .... This most beautiful 
system of the sun, planets, and comets, could only proceed from 
the council and dominion of an intelligent powerful Being. 

During the Age of Enlightenment, Lagrange, Laplace, and Poisson pro­
vided mathematical reasons in favour of the stability of planetary orbits, 
showing, for instance, absence of polynomial growth in time of the major 
axis of the orbit up to third order with respect to the planetary masses. 
More recently Poincare and George Birkhoff (1884-1944) showed that in 
the dynamics of planets one may encounter instabilities that make the no­
tion in the phase space quite complex and the more recent contributions 
of A. N. Kolmogorov, V. A. Arnold, and J. Moser suggest the coexistence 
of both stability and instability. All the same, many questions regarding 
n-bodies are still unresolved.6 

So far we have always referred to continuous dynamical systems. How­
ever, discrete dynamical systems are naturally associated to continuous 
ones, for instance in the form of discretization or of a Poincare map. They 
also naturally occur in the study of population dynamics and are the ap­
propriate models for computers and often show a chaotic behavior even 
when the corresponding continuous system does not. 

6 See the paper by Jacques Laskar in A. Dahan Deimedico, J. L. Chabert, K. Chemia, 
Eds, Chaos et Determinisme, Editions du Seuil, Paris, 1992, and S. Marmi, Chaotic 
behavior in the solar theory, Seminaire Bourbaki 5me annee, 1998-1999, n. 854. 
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In this chapter we shall describe the behavior of a few simple discrete 
dynamical systems with the aim of showing some paths leading to chaos. In 
fact, a wider and more precise analysis cannot avoid a wider and more de­
tailed study of ordinary differential equations and further technical tools. 
In Section 1 we discuss first and second order linear difference equations, 
some nonlinear examples of recurrences and continued fractions; in Sec­
tion 2 we shall then illustrate some aspects of one-dimensional dynamical 
systems. 

8.1 Recurrences 
In the previous chapters we encountered on several occasions recursive 
relations, some of which lead to closed form sequences while some do not, 
and we studied in some detail the process of summing with the analysis of 
series. In this section we discuss a few more classical recurrences that from 
a dynamical point of view, that is from the point of view of the behavior 
at infinity, are quite regular. 

8.1.1 Linear difference equations 

In this section, we discuss first order linear difference equations. They are 
the discrete version of the first order ODE and can be solved in closed 
form. 

a. First order linear difference equations 
We recall (see Example 2.5) that, given Un}, the recurrence 

is equivalent to 

{

XO given, 

Xn +1 = Xn + fn+l> Vn ~ 0, 

n 

Xn:= Xo + LIi· 
j=l 

Moreover, we have the following. 

8.1 Proposition. Given a E R and Un}, the solution of 

{

XO given, 

Xn+1 = aXn + fn+l> Vn ~ 0, 
(8.1) 
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is 
n 

._ n +~ n-jl Xn .-a Xo ~a j. (8.2) 
j=l 

In fact, the sequence {xn} given by (8.2) verifies the recurrence relations 
(8.1). The solutions of (8.1) have a structure, which is quite similar to the 
structure of the solutions of first order linear ODE (see, e.g., Chapter 5 of 
[GM1]): 

o the sequence u = {un}, given by Un = an solves 

Uo = 1, 

o if I := Un}, then the product of convolution of U and I, {u * n, 
(u * f)n := 2:.~=0 Un-j/j solves 

{

XO = 10, 

Xn+1 = aXn + In+lo \:In;::: 0, 

since 
n+1 n 

(u * f)n+1 = L Un+1-j/j = L an+1-
j /j + In+1 = a (u * f)n + In+1; 

j=O j=O 

o consequently, Xn := un(xo - 10) + (u * f)n solves (8.1). 

Similarly, we easily see that first order linear difference equations with 
varying coefficients are uniquely solvable, and we have the following. 

8.2 Proposition. Let {an} and Un} be two sequences. Then 

(i) The sequence u := {un}, 

solves 

(ii) The sequence {xn}, Xn := Un 2:.7=0 ~~, solves 

(iii) Consequently, {xn}, 

solves 

n r 
Xn := un(xo - 10) + Un ~ -1.., 

~u· 
j=O J 

{

XO given, 

Xn+1 = an+1 Xn + In+lo n;::: O. 
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h. Second order homogeneous difference equations 

A generic second order difference equation has the form 

aXn+2 + bXn+1 + CXn = 0, (8.3) 

where a, band c are constants and a f 0. We are interested in finding all 
solutions of (8.5), or, equivalently, in solving explicitly the recurrence 

{
XO = a, Xl = {J, 

aXn+2 + bXn+1 + CXn = 0, n ~ 0, 
(8.4) 

for any given a and {J ERAs in the case of ODEs (compare, e.g., [GMl]), 

(i) if {xn} and {Yn} solve (8.3), then also {C1Xn +C2Yn}n solves (8.3) for 
any C1, C2 E C, 

(ii) if A is a solution of the characteristic equation 

aA2 + bA + c = 0, 

then {An} solves (8.3): in fact, 

aAn+2 + bAn+1 + cAn = An(aA2 + bA + c) = 0. 

Let AI, A2 be the two solutions of the characteristic equation. Corre­
sponding to the three cases of real and distinct roots, repeated real roots 
and conjugate complex roots, define the two sequences {un}, {Vn} by 

un = A7, 

Un = A7, 
Un = IA1Incos(mp), 

Vn = A2 if A1,A2 E JR, Al f A2, 

Vn = nA7 if Al = A2, 
Vn = IA11n sin(ncp) otherwise. 

(8.5) 

The latter occurs if AI, A2 are complex conjugate, and in this case we 
have set 

We have the following. 

8.3 Proposition. The solution of (8.4) is the sequence {xn} given by 
Xn = C1 Un + C2 Vn where C1, C2 solves 

(8.6) 

Proof. (i) Real and distinct roots. By linearity {xn}, Xn = C1Ar + C2A~, 
solves (8.3). Moreover, since Al f A2, for any a, {J E JR, one can then solve 
for C1, C2 the system in (8.6). 

(ii) Complex conjugate roots. Let A := Al ,and 'X = A2' Similarly to (i), all 
complex valued sequences {xn} Xn = ClAn + C2A, C1, C2 E C, solve (8.3). 
For given a, {J we then solve in C, since A f 'X, (8.6) to get the solution 
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of (8.4), an a priori complex function. 
But a, /3 being reals, when solving (8.6), we get C2 = Cb hence the 

solution found is real and written as 

or, setting C = a - ib, a, bE JR, by de Moivre's formula, 

(iii) Repeated real roots. Let 'xl = 'x2 = ,x. Since in this case 2a'x + b = 0, 
we have 

a (n + 2),Xn+2 - b (n + l),XnH - cn,Xn 

= n,Xn(a,X2 + bA + c) + ,Xn(2a'x + b) = 0, 

i.e., {n,Xn} solves (8.3). Therefore all sequences {xn}, Xn = ,Xn(Cl +C2n) = 
Cl Un + C2Vn, Cb C2 E JR, solve (8.3). Since the system in (8.6) yields Cl and 
C2, we find the solution of (8.4). 0 

c. Second order nonhomogeneous difference equations 

Consider the recurrence 

{
XO = a, Xl = /3, 
aXn+2 + bXn+l + CXn = fn+b 

where a, b, C E JR and {fn} is a given sequence. 

(8.7) 

8.4 Proposition. Let {wn } be the sequence that solves the homogeneous 
recurrence 

{
WO = 0, Wl = 1, 

aWn+2 + bWn+l + CWn = 0, n ~ 0. 
(8.8) 

Then the sequence {xn} given by 

lIn 
Xn := -{(w * f)n} = - '" Wn-j/j, 

a a~ 
j=O 

solves 

{
XO = 0, Xl = fo/a, 

aXn+2 + bXn+l + CXn = fn+l' n ~ 0. 
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Proof. In fact, 

n+2 n+l n 

a L Wn+2-j!J + b L Wn+l-j!J + C L Wn-j!J 
j=O j=O j=O 

= awOfn+2 + awdn+l + bwOfn+1 
n 

+ L(awn+2-j + bWn+1-j + cWn-j)fj 
j=O 

= afn+1. 

o 

By linearity, with the notation of Propositions 8.3 and 8.4 we conclude 

8.5 Theorem. The solutions of the linear second order recurrence 

aXn+2 + bXn+l + CXn = fn+l 

are given by the two-parameter family of sequences 

where {un} and {vn } are defined in (8.5) and {wn } in (8.8). 

d. Z-transform and Laplace transform 
Linear difference equations can be solved also using the method of gen­
erating functions or, better, a slight modification of it known as the Z­
transform, see 8.7 below. 

Let a = {an} be a sequence of complex numbers which grows at most 
exponentially, lanl ::; CMn for some M > o. The Z-transform of {an} is 
the complex-valued function 

00 1 
Z{a}(z) := "an -L...J zn 

n=O 

that is defined at least in {z Ilzl > M}. Of course 

Z{a}(z) = T{a}G), 

T (a) being the generating function of a = {an}. Using properties of power 
series, we see that 

(i) Z{a} uniquely determines {an}, 
(ii) Z is linear, i.e., if A,p E C and a = {an}, b = {bn } grow at most 

exponentially, then 

Z{Aa + pb}(z) = AZ{a}(z) + pZ{b}(z), Izllarge. 
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(iii) If ek := {(O, ... ,0,1,0,0, ... )} is the Kronecker sequence then 
"'"-v--' 

k 

(iv) If a = {an}, and 

is the forward shift by k places, then 

00 1 1 
Z{Tk{a} Hz) = I:: an zn+k = zk Z{aHz). 

n=k 

(v) If a = {an}, and T-k{a} := {an+k}n is the backward shift by k places, 
then 

00 

I:: 1 k( al a2 ak-I) Z{Tk{a}Hz) = an+k- = z Z{aHz)-ao-----·· .--- . zn Z Z2 zk-I 
n=O 

(vi) Z transforms the convolution product of sequences into the product 
of the transformed functions, see Theorem 7.34, 

00 1 00 1 00 1 
Z{a*bHz) = I::(a*b)n zn = (I::anzn ) (I::bnzn ) 

n=O n=O n=O 
= Z{aHz)Z{bHz). 

The notion of Z-transform (and of generating function) is very useful 
in several fields: in combinatorics, as we have seen, in probability, in data 
sampling, in the study of digital filters, just to mention a few. The Z­
transform is known, especially to engineers, as the discrete version of the 
Laplace transform, which is particularly useful when studying the Cauchy 
problem for linear ODE. 

The Laplace transform of a continuous function that grows at infinity 
less than exponentially is defined by 

C{fHz) := 100 

f(t)e- zt dt, ~z > 0. 

If f is the piecewise constant function defined by f(t) = an if n ::; t < n+ 1, 
then 

Also, if for all hEN we set 
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h(t) := {~n 
then 

therefore 

ifn<t<n+k, 

otherwise, 

The functions (l/h)ih may be thought of as approximations of "impulses" 
concentrated at the integers. 

e. Fibonacci's numbers 
The simplest possible recurrence in which each number depends on the 
previous two is the one defining Fibonacci's numbers. They occur in a 
wide variety of situations. Here is how Leonardo Pisano (1170-1250), called 
Fibonacci, came to them. 

Assume that every month every couple of rabbits gives birth to a couple 
of rabbits that can reproduce from their second month of life on. How many 
couples of rabbits are there after n months if we start with a newborn 
couple? If {in} is such a number, of course, h = h = 1, moreover with a 
newborn living at the n-th month, in, are the ones of the previous month 
plus those generated by the rabbits who were alive two months before, 

in+2 = in+l + in. 

Fibonacci's sequence Un} is defined by 

{
io = 0, h = 1, 

in+2 = in+l + in, n 2: o. 
If we write the characteristic equation 

z2 - z -1 = 0 

of the recurrence to get its solutions, >. 
conclude on account of Section 8.1.1 that 

Therefore 

l+v's and I/. -2- ,.,. 

n 2: 0, 

v's-l we --2-' 
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Fibonacci's 
Liber Abaci 

A Translation into Modem English of 
Leonardo Pi",oo', Book of Calculation 

Springer 

Figure S.3. Frontispieces of the first printed edition and the first English translation of 
Liber Abaci of Leonardo Pisano (1170-1250), called Fibonacci. 

8.6 Proposition (Binet's formula) . We have 

"in ~ 0. 

Since l!tln / J5 EjO, 1/2[, and !t is negative if n is odd and positive if n 
is even, In is the integer part of )... n / J5 if n is odd, and the integer part of 
)... n / J5 plus 1 if n is even. In any case, In is the closest integer to )... n / J5. 

8.7 Fibonacci's numbers by Z-transform. One can solve the Fibo­
nacci recurrence also using the Z-transform. In fact, multiplying the n-th 
recurrence relation by z~ and summing, we get 

00 1 00 1 00 1 
Z2 L ln+2 n+2 -ZLln+1 n+l - Linn =0, 

n=O Z n=O Z n=O Z 

that is 

Z2 (Z{J}(z) - 10 - ~) - z( Z{J}(z) - 10) - cZ{J}(z) = 0, 

Le., 
z 

ZI(z) = z2 _ Z - l' 

Notice that the denominator of Z{J}(z) is the characteristic equation of 
the Fibonacci recurrence. By Hermite's decomposition formula 
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1 = A_1_ + B_1_ 
Z2 - z - 1 z - ,X z - J], 

with 
1 1 

A·=--=-
. 2,X -1 )5' 

1 1 
B:=--=--

2J], - 1 )5 

and consequently, recalling that l~z = 2::=0 zn, 

z 1 1 
Z{f}(z) = Z2 _ z -1 = A 1 _ ,Xjz + B-:-1 -_-J],j"-z 

Hence, we find again 

In terms of Fibonacci numbers one can give a sharp estimate of the 
number of steps needed to end Euclid's algorithm. 

8.8 Proposition. Let a, bEN with 0 < b ::; a. If Euclid's algorithm on a 
and b ends in n steps, then a ~ fn+2 and b ~ fn+l. 

In other words, if b < fn+l or a < fn+2, then Euclid's algorithm ends in 
at most n - 1 steps. 

Proof. Write Euclid's algorithm as 

{

T-I = a, TO = b, 

Tj+1 = Tj-I - qjTj 

until Tn+1 = 0, so that Euclid's algorithm has n steps. Observe that 

'ifj E {-l,O, ... ,n+l}. 

Since we have Tn+1 = 0 = fa, Tn = g.c.d. (a, b) ;::: 1 = fl, and by induction 

Tn+l-j = qn-jTn-j + Tn-j-I ;::: Ii-I + Ii-2 = fj, 
we infer 

and b = TO ;::: fn+l. 

D 

Notice that the estimate on the number of steps of Euclid's algorithm 
in Proposition 8.8 is sharp, since for a = fn+2 and b = fn+b we have 
rl = fn, r2 = fn-l, g.c.d. (fn+2, fn+!) = rn = h = 1, rn+! = fo = O. 
Thus Euclid's algorithm stops in n steps. 

8.9 Corollary (Lame). The number of steps needed to end Euclid's al­
gorithm does not exceed five times the number of the (decimal) digits of 
the divisor. 
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B 

A c 

Figure 8.4. 

Proof· Let n be the number of steps of Euclid's algorithm to divide a by b, and let k 
be the number of digits of the divisor. From Proposition 8.8, 

10k > b 2: fn+l. 

On the other hand, it is easily seen by induction that 

(
8)n-l 

fn+1 2: 5 . 

Since (8/5)5 > 10 we have 

105k > (~)5(n-l) > lOn-l 
- 5 ' 

that is n - 1 S 5k. o 

8.10,.. The number 7 = ¥ is the golden ratio 7 of Grflek geometers. With reference 
to Figure 8.4, show that, if 1 is the side, then 

(i) the length of the diagonal is the golden ratio 7, 

(ii) the side of the internal pentagon is 7-2 . 

8.1.2 Some nonlinear example~ 

a. Simple examples 
8.11 Example. Consider the recurrence 

{

XO = a > 0, 

Xn+l =,,;x:;;, n 2: o. 
(8.9) 

If a = 1, then Xn = 1 'In. If a > 1, we see by induction that Xn > 1 'In, hence 
Xn+l = ,,;x:;; S Xn , 'In, i.e., {Xn} is decreasing, therefore Xn ---> L and 1 S L S aj 
actually, passing to the limit in (8.9), we see that L =,fL, i.e., L = 1. Similarly, if 
a < 1, then Xn < 1 'In, {Xn} is increasing and Xn ---> 1. We conclude that for any 
a> 0, the sequence {Xn} defined by (8.9) converges to l. 

Alternatively, it is easily guessed and proved that thfl sequence defined by (8.9) is 

Xn = a 2-
n

, n 2: 0, thus Xn ---> 1. 

7 The golden ratio is the inverse of the golden mean, which is the proportion of the 
division of a segment so that the smaller is to the largeJ- as the larger is to the whole. 
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8.12 Example. Consider the recurrence 

{

XO = 0< >~' 
X n +l = .,;x;;' n ~ O. 

