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PREFACE

This book provides an introduction to the one-dimensional variational calculus. with
a special emphasis on direct methods. This topic, and in particular Tonelli's existence
and regularity theory for solutions of one-dimensional variational problems. is some-
what neglected as authors usually treat minimum problems for multiple integrals, which
lead to partial differential equations and are considerably more difficult to handle. One-
dimensional problems are connected with ordinary differential equations and need much
less technical prerequisites. but they exhibit the same kind of phenomena and surprises
as variational problems for multiple integrals. Therefore our book might be welcomed
by graduate students who want to get an idea of what the modem approach to variational
problems is all about, without being bothered by too many technicalities. or by lecturers
who want to use a modern text for a course on the calculus of variations. Except for results
from the theory of measure and integration and from the theory of convex functions we
develop all the tools needed in the text, including the basic results on one-dimensional
Sobolev spaces, absolutely continuous functions, and functions of bounded variation.
We concentrate our discussion on non-parametric problems, but the results so achieved
can also be used to treat parametric variational problems without much more effort.

In the scholia of Chap. 6 we present some ramifications of the calculus of variations,
and we point out various connections to pertinent problems for multiple variational
integrals.

We are very grateful to Jerry Kazdan for reading and commenting on our first draft
and for suggesting numerous improvements. We should also like to thank Beate Leutloff
for her excellent and patient typing of our manuscript. We are equally grateful to Con-
siglio Nazionale delle Ricerche. Ministero dell'Universita e della Ricerca Scientifica e
Tecnologica, and to Sonderforschungsbereich 256 of Bonn University for generously
supporting our collaboration.

Pisa G. B.
Bonn M. G.
March 1998 S. H.
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INTRODUCTION

In the first 200 years of the history of the calculus of variations the prevalent approach
was what we may call the classical indirect approach. This approach is based on the
optimistic. but somewhat naive, idea that every minimum problem has a solution. In
order to determine this solution, one first looks for conditions which have to be satisfied
by a minimizer. they are called necessary conditions. For example, if a differentiable
functional F : C - R is minimized at some inner point u of C. the derivative 7(u) of
F at u must vanish. If F is a variational integral defined on some class C of functions
u. the necessary condition 7(u) = 0 for a minimizer u usually leads to a differential
equation, the so-called Euler equation which is to be satisfied by the function u.

An analysis of the necessary conditions often permits one to eliminate many candi-
dates and eventually identifies a unique solution. For instance. if. by some luck, there is
only one solution of the Euler equation satisfying all prescribed subsidiary conditions.
then one is tempted to infer that this solution must also be a solution of the original
minimum problem. This conclusion, drawn by masters like Gauss, Steiner. Lord Kelvin.
Dirichlet, and Riemann. can be false since the minimum problem might have no solution.
In other words, we have to prove the existence of a minimizer before we are allowed
to conclude that a unique solution of the Euler equation satisfying all the required sub-
sidiary conditions is a minimizer, or else we have to prove directly that the energy of our
candidate is actually smaller than the energy of any other competing function.

The matter is even more complicated. First, it is neither evident nor always true
that. for instance, a C 1-minimizer is necessarily of class C2 and, therefore, a solution of
the Euler equation. To ensure C2 -regularity of minimizers one has to prove regularity
theorems that are usually based on ellipticity conditions. Secondly it is neither evident
nor always true that a given Euler equation possesses a (classical) solution which fulfils
the prescribed side conditions, and even if there is such a solution. it might not be the
only one.

If there are several candidates for the position of a minimizer, then which one is a true
(relative or absolute) minimizer? lacobi's theory of conjugate points leads to sufficient
conditions for an extremal to be a weak minimizer. Moreover, combining this theory
with Weierstrass's field theory. we can even obtain sufficient conditions for an extremal
to be a strong relative minimizer.

Contrary to this detour via solutions of Euler's equations, which becomes quite com-
plicated and difficult for multidimensional variational problems, one may try to attack
the minimum problem directly, by immediately proving the existence of a minimizer.
This, in turn, would also give an existence theorem for solutions of Euler s equations
satisfying prescribed restrictions. say, boundary conditions. This is the approach that one
follows by using the so-called direct methods of the calculus of variations. It originated in
the work of Gauss. Lord Kelvin, Dirichlet. and Riemann on boundary value problems for
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the potential equation Au = 0. Following the example of Dirichlet.1 Riemann applied
a reasoning that he named Dirichlet's principle: There exists a unique function which
minimizes Dirichlet's integral' fn I Du 12 dx among all functions u E CI (52) it Ca(Q)
which assume given values on the boundary 852; moreover, this function is harmonic
in Q.

After its refutation by Weierstrass,2 Dirichlet's principle fell into disgrace. Yet the
interest in the direct methods never quite faded and, about the turn of the century. Hilbert
and Lebesgue exhibited several cases in which Dirichlet's principle could be rigorously
stated. A few years later, Tonelli formulated his clean and modern direct approach to
minimum problems which is based on the concept of lower semicontinuity of variational
integrals.

More precisely. at the beginning of this century Hilbert succeeded in giving a direct
proof of the existence of a shortest connection of two given points on a surface as well
as of a minimizer for Dirichlet's integral in dimension 2 in the class of functions with
prescribed smooth boundary values, thereby proving the validity of Dirichlet's principle
in this case.

Analysing the notion of area of a surface. Lebesgue pointed out that the area func-
tional is not continuous but merely semicontinuous with respect to uniform convergence
of surfaces. To demonstrate this phenomenon by means of a one-dimensional analogue,
he considered the zig-zag curves ck (t) pictured in Fig. 0.1. All these curves are of length
f, but their uniform limit c(t) = (t. 0), 0 < t < 1. is of length 1. Hence we have

1 f Ie(t)I dt < lim inf f Ick(t)I dt = f.
0 k-' c 0

The concept of semicontinuity of real-valued functions was introduced by Baire. and
he noted that, on a compact set, a lower semicontinuous real function assumes its infimum.

(a) (b (c1

FIG. 0.1.

1 Dirichlet never used this principle in one of his published papers, but his students at Gottingen have
repeatedly stated that he frequently and without hesitation applied this reasoning in his lectures.

21t seems that Weietstrass already doubted Dirichlet's principle before 1860. but he published his
objections only in 1870 in a lecture given to the Berlin Academy. Riemann. who died in 1864. knew of
Weiersuass's criticism. He accepted it. nevertheless he was convinced that his work on Abeiian functions
would eventually be justified. See also 01 of Section 3.2.
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Tonelli realized that the Arzela-Ascoli compactness theorem and Baire's semicon-
tinuity concept can be transferred from real functions of one or several variables to
variational integrals and that they are the perfect tools to prove the existence of mini-
mizers of one-dimensional variational integrals by means of direct methods. Today we
still use Tonelli's reasoning which proceeds as follows. In order to show that a functional
.F(u) defined on a class C has an absolute minimizer in C, one first has to prove that the
functional is bounded from below in C, so that it has a finite infimum. Secondly, one tries
to verify that the functional is sequentially lower semicontinuous with respect to some
suitable kind of convergence for which, thirdly, the set turns out to be sequentially com-
pact. Alternatively one can try to prove that C contains at least a converging minimizing
sequence (uk } which tends to a limit uo belonging to C. Then we obtain the inequalities

infC.F < F(uo) < lim inf ,F(uk) < infC.F (0.1)
k-+oo

which imply

.F(uo) = info .F. (0.2)

i.e. uo is an absolute minimizer of F in C.
Tonelli required the Lagrangian F(x. u. p) of the variational integral

rb
.F(u) := J F(x, u(x), u'(x))dv. [a. b] C R, (0.3)

a

to satisfy the following conditions:

Fpp(x, u, p) >- 0 (0.4)

F(x, u, p) > colplm - ci for some constants m > 1, co > 0, and

ct>0.
(0.5)

Under these assumptions he worked in the class of absolutely continuous functions on the
interval I = [a, b], equipped with the uniform convergence as the notion of convergence.
He formalized, exploited, and popularized the idea of the direct methods in a series of
papers and lectures during the first 30 years of this century, and in his monographs.
The aim of our book is to present his ideas and some of his results for a large class of
one-dimensional variational problems, together with some more recent developments of
these ideas.

Tonelli's ideas are nowadays so much a part of our mathematical culture that many
of them may even appear to be trivial, but they were by no means trivial at the beginning
of this century. On the other hand, their application to minimum problems for variational
integrals is not at all trivial and, owing to the enormous freedom we have in setting the
stage, they might tempt us to investigate problems that, in principle, are far away from
the problem we wanted to study initially. This will become apparent in the last chapter
of this book when we deal with the applications of direct methods to specific variational
problems.
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Presently we will give the reader an idea of the difficulties one might face and of the
questions one has to answer in order to use direct methods. To this end we now describe
the key ideas of direct methods in a more detailed and formal way.

Roughly speaking, direct methods appear as a recipe of the form: try to apply the
following extension of Weierstrass's theorem for real-valued functions of several real
variables.

Theorem 0.1 Let .F : C -> lR U (+oo) be a functional defined on a nonempt set C that
is equipped with a notion of convergence for which C is sequentially compact and Jr is
sequentially lower semicontinuous. Then there exists a minimizer of F in C.

In order to apply this theorem to functionals of type (0.3) we proceed as follows:

(i) First we fix the class C of admissible or competing functions and a suitable notion
of convergence on C which is denoted by uk - u.

(ii) Next we show that the functional Y is well defined on C and bounded from below.
so that info F is finite. This implies that we can find a minimizing sequence in C.
i.e. a sequence of functions uk e C, k = 1. 2...., such that F(uk) - infC F.

(iii) Then we prove that F is sequentially lower semicontinuous on C with respect to
the convergence chosen in (i). That is. we have to verify that uk -- u implies

F(u) < lim inf F(uk ). (0.6)k-.x

(iv) Finally we show sequential compactness of C with respect to the convergence of (i).
In fact, it suffices to prove that any--or at least one-minimizing sequence contains
a convergent subsequence with a limit in C.

Steps (i)-(iv) obviously allow us to apply the theorem above and to infer the existence
of a minimizer uo of F in C. We then say that uo is a solution of the problem

'F -+ min in C'.

The first question is how one should choose the set C of admissible functions and
the notion of convergence within C. Clearly C should be complete with respect to this
convergence so that converging sequences in C always possess a limit in C. and. secondly,
this convergence notion should be rather weak in order to ensure that one can select from
any minimizing sequence a convergent subsequence, or equivalently, to ensure sequential
compactness of C. On the other hand, if we choose too weak a convergence, it might be
hard or even impossible to verify that F(u) is lower semicontinuous with respect to this
convergence (and that the limit of some 'convergent' sequence in C again belongs to C).

Actually the situation is usually even more complicated. The variational problems
we are interested in come from physics or differential geometry and are formulated in a
classical context. We are required to minimize F in aclass of smooth functions satisfying
suitable side conditions such as, for example, boundary conditions. To illustrate the
situation we consider the following four examples.
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I Minimize the Dirichlet integral

t

D(u) := r lu'I2 dx

in the class Kt := (u E C°(!) fl Ct (I): u(0) = a, u(1) _ fl}, a, 46 being prescribed
real numbers and I := (0, 1).

2 Minimize the length of the image or of the graph of mappings u : [0, 1] -+ R with
prescribed values at 0 and 1, i.e. minimize

£(u)=
f

Iu'I dx or A(u) =
1

t 1 + (u')2 dx

in Kt or in the class K2 :_ (u r= C°(/) fl Dt(I): u(0) = a, u(1) Here Dt(I)
denotes the class of piecewise smooth functions u : I -r R.

3 the length of the image or of the graph of mappings of [0. 1] onto S I C R2
whose values at 0 and I are the point (1.0) of S1. i.e. minimizeM hose

t t

G(u) := 1 Iu'I dx or A(u) := + 1 +(u')2dx

in the class K3 :_ (u E C°(!, R2) fl D'(!, R2): U(7) = S',u(O) = u(I) = (I, 0))
where D1 (!, R2) denotes the class of piecewise smooth functions u : 1 - R2.

Given a non-negative and continuous integrand F(x. z. l; ), minimize

F(u) F(x, u, u') dxj.

in the class

K4:= 114 EC°(1)nCt(I): u(0)=a,u(I)=i6}

or in the class

K5 := (u E C' ([O, 11): U(0) =U,110) = fi).

As it cannot be expected that.F-equibounded sets in the admissible classes Ki above
are sequentially compact with respect to the Ct-convergence, we will have to choose
a weaker notion of convergence r; but then we cannot expect the classes Ki to be
complete with respect to this new convergence. If we insist on applying direct methods,
we are therefore led to the task to complete the classes K = Ki above with respect
to the chosen notion of convergence r, and consequently to work in classes K(,) of
generalized functions which in principle are not differentiable in the classical sense and
in many cases not even continuous. Having enlarged the class of competing functions
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from K to K(T). we are forced to extend our functional to a new functional F(T)
defined on K(T). In general there are many different ways of extending F; how should
we proceed? Deferring this question for a while, let us emphasize that, applying direct
methods, i.e. insisting on the fact that there must be a minimizer for any reasonable
minimum problem, we are forced to work in classes of generalized functions and to
accept minimizers which may not be smooth. This fact was pointed out by Hilbert in
his celebrated lecture at the International Congress of Mathematicians, held in Paris in
1900. Hilbert's 20th problem. stated at this Congress, reads as follows: Has not every
regular variation! problem a solution, provided certain assumptions regarding the given
boundary conditions are satisfied, and provided also if need be that the notion of solution
shall be suitably extended?

Choosing a notion of convergence r in such a way that K(T) is sequentially compact
with respect to r and F(T) is sequentially lower semicontinuous with respect to r, we
can apply the theorem above with C = K(r) and F = F(T) and conclude that there exists
a minimizer u(T) for '.F(t) -+ min in K(T)'. i.e. for the problem

min[F(T)(u): u E K(T)}. (0.7)

In principle the minimizer u(T) and the minimum problem in (0.7) depend on the notion
of convergence r. Only if r is chosen as the strongest convergence for which K(T)
is sequentially compact and .F(,) sequentially lower semicontinuous can the minimum
problem (0.7) be considered as the reasonable generalization of the original problem and
u(T) as a generalized minimizer of our original minimum problem. Otherwise, important
properties of the competing functions in Ki might get lost in the closure procedure and
problem (0.7) could turn out to be a substantially different minimum problem.

For instance, in example 2 the sequence of piecewise smooth mappings

0 if 0<x<IF -Ilk
Uk(X) = k/2 (r + Ilk - } if 2' - 1/k < x < 3 + 1/k

l if+1/k <x < l
belongs to K2 with a = 0 and f = 1, and it is equibounded in 'energy', i.e.

SUPC(uk) < 00 or sup Auk) < 00;
k k

its limit is the function (see Fig. 0.2)

u(x)- 10 if0x<<1
1 if 1x<1.

Therefore, if we decide to work with the 'pointwise' convergence r, the mapping
u(x) will belong to K2(T). and if, moreover, we decide to compute u' as the pointwise
derivative of is which exists almost everywhere, we find that

C(u) = 0,

while for obvious topological reasons any mapping v in K2 at least covers the interval
[0. 1]; hence C(v) > 1.
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FIG. 0.2.

FIG. 0.3.

The situation is even more complicated in example Q The sequence

(1,0) if0 <x <
uk(x) _ (cos 27rk tx - sin 27rk(x - 2)) if ' < x < + 1/k

(1,0) if;+I/k<x_<1

is clearly seen to belong to K3. From the graph of uk (see Fig. 0.3) it is clear that no 'weak
convergence' on K3 will allow a prospective limit u to remember that uk covers S1. In
fact, a reader with some experience in 'weak convergences' will notice that the sequence
(uk) converges weakly to the constant function u(x) __ (I.0). Thus, choosing any weak
convergence on functions we are led to conclude that a generalized minimizer of the
problem in example 03 is the constant map (1, 0) with the energy C(u) = 0. Obviously
we cannot accept this function as a generalized solution of the minimum problem in
example 30 since mappings v in K; cover the sphere St at least once and their 'energies'
C(v) are at least 2 r!

These two examples show how difficult the choice of a suitable convergence r and
a reasonable extension .F(r) of F might be.

Before we discuss a 'canonical' way to extend F, we would like to make one more
remark. In many cases, such as in examples 10, 2 , ©, there is a natural linear structure
in the classes K where we want to minimize F; the classes K are affine subspaces of



8 Introduction

CI or CO f1 D1. Therefore we might first 'close' or `complete' the space of functions of
class C 1 (or D1) with finite energy to a space X and then recover the sets C by imposing
the desired side conditions in a weak form. This procedure often works quite well, but it
might also be a source of misunderstandings, since a correct interpretation of subsidiary
conditions in the weak sense might not be easy. For instance, in example ® we shall we
that minimization in K4 or KS might lead to different results, but of course it is difficult
to distinguish generalized functions belonging to K4(T) from those belonging to KS(r)

Let us now return to the extension .F(T) off. Clearly there are many ways of extending
f from K to K(r). If f is already r-sequentially lower semicontinuous in K (if not.
the problem is even more complicated), we do not want to extend F arbitrarily as any
r-sequentially semicontinuous functional on K(r), but we want to find the best extension,
i.e. the largest lower semicontinuous extension of f on K(r). This extension, already
considered by Lebesgue for the area functional, is often called3 r-relaxation of F; it is
given by

f(T)(u) := inf{liminf.F(uk): uk E K r-converge to u).
k-Oc

Note that, in principle, it is no longer clear whether.F(,) is a variational integral in the
classical sense, and, even if it were a variational integral, we would not know how to
compute its Lagrangian F(,) (x. u. E; ). Notice also that exact knowledge of the Lagrangian
F(T)(x, u. t) is essential if we want to apply some calculus, for instance if we want to
derive necessary conditions such as Euler's equations.

Suppose now that we are able to apply the direct methods of the calculus of variations
to the minimum problem min{f(u): u E K). This means that we have determined
some r-relaxation min{F(T)(u): u E K(r)) of the original minimum problem 'f
min in K' such that the theorem above is applicable to C = K(T, and .F = F.
Confronting the relaxed problem 'f(T) -+ min in K(T)' with the original problem
'.F min in K', we are led to the natural regularity problem for minimizers, a
question that was also raised by Hilbert in 1900. Hilbert's 19th problem is the following
question: Are the solutions of regular problems in the calculus of variations always
necessarily regular?

This is an extremely delicate and complicated problem, at least for multidimensional
integrals, and it has occupied a large part of the field of the calculus of variations during
the last decades. Even forone-dimensional integrals it is not a completely trivial problem,
and we shall discuss it only for a class of regular integrals; see Chap. 4. Of course a
positive answer to the regularity problem also solves the initial question of whether by
extending our given minimum problem we have chosen the best notion of convergence
r; in particular we see that the regularity problem is tightly connected with the existence
problem.

For a long time it was thought that minimizers must always be regular, provided
the Lagrangian satisfies some natural 'ellipticity and growth conditions'. This conjec-
ture turned out to be false; in fact, even very reasonable problems may have singular

3We refer the interested reader to the book by Buttazzo 147). where relaxation is studied for several
function spaces, and to the monograph by Giaquinta et at. [120).
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minimizers, and their singularities might be both of mathematical and physical inter-
est. Therefore, the regularity problem is nowadays replaced by a qualitative study of
minimizers including their singularities.

Furthermore, the appearance of singularities shows that the choice of the convergence
r and of the r-relaxed extension q(r) are important questions. The study of singularities
through relaxation becomes really relevant when one considers minimum problems for
mappings between Riemannian manifolds, a subject that is not included in the present
book, but since difficulties connected with the choices of r and q(r) already appear for
one-dimensional problems, the reader should be alerted.

Our book treats one-dimensional variational problems; it is organized as follows. In
Chap. 1 we present classical 'indirect methods' based on necessary and sufficient con-
ditions for optimality. We briefly illustrate this method by some of the time-honoured
examples of the calculus of variations. In Chap. 2 we introduce the framework of func-
tion spaces which is necessary to apply the direct methods of the calculus of variations,
such as the classes of absolutely continuous functions and of functions with bounded
variation. Chapter 3 is devoted to tower semicontinuous results, which imply, via direct
methods, the existence of a solution of minimum problems; original proof of Tonelli's is
presented, together with another, more recent and more general, proof. Moreover, lower
sernicontinuity in the space B V is also discussed. Chapter 4 deals with some regularity
results for minimizers of one-dimensional variational problems; we present the case of
regular integrands first studied by Hilbert and the remarkable partial regularity theo-
rem of Tonelli. Finally, in the last chapter we discuss some applications and significant
examples. For example, we treat boundary value problems as well as eigenvalue prob-
lems for linear differential operators of second order, and we discuss the existence of
periodic solutions to Hamiltonian systems and to variational problems, including non-
coercive problems. We also sketch an approach to existence results in optimal control
theory. Finally we deal with the existence and regularity results for obstacle problems
related to parametric and non-parametric variational problems. The parametric existence
problem is treated by a method which goes back to an idea by Erdmann. This method
yields a rather direct and brief approach to parametric problems.

Although our text mostly deals with minimizers of a given functional, we should
like to emphasize that the study of critical points, i.e. of general solutions of the Euler
equations, is equally of interest. However, the existence theory for critical points is more
involved, as it usually also requires topological arguments, while the corresponding
regularity theory in many respects resembles that of minimizers. Concerning the study
of critical points, for instance, we refer the reader to the books by Ekeland [93). Mawhin-
Willem 11811. Rabinowitz [215). and Struwe [247].
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CLASSICAL PROBLEMS AND INDIRECT METHODS

In this first chapter we describe the classical indirect approach to solving variational
problems. The first step of this method consists in deriving necessary conditions for a
function to be a minimizer. Among these, the principal condition is the vanishing of
the first variation of the functional to be minimized at the prospective minimizer. As a
consequence of this, any smooth candidate has to satisfy the Euler equation. which for
one-dimensional variational problems is a quasilinear second-order differential equation.
Following A. Kneser, a C2-solution of the Euler equation is said to be an extremal.
Now the second and more difficult step of the indirect method consists in deriving
sufficient conditions for an extremal to be a minimizer. Traditionally this is achieved by
Jacobi's theory of conjugate points and by Weierstrass's field theory. Here we content
ourselves by describing Carathcodory's royal road to field theory and by proving that
every sufficiently small piece of an extremal is a local minimizer provided that the
Lagrangian is elliptic.

1.1 The Euler equation and other necessary conditions for optimality

In this section we derive necessary conditions which have to be satisfied by minimiz-
ers of variational integrals. The principal necessary condition is the vanishing of the
first variation of variational integrals at their minimizers. For smooth minimizers this
condition implies the Euler equation and, in the case of free boundary values, also the
so-called natural boundary condition. Moreover, in many cases the first inner variation
of a variational integral vanishes. This leads to E. Noether's equation or at least to its
integral version, the so-called Erdmann equation.