(8.10) 

If 0< = 1, then Xn = 1 "In. Also, if 0< > 1 we have Xn > 1 if n is even and Xn < 1 if n is 
odd. Moreover 

1 
X2n+2 = --- = {IX2n". 

y'X 2n+l 

We deduce X2n = 0<4-
n

, n ~ 0, hence 

1 4- n 

X2n+l = Cia) , 
concluding that X2n, X2n+l -+ 1 and Xn -+ 1 since even and odd integers exhaust all 
integers. 

8.13 Example. A limit situation occurs for the recurrence 

{

XO = 0< > 0, 

x n +1 = ~ n ~ O. 
Xn 

Clearly Xn = 0< if n is even and Xn = 1/0< if n is odd. We conclude that {Xn} has limit 
if and only if 0< = 1. 

h. Evaluating algorithm performance 
In evaluating the performance of algorithms one considers a characteristic 
time as a function T(n) of a parameter n which describes the size of data 
on which the algorithm works. Often, due to the structure of the algorithm, 
one gets recursive estimates on T(n) of the type8 

T(2n) S 2T(n) + n, "In. 

One can prove that in fact this estimate is equivalent to the estimate 
T(n) S Cn log n, i.e., using the Landau notation, to 

T(n) = O(nlogn). 

8.14 Proposition. Let T : N -+ lR. be a positive increasing function such 
that 

"In 2: 0, (8.11) 

where TEN, T 2: 2, B > 0, a > 0 and /3 > 0 are independent ofn. Then 

(i) if a ¥- /3, then T(n) = O(nmax(a,,B»), i.e., there exists a constant 
C = C(a,/3,T,T(l),B) such that T(n) S Cnmax(a,,B) "In, 

(ii) if a = /3, then T(n) = O(nO< logn), i.e., T(n) S Cna logn "In 2: 2 for 
a suitable constant C depending on T(l), B, a and T. 

8 See e.g., A. Aho, J. H. Hopcroft and J. D. Ullman, Data Structures and Algorithms, 
Addison-Wesley, 1983. 
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Proof. We deduce from (8.11) 

T(r) ~ r"T(I) + B, 

T(r2) ::; r"T(r) + Brf3 ~ r2"T(I) + Br" + B r f3, 

and inductively 

k 

T(rk+1) ~ r(k+1)"T(I) + B r kf3 E rjC<>-f3) , 

j=O 

(i) If a < j3, (8.12) yields 

where G := rT(I) + B .,.",-"'l:I-1. 

V k. (8.12) 

Given n E N, we can choose k in such a way that rk ~ n < r k+1, and conclude 

T\'tI.\ -:; T\ .. k+1 \ -:; c .. kf3 -:; c nf3, 

since T(n) is increasing. Similarly, if a > j3, (8.12) yield!> 

C" - f3)( k+ 1)-1 
T(rk+1) ~ rCk+1)"T(I) + Brkf3 r ~ Grk" 

r,,-f3 - 1 

where G := rT(I) + B .,.",-"'l:I-1 . Thus (i) is proved. 

(ii) If a = j3, (8.12) yields 

T(rk+ 1) ~ r Ck+1)"T(I) + BrCk")(n + 1) ~ r k'" (rT(I) + B(n + 1)), 

hence, if k is chosen in such a way that rk ~ n < r k+1, i.e., k ~ log.,. n ~ k + 1, we find 

T(n) ~ T(rk+1) ~ rk"(raT(I) + B(log.,.n + 1)) ~ n"(r" + B + B log.,. n), 

T(n) being increasing, hence, 

"In ~ 2, 

for a suitable constant G. o 

8.15 QuickSort. The average number of comparison steps Gn made by the QuickSort 
algorithm for sorting n random elements is given by 

Go =0, 
2 n-1 

Gn = n + 1 + - E Gj' n ~ l. 
n j=O 

Multiplying by n we get for n ~ 1, 

{
nGn = n 2 +n + 2Ej~J Gj, 

(n + I)Gn+1 = (n + 1)2 + (n + 1) + :zEj=o Gj, 

and subtracting the first term from the second 

n+2 
Gn +1 = --Gn + 2. 

n+l 

This is written, for Sn := Gn/(n + 1), as 
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Figure B.S. 

{

SO = 0, 

Sn+1 = Sn + 2/(n + 2), 

or Sn := 2:.';=0 j!1 - 2 = 2:.';=1 2/(j + 1). According to the above 

n 1 
en := (n + l)sn = 2 (n + 1) L -. - = 2(n + 1)Hn+1 - 1 

j=1 J + 1 

where Hn := 2:.';=11fj is the n-th partial harmonic sum. Consequently (6.21) yields 

en ~ 2(n + 1) log(n + 1) Vn or en = O(nlogn). 

c. Rate of convergence 

8.16 Newton's approximation method. Let f: [a, b] ---+ lR. be a con­
tinuous function with f(a) < 0 and f(b) > O. Theorem 2.51 states that 
f has at least one zero, and the proof provides an algorithm to approxi­
mate that zero. In the case in which f is also convex or concave, Newton's 
method turns out to be more efficient. 

Assume f convex, continuous in [a, b], f(a) < 0, f(b) > 0 so that f has 
a unique zero e E [a, b], and (see, e.g., Chapter 4 of [GM1]) 

f(x) > 0, j'(X) > j'(e) > 0 for x E [e, b]. (8.13) 

Let {Xn} be the sequence defined by the recurrence 

{

XO = b, 
_ f(xn) 

Xn+l - Xn - f'(Xn)' 

Clearly X n +l is the point where the tangent to the graph of f at the 
point (xn' f(xn)) intersects the x-axis. Since f is convex, e :S Xn "In and 
by (8.13), Xn+l :S Xn "In. Thus the sequence {xn} converges to a point 
L E [e, b] that, as we see passing to the limit in the recurrence, is given by 

f(L) 
L = L - f'(L) , i.e., f(L) = 0, i.e., L = e. 
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{Xn} is therefore a sequence of approximants of c from above. A sequence 
of approximations {Yn} from below can be obtained by defining Yo = a and 
Yn+1 as the point at which the secant through (Yn, f(Yn)) and (xn, f(xn)) 
intersects the x-axis. 

Notice that Heron's algorithm in Exercise 2.99 is Newton's method 
applied to f(x) = x2 - Q. 

Let 9 : [a, b] - [a, b] be a function of class C2 ([a, b]) and let {xn} be 
defined by the recurrence 

{
xo := Q E [a, b], 

Xn+1 = g(xn). 
(8.14) 

If {xn} converges, then Xn - L E [a, b] with L = g(L), that is L is a 
fixed point of g. From Taylor's formula with Lagrange remainder (see, e.g., 
[GM1]), 

~ = ~(y) E [V, LJ, 

we infer for the error 8n := IXn - LI, 

where M := SUPxE[a,b]Ig'(x)l. Since we assumed 8n - 0, we have 8n < 
(1/2)n and {8n} decays exponentially to O. 

If moreover g' (L) = 0, Taylor's formula with Lagrange remainder yields 
also 

hence 

where N := SUPxE[a,b]Ig"(x)l. Therefore, we find for pEN and n ~ 1, 

(8.15) 

We say that a sequence {xn} converges rapidly to L E lR. if IXn - LI < a2n 

definitively, with a < 1. From the previous argument we then conclude the 
following. 

8.17 Proposition. Let 9 E C2([a, b]), let L E [a, b] be a fixed point 
of g, g(L) = L, and let {xn} be the sequence defined by (8.14). If 
liminfn--+oo IXn - LI = 0, (in particular if {xn} converges to L), then {xn} 
converges rapidly to L. 
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Figure 8.6. A classical introduction to 
number theory. 
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In the case of Newton's approximating sequence 

{
XO = a E [a,b], 

_ !(x n ) 

Xn+l - Xn - f'(Xn) , 

if {Xn} converges, then the limit L is a fixed point of the function 

f(y) 
g(y) := y - f'(y) , Y E [a,b]. 

Assuming mOreover that f E C3([a,b]) and 1'(L) =1= O. Then g E C2 ([a,b]) 
and g'(L) = O. Therefore, if {xn} converges to L, then {xn} converges 
rapidly to L. 

8.18,. Let {xn} be a sequence of positive real numbers such that 

Xn+l ::; C Bnx;+€ 

with C > 0, B > 1 and € > 0. If XQ ::; c-l /e B - l / e2 , then Xn ::; B - n /€ xQ , hence 
Xn --+ 0. 

8.1.3 Continued fractions 
a. Definitions and elementary properties 

The finite continued fraction operation consists in computing, starting from 
n + 1 nonnegative numbers {ao, . . . , an}, which are all positive except for 
ao , the number 



1 
ao + --------:-1---

1 
+­

an 

8.1 Recurrences 317 

One refers to the result as to the (finite) continued fraction of ao, ... ,an' 
Since the previous notation is heavy, one prefers lighter notation, as 

1 1 1 1 
ao+ -- -- ... ----, 

al + a2+ an-l + an 

or, as we shall do, 
[ao, ... ,an], 

The numbers ao, ... ,an are called the quotients of the continued fraction 
lao, ... ,an], while for 0 ~ k ~ n, the continued fraction [ao, ... , ak] is 
called the k-th convergent of [ao, ... , an]. 

Observe that lao] = ao,g lao, all = ao + ;1' and more generally 

1 
[ao, ... , an] = [ao, ... , an-2, an-l + -] = [ao, ... , an-2, [an-I, an]], 

an 
1 

[ao, ... , an] = aO + [ ] = lao, [al,"" an]], (8.16) 
al, ... ,an 

[ao, ... , an] = [ao, ... , ak, [ak+l,'" anll Vk, 0 ~ k ~ n. 

Finally, observe that the map 

(ao, ... ,an) -t lao, ... ,an] 

is strictly increasing in each of the variables with an even index and strictly 
decreasing in each of the variables with an odd index. 

Computing lao, ... ,an] by its definition consists in the following: start 
from the last an, take the inverse 1lan, add an-I, compute the inverse of 
the result, add an-2 and so on by downward induction until one adds ao. 
The following iterative scheme, 

ao 
[ao] = T' 

computes [ao, ... , an] by upward induction, and reduces the computation 
of lao, ... ,an] to a sum. 

by 
Let [ao, ... , an] be a continued fraction. Define Po,··· ,Pn, and qo,···, qn 

{
Po = ao, 

qo = 1, 
(8.17) 

9 In this context [aD] = aD and not, as usual, the integral part of aD. We denote instead 
the floor of x by x/ /1, / / being the integral division. 
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and, for k = 2, ... , n, 

{
Pk : akPk-1 + Pk-2, 

qk - akqk-l + qk-2· 

Then qk ~ ° Vk and we have the following. 

8.19 Proposition. We have 

Pk = [ao, ... , ak], 
qk 

Vk = 0, 1, ... , n. 

Moreover 

In particular 

Pkqk-l - Pk-Iqk = (_l)k-l, 

Pkqk-2 - Pk-2qk = (-l) kalc, 

k = 1, ... ,n 

k = 2, ... ,n. 

k = 1, ... ,n. 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

Proof. We first prove (8.19) by induction on k. Of course, (8.19) holds true 
for k = 0, 1. By induction assume the claim true for k, then 

lao, aI, ... ,ak+1] 

[ 1] (ak + a!:t; )Pk-l + Pk-2 
= ao, al,···, ak-I, ak + -- = ( I ) 

ak+l ak + ak+l qk-l + qlc-2 

ak+l(akPk-1 + Pk-2) + Pk-l ak+IPk + Pk-l Pk+1 
= ak+1(akqk-1 + qk-2) + qlc-l = ak+lqk + qk-l = qk+l 

Then (8.19) follows. As 

Pkqk-l - Pk-Iqk = (akPk-1 + Pk-2)qk-1 - Pk-l(akqk-l + qk-2) 

= -(Pk-Iqk-2 - PIc-2qk-I), 

by repeating the argument, we get 

Pkqk-l - Pk-Iqk = (-l)k+1(PlqO - POql) = (-l)k-l, 

i.e., (8.20). Also 

Pkqk-2 - Pk-2qk = (akPk-1 + Pk-2)qk-2 - Pk-2(akqk-l + qk-2) 

= ak(Pk-Iqk-2 - Pk-2qk-l) = (-l)kak . 

i.e., (8.21). 
Finally, (8.20) is written as 
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n Pn/qn Pn/qn 

0 0.000000000000000 0/1 

1 1.000000000000000 1/1 

2 0.666666666666667 2/3 

3 0.750000000000000 3/4 

4 0.748691099476440 143/191 

5 0.748704663212435 289/386 

6 0.748701973001038 721/963 

7 0.748702422145329 1731/2312 

1731/2312:= 0.748702422145329 = [0,1,2,1,47,2,2,2) 

Figure 8.7. The continued fraction expansion of 1731/2312. 

Pk Pk-l 

qk qk-l 

for k = 1, ... , n, hence 

hence (8.22), by taking into account (8.19). o 

In the rest of this section we are interested in simple continued frac­
tions, that is, in continued fractions in which all the quotients are integers. 
Clearly in this case the continued fraction is a rational number. 

8.20 Definition. A continued fraction [ao, ... , an) is simple if ai EN 'Vi 
and ai ~ 1 'Vi ~ 1. 

For simple continued fractions, Proposition 8.19 is particularly useful. 
We have the following. 

8.21 Proposition. Let [ao, ... , an] be a simple continued fraction, and 
let Pk/qk := [ao, ... , ak] be irreducible. Then 

(i) {pd and {qk} are the numbers defined in (8.17), (8.18), 
(ii) ql ~ qo and qk > qk-l 'Vk ~ 2, 

(iii) qk ~ k 'Vk, and qk > k 'Vk > 3. 

Proof. The numbers Po, ... ,Pk and qo,···, qk defined by (8.17), (8.18) are 
integers by definition, moreover they are coprime by (8.20) and Pk/qk = 
lao, ... , ak] by (8.19). Thus (i) follows. Finally we have qn = anqn-l + 
qn-2 ~ qn-l + 1 if n ~ 2, hence (ii), while (iii) follows at once since 
qn ~ qn-l + qn-2 ~ qn-l + 1 ~ n if n ~ 3. 0 
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A continued fraction does not fix its quotients as, for instance, 

[ao, ... , an] = [ao, ... , an-I, an - 1,1] 
[ao, ... , an] = [ao, ... , an-I + 1] 

if an> 1, 
if an = 1. 

However a simple continued fraction fixes its quotients apart from the 
previous ambiguity. More precisely, we have the following. 

8.22 Proposition. Let [ho, ... , hn] and [ao, ... , am] be two simple con­
tinued fractions. Suppose that [ho, ... , hn] = [ao, ... , am] and, for conve­
nience, m 2: n. Then 

o either m = n and hi = ai 'Vi = 0, ... , n, 
o or m = n + 1, hi = ai Vi = 1, ... , n - 1, hn = an + 1 and am = 1. 

Proof. We proceed by induction on n. Let n = O. Either m = 0, hence ho = [ho] = 
lao] = ao, or m > O. In this case we have 

1 
ho = [ho] = [ao, ... ,am] = ao + [ ] 

aI, .. . ,am 

from which we infer [al, . .. , am] = 1, which in turn implies m = 1, al = [aI, ... , am] = 1 
and ho = ao + l. 

Assuming now the claim true for simple continued fractions with n quotients, let 
us prove it for a simple continued fraction with n + 1 quotients. Assuming n ~ 1, by 
(8.16), we have 

hence by the inductive assumption ho = ao and [hI, ... ,hn ] = [aI, ... ,am]. Using again 
the inductive assumption, we reach the conclusion. 0 

8.23 Corollary. Let [ao, ... , an] and [bo, ... , bm] be two simple continued 
fractions. Suppose that an, bm 2: 2, and that [ao, ... , an] = [bo, ... , bm]. 
Then n = m and ai = bi, Vi = 0, ... , n. 

8.24 Definition. Let {an}, n = 0,1, ... be a list of real numbers such 
that ao 2: ° and ai > 0. We refer to the sequence 

{[ao, ... ,an] In = 0,1, ... } 

as to an infinite continued fraction, and we write it as [ao, ... , an, .. . ]. For 
any integer n, the (finite) continued fraction lao, ... , an] is called the n-th 
convergent of [ao, ... , an, .. . ]. If [ao, ... , an] -+ X E lR as n -+ 00, we also 
write x = [ao, ... , an, .. . ]. 
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b. Developments as continuous fractions 
The following algorithm leads us to simple continued fractions. Let x be a 
real number. Let ao be its integral part, ao := x/ /1, and let 0::1 := x - ao 
be its fractional part, so that 

x = ao + 0::1, ao EN, ao ? 0, 0::1 E [0,1[. 

If 0::1 ::f. 0, we can write 
1 

x=ao+ 1 ' 

and, since 1/0::1 > 1, we can reiterate the procedure, 

a1 := 1/0::1//1, 0::2 := 1/0::1 - aI, 
1 1 

- = a1 + 0::2 = a1 + -1-' = lao, a1 + 0::2] 
0::1 02 

to write 

(8.23) 

for k = 1,2, ... as long as O::k > 0. Thus the algorithm either ends at 
the first k = n at which O::k+l = 0, and in this case x = [ao, ... , an], or 
eventually continues indefinitely. 

All the ai's we find in this way are nonnegative integers and ai ? 1 
Vi ? 1, thus the resulting continued fractions are simple. We refer to that 
algorithm as to the continued fraction expansion algorithm and to the 
resulting list of continued fractions when applying the algorithm to x as 
to the continued fraction expansion of x. 

Finally, we recall that, since (ao, ... , an) ---+ [ao, ... , an] is strictly in­
creasing in the variables with even index and decreasing in the variables 
with odd index, 

1 
[ao, ... , a2k] ::; x = [ao, ... , a2k-b a2k + --] 

0::2k+1 
1 

= lao, ... ,a2k, a2k+1 + --] 
0::2k+2 

::; lao, ... ,a2k+l] 

as far as the continued fraction expansion algorithm continues. 

(8.24) 

8.25 Euclid's algorithm. Let x > 0. Euclid's algorithm is a means to 
find iteratively, if it exists, a common submultiple of x > ° and 1, see 
Section 1.1 and Figure 1.5, by 
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Start with x E JR, then compute {ak} and ak with 

1 
aO:= -, 

x 

for k = 0, 1, ... , as far as Qk+l of O. 
By construction 

{

f3k := l/ab 

ak := f3k/ /1, 
ak+l := f3k - ak 

x = aD + aD = [aD + aD] = [aD, al + ad = ... = [aD, al,··· , ak + ak+l] = ... 
for k = 0,1, ... , as far as the algorithm continues. Eventually the algorithm stops 
at the first k =: n for which Qk+l = O. In this case we also have 

x = [ao, al, ... , an). (8.25) 

Figure B.B. The continued fraction expansion algorithm. 

(8.26) 

for j = 1, ... , as long as rj > O. We refer to it as to Euclid's algorithm 
starting from (x, 1). The algorithm eventually stops at the first k =: n for 
which rn+l = O. In this case x = srn, 1 = trn, s,t E N, and x = sit 
is rational. Moreover, the last quotient qn is larger than or equal to 2. If 
conversely x is rational, then Euclid's algorithm surely stops after a finite 
number of steps. In fact, if x = p/q, p, q coprime, the remainders are l/q 
times the corresponding remainders of Euclid's algorithm starting with 
(p, q), which form a list of strictly decreasing integers, see Section 3.1.1. 
Thus Euclid's algorithm, starting with (x,I), i.e., (8.26), stops after a 
finite number of steps if and only if x is rational. 

The development of x as a continued fraction is a rewriting of Euclid's 
algorithm (8.26). We in fact have the following. 

8.26 Theorem. Let {aj}, and {OJ} be the numbers produced by the con­
tinued fraction expansion algorithm of x, and let {qj}, {rj} be respectively 
the quotients and the remainders of Euclid's algorithm (8.26) starting with 
(x, 1). Then 

Thus the continued fraction algorithm starting with x > 0 produces 

o either the quotients of a finite simple continued fraction lao, ... ,an] such 
that x = [ao, ... , an], if x is rational; in this case, if x = pi q, p, q coprime, 
we have x = [ao, ... , an] where n is the number of steps in Euclid's 
algorithm to compute g.c.d. (p, q) and an ~ 2; 

o or an infinite continued fraction [ao, . .. ,an, ... ] if x is irrational. 
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n Pn/qn Pn/qn l/(qnqn+1) 

1 3.000000000000000 3/1 Ie +00 

2 2.666666666666667 8/3 3e - 01 

3 2.750000000000000 11/4 8e - 02 

5 2.718750000000000 87/32 4e -03 

7 2.718309859154930 193/71 4e -04 

9 2.718283582089552 1457/536 4e -06 

11 2.718281835205993 23225/8544 Ie - 07 

13 2.718281828735696 49171/18089 6e - 09 

e = 2.718281828459045 = [2,1,2,1,1,4,1,1,6,1,1,8,1,1,1O, ... J 

Figure 8.9. The continued fraction expansion of Euler number e. 

If X is rational, then the continued fraction expansion [ao, ... , an] of 
x is the only simple continued fraction with an 2: 2 which equals x, see 
Corollary 8.23. 

8.27 ,. Write a detailed proof of Theorem 8.26. 

c. Infinite continued fractions 
From Propositions 8.19 and 8.21 we easily get the following. 

8.28 Theorem. Let [ao, ... , an",,] be a simple infinite continued frac­
tion, and let Pn/qn be the irreducible representation of the n-th convergent 
[ao, ... , an]. Then {Pn/qn} converges to x E JR, 

x = lao, ... ,an, ... ], 

where 

Moreover, 

(i) x - Pn/ qn is positive if n is even and negative if n is odd, so that 

P2n < X < P2n+l 
- - , 

q2n q2n+l 
(8.27) 

(ii) we have 
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(iii) we have 

where 0 < 8n < 1, 
(iv) the differences 

are strictly decreasing as n increases. 

Proof. From Proposition 8.21 the sequence {%qj+1} diverges and is strictly 
monotone Vj. Moreover (8.20) yields 

Pn n-l (-l)j 
[ao, ... ,an ] = - =ao+ L:--. 

qn j=O qjqj+1 

Since the series f (-l)j 
j=O qjqj+1 

is alternating and the absolute values of the terms tend strictly to zero, 
the Leibniz test applies, hence Pn/qn ---+ x, where 

(8.28) 

and (i) and the estimate from above of IX-Pn/qnl in (ii) hold. The estimate 
from below in (ii) follows also from the Leibniz test since 

(iii) follows from (ii). 

(iv) From (ii) we infer 

thus {Iqnx - Pnl} is strictly decreasing. As a consequence {Ix - Pn/qnl} is 
strictly decreasing, too. 0 

The next proposition shows that a simple infinite continued fraction is 
completely identified by its limit. 
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n Pn/qn Pn/qn 1/(qnqn+1) 

1 2.000000000000000 2/1 le+oo 

2 1.500000000000000 3/2 5e - 01 

3 1.666666666666667 5/3 2e - 01 

5 1.625000000000000 13/8 3e- 02 

7 1.619047619047619 34/21 4e- 03 

9 1.618181818181818 89/55 5e-04 

11 1.618055555555556 233/144 8e - 05 

13 1.618037135278515 610/377 Ie - 05 

1\:15 = 1.618033988749895 = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ... J 

Figure 8.10. The continued fraction expansion of the golden ratio. 

8.29 Proposition. Let [ao, . .. , an, ... J and [bo, .. . , bn , ... J be two infinite 
simple continued fractions that have the same limit. Then an = bn Vn. 

Proof. For i = 0,1,2, ... , denote by Xi the real numbers 

which exist by Theorem 8.28. We first observe that 

Vi, (8.29) 

in fact, since an infinite continued fraction never ends, Xi = ai + Xi:1 is 

strictly larger than ai Vi. Consequently Xi = ai + Xi:l < ai + ai:l < ai + 1. 
Then (8.29) yields 

1 1 1 
0<--<-<-<1 

ai + 1 Xi ai-

In particular, l/xi < 1. If now [ao, ... , an,·" J = [bo, ... , bn , ... J, then 

1 1 
ao+- =bo +-. 

Xl YI 

Since ao, bo EN and I/Xl, I/Yl EJO, 1[, we then infer ao = bo and 

[al,'" ,an, ... J = [bI>'" ,bn , .. . J. 
We then iterate the previous argument to get al = bl , a2 = b2, .... 0 

We therefore conclude the following. 

8.30 Theorem. Let X be irrational. Then there is a unique simple con­
tinued fraction that converges to x: the continued fraction expansion of x. 
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Proof. Let [ao, ... , an",,] be the continued fraction expansion of x. By 
Theorem 8.28, [ao, ... , an, ... ] converges to y E lR and 

lao, ... ,a2n] ::; Y ::; [ao, ... , a2n+1]' 

Since also 
[ao, . .. ,a2n] ::; x ::; lao, ... ,a2n+l] 

by construction, we infer y = x letting n -+ 00. The uniqueness is stated 
as Proposition 8.29 0 

d. Irrationals and approximations by rationals 
Actually the n-th convergent Pn/qn = [ao, ... , an] of the continued fraction 
expansion of x is the best approximation of x among all fractions whose 
denominator does not exceed qn' 

8.31 Theorem (Best rational approximations). Let x be irrational 
and let Pn/qn be the n-convergent of the continued fraction development 
of x. Then '<In ~ 2, '<Ip, q E N coprime with q ::; qn and p/q #- Pn/qn, we 
have 

Proof. We have already proved that 

Iqnx - Pnl < Iqn-l x - Pn-ll, '<In ~ 0, 

hence the claim follows by downward induction if we prove it for p, q such 
that qn-l < q ::; qn and p/q #- Pn/qn' 

If q = qn, we have Ip - Pnl ~ 1 and qn+l ~ 2, hence 

1 1 1 1 1 
Iqn x - Pnl ::; qn+1 ::; '2 ::; '2 IPn - pi::; '2 lqnx - Pnl + '2 lqx - pI· 

If qn-l < q < qn, and p/q #- Pn/qn we also have p/q #- Pn-!/qn-l. 
Write 

that is 

i.e., 

{
o:(pnqn-l - qnPn-l) = pqn - qPn, 

(3(Pnqn-l - qnPn-d = pqn-l - qPn-b 

in particular 0: and (3 are nonzero integers. Since qn-l < q = o:qn-l +(3qn ::; 
qn, 0: and (3 must have opposite signs, while Pn - qnx and Pn-l - qn-IX 
do have opposite signs. Thus 
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and 

have the same sign; hence 

Ip-qxl = la(Pn-l-qn-l X)I+I,8(Pn -qnx )l2: IPn-l-qn-lXI > IPn -qnxl· 

D 

8.32 Example. According to the definition of the continued fraction expansion algo­
rithm, one easily sees that [l,l, ... ,I, ... J is the continued fraction expansion of the 

golden ratio, 1\.15. Moreover Pn = In-I, qn = In, {In} being the sequence of Fi­
bonacci numbers. Since in this case 

we deduce 

We also have 

{
PO = 1, PI = 2, 

Pn+2 = Pn+l + pn, 

In-l --+ 1 + V5, 1 + V5 = 1 + fC-1)n_1_. 
In Z Z n=O In/n+l 

1 2'CV5 + 1) = [l,l,I,I, ... J =: [1,1], 

v'2 = [1,2,2,2, ... J =: [1,2], 

V5 = [2,4,4,4, ... J =: [2,4], 

V7 = [2,1,1,1,4,1,1,1,4, ... J =: [2, 1, 1, 1, 4J. 

Finally, as proved by Leonhard Euler C1707-1783), 

e = [2,1,2,1,1,3,1,1,4,1, ... J =: [2, 1, n, IJ~=I' 

ek / 2 + 1 
ek / 2 _ 1 = [k, 3k, 5k, ... J k = 1,2, .... 

Instead, no formation rule for the continued fraction of 7r is known. 

From Theorem 8.30 we readily infer that for the n-th convergents of x, 
we have 

Ix- Pnl < ~ 
qn - q;' 

in particular, if a is irrational, then there exist infinitely many rationals 
plq, p, q coprime, such that 

Ix-EI <~. q q2 
(8.30) 

Moreover if x is rational, x = alb i- plq, we have 

Ix - EI = laq - bpi > l 
q bq bq 

thus, assuming (8.30), we get q < b and in turn (8.30) has a finite number 
of solutions. In conclusion, we have the following. 
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8.33 Theorem (Dirichlet). a is irrational if and only if the inequality 

1 
iqa - pi <-

q 

is satisfied by infinitely many integers (p, q), q > O. 

However, the estimate (8.30) is not sharp in the following sense. It can 
be easily proved that of any two consecutive convergents of x, one at least 
satisfies the inequality 

Ix-EI < _1 . 
q 2q2 

(8.31) 

In particular, there are infinitely many convergents which satisfy (8.31). 
More can be stated in this direction. For instance, it has been proved that 
for any three consecutive convergents to x one at least satisfies 

Ix-EI < _1_, 
q J5 q2 

(8.32) 

and therefore we have the following. 

8.34 Theorem (Hurwitz). Every irrational x admits infinitely many ra­
tional approximations p/q such that 

Ix - ~I < ~q2' 
The constant J5 in the Hurwitz theorem is sharp. It can be easily 

proved that if Pn/qn denotes the irreducible representation of the n-th 
convergent of (1 + J5)/2, then q~ix - Pn/qni --t 1/J5, and that 

1

1 + J5 _ Pn I < _1 
2 qn - Aq~ 

holds only for a finite numbers of convergents if A > J5. 
We conclude observing that (8.31), that is satisfied by at least half of 

the convergents, characterizes the convergents. We have the following. 

8.35 Theorem. Let x be a positive real number. Assume that p, q are 
coprime integers. If (8.31) holds, then p/q is one of the convergents of the 
continued fraction development of x. 

Proof. By assumption 
P fa 
--x=-
q q2 

where 10 = ±1 and 0 < a < 1. Let [ao, ... , an] be the continued fraction 
expansion of p/q, n being such that (_I)n-l = 10, and let Pk/qk be the 
k-th convergent of lao, ... ,an], in particular P = Pn, q = qn' Write x as 



8.1 Recurrences 329 

x = lao, ... ,an, z] 

for a suitable z; according to Proposition 8.19 we have 

ZPn + Pn-l 

thus 

i.e., 

x= , 
zqn + qn-l 

fa Pn Z(Pnqn-l - Pn-lqn) - = - - x == ........::=--=--------''----''--'-
q; qn zqn + qn-l 

qn 
-----=a, 
zqn + qn-l 

that is, z ~ 1. Thus the continued fraction expansion of z is a simple finite 
or infinite continued fraction [bo, ... , bn , ... j with bo ~ 1. We then infer 
that 

[aD, ... ,an, bo, ... ,bn , ... ] 

is a simple continued fraction, and 

x = [aD, ... , an, z] = [aD, ... , an, bo,···, bn,· . . j. 

Hence P / q = [aD, ... , an] is one of the convergents of the continued fraction 
development of x. 0 

8.36 Periodic continued fractions. The reader may have already no­
ticed that y'2, J5, V7 have periodic expansions as continued fractions. This 
is a general fact. Furthermore, we have the following. 

Theorem (Lagrange). A periodic continued fraction is a quadratic surd, 
i.e., an irrational root of a quadratic equation with integral coefficients. 

e. Order of approximation and transcendental numbers 
We say that a is approximable by rationals to order n if there is a constant 
k = k(a) depending on a for which 

II!. - al < k(a) 
q qn 

has infinitely many solutions. As we have seen, every rational is approx­
imable to order 1 and not to a higher order, while every irrational is ap­
proximable of order two (see Theorem 8.34). This way we separate the 
irrationals in classes that are further and further away from rationals. 

8.37 Theorem (Liouville). A real algebraic numberlO of degree n is not 
approximable to any order greater than n. 

10 We recall that an algebraic number is a solution of an algebraic equation with integral 
coefficients. If x satisfies an equation of degree n, but none of lower degree, then it 
is said to be of degree n. 
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Proof. Let.; be a root of 

f(';) := ao.;n + alC- 1 + ... + an = 0 

with ai E Z, and let p/q =f .; be an approximation of .;. We can assume 
that p/q lies in]'; - 1,'; + 1[, and is nearer to .; than any other root of 
f(x) = 0, so that f(p/q) =f O. Trivially there exists M(';) such that 

1!,(x)1 ::; M(';) VXE[';-I,';+I], 

and 

I
f(E) 1= laopn + alpn-lq + a2pn-2q2 + .. ·1 ~ ~, 

q qn qn 

since the numerator is a positive integer. Also by Lagrange's theorem 

f(p/q) = f(p/q) - f(';) = (~- ';)!'(x) 

for some x lying between p/q and .;. Therefore we conclude 

IE -.;1 = If(P/q)1 > ~ ~. 
q 1f'(x)1 - M qn 

o 

We can translate Liouville's theorem into the principle that rapidly 
converging sequences of rationals converge to a transcendental number, 
and simple irrationals like J5 - 1 or J2 cannot be rapidly approximated 
by rationals: from the point of view of rational approximation the simplest 
numbers are the worst. 

Liouville's theorem of course allows us to construct transcendental 
numbers easily. 

8.38 Example. If 

and 

we have 

00 

e = 0, 110001000 ... = 10- 11 + 1O-2! + 1O-3! + ... = L: lO-k!, 

k=1 

t - ~ 10- k ! _. P _. P 
~n - L...J -, -, -, -, 

k=1 IOn. q 

00 

0< e - !? = e - en = L: lO- k ! < 2 1O-(n+1)! < 2q-N 

q k=n+1 

for n > N. Consequently e is not an algebraic number of degree less than N. N being 
arbitrary, we conclude that e is transcendental. 