We consider functionals F of the type

.F(u) = J F(x, u(x), u'(x)) dx (1.1)

which will be called variational integrals; usually they are extended over a bounded
interval I = (a, b) in R. Their integrand is the composition of a real-valued function
F(x, z, p) with the mapping x H (x. u(x). u'(x)) associated with any smooth function
u : 1 RN. The function F(x, z, p) is usually called the Lagrangian of the variational
integral ,F defined by (1.1). For the sake of simplicity we mostly assume that F is defined
on 1 x RN x RN and that F is at least of class Ct. Then (1.1) is well defined for any
u E C 1(%, RN). Often we shall consider F only in some 'neighbourhood' of such a
function u. Then it suffices to assume that F E C I (U) where U denotes some open set in
R x RN x RN containing the I-graph ((x, u(x), u'(x)): x E I); clearly, F(v) is defined
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for any v E C t (%. RN) satisfying II v - u (Ic, (t ) < S for some sufficiently small 8 > 0. It
follows that the function

A (e) :=.F(u +erp) (1.2)

is defined for any choice of rp E C1 (I, RN) and for IEI < co where to S/ IIc IIc'(t)
Moreover, it is of class C' on (-e0. co) and we obtain

4'(0)=
t

We set

(1.3)

S.F(u, rp) := 4>'(0)

and call S.F(u, rp) the first variation of F at u in the direction of (p. We note that

(1.4)

S.F(u, r p ) _f(F-(x, u, u') r p + Fp(x, u. u') ip') dx
t

is a linear functional of rp E CI(!, RN)

Definition 1.1 A function u r= 01, (/, Rn') satisfying

(1.5)

f{Fz(x.u.u')o+Fp(x.u.u').4o'}dx=0 (1.6)

for all rp E Cx (I. RN) is said to be a weak extremal of the functional F.

More precisely we should call u a weak C ( -extremal since later we shall also consider
other kinds of weak extremals. If U E C ( (7. RN) then (1.6) is equivalent to

S.F(u. gyp) = 0 for all 0 E C "(1. RN).

In other words, weak F-extremals of class C ( (7, RN) are stationary points of .F in
all smooth directions rp E C 0(I, RN) in the sense that the directional derivative 4'(0)
vanishes, i.e. that

lim {.F(u + Erp) -.F(U) I = 0.e-0E

Obviously we have

Proposition 1.2 If U E C ((I, RN) is a weak minimizer of F

.F(u) <.F(u+So) (1.7)

for all co E C,'(1, RN) With IIcoIIc'(t( < S. 0 < S < 1. then u isa weak extremal of F.

Remark l Note that extremals. i.e. solutions of the Euler equations, are not necessarily
minimizers. For example, local minima and saddle points may also occur as solutions.
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Now we want to show that weak extremals of class C2 satisfy the Euler equation.
For this purpose we need

Lemma 13 The fundamental lemma Suppose that f E C°(!) satisfies

i f(x)r)(x)dx =0 forall q E Cc`(1). (1.8)

Then we have f (x) = O for all x E 1.

Proof Let Xo be the characteristic function of some interval !o = (xo - 3. xo + S) CC
1, 8 > 0. Since C °(1) is dense in L2(1) with respect to the L2-norm. we infer from
(1.8) that

flo
= J f(x)Xo(x)dx = 0

/p I

and therefore

(1.9)

I xot8
f(x)dx =0. (1.10)

28 "-8

Letting S -+ +0 we obtain f (xo) = 0 for any xo E I. 0

We can strengthen the result of Lemma 1.3 in the following way.

Lemma 1.4 If f E L'(1) satisfies (1.8). then f (x) = 0 a.e. on 1.

Proof Choose 10 and Xo as before, and consider the piecewise linear function IE E
C?(1) defined by s (x) := 1 on 1o, iE (x) := 0 for Ix - xol > 8 + e. and linearly in
(xo - 8 - E, xo - 8) and in (xo + 8. xo + 8 + e). 0 < E << 1. Since CC ° (!) is dense in
C°(1) with respect to the sup-norm on 1, relation (1.8) implies

i f(x)lE(x)dx = 0 for any 4E > 0.

If e -+ +0 we infer that (1.9) and therefore also (1.10) hold true. Letting S - +0 we
obtain f (xo) = 0 at all Lebesgue points xo E !. 0

Now we can derive the Euler equation.

Proposition 1.5 Let u : I - RN be a weak exiremal of F. and assume that u E
C2(1. RN) and F E C2(U) for some neighbourhood U of the 1-graph of u. Then u
satisfies

d Fp(x. u(x). u'(x)) - F (x. u(x), u'(x)) = 0 on 1. (1.11)
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Proof From (1.6) we infer by integration by parts that

1,
{ F (x, u, u') -

dx Fp(x. U. u')} Sp(x)dx = 0

for all pp E C,-(I, RN). Choose V = ((pt , ... , VN) as h = 0 if k 96 i. Vi = n E C(I).
Then we obtain

jfFz.(x.u.u')_ dx Fp, (x, u, u') } q(x) dx = 0

for all q E Cx (1). and Lemma 1.3 implies that

F., (x, u(x). u'(x)) - dx Fp, (x, u(x), u'(x)) = 0 on I

for any i E (1.2, .... NJ.

We call equation (1.11) the Euler equation associated with the Lagrangian F. Then
Proposition 1.5 states that any weak C2-extremal of a variational integral F with a C22-
Lagrangian F necessarily satisfies the Euler equation (I.11). Passing from the vectorial
form (1.11) to its components, we arrive at the system of Euler equations

d
Fp, (x, u(x), u'(x)) - F., (x, u(x), u'(x)) = 0. 1 < i < N, (1.12)x

which is to be satisfied by any C2-extremal u = (u 1..... UN). Clearly (1.12) is a system
of N quasilinear equations of second order for the N functions u 1, .... It N.

Let us consider three examples.

0 The Lagrangian F(x. z. p) = w(x.:) 1 + p22 with w(x, ;.) > 0 and N = I leads
to the variational integral

jb
.F(u) = W(x. u) l +u''- dx,

a kind of weighted length, with the corresponding Euler equation

d [0)
(x.u)

u' -W;(x.u) 1+u'2=0.
dx 1-+U'2:1

This can be written as

KW l + U 2 = Wz - u'Wx

where

d
K

`dx 1 +u'`

denotes the curvature of the graph of u.



14

2

with the Euler equation

F(u) =
1b2

+ c(x)u2]dr

-u" + q(x)u = 0.

3

Classical problems and indirect methods

The Lagrangian F(x. z. p) = p2 +q(x)z2, N = 1, defines the variational integral

Let V W be of class C1 (R3) and m a positive constant, and consider the Lagrangian

F(x, v) =

2

11.12 + V(x)

for N = 3 where we have replaced z and p by x and v respectively, while the independent
variable x will be denoted by t. We look for functions x (t) which make the variational
integral

F(x)= f
[21212- V(x)]dt

,,

stationary. In mechanics.F(x) is the action of a motion x = x(t), ti < t < t2, of a point
mass m in a conservative force field - Vx with the potential energy V, and T = Im.0 is
the kinetic energy of the motion x(t). The Euler equation of the action .F is equivalent
to Newton's equation

mx = -V.(_r).

Combining Propositions 1.2 and 1.5, we obtain

Proposition 1.6 Suppose that F(u) < F(v) for all v E C t (! , R-"') satisfying u = v
on a I and l u - '11 c i (I < S for some sufficiently small S > 0. Moreover, let u E
C22(!, RN) fl C'(7. RN) and F E C 2. Then u satisfies the Eater equation (1.l 1).

Definition 1.7 Any solution u E C2 (I. RN) of the Euler equation (1.11) is said to be an
extremal of F.

In other words, weak minimizers of F in the sense of Proposition 1.6 are F-extremals
if they are of class C2 and if the Lagrangian F is of class C2. Note, however, that a (weak)
minimizer of F in CI need not be of class C2. Consider the following example:

F(x. z, p) = z2(2x - p)2. N = 1, and 1 = (-1. 1); hence

F(u) = f u2(x)[2x - u`(x)J2 d.,(.
t

'Then the function u e C1 (1) defined by u(x) := 0 on [-1, 01, u(x) := x2 on [0. 11 is
the unique minimizer of F among all v E C t (1) satisfying v(-1) = 0, v(1) = 1; but
u it C2(!).
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We shall treat the question of regularity for weak extremals and minimizers in Chap. 4.
Although a weak C' -extremal u of F need not be of class CZ, it will nevertheless

turn out that the Euler equation (1.11) holds true, even if Fp(x, z, p) is merely assumed
to be continuous. This will be proved by means of

Lemma 1.8 (DuBois-Reymond's lemma) Suppose that f E L 1(I) satisfies

1,
f (x)q'(x) dx = 0 for all q E Cx(I ). (1.13)

Then there is a constant c E R such that f (x) = c a.e. on I.

Proof Fix two Lebesgue points xp, t E I of f and set c := f (xo). Suppose that
xo < and (xo - E, + E) CC 1, e > 0. Then we choose a piecewise linear function
C E C°(I) by setting t; (x) := I on [xo, fl. C(x) := 0 for x it [xp - E. + e], and
(x) :_ E-' (x - xo + E) in Ixo - E, xo], C(x) :_ e-'(4 - x + E) in [t. 1; + E]. By a
straightforward approximation argument we infer from (1.13) that also

L
f (x)C'(x) dx = 0

holds true, and this is equivalent to

s0

E fE(x)dx -
1

E J f(x)dx=0.
o-E E

Letting c -s +0 we arrive at f (xo) = f (1; ), i.e. f (4) = c for any Lebesgue point
> xo. If < xo we reverse the roles of xo and t, and we obtain the same result. Thus

we have f c for any Lebesgue point t off .

Proposition 1.9 Let U E C' (I . RN) be a weak extrernal of F. i.e.

J,
dx=0

for all cp e C, `(I. R'). Then there is a constant vector c E RN such that

Fp(x. u(x). u'(x)) = c +
J

F (t, u(t), u'(t)) dt (1.14)s
a

forallxE(a,b)=1.
Proof An integration by parts leads to

jb rb / rx
F ,(x, u, u') V(x) dx = - J 1 / F(t. u(t), u`(t)) dt) rp'(x)dx

a \ a
for all q' Cc1(1), whence

r 1

J
[F(x. u(x), u'(x)) - J F. Y. u(t), u'(t)) dt] tp'(x) dx = 0

for all (p E Cx(1). Then we obtain (1.14) on account of DuBois-Reymond's lemma.
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Note that the function

rr(x) := c + J
F (r, u(r), W(O) dt (1.15)s

a

ontheright-hand side of(1.14)isofclassCt(7, RN). Hencealso F(., u, u') E C1(7, RN),
and we obtain (1.11) by differentiating (1.14) with respect to x. Thus we have

Corollary 1.10 Any weak C 1-extremal u of F satisfies

dx Fp(x, u(x), u'(x)) - F2(x, u(x), u'(x)) = 0.

Note, however, that we are not allowed to apply the chain rule to differentiate Fp(., u, u)
with respect to x. We denote equation (1.14) as DuBois-Reymond's equation or as the
Euler equation in integrated form.

By essentially the same reasoning we obtain

Proposition 1.11 If u E Lip(1, RN) is a weak Lipschitz-extremal of F. i.e. if
SF(u, tp) = 0 for all 9p E CQ'(I, RN), then there exists a constant vector c E RN
such that

Fp(x. u(x), u'(x)) = c + f F (t, u(t), u'(t)) dtz
a

holds true for almost all x e I = (a, b), and that

d Fp(x. u(x). u'(x)) = F,.(x. u(x). u'(x)) a.e. on I.

Now we want to derive another necessary condition, the so-called natural boundary
conditions, which will be satisfied by minimizers with `fi-ee boundary values'.

Let us introduce the Euler operator LF(u) by

L u =F,_ u u' -DF

u E C2(!, RN), F E C2(U), and (a, f) C I. Then we obtain for all rp E
CI (71. RN) by means of an integration by parts that

1 u, u') tp+ Fp(., u, u) ,p'}dx
a

= f LF(u) V dx + [Fp(x, u(x), u'(x)) rp(x)la. (1.17)
a



The Euler equation and other necessary conditions for optimality 17

This identity leads to the following result:

Proposition 1.12 Suppose that u E C' (I. RN), F E C' (U), and

d.F(u, 0) = 0 for all rp E C(7, RN ). (1.18)

Then the function Fp(x. u(x). u'(x)) vanishes at the end points x = a and x = b of 1.

Proof (i) Assume first that u E C2(7. RN) and F E C2(U). Clearly 8F(u, (p) = 0
holds for all (P E Cw(I, RN). whence LF(u) = 0 on account of Proposition I.S. Then
relations (1.17) and (1.18) imply

[Fp(x. u(x), u'(x)) Sp(x)]' = 0 (1.19)

if we choose a = a and P = b. For any vector l; E RN we can find a function
rp E C1(l, RN) such that p(a) = 0 and Sp(b) Then it follows from (1.19) that the
function

x(x) := Fp(x, u(x). u'(x)), x E 1. (1.20)

satisfies zr(b) t = 0 for all E RN. whence rr(b) = 0, and similarly we obtain
7r (a) = 0. Hence the claim is proved in the special case when u E C2 and F E C2.

(ii) Now we only assume that u E CI (F. RN) and F E CI(U). By Proposition 1.9
we obtain that the function Fp(x. u(x), u'(x)) is of class C'. and so we deduce at once
that (1.17) still holds. Then the previous argument applies again thus concluding the
proof.

To find solutions of the Euler equation LF(u) = 0 it is useful to determine first
integrals of this equation, i.e. functions which are constant along the 1-graph of any
solution of the Euler equation. If N = 1 we can reduce LF(u) = 0 to a scalar equation
of first order. If F does not depend on x, i.e. if F = F(z, p). an important first integral
is given by the function

c(z. p) := p . Fp(z. p) - F(z, p). (1.21)

In fact we have

Proposition 1.13 If F,r = 0. then O(u(x), u'(x)) - cons[ on 7 for any solution u E
C2(I. RN) of LF(u) = 0, i.e. for any extremal u of.F.

Proof A straightforward computation yields the identity

dx
0(u, u') = u' LF(u)

whence d((b (u, u'))/ dx = 0 if L F(u) = 0.

Remark 2 The conservation law 'O(u, u') = cons[' may have more solutions than the
Euler equation L F (u) = 0. For instance, if u (x) - coast =: c and F(c, 0) = -h, then u
is a solution of O(u, u') = h, but it is a solution of LF(u) = O only if F (c, 0) = 0. Thus
one has to check that, by solving Cu, u') = h, truly a solution of the Euler equation is
picked up.
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Classical problems and indirect methods

Let F(x, v) _ TIv12 - V(x) be the Lagrangian considered in 30, and let

be the corresponding function (1.21). It is easily seen that

E(x, v) = 2 Iv12 + V (X),

i.e. E(x, x) is the total energy of a motion x = x(t), and Proposition 1.13 states that

E(x(t), X(1)) - const

along any extremal of the action integral

F(x) = J{_)iI2 - V(x)] dt,

i.e. total energy is conserved along any solution x(t) of Newton's equation

mz = -VV(x).

In Section 1.3 we shall use the conservation law O (u, u') = h to determine the
extremals of some classical minimum problems. Furthermore we can show that a rather
large class of functions u : [a. b] -+ RN satisfies the conservation law

(u(x), u'(x)) = const on [a, b]. (1.22)

To this end we consider an arbitrary function u E C r (%, RN) and a mapping (t, e) -
x = t(t, E) of class C1 on I x (-Eo, co). co > 0, such that, for any f E (-EO. co) =: lo,
the mapping e) is a Ct-diffeomorphism of I onto itself satisfying i; (a, E) = a and
t(b, E) = b. Furthermore we assume that at/aE E) E C1 (!) for OF E Io and %(t, 0) = t
for all t E I. We call E))EEto an admissible parameter variation, and the family
(v(., E))EEtp of functions

V(t, E) := U( (t, E)), (1, E) E I X !o, (1.23)

is said to be an admissible inner variation of u. Note that v(t, 0) = u(t) and that v(t, E)
has the same values as u(t) at t = a and t = b respectively. We set

A(t) .
aE

(t, 0) (1.24)

and

b

W(e) := I F(t. V(t, E), v(t, E))dt = E)), (1.25)

where v denotes the derivative with respect to t. If u is a minimizer in a class C of
functions that is invariant with respect to admissible parameter variations (i.e. if u e C.
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then also E) = u o E) E C for any admissible parameter variation (i; e)}EE/Q).

then we have

and therefore

We set

11(e) W(0) f o r I < Eo

w'(O)=0.

a.F(u, k) %P '(0) (1.26)

and call a.F(u, A) the first inner variation of F at u in the direction of I.

Proposition 1.14 For U E C1 (1, RN) the inner variation off in the direction of k =
9 0) is given by

rb
a.F(u, A) =

J
([u' Fp(x. u. u) - F(x. u, u')lk' - FX(x. u, u')A)dx. (1.27)

a

Proof From t = T(t; (t, E), E) we obtain by differentiation with respect tot and e
respectively that (' = a/ax, = a/at)

(t. E)

and

ka(t,E).

Furthermore we have t = (r. 0) = x and T'(x. 0) = 1. whence

T* (x, 0) = -W):

thus we have the Taylor expansion

r(x.E)=x-Ek(x)+
of r (x. E) with respect to E. Applying the coordinate transformation x

b
,*f

Y(E) = J F(r, u(4(t, c)). u'(i (t, E))E (t, e)) dt
a

we obtain

(1.28)

(1.29)

F- t = T(X. C) to

rb

J
Ftr(X. E), u(x), u'(x) 1 )r'(x. E) dx.
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at
r'(x,

E)IE=o =
-k'(x),

and consequently

rb
'(0) = J {-AF1(x, u. u') + h'u' F,(x. u. u') + F(x. u. u')(-).')) dx.

0

Let A(x) be an arbitrary function of class C'1(1). and set

r(x, E) := x - Ex(x)

for x E 1 and t E (-Eo, co), to > 0. Because of

r'(x, E) = I - EA'(X)

we have r'(x, f) > 0 for x E I and It I < Eo << 1. and M(a) =1(b) = 0. Therefore the
mapping x i. - t = r (x, E) yields a C I -ditfeomorphism of {a. b) onto itself satisfying
r(a. E) = a, r(b, E) = b provided that IEI < co << 1. It is easily seen that by

E) := E), Ice ( < to << 1, we define an admissible parameter variation
satisfying (1.24). Hence we obtain the following result:

Proposition 1.15 If

(1.30)

for any admissible inner variation v(t, E) = u(E(t, E)) of u, then we have

a.F(u, k) = 0 for all I E C,`(!). (1.31)

By applying DuBois-Reymond's lemma we infer analogously to Proposition 1.9 the
following generalized version of the conservation law (1.22).

Proposition 1.16 If (1.30) holds for any admissible inner variation v(t, E) = u(g(t, E))
of u, then there is a constant c such that Erdmann's equation

x
4(x. u(x). u'(x)) = c - r Fx(t, u(t). u'(t)) dt for all x c- l (1.32)

0
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holds true with (x, z. p) := F(x, z, p) - p - Fp(x. z, p). Moreover, since u E
C'(7. RN), it follows that Fx (-. u. u') is of class Co(! ). Then eqn (1.32) implies that

u, u') is of class C'(-1) and differentiation of (1.32) yields Noether's equation

4)(x, u(x), u'(x)) + FF(x. u(x), u'(x)) = 0 in !. (1.33)
dx

In particular, if the Lagrangian F does not depend on x, i.e. if F = F(z, p), we
obtain relation (1.22).

Remark 3 Suppose that F(z, p) is a Lagrangian of class Cl on RN x RN which is
positively homogeneous of second order with respect to p. i.e. F(z. Ap) = A2 F(z. p)
for any A > 0. Then it follows that F = p Fp - F = 4). We conclude that

F(u(x). u'(x)) = const on [a. b]

holds true if relation (1.30) is satisfied for any admissible inner variation v(t. e) =
u(i (t. e)), IEI < Eo, of U. If. in addition, F(z. p) > 0 provided that p 9E 0. and if
u(a) 0 u(b). then we have

F(u(x), u'(x)) = h on [a, b] (1.34)

for some positive constant h. and in particular u'(x) # 0 on [a. b].
Let us note that this reasoning extends even to functions u of class H' .2 (,, RN) which

satisfy (1.30) with respect to any admissible parameter variation. This observation will
be used in Section 5.9 where we shall establish the existence of regular minimizers for
parametric variational problems.

Usually it is a rather subtle problem to decide whether an extremal of .1 actually is a
local or even a global minimizer of F in a given class of mappings u Cr Ct(l, RN),
say, in the class of mappings with prescribed boundary values. In the next section we
describe a method that in principle can be used to decide the question of minimization,
though it might be quite cumbersome to carry out the method for specific problems.

There are several other necessary conditions to be satisfied by minimizers u of a
variational integral.F(u) which are treated in the classical texts. For instance, a minimizer
must satisfy the necessary Legendre condition

Fp, , (x. u(x), u'(x))i;`4k > 0 (1.35)

for all $ E RN and all x E 7. In fact, if u E 07, RN) is a weak minimizer of F in
the sense that.F(u) < F(u + tp) for all (p E C1(1. RN) with q(pIlc'ttt < 8, 0 < a << 1.
and if F is of class C2. then the function 4 (E) := .F'(u + E(p) satisfies 0(0) < 4'(E)

't Hem and in the sequel we use the summation convention to sum from t to N with respect to repeated
Latin indices.



22 Classical problems and indirect methods

for IE] < 8/11rpHcI,t) and ip E C1(1. RN), whence 4'(O) = 0 and 0"(0) 2 0. The first
relation leads to (6) whereas the second yields

S2F(u. gyp) > 0 for all rp E C c(/, 9lN). (1.36)

Here 82F(u. gyp) :_ "(0) is the so-called second variation of F at u in the direction of
(p, and a straightforward computation shows that

b
82F(u. () = 2 fQ(x, fo(x). c'(x)) dx (1.37)

where we have set

2Q(x.1;,7r) :=ajk(x)7r.7rk +cjk(x){jl;k (1.38)

and

ajk(x) Fp;e(e(x)). bjk(X) := F-,p+(e(x)).

Cjk(X) F ib(e(x)). e(x) (x, u(x), u'(x)).
(1.39)

Here C and 7r denote N-tuples (i;) , ... , l; N) and (7r) ..... 7r N ). An appropriate approx-
imation argument yields that (1.24) implies 82F(u. W) 2 0 for all Lipschitz-continuous
functions cp : -I -s RN with supp y C I. In particular, if [xo - p, .ro + p] C 1. p > 0,
and = (t) ..... l; N) E RN, we can choose (p(x) as V (x) = 0 in [a. xo - p] U [xo +
p, b]. rp(x) = A4p-) (x - xo + p) in [xo - p. xo], and W(x) = Abp-1(xo + p - x) in
[xo, xo + p]. Then we obtain

xo+p

0 < 82F(u. (p) = f dx + o(p) as p -- +0
Yo-p

and therefore

0 < dx + 0(1) as p - +0.
2p ,_1.-0P

I xo+P

Letting p --* +0 we arrive at

2 0

for any xo E I and all 4 E RN, since the coefficients a jk(x) are continuous on 7. and
the necessary Legendre condition (1.35) follows at once.