8.39 ~~. Show that the number [1,10,102 ,1031 , 104!, ... J is transcendental. 
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Of course, it is more difficult to decide whether a given number is 
transcendental or not. For instance, only in 1873 Charles Hermite (1822-
1901) proved that 7r is transcendental, and in 1882 Carl von Lindemann 
(1852-1939) proved that e is transcendental, too. Even nowadays only few 
classes of transcendental numbers are known, for example, 

e, 7r, sin 1, log 2, log3jlog2, e71", 2'-"2 

are transcendental, but it is not known whether 

are transcendental or not; actually not even whether they are rational or 
irrational. We only state without proofs 

8.40 Theorem (Roth, 1958). The order of approximation of any alge­
braic rational is 2. In other words, given an algebraic number a and k > 2, 
there are only finitely many rational numbers pi q solving [a - pi q[ < cl qk. 

8.41 Theorem (Lindemann-Weierstrass). Let a1, ... , an be n dis­
tinct complex numbers. IE 

{3j E C, 

then either at least one of the coefficients {3j is transcendental or all {3j 
vanish. 

8.2 One-Dimensional Dynamical 
Systems 
Roughly, a dynamical system consists of a set of possible states, together 
with rules that determine the present state in terms of the past states. The 
system is said to be continuous or discrete according to whether the rule 
is applied at continuous or discrete times. 

Let I be a closed interval in R or I = R, and 1 : I - I be a mapping 
from I to I. A typical discrete dynamical system is 

{
xo = x, 

Xn+1 = I(xn ) n;::: O. 

The sequence r ( x ) : = 1 0 1 0 . . . 0 1 (x) of the iterates of 1 is called 
the orbit 01 x under I. A point x E I such that I(x) = x is called a 
fixed point of f. According to the principle of induction, the orbit {xn } 

is uniquely determined by the initial value Xo; nevertheless, for nonlinear 
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maps, even just quadratic maps, the sequence {xn} may have a behavior, 
or dynamics, quite complicated, with effects due to nonlinearity, such as 
absence of convergence, presence of oscillations, sensitive dependence on 
initial conditions which lead to a complex distribution of the values {xn }, 

often referred to as deterministic chaos. Such dynamical systems occur in 
many contexts and, in particular, when discretizing differential equations 
or when studying mathematical models, as, for instance, population models. 

8.2.1 Discretization and models 

Given a smooth function f : ~ --+ ~, Cauchy's problem 

{
X(O) = Xo, 

x'(t) = f(x(t)) 
(8.33) 

has a unique solution at least in a short interval [0, T[. Discrete methods 
allow us to approximate such a solution. 

a. Euler's method 
If we assume a small h as discrete approximation step, and replace in the 
differential equation the derivative with the differential quotient (x( t + h) -
x(t))/h, we find 

x(t + h~ - x(t) = f(x(t)). 

This suggests as approximate solution 

t E [k/h, (k + l)/h), k = 0,1,2, ... 

where 

{
xo = xo, 

Xk+1 = Xk + hf(Xk)' 
(8.34) 

In other words Xk+1 is the arrival point after time h if we start from Xk 
and move with constant speed f(Xk), while x(h)(t) is the linear interpolate. 
The discretization error 

f(X(t), h) := x(t + h~ - x(t)) - f(x(t)) 

clearly is infinitesimal as h --+ 0: in fact, we have the following. 

8.42 Proposition. The sequence of functions {x(h)(t)} converges uni­
formly to the solution x(t) of (8.33) on every bounded interval in which 
x(t) exists. 
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This easily follows from 

8.43 Proposition. Let M := sUPJO,T[ If(x)l, L := sUPJO,T[) 1f'(x)1 and 
h:= TIN. Then 

M LT IXN - x(T)1 :::; 2(e -I)h. 

Proof. From the equation x'(t) = f(x(t)) we get 

Ix(t) - x(s)1 :::; it If(x(r))1 dr = Mis - tl, (8.35) 

l
(k+l}h 

x((k + I)h) = x(kh) + h f(x(s)) ds, 
kh 

k =O,I, ... ,N - 1. 

If Xo := x(O), Xk+l := Xk + hf(Xk) and 8k := IXk - x(kh)l, we then infer 

l
(k+1}h 

8k+l :::; 8k + hlf(x(kh)) - f(Xk)1 + (f(x(s)) - f(x(kh))) ds 
kh 

r(k+1}h LM 
:::; (1 + Lh)8k + L ikh Ix(s) - x(kh)1 ds :::; (1 + Lh)8k + -2- h2 . 

Iterating, we finally obtain 

8 < (1 Lh)k8 LMh2 ~(I Lh)j = LMh2 (1 + Lh)k - 1 
k - + 0 + 2 L.J + 2 Lh' 

j=O 

since 80 = 0, and for k = N the conclusion. 

Proof of Proposition 8.42. In fact for s E [kh, (k + I)h], we have 

IX(h}(S) - x(s)1 :::; Ix(h}(s) - xkl + IXk - x(kh)1 + Ix(kh) - x(s)1 :::; C h, 

D 

since Ix(h}(s) -xkl :::; IXk+1 -xkl :::; Mh by definition, Ix(kh) -x(s)1 < Mh 
by (8.35) and IXk - x(kh)1 :::; Ch by Proposition 8.43.' D 

The first formal description of this numerical method for approximating 
solutions of an ODE seems due to Leonhard Euler (1707-1783), while 
the proof of convergence is due to Augustin-Louis Cauchy (1789-1857). 
However, it is worth noticing that the method had already been used by 
Sir Isaac Newton (1643-1727). 
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h. Runge-Kutta method 
Differentiating the equation x' = f(x) we find 

x'(t) = f(x(t)), 

x"(t) = f'(x(t))f(x(t)), 

x"'(t) = f"(x(t))f2(x(t)) + (f'(X(t)))2 f(x(t)), 

thus, defining 

h h2 

<l>(x, h) := f(x) + "2f'(x)f(x) + "6 (f"(x)f2(x) + (f'(x))2 f(x)) 

we may set up the iteration scheme 

{

XO = XO, 

Xk+1 = Xk + h<l>(Xk' h). 

Using the second order Taylor polynomial, similarly to the above one can 
show that this scheme converges and yields a better approximation than 
Euler's method. And we can get even better approximations using higher 
order terms. 

But, from the numerical point of view, the computation of high deriva­
tives is costly since it corresponds to computing a function at many points 
with higher accuracy. Therefore, while in principle we can get better and 
better approximations using higher order Taylor polynomials, this is not 
convenient as it leads to algorithms which are not very efficient. Thus, let 
us come back to the question of a good choice of ¢(x, h) in the iteration 

Xk+l = Xk + h<l>(Xk' h). 

We have 

h 
x(t + h) = x + hf(x) + "2 f'(x)f(x) + o(h2), 

<l>(x, h) = <l>(x, 0) + h<l>'(x, 0) + O(h2), 

the discretization error is then 

h 
E(X, h) = f(x) + "2 f'(x)f(x) + o(h2

) - <l>(x, 0) - h<l>'(x, 0) + o(h2), 

that is, of order o(h2 ), if we have 

h 
f(x) + "2f'(x)f(x) - <l>(x, 0) - h<l>'(x,O) = 0. (8.36) 

For example the choice 

<l>(x, h) := Af(x) + Bf(x + Chf(x)), with A + B = 1, BC=~ 
2 

gives a family of solutions of (8.36) which yield approximating methods of 
order two 
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o The modified Euler method or middle point method corresponds to 

A=O, B=l, C = 1/2. 

o The method of Heun corresponds to 

A = 1/2, B = 1/2, C=1. 

Similarly, one can construct methods of approximation of order 3, 4 or 
higher. The method of Runge-Kutta is a fourth order method defined by 

1 
<J>(x, h) := 6'(m1 + 2m2 + 2m3 + m4), 

ml = f(x), 
h 

m2 = f(x + '2md , 

m4 = f(x + hm3). 

8.44". The global error of approximation is defined by 

E(h) = sup Ix(t) - x(h)(t)l. 
[O,T] 

Show that in the case of Heun's method and Euler's method E(h) = O(h2 ), while in 
the case of Runge-Kutta E(h) = O(h4). 

c. Models 
Processes of the real world are often mathematically modelled in order 
to capture some of their characteristic and/or relevant aspects; from this 
point of view a model that is too close to reality may happen to be in­
tractable and consequently useless, while a model which, though far from 
reality, identifies relevant specific aspects may be very useful: modelling is a 
kind of compromise. Industrial mathematics, biology, economics and social 
sciences are the context in which new models develop according to specific 
needs. Though fascinating, discussing even a few examples is not possible 
here, therefore we confine ourselves to presenting very briefly two classical 
examples in population dynamics: the logistic model and Lotka-Volterra 
models. 

8.45 The logistic model. Let Xo denote the initial size of a population 
and let {xn } be the size after n years. The rate of change is then 

Xn+l - Xn 

Xn 

If such a rate is constant, say a, the dynamics is described by 

Xn+l = (1 + a)xn; 

the size of the population after n years is Xn = (1 + a)nxo,that is, the 
population increases exponentially if a > O. Such a model describes the 
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Figure B.11. The iterates of lex) = x2 + c starting from Xo = 0 with, from the left 
c = -1, c = -1.5, c = -2. 

ideal situation in which no external influence is present. More realistic 
models should take into account influences of the environment. In 1845 
P. F Verhulst, starting from the assumption that the environment may 
only allow the survjval of a threshold popuJatjon Po, that we take to be 1, 
formulated the hypothesis that the rate of change is proportional to 1-xn . 

In this case the dynamics becomes 

Xn+l = (1 + a::)xn - a::x~. 

This is the logistic model; see, e.g., Section 4.2 of [GM1]. 

8.46~. Show that Euler's method with step h = 1 for the equation 

x' = a(x - x 2 ) 

leads to (8.37). 

(8.37) 

8.47 Lotka-Volterra models. These are models often used to simulate 
the interaction between two or more populations. In the case of two species, 
because of the finiteness of resources, the rate of change, per individual, 
is adversely affected by high levels of its own species (as in the logistic 
model) and by the other species with which it is in competition. We have 

x' 
-=A(E-x)-By 
x 

and, a similar equation for the second population y, i.e., 

{

X' = Ax(E - x) - Bxy, 

y' = Cy(F - y) - Dxy. 

A special case is the so-called predator-prey model 

{

X' = ax - bxy, 

y' = -cy + dxy 
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Figure 8.12. (a) The iterates of (a) JX starting from xo = 0.2 and of (b) 1/(2x + 1) 
starting from xo = 0.2. 

that, in its discrete version, becomes 

{
Xk+l = (1 + a)Xk - bXkYk, 

Yk+l = (1 - C)Yk + dXkYk. 

8.2.2 Examples of one-dimensional dynamics 

In this section we illustrate some typical features of one-dimensional dis­
crete processes. Let 

be such a system, f : lR -+ lR bejng a given smooth function. The orbit of 
an initial point Xo is given by the sequence {xn }, 

Xn = f 0 f 0 f 0 •.. 0 f(xo), 
, .., ~ 

or simply 

n-times 

A. 1bl:8.\lhlc l:e\ll:esen.tation. of the sea.uence {x".1 may be g,iven by the 
points (n, Xn) in the plane, possibly linearly interpolated, see Figure 8.1l. 

Alternatively, we plot in the (x, y) plane the graph of Y = f (x). We 
travel vertically from (xo, xo) till (xo, f(xo)) on the graph of f, then hori­
zontally until we reach the diagonal, (f(xo'!(xo)) =: (XI, Xl), and finally, 
we reiterate starting from (XI, Xl), (X2' X2), etc., see Figure 8.12. 

Our first two examples concern very simple dynamics. 
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a. Expansive dynamics 

Let k > 1 and let 
Xn+l = kxn. 

This simple dynamics, that we have already encountered several times, has 
a closed form description: 

Xn := knxo. 
The r (xo) separate exponentially in time. Also starting from slightly 
different data Xo, Yo, then Xn - Yn = kn(xo - Yo), i.e., the orbits of Xo and 
Yo separate exponentially in time. Different of course is the case 0 < k < 1: 
all initial points tend to zero: they are "attracted" by zero; zero is called 
a sink. 

h. Contractive dynamics: fixed points 
A contraction map or simply a contraction on an interval f C lR is a map 
f : f -t f which shrinks distances uniformly, Le., for which there exists 
a constant L, 0 < L < 1, such that If(x) - f(y)1 ::; Llx - yl V x, y E f. 
Of course a contraction map is a Lipschitz map, in particular contraction 
maps are continuous on f. 

8.48 Theorem (Contraction mapping theorem). Let f be a closed 
subset oflR, for instance a closed interval, a closed half-line, a finite union 
of closed intervals, or lR, and let I : f -t f be a contraction with contraction 
factor L < 1. Then f has a unique fixed point Xo E f. Moreover, the orbit 
of any point x E f converges at least exponentially to Xo, 

"In. (8.38) 

Proof. Uniqueness. If x, y E f are two fixed points, we have 

Ix - yl = II(x) - f(y)1 ::; L Ix - YI, 

hence x = y, since L < 1. 
Existence. For any x E f, consider its orbit {xn}, Xn := r(x). We then 
have 

IXk+l - xkl ::; Llxk - Xk-ll ::; '" ::; Lklxl - xol = LkII(x) - xl 

hence, for q :::: p :::: 1, 

8 8 h LP 
IXq - xpi ::; ~ IXk+l - xkl ::; ~ L If(x) - xl ::; II(x) - xiI _ L' (8.39) 

h=p h=p 

since L < 1. Since the right-hand side converges to zero as p -t 00, {xn } is 
a Cauchy sequence and therefore converges to some Xo E R Passing to the 
limit in Xn+1 = I(xn), we see that Xo is a fixed point for I, thus proving 
that I has a fixed point, hence a unique fixed point, and that each orbit 
converges to it. Finally, (8.38) follows passing to the limit as q -t 00 in 
(8.39). 0 
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Figure B.13. The iterates of I(x) = 2.8x(1 - x) starting from x = 0.8. 

c. Sinks and sources 
Let us begin by illustrating a number of phenomena associated to generic 
maps. 

8.49 Example. Let I(x) := 2x(1 - x), x E [0,1]. Clearly, I : [0,1] --> [0,1] has two 
fixed points, 0 and 1/2, and the orbit of every point x E [0,1]' x f. 0, converges to 1/2; 
in fact, {In (x)} is increasing, and passing to the limit in X n+l = I(xn ), necessarily, 
rex) --> 1/2. 

Trivially we have 

8.50 Proposition. Let f : I - I be a continuous map, and let {fk(x)} 
be the orbit of x E I. Then 

(i) if fk(x) - pas k - +00, then p is a fixed point, f(p) = p. 
(ii) if r (x) = p for some n, and p is a fixed point, then fk (x) = p Vk :2: n. 

Example 8.49 then suggests 

8.51 Definition. Let f : I - I be a continuous map, and let p be a fixed 
point of f. We say that 

(i) p is stable if V£. > 0 there is 8 > 0 such that Ir(x) - pi < £. Vn if 
Ix - pi < 8, 

(ii) P is a sink or an attracting point if there exists 8 > 0 such that 
fk(x) - p for all x with Ix - pi < 8. If p is a sink, the basin of 
attraction of p is the subset of points on I whose orbits converge to 
p, 

(iii) P is unstable if p is not stable, i.e., if for some £.0 > 0 there exists a 
sequence {Xk} such that Xk - p, and for each k an integer nk such 
that Irk (Xk) - pi > £'0, 

(iv) p is a source or a repelling point if for some £.0 > 0 and for each x 
such that 0 < Ix - pi < 8 there is nx such that Irx(x) - pi> £'0· 
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If p is stable and a sink, then p is said to be an asymptotically stable fixed 
point. 

Of course, by definition sources are unstable fixed points. Thivially the fixed 
point of a contraction on f is a stable fixed point and a sink, and its basin 
of attraction is the whole f. 

In Example 8.49,0 is a source, 1/2 is a sink, and the basin of attraction 
of 1/2 is ]0,1]. In general, we have 

8.52 Theorem. Let p be a fixed point for a continuous map f : f -t f, 
and assume that f is differentiable at p. 

(i) If 1f'(p)1 < 1, then p is a stable fixed point and a sink, that is, p is 
asymptotically stable. 

(ii) If If'(p) I > 1, then p is a source, in particular p is an unstable fixed 
point. 

Proof. (i) Since limx~p If(lt~I(P)1 = 1/'(p)l, there is L < 1 and 8 > 0 such that 

I/(x) - pi = I/(x) - l(p)1 :::; Llx - pi < Ix - pi 

if x E I and Ix - pi < 8. In particular, if Ix - pi < 8, then Ir(x) - pi < 8 \:In, hence P 
is stable. Moreover 

Ir+1(x) - pi:::; Llr(x) - pi \:In, 

and, by iteration, we therefore conclude that 

hence {/n(x)} converges exponentially to pas n -> 00. 

(ii) Similarly to (]), there is L > 1 and 8> 0 such that If(x) -pi 2 Llx-pl if Ix-pi < 8. 
If p were not a source, for any E > 0 we could then find x arbitrarily close to p such 
that Ir(x) - pi < E \:In. Choosing E = 8 we would find x such that Ir(x) - pi < 8 
\:In and setting Un := lIn (x) - pi, Un < 8 \:In. But on the other hand by assumption 
Un+l 2: L Un \:In i.e., Un -> 00: a contradiction. 0 

8.53 Remark. We notice that, if p is a fixed point of f, f is twice differ­
entiable at p and f'(p) = 0, then the orbit {r(x)} converges to p rapidly. 
In fact, in this case the second order Taylor formula yields an+! ::; Ma;, 
an := Ir(x) - pi, see (8.15). 

d. Periodic orbits 
In dependence on the parameter a, the dynamics of the logistic map 
fa(x) = aX(1 - x), x E [0,1]' is significantly different. Observe that the 
map g(x) := aX(1 - x), x E ~, has two fixed points in ~, 0 and (a - 1)/a. 

For instance, if 0 < a < 1, then If~(x)1 ::; a < 1 and fa is a contraction 
with the unique fixed point x = O. For a = 1 the map !I still has 0 as a 
unique fixed point, and it is easy to check that 0 is a sink. For 1 < a < 3, 
fa has two fixed points: 0 that is a source, and (a - 1)/a that is a sink 
with ]0,1] as basin of attraction. 
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Figure 8.14. The iterates of f(x) := 3.3x(1 - x). 

For a = 3.3, la has two fixed points, 0 and 22/33, and both are sources. 
Therefore the orbits cannot converge. Numerical experiments show that 
the values of the iterates oscillate between two values of the order of 0.4 794 
and .8236, see Figure 8.14, and moreover 1(0.4794) = .8236 and 1(.8236) = 
.4794, modulus roundings. This suggests that the two alternating values 
are fixed points of p. Actually, one easily proves that g(x) := 1 0 I(x) 
has exactly three fixed points 0,PbP2, Figure 8.15, with PI := 0.4794 ... 
and P2 := .8236 ... , and that both are sinks. The same holds if 3 < a < 
1 + y'6 = 3.34494 ... . 

8.54 Definition. Let I: I -+ I be a continuous map. A k-periodic point 
is a fixed point of Ik, k ~ 1, that is not a fixed point of Ih for any h < k. 
A k-th periodic orbit is the orbit {r(p)} of a k-periodic point p. 

Of course, a k-th periodic orbit consists of k distinct points that are 
k-periodic points. 

8.55 Example. The origin is the unique fixed point of f(x) = -x, x E [-1,1); any 
other point is a 2-periodic point, since f 0 f(x) = -(-x) = x, and the 2-periodic orbit 
of x is the sequence {( -1)nx}. 

The stability of k-periodic orbits can now be discussed exactly in the 
same terms in which we discussed the stability of fixed points. 

8.56 Definition. Let 1 : I -+ I be a continuous map on a closed interval 
I and let P be a k-periodic point of I. We say that the k-periodic orbit of 
P is a k-periodic sink or a k-periodic attractor if P is a sink for the k-th 
iterate Ik of I. 

We say that the k-periodic orbit of P is a periodic source if P is a source 
for Ik. 

Finally, we say that the k-periodic orbit of a k-periodic point P is stable, 
asymptotically stable, unstable if respectively P is a stable, asymptotically 
stable, unstable fixed point of Ik. 



342 8. Discrete Processes 

1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Figure B.1S. On the left J(x) = 3.3x(1 - x) and on the right J2(x). 

8.57~. Let J : I -> I. An orbit {In(x)} is said to be asymptotically k-periodic if 
IJn(x) - In(p)1 -> 0 as n -> 00 for some k-periodic point p. Show that p is a k-periodic 
sink if and only if there is 0 > 0 such that {In(x)} is asymptotically periodic for all x 
with Ix - pi < o. 

Let P be a k-periodic point of f that we assume to be differentiable at 
p. Denote by Po, ... ,Pk-l, Po := p, the k distinct values of the orbit fk(p); 
since we have 

D(fk)(p) = !'(fk-l (p))!'(fk-2 (p)) ... !'(f(p))!'(p) 

= !'(Pk-l)!'(Pk-2)'" !'(po), 

from Theorem 8.48 we infer at once the following. 

8.58 Theorem. Let f : I ---) I be differentiable. If Po, ... ,Pk-l, Po := p, 
are the k values of a k-periodic orbit then 

(i) if 1f'(PO)f'(Pl)'" f'(Pk-l)1 < 1, the orbit is asymptotically stable, 
that is, the orbit is a sink and is stable. 

(ii) if 1f'(PO)f'(Pl)'" f'(Pk-l)1 > 1, the orbit of P is a source, hence 
unstable. 

8.59 Example. In the case J(x) = 3.3x(l- x), x E [0,1]' none of the two fixed points 
0.4794 and 0.8236 is a fixed point of J. The corresponding 2-orbit is a periodic sink, 
since 11'(0.4794)J'(0.8236)I < 1, see Figures 8.14 and 8.15. 

e. Periodic-doubling cascade transition to chaos 

If we increase the parameter a in the logistic map, the dynamics becomes 
more and more complex. The so-called bifurcation diagram of fa is plotted 
in Figure 8.16. The diagram has been obtained printing the parameter a 
as abscissa, computing the iterates f~(xo) and plotting on the line x = a 
the values of the k-orbit of xo for 200 < k < 400. The values of xo and 
of f~(xo) for 1 < k ::::: 200 have been neglected in order to eliminate the 
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Figure 8.16. The iterates of the logistic map f(x) := AX(l - x). 

dependence from the initial data as much as possible. The figure suggests 
that for a = 3.45, there is a 4-orbit which sinks: this can in fact be proved 
along the same lines as Theorem 8.58. As a increases, one gets an 8-orbit, 
a 16-orbit and actually an entire sequence of 2n -orbits, n = 1,2, ... which 
sink, until a reaches a limiting value aoo := 3.5699456 .... Such a sequence 
is called a periodic-doubling cascade and is one of the routes to chaos since 
in fact, for a > aoo the orbits appear to randomly fill out the entire interval 
or a subinterval: they are quite complicated, hard to describe and quite 
irregular. But before that chaos, there is some regularity, which in fact is 
universal. In fact, set fa := af(x) for any continuous map f : [0,1]--+ [0,1] 
with a unique maximum point, and f(O) = f(l) = 0, and denote by an 

the value at which the n-th bifurcation occurs. Then it has been proved 
that there is a constant c5, called the Feigenbaum constant, such that 

1· an - an-l J: 161 1m = u = 4.66920 .... 
n--->oo a n +l - an 

This is an example of order in the transition to chaos. 
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Figure 8.17. The map f(x) := 4x(1 - x) and the graphs of f(x), P(x), f3(x). 
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Figure 8.18. The intermittency phenomenon due to a thin channel. 

8.60 Example. The map I(x) = 4x(1- x), x E [0,1]' has two fixed points, x = 0,3/4, 
but no sink. The map 11 has four fixed points x = O,P!' 3/4,P2, two of which ate the 
fixed points of I and the other two are 2-periodic sinks 1(P2) = PI and I(P2) :: Pl. 
The map n has eight fixed points: 0, 3/4, the 2-periodic sinks are not fixed points 
for 11, the remaining six points form 2-orbits of period 3, see Figure 8.17. For more 
complicated orbits, compare Proposition 8.75. 

f. The intermittency phenomenon 

Consider the lhap 

{

ax 
f(x) = a~l (1 - x) 

if x E [O,I/a], 
if x E]I/a, 1]. 

For a > 1, one sees that f has no stable fixed point or orbit, and the 
orbits become quite complex; for a long period the process is regular, then 
the iterates oscillate around the unstable fixed point xO := a/(2a -1), for 
some time after which they go away and the process restarts again lllore 
or less similarly, see Figure 8.19. 

A similar phenomenon can be observed for the maps ga(x) := g(x - a) 
in Figures 8.19 and 8.20. 

For a > ao, Xn quickly get close to a fixed point, while for a « ao 
and a ~ ao, the iterates will remain for some time in a "channel," then 
they jump outside the channel, after which they move back in for a long 
interval which in general depends on the point at which the iterate enters 
the channel. 

In the formulas oflogistic maps fa = ax(l-x) and of the map above, 
when a varies, as we have seen we experience a transition from a regular 
regime to a "chaotic" regime: they may be regarded as two examples of 
transition to chaos. 
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Figure 8.19. The iterates of (a) g(x - 0.6) and of (b) g(x - 0.5) where g(x) = eX - 1/2 
until it reaches 1 and then decays linearly. 

g. Ergodk dynamks 

Let us consider the dynamical system 

Xn+l = Xn +W mod 1 (8.40) 

associated to the map 'Pw : [0,1] ---+ [0,1], 'Pw(x) = x + w (mod 1), that 
maps x into the fractional part of x + w. 

Clearly, it can be regarded as a dynamical system on the circle 8 1 . 

In fact, if we identify IR/Z with 8 1 with the map t ---+ exp (i21Tt) and set 
Zn := ei27rXn, we have 

In other words, Zn+l is the point Zn rotated counterclockwise to the angle 
21TW. 

If W is mtional, W = p/q, p, q coprime, the orbits of the system are all 
q-periodic and consist of a finite number of points Xj := x + ~ mod (1). 

2 2 2 
1.5 - 1.5 1.5 

1 - 1 1 

0.5 \ 0.5 0.5 

0 _ .. ----------- 0 ---------_._ .. ---" .. 0 -----------

-0.5 - -0.5 -0.5 
-1 I I 1 I I -1 -1 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Figure 8.20. Here g(x) = eX - 1/2 until it reaches 1 and then decays linearly. From the 
left, the iterates of g(x - 0.6), g(x - 0.5), and of g(x - 0.45). 



346 8. Discrete Processes 

8.61 Theorem (Jacobi). If w is irrational, all orbits of 'Pw are dense in 
[O,lJ. 

Proof Let w be irrational and let x E [O,lJ. First we notice that the 
points {'P~(x)} are distinct. In fact, if 'P~(x) = 'P:'(x), then (n - m)w E 
Z, consequently n = m, w being irrational. The infinite distinct points 
of an orbit admit a convergent subsequence, by the Bolzano-Weierstrass 
theorem, hence for any E > 0, we can find two distinct elements 'P~(x) and 
'P:'(x) such that 1'P~(x) - 'P:'(x) I < E. Since 'Pw preserves the distances on 
the circle, we deduce 

for p = In - ml, 
consequently 

We conclude that the sequence 'PE(x), 'P:?(x), 'P~(x), ... divides 8 1 in arcs 
of length uniformly bounded from below and not larger than E: this shows 
that the orbit of x is dense. 0 

The dynamics of (8.40), though quite complex, has relevant regularity 
properties. The time mean of a continuous function f : [O,lJ - IR or 
f : [0, 1 J - C, also called an observable along the orbit, is defined as the 
limit 

if it exists, while its mean is called the phase mean 

1 

7:= J f(x)dx. 
o 

8.62 Theorem (Ergodic theorem). Let w be irrational. Then the limit 
'P::'(x) exists for all x and 'P::'(x) = 'Pw. l1 

In other words, the time mean of an observable along the orbit is in­
dependent of the orbit itself, equivalently on the initial value, and equals 
the phase mean. 

Theorem 8.62 can be obtained as a consequence of the Hermann Weyl 
(1885-1955) theorem on the uniform equidistribution of the fractional 
parts of w, 2w, 3w, ... ,nw for n large, if w is irrational. 

8.63 Theorem (Weyl). Let w be an irrational. 

11 Actually one refers to a dynamics associated with a map f : [0,1] -+ [0,1] as to 
an ergodic dynamics if f* (x) = 1 for almost every point x E [0,1] in the sense of 
Lebesgue. 
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(i) For every continuous and I-periodic function, we have 

1 

~ J f(t)dt. 
o 

(ii) If 0 :S a :S b :S 1, then 

#{ n 11 :S n :S N, nw E [a, b]} ~ b _ a 
N 

where, we recall, #A denotes the number of elements of A. 

(8.41) 

The proof of the Weyl theorem we present here uses the following density result 
that we do not prove. 

8.64 Theorem. Trigonometrical polynomials in [0,1] are dense in the class of con­
tinuous and I-periodic functions, i.e., given a continuous function I : [0,1] -> lR with 
1(0) = 1(1), and a positive £ > 0, there is a I-periodic trigonometric polynomial such 
that 

I/(t) - P(t)1 < £ VtE [0,1]. 

Proolol Theorem 8.63. (i) For increasingly complex I we shall prove that 

N 1 

GNU) := ~ L I(nw) - / I(t) dt -> 0 
n=l 0 

as N -> 00. 

N 1 

(a) If I(t) = 1, then clearly GN(I) = ..!:.. L 1 - /1 dt = o. 
N 1 o 

(b) Suppose I(t) = exp (i27!"kt), k E Z, k '" 0, so that f~ I(t) dt 
irrational, exp (i27!"kw) '" 1, hence 

N N-l 

IGNU)I = ~ I ~>i27rnkWI = ~ lei27rkW ~ ei27rnkWI 

O. Since w is 

1 I' 1 - ei27rNsw I 1 2 = - e'27rkw < _ -> 0 as N -> 00 
N 1 - ei27rkw - N 11- ei27rkwl . 

(c) Suppose now that I is a trigonometric polynomial of period 1, P(t) = 
~~=_p ckei27rkt. We have GN(P) = ~ckGN(exp (i27!"kt)) hence (ii) yields GN(P) -> 0 
as N -> 00. 

(d) For a continuous and I-periodic function I : lR -> C, given £ > 0, by the density 
theorem, Theorem 8.64, we find a trigonometric polynomial P(t) such that I/(t) -
P(t)1 < £ V t. Thus 

V N, "It. 

According to (c), we can find No such that IGN(P)I < £ for all N ~ No. Therefore, we 
conclude for N ~ No, 

i.e., GNU) -> 0 as N -> 00. 

(ii) Given £ > 0, let 1- and 1+ be two continuous functions such that 
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Figure 8.21. Aleksandr Lyapunov (1857-
1918). 

f-(t) ~ 1 ~ f+(t) V t E [a , bJ, 

f - (t) =0, f+(t) 2.0 Vt~[a,bJ, 

1 1 

(b - a) - E ~ J f- dt ~ J f + dt ~ (b - a) + E. 

o 0 

Trivially 
N N 
L:f- (nw) ~ #{n 11 ~ n ~ N , nw E [a,b]} ~ L:f+(nw). 

1 1 

On the other hand, by (i), for N 2. No = NO(E) we have IGN(f+)I ,GN(f- )1 ~ E, hence 

1 1 J f - dt - E ~ #{n 11 ~ n ~:' nw E [a , b]} ~ J f+ dt + E 

o 0 

and therefore 

(b _ a) _ 2E ~ #{n 11 ~ n ~:' nw E [a , b]} ~ (b _ a) + 2f. 

o 

We notice that the conclusions of Theorem 8.62 would be false if w were rational. 
Therefore Theorem 8.62 characterizes the irrationals as the reals w for which either 
(8.41) holds or the fractional parts of {nw} are equidistributed. 

8.2.3 Chaotic dynamics 

Let us discuss now some of the characteristic features of chaos. 
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Chaos et 
determinisme 

a. Sensitive dependence on initial conditions and the Lyapunov 
exponent 

8.65 Definition. Let f : I ~ I be a map defined on a closed interval 
I C R We say that a point Xo E I has sensitive dependence on initial 
conditions or is a sensitive point if there exist fO > 0 and sequences {xd 
and {nd such that Xk ~ Xo and Irk(Xk) - rk(xo)1 2: fO. 

It is not difficult to show that sources of any power of f are sensitive points. 
In the case in which points near Xo become separated by the action of 

the map f, a measure of such a separation is provided by the Lyapunov 
exponent. If the separation is exactly exponential, that is I fn (x) - fn (xo I = 
qnlx - xol, the Lyapunov number is q. In the general case, the Lyapunov 
number at Xo is defined by 

.. (Ir(x)-r(xo)l)l/n 
L(xo):= hm hmsup I I 

n ..... oo x ..... xQ X - Xo 

and the Lyapunov exponent, 

A(XO) := log L(xo), 

is a measure of the (exponential) separation of the orbits starting close to 
Xo, provided, of course, the limit as n ~ 00 exists. 

If f is differentiable near Xo, the Lagrange mean value theorem yields 

I I
l/n 

L(xo):= lim (r)'(xo) 
n ..... oo 
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Figure 8.23. Bernoulli's shift. 

and consequently 

1 n 

A(XO) = logL(xo):= lim - "'loglf'(xdl. 
n-+oo n ~ 

i=l 

In particular, the Lyapunov exponent A(XI) of a fixed point Xl of a 
smooth function f is log 1f'(XI)I, while the Lyapunov exponent of a k­
periodic orbit, at each of the values of the orbit, Xl, X2, ... ,Xk, Xi+! = 
f(Xi), Xi =f. Xj Vi =f. j, Xk = Xl, is 

1 k 

A(XI) = A(X2) = ... = A(Xk) = k Lloglf'(Xi)l. 
i=l 

8.66 Proposition. Let f : I ~ I be of class C I , and let {xn}, {Yn}, 
Xn = r(x), Yn = r(y) be the orbits of X and Y respectively. Suppose 
that 

(i) {xn} and {Yn} are asymptotic to each other, IXn -Ynl ~ ° as n ~ 00, 

(ii) f'(xn) =f. 0, f'(Yn) =f. ° "In, 
(iii) 1f'(xn)1 ~ A E R 

Then the Lyapunov exponents of f at X and Y exist and A(X) = A(Y) = A. 