For a detailed discussion of necessary conditions we refer, for example, to the treatises
of Bolza [361, Bliss [351, Caratheodory [57], Akhiezer 131, Gelfand-Fomin [112], or
Giaquinta-Hildebrandt 1113).
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Finally we want to state the Lagrange multiplier theorem for variational problems
with so-called isoperimetric side conditions. These are constraints of the form

G(u) = const (1.40)

where g(u) is a given functional of the form

rb
CQ(u) := f G(x. u(W). u'(x)) dt

Q

with a Lagrangian G (x, t. p) of class C2 in a neighbourhood of I -graph u. We are looking
for functions u : 1 --b. RN, 1 = (a, b), which minimize a given variational integral
f(u) of kind (1.1) among all C '-mappings 1 - RN satisfying prescribed boundary
conditions as well as the subsidiary condition (1.40).

Proposition 1.17 Suppose that u is a weak minimizer of the variational integral.F in
the class C of all functions v E CI(I, RN) satisfying the boundary conditions v(a) _
a. v(b) and the constraint G(v) = c for some prescribed constant c. Assume also
that SG(u, (p) does not vanish for all (p E Cc' (I. RN). Then there is a real number X
such that

S.F(u. (p) + A SG(u. <p) = 0 for all 9 E RN). (1.41)

Moreover, if u E C2(I, RN) then

d Ht,(x,u.u')-Hz(x.u,u')=0 (1.42)

where H(x. p) denotes the Lagrangian H := F + W.

Proof By assumption there is a function' E Cx(I. RN) such that SG(u. (G) = 1.
With this function and an arbitrarily chosen rp E C;"(1. RN) we define two functions
0: Q --. R and W : Q R on Q := ((E. t) : IEI < Eo. I t l < to). 0 < Eo ,
to << 1,by

(e.1):=.F(u+Etp+1*). qi(E,1):=G(u+E(p+1*).

Since 41,(0, 0) = I we can apply the implicit function theorem, and, for IEOI << 1, we
obtain a function r E CI(-EO, Eo) with r(0) = 0 such that (E. r(E)) E Q for leI < EO
and

W(E. r(E)) = c for all E E (-EO. Eo)

whence

r'(0) = -% (O.0).

Furthermore the functions u and v = u + Erp + t * satisfy the same boundary conditions
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at x = a and x = b, and their Ct -distance

III, - ullcta) < TEAT( lIC1 ) + It1II*1IC (1)

tends to zero as E -+ 0 and t -+ 0. Thus we have

0(E, r(E)) > 0(0.0) for IeI << 1.

and it follows that

fiE (0, 0) +'D, (0, 0)r'(0) = 0.

By introducing the Lagrange multiplier A as

A :_ -0,(0.0) = -SCQ(u. t/r).

which is independent of (p. we arrive at the equation

E(0.0)+A'VE(0.0)=0.

Thus we have proved that

SF(u. (p) + A Sg(u, (p) = 0 for all wE C"(1 RN )

which implies (1.42) on account of Proposition 1.5.

6 Let

b lu.2

+ q(x)u21 dxF(u) = f
a

0

be the variational integral of 0 which is to be minimized among all functions of class
C) (1). 1 = (a. b), satisfying u(a) = 0 and u(b) = 0 as well as the constraint

1.

b

u2 dx = 1.

Then any minimizer u of this problem with u E C2(1) satisfies

-u" + q(x)u = Au.
U(a) = 0. u(b) = 0,

for some suitable constant A. Thus the Lagrange multiplier A is an eigenvalue of the
Sturm-Liouville operator

2

L = -d,,+q(x)

for zero boundary conditions, and the minimizer u is an eigenfunction of L corresponding
to A. and it is easily seen that A is the smallest eigenvalue of L for these boundary
conditions.
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1.2 Calibrators and sufQdent conditions for minima

Now we want to describe an approach to sufficient conditions for optimality which
was introduced by Carathdodory [57]. The basic idea of this method is due to Johann
Bernoulli (cf. CarathCodory [58]).

We begin with a simple geometric observation.

Proposition 1.18 Let .F : C - R and M : C -+ R be two teal-valued funetionals on a
set C, and suppose that for some element uo e C the following conditions are satisfied:

(i) F(uo) = M(uo), and F(u) > MW for all u E C.
(ii) M(u) > M(uo) for all u E C.
Then we have

.F(u) > F(uo) for all u E C.

Proof Since F(uo) = M(uo) we can write

F(u) - F(uo) = F(u) - M(uo)

= [.F(u) - M(u)l + [M(u) - M(uo)]-

By (i) and (ii), both brackets are non-negative for any u E C, whence

F(u) - F(uo) > 0 for all u E C.

13

We call the functional M a minimizing oscuaator for .F at uo E C. Then we can
state Proposition 1.18 as follows: An element uo E C is a minimizer for the functional
F : C -+ R if we can find a minimizing oscuaatior for F at uo.

Let us now apply this geometric principle to variational integrals

rb
.F(u) = ( F(x, u(x), u'(x)) dx (1.43)

a

with a Lagrangian F(x, z. p) of class C2 which is defined on all of R x RN x RN. Set
I = (a, b). We consider F as a functional on the class Ct (1. RN), or on subclasses
thereof, for instance

C(a,b)=(uEC'(1,RN):u(a)=a,u(b)=fl} (1.44)

with fixed boundary values a and j9. How can one find an osculating minimizer M for
F at uo which is of the form

f
b

(u) = M(x, u(x), u'(x)) dx (1.45)M
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with a C--Lagrangian M(x. z. p)? The easiest way to satisfy conditions (1) and (ii) of
Proposition 1.18 is to require that .M (u) is constant on C and that the conditions

M(x. uo(x). u(')(x)) = F(x. uo(x), u' (x)).

M(.r, u(x). u'(x)) < F(x. u(x), u'(x))

are satisfied for all x E I and all u E C. This leads us to

Definition 1.19 A calibrator for the triple (F. uo. C) with 11o E C is a Lagrangian
M(x. z. p) satisfying the following two conditions:

(i) For all.r E I and u E C we have

M(x. u(x), u'(x)) < F(.r. u(x), u'(x))

where the equality sign holds if u = uo.
(ii) The associated integral

b

-M(u) := I M(x.u(.r),u'(.r))do

is invariant on C. i.e. M(u1) = M (u 2) for any u l. u2 E C.

On account of Proposition 1.18 we obtain the following result.

Proposition 1.20 Suppose that M is a calibrator for the triple (F, uo, C. Then M is a
minimizing osculator for .F at U() E C, whence.F(uo) < .F(u) for all u E C.

Remark 1 Let M be a calibrator for IF. u., C), and suppose that, for any u E C. we
have u + e V c- C for any p E C"(I. RN) and all a with AEI << 1. Then

M(u +Erp) = M(u) for {E1 << I

whence

SM(u, cp) = 0 for all rp E C; (I. RN).

Then the fundamental lemma implies that

u.U')- d on Idr
for any u E C fl C2(1, RN). Thus the calibrator M(x. z. p) is a null Lagrangian on a
suitable neighbourhood of 1-graph ult in R x RN x RN.

Hence we shall look for calibrators in the class of null Lagrangians M (x. z. p). Such
Lagrangians are given by

M(x. Z. P) = SX(x. Z) + S,1 (x, z) pi (1.46)

as one can easily check, where S(x. z) is an arbitrary C function. and

b d
M(u)

dx
S(x. u(x)) dr = S(b, u(b)) - S(a, u(a)) (1.47)

for any u E C' (I , RN) such that the graph of u is contained in the domain of S.
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Given an extremal u E C(a. b) fl C2(I. R'v) for the functional .F(r). when and
how can we find a calibrator M for the triple (F. u. CS(a. b)) in order to guarantee that
f(u) < .F(r) for all r E Ca(a. b) := C(a. b) f1 (r: sups Iv(x) - u(x)l < d) for some
3 > 0? To answer this question we assume that u is embedded into afield of extremals of
F. By this we mean that there is a simply connected domain r = ((x, c) : c E 1(). X E
I (c)l in R x RN. where to is a non-empty parameter set in RN and 1(c) is an interval
on the real axis, and a Cr-diffeomorphism f : r -; G of r onto a (simply connected)

'domain G in R x R-V such that f is of the form

f (x. C) _ U. (P (X. c))

with rp' = d v/ dx E C 1 (r. RN) and satisfies

u(x) = rp(.r. co) for all x E

(1.48)

(1.49)

and for some co E Io, where [a. h) C int l(co). Furthermore it is assumed that, for any
c E 10, the function c) is an extremal of .F, i.e.

d

Let us introduce the .slope field p : G -> R x RN x R"V of the extremal field f by

p(.r.z):= (x. z. P(x. z)) where P:=rp'c f-' EC1(G.RN). (1.50)

One calls P : G - R'v the slope function of f on G. Then we have cp' = P o f, i.e.

r?'(x. c) = P(.r. ip(x. c)) for all (.r. c) E r (1.51)

and in particular

u'(x) = P(x, u(x)) for a < x < b. (1.52)

Definition 1.21 A C I -diffeomorphism f : r -> G of a simply connected domain r =
((x,c): e E Io. x E 1(x)). G = fi(r), of the form f(x.e) = (x.rp(x.c)) with
(p' E C' (r. RN) is said to be a slope field on G with the slope P := rp' o f -1 E
CI (G. RN), and the mapping pt : (x. ;.) -+ (.r. z, P(x. ;,)) is the slope field of f. We
call fan extremal field on G if the functions c) : 1(c) -+ RN are extremals of F.
Furthermore f is said to be an optimal field on G if there exists a function S(x, :) of
class C2(G) such that the Lagrangian

F'(.r, z, p) := F(x. z. p) - S, (x. z) - S:(x,;,) p (1.53)

satisfies

F'?OonGxRN and F* op=0 on G. (1.54)

We call S the eikonal of the optimal field f. Finally f is called a Weierstrass field on G
if it is an optimal field satisfying

F'(.r." p) > 0 for (x. Z) E G and p P(x, z). (1.55)
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Proposition 1.22 If there exists an optimal field f on G with the eikonal S. then we
have

F(u) > S(b, u(b)) - S(a, u(a)) for all u E Ci ([a, bJ, RN)
with graph u C G (1.56)

and even

F(u) = S(b, u(b)) - S(a. u(a)) (1.57)

if u fits the field, i.e. if

u'(x) = P(x. u(x)) (1.58)

where P denotes the slope function of the field f. If f is a Weiersrrass field on G.
inequality (1.56) can be strengthened to

F(u) > S(b, u(b)) - S(a, u(a)) (1.59)

for all u E C' ([a, b), RN) with graph u C G which do not fit the field, i.e. for which
u'(xo) 0 P(xo, u(xo)) at some point xo E I. In particular we have

F(u) > F(uo) for all u, uo E C(a, b) with graph u C G and
graph uo C G (1.60)

provided that uo fits an optimal field on G, and we even have .F(u) > F(uo) if uo fits
an optimal field on G and u 96 uo.

Proof Let us introduce the class C by

C := C(a, b) n (u: graph u C G}. (1.61)

and suppose that uo E C fits an optimal field on G with the eikonal S. Define the null
Lagrangian M(x. z, p) on G x R by

M(x. z, p) := Sx(x, Z) + $S(x, z) p. (1.62)

Then the modified Lagrangian F* defined by (1.53) can be written as F* = F - M, and
(1.54) implies that condition (i) of Definition 1.19 is satisfied. Thus the null Lagrangian
M is a calibrator for the triple (F, uo, C), and by Proposition 1.20 we obtain the minimum
property (1.60). Inspecting the proofs of Propositions 1.18 and 1.20, we readily verify
the strengthened inequality.F(u) > F(uo) if uo fits a Weierstrass field on G and u 0 uo.

Let M(u) = f."' M(x, is, u') dx be the variational integral associated with M. If uo
fits the optimal field, then F(uo) = M(uo), and we also have M(u) = M(uo) for all
is E C. By (1.47) it follows that

F(uo) = S(b, u(b)) - S(a, u(a)) for any u E C,

i.e. (1.57) holds true, and in conjunction with (1.60) we arrive at the desired inequality
(1.56). Similarly we obtain inequality (1.59) for a Weierstrass field on G.
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So far we have seen that the question as to whether a given extremal u (x), a < x < b.
of .F is actually a local minimizer of .F among all functions of class C(a, b) is reduced
to the problem of finding a calibrator M for the triple IF, u, C} where C = C(a, b) n
(v: graph v C G) and G is a domain in R x RN containing graph u, and this problem is
reduced to the question of whether we can find an optimal field on a sufficiently small
neighbourhood G of graph u in R x RN such that u fits the field. When can we embed a
given extremal u in an optimal field? To answer this question we first derive necessary
conditions to be satisfied by an optimal field on G with the eikonal S(x, z) and the slope
field p(x, z) = (x, z, P(x, z)). By (1.53) we have

F;(x. z. p) = Fp(x, Z. p) - S< (x. z)

and (1.54) implies

Fpop=0
whence

,(x, z) = Fp(x. z. P(x. z)). (1.63)

Then it follows from equation FP* o p = 0 that

Sx(x, z) = F(x, z, P(x, z)) - Fp(x, z, P(x, z)) P(x, z). (1.64)

Thus eikonal S and slope field p of an optimal field on G C R x RN have to satisfy the
Carathi odoiy equations (1.63), (1.64) which we can write as

SS = Fp(p). Sx = F(p) - Fp(p) P. (1.65)

This leads us to

Definition 1.23 Afield f on G with the slope field p (x, z) = (x, z, P(x, z)) on G is
said to be a Mayer field if there is a function S E C2 (G) such that the pair (S. P) satisfies
the Carathtrodory equations (1.65). The function S is called the eikonal of the Mayer
field f.

Let us introduce the so-called Beltrami form y associated with F. This is a I -form
on R x RN x RN defined by

y :_ (F - p Fp)dx + Fpdz`. (1.66)

Denote by p`y the pull-back of y with respect to p, i.e.

p`y = (F(p) - P Fp(p))dx + Fp.(p)dz'. (1.67)

Then the Carathiodory equations (1.65) mean that

dS = p*y, (1.68)

i.e. that the I-form p' y on G is exact. If the domain G is simply connected, eqn (1.68)
is equivalent to

d(p'y) = 0, (1.69)

i.e. the field f is a Mayer field if the pull-back p' y of the Beltrami form y with the slope
field p of f is a closed 1 form on the simply connected domain G. Moreover, we infer
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from (1.68) that on simply connected domains G the eikonals of optimal fields and of
Mayer fields respectively are uniquely determined up to an additive constant.

Let us summarize the preceding results:

Proposition 1.24 Let f be an optima! field on G with the eikona! S and the slope field
p. Then f is a Mayer field on G with the eikonal S, i.e. d S = F 'y.

Definition 1.25 Any field f : r - G on G with f (x. c) = (x. rp(.r. c)), U. C) E r. is
extended to the phaseflow e(x, c) := (x. tp(x, c), c')) in the phase space G x RA'.
Let us introduce the canonical momenta off by

q := Fp(e), (1.70)

q(x, c) _ (t!i (x, c).... , .N(x. c)) with q; (x, c) = Fp, (e(c.x)).

The Lagrange brackets [ca. cO J of the field f are defined by

lca, cSJ :=
an

.
a, - an av

(1.71)
aca acs acs ac°

and h(x. c) := (x. (p(x. c). (p'(x. c)) is called the cophase flow in the cophase space
G x RN*. (Usually we identify RN with R^''.)

Lemma 1.26 if f is afield on G with the phase flow e. then

d(e'y) = LF((p) co dca A dx + [ca, cs]dca n dcs (1.72)
lat,/Sl

where the sum is to be extended over all pairs (a, $) ordered by a < P.

Proof We have

d(e'y) =dIF(e)dx+F.,(e)[dcpk -tp4'dxJI

= F_R (e)dcpk A dx + Fp. (e)dtpk A dx - Fpc (e)dtp4- A dx

+ d Fri (e)cp.dca.

Since the second and the third term on the right-hand side cancel. we obtain

k

d(e'y) _ [F;r(e) - a (Fp+(e)), vk dca A dx + ca) Vdcs A dc".

Since the kth component of the covector LF(W) is given by

LFW)k = Fix (e) - ax (F" (e))

we obtain the identity (1.72). 0
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Proposition 1.27 Afield f : r - G with f (x. c) = (x. cp(x, c)) is a Mayer field on a
simpl-v connected domain G in R x RN if and only if it is an extremal field with vanishing
Lagrange brackets, i.e. if and only if

LF(cp) =0 and [c°, c j =0 for all a, 8 = I..... n. (1.73)

Proof The field f with the slope field p is a Mayer field on G if and only if d(p* y) = 0.
Since f is a diffeomorphism of r onto G, this equation is equivalent to f *d(p*y) = 0.
Furthermore we have f *s = e and therefore

f*d(tp*y) = d(f'(5t*y)) = d(e`y)

Thus f is a Mayer field on G if and only if

d(e'y) = 0. (1.74)

On account of Lemma 1.26, this equation is equivalent to (1.73). and thus our assertion
is proved.

Now we turn to the converse question: When is a Mayer field on G also an optimal
field? To decide this question we follow the example of Weierstrass and introduce the
excess function E(x. z. q. p) on G x RN x RN by

E(x. z. q, p) := F(-r. z, p) - F(x, z. q) - (p - q] FF(x. z. q). (1.75)

Clearly we have E(x, z. q. q) = 0 for all q E R. and it follows that

E(x.z.q.p)>0 forall(x.:)EGandall p,gERN (1.76)

if and only if F(x. z, p) is a convex function with respect to p for any (x. Z) E G. (We
may write EF instead of E to indicate the dependence on F.) Furthermore we have

E(x, p, q) > 0 for all (x,:) E G and all p. q E RN with p 96 q (1.77)

if F(x. z, p) is strictly convex with respect to p for any (x. z) a G. Then we obtain in
particular.

Proposition 1.28 The Weierstrass excess function E of a LagranRian F satisfies condi-
tion (1.77) if there is a constant m > 0 such that

F,, (x.:, p)z;i k > mItI' (1.78)

holds true jor all i = (!; 1. ..., 4 N) E RN and for all (x, Z. p) E G x RN.

Condition (1.78) is a sufficient Legendre condition.

Definition 1.29 A C2.Lagrangian F(x.:, p) is said to be elliptic on G x RN if it satisfies
the Legendre condition (I.78).
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Lemma 1.30 If f is a Mayer field on G with the slope field p (x, z) = (x, z, P(x, z))
on G and the eikonal S(x, z), and if M(x, z, p) denotes the null Lagrangian

M(x, z, p) = SAX, Z) + SS(x, z) p,

then the modified Lagrangian F' := F - M can be written as

F* (x, z, p) = 6F (X, Z, P(X, z), p) for all (x, z, p) E G x RN

Proof By Definition 1.23 we have

Sx = F(p) - P Fp(p), Sz = Fp op.

Then M can be written as

F(p) + [p - PI Fp(p).
Therefore,

which means that

F`(x, z. p) = F(x, z, p) - F(x, z, P(x, z))
- [p - P(x, z)] Fp(x, z, P(x, z))

=£F(x, Z, P(X, z), P) - (1.79)

0
By virtue of Definitions 1.21 and 1.29, Lemma 1.30, and Proposition 1.28 we obtain

Proposition 131 A Mayer field on G is an optimal field if F (x. z, p) is a convexfunction
with respect to p for any (x. z) E G, and it is a Weierstrass field on G if F satisfies the
ellipticity condition (1.78):

Combining Propositions 1.22 and 1.31 we obtain the following: sufficient condition.

Theorem 1.32 Let u(x), a < x < b, be an extremal of.F(v) = f b F(x, v, v') dx which
can be embedded into a Mayer field f on G, i.e. which fits the slope field of f . Then we
have

.F(u) < .F(v) for all v E C = C(a, b) fl [v: graph v C G},

where

C(a, b) := [v E C'([a, b], RN): v(a) = u(a) = a, v(b) = u(b)

provided that F(x, z. ) is convex for all (x, z) E G, and we even have

.F(u) < .F(v) for all v E C with v 96 u

provided that the Lagrangian F is elliptic on G x RN.
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In view of this result there remains as a final problem the question of under which
conditions we can embed a given extremal into a Mayer field. If N = 1, this question
is fairly easy to answer since in this case there are no non-trivial Lagrange brackets.
Consequently every extremal field is automatically a Mayer field. Therefore we just
have to embed a given extremal into an extremal field. Locally this is a rather simple
problem. In fact, let u(x), a < x < b. be an extremal for the Lagrangian F which is
supposed to be of class C3 and to satisfy F., # 0. Then the equation LF(u) = 0 is
equivalent to an equation in normal form, u" = *(x, u, u') with 1(r E Ct, to which
we can apply the standard existence and uniqueness theorems for ordinary differential
equations. Hence, for co := u(xo) there exists a uniquely determined family of solutions
rp(., c) to the initial value problem

c)) = 0, cp(xo, c) = c, (p'(xo. c) = u'(xo) (1.80)

such that cp(x, c) is defined on r := (xo - S. xo + S) x (co - S, co + S) provided that
0 < S << 1. Moreover, tpc (x, c) exists and depends continuously on its variables. Then
q (xo, c) = c implies that epc(xo, co) = I, and by the implicit function theorem it follows
that f : r - G. defined by f (x, c) :_ (x, rp(x, c)) and G := f (r), is a field on G,
provided that 0 < 8 << 1. Moreover, the uniqueness result implies u(x) = rp(x, co) for
xo - S < x < xo + S. Thus the extremal u is locally, i.e. in a neighbourhood of the point
(xO, u(xo)), embedded in the extremal field f . Similarly we can argue for the boundary
points xo = a and xo = b. Hence, on account of Theorem 1.32, we obtain the following
result for N = 1.