Proof. In fact, Cesaro's theorem (see Example 2.56) yields 

A(X):= lim .!. ~loglf'(l(x))1 = lim loglf'(r(x))1 = A. 
n-+oo n L..J n-+oo 

i=l 

Since the two orbits are asymptotic, 
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lim log 1!'(r(x))1 = lim log 1!'(r(y))1 
n----+oo n~oo 

hence 

,\(y):= lim .!. ~logl!,(fi(Y))1 = lim logl!'(r(y))1 ='\. 
n--+oo n ~ n--+oo 

i=l 

o 

b. Chaotic orbits 
8.67 Definition. Let f : I -+ I be a smooth map. We say that the orbit 
{Xl> X2, ... } of f is chaotic if 

(i) {X1,X2,"'} is bounded, 
(ii) {X1,X2,"'} is not asymptotically periodic, 

(iii) the Lyapunov exponent '\(X1) is positive. 

More complex and with less unanimous agreement is the definition 
of chaotic dynamical system. Usually, the presence of bounded orbits is 
required, with exponential separation and density to grant irreducibility, 
that is, that we are not in the presence of two assembled independent 
dynamical systems. We now illustrate a few examples. 

c. Bernoulli's shift 
Let us consider the process Xn+1 = a(xn) associated to the map 

a(x) = 2x mod (1), X E [0,1]' 

see Figure 8.23. In order to describe its action, it is convenient to work 
with numbers in [0,1] in their binary representation. We write 

00 

X = L ai2- i = 0, a1 a2a3··· 
i=l 

where ai has the value ° or 1. For x < 1/2, we have a1 = ° while x ~ 1/2 
implies a1 = 1. Therefore 

a(x) = {2X if a1 = 0, 
2x - 1 if a1 = 1, 

or 
a(O, aOa1a2 ... ) = 0, a1a2a3 ... , 

that is, the action of a on the binary representation of x is to delete the 
first digit and shift the remaining sequence to the left. 

The process a shows sensitive dependence on the initial condition. If 
two numbers differ starting only from the n-th digit, such a difference 
becomes amplified under the action of an by 2n: the n-th iterates differ 
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Figure 8.24. The triangular map /1(x) and its third iterate tf(x). 

in the first digit. More precisely, we compute the Lyapunov exponent at a 
point x whose orbit never goes through 0,1/2,1 as 

n 1 n 

>.(x) = lim "'logl!'(xi)1 = lim - "'log 2 = log 2. 
n--+oo ~ n--+oo n ~ 

i=l i=l 

On the other hand periodic points are the numbers with a repeating 
binary representation, and the asymptotically periodic orbits are those 
with an initial point with a repeating binary representation starting from 
a suitable digit. Therefore an asymptotically periodic orbit starts at x if 
and only if x is rational. Hence the orbits starting from an irrational are 
bounded, are not asymptotically periodic and have Lyapunov exponent 
log 2 > O. So we conclude 

8.68 Theorem. x E [0,1] has a chaotic orbit under Bernoulli's shift if 
and only if x is irrational. 

One can also prove the following properties of Bernoulli's shift u: 

(i) The sequence of the iterates Un (X1) has the same random properties as the suc­
cessive tosses of a coin. In fact, a sequence of coin tossings is equivalent to the 
choice of a point in [0,1]' 

(ii) One can show12 that almost all13 irrationals in [0,1] contain in their binary 
representation any finite sequence of digits infinitely often and uniformly distribu­
ted, i.e., 

N 1 

~ L F(u(nx)) -+ / F(t) dt. 
n=l 0 

Bernoulli's shift contrasts with the additive process we discussed before, 

X n +l = Xn + w mod 1, w irrational, (8.42) 

12 See, e.g., G.H. Hardy, E.M. Wright The theory of numbers Oxford University Press, 
Oxford 1938. 

13 in the sense of Lebesgue. 
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Figure 8.25. The triangular map /1 (x) and its third iterate Jf(x). 

that we cannot qualify as chaotic. In fact, it has no periodic orbits and 
consequently no asymptotically periodic orbit, each orbit is dense, but the 
Lyapunov exponent of each orbit is zero. 

8.69 Definition. A bounded orbit that is not asymptotically periodic and 
does not show sensitive dependence on the initial data is called almost­
periodic. 

The orbits of (8.42) are almost periodic. 

d. The triangular map 
Consider the family of triangular maps 

{

2rx 
fr(x) := 

2r(1 - x) 

if x < 1/2 

if x ~ 1/2 
x E [0,1]. 

For r < 1/2, x* = ° is the only stable fixed point to which all points in 
[0,1] are attracted. For r > 1/2 two unstable fixed points (sources) emerge, 
and the behaviors of the process for 1/2 :::; r :::; 1 and r = 1 are similar. 
The map h shows sensitive dependence on initial conditions. In fact, the 
n-th iterate of h is piecewise linear, with slopes ±2n except at the points 
j . 2-n, j = 0,1, ... , 2n. Consequently the separation of "almost all points" 
Xo grows exponentially with Lyapunov exponent >,(xo) = log 2. In general, 
the Lyapunov exponent of fr is for almost all points xo, 

>,(xo; fr) = log2r, 

and, for r > 1/2, we have >'(xo, fr) > 0, that is we "lose information" on the 
position of Xo after n iterations, while for r < 1/2, we have >'(xo, fr) < ° 
and we "gain information" as the iterates of Xo converge to 0. 

On the other hand, one can show that the periodic orbits do not attract 
any orbit, inferring this way the following. 
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8.70 Proposition. The triangular map h has infinitely many chaotic 
orbits. 

e. Conjugate maps 

8.71 Definition. Two continuous maps f and 9 are said to be conjugate 
if there is a continuous and I-to-l continuous change of variable C such 
that C 0 f = 9 0 C. 

8.72 Proposition. Let f and 9 be conjugate by C. If x is k-periodic for 
f, then C(x) is k-periodic for g. If moreover f, 9 and C are of class C 1 

and never vanish along the k-periodic orbit of x, then 

8.73 Proposition. The triangular map h and the logistic map g(x) = 
4x(1 - x) are conjugate. 

8.74~. Show Proposition 8.73. [Hint: For x E [0,1/2] choose C(x) := 1-c~s7rx.] 

Taking into account Propositions 8.72 and 8.73 one could also show the 
following. 

8.75 Proposition. Let g(x) := 4x(1 - x) be the logistic map. 

(i) All periodic points of 9 are sources. 
(ii) 9 has chaotic orbits. 

8. 76 ~ ~. Show that the process associated to the logistic map 9 is ergodic and for 
all F 

1 

---> J F(t) d 
7r~ t. 

o 

8.77~. Show that 
2 

(i) the maps (a + 1)x - ax2 and x 2 + c, c := 1-2", ,are conjugate, 

(ii) the maps aX(1 - x) and x 2 + c, c = ~(1 - ~), are conjugate. 

[Hint: (i) 'P(x) := 1t'" - ax, (ii) 'P(x) := ~ - ax.] 

8.2.4 Chaotic attractors, basins of attraction 
Let us start with a few definitions. 

The forward limit of x is the set of points the orbit converges to, that is, 
the set of points to which the orbit with initial condition x comes infinitely 
often arbitrarily close to, i.e., 

w(x) := {Y II~~:f Ir(x) - yl = o}. 

The following is trivial: 
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Figure 8.26. (a) The map f(x) = ~ arctanx. (b) The map in Example 8.80. 

(i) if {r(x)} converges to p, then w(x) = {p}, 
(ii) if x is a fixed point, w(x) = {x}, actually, if w(x) contains a stable 

fixed point X, then w(x) = {x}, 
(iii) if y E w(x), then r(y) E w(x) '<;In ~ 0, 
(iv) if x is a k-periodic point, then w(x) is the set of values of the periodic 

orbit originating from x. 

When the forward limit is a set of fixed points or of periodic points, then 
it is often called the stable manifold. 

8.78 Definition. Let w (x) be the forward limit of a point x. We say that 
w(x) attracts y ifw(y) c w(xo). The basin of attraction ofw(x) is the set 
of points which are attracted by w(x). We say that w(x) is an attractor if 
it attracts a substantial number of points, more precisely if it attracts a 
set of points of positive Lebesgue measure. 

We then say that w( x) is a chaotic set if the orbit of x is a chaotic orbit 
and x E w (x). Finally w (x) is a chaotic attractor if w (x) is both a chaotic 
set and an attractor. 

8.79 Example. The map 
4 

f(x) = - arctan x 
rr 

has three fixed points -1,0 and 1. From Figure 8.26 we see that -1, 1 are sinks, while 
o is a source. The attractors are therefore {-1}, {I}, and their basins of attraction are 
respectively the negative half-line and the positive half-line. 

8.80 Example. Consider the map in polar coordinates 

f(r,8) := (r2, 8 - sin 8) r ~ 0, 0 ~ 8 < 2rr. 

It has three fixed points, (0,0), (1,0) and (1, rr). The origin and infinity are two at­
tractors: iterations move every interval point of the unit disk to the origin and every 
extremal point to infinity. On the circle the dynamics moves all points but (1, rr), that 
is a source, to (1,0), see Figure 8.26. 
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Figure 8.27. (a) The triangular map with slope 3. (b) The map W. 

8.81 Example (The triangular map with slope 3). The following example shows 
that the basin of attraction of an attractor can be quite a complex set. Let us consider 
the triangular map f : R -+ lR in Figure 8.27 (a). Clearly, the orbits with initial condi­
tions either in]- 00, O[ and ]1, oo[ converge to -00. Also orbits with initial conditions in 
]1/3, 2/3[ converge to -00 since the first iteration maps this interval in [1,00[. It should 
then be clear that the basin of attraction of -00 under the map f is the complement 
in R of the Cantor middle-third set defined below. 

8.82 Example. Let us consider the map f(r,9) := (r1/2, 29). The origin is a source 
and w(O) = O. Taking into account that (1,29) describes Bernoulli's shift on 8 1 , we see 
that the unit circle is the forward limit set of an orbit with Lyapunov exponent log 2 
for almost all initial points in the circle, consequently the unit circle is a chaotic set. 
Finally all points but the origin are attracted to the unit circle; we therefore conclude 
that the unit circle is a chaotic attmctor. 

8.83 Example (The W me.p). Let us consider the piecewise linear map f : [0,1] -+ 

[0,1] in Figure 8.27 (b). Restricting our attention to the interval [1/4,3/4], the map 
acts as the triangular map with slope 1, while the points in [0,1] \ [1/4, 3/4] are mapped 
by the first iteration in [1/4,3/4]. We therefore conclude that [1/4,3/4] is a chaotic 
attractor. 

8.84 Example (The baker's map). Let us consider the area-preserving map given by 

Xn+1 = 2xn (mod 1), Yn+1 = 
{

1/2yn 

1/2 + 1/2Yn 

if 0 ~ Xn < 1/2, 

if 1/2 ~ Xn ~ 1, 

and illustrated in Figure 8.28. Since the first component is Bernoulli's shift, we easily 
conclude that the entire square is a chaotic attractor. 

-8 
Figure 8.28. The baker's map. 
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Figure 8.29. The dissipative baker's map. 

8.85 Example (The baker's dissipative process). Consider now the process, sim­
ilar to the baker's process, 

X n +l = 2xn (mod 1), Yn+l = 
{

aYn 

1/2 + aYn 

if 0 ::::; Xn < 1/2, 

if 1/2 ::::; Xn ::::; 1, 

where a < 1/2, see Figure 8.29. This process is dissipative, that is, it does not preserve 
the area. The baker's dissipative process has still a chaotic attractor which is made now 
by a huge set of horizontal lines. As we shall see below, compare Example 8.99, this 
strange attractor is a fractal, in the sense that its "dimension" is strictly between 1 and 
2. 

8.86 Example. A process that is very similar to the baker's dissipative process is the 
one associated to the map 

{ 
(~X,2Y) 

f(x,y) := 

( ~x + ~,2y - 1). 
if 0 < Y::::; 1/2, 

(8.43) 
if 1/2 < Y ::::; 1. 

The first iteration maps the square into the first and last third of the square, as shown 
in Figure 8.30. The figure shows also the second iteration. Clearly the attractor of the 
full square is again a chaotic attractor which is a strange attractor, being a set of lines 
which has a "noninteger dimension." 

8.2.5 Cantor sets and other self-similar sets 

a. Measure and dimension 

8.87 Box counting dimension. A simple way to compute a "dimen­
sion" of a bounded subset of ~2 is the following. Assume that A is con­
tained in a rectangle R. Then divide each side of R in 2k pieces, thus 

o 1 o 1/3 2/3 1 o 1/3 2/3 1 

Figure 8.30. The first two iterations of the process in Example 8.86. 
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Figure 8.31. 

dividing R into 4k rectangles. Let N(k) be the number ofrectangles which 
touch A. If A is a line, then for k large N(k) is of order 2\ while if A has 
an interior part, then N(k) is of order 4k, thus it is reasonable to set the 
box counting dimension of A at scale 2-k as 

and the box counting dimension as 

log N(k) 
klog2 

d· (A)'- l' 10gN(k) 
1mB .- 1m kl 

k~oo og2 

provided the limit exists. 

(8.44) 

8.88 Hausdorff measure and Hausdorff dimension. Usually, dimen­
sion is associated to changes in measure under dilations: under a dilation 
in ]Rn of factor .x, points do not change, segment and curve lengths are 
multiplied by .x, square and surface area are multiplied by .x2, while vol­
umes are multiplied by .x 3. So another possible definition of dimension goes 
through the definition of a measure that scales suitably under dilations. 

There are many different measures in ]Rn, n 2: 1, that are invariant 
under translations, yield the same measure for regular sets, and scale with 
a given power less than n under dilations. Among the many possibilities, 
the Hausdorff measure, introduced in 1918 by Felix Hausdorff (1869-1942), 
is sufficient and suited to our purposes. 

Let us describe the Hausdorff measure Jis in ]Rn, n 2: 1. It is usual to 
define for any nonnegative real number s 2: 0, 

7rs / 2 

Ws := ~r(~)' 

r being the gamma function, since, as one can show, for integral values of 
s, Ws is the volume of the unit ball in ]Rs. 

8.89 Definition. Let A c ]Rn. For any 8 > 0 we define 

JiHA) := inf{~Ws (dia;Ck r I Uk Ck :J A, 

{Cd are n-balls with diam Ck < 8, Ck C ]Rn}. 
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The spherical Hausdorff measure 1{s of A is then defined by 

We notice that, 1{s is well defined, since 1{'f, is increasing with 0'; more­
over we notice that the naive definition 

would not work, see Figure 8.31. 
It is easily seen: 

(i) 1{S(AA) = AS1{S(A), A> 0, where AA = {Ax I x E A}, 
(ii) 1{°(A) = #A is the measure that counts the elements of A in IRn 

(iii) if s > n, then 1{s (A) = 0 \fA c IRn , 

(iv) if f : IRn ---+ IRn is Lipschitz-continuous, then 1{s(f(A)) < 
Lip(f)s1{S(A), 

(v) 1{s is invariant under translations and rotations. 

Finally, we notice that 

(
O')r-S 

1{HA) ~ '2 1{f,(A) , 

that is, if 0 ~ s < r, then 

(a) 1{S(A) = +00 if 1{r(A) > 0, 
(b) 1{r(A) = 0 if 1{S(A) < 00. 

if 0 ~ s < r, 

In particular 1{S(A) may be positive and finite only for one value of s. 

8.90 Definition. The Hausdorff dimension of A c IR n is then defined as 

dimH A := inf{ s ~ 0 I1{S(A) = o}. 
From the previous remarks, one easily infers 

and that dim')-{ A = s if 0 < 1{S(A) < 00. 

8.91 Definition. Sets in IRn with nonintegral dimension are called frac­
tals. 
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~ ~ ~ ~ ~ -+ ~ ~ 

Figure 8.32. The sets Eo, E1, E2 and E3 in the construction of the Cantor set C1/ 3. 

b. Cantor sets 

Cantor sets are a family of subsets of IR among which the Cantor middle­
third set is a prototype. They are obtained as follows. Choose 5 E]O, 1/2[, 
(5 = 1/3 for the Cantor middle-third), and set Eo = [0,1]. In the first 
step we define E1 by removing from Eo an open interval, centered at the 
middle point, of length 1- 25. E1 is then the union of two intervals of size 
Ii. By induction, we define Ek+1 by removing from each of the intervals of 
Ek a centered interval of length 5k(1 - 25). This way we get a decreasing 
sequence of sets {Ek}, Ek being the union of 2k intervals of size 5k. The 
Cantor set associated to 5 is defined as 

(8.45) 

It is not difficult to show the following. 

8.92 Proposition. The Cantor middle-third set C1/ 3 , corresponding to 
5 = 1/3, consists of all numbers in [0,1] that have a ternary expansion 
involving only the digits ° and 2. 