Theorem 1.33 Let F be a Lagrangian of class C3 and u(x). a < x < b, be an F.
extremal satisfying the ellipticity condition

Fp,n' (X. u(x), mlt 12 (1.81)

for some m > 0 and all x E [a, b], p E RN, and t; E RN. Then every sufficiently small
piece of u is a local minimizer. Precisely speaking, this means: for xo E [a, b] there is
an interval to = (ao, bo] C [a, b] with xo E (ao, bo) if xo E (a, b) and xo = ao or bo
respectively if xo = a or b, and some E > 0 such that

j F(x. u. u') dx < L. F(x, v, v) dx
as Jao

for all v E C I ([ao, bo]. RN) satisfying

v(ao) = u(ao), v(bo) = u(bo).

and

0 < sup lu(x) - V(x)I < E.
XElp
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In fact, Theorem 1.33 holds for every N > I and not only for N = 1. This can be
proved as follows. Pick any point xo E (a. b) (the cases xo = a and xo = b can be
handled in a similar way) and let x' be a point in R with x' < xo which is thought
to be 'close to xo': set := u(x'). Let u(x). a < x _< b. be an F-extremal which
in a neighbourhood of (xo, ;,n) with Zo = u(xo) is to be embedded in a Mayer field.
Condition (1.81) implies det Fp,, 0 0 on U x RN where U is some neighbourhood of
graph u in R x RN. Hence the Euler equation L F (cp) = 0 is equivalent to some equation
in normal form (p" = t/r(x, (p, (p') with 0 E C1. Hence we can solve the initial value
problem

c)) = 0. p(x', c) = 4.. ip,(x*, c) = c (1.82)

in a unique way by some function p(-. c) such that O(.r, c) is defined on ra :_ (.r' -
S, x' + S) x (c' - 8. c' + 8) where c' := u'(x'), and that v '(x, c) and Qp,'.(x. C) are
continuous on r,*. A Taylor expansion with respect to .r at x = x' yields

gp(x,c) =Z`+cp'(x',c)(x -x')+...

whence

9,.(x. C) = tp,(x', x') + .. .

where ... denotes higher-order terms in (x - .r' ). Then

det cpc.(x, c) = (x - x')N det q i(.r`. c) + .. .

and (1.82) implies

detq,.(x'.c) = I if lc - c"I < S.

Set f (x, c) := (x, (p(x. Then det Df = det and therefore

detDf(x.c)=(x-x')N+... for(x.c)Ers. (1.83)

Note that sp(x, c) and therefore f (x. c) also depend on the parameter x'. However, by
(1.83) and a suitable continuity reasoning we can find positive numbers Str and S such
that

detDf(x.c') 96 0 for all x E (x`,x*+S), c'=is (x(1.84)
and any x' E (xo - So. xo).

Choosing x' sufficiently close to xO we then have x' < xo < x' + S. and if (P
is the solution of (1.82) for this initial point x' and f is the corresponding mapping
f (x. c) = (x. ip(x. c)), we obtain

det D f (.ro, c') # 0

where c' = u(x' ). Hence there is a neighbourhood r of the point (xe, c') which is of the
form 1' = (xo - p. xo + p) x (c' - p. c' + p). p > 0. such that f I r is a diffeomorphism
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ofronto G := f(f).andu(x) = rp(.r.c')forx'-S <x <x*+S.ThusforO < e <p,
the piece u(x ), xo - e < x < .Yo + e, of the extremal u is embedded in the extremal field
f Ir. We claim that f Ir is a Mayer field. Since r is simply connected. we only have
to prove that all Lagrange brackets Ice, cPI of f are identically zero. This can be seen
as follows. Let e(.r. c) = (x, (p (x, c). V'(x. c)) be the phase flow of the map f, and set
rr := cP and Fr := Fo(e). F := F, (e). Then

a a a am

a rY
[ca, C O

= ac° TV F,, ' acO + ac° Ft' 5c7

Since

we obtain

a a a a air
ace ax Fp ac° 8c#

Fp 5&

F: =
a

Fp,
ax

a° a aP a air a av a 87r
11- -

ax° ac° acp aca '' ac/3 acP ac" acP ac°

Now a straightforward computation shows that

a
ax°[c°.cP] =0.

Thus the Lagrange brackets depend only on c and not on x: hence they can be evaluated by
settingx = x'. However. by(1.82)weobtain q (x'. c) = ;.' and therefore V&(x', c) = 0
for all a = 1, .... N. Consequently we have

Ic° coJ(X'. C) = 0,

and so all Lagrange brackets vanish on r,*, in particular on r.
So far we have seen that in the elliptic situation (i.e. Fpp > 0) every sufficiently

small piece of an extremal can be embedded in a Mayer field. Globally this is no longer
true. Rather a global extremal u (x). a < x _< b. can be embedded in a Mover field
if there is no pair XI - X2 of conjugate parameter values of u contained in the interval
[a. b]. This means that there is no non-trivial solution v of the Jacobi equation formed
at u (i.e. no non-trivial 'Jacobi field v along u') vanishing at x = xi and x = x2 where
a < xi < x2 < b. Here the Jacobi equation at u is the Euler-Lagrange equation of the
quadratic functional

182.F(u. ')
where

(1.85)

de'.F(u +ev)IE (1.86)

denotes the so-called second variation of .F at u in the direction of v. Since Q(v) is
quadratic in v, the Jacobi equation is a linear equation of second order. The theory of
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such equations is well developed and can be found in many books. Concerning the theory
of conjugate points we refer the reader, for example, to Caratheodory [57], Morse [ 1941,
Young [294], and Giaquinta-Hildebrandt [ 113]. In the last book, the global embedding
problem is treated in Sections 2.1-2.4 of Chap. 6, volume I.

In the final part of this section we discuss the Hamiltonian point of view. We begin
by introducing the Legendre transformation CF generated by F. Here F(x, z, p) is
supposed to be a function of class C'. s > 2, defined on G x RN where G denotes
a domain in R x R''. We assume that Fpk(x. z, p) is a positive definite matrix for all
(x, z) E G and all p E RN. Then the Legendre transformation is a two-step procedure.
First we define the map GF : (x, z, p) H CF(x, z, p) by

CF(x, z, p) := (x, z, y). y := Fp(x, z, p). (1.87)

Since Fpp > 0. the mapping Fp(x, z, ) is a C'-diffeomorphism of RN onto some
domain B*(x, z) C RN, for any (x. Z) E G. Therefore CF is a C'-diffeomorphism of
S2 := G x RN onto the domain S2` := ((x, z, y) : (x, z) E G. V E B'(x, z)). Then the
inverse CF' : * -+ 12 is of the form

GF'(x. z, y) = (x, z. >l'(x. z. y)) (1.88)

with t/r E C' (S2', RN).
In the second step we define the Legendre transform H of F as a function H : S2`

R which is given by

H:=(p.Fp-F)oCF', (1.89)

or equivalently by

H(x. z. y) fr(x, z, y) - Fp(x. z, *(x, z, y)) - F(x, Z. *(x, Z. y))
t/r(x. Z, y) - y - F(x. z. 1/r (x. Z. y)).

The function H(x, z. y) is also called the Hamiltonian associated with the Lagrangian
F(x. z, p). From (1.89) it follows that only H E C'-' if F E C. Now we shall show
that H is even of class C', i.e. H is as smooth as F. In fact, (1.89) implies

H5dx+Hkdzk+Hvkdyk

= ykd*k + 1/kdyk - Fx dx .- F_xdzk - Fpkdt/rk

where (x, z, y) is the argument of H. H-r. H,,. }lrk, and (x, z, *(x, z, y)) is the argu-
ment of F5, F&, F,&. Since yk = Fpk(x, z. *(x, z, y)), it follows that

H,, dx + H.kdzk + Hvkdyk = -Fv dx - F.kdzk + ilrkdyk

whence

*k(x, V) = (x. z. V) (1.90)
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and

rHX(x, z. Y) = -Fx(x, z. tit (x. z, y))
(1.91)' ,`HZk (X, Z, Y) = -FZk (x, Z, Y (X. Z. Y)).

Since F,, FZ, and tit are of class C-1 we infer that HX, HH, Hy are of class C-1-1, whence
H is of class Cs. Moreover, equations (1.88) and (1.90) imply

L (X, Z. Y) = (x, z, Hy(x, z, y)), (1.92)

,CFI = CH. (1.93)

Thus the Legendre transformation is an involution. We can express the previous formulae
by the following table:

y = Fp(x, z. p), p = Hy(x, z. y) (1.94)

F, (x. z, p) + H5 (x. z, y) = 0. F_, (x, z. p) + H. (x, z, y) = 0.

Here (x, z, p) and (x, z, y) are corresponding triples in 12 and S2` respectively, i.e.
(X, Z, Y) = Cp(x, z, p) or (x, z, p) = CH(x, z, y).

Consider now an F-extremal u e C2([a, b], RN) whose graph is contained in G, i.e.
1-graph u C St, and set n(x) := u'(x). Then the prolongation e(x) = (x, u(x). n(x))
of u into 11 satisfies the Euler equations

du _ d
Fp(e) = F (e).dx -n' dx

Let us map e by applying the Legendre transformation CF:

(1.95)

h:=CF oe=CF(e). (1.96)

Then we have

h(x) = (x, u(x). FAX)) with >,(x) = Fp(x, u(x), n(x))

and it follows that

e = CH o h =LH(h). (1.97)

e(x) = (x, u(x), n(x)) with n(x) = Hy(x, u(x)., (x)).

Thus (1.95) is transformed into

u, = k, (X, u. tl), n' _ H. (x, u, n). (1.98)

Conversely, if h is a solution of (1.98) then e is a solution of (1.95). The system (1.98)
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is called a Hamiltonian system. We can formulate this result as

Proposition 1.34 If Fj p(x.:. p) > 0on n = G x RN then the Legendre transformation
,CF is invertible, and we can define the associated Hamiltonian H by (1.89). Therefore
the Euler equation (1.95) and the Hamiltonian system (1.98) are equivalent in the sense
that if e is a solution of (1.95). then h = CF(e) is a solution of (1.98), and, vice versa.
if h satisfies (1.98). then e = ,CH (h) fulfils (1.95).

Suppose now that f : f G is a Mayer field on G with the slope field p (x. z)
(x. z. P(x, z)) and the eikonal S. Then we have the Caratheodory equations

S, = F(p) - P Fn(s). S = Fn(9). (1.99)

Let us introduce the dual slope field 3fr (x, z) = U. 'V (x, z)) by

* := CF 0) = CF(*)): (1.100)

that is.

'V(x.z)=Fp(x.z.P(.r.c)) (1.101)

and

P(x. z) = H,(x. ;.. 4V(x. z)). (1.102)

Then the Carath%odory equations are equivalent to

S. (x. z) = -H(x. z. 41(x. z)). S, (x.:) = 4'(x. ;,). (1.103)

and these two equations lead to the so-called Hamilton-Jacobi equation

S% + H(x, z. SS) = 0 (1.104)

for the eikonal S(x. z). This is one scalar partial differential equation of first order
for S which turns out to be equivalent to the system (1.99) for IS. P). In fact, if S
is a Ca-solution of the Hamilton-Jacobi equation (1.104) on G. and if we set 4V
S;,, then IS. 4(1) satisfy (1.103). Introducing p(x. z) = (x. z. P(x, Z)) by P(x. v) _
H, (x, z. 41'(x. z)) = H, U. z. k. (.r. z)) it follows that IS. P) satisfy the Caratheodory
equations (1.99). Thus we have found

Proposition 135 The Hamilton-Jacobi equation (1.104) and the Caratheodorv equa-
tions (1.99) are equivalent relations. In particular if S(x. z) is a solution of (1.104) on
the domain G. then P (x, z) = (x, z, P(x. z)) and

P(x. z) = H, (x. z. S. (x. z)) (1.105)

is the slope field of some Mayer field f (x. c) = (x. (p (x. c)) on G which can be obtained
from p 'by integration', i.e. by solving the first-order equation

gyp, = ,P). (1.106)

Thus we have found another method for constructing Mayer fields. This method can
also be used to embed a given F-extremal in a Mayer field.
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1.3 Some classical problems

In this section we want to present a few of the classical variational problems which were
discussed before or briefly after the discovery of the infinitesimal calculus.5

1 Fermat's principle and the laws of geometrical optics
In 1662 Fermat derived the refraction law of geometrical optics by means of his celebrated
principle. according to which nature always acts in the shortest way (la nature agit
toujours par les voies les plus courtes). In the context of geometrical optics this principle
means that light moves from one point to another in the quickest possible way.

To obtain the refraction law from Fermat's principle, we consider two media, sepa-
rated by a plane, and two points A and B as in Fig. 1.1. and assume that light moves in a
medium with a speed inversely proportional to the optical densiiv of the medium. 7ben.
denoting the optical densities of the two media by it 1 and n,. Fermat's principle requires
that the light path joining A with B will be the one for which the time T (up t ) used
by the light to proceed from A to B is minimal. It is clear that the curve rp t lies in the
plane passing through A and B and orthogonal to the plane separating the two media.
Let us introduce Cartesian coordinates t . Y in this plane. and assume that the separation

A

a, P

FIG. 1.1.

ni

n.

'In H.H. Goldstine 11241. the interested reader can find a rich source of detailed historical information.
We also refer to the historical remarks contained in the scholia of the treatise on the calculus of variations
by Giaquinta-Hildebrandt [ 113].
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line of the two media is the axis y = 0. If we set for every z = (x. y) E R2

Q) =
n1 if y > 0.
n2 if y<0,

we easily obtain that for every plane curve ro : 10, 11 -- R2 the time T (W) is given by

i

T(rp) = j n(rp)l(p'ldt.
0

Therefore, the minimum problem we are dealing with is

rt
min{J n((p)ly,'ldt: (p(0) =A. (p(1) = B}.

0

The solution turns out to be the pieccwisc linear curve of Fig. 1. 1, where

ni Cosa2

n2 COS0I
(1.107)

which is the usual refraction law of geometrical optics.
Note that this problem can he reduced to a minimization problem for a function of

one real variable. Indeed, in each of the two homogeneous media, light rays are straight
lines since the paths of shortest time are just the paths of shortest length. Thus a path of
shortest time joining point A in medium I with point B in medium 2 has to be a piecewise
linear curve consisting of two straight segments AP and PB, where P = (x. 0) is a
point on the x-axis. The time T(x) needed by the light to propagate along this curve will
then be

T(x)=niIA- PI +n,IP - BI.

The problem of shortest time is therefore reduced to a minimum problem for the function
T (x) as x varies in R. If A = (a. h) and B = (a. ft) with it < a and fi < 0 < h, the
time T (x) is given by

T(x)=nhf(a-.r)2+b2]"2+n2[(a-.r)2+0211/2.

Then the vanishing of the first derivative T'(.r) gives the equation

ni
x - a a-x

1(x -a)22+h211/2 1(x -a)2 + P21 1/2

which is just the refraction law (1.107).

0 The Newton problem of optimal aerodynamic profile
In 1685 Newton treated the question of determining the shape of a rotational symmetric
body of least resistance moving in a fluid, thereby solving the first problem of the
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calculus of variations that cannot be reduced to a minimum problem for a function of a
finite number of variables. In his Principia he wrote:

If in a rare medium, consisting of equal particles freely disposed at equal distance from each
other, a globe and a cylinder described on equal diameter move with equal velocities in the
direction of the axis of the cylinder. (then) the resistance of the globe will be half as great as that
of the cylinder.... I reckon that this proposition will be not without application in the building
of ships.

In order to understand Newton's model, we assume that the fluid is so rarefied that
it can be thought to consist of many small particles which are uniformly distributed and
independent of each other. Then the only interaction between the body and the particles
is caused by shocks, if the tangential friction is neglected.

Suppose now the body to be radially symmetric; then we can describe its profile as
graph of a function u(r). A computation shows that each shock between the body and a
particle with mass m and speed v slows the body down by a quantity of

2 Imvcos 6 = my
I + lu'(r) 12

where the meaning of the angle t3 is indicated in Fig. 1.2.
Therefore, the total resistance of the profile given by the function u is proportional

to the integral
R r

F(u) = 2 dr. (1.108)I I + Iu'(r)I

R being the radius of the maximal cross-section. For instance, we obtain from (1.108) that
the resistance of a sphere is half the resistance of a cylinder of equal diameter, as shown
by Newton. One sees immediately that, without assuming a bound on the maximal height
of the body, the infimum of the functional F is zero. In fact, the sequence of functions

uh(r) = h (I -
r

RJ

FIG. 1.2.
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gives

lim .F(uh) = 0.h-.c
while it is clear that .F(u) differs from zero for any function u. Furthermore, even a
bound on u of the form 0 < u < M is not sufficient to give the existence of a minimizer.
This can be seen from the sequence of functions

uh(r) = M sin 2
(hr),

which satisfy 0 < uh < M. but still give

lim .F(uh) = 0.h- x

Assuming that the function u is decreasing we obtain the problem to determine:

min{.F(u): u(0) = M. u(R) = 0. u' < 0}. (1.109)

By considering the function v(s) = u -I (M - s). problem (1.109) is often written in the
form

M 2

min gds + Ir(0)I : v(0) > 0, r(M) = R. , > 0f
0

1+1v' 2 -

By computing the first variation of the functional which appears in this minimization
problem we obtain the Euler equation

G!v) _ V > 0
l Gp(v'(0)) = I if v(0) > 0

where G denotes the function G(p) = p3/(1 + p2). From the Euler equation we obtain
DuBois-Reymond's equation

v'vGp(v') - vG(v') = c

together with the condition V (O) = 1. By a straightforward computation we then infer
that

V3 c.

C1 :V.2)2

In order to integrate this equation it is convenient to use the parameter : = v' which
yields the two equations

v(:)-C (I +:2)22 -.

ds 1 drc ( 2 1 3

dz V(s) do 2 ::1+ -5
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Therefore we obtain the solution in the parametric form

S (z) = 2 ( + 109Z + 4 4,t + A).

c (l+222)2

where the constants A and c have to be determined through the boundary conditions
s(;.)I`_i = 0 and R. If we want to express the solution by using the
previous variables r and u, it is convenient to consider the function

f(t)= 1
l o ttl

(I +t2)'- ` 4 4 g

defined fort > I ; it is strictly increasing and satisfies

lim f (t) = +x.
r--+x

Set

4RTTf_I/R1.
ro=(1+T2)222

Then we obtain

u(r) = M for all r E [0. ro].

and for r > ro we can write the curve u = u(r) in parametric form as

r(t) = 4r(1 + t`')`'.

u(r)=M-Lof(,)(I +12)2.

with t E 11, T I. It is interesting to note that du/dr c - I and that on the class

{u=M on [0.ro]. u(R)=0, u'S I
llll 3

the functional F turns out to be convex. For instance, by taking M = R = 1 we get the
optimal profile of Fig. 1.3 where ro 0.35. and the normalized resistance

2 R r
Co= R2 , dr

u I + 1001-

is about Co - 0.37.
The literature on the Newton problem is rather extensive. we refer to Buttazzo and

Kawohl [50] for a survey of the problem. Some interesting applications to engineering
are given in the book by Miele [185].
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FIG. 1.3.

It is interesting to note that in general, even for a circular maximal cross-section,
the optimal profile is not radially symmetric (see Brock et al. 1451) if for general cross-
sections 0 C R2 and functions u : S2 -+ R the `Newtonian resistance' is chosen as (see
Buttazzo-Kawohl [50])

.F(u)= f .,dx.
n I + I grad u1`

However, in the radially symmetric situation, the optimal profile always has a flat region
with radius ro on its top, and the following asymptotic estimates hold as M/R tends
to +00:

276(TM)-'. CD ,3227 (-WM)-2

3 The bmchistochrone
In 1638 Galileo formulated the problem of finding a curve, connecting two given points
A and B. on which a point mass moves without friction under the influence of gravity
in the least possible time from the initial point A to the end point B below A. Galileo
erroneously stated that the optimal curve is a circular path. The correct solution of the so-
called brachistochrone problem was found by Johann Bernoulli in 1697. If in a Cartesian
coordinate system with gravity acting in direction of the negative y-axis, A = (xi, yt)
denotes the initial point and B = (x2, y2), with xt < x2. Y2 < yt, the end point, and
if u : [xt, x2) -r R is a function such that u(xj) = y;, u(x2) = p2, and u(x) < yi for
xi < x < x2, the time needed by the point mass to slide from A to B along the graph of
u, starting at A with zero velocity, is given by the quantity

.F(u)= f xZ
Lj+lu'(x)I2

dx
fl - u(x)
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where g denotes the acceleration due to gravity. In order to compute the solution of the
problem

min(.F(u): u(xi) = yt.u(x2) = y2)

we use DuBois-Reymond's equation

U'2 (1 + u12)1/2

(1 + u12)1/2(yt - u)'/2 - (tit - u)1/2
= c.

which, after some calculations, reduces to

c2(l + u'2)(yt - u) = 1.

It is convenient to express its solution in parametric form; since it is evident that u y.
we can write u (t) = yt - k(1 - cost) where k denotes a suitable positive constant. The
above equation then becomes

+c2
I+k2sin2t )k(l_cosr)=l.

1` x2(r)

and with the choice kc2 = 1 /2 we obtain

1(r) = k(l - cost).

Therefore the solution turns out to be a cycloid, which in parametric form can be given
as

x(t) = xt + k(t - sin t),

u(t) = yt - k(I - cost), t e (0, T),

where the constants k and T are determined by the conditions

x(T) = x2

u(T)=y2.
Figure 1.4 shows the brachistochrone, the curve of quickest descent, with A = (0. 1)
and B = Bt, B2. B3, where Bt = (r/4, q), B2 = (n/2, 0). B3 = (37r/4, r)). 2q =
1 + cos T, and T = r/2 + sin T, 0 < T < n.

It is interesting to note that, setting

v2(x)yt -U X ) = 2

the functional F becomes

1 t + Iv'I2 dx.fr l'2

In this way the brachistochrone problem reduces to a convex minimization.
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The heavy-chain problem
Consider the following problem which was proposed by Galileo in 1638. Find the shape
of a very thin, heavy, inextensible cable (chain), suspended at its extrema. The solution
was found independently by Jacob and Johann Bernoulli, Huygens, and Leibniz between
1690 and 1692.

Choose a Cartesian system of coordinates x, y in a vertical plane, such as in the
previous example, and let A = (x1. yj ) and B = (x2.12) with xt < x2 be the two
extrema of the chain. Suppose also that the chain is geometrically described by the graph
of a function z = u(x). xj < x < x2. Then the potential energy of the entire chain is
proportional to the quantity

.F(u) = J
-Tl

fx_
u 1 + uu'I2dx

while the assumption of inextensibility leads to the equality

I l+Iu'I2dx=L
x,

as a constraint. L being the total length of the chain. The shape of the heavy chain in
equilibrium is then described by the minimizer u of the potential energy F(u) under the
subsidiary conditions

1 + lu'I2dx = L. u(-x0 = yi. u(x2) = Y2.

As in the case of constrained minimum problems for functions on a finite dimensional
space, the first order necessary conditions of optimality involve a Lagrange multiplier A.
and DuBois-Reymond's equation then becomes

u u2 -u(1+u'2)1/2+k
U12

-(1+u'2)1/2 =c
(1 +u'2)1/2 (1 +ur2)1/2
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with a suitable constant c. After some simplifications we obtain the equation

c2(I + ur2) = (u + A)2

which can easily be integrated. The solution u(x) of the heavy-chain problem turns out
to be of the form

u(x) = 1 [cosh(ax + )4) + y]

where the constants a, 13, y are determined by the conditions

u(xl) = vj. U(X2)=v2-
J12

1 + Iu'(x)I2dx = L.

Figure 1.5 shows the shape of a heavy chain suspended at points A = (-1. 1) and
B = (1, 1).

151 Radially symmetric minimal surfaces
Consider two points A = (x I. yt) and B = (x2.)-2) in an x, y-plane with XI < x2 and
Yt, y2 > 0. We want to find a function u : [XI, x2[ - R with u(xt) = yt, u(x2) = Y2,
whose graph. after rotation about the x-axis, gives the surface of least area. Since the
area of the rotated surface is

.F(u) = 27r J x I u(x)I 1 + lu'(x)I2 dx. (1.110)

we have the problem to find the solution of
X2 -mini I IuI l+ju'I2dx: u(xt)=yl, u(x2)=}2.u>0}. {1.111)
, JJJ

Besides the connected surfaces obtained by rotating the graphs of functions u(x), xt <
x < x2. we may also consider a degenerate surface consisting of two disks of radii yt and

FIG. 1.5.
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y2 respectively, which lie in parallel planes perpendicular to the x-axis and are centred at
the points Pt = (xi, 0) and P2 = (x2. 0). This surface has area 7r(y2 + yZ which must
be compared with the area F(u) of minimal graphs u, where .F(u) is given by (1.I 10).
Note that the degenerate surface consisting of the two disks furnishes a smaller value of
area than any surface obtained by rotating the graph of a function u : (xi, x2] -i R with
u > 0. connecting A and B, provided that u(x) assumes the value zero.

DuBois-Reymond's equation is
u'2

- u(1 +ur2)t/2 = c
U +u'2)112(1

which can be transformed into the equation

u2 = c2(l + u'2).

and this equation can be easily integrated. Therefore, if x2 - xt is sufficiently small with
respect to yt and )-2, the solution of problem (1.111) is given by

u(x) = Icosh(ax + b)
a

where the constants a, b are determined by the boundary conditions u(xt) = yi and
u(x2) = Y2. If, however, x2 - xt is sufficiently large, problem (1.111) will not have
a solution. For some 'intermediate' size of x2 - xt, problem (1.111) has a relative
minimizer, but its area is larger than that of the two disks.

Let us restrict the analysis to the case when yt > y2 and the admissible functions
u are taken to be decreasing; then it is convenient to invert the axes and to consider the
problem in terms of the function v = u't . Underthis proviso the problem is to determine
the Cartesian graph of minimal area spanned by a circle of radius yt at level xt and a
circle of radius y2 at level x2, i.e. we have to find the solution of the convex minimum
problem

V1

min f r 1 + Iv'(r)I2dr: v(yt) = xi, V(Y2) = x2
2

. (1.112)

If x2 -x t is sufficiently small with respect to yt and y2, then there is a solution of (1.1 t2)
which is given by

v(r) _ fi + a log(r + r -- a2)

where the constants a and fl are determined by means of the boundary conditions v(yt) _
xt and v(y2) = x2. On the other hand, if x2 - xt is large, then problem (1.112) does not
have a solution in the class of smooth functions; in fact, the optimal v is given by

r + r2-y2
v(r) _ xt - y2 tog

2 2
ifr > y2,

Yt + Yt - Y2
X2 ifr = Y2,

see Fig. 1.6. In other words the minimal Cartesian surface spanned by the two circles
has a vertical region when x2 - xt is large relative to yt - y2.
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4

FIG. 1.6.

6 Elastic strings and beams
A. Consider an elastic string which, in its rest position, is described by the segment
[-1, 11 on the horizontal axis. If we load the string, and denote by u(x) its vertical
displacement, then, according to the simplest model of linear elasticity, the elastic energy
of the string is given by

k
fi

Iu'(x)I2 dx,

where k is a positive constant depending on the material of which the string is made.
Assuming that the string is fixed at its boundary points and that its load is uniformly
distributed, the shape of the string will be obtained by minimizing the total energy of the
system. Denoting by g a positive constant which gives the uniform load distribution, we
have to minimize the energy

ft [klu'I2 +gu]dx (1.113)

under the constraints u(-1) = u (l) = 0 at the boundary points x = ±1. This leads us
to the boundary value problem

-2ku"+g=0, u(-1)=0, u(1)=0, (1.114)

where the differential equation is the Euler equation of the potential energy (1.113). We
infer immediately from (1.114) that the shape of the uniformly loaded string is given by
(see Fig. 1.7a)

U(X) = 4k(x2 - 1).
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(a)

FIG. 1.7.

If the load is concentrated at one point, say the origin x = 0, the minimum problem
becomes

Imiklu''2dx+gu(0):u(-1)=u(l)=0 .

In this case the shape of the string is given by (see Fig. 1.7b)

U(X) = 4ktlxl

B. An analogous problem is provided if, instead of an elastic string, we have a very
thin elastic beam, whose elastic energy in the simplest linear elasticity model is given by

fH lu"(x)I` dx

where, as before. u (x) denotes the vertical deflection of the beam at x , and H is a positive
constant depending on the material of the beam. Assume that the beam is clamped at its
boundary points and that the load g is uniformly distributed; then the shape u (x), x -1 <
x < 1, of the beam will be obtained by solving the following minimum problem:

{f'(HIu1?12min +gu]dx: u(-1) = u(1) = 0.

u'(-1) = u'(1) = 0}. (1.115)

The Euler equation corresponding to (1.115) is

2Hu(4)+g=0.
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U
FiG. 1.8.

Therefore we have to solve the boundary problem

2Hu(4)+g=o. u(-I) = u(1) = 0, u'(-1) = u'(1) = 0.

whose solution is given by (see Fig. 1.8a)

u(x) _ -48H (x2 - 1)2,

whereas the analogous problem with a load concentrated at the origin has the solution
(see Fig. 1.8b)

).u(x)=-48H (2Ix13-3x2 +)

C. The two-dimensional problem analogous to the problem of the elastic string is the
equilibrium problem for elastic membrane which, in its rest position, is described by an
open subset 9 of R2, and whose elastic energy is given by

kf IDu(x)l2dx. (1.116)

We consider here the case when Q is the unit disk and the load g is uniformly distributed,
so that, in polar coordinates, the problem becomes to determine

fiu(kIuI2min + gujrdr:u(l)=0 , (1.117)

once the membrane is assumed to be fixed at its boundary. In fact solutions must be
radially symmetric. The boundary value problem for the corresponding Euler equation
becomes

-2k(ru')' + gr = 0, u(l) = 0,

and it is solved by all functions of the form

u(r) = 8k(r2 - 1)+clogr
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where c is an arbitrary real constant. The only solution of finite energy is the one with
c = 0, so that the shape of a uniformly loaded circular membrane is given by the function

u(r) = 8k (r2 - 1).

For a membrane with the load concentrated at some point, the problem has no solution.
In fact.

r

0

r

inf
1

ktu'l2rdr + gu(0): u(1) = 0 = -oc.

Indeed, if we take the functions

C rI
uE(r) = 2k log

1 ++ 'e'

the condition uE (1) = 0 is fulfilled, and their total energies are

k f t Jul.E (2rdr + gm. (0) = 4k
f0

I
(r +

O E)2
dr + 21og ( l +

2 E 1

4k [log { 1 + E, 1 +4E

This expression tends to -oo as e -+ 0.
D. The two-dimensional problem analogous to that of the elastic beam is the equi-

librium problem for an elastic plate, whose elastic energy is given by

kf IAu{2dx (1.118)

where A is the Laplace operator. If we take as 9 the unit disk and assume that the
load g is uniformly distributed, the equilibrium problem for the plate clamped at its
boundary becomes, in polar coordinates, the minimization problem

/'1 Iu,I2
min

1
klu"I2 +k } 2 +gu rdr: u(1) = u'(I) = 0 (1.119)

o r

By solving the Euler equation

rut4t+2u",-Tun+r u,+ 9r=0

we obtain the solution (see Fig. 1.9a)

u(r)
128k

(r2 - 1)2.

The similar problem for the clamped circular plate with a load concentrated at the origin
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(a) (b)
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reduces, in polar coordinates, to the minimization problem

fmin kr lu012 + dr +gu(0): u(l) = u'(1) =
r2

and has the solution (see Fig. 1.9b)

53

u(r)
l6k

(1 - r2 + 2r2log r).
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ABSOLUTELY CONTINUOUS FUNCTIONS AND SOBOLEV SPACES

In this chapter we shall introduce and discuss the class of absolutely continuous func-
tions. There are essentially two ways of introducing these functions, namely the classical
one going back to Vitali and Tonelli, and the more functional analytic way in terms of
the so-called Sobolev spaces. A detailed description of these spaces in any dimension
can be found in several books; see for instance Adams [ 11. Maz'ya { 182]. Ziemer [295].
Here we confine ourselves to discuss Sobolev spaces of functions defined on intervals of
the real line. We begin by introducing Sobolev spaces H(-v(a. b), p > 1, on intervals
(a. b) of R. and then we shall relate them to the class of absolutely continuous functions
introduced by Vitali. The last section of the chapter will be devoted to the study of the
larger class of functions with bounded variation, introduced by Jordan.

2.1 Sobolev spaces In dimension 1

To motivate the use of Sobolev spaces we shall first discuss a simple example. Sup-
pose that we want to apply the direct methods to the problem of minimizing the one-
dimensional Dirichlet integral in (0. 1)

rt
V(u) = f lu'(x)l2 dx

0

in the class

K(a.fl):_{uEC(([0,11):u(0)=a,u(1)_/3}. a.ffER.

Clearly, we have

0 < inf D(u) < +oc.
K(a.$)

If {uk) is a minimizing sequence. i.e. if Uk E K(a, 0) and

D(uk) -+ inf V.
Kla,t)

we can assume that

f'luiI2dx inf 1) + 1
K(a.d )
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holds for all k E N. Also, for all x, y E [0, 11 we have

Uk(X) - uk(y) = JXdt.

Applying Holder's inequality we deduce that

and

r
1/2

luk(x) - uk(y)I <
J

Iluk'Z dx ix - 311/2 (2.1)

0

1/2

(x)j jk(0)1 + (fuu2dt)1uk

thus [uk) is a bounded sequence in CO. 112p, 1)). Consequently, the functions uk are
equibounded and equicontinuous. By the Arzeli-Ascoli theorem we then infer, passing
to a subsequence, that

uk -> u uniformly in 10, 11.

Moreover, since the L2-norms of the derivatives uk are equibounded and L2(0, I) is
a reflexive space it follows that uk converge weakly in L2(0, 1) to some function v E
L2(0, 1). We recall that the last claim means that

fo

1 1

ukcpdx
J

vcpdx
0

for all (P E L2(0, 1) or, equivalently, for all rp E C' (0, 1). In particular, if (p is smooth
and has compact support in (0, 1), we find from

fuPdx = -f ukrp'dx

that

fo

1 1

ucp dx = - f vcp dx for all P E Cx (0, 1). (2.2)
0

Equality (2.2) may be interpreted as saying that v is the weak derivative of u (the reader
who knows something about distributions will recognize that v is the distributional
derivative of u), and we shall write u' instead of v, although u is in principle only
Holder-continuous and not necessarily differentiable.

The previous discussion shows that every sequence in K(a, )S) with equibounded
Dirichlet integral will have a subsequence converging uniformly to some function u, and
such that the sequence of the classical derivatives uk converges weakly to an L2-function
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denoted by u' which can be interpreted as the weak derivative of u. It is therefore natural
to consider on K (a, 8) the following notion of convergence: A sequence of functions
Uk E K (a, P) with equibounded Dirichlet's integral r-converges to u if and only if

Uk -* u uniformly

1u'k -- u' weakly in L2(0, 1)
(2.3)

where u' denotes the weak derivative of u, i.e. the function v in L2(0, 1) satisfying (2.2).
It is easily seen that K (a. P) is not complete with respect to the convergence r; we

shall therefore complete it by defining K(T) as the abstract sequential closure of K (a, 0)
with respect to the convergence r introduced in (2.3), i.e. as the smallest sequentially
closed class (with respect to the convergence r) which contains K (a, P).

For any u E K(r) (a, )4), with weak derivative u', we now define its Dirichlet integral
simply as the Lebesgue integral of the L t -function lu' 1 2

f i I'12 dx.

Since for any two functions w, z E L2(0, 1) we have

1x'12 - IZ12 > 2z(w - z)

we infer that

lim inf 111uk 12 dx - J ' 1u'12 > lim inf f 2u'(uk - u') dx = 0.
k-oo /o o k-+oo

Therefore, D(T) is sequentially lower semicontinuous on K(,) with respect to the con-
vergence (2.3).

Applying the direct methods presented in Section 2.3 to C = K(r) (a, 0) and F _
D(T) we find a minimizer Uo E C of F in C. But several questions still remain to be
answered:

(i) Is D(T) on K1(a, /3) the best extension of Don K(a, /3), i.e. is D(T) the maximal
sequential lower semicontinuous extension of D?

(ii) Is r the strongest convergence we can use, compatible with the sequential com-
pactness of minimizing sequences and the sequential lower semicontinuity of D or
D(r)?

(iii) Can the minimizer uo E K(T) (a, /3) be interpreted as the 'most appropriate' gener-
alized solution of our original problem?

(iv) What is the class K(,) (a. /3)?

Concerning questions (ii) and (iii) only a regularity theorem can give a positive answer;
we shall see in Chap. 5 that, in fact, this is the case. (Actually in this specific example
this can easily be proved.) We shall now try to answer questions (i) and (iv).
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Consider the space of smooth functions in (0, 1) with finite L2-norm and Dirichlet
integral, equipped with the norm

1/2

IIuIIH1.2(o.1) := f'Iut2dx+ f 'lu'I2dx (2.4)

induced by the scalar product

r1
(u,v)Ht.2(0,1) :=J (uv+u'v')dx, (2.5)

0

and denote by H 1.2 (0, 1) its completion. H 1.2 (0, 1) is a Hilbert space with scalar product
(2.5) and norm (2.4),

IIuIIHt.:to.l) _ (u. u)H221

moreover, (2.1) also yields

H1.2(0, 1) C C°,112(0, 1).

In particular the boundary values of functions u in H1.2(0, 1) are well defined. We shall
also see that

H1.2(0,1)=(uEC°. 1/2(0, 1): u'EL2(0,1))

or

H1.2(0,1)=(uEL2(0,1):u'EL2(0.1)).

or in words: that H1.2(0, 1) agrees with the space of square integrable or Hiilder-
continuous functions with exponent 1 /2 having weak derivatives in L2 (0, 1). Finally
it is readily seen that the convergence in (2.3) is nothing more than the sequential weak
convergence in the Hilbert space H1,2(0, 1).

Since in a Hilbert space weakly sequentially closed sets and weakly closed sets coin-
cide, and, moreover, convex weakly closed sets and convex strongly closed sets coincide
too, we deduce at once that

(il) K(T)(a, /3) is the strong closure of K(a, /3) in H1.2(0, 1), which can be proved
to coincide with (u E H1.2(0, 1): u(0) = a, u(1) = #);

(i2) D(T)(u) is the maximal sequential lower semicontinuous extension of D to
K(T)(a, /3)

In fact, for every u E K(T) (a, /3) there exists a sequence NO } in K (a, /3) such that

D(uk) -+ D(t)(u).
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In conclusion we can say that the problem

t

min Iu'I2dx: u E H'.2(0, 1), u(0) = a, u(1) (P)

can reasonably be considered as the generalized reformulation of the original problem

min(D(u): u E K(a, 0)), (Pr)

and its minimizers uo can be viewed as the generalized minimizers of (P).
We should mention that this is not quite Tonelli's original approach but only an a

posteriori reformulation of it; later we shall compare it with Tonelli's approach. Here
we wanted only to motivate the introduction of Sobolev spaces by means of a simple
example. A more geometric motivation of the Sobolev space H1,2 strongly related to the
Dirichlet integral will be discussed later. We now introduce the Sobolev spaces H 1.P for
every real number p ? 1.

Let I be an open interval in R and let p be any real number with p ? 1. We denote
by X the linear subspace of C1 (1) of functions for which

I/P

IIUIIHI.o(t) (f(ul" + Iu'IP)dx) (2.6)

is finite. Clearly X contains cc' (I ), as well as C' (7) if 1 is bounded; moreover, II . II H 1-P tt
is a norm on X. One easily sees that X is not complete with respect to this norm.

Definition 2.1 The completion of X with respect to the norm in (2.6) of X is denoted by
H t "P(1) and referred to as a Sobolev space. The closure of Cc' (1) in H'- P (1) is denoted

by H0-P(I).

By definition Sobolev spaces are Banach spaces with the norm (2.6). Their elements
are equivalence classes of Cauchy sequences in C t (1) and can be identified with elements
of LP(I) since, by the definition of Ht -P(I), the identity map defines an embedding of
H t P(1) into LP(I ). So, as is customary, we shall refer to elements of HI-P(I) as

functions. For example, we shall say that u E HI-P(I) is a continuous function if,
in the equivalence class of u, there is a continuous function, or, equivalently, if any
representative of it in the equivalence class becomes a continuous function after an
appropriate redefinition on a set of measure zero.

Clearly H is a Hilbert space since the norm (2.6) is induced in this case by the
scalar product

(u,v)HI.2(t):=Juvdx+Ju'vdr, u,vEC1(1).

In the sequel we shall simply write H t (1), Ho (1) for H','(1) and HO'2 (1) respectively
and, if no confusion may arise, II II t,p,i or simply II ' II t,P for II II and(', ),.2 or
simply for (. )Hi,2(j).
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We shall now see that a function u E H1 'P(1), p > 1, does possess a generalized
derivative, also called the strong LP-derivative. To define it fore E H1 P(1), we consider
a sequence (uk) in C1(1) f1 H'-P(l) converging in HI-P(l) to u; (u&} is in particular
a Cauchy sequence with respect to (2.6). Then it follows that there exists a function
v E LP(I) such that

Jim Iluk - VII Lou) = 0.k-.oc

It is easily seen that the function v does not depend on the chosen approximating se-
quence (uk); it is uniquely determined by u and coincides with the classical derivative
of u provided that u e C 1(1) rl H 1-P (1). By definition the function v is the strong
LP-derivative, u', of u.

There is another notion of a generalized derivative. which appears in the theory of
distributions: We say that a function u E LP(I ), p > 1, has a function v E Lq. q ? 1.
as a weak derivative if

f,
ucp'dx = -J vrpdx dip E Cx(1).

t

The weak derivative is again denoted by u', and one easily sees that, if it exists, it is
unique. Considering again a strong approximating sequence (uk) of u E we
obtain, integrating by parts,

fukcPdx = - J uk(p dx for all (P E Cr(1).

Hence, by passing to the limit, we find that every u E H 1 P(1) has a weak LP-derivative
which coincides with its strong derivatives.

It is a natural question to ask whether an LP-function in I which possesses a weak
derivative in LP(1) also has strong derivatives, i.e. belongs to H1-P(I). This is in fact
true, i.e. the notions of a weak derivative in LP(I) and of a strong derivative in LP
coincide. Before verifying this assertion, let us prove the following theorem which states
that functions in H 1 P(1) are actually continuous functions.

Theorem 2.2 We have

(i) Every function in H 1.1 (1) is uniformly continuous in I, in particular

H"(I) c CO(7)

and

(2.7)

Moreover, the fundamental theorem of calculus holds, i.e. for all x, y E 7

u(x) - u(y) =
JXdt.
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(ii) Ifu c- p > 1. thenu E

s u p ( 1

flulPdx)t/P+(JJIu'I"dx// It/P(meas
1)1-1/P. (2.8)

mess 1 \JJJ

Moreover, for all x, V. E 1 we have

/ \I/P
1U(X) - u(y)I < 1 f l u'I P dx 1 Ix

I JJJ

Proof Let {uk) be a sequence in X which converges strongly in H t t (1) to u. Clearly
(uk) is equibounded in Ht 1(1) and, by the absolute continuity of Lebesgue's integral,
the set functions

EN J Iu'ldx, EC 1.
EE

are equiabsolutely continuous, i.e. for any e > 0 there exists a positive S such that if
meas E < S then

JIuIdx <e

for all k. In fact, for all E, we can find S so that

IEH < E/2

whenever meas E < S. and we have

Iuk-U1 Idx <E/2

(2.9)

for all k larger than some k(e) depending on e. From this it follows at once that (2.9)
holds for k > k(E); thus to finish the proof it suffices to adjust S in such a way that it
works also for the finite set of functions u t, ... , Uk(e ). Now for all X. V E l we have

.r

fu(:)dt (2.10)

and, in particular.

Iuk(x) -uk(y)I :5 1 flu, (f)ldtk
I

and

(2.11)

Iuk(x)I s Iuk(y)I+ f Iuk(1)Idl. (2.12)
1

Integrating inequality (2.12) with respect toy on 1. we obtain

Iuk(x)I <
mess 1 Ji1k(t)Idt+fIz'(t)Idt (2.13)

and we conclude, taking (2.11) also into account, that {uk } is a sequence of equibounded
and equicontinuous functions. The Arzela-Ascoli theorem then yields that a suitable
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subsequence of (uk ) converges to a continuous function and therefore u is continuous.
Passing in (2.10) and (2.13) to the limit fork -+ ac the statement (i) follows at once.
The second part of the theorem follows by applying Holder's inequality to (2.11) and
(2.13). For example,

1u(x) - u(Y)I < I Iu'(t)I dtl

< (f'j.'(t)jPdt)11P Ix -
IJ-J/P

< I f lu'Ipdt
1/p

) Ix - V11-1/v

t 1

We note that, according to our convention, we have stated in Theorem 2.2 that u is
continuous: more precisely we should have said that in the equivalence class of u there is
a continuous function: that is. if u is a function in the equivalence class of u. by changing
the values of u on a set of zero measure, u becomes continuous in I. But we shall stay
with our convention and we shall freely use the 'values of u at points'. In particular.
since every function in H 1 P(1), p ? 1, is uniformly continuous, the trace of u on al is
w e l l d e f i n e d and, f o r I = (a. b) and u E H I P(I ). p > 1. we can define u(a) and u(b)
as lim,,a+o u(x) and limx- b-o u(x) respectively.

Theorem 23 Let ! = (a. b) be a bounded interval of R, and suppose that u is of class
LP (1) and has a weak derivative u' belonging to LP(!). Then

(i) There exists a function U E LP(R) which has a weak derivative U' in LP(R) and
satisfies U = u in (a, b);

(ii) u E H-P(l).

Proof
(i) Let a' and b' be such that a < a' < b' < b, and let n be a function in C J (R) such

that

0 < f < 1. q = l in (-oo, a'), q = 0 in (b', oo).