Another way to look at Cantor sets is useful. Consider the two maps, 
actually two contmctive similitudes, S1, S2 : [0,1] ---. [0,1] given by 

and for any set A C [0,1]' set S(A) := Sl(A) U S2(A). 
Then observe that the sets {Ed in (8.45) are actually produced by the 

following dynamical system acting on sets, 

i.e., 
Ek := So So··· 0 S([O, 1]) =: Sk([O, 1]) 

'-v-' 
k 

from which, taking also into account that Ek+1 C Ek Vk, we infer 
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00 00 

Co = n Ek = n S(Ek) = (since Ek+1 c Ek) 
k=1 k=O 

= S( nk=o Ek) = S(Co). (8.46) 

8.93 Definition. A system S := (S1, S2,"" SN) of N contraction maps 
on IRn is called an iterated function system, an IF8 for short. A set C c IRn 

such that 

N 

C = U Si(C), and Si(C) n Sj(C) = 0 Vi 1= j 
i=1 

is called a self-similar set. 

8.94 Remark. The terminology becomes clearer when (S1, S2,"" SN) 
are contractive similitudes. Assuming for instance N = 2, and that 81 and 
S2 contract by a factor 8, conditions 

(8.47) 

say that C is the union of two pieces which are each a scaled down copy 
of C itself, that is C is self-similar at the scale 8. Moreover from (8.47) we 
also have 

C = (S1 0 S1(C)) U (S1 0 S2(C)) U (S2 0 S1(C)) U (S2 0 S2(C)) , 

Si 0 Sj(C) n Sh 0 Sk(C) = 0 V(i,j) 1= (h, k), 

that is, C is also the union of four pieces that are scaled down versions of 
C of factor 82 . Proceeding by induction, for any k, C is also the union of 
2k pieces each of which is a scaled down copy of C by a factor 8k . This is 
self-similarity. 

8.95 . A more explicit description of the Cantor set Co is the following one. If the base 
points of the Cantor set are defined by induction by 

{

8bk . 
bO,l = 0, bk+1,j = ,J 

1 - 8 + 8bk,j 

if j = 1, ... , 2k, 

if j = 2k + 1, ... , 2k+1 

then 
h-l,j := bk-l,j + 8k

-
1 (8, 1- 8), j = 1, ... , 2k-l, 

are the intervals to be deleted from E k - 1 to get Ek at the k-step, and 

j = 1, ... , 2k, 

are the intervals whose union is Ek. We have set ala, b] := faa, ab]. Consequently 
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Figure B.33. Helge von Koch (1870-1924) and Waclaw Sierpinski (1882-1969). 

This shows again that C is self-similar, and more precisely that 

bk,j + 8k Co = Co n Jk,j' 

In fact, 
if and only if V h,k,j, 

hence 
i.e., 

(8.48) 

for all h , k ~ 0, j = 1, ... , 2k ; and (8.48) follows by taking into account the intersection 
on h. 

c. Iterated function systems 

Self-similarity is even more evident in the two-dimensional Cantor set, 
known also as Sierpinski's square, obtained by dividing the unit square in 
3n squares and removing the central square from each of the squares left at 
the n-th, see Figure 8.34, or as the so-called Sierpinski's carpet, obtained 
by removing the central cross (see, for example, Figure 8.37), or in the 
Sierpinski's gasket (see Figure 8.35). 

Another "I-dimensional" example is the von Koch curve; compare Fig­
ure 6.23. The curve of von Koch, contrary to regular curves and similarly 
to the examples above, has the property that any enlargement or blow-up 

••• • • ••• 
Figure B.34. The first steps in the construction of Sierpinski's square. 
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Figure 8.35. Another step in the construction of Sierpinski's square. 

of it does not simplify, instead it leaves the complex structure unchanged. 
This may be presented as an informal definition of self-similarity. 

All these examples are defined following the same pattern. One starts 
with an IFS system of contractions (SI , . . . , S N) on lRn , and, as proved by 
Felix Hausdorff (1869- 1942), one can show (but we shall not do it here) 
that there is a unique nonvoid, bounded and closed set C such that 

We refer to it as to the invariant set of the IFS (SI, S2,"" SN)' C is in 
fact a fixed point for the map A -> U~1 Si(A) on the so-called Hausdorff 
space. Moreover, introducing a suitable notion of "distance between sets," 
C can be found as the limit of the sequence of sets {Fk} defined by 

{ FO an.~rbi:ary closed bounded and nonvoid set, 

Fk+l .- Ui =I Si(Fk). 

The reader will recognize the iterative procedure as the same defining 
Cantor sets Ca C R 

In general the invariant set is not self-similar, but it is under suitable 
sufficient conditions. 

d. Dimension of the invariant set 

We restrict ourselves to an IFS SI, S2, ... , S N of contractive similitudes 

VX , y E lRn,i = 1, ... ,N. 

Figure 8.36. The first steps in the construction of Sierpinski's gasket. 
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---
Figure 8.37. The first steps in the construction of Sierpinski's carpet. 

We define the geometric dimension of that IFS as the unique nonnegative 
real number D such that 

(8.49) 

In general the geometric dimension has no relation with the more geometric 
definitions of dimension. However, we have the following. 

8.96 Proposition. If the invariant set C of an IFS of contractive simili­
tudes is self-similar and for some s we have 0 < 1-{S(C) < +00, then s is 
the geometric dimension of the IFS. 

Proof. In fact, 

N N 

1-{S(C) = L 1-{S(Si(C)) = 1-{s (C) L Lf, 
i=l i=l 

i.e., I:~1 Li = 1, since 0 < 1-{S(C) < 00. o 

Of course, going in the opposite direction is more useful. We state 
without proof the following theorem which gives a full description of some 
IFSs of contractive similitudes. 

8.97 Definition. One says that an IFS of contractive similitudes satisfies 
the open set condition if there exists an open set n c jRn such that 

Figure 8.38. Three iterates going to von Koch's curve starting with the segment of 
vertices (0,0) and (1,0). 
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Figure 8.39. The second, third, and fifth iterate going to von Koch's curve starting with 
the segment of vertices (0,1) and (1,0). 

Vi "l-j. 

8.98 Theorem. Let (81, 82 , •.. , 8N) be an IF8 of contractive similitudes 
which contract respectively of L1 , ... LN , let C be the invariant set of the 
IFS, and let d be the geometrical dimension of the IFS, I:~l Lf = 1. 

If the IFS satisfies the open set condition, then 

(i) 0 < 1{d(C) < +00, hence dim1i(C) = d, 
(ii) 1{d(8i (C) n 8j (C)) = 0 Vi "I- j. 

Moreover, each piece of C has the same dimension, and d is also the box­
counting dimension of C .14 

Theorem 8.98 yields a way to conclude that the invariant set of the IFS 
of contractive similitudes that satisfy the open set condition is essentially 
self-similar since C is a union of N scaled down copies of C itself that can 
overlap but in a nonessential way, as the intersections have zero measure. 
As a by-product we have a formula, the geometric dimension, to compute 
effectively the dimension of C. 

8.99 Example (Cantor set in JR). As we have seen, this is the invariant set of the 
two contractive similitudes of JR, 

(81,82) satisfies the open set condition, n being the open intervalJO, 1[. Therefore the 
Cantor set is self-similar and by Theorem 8.98 has dimension d given by 

i.e., d=d(.5)=~. 
log(l/d) 

Notice that 0 < d(.5) < 1 being that 0 < .5 < 1/2. See Figure 8.32 for the first iterations 
starting from the segment [0, IJ. 

14 See, e.g., J. E. Hutchison, Fractals and self-similarity, Indiana Univ. Math. J. 30, 
713-747 (1981). 
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Figure 8.40. The first three iterates going to Sierpinksi's gasket starting from the triangle 
of vertices (0,0), (1,0) and (0,1). 

8.100 Example (Sierpinski's gasket). This is the invariant set for the IFS of con­
tractive similitudes of ]R2 defined by 

81 ( x ) = ( x/2 ) + ( 1/2 ) , 
y y/2 1/2 

82 ( : ) = ( :~~ ) + ( 1/~ ) , 

83 ( : ) = ( :~~ ) + ( 1/~ ) . 

(81,82,83) satisfies the open set condition, n being the open triangle of vertices (0,0), 
(0,1) and (1,0). By Theorem 8.98 Sierpinski's ga.'Sket is essentially self-similar and has 
a nonintegral dimension d given by 

i.e., d _ log3 1 - >. 
log 2 

See Figure 8.40 for the first iterations starting from the triangle Eo of vertices (0,0), 
(0,1) and (1,0). 

8.101 Example (Sierpinski's square). This is the invariant set for the IFS of eight 
contractive similitudes of]R2 defined by 

Ll 
=1+1 1+1 

it 

:a: ta 
=1+1 1+1 

Figure 8.41. The first three iterates going to Sierpinksi's square starting from the square 
of vertices (0,0), (1,0), (1,1) and (0,1). 
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Figure 8.42. The first three iterates going to a Sierpinski's carpet that contracts to 1/4 
starting from the square of vertices (0,0), (1,0), (1,1) and (0,1). 

where (ai, bi) is one of (0,0) (1/3,0), (2/3,0), (0,2/3), (1/3,2/3), (2/3,2/3), (0,1/3), 
(2/3,1/3). (81, 82, ... ,88) satisfies the open set condition, n being the open square of 
vertices (0,0), (0,1) (1,0) and (1,1). By Theorem 8.98 Sierpinski's square is essentially 
self-similar and has a nonintegral dimension d given by 

i.e., 
log 8 

d=­
log3 

Notice that 1 < d < 2. See Figure 8.41 for the first iterations starting from the rectangle 
Eo of vertices (0,0), (0,1), (1,1) and (1,0). 

8.102 Example (Sierpinski's carpet). This is the invariant set for the IFS of four 
contractive similitudes of 1R2 defined by 

where q < 1/2 and (ai, b;) is one of (0,0) (1 - q,O), (0,1 - q) and (1 - q,l - q). 
(81, 82, ... ,84) satisfies the open set condition, n being the open square of vertices 
(0,0), (0,1) (1,0) and (1,1). By Theorem 8.98 Sierpinski's carpet is essentially self­
similar and has dimension d given by 

i.e., d = log(1/4) . 
logq 

Notice that for q = 1/4, we get a set of dimension 1. See Figure 8.42 for the first 
iterations starting from the rectangle Eo of vertices (0,0), (0,1), (1,1) and (1,0). 

8.103 Example (Snowflake). This is the invariant set for the IFS of nine contractive 
similitudes of 1R2 defined by 

81 ( : ) = ~ ( : ) + ( ~~: ) , 

and for i = 2, ... , 9, 

where (ai, bi) is one of (0, 0) (0,7/8), (7/8,0), (7/8,7/8), (1/8, 1/8), (1/8,3/4), (3/4,1/8), 
(3/4,3/4). (81, 82, ... ,89) satisfies the open set condition, n being the open square of 
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vertices (0,0), (0,1) (1,0) and (1,1). By Theorem 8.98 the snowflake is essentially self­
similar and has dimension d given by 

i.e., d = 1.25996 .... 

See Figure 8.43 for the first iterations starting from the rectangle Eo of vertices (0,0), 
(0,1) (1,1) and (1,0). 

8.104 Example (von Koch's curve). This is the invariant set for the IFS of con­
tractive similitudes of ]R2 defined by 

81 ( : ) = ~ ( : ) , 

82 ( : ) = ~RG) ( : ) + ( 1/~ ) , 

82 ( : ) = ~ R ( - i) ( : ) + ( X~ ) , 
83 ( : ) = ~ ( : ) + ( 2/~ ) , 

where R(O) denotes the rotation matrix by an angle 0 measured counterclockwise 

R(O) = (c~SO 
smO 

-Sino) . 
cosO 

(81,82,83,84) satisfies the open set condition, n being the open triangle of vertices 
(0,0), (0,1) and (1/2, -13/2). By Theorem 8.98 the von Koch curve is essentially self­
similar and has a nonintegral dimension d given by 

i.e., d 
_ log4 
--->1. 

log 3 

See Figure 8.38 for the first iterations starting from the segment [0,1] on the real axis. 

Figure 8.43. The first three iterates going to snowflake starting from the square of 
vertices (0,0), (1,0), (1,1) and (0,1). 



8.3 Two-Dimensional Dynamical Systems 369 

• • • 
• • • • • 

• • • • • • 
• • • • • • • • • 

• • • • 
Figure 8.44. Some stable configurations: beehive, snake, long boat, longship. 

8.3 Two-Dimensional Dynamical 
Systems 
Of course, we have no chance here to discuss multidimensional discrete pro­
cesses. We confine ourselves to commenting two quite popular processes: 
the game of life and the dynamics of complex maps 

Pc(z) := Z2 + c. (8.50) 

8.3.1 Game of life 
The game of life is a well-known dynamical system that was conceived in 
the 1960s by John Conway in Cambridge and has attracted many people, 
especially biologists. A comprehensive presentation of it can be found in 
E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways, New York, 
1982. Therefore, here we confine ourselves to saying a few words about it. 

Imagine that the plane is decomposed into square cells, and that each 
of these cells can be left vacant or can be filled with a black disc. A state 
of our system is a distribution of black discs into a finite number of cells. 
The denumerable family of all states is denoted by X. The transition law 
from x to T(x) is defined by applying successively the following three rules 
to x: 

(i) two or three neighbors keep you alive. A cell that is occupied in the 
state x will be occupied in T(x) if and only if it has two or three 
neighbors that are occupied in the state x. 

• • • 
• • 
• • 

• • 
Figure 8.45. Two 2-periodic states: blinken and beacon. 
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Ko 

Figure 8.46. The Julia sets of Ko, K_l, K_2. 

(ii) three neighbors create life. A cell that is vacant in the state x will 
be occupied in the state T(x) if and only if it has precisely three 
neighbors that are occupied in x. 

(iii) you die if you are alone or in the crowd. If neither (i) nor (ii) apply 
to a given cell, this cell will be vacant in the state T(x). 

Figure 8.44 shows some of the fixed points of T, while Figure 8.45 shows 
two 2-periodic states. 

But the game of life has a very rich dynamics. For instance, one can 
show: 

(i) the game of life can simulate any computer, 
(ii) there exists at least one garden of Eden, i.e., a configuration that has 

no predecessor. 

8.3.2 Fractal boundaries 

Let us discuss now very briefly some of the dynamics of the maps (8.50). 
As we saw, when restricted to the real case, they are conjugate to the 

logistic maps. The complexity of the maps in (8.50) in C therefore may 
better motivate the complexity of the logistic map. 

Let us begin with the case c = O. The map has a sink at z = 0 with 
basin of attraction the unit disc {z Ilzl < I}. Points of 8 1 := {z Ilzl = I} 
are mapped into 8 1 with double argument, while the orbit of any exterior 
point z, Izl > 1, diverges to infinity. 

Quite more complicated is the case c i- O. The study of the iterates 
of complex maps begins with the works of Pierre Fatou (1878-1929) and 
Gaston Julia (1893-1978). With reference to the maps Pc(z) = z2 + c, a 
natural question to ask is: which points in C have unbounded orbits? 
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Ki KO.3+0.5i 

Figure 8.47. The Julia sets of Ki and KO.3+0.5i. 

a. Julia sets 

8.105 Definition. We denote by Jc the set of points in C which have 
bounded orbits 

Kc := {z I P~(z) ft oo}. 

The boundary15 Pc of Kc is called a Julia set. 

8.106 ~. As we have seen Ko = {z I Izl::; 1}. Show then that K-2 = [-2,2]. 

The Julia sets corresponding to c = 0, -2 are the only ones that are 
geometrically simple; for all other values of c the corresponding Julia sets 
are fractal. 

The following theorems, that we state without proof, are due to Fatou 
and Julia. The first shows that the dynamics is fairly controlled by critical 
points. 

8.107 Theorem (Fatou). Every attracting cycle of a polynomial map P 
attracts at least one critical point. 

For instance, a quadratic polynomial has infinitely many periodic cir­
cles, however at most one may be attractive, as there can only be one 
attractive critical point. The map P- i := Z2 - i has a repelling period 2 
point, as P:i(i) = -1 - i, consequently it has no attractor. 

8.108 Theorem (Julia). Let Kc := {z I P:(z) ft oo}. Then 

(i) Kc is connected16 if and only if the origin belongs to K c, 
(ii) Kc is a Cantor type set if the origin does not belong to Kc. 

15 A point z is in the boundary of Kc if in every baH centered at z there are both points 
of Kc and of IC \ Kc. 

16 We recaH that a set in IC is connected if any two of its points can be joined by a 
continuous curve that is in the set. 
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Figure 8.48. (An approximation of) Mandelbrot's set. 

b. Mandelbrot set 

In consideration of the relevance of the orbit of the origin, 

8.109 Definition. We define the Mandelbrot set as 

M := { e lOiS not in the basin of attraction of Pc }. 

8.110,. Show that 0, -i E M, while -1 1. M. 

It is worth noticing that Julia sets for Pc are never empty and that the 
Mandelbrot set is extremely complex, as it is connected and has a fractal 
boundary. 

8.3.3 Fractals on the computer 

Julia and Mandelbrot sets exert a tremendous esthetic fascination when 
represented on the screen of a computer, and, probably for this reason, 
they have become very popular. 