We write u as u = qu + (1 - j ?)u and observe that r)u and (1 - q )u are functions
in LP(a, oo) and LP(-x. b) respectively with weak derivatives in LP(a. oo) and
LP(-oo, b). In fact, for any q E C,1 (a, oc) we obtain

f
rb / b

r)ucp' dx =
J

uip' dx = J
a a

_ - J u'gfp dx - J uq's dx = - J (u'q + uq')(p dx,
a a a

(nu)' = u'q + uq' E LP(a, ao).
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and similarly we can argue for (1 - rl)u. We now define U1 and U2 as

Ui(a+t)
I

U2(a+t):=

(r)u)(a+t) ift > 0
glu(a-t) ift <0
[(1 -rl)u](a+t) if I < 0
](1 -q)u)(a -t) ift > 0.

Then we immediately see that U := U1 + U2 satisfies the claim.
(ii) If Sf is the mollifying convolution operator defined by

(SEU)(x) = E JU(x - y)v(y/e)dy (x E R)

where ep is a non-negative Cf°(-1, 1) function with f o(y) dy = 1, we readily con-
clude that SEU converges in H1-P(1) to U; hence U E Ht ,P(I) and consequently
we obtain that u E 0

We can actually state something more.

Theorem 2A Let I = (a, b) be a bounded interval of R. Then every function u in
H'-P(l) can be approximated in H'-P(I) bya sequence {uk) offunctions in C' (1) such
that uk(a) = u(a) and uk(b) = U(b)-

Proof For every e > 0 consider an affine transformation xE such that AE (a. b) _
(a + E, b - e) and extend v, (x) := u(AE'(x)) to (a, b) setting it equal to u(a) for
x < a +e and u (b) for x > b - e. Then one readily sees that the sequence uk = Si I kv2/k
has the desired properties and converges in to u. 0

Consider now the closed linear subspace HH'P(a, b). Clearly it coincides with the
subspace of H'-P(a, b) consisting of functions u such that u(a) = u(b) = 0. Moreover,
one readily sees that if u E Ha"P(a. b) and (a. b) C 1, then the function u defined as
u(x) in (a, b) and zero in I - (a, b) is a function in Ho'P(I). Moreover, if I C 1. u E

Ha'P(1) then

fv(x) in !
U(x) :-

u(x) in 1 - 1

belongs U-uEHH'P(!)andU'=Vin1.U'=u'inI-1.

Theorem 25 We have HH'P(R) = H'"P(R), p > 1. Moreover, for every u E H'-P(R),
p > 1, it follows that

lim u(x) = 0.



Sobolev spaces in dimension 1 63

Proof The first claim follows by considering a function SP E Cr(R) with W = 1 in
(-1. 1), D = 0 for Ix I > 2, and observing that the functions u, defined by

Ur(x) := U(xkP
(x-)

r

converge strongly to u in (as r --). oo) if u E H1-P(R). Suppose now that u E
!f t P(R) and that (uk) is a sequence in Cx(R) which converges strongly to U. The
functions luk I P-1 uk belong to C' (R) and

IUk(x)IP
I I(IakI

'uk)'ldx = P f Iukl 'lukldx PIIakIIPv1R1IIuk1La(R):

compare (2.12). Using Young's inequality

1 1ab < aP + -b'. P0 = P
,

P P P - I

we therefore conclude that

soup Iuk(x)I <- (2.14)
R

Consequently the same inequality is valid for u E In particular, we infer that

sup Iu(x) - u,(x)I + 0 as r -> oo.
R

Since u, = 0 near infinity, this shows the second part of the theorem. 0

Remark 1 A simple consequence of estimate (2.14) is that Theorems 2.2, 2.3, 2.4 hold
for any open interval in R. bounded or not, provided that we replace for instance u(a)
with lim,t_,-x u(x) if a = -co, and the sup-estimates in (2.7). (2.8) by

sup lu(x)I -< P"II UII HI.P(1)-
1

(2.15)

Remark 2 Analogously to and Ho'P(1) we can define the Sobolev spaces

RN) and Ha'P(1. RN) of mappings with values in RN. One readily sees that

H1'P(I. RN) = (u = UN): U' E H1.P(I), i = I... N) = (HI'P(1))N

Ho.P(1, RN) = (u = (U'. , UN): U' E HH.P(I ), i = I ... N) = (HH'P(I ))N.

Therefore results stated in H 1.P (I) can be transferred to mappings u E H 1 " P(!, R")
simply by reading them on the components of u.
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A special feature of Sobolev spaces in one dimension is that they are Banach algebras.
i.e. if u, v E then uv E HI P(I) and the usual derivation rule for the product
holds. In particular, if (p E C01 (1) and u E H, then uip E Hti't'(1).

Finally we note that
(a) Sobolev spaces are 'local' spaces: This means that if 11..... 11 and I are open

intervals such that I C U;=t 1; and if u E H1(I1) for all i = 1.... , !. then u E
H P (1). This is easily seen by means of a partition of unity.

(b) Sobolev spaces are invariant under diffeomorphisms: If g : I - I' is a CI-
diffeomorphism then the mapping

g*: H'-P(l)

defined by

g*(u)(x) = u(g(x))

is an isomorphism of Banach spaces.
Properties (a) and (b) clearly permit us to consider Sobolev spaces on one-dimensional

manifolds M : if ((U; , (p;) j is an atlas of M and (ii;) a decomposition of unity associated
with the covering (U;), then u E H1(M) if and only if (*j u) o V,-1 E H I P for all i.
Actually, we can require in (b) that g be only one-to-one and Lipschitz-continuous with
its inverse.

The map

u - (u, u')

clearly defines an isomorphism of HI-P(l) into a closed subspace of LP(l) x LP(l)
LP(1, R2): thus functional properties of LP-spaces can be transferred at once into anal-
ogous properties of Sobolev spaces. In particular we have

Theorem 2.6 H 1-P(l) is a separable Banach space for all p ? 1.

Consequently we can find a sequence of finite dimensional subspaces Vk such that
every u E H I P (1) can be written as

x
u = Eakuk

k-l

where ak E R and Uk E Vk.
Recall that. for p > 1. LP (1) is a reflexive Banach space. This means that the unit ball

of LP (1), p > 1, is weakly compact. In other words, from every sequence (uk) C Lt' (1)
with supk Iluk 11 LP < oo we can extract a subsequence (uk,) which converges weakly to
some u E Lp(1), i.e.

Juk,cpdx-+Ju%pdx (2.16)

for all rp in the dual space LP (1). P

= p/(p -
1). of LP(I ). Actually, since Cx(1) is

dense in LP(I) for p < oo, it suffices to know (2.16) for all functions V of class Cx(/).
From this we deduce at once the following result.
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Theorem 2.7 For p > 1 the space H 1 P (1) is a reflexive Banach space.

In particular, from every bounded sequence (uk) in HI P(1). p > 1. we can extract
a subsequence (uk,) converging weakly in LP to a function u e HI-P(I) with weak
derivative ukr weakly converging in LP to the weak derivative u' of u.

Since L 1 (1) is not reflexive, H 1.1 (I) is also not reflexive. However, H I.I (1) is closed
with respect to the weak convergence. That is, if Uk E H 1.1 (I) and6

jukcodx lutpdx, fz4iPdx -+ jvcodx forall(p E
I

then u E H 1 (1), but in general bounded sequences in H 1 1(1) do not have weakly con-
verging subsequences. As we shall see at the end of this subsection, bounded sequences
(uk } in H 1.1(1) do have subsequences converging in LP to some function u, but with
derivatives converging only in the sense of measures to a measure. In particular, while
from Theorem 2.2 we readily deduce that if I is bounded, the immersion

H'-P(1) ---,. C(1)

is compact for p > 1, we have that the continuous immersion

H"(I) y C(1)

is not compact. However, we obtain the following result:

Theorem 2.8 Let I be a bounded interval of It Then the immersion

H1.1(I) y L9(1)

is compact for any q E (1, oo).

In proving this theorem we shall use an inequality which plays an important role in many
instances; thus we state it separately.

Poincare's inequality. Let (a, b) be a bounded interval and let u E HH''(I). Then we
have

f bluIPdx S (b - a)P fbIu'IPdx. (2.17)
a a

In particular, the expression

b I/fl1I
I.P := (fju'jPdx)P

6Notice that this time one cannot replace (p E VC(I) with (P E Cx(! ). In fact. if ! = (0, 1) and
Uk = kXk, Xk being the characteristic function of the interval (l/k. 2/k). we have fo ak(vdx - 0 for

all v E C,(0, 1) while, for example, for rp = I we obtain I = fa uk rp dx - I ask - oc.
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yields a norm in HH'p(a. b) which is equivalent to
u E Ht .P(a, b) and all xo E [a, b] we have

II 11t,p. More generally, for all

f lu(x)-u(xo)I"dx <(b-a)P jlu'Ipdx,
a

and in particular

(2.18)

fbu(x)-utldx <(b-a)P jblu'Ipdx
a

where ut denotes the average of u on I defined by

(2.19)

fudx=:/udx.ut
.=

1

met 1

Proof For all xo E [a, b] we have

u(x) - u(xo) = Ju'(t) dt;

thus,

b

Iu(x) - u(xo)I < j Iu'(t)I dt.
a

Integrating over (a. b) and using Holder's inequality, (2.18) follows at once. If u is zero
at one point xo, in particular if u E HH'p(a, b). then (2.17) follows. Finally we deduce
(2.19) since, u being continuous, there is a point xo E [a, b] such that ut = u(xo).

11

Notice that (2.18) yields at once that for any fixed xo E [a, b)

b t/P
Iu(xo)I + (j Iu'Ip dxJ1

a

is a norm in H'.P(a, b) which is equivalent toll - 111,p.

Proof of Theorem 2.7 We must prove that bounded sets in H t (1) are relatively com-
pact in L9 (1). Clearly, it will be sufficient to show that if Iluk 11 1. t < c for all k, then the
sequence (u,t } has a subsequence (uk, } which converges strongly in LQ (1). We recall
that a subset E of a complete metric space X is relatively compact if and only if, for all
e > 0, there exists a n c-net, i.e., a finite family {x,Et, ... , of points 4"), such that

E is contained in the union of the balls B(x,((), e). We shall now construct such an e-net
in LQ (1). Let l = b - a be the size of 1. For a fixed e > 0. let us consider a subdivisionof
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I in a family of intervals 11.....1, such that length I j = a < (e/(4c))Q for 1 < j < s

and I j C I k = 0 for j # k. Then, for all k and j, the mean values

Uk.l, = f Uk dx

satisfy

c

a
Consider the finite family 9 of simple functions of the type

g(x) = niEXi + ... + nsEXs

where n1, . . . , n, are integers running in (-N. N) with N > c/(E a), and Xj is the
characteristic function of I j. We shall now show that every uk has an 0-distance less
than e from some element g E G. For this purpose. we define the function

J

Uk = Euk./Xj.k
j=1

From Poincare's inequality and relation (2.7) we deduce that

s

f Iuk-ukl9dx<F J Iuk - uklQdx
j=1 ,

< F,(sup Iuk - Uk.l j I )q-1

1
Iuk - Uk.l, I dx

j=1 1, 1,

S 1

:S - Iuk-Uk.I,Idx+ I
y-t

Iukldx aJ Iukl dx
j=1 r

< (2c)Q-ta r Iukl dx = 2y-tc9a.

On the other hand by the definition of 9 we can find g E 9 such that

Ig(x) - uk(x)I <
E

y11 for all x E 1.

Therefore we infer that

flak - glIL9(t) < IIuk - ukIIL9(t) + IIu4 - gIILQ(I < 2Ca'/9 + 2 < E.

0

For the reader's convenience we shall now give different characterizations of Sobolev
spaces.
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Theorem 2.9 Let p > 1 and u E LP (1). Then the following properties are equivalent:

(i) u E H(-p(1).
(ii) There exists a constant c such that

fuo'dx<cIIcIiLP'(,) forallpEC(1). p'= P-1
(iii) There exists a constant c such that, for all intervals ! CC I and all h E R With

h I < disc (1.81), we have

IIu(x + h) - u(x)IILP(i) < clhl.

Moreover, we can take c = lu'iLP(i).

Proof Trivially (i) implies (ii). Let us prove that (ii) implies (i). By the Hahn-Banach
theorem, the linear form (p H ft up' dx defined for w E C(I) C LP' (1) can be
extended to abounded linear form F(cp) on LP (1). and the Riesz representation theorem
yields the existence of an element g E LP(1) such that

F(p) = fgcodx.

In particular we find

fuco'dx = fgjp dx for all E (1):
t

hence u E H P (1) by Theorem 2.3.
Let us now prove that (i) implies (iii). For X E I we have

V+h t

u(x + h) - u(x) = f u'(t) dt = h f u'(x + sh)ds:
o

hence

lu(x+h)-u(x)I < lhI f lu'(x+sh)lds.
0

Applying Holder's inequality we infer that

t

lu(x+h)-u(x)IP < lhlp f lu'(x+sh)lpds.
0

and integrating over I we deduce that

f lu(x+h)-u(x)l'dx < IhIP f dr f lu'(x+sh)lpds
1

= lhVPf ds flu '(x+sh)IPdr.
0
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Then we obtain (iii) by observing that

Iu' (y)1Pdx for0<s<1.
+sh

69

Finally we prove that (iii) implies (ii). Let rp E Cx(1). We choose 1 so that spt V C 1
and observe that, for I h I < dist(I, a1), we have

L
u(x)[SO(x - h) - rp(x)] dx = J [u(x + h) - u(x)]{p(x) dx.

t

Using Holder's inequality and (iii), we then deduce that

ft u(x)[SP(x - h) -Q(x)]dx1 < cihIIIrPIILP'(1)

whence we arrive at (ii), letting h tend to zero. 0

Remark 3 We observe that the previous proof also yields that (ii) and (iii) are even
equivalent if p = 1, but they are not equivalent to (i) as one can easily check by
considering the Heaviside function

I forx>0H(x) :_
0 for x <0

which satisfies (ii), but, not being continuous, does not belong to H t t (R). In fact, going
through the proof of Theorem 2.9, one can see that, for p = 1, both (ii) and (iii) are
equivalent to

(i*) The distributional derivative of u is a measure of bounded variation on 1.

Using the characterization (iii) of Theorem 2.9, the result of Theorem 2.1 is often
proved by means of the so-called Kolmogorov strong compactness criterion LP. We
leave the proof of this fact to the reader, but we shall now state and prove Kolmogorov's
criterion.

Theorem 2.10 Let i2 bea bounded open set in R", and letC be a subset of L P (S2 ), p > 1.
Then C is relatively compact in LP(f2) if and only if the following two conditions hold:

(i) C is bounded in LP (Q), i.e.

SUP IIUIILP(9) < 00;
UEC

(ii) the functions of C are equicontinuous in the mean, i.e. for every E > 0, there exists
a positive S such that

I lu(x+z)-u(x)IPdx <EP

for all z with I z I < S. if we extend every u E C by zero outside of 11
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Proof Let us first show that (1) and (ii) are sufficient for relative compactness. This is
consequence of the Arzeli -Ascoli theorem in conjunction with the mollifying proce-
dure. As is well known, the mollified functions SE u, already introduced in the proof of
Theorem 2.3. converge in LP(12) to u and, owing to equicontinuity in the mean, we have

IIS,?u-ullLP(n)<IF for all uEC and for all q<S. (2.20)

In fact, if

Snu(x) := fu(x - y)lb,r(y)dy.

'an(y) '/'(y/n).
17

we have

1/P

I

Snu(x) - u(x)I <
(Jux -Y) - u(x)IP*r7(y) dv)

hence

f IS,)u(x) - u(x)I 'dx < Jeto.R)*n(Y)dti f Iu(x - y) - u(x)I P dx < eP.

Moreover, for a fixed q. the family (S,ru : u E C) is equicontinuous and equibounded. in
fact,

sup ISnu1 < sup I* Illu11L1(0)

and

ISnu(x) -Snu(y)I < I*nILip Ix - YIIIUIILI()

Hence, by the Arzeli -Ascoli theorem, the family (S,)u : U E C), with rl fixed, is relatively
compact in C°(SZ). and consequently also in LP(12). Therefore we can cover it by a finite
number of balls of radius a in LP. By (2.20). it is clear that, if we double the radius, the
same balls cover C. This concludes the proof of sufficiency. Let us prove the necessity
of (i) and (ii). The condition (i) trivially follows from the existence of an E-net. To prove
(ii), we first show that ever function u in LP(12) is continuous in the mean. Then, again
by using the c-net, we readily find that if C is relatively compact in LP, then the functions
of C are equicontinuous in the mean. Let u be of class LP (9). By the absolute continuity
of Lebesgue's integral, we can find fore > 0 some S > 0 such that

I/p
(jIu(xv'dx) <e/3

provided that meal f2 < S. Lusin's theorem yields a closed set A C S2 such that mess A >
meas Q - iS and u is continuous on A. Consequently we find some 3 > 0 such that. if
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Izl < S andx.x+Z E A, then

Iu(x)-u(x+z)I <
E

- 3(meas 12)1/P'

For a fixed z with IzI < S we now define

H;:={y:y=x+z,xEA},
A..:= A fl it- = A\(A\H.),

and we choose S so small that H_ C n. Obviously, we have

meas A. > meas S2 - - - I meas 12 - meas 12 -
S)

I = meas 92 - S:
2 2

hence

meas(S2 - AZ) < S.

It follows that

r
(L lu(x +z) -u(x)Ipdx

1/p

)

) +(J lu(x+z)-u(x)lpdx
1/p<(f lu(x+z)-u(x)lPdx

UP
)

E(meas A ,)11P 1/P UP
lu(x)lp dx)

3(meas 92)1/P + (Jt2-A; lu(x + Z)lp dx) + (LA.
< 2E.
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0

Remark 4 It is easily seen from the previous proof that a similar theorem holds also if
92 is not bounded; more precisely, we have:

A subset C of LP(S2) is relatively compact in LP(S2), p > 1, if and only if

(1) C is bounded in LP;
(ii) the functions in C are equicontinuous in the mean;

(iii) for every e > 0 there is an open set f2 cc 9 such that fn-n J u I P dx < EP for all
U E C.

As we have mentioned, the space H 1, 1(a, b) is not reflexive. In the remainder of this
section we shall discuss the weak convergence in H 1.1(a. b) in more detail since this is
particularly relevant to the calculus of variations.

The key point is to understand weak convergence in L 1(a, b), and the first question
is whether a bounded sequence in L1 (a, b) always contains a subsequence converging
in some sense.
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We need some tools from measure theory; we shall discuss measures in more detail
in Section 3.3, but for a complete presentation and further details on measure theory the
interested reader is referred to one of several good books dealing with this subject, e.g.
Federer [99], Hewitt-Stromberg [ 139]. Rudin [229], Yosida [293].

We recall that a Radon measure µ on a topological space X is an outer measure with
the following properties:

(i) lc is regular with respect to the family of open sets, i.e.

µ(E) = inf(A(A): A open, E C A);

(ii) z(K) < oo for all compact sets K;
(iii) for all open sets A we have

µ(A) = sup(s(K): K compact, K C A).

Riesz's theorem identifies Radon measures with continuous linear functionals a on
C°(X), in the sense that every continuous linear mapping a of C°(X) into R can be
represented in the form

a(f) = Jfdi for all (p E C°(X) (2.21)

where ti,,, is a Radon measure, and, vice versa, by (2.21) every Radon measure pa defines
a continuous linear functional on C° (X ). The total variation of µQ is defined as the norm
of a, i.e.

IIa.II := sup{a(f ) : f E C°(X).
I
f W1 < 1 for all x E X). (2.22)

One verifies that the space of Radon measures with bounded total variation is a Banach
space with the norm II II in (2.22), and that from every sequence Ak of Radon measures
with equibounded total variation we can extract a subsequence µk, weakly converging
in the sense of measures to a Radon measure lt. i.e.

(l1k, , cP) - (A, So) for all tp E C°(X)-

where we have used the notation

(A. rP) = f (pd g.

Every function u E L' (a, b) (or, equivalently, the Radon measure u dx) clearly defines
a continuous linear functional

b
(P H r u(p dx

a

on C°(a. b). One easily computes that the total variation of u dx on (a, b) is just the L' -
norm of u in (a. b). Thus we can conclude that. passing to a subsequence, every bounded
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sequence NO in L' (a, b) converges in the sense of measures to some Radon measure
p,i.e.

b

uk(p dx -+ (tt, gyp) for all (p E C°(a, b).

Note that, even if it has a density u with respect to the Lebesgue measure (which is not
the case in general as we see by looking at Dirac's measure), we do not have in general
that

fukcodx-+ fucodx forallspELO0(a,b)

which would mean that the uk converge weakly in L' ; compare the footnote on page 65.
The next theorem characterizes the bounded sets of L t (a, b) which are sequentially

weakly compact in L' (a, b).

Theorem 2.11 Let ( be a bounded open set in (2", and let (uk) be a sequence in L' (Q)
such that
(i) SupilukOLI(O) < 00.

k
(ii) the set functions

E H rE luk I dx, E C S2,

are equiabsolutely continuous, i.e. for every E > 0 there is 8 > 0 such that

1 1ukIdx <E

for all k, provided that meas E < 3.

Then there exists a subsequence of (uk) which converges weakly in L' (0). Moreover, if
(Uk) converges weakly in L' (92), then (i) and (ii) hold true.

Proof Suppose that (i) and (ii) are true. As we have seen, there exists a subsequence
(uki) and a Radon measure a such that

-+ a(p) for all rp E C° (S2).

We shall now show that for such a subsequence the limit

lim uk, dx = y(B) (2.23)
I -, OC .48

exists for all measurable sets B contained in Q. It is not difficult to show that this implies,
by assumptions (i) and (ii), that y(B) = a(B) for every measurable subset B of f2, so
that a turns out to be absolutely continuous with respect to the Lebesgue measure; hence,
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by the Radon-Nikodym theorem, it is represented by a function u E L I (S2). Since step
functions are dense in L°°(SE), equality (2.23) implies that {uk; } tends weakly to u in
Lt (St). Let us now prove that limit (2.23) exists. To this end we show that {J8 uk, dx)
is a Cauchy sequence. Since the characteristic function XB of B is measurable and
bounded by 1, we can find by Lusin's theorem a sequence {Vh) in C?(S2) such that
II4PhIILx(n) < 1 and rph(x) -+ XB(x) for X E S2 a.e. In correspondence to the S in (ii),
by Egoroff's theorem we find an open set Bb C Q such that meas B5 < S and that the
(ph converge uniformly on S2 - Bs to XB. Now we have

f(uk1 - ukj) dx I = Ifa (uk, - uk, ) XB dx I

j(u*- ukj)(- cph) dx
d

+
n
) (uk, -uk,)cohdxl+ I (uk; -uk,)(XB-(ph)dx

\ Ba

<2J (IukfI+Iuk;I)dx+ suP J X B (luk,I +lukjl)dx
Bs n\ 8a n

+ I f(uk1 - uk,)4Gh dx.

For any e > 0 we now find some ho such that supn_Ba IXB - (PhI < E for all h > ho.
Since (ph, e the sequence

-

fUkQho dx

is a Cauchy sequence, and therefore

I (uk, - ukf )Spha dx I < E

for all i, j larger than some k0 depending on ho and E. In conclusion, we obtain, for a
suitable constant K > 0,

I

f(uk1 - dx <4E+2EK+E=(5+2K)E

for all i, j > ko. This completes the proof of the first part of the theorem.
Suppose now that {uk) converges weakly in Lt to u, and suppose for simplicity that

u = 0 (otherwise we would consider the sequence (Uk - u)). Then (i) follows from the
Banach-Steinhaus theorem. In order to verify (ii), we first prove the following claim due
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to Lebesgue:
If (ii) does not hold, then there exist a positive number z. a sequence of disjoint

measurable sets E; C 12, and an increasing sequence of integers v, such that

f" lu,,,ldx>;, foralliEN.
,

By assumption, there exists an e > 0 such that, for all S > 0. we can find some set F C S2
with meas F < S, and some v e N which may be taken arbitrarily large such that

fF l u, l dx >,F.

Since U, E L t (12), for every or > 0 there is some q > 0 such that

L
holds true for all measurable sets B with meas B < U.

Choose now a = at = e/2, S = Si = meas Q. then we find q t > 0, Ft C S2, and
vt E N such that

measF1 <Si, fFIluV,Idx>e,

and

lB
l u,,, l dx < at for all B with meal B < q1.

Next we choose a2 = 4E, a2 = 1117 1; then we find 172, F2 C St. v2 E N such that

measF2 <a2, lF2I_Idx>E,

and

JIuIdx<c2 for all B with meal B < 112.

Similarly, for all i > 2 we choose a, _ ESi = min(-,2,1T. .. . I -II; then we find
qi > 0, Fi C 12, vi > vi -I such that

meal F; < Si, f luv, l > e, f luv, l dx < ai for all B with meal B < qi.
i B
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Now set

We have

meal

Ei=Fi - UFq.
q>i

(u'q <r2q-i
q>i q>i q>i

and also

f
r

u,,,Idx= / luv;Idx>E - >E/2 foralli>1.
, F, - U F -

q>.

Since the Ei are disjoint, the claim is proved with z = E/2.
We now observe that by replacing Ei by Ei n {x : u,,, (x) > 0) or by Ei nix: u,,; (x) <

0) and z by z/2 we can modify the claim as follows. There exist Ei C S2 and vi such that

J u,, dx I > z for all i E N.
E;

We shall finally construct a function Sp e L°O(Q) for which the sequence f u&(p dx does
not converge to zero. This will conclude the proof. The function /P will be defined as one
on the union of suitable Ei and zero outside.

We set Eat) := Et and vft) := vi, and we choose E()) so that

1av4)) I dx < z/3 for all B with meas B < Eat).

If fE) uk dx does not converge to zero. the proof is complete as we can take rp = XEn).
Otherwise we choose E(21 as the first Ei for which the remaining ones, i.e. the Ej with
j > i, have total measure less than Lc") (this is possible since the Ei are disjoint) and
the corresponding index vi is such that

uk dx I < z/3 for all k > vi

(this is possible since fE, Uk dx -- 0). Denoting by oft) the index corresponding to
E(2), we choose E(2) > 0 such that

Iu,,,2)1 dx < z/3 for all B with meas B < E(2).

If fE() )UE(2) Uk d x does not converge to zero, the proof is complete. Otherwise we proceed
as before and in general we find E(k), UM, E(k) such that

meal U Ei < ER-t),
fU

uh dxI > z/3 for all h > v(k)

i>k E(i) -
i>t
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Finally. set

Then we find

Sobole r spaces in dimension l

lu,.,k, l < z/3 for all B with meal B < E(k).

SP := XU Elk).

1fuv(eodx=f u,dx + J
fu u*dxt

I U Vil )EM Etr,

_ F..upti. dx
3 3>3 forallkEN.
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and this gives a contradiction to the weak convergence of uk to zero. 0

Often Theorem 2.11 is referred to as the Dunfont-Pertis theorem, although it was
first proved by Lebesgue.

We may now ask: what are the weakest 'integral conditions' replacing the bound-
edness in L I to ensure sequential weak compactness in L "7 The following theorem
gives a satisfactory answer to this question and collects criteria for the sequential weak
compactness in L1.

Theorem 2.12 Let C be a subset of L t (S2). Then the following claims are equivalent:

(i1) C is sequentially weakly compact in L1(S2);
(i2) the functions u in C are equibounded in L 1 (12) and the set functions

E -* fEluldx. EC92, uEC,

are equiabsolurely continuous;
03) the functions u E C are uniformly integrable, i.e. the integrals

fI-,4En:[M(A H>c1
lu(x)l dx

tend to zero as the positive number c tends to oo uniformly for u E C;
(i4) there exists a function 8: (0. +oo) -+ R (that can be taken as convex and increas-

ing) such that

lim
®(t)

= 00
r-roc t

sup O(IuD)dx < coo.
n
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Proof We have proved in Theorem 2.11 that (i1) and (i2) are equivalent. We shall now
prove that (i2) is equivalent to (i3) and that (i3) is equivalent to (i4). Suppose that the
functions in C are uniformly integrable; then for any measurable set E C 9 we have

Iuldx <cmeasE+J Iu(x)Idx.
(XEQ:lv(x)I>c)

Choosing c so large that the second term on the right-hand side is less than c/2, we
obtain equiboundedness of C in L 1 taking E = S2, and equiabsolute continuity of the
functions in C by choosing 8 = E/(2c). Conversely, choosing c = 1/SsupC IluIIc'(c2)
where S is the number appearing in the equiabsolute continuity condition, and taking
E := {x E 92: lu(x)I > c}, we find at once that the functions in C are uniformly
integrable on account of the inequality

u(x)I dx <
1

- f luxI dx.Ixet2:lu(x)I>c) C 2

Let us now show that the existence of O in (i4) implies uniform integrability. Set

M:= sup / O(Iu(x)I) dx.
4EC

r
12

For a given E > 0, we choose c so large that O(t)/t > M/E for all t > c. Then we have
Jul < e0(lul)/M on the set Ix: Iu(x)I > c}, and consequently

uI dx
E- @(lul)dx EJx:lu(x)I>c) M (x:Iu(x)I>c)

In order to prove the converse, we now construct a function 0 of the form fo g(s)ds
where g is an increasing function with g(O) = 0 tending to infinity as s -- oo and which
assumes constant values on each interval (n, n + 1), n E N. For all u E C we write

a"(u) := 1 Iu(x)I dx.
(xEi2:lu(x)I>n)

Since go = 0, we have

/' o0

1 Iuldx<gl f Iuldx+(gl+g2)J
n (1<Iu$<2) t2<IuI<3) R=I

Therefore it remains to show that it is possible to choose a sequence of values gn tending
to oo so that the En=1 gnan(u) are uniformly bounded for u E C. According to our
assumption of uniform integrability we can choose integers cn f oo such that

lu(x)I dx < 2-" for all u E C.f
x:Iu(x)I>c.)
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We have

j +uldx>_ k f Juldx< 00

k=c (k<{u{<k+il k=c hkl>kl k==C11

By the choice of c it follows that the numbers

ak(f )
k=c

are uniformly bounded for u E C, but this sum is of the form Ek gkak(u) where gk
denotes the number of integers n such that c < k. Thus the theorem is proved.

An immediate consequence of Theorem 2.12 is the following sequential weak com-
pactness criterion in H'-(a, b).

Theorem 2.13 Let {uk } be a sequence in H 1.1(a, b), a, b E R Suppose that

(i) SuPk Iluk Il I, I = K < oo;
(ii) the set functions E H f E I Duk i dx. E C (a, b). are equiabsolutely continuous.

Then there exists a subsequence {uk; } which converges weakly in Ht t(a, b) to some
function u E H t t (a, b). Conversely, if {uk } converges weakly in H1.1 (a, b) to some
u E (a. b), then both (i) and (ii) hold true. Finally, the conditions (i) and (ii) are
both satisfied if and only if {uk) is equibounded in L 1(a, b) and there exists a function
®: [0. oo) -+ R such that

8(t) -poo ast -goo

and

rb
supJ 8(luk(x)l)dx < +00.

k

Proof From (i) and Theorem 2.1 we infer that (a suitable subsequence of) (Uk } con-
verges strongly in L t to some function u; actually, taking (ii) into account, a subsequence
of {uk } converges uniformly to u. By Theorem 2.11, passing to another subsequence,
(uk) converges weakly in L t to some function w E L I (a. b). On the other hand,

- f bukcp dx = f ukcp dx J
bw(p for all rp C CC (a, b)

a a a

and

b b

- f uk(p' dx -+ f u(p' dx;
u a

hence u' = w in the sense of distributions, and uk converge to u weakly in Since
the other claims are a trivial consequence of Theorem 2.10 the proof is complete. 0
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Let us point out that, modulo a passage to subsequences, weak convergence of (uk )
in H t '(a, b) is equivalent to uniform convergence plus the equiabsolute continuity of
the set functions E -> fE Iuk I dx.

2.2 Absolutely continuous functions
As we have seen, a basic idea in introducing Sobolev spaces is the notion of a weak or
distributional derivative. For smooth functions, the weak derivative coincides with the
classical one, but, for non-smooth functions, for instance for functions which are almost
everywhere differentiable in a classical sense, the two derivatives might be different. It
is the aim of this section to discuss the relationship between classical derivatives almost
everywhere and weak derivatives. This will be done by means of absolutely continuous
functions, a concept introduced by Vitali and extensively used by Tonelli in the calculus
of variations.

Let u e H t t (a. b). As we have seen, for all x. Y E [a, b] we have

u(x) - u(ti) =
J

u'(t) dt.
x

Using the Lebesgue differentiation theorem, we deduce from

u(x+h)-u(x)
=

i X+hu'(t)dt
h tit

that, for almost every x in [a, b], u (x) is differentiable in the classical sense, i.e.

lim u(x + h) - u(x) _ [u'(x)]

exists almost everywhere in [a, b], and we see that the classical derivative, denoted by
[u'(x)], coincides a.e. with the distributional derivative, i.e.

u'(x) = [u'(x)] a.e. in (a, b].

We can then collect our information as

Theorem 2.14 Let u E H t t (a, b). Then, by possibly changing u on a set of measure
zero, we have that u is a function of class &([a, b]) which is almost everywhere differen-
tiable in the classical sense, and its classical derivative [u'] coincides almost everywhere
with the weak L t -derivative u'. Moreover, for all x. V E [a, b], the fundamental theorem
of calculus holds:

u(x) - u(y) = fu'(t) dt. (2.24)

Since functions of class Lr (a, b), or even of class L' (a, b), which are almost ev-
erywhere differentiable in a classical sense need not be continuous, they in general do
not belong to H t t (a, b).
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0 The Heaviside function. The function

0 ifx <0
H(x) := It

ifx>O
is almost everywhere differentiable, indeed everywhere except at 0, with a zero classical
derivative everywhere except at 0. But its restriction, for example, to (-1. 1) does not
belong to any Sobolev space H t r (-1, 1). p > 1, and one can easily check that its
distributional derivative is the Dirac measure at zero. i.e. the linear continuous functional

So : c '-" '(O) forall V E C?(-1, 1).

In fact,

f1 1

J
H(x).P'(x)dx = I cp'(x) dx = -sp(0) = -(So, (p).

i

Suppose now that u is of class CO([a, b]) and that, moreover, it is almost everywhere
differentiable in the classical sense; finally, assume that the classical derivative [u'] of u
belongs to L t (a, b), or even to Lx (a. b). Does this imply that u belongs to H t t (a. b),
i.e. that u' = [u']? The answer to this question is still no, as shown by the so-called
Cantor function (or Cantor-Vitali function) which is continuous and non-decreasing in
[0, 1 ], f (0) = 0. f (1) = 1, and which has a classical derivative equal to zero a.e.7

2 The Cantor-Vitali function. Choose a strictly decreasing sequence I = So > St >
. . > 8" > ... converging to zero, and set Eo := (0, 1]. We now define by induction
subsets E" with Eo D Et D - -, see Fig. 2.1. For n > 0. suppose E" is constructed in
such a way that E" is the union of 2" disjoint closed intervals, each of which is of length
2-"Sn. Delete a segment in the centre of each of these 2" intervals, so that each of the
remaining 2.2" intervals has the length 2-'-18"+t (this is possible since 8n+t < 8"),
and let En+t be the union of these 2"+1 intervals. Then, clearly,

EoDEt DE2D...
and

Now set

meas E. = S".

x
E:=nE.-

n

The set E is compact, and meas E = 0. Next we define

Cn(t) := 11/8" if x e E"
10 otherwise

x
n(r) dt, n = 0,and .fa(x) := fo g

7For an example of a function with the same properties which, in addition, is strictly increasing.
compare Hewitt and Stromberg l 1391 p. 278.
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FIG. 2.1.

Clearly f,(0) = 0, fn (1) = 1, and each f" is a monotone function which is constant
on each segment in the complement of E, see Fig. 2.2. If I is one of the 2" intervals
whose union is En, then

f,
whence

and

gn(t)dt = f g,+t(t)dt = 2-n.

t

fn+1(x) = f" (x). forx it E"

If"(x) - fn+t(x)1 5 f Jgn - g"+IJdt < 2'"+I
0

Therefore it follows that (f") converges uniformly to a continuous and non-decreasing
function f with f (0) = 0, f (1) = 1, and [f'(x)] = 0 for all x V E. Consequently, since
meas E = 0. we have If '(x)] = 0 a.e. In particular, (2.24) cannot hold. If d _ (4)",
the set E is called Cantor's middle thirds, or simply Cantor's set.

We shall now give a characterization of H l.1-functions by means of classical notions,
without using distributional derivatives.

Definition 2.15 (Absolutely continuous functions) A function f : (a, b) -+ R is said
to be absolutely continuous8 if, for every c > 0, there is a 8 > 0 such that

N N

a;) < 8 implies F'1 f (fl;) - f (a;) I < e (2.25)
i=1 1=1

whenever (al. fit ), .... (aN. ;BN) are disjoint segments in (a, b). The class of absolutely
continuous functions is denoted by AC(a, b).

Stn the sense of Vitali.
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1/3

Fia. 2.2.

Clearly, every u E AC(a, b) is uniformly continuous in (a, b); therefore we can
always extend it as a continuous function to the closure of (a, b).

It is also clear that every function u which is Lipschitz-continuous on (a, b) belongs
to AC(a, b). Indeed, if

Iu(x)-u(y)I <kIx -yI for every x,yE(a,b),

then (2.25) is fulfilled for S = e/k.
The total variation of a function u : (a, b) -+ Fl is defined by

N

VQ(u)=sup>.Iu(xi)-u(xi-0I (2.26)

where the supremum is taken over all integers N and over all choices of {xi I such that

a <xo <xj <--- <xN <b.

Proposition 2.16 For every u E AC(a, b) we have Va (u) < +00.

Proof Take e = I and let S > 0 be such that (2.25) holds. Now let yo < y1 < < ym
be points in (a, b) such that y o = a, y,, = b, and y i - yr-1 < S. If xj, j = I , ..., N.
are points of (a, b) with

denote by ik, k = 1.... , n, the finite family of points of (a, b) obtained by adding the
points x j , j = 1, .... N, to the points yi, i = 1.... , m - 1. We haven < N + m - 1.
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and the family (tk) generates m groups of consecutive intervals, each group covering an
interval of length less than or equal to S. Therefore by (2.25),

N a

N,u(xr) - u(xi-1)I <- E Iu(tk) - u(tk-1)I 5M.
i=1 k=1

Since we can choose m _< 1 + (b - a)/S, we obtain by taking the supremum over all
families (xi )

V.(u)<t+bSa <oo.

D

The following theorem gives a `classical' characterization of H 1.1-functions and a
characterization of absolutely continuous functions.

Theorem 2.17 We have

AC(a. b) = H1-1(a, b).

More precisely, every u E AC(a, b) has an almost everywhere classical derivative [u'l
which belongs to L 1(a, b). and viewed as an element of L'. [u'] is the weak derivative
of u. every u E H i (a. b). modulo a modification on a set of measure
zero, is an absolutely continuous function. Finally. u E AC(a. b) if and only if a is
almost everywhere differentiable in a classical sense, [u'] belongs to L 1(a. b), and the
fundamental theorem of calculus holds true. i.e. for all x, y in (a. b) we have

u(x) - u(y) = jlu'(r)Jd:. (2.27)

We can therefore say that H 1 P functions are the primitives of L P junctions.

Before proving Theorem 2.17, it is convenient to state separately some simple re-
marks that are interesting by themselves.

Lemma 2.18 Let u E C 1(a. b). Then the total variation of u is finite, i.e.

V, (u) < oo

if and only if

J. I u'I dx < oo.
b

In this case we have

/'ab

(2.28)Va (u) = J Ju'I dx.
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Proof Take a family (x j } in (a, b) with a < xx < xI < < xN < b; then we have
for every j = 1, ..., N

u'(x)dx _< f ' iu'idxiu(xj)-u(xj_I)i = I f z
, 1 J I

so that

N

bIu(xj) - u(xj-1)1 < f oN iu'i dx < f iu'i dx.
j=1

Passing to the supremum over all families (x1 ) we obtain, by definition (3) of the total
variation,

b

Va (u) f iu'i dx.
a

Let us now prove the opposite inequality. Fix a' > a and b' < b; since u E C I (a, b) we
have that u' is uniformly continuous on [a', b']; therefore for every e > 0 these exists
8 > 0 such that

iu'(x) - u'(y)i < E whenever x, y E [a', b'] with ix - yi < S.

Let xo < xI < < XN be points in [a', b'] such that x j - x j -I < 8 for every
j = 1, ... , N ; then we have for every x e [x j - I , x j ]

u(Xj) - u(Xj-I) =
x,

u'(y) dy = xi (u'(y) - u'(x)) dy + (xj - xj-I)u'(x)f,_, 1j_,

so that

iu(xj) - u(x 1)i 1

iu'(x)i < +
iu'(x) - u'(y) I dyxj -Xj-I Xj -Xj-I f'i,

<
1u(Xj)-u(xj-1)i

+E.Xj -Xj_I
Integrating over [x j-1, x j ] and taking the sum for j = 1, ... , N we obtain

fNI
N

I + < VQ (u) +E(b - a).

j=1

Taking the supremum over all families {x1 } in [a'. b'] and then over all a' > a and b' < b
yields

1.

b
iu'i dx < Vp (u) + E(b - a).

Finally, the desired inequality follows by taking e - 0. 0
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From Lemma 2.18 and Proposition 2.16 we obtain

Lemma 2.19 For a function u E C1 (a. b) the following conditions are equivalent:

(i) u E AC(a, b);
(ii) VQ (u) < +00;

(iii) fab lu'I dx < +oo;
(iv) the set function

E H f, III] dx, E measurable. E C (a. b),

is absolutely continuous. i.e. for every E > 0 there exists S > 0 such that

JE
Iu I dx < E whenever meal E < S.

Proof The implication (i) (ii) follows from Proposition 2.16. The implication
(ii) = (iii) follows from Lemma 2.18. The implication (iii) ; (iv) is well known
from measure theory and follows from the fact that u' E L' (a. b). The implication
(iv) (i) follows from the fact that, if EN1(pi - ai) < S then, setting E _
I UiN=1(ai , Pi), we have

Elu(fi)-u(ai)I < E J lu'Idx<e.B

i=1 i.I a
f

Lemma 2.19 now justifies the following definition.

Definition 2.20 A family of absolutely continuous functions in (a, b) is called equiabso-
lutely continuous if, for all E > 0, there is a S > 0 such that (2.25) holds for all elements
of the family.

Remark 1 A family of equiabsolutely continuous functions is clearly equibounded and
equicontinuous; thus. by the Arzela-Ascoli theorem, it is relatively compact with respect
to uniform convergence.

Consider now a function u E AC(a, b) and extend it on a larger interval (a - r. b+r)
setting u(x) = u(a) for x E (a - r, a) and u(x) = u(b) for x E (b, b + r). Clearly
this extension does not change the total variation of u nor its maximum modulus. The
mollified functions SF u, already introduced in the proof of Theorem 2.3 of Section 2.1,
converge uniformly to u in (a, b). and satisfy

Sfu(y) - Sfu(x)
JJJ

) [u(y - t) - u(x - t)]rp(t/E)dt

for every x. y E (a, b). Therefore

VU (Sf u) < V Ef (u) for every (a. fl) c (a. b).
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Taking Lemma 2.19 into account, this yields at once

Lemma 2.21 Let U E AC(a, b). Then there exists a sequence of functions (ak) in
C 1 (a, b) fl AC(a, b) which are equiabsolutely continuous and converge uniformly to u.
Moreover, since the set functions

Er.- rElukIdx

are also equiabsolutely continuous, we can assume (compare Theorem 2.12 of Section
2.1) that uk converge weakly in L 1(a, b) to u'.

Proof of Theorem 2.17 By Theorem 2.2 of Section 2.1 every function u E H ' t (a, b)
belongs to AC(a, b), i.e. H'-'(a, b) e AC(a. b). The opposite inclusion follows im-
mediately from Lemma 2.21. Therefore we conclude that every function u E AC(a, b)
has almost everywhere a classical derivative which coincides almost everywhere with
the distributional derivative, and (2.27) holds true. Finally it is clear that, if (2.27) holds,
then u E AC(a, b) and this concludes the proof of Theorem 2.17. 0

If u is continuous and almost everywhere differentiable with [u'] e L 1, we have seen
that in general u does not belong to AC: the following proposition shows instead that
differentiability everywhere yields that u E AC.

Proposition 2.22 Suppose that f : [a. b] R is differentiable at every point of [a, b],
and assume that [f'] belongs to L ' (a, b). Then

f(x) - f(a) = j[f'(t)Jd: forallx E [a,b). (2.29)

Proof Clearly it suffices to show (2.29) for x = b. Since [f'] E L t (a, b). for every
e > 0 we can find a simple function g = Ei c; XE, , with ci c- R and E; measurable,
such that g > f and

b b

J g(x) dx < f [f'(x)]dx +e.
a a

Modifying every E; corresponding to a ci > 0 into an open set Ai ? E; and every E;
corresponding to a c, < 0 into a compact set Ki a Ei, we may assume that g is lower
semicontinuous: moreover, by possibly adding a small constant to g we have

[ f'(x)] < g(x) for every x E [a,bfJ

b rb
g(x) dx < I [f '(x)] dx + e.

a a

Now for a fixed q > 0 consider the continuous function

F,i(x) ._ 1 g(t) dt - f (x) + f (a) + t,(x - a):
a
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we have F,7(a) = 0, and we shall show that Ft(x) > 0 for all x E [a, b]. Consider

xo = sup(x E (a, b) : F,,(t) > 0 for all t < x)-,

it suffices to show that xo = b. Suppose on the contrary that this is not the case; then
F,t(xo) = 0 and there exists a sequence x .[. xo such that 0, i.e.