8.111 The sets Kc. Given e, we can visualize (approximately) the or­
bits of each z as follows. We choose a grid of points in the plane and 
compute a fixed number Ii (say 100, 300 or 1000) of iterates of each point 
of the grid. If the iterates P:(z), k ~ Ii, remain bounded, 1P:(z)1 ~ Icl+l, 
we colour z in black; if the orbit becomes unbounded, 1P;(z) I > lei + 1 for 
some k, we colour z in white. Notice, in fact, that if IPc (z)1 > lei + 1 for 
some k, then IPck ( z ) I ---> 00 as k ---> 00. 
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Figure 8.49. A picture of the Mandelbrot set by a computer program. 

8.112 Mandelbrot set. In order to visualize the Mandelbrot set, we 
proceed similarly. But now the points in the grid refer to c and the initial 
value of the orbit is always zero. 

8.113 Julia and Mandelbrot sets in colour. If c i M, then P;-(O) ----
00 as n ---- 00. We colour the point c in the grid according to the number 
of iterates needed to leave a disk of prescribed radius R. We can proceed 
similarly for Julia sets. 

8.4 Exercises 
8.114 ,.. Show that 

8.115 ,.. Discuss the recurrence 

8.116 ,. Campanato's lemma. Let </> :]0,1] -> ~ be an increasing function such that 
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¢(r) ::; A(i) a ¢(R) + BRf3 for all 0 < r, R ::; 1, 

where A, B, a, {3 are nonnegative constants and 0 < a < {3. Show that 

¢(r)::;Cr f3, 

C being a constant depending only on a, {3, ¢(R). 

8.117 ~ A useful lemma. Let ¢ :JO, 1J -+ lR be an increasing function such that 

¢(r) ::; A(R - r)-a + B + B¢(R) for all 0 < r, R ::; 1, 

where A, B, a, B are nonnegative constants, 0 < a and 0 ::; B < 1. Show that 

C being a constant depending only on a, B. [Hint: Apply the assumption to r = rn , 
R = rn+l, {Pn} being a suitable increasing sequence that converges geometrically to 
R.J 

8.118 ~. Many identities involving Fibonacci numbers {In} are known. The following 
exercises list some of them. Show the following. 

(i) l:j=l/j = In+2 - 1. 

(ii) l:j=l If = Inln+l. 
(iii) CASSINI IDENTITY. In-l/n+1 - I~ = (_l)n. 
(iv) l:j=o (n?) = In. 

(v) CESARO. l:j=o G)lj = hn. 
(vi) LUCAS. g.c.d. (fp,Jq) = Ig.c.d. (p,q). 

(vii) For all n 2: 1, the numbers I~ + 1~+1 and I~+l - I~-l are Fibonacci numbers. 

( ... ) ",2n-l I I 12 
Vlll L..Jj=l j j+l = 2n' 
(ix) In+d In -+ T := (1 + v'5)/2. 
(x) Tn = Tin + !n-l where T = (1 + v'5)/2. 

(xi) l:~l _1_ = 1. 
J- Ij!Hl 

(xii) l:~l (_1)j-l_1_ = T- 2 , T := (1 + v'5)/2. 
Ij/Hl 

(xiii) l:~l ;j = 4 - T, T := (1 + v'5)/2. 

8.119 ~. Let {xn} be the Heaviside sequence, Xn 
z/(z - 1). 

1 "In. Show that Z{x}(z) 

8.120 ~. Let {xn} be the linear increasing sequence, Xn 
Z{x}(z) = az/(z _1)2. 

a n "In. Show that 

8.121 ~. Suppose that the Z-transform of a sequence a = {an} is a rational function 
near infinity, Z{a}(z) = A(z)/B(z), A(z),B(z) being polynomials. Find the sequence 
a = {an} in terms of A and B. [Hint: Use the Hermite decomposition formula.J 

8.122 ",. Let {xn} be the impulse sequence 

Xn := (0, ... ,0,1, ... , 1, 1, 1, ... ). 
'-v-'" '-v-'" 

k 
Show that Z{x}(z) = xh+1k _ 1 zz_-/. 

h k 
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8.123 -,r. Let {Xn} be a sequence and let k 2:: 1. Define the sequence m := {mn} to be 
the sequence of traveling k-means by 

mo:= xo, 

XO +X1 
m1:= --2-' 

and for any n 2:: k, 

Xo + Xl + ... + Xk-1 
mk-1 := --~-k:-----'--"-

Xn -k+1 + Xn -k+2 + .,. + Xn 
mn:= k 

Compute Z{m}(z). 

8.124 -,r. Let {Xn} be the orbit of a dynamical system governed by a second order 
difference equation. Show that the orbits are asymptotically stable if both the roots of 
the characteristic equation ..\1,..\2 satisfy 1..\11,1..\21 < 1. Show that the system is stable 
if and only if either 1..\11,1..\21 < 1 or 1..\11 = 1..\21 = 1 with ..\1 i' ..\2. 

8.125 'lJ'lJ. Let R be a rectangle of sides 1 and h < 1. From R we cut a square of side 
h and we are left with a rectangle of side hand 1 - h. Th~n we reiterate the procedure. 
Under what conditions on h will the process never end? 

8.126 -,r. Assuming that for Izl < 1, 

eZ 
2 

1 _ z = ao + a1 z + a2z +"', 

show that an = I:~ fr. [Hint: Notice that an - an -1 = 1jn!.] 

8.127 -,r. Assuming that a solution of 

{ 

(6x2 - 5x + l)y" + 2(12x - 5)y' + 12y = 0, 

y(O) = 1, 

y'(O) = 0 

can be written as I:r anxn , find the an. [Hint: Show that an+2 - 5an+1 + 6an = 0 
\f n.] 

8.128 -,r. Check that 

10g(1 + z) = f anzn 

1- z 0 

8.129 -,r. Study fixed points of the maps 

with 
n-1 ( l)n 

an =1+ L ---. 
1 n + 1 

1 2 
f(x) = "3x3 + "3' f(x) = x4 - 3;r2 + 3x. 

8.130 -,r. In dependence on the initial value Xo, discuss the behavior at 00 of 

Xk 4 / 
Xk+1 = 3 + "3' Xk+1 = 2xke-Xk 2, 

1 
Xk+1 = 2 - Xk' 

Xk 
Xk+1 = . 

1 + VI +x~ 
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8.131 ~~. Show that the fractional part of (up)n is not equidistributed, since 

#{n 11 ~ n ~ N, (up)n E [1/4,3/4] --> 0 
N 

as n --> 00. 

[Hint: Use that Un := ((1 + V5)/2)n + ((1 - V5)/2)n is an integer.] 
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integral domain, 147 
integration 
~ numerical 

rectangle rule, 57 
~~ Simpson's rule, 58 
~~ trapezoid formula, 57 
~ of rational functions, 171 
intermediate value theorem, 49 
isomorphism, 16 
iterated function system, 361 
~ invariant set, 363 

Jacobi's theorem, 346 
Josephus problem, 24 
Julia 

set, 371 
~ theorem, 371 

k-repetitions, 89 
k-samples 
~ nonordered 
~~ without replacement, 91 
~ ordered, 89 
~ ~ with replacement, 90 
~ ~ without replacement, 89 
~ with replacements, 266 
~ without replacement, 266 
Kronecker 

lemma, 232 
~ symbol, 177,223 

Lagrange's 

identity, 28 
interpolating polynomials, 186 
theorem about periodic continued 
fractions, 329 

Laguerre equation, 293 
Lame theorem, 310 
Legendre's 
~ duplication formula, 284 
~ equation, 292 
Leibniz test, 216 
limit, 35 

comparison test, 37 
constancy of sign, 37 
inferior, 44 
lower, 44 
of a sequence, 35, 36 
of monotone sequences, 39 
rules of calculus, 38 
squeezing test, 37 
subsequence, 41 

~ superior, 44 
~ uniform, 241 
~ ~ continuity, 242 

uniqueness, 37 
~ upper, 44 
~ values, 45 
Lindemann~Weierstrass theorem, 331 
Liouville's theorem, 329 
lists, 89 
~ increasing, 92 
location 
~ distinct cells, 269 
locations 
~ distinct cells, 95 
~ undistinct cells, 270 
logarithm 
~ complex, 129, 259 
~ real, 63, 196, 255 
logarithm-arcosin algorithm, 68 
logistic model, 336 
Lotka~Volterra models, 336 
lower bound, 13 
lower limit, 44 
Lyapunov 

exponent, 349 
~ number, 349 

Mere paradox, 114 
Mandelbrot set, 372 
maximum, 13 
mean 

arithmetic, 22 
arithmetic-geometric, 68 
phase, 346 
quadratic, 22 
time, 346 

Mertens theorem, 224 



minimum, 13 

Newton 
- approximation method, 314 
- binomial, 33 
Nicomachus theorem, 29 
nine-point circle theorem, 137 
nonlinear ODE 

Euler method, 332 
Heun method, 335 
modified Euler method, 335 
Runge-Kutta method, 335 

numbers 
7l",260 
e, 53, 62, 202, 260 
algebraic, 103 
bases 10, 193 
Bell, 271 
Bernoulli, 235 
cardinal, 101 
Carmichael's, 82 

- coprime, 72 
decimal fractions, 21 
decimals, 193 
Euler's, 235 
Euler-Mascheroni, 207 
Feigenbaum, 343 
Fibonacci, 308 

- integral, 20 
- irrationality of e, 203 

natural,17 
- prime, 72 
- pseudo-prime, 82 
- rational, 20 
- Stirling, 270 
- transcendental, 106 

orbit, 331 
- k-periodic, 341 
- chaotic, 351 
order 
- lexicographic, 123 
- partial, 104 
- total, 104 
ordered k-sample, 89 
ordered list, 92 
ovals, 28 

paradox 
- Mere, 114 
- Tarski, 28 
partitions, 271 
- of integers, 273 
- of sets, 271 
Pascal 

formula, 33 
- triangle, 33 

Peano's axioms, 19 
permutation, 89 
phase mean, 346 
pointwise convergence, 241 
polynomials, 145 
- Bernoulli, 276 
- coercivity, 155 
- complex derivative, 152 

coprime, 150 
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Euclid algorithm, 149 
greatest common divisor, 149 
Hermite, 293 
irriducibility, 148 
Lagrange's interpolating, 186 
law of signs, 164 
Legendre, 292 
prime, 150 
Sturm's sequence, 165 
trigonometric, 175 

- - energy equality, 177 
- - sampling, 178 
- - spectrum, 176 
- unique factorization, 150 
power of a set, 100 
power series 

binomial, 256 
boundary convergence test, 251 
complex, 248 

- composition, 291 
continuity of the sum, 243 
derivative, 246 
derivative of, 248 
differential equations, 262 
integral, 246 
integral of, 248 
inverse, 291 
of derivatives, 244 
of integrals, 244 
radius of convergence, 238 
reciprocal, 291 
Taylor series, 247 
uniform convergence, 241, 243 

powers 
- rational, 59 
- real,60 
prime number theorem, 78 
principle 
- Cantor's, 41 
- exhaustion, 5 

induction, 18 
nested intervals, 41 
of excluded middle, 108 
of identity 

- - of polynomials, 151 
- - of power series, 248 
Pringsheim's theorem, 232 
product 
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Cauchy, 222 
Hermitian, 125 
infinite, 191 

- of convolution, 222 
property 
- Archimedean, 19 
psi function, 285 
- asymptotics, 287 
Pythagorean 
- algorithm, 67 
- theorem, 3 

quicksort algorithm, 313 

Raabe test, 234 
ratio test, 210 
reals 
- extended, 15 
- uniqueness, 16 
recursive 
- statements, 21 
relation 
- equivalence, 79, 100 
- order, 104 
root test, 209 
Roth's theorem, 331 
Ruffini theorem, 150 

semifactorials, 55 
sequence, 31 
- bounded, 39 
-- above, 39 
-- below, 39 

bounded variation, 251 
Cauchy, 42, 131 

- convergent, 35 
- decreasing, 39 

divergent, 36 
fundamental, 12 
geometric, 50 
increasing, 39 
limit, 35 

- - boundedness, 37 
- - uniqueness, 37 
- lower limit, 44 
- maximizing, 40 
- minimizing, 4() 
- monotone, 39 
- of complex numbers, 131 
- of partial sums, 189 

product of cOI).volution, 222 
recursive, 32 
strictly 
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- subsequence, 11 

- total variation, 219 
- upper limit, 44 
series 
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- absolute convergence, 214, 216 
- alternating, 216 
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- asymptotic comparison test, 205 

Cauchy condensation test, 208 
comparison test, 204 
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-- absolutely, 214, 216 
- decimal alignment, 193 
- Dirichlet test, 221 
- divergent, 190 
- domain of convergence, 240 
- Gauss's test, 234 
- generalized harmonic, 209 
- geometric, 190, 215, 254 

harmonic, 207 
- improper integral, 192 
- indeterminate, 189 

Leibniz test, 216 
Mengoli, 190 

- nonnegative, 204 
- of complex terms, 215 
- partial sums, 189 

Raabe test, 234 
- ratio test, 210 
- rearrangements, 225 

root test, 209 
- sum, 189 
- summation by parts, 219 
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- bounded above, 13 

bounded below, 13 
Cantor, 230, 360, 365 
cardinality, 100 
chaotic, 355 
countable, 101 
dense, 20 
denumerable, 101 
equivalent, 100 
finite, 101 
inductive, 17 
infimum, 13 
infinite, 101 
invariant, 363 
Julia, 371 
lower bound, 13 
Mandelbrot, 372 

- maximum, 13 
- minimum, 13 
- partially ordered 

chain, 105 
maximal element, 105 
maximum, 105 
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- - gasket, 362, 366 
- - square, 362, 366 

snowflake, 367 
supremum, 13 

- upper bound, 13 
- von Koch's curve, 362, 368 
Sierpinski's 

carpet, 367 
- gasket, 366 
- square, 366 
sieve of Eratosthenes, 78 
signal 
- amplitude, 175 
- amplitude spectrum, 175 
- fundamental harmonic, 175 
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- phase spectrum, 175 

pulse, 174 
- spectrum, 175, 176, 181 
sine 
- Euler's formula for sine, 212 
- real, 254 
sinusoidal signal, 174 
- amplitude, 174 
- phase, 174 
- pulse, 174 
statistics 

Bose-Einstein, 96 
- Fermi-Dirac, 96 
- Maxwell-Boltzmann, 96 
Stirling 
- formula, 56, 280, 287 
- numbers, 270 
Sturm theorem, 165 
subsequence, 41 
sum 

of a geometric progression, 54 
- of the arithmetic-geometric series, 191 
- of the first n naturals, 22 
- of the squares of the first n naturals, 24 
summation by parts, 219 
supremum, 13 

Tarski's paradox, 28 
Tartaglia triangle, 33 
Taylor series, 247 
Thale's theorem, 2 
theorem 
- Abel, 221, 224, 252, 253 
- best rational approximation, 326 

Bezout,75 
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boundary convergence, 251 
Cantor, 105 
Cantor's intersection, 41 
Cantor-Bernstein, 102 
Cauchy criterion, 42 
Cayley, 118 
Cesaro, 51, 52, 67 
Chinese remainder, 80 
contraction mapping, 338 
d'Alembert, 153 
differentiation term by term, 249 
Dini-Riemann on rearrangements, 226 
Dirichlet, 221 
Dirichlet about irrationals, 328 
Dirichlet on power series, 251 
Dirichlet's on rearrangements, 225 
ergodic, 346 

- Euclid, 73 
-- second, 77 

Euler, 84 
factor, 151 
Fatou,371 
Fermat minor, 81 
fundamental of algebra, 156 
fundamental of arithmetic, 77 
Hardy, 224 
Hurwitz, 328 
integration term by term, 249 
intermediate value, 49 
Jacobi, 346 
Julia, 371 
Kronecker, 232 
Lagrange about periodic continued 
fractions, 329 
Lame, 310 
Lindemann-Weierstrass, 331 
Liouville, 329 
Mertens, 224 

- Nicomachus, 29 
- nine-point circle, 137 

of exchanging limits and integrals, 245 
- prime number, 78 

Pringsheim, 232 
Pythagorean, 3 

- Roth, 331 
- Ruffini, 150 
- Sturm, 165 
- summation by parts, 219 

term by term differentiation, 246 
- term by term integration, 246 
- Thales's, 2 
- two-squares, 143 
- Weierstrass, 49, 132 
- Weierstrass double series, 254 
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time mean, 346 
total variation, 219 
transform 
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- Laplace, 307 
tree, 118 
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Euler's line, 137 

- Morley's theorem, 139 
Napoleon's theorem, 138 
nine-point circle, 137 
orthocenter, 136 
Pascal's, 33, 91 
Tartaglia, 33, 91 

triangufar map, 353, 356 
trigonometric polynomial, 175 
two-squares theorem, 143 

uniform convergence, 241 
upper bound, 13 
upper limit, 44 

Vandermonde formula, 98 
Viete formula, 211 
von Koch's curve, 230, 362 

Wallis's formula, 55 
Weierstrass 
- double series theorem, 254 
- theorem, 49, 132 
Weyl theorem, 346 

Zorn's lemma, 105 
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