0 > F,(xn) - Fq(xo) = f 9(t)dt - f (xn) + f (xo) + q(xn - xo). (2.30)s
xo

Since g is lower semicontinuous and g(xo) > (f'(xo)], for n large enough we have

g(t) > [f'(xo)] for every t E [xo,

so that by (2.30)

0> [f'(xo)]- +q
X11 - xo

which gives a contradiction as n -- oo. Since Fq > 0 in [a, b] for all q > 0, we obtain
for q --), 0 and x = b that

b b

f(b)-f(a)-< f g(t)dt< f [f'(t)]dt+e
n «

and, since e was arbitrary, it follows that

b

f (b) - f (a) <1 [f'(t)] dt.

The opposite inequality follows by repeating the argument above for the function -f
which also satisfies the assumptions in the statement. 0

We shall now derive some useful consequences of Theorem 2.17.
Since every Lipschitz function is clearly an AC function, we infer from Theorem

2.17 that

Coroflary 2.23 Every Lipschitz function u in (a. b) has a classical derivative (u'] almost
everywhere in (a, b) as well as a distributional derivative u'. and both derivatives are
equally viewed as functions in L' (a, b). In particular, u belongs to all Sobolev spaces
H' (a. b).

Our next theorem shows that the standard chain rule continues to hold in Sobolev
spaces.
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Theorem 2.24 (Chain rule) Let 9 be a Lipschitz function on It and let u be of class
Ht p(a, b) for some p > 1. Then the function 9(u) = 8 o u belongs to H'-p(a, b) and

D6(u(x)) = 9'(u(x))Du(x). (2.31)

The proof of this theorem relies on the following lemma.

Lemma 2.25 (De La Vallee Poussin) Let g E AC(I ), and suppose that, for a set E C
I. the Lebesgue measure of g(E) is zero. Then we have g' = 0 almost everywhere in E.

Proof Let B be the subset of E where Ig'(t)I > 0; define

B,,:= tEB: Ig(s)-g(t)I > Is
- rl for all is - tI <
n n

We have B = U. B. Fix n and for any interval J of length less than I/n consider the
set

A:=Jf1B,,.

We shall now show that mess A = 0, which will imply that meas B = 0 and, in turn.
that meas B = 0. Since meas g(A) = 0, for each E > 0 we can choose a sequence of
intervals Ik such that

g(A) C U Ik and meas 1k <,E.
k k

Now set

Ak :=g-1(Ik)flA.

Since Uk Ak certainly covers A. we have

meas*(A) < F, meas*(Ak) < F, sup is - tI
k s.tEAk

where meas* denotes the Lebesgue outer measure.
Because Ak C J f1 B,,, we know that

sup is - tl < n sup I g(s) - g(t)I.
r.sEAk s.tEAk

and, since g(Ak) C 1k and Ik is an interval, it follows that

sup lg(s) - g(t)I < fleas Ik.
t..c E Ay

Thus we conclude:

meas*(A) < n > meas Ik < ne.
k

However, n is fixed while E can be chosen arbitrarily small; hence meal A = 0. 0
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An immediate corollary of Lemma 2.25 is the following result that could also be
proved directly.

Corollary 2.26 If g is absolutely continuous, then g' = 0 almost everywhere in any
subset where g is constant.

Proof of Theorem 2.24 Set

Z (x : 9' does not exist at x }

S:= u-1(Z)

and notice that meas u(S) = 0 and meas(O(u(s))) = 0, since the Lipschitz image of a
set of measure zero has measure zero. Clearly 0(u(x)) is absolutely continuous, so we
have only to show that its derivative is in LP and that (2.31) holds. We have

DB(u)(x) = 6'(u(x))Du(x)

for every x E (a, b)\S where u is differentiable. On the other hand, as a consequence of
Lemma 2.25, it follows that

DO(u)(x) = 0 a.e. in S.

Du(x) = 0 a.e. in S,

whence we have

DB(u)(x) = 9'(u(x))Du(x) a.e. in (a, b).

and this concludes the proof. 0

2.3 Functions of bounded variation
A more refined analysis of absolutely continuous functions can be carried out in terms
of the so-called functions with bounded variation introduced by Jordan.

To each function f : (a, b) -+ R. not necessarily continuous, we associate its total
variation function defined, for x E (a. b), by

N

Tf(x) = supE If(xj) - f(xj-0I
j=1

where the supremum is taken over all N and over all choices of (x j) such that

a <xo <.. <xN <x.
Clearly, for x < y, we have

0 S Tf(x) Tf(y) w, (2.32)

whence

Va(f)=slim Tf(x)

exists; if it is finite we say that f is a function of bounded variation, and we shall denote
by BV (a. b) the class of all such f.
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Since f is not a priori continuous, the previous definition has the disadvantage that,
if we modify f just at one point, then both T f (x) and Va (f) change. Hence it would
be convenient to find 'normalized representatives' of functions of bounded variation. To
this end we first observe that

(a) If f E BV (a, b) and x < y, then

If (Y) - f(x)F < Tf(y) - Tf(x).

In fact, for all e > 0, there are points a < xo < < xN = x such that

hr

E I f(xi) - f(xi-i)l > Tf(x) -E,
i=1

whence

N

Tf(y) >- If(y) - f(x)I + E if (xi) - f(xi-1)I
f=1

> If (x) - Tf(x) -

from which the assertion follows at once.
Statement (a) in particular says that (f (xi) } is a Cauchy sequence if (T f (xi) } is

a Cauchy sequence. On the other hand, since T f is a monotone function, and mono-
tone functions have right and left limits at all points, and have at most countably many
discontinuities, we conclude that the same is true for f. Therefore we can define

c:= lim f (t) and g(x) := f (x - 0) - c.ta+0
Clearly, g(x) is a left-continuous function and

V. (g) Va (f)

In conclusion we have shown
(b) Let f e B V (a, b). Then f (.r - 0) exists at every point of (a, b] and f (x + 0)

exists at every point of [a, b); the set of points at which f is discontinuous is at most
countable, and there is a unique constant c and a unique9 function g with bounded
variation, which is left-continuous and satisfies

lim g = 0,

so that

f(x) =c+g(x)

at all points of continuity of f .

9The uniqueness follows from the fact that. if two left-continuous functions coincide on a dense set,
then they are equal.
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Using (b) we normalize f to c + g(x). The class of normalized bounded variation
functions is denoted by NBV (a, b).

It is not difficult to show that
(c) If f E NBV (a, b), then T j(x) E NBV (a, b).

We shall see that it is possible to associate to every function u E NB V (a, b) a Borel
measure; therefore we recall here some properties of measures that will be used later,
referring to one of the books on measure theory for any further detail.

A Borel R"-valued measure µ on (a, b) will be simply a countably additive set
function µ : B -+ R' where B denotes the family of all Borel subsets of (a, b). For
every Borel R"-valued measure Jr on (a, b) and every B E B the total variation of µ on
B is defined by

IltI (B) =
oc

sup Iµ(Bj)I: Bi E B pairwise disjoint, U B! C B (2.33)

i=t i=1

in this way the set function B -+ Iju I (B) turns out to be a non-negative Borel measure
on (a, b), which will be denoted by IµI

The space M(a, b; R") of all Borel R"-valued measures on (a, b) with finite total
variation on (a, b) can be endowed with the norm

II1AIIM := IIaI(a, b) (2.34)

which makes it a Banach space.
Another equivalent way to construct the space Jet (a, b; R") is the following. Consider

the space CO (a. b; R") of all uniformly continuous functions on (a, b) vanishing at a and
at b, endowed with the sup norm; it is a separable Banach space. The space M(a, b; R")
can be equivalently defined as the dual space of Co(a, b; R"), with the duality

b
udµ.' (2.35)

In this way the norm I1AIIM will be the usual dual norm

III2IIM = sup{ (µ, U): u E Co(a. b: R"). (lull _< 1),

and M (a, b; R") can be endowed with the weak* topology induced by the duality (2.35).
In particular, a sequence (µh) in M(a, b; R") is said to converge weakly* to a measure
µ E M(a, b; R") if and only if

h1 m (Ah, u) = (IA. U)

for every u E Co(a, b; R"). By the Alaoglu compactness theorem we have that from
every bounded sequence {µh) in M(a, b; R") there exists a subsequence {µh4) which
converges weakly* to some measure 1.r E M(a, b; R").
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Proposition 2.27 Let µh -> µ weakly * in M (a. b; R"). Then

lim Ah(A) = µ(A)hao

for every Bore! set A that is relatively compact in (a, b) and satisfies lit I(aA) = 0.

Proof By arguing componentwise we may assume that n = 1, and by decomposing
every R-valued measure v as v+ - v-, where the non-negative measures v+ and v- are
defined by

v+(E) sup(v(B): B E B, B c E)

v- (E) -inf(v(B): B E B, B S E)

we may assume that all uh and µ are non-negative. For every continuous function ip with
compact support in A and with values in [0, 1 ] we have

I m of µh(A) > lim f f rp dµh = (rpdµ

so that, taking the supremum with respect to (p, we get

lim inf ph(A) ? µ(A) (a)

where A denotes the interior of A. Analogously, for every continuous function * with
compact support in (a, b), with values in [0. 1]. and such that * = 1 on A we have

lim sup µh (A) < lim sup
J

* dµh = * dµ
h-x h-x J

so that, taking the infimum with respect to /r, we obtain

limsupµh(A) <µ(A) (b)
h-.x

where A denotes the closure of A. The conclusion now follows from (a) and (b) above.
0

Definition 2.28 Given a non-negative finite Borel measure v on (a, b) we say that p E
M(a. b; R") is

(i) absolutely continuous with respect to v (and we write s << v) if

lµl(B) = 0 whenever v(B) = 0;
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(ii) singular with respect to v (and we write µ1v) if there exists B E B with v(B) = 0
such that Iµ I((a, b)\B) = 0.

For instance, if v is the Lebesgue measure, then for every function u E L I (a, b; RI)
the measure

µ(B) := I u dx
!e

is absolutely continuous with respect to the Lebesgue measure, while for every xo E
(a, b) the Dirac measure Sso defined by

Sxo(B)
1 ifxo E B
0 ifxojtB

is singular with respect to the Lebesgue measure. In the following, given u E L I (a. b; W),
we shall denote by uv (or simply by u when no confusion is possible) the measure of
M(a, b; R") defined by

(uv)(B) := (udv (B E B);
e

moreover, if u : (a, b) R is a bounded Borel function and µ E M (a, b; R"). we shall
denote by uµ the measure of M(a, b; R") defined by

(uµ)(B) := JI u dµ (B E B).
e

It is well known that every measure µ E M(a, b; R") which is absolutely conti-
nuous with respect to v is representable in the form µ = uv for a suitable function
u E L,', (a. b; R"); moreover, according to the Radon-Nikodym theorem, the function u
can be obtained by the formula

u(x) = lim
µ(x - E, x + E)

- +o v(x -E,x+E) fore - almostallx E (a,b).

The following Lebesgue-Nikodym decomposition result for measures of M(a. b; R")
holds true.

Theorem 2.29 For every µ E M(a, b; R") there exists a unique function u E
L (a, b; R") and a unique measure t.cs E M (a, b; R") such that
(1) JA =uv+µs.

(ii) µs is singular with respect so v.

The measures uv and µs are called absolutely continuous part and singular part of
µ with respect to v, and the function u is often denoted by dµ/d v.

The following theorem identifies functions in NB V (a. b) with measures of M(a. b).
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Theorem 2.30 We have

(i) If µ is a Borel measure of M(a. b) and if we set

f (x) := p((a, x)), x E (a, b), (2.36)

then f E NBV (a, b).
(ii) Conversely, to every f E NBV (a, b) there corresponds a unique Borel measure

µ E M(a, b) such that (2.36) holds; moreover for this µ we have

Tf(x) = ILI((a. x)).

(iii) Finally, if (2.36) holds, then f is continuous precisely at those points x where
µ((x)) = 0.

Proof (i) From the properties of Borel measures we infer: if (x } T x, then

µ((a, x)) = lim µ((a, xn));

thus f (xn) -+ f W. If (x,) ,. a, then

µ((a.xn)) - 0,

and therefore f (xn) - 0. Finally, for a < xo < . . < xN = x,

N N

If(xi)-f(xi-t)I = IlAxi-l' xi))I
i=t i=i

N

Iµ()xi-l, xi))I < I AI(a, x).
i=1

whence

T f(x) < I p I (a, x) for every x E (a. b). (2.37)

(ii) First we notice that f can always be written as the difference of two non-
decreasing functions in NBV (a, b). In fact

f = ;(Tf + f) - 1(Tf - f)

and, from the properties of the function T f, it follows that the functions

u :=;(Tf+f). v:= 1(Tf - f)

are in NBV(a. b) and non-decreasing. Now with a non-decreasing function u (and v)
we associate a Borel measure µ (and µ,) in the following way. To each x E (a. b) we
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consider the following set Ex :

Ex =
(u(x)} if u is continuous at x

fu (X), u(x+)] if u(x+) > u(x).

and with a set E C (a, b) we associate the set Ex; then we define

pu(E) :=,C' U Ex
(KeE

where G' is the Lebesgue one-dimensional measure. Now set

A := Isu - Ar,

and denote by A the measure li r1 associated in the same way with T1. It is not difficult
to show that u is a Borel measure and that for all intervals [a, P)

moreover. we have

Hence we get

i.e.

u([a, f)) = f (P) - f (a):

,([a, Q)) = Tf(0) - Tf (a)

Ip(E)I < X(E),

kµI (a, x) < A((a, X)) Tj(x)

which together with (2.37) concludes the proof of (ii). Finally (iii) follows at once.
0

Let us now go back for a while to absolutely continuous functions. From their def-
inition, it is clear that, if u E AC(a. b), then u e BV(a, b), and subtracting the value
of a at a, which is well defined. we obtain u - u(a) E NBV(a, b). Consider now the
measure tt which is associated to u by the definition in the proof of Theorem 2.30. It is
readily seen that the definition of absolute continuity of u amounts exactly to the con-
dition that the measure µ be absolutely continuous with respect to Lebesgue's measure
G' I. Therefore we easily conclude

Theorem 2.31 Let f E NB V (a, b) and let p be the measure associated to f in Theorem
2.30. Then µ is absolutely continuous with respect to Lebesgue's measure if and only if
f is absolutely continuous.
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Now we can translate the results concerning the differentiation of measures into
results about the differentiation of functions.

Let g E L t (a, b) and set

fx
f (x) := 1 g(t) dt.

a

If we consider the measure {t = gC'. we have

f(x) = u((a,x)) and µ «L*.
From Theorem 2.30, we then deduce that f E NBV (a, b), and from Theorem 2.31 it
follows that f is absolutely continuous. Moreover, the Radon-Nikodym theorem yields
that W WI exists almost everywhere and

[f'(x)] = -dt-f (x) = g(x) a.e. on (a, b).
dEl

More generally, fora measure µ associated with a function f in NBV (a. b), the Lebesgue-
Nikodym decomposition of Theorem 2.29 gives

(E) = d Gt (t)dt + &3(E);

hence, if we set

we conclude that

fs(x) := ics((a, x))

14,W] = 0

forx E (a, b),

a.e. on (a. b)

)][ '( )L e o ( b)xf
t
(x=

d
.a. n a.

and

f(x) = f, (X) + f[f'(Jdt.
Finally, fs = 0 if and only if f is absolutely continuous. The function fs is called the
singular part of f . For Cantor's function f we just have f = fs.

We can collect our previous statements as follows.

Theorem 2.32 We have:

(i) If g E L 1(a, b) and if, forx E (a. b),

f (x) := f g(r) dt,
a

then f belongs to NB V (a, b), is absolutely continuous, and

[ f'(x)] = g(x) a.e. in (a, b).
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(ii) If f E NBV (a. b), then f is a. e. differentiable. [ f'] E L I (a. K and there exists a
function fs e NBV (a. b) with [ f, (x)] = 0 a.e. such that

xf (x) = f: (x) + J [f'(t) ] dt, x e (a, b).
a

The function fs is zero if and only if f is absolutely continuous.
(iii) If f E B V (a, b), then f is differentiable a.e. and If 'I E O a.(a. b).
(iv) The relation

f(x)-f(a)= f [f'(t)ldt withxE(a,b),[f']EL'(a,b),
a

holds if and only if f is absolutely continuous.

From the functional analytic point of view it is convenient to consider bounded
variation functions as defined only almost everywhere, and to identify a bounded variation
function u with its equivalence class of all functions which coincide with u almost
everywhere. In this way, for every function u e B V (a, b) there exists a function u E
NOV (a. b) such that

u(x) = u(x) for x E (a, b) a.e.

Moreover, from Theorem 2.32 it follows that a function u belongs to B V (a, b) if and
only if its distributional derivative u' defined by

b

W. rp) _ -
J

uV dx for every V E Cx(a. b)
a

is a measure of M(a, b). In this way BV (a. b) can be endowed with the norm

IIuIIBV == IIuIIL.I + Ilu'Ii i

which makes it a Banach space. We now summarize the most important properties of
the space B V (a, b), referring for instance to the books by Federer 1991. Giaquinta et al.
11201, Giusti 11221, Massari-Miranda [180], and Ziemer [295] for a more systematic
approach.

Proposition 2.33 The space B V (a, b) is not separable.

Proof Consider for every x E (a, b) the function

Hx(t) =
I ift>x.
0 ift <x

i

We have HT a BV(a, b), and the distributional derivative HI coincides with the Dirac
measure & at x. If B V (a, b) were separable, its subspace

?(=(Hx:XE(a.b))
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would be separable too for the induced norm, but this is excluded by the fact that

IIHx - HyIIBv IIHs-H;IIM

= JISx - Sy JIM = IISx IIM + IISy JIM = 2

whenever x 0 y. 0
The functions Hx above are not absolutely continuous: therefore H t '(a, b) C

B V (a, b) is a strict inclusion. Moreover, by a proof similar to that of the proposi-
tion above it can be shown that H 1-I (a, b) is not dense in BV (a, b). Indeed, if u is
an absolutely continuous function and x E (a, b) we have

flu - HxIIBV Ilu' - H"JIM

= IIu' - Sx IIM = lIu'IILI + IISx IIM ? 1

which proves that Hx cannot be approximated in the B V -norm by absolutely continuous
functions.

However, the following approximation result by smooth functions holds true.

Proposition 2.34 For every u E B V (a, b) there exists a sequence (un) of functions in
C°'0(R) converging to u strongly in L' (a, b) and such that

b

lim 1 Iu;,I dx = Iu'I(a, b).
n-oo a

Proof Fix u E BV (a, b) and extend it to all of R by setting

u(x) ._
u(a+O) ifx <a
u(b-0) ifx>b.

If {pn} is a sequence of mollifiers, consider

un=u*Pn:

then the functions un are in C'0 (R) and converge to u in L t (a. b). Moreover, by the
properties of the convolution operator, we have

b

J I un I dx < Ilun IIM(R) < IIu'IIM(R) = lu'I(a, b).
a

The opposite inequality

f b

'I (a, b) < lim inf Iu;, I dxIu

follows from the fact that u', tends to u' weakly* in M(a, b), and from the lower semi-
continuity of the norm in M(a. b) with respect to the weak* convergence. 0
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Corollary 2.35 By the proposition above it follows that the function

b

d(u, v) f lu - vl dx + IIIu'IIM(a.b) - IId IIM(a,b)I
a

is a distance on B V (a, b) with respect to which COO (R) is dense.

Furthermore, BV is embedded in L7O; more precisely we have

Proposition 2.36 Every function It E B V (a. b) is in L'O(a, b) and

IIuI1Lx(a.b) <
b

1

-a IIUIILI(a.b) + IIU'IIM(a.b)

Proof Let u e BV (a, b); by modifying u on a Lebesgue null set we may assume that
u r= NBV(a, b) so that, if u' is the distributional derivative of u, we have

u(y) - u(x) =
J

du'
[x.y )

for every x, y E (a. b). Therefore

fu(y)I < Iu(x)I + Iu'I(Ix. Y)) <- lu(x)e + Ilu'IIM(a.b),

and an integration with respect to x gives

b

Iu(y)I < 1 f l ul dx + IIU'IIM(a.b).b-a a
Taking the essential supremum with respect toy yields the desired inequality.

Proposition 2.37 For every bounded sequence in B V (a, b) there exists a subsequence
converging almost everywhere on (a. b), i.e. everywhere except for a Lebesgue null set.

Proof Let be a sequence bounded in the BV(a, b) norm; then by Proposition 2.36
is bounded in L0O(a, b) and also the norms IIu,, IIM(a.b) are bounded. Therefore we

may extract a subsequence (which for simplicity we still denote by (u }) such that

(i) u' - g weakly* in M(a, b), for a suitable measure µ E M(a, b);
(ii) -o- l; for a suitable l; E Randan xo E (a, b) such that u;,((xo)) = t((xo}) =

0.

Now set for every x E (a, b)

U(X) :- 1+J.L((xo.x)) if x > xo
- µ((x, xo)) if x < xo.
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Since every u can be written for almost every x E (a, b) as

un(x) =
Jun(xo) +u;,((xo,x)) ifx > xo
lI un(xo) + un, ((x, xo)) if x < xo.

by (i) and (ii) above and by Proposition 2.27 we obtain that

lira un(x) = u(x)

for x E (a, b) a.e. with 1AQx }) = 0, i.e. Lebesgue almost everywhere.

Corollary 2.38 By Propositions 2.36 and 2.37 it follows that for every p < oo the
embedding B V (a, b) --> LP(a, b) is compact. Moreover, the convergence on BV (a, b)
(often called BV-weak* convergence) defined by

un --> u strongly in L' (a, b)
uR u' weakly* in Apt (a, b)

is such that norm bounded sequences in B V are BV-weakly* compact.

We conclude this section with two inequalities of Poincare type.

Proposition 2.39 For every u E NBV (a. b) we have

f
b

l ul dx (b - a) [Iu'I(a, b) + I u(a)I] .

Proof From the equality

u(x)-u(a+)= 1du'
a.x)

for every x E (a, b)

we obtain

Iu(x)I <Iu(a+0)I+Iu'I(a,b) foreveryxE(a,b).

Integrating on (a, b) gives the desired inequality.

Proposition 2.40 For every u E BV (a, b) we have

b

Iu-uldx<b2aIu'l(a,b)L
a

where u denotes the average of u on (a, b),

u = 1

fb

u dx.b -a a
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Proof Let us first consider the case of a smooth function u; then for every x. y E (a. b)
we have

`' f Iu'Idt ifx<y
Iu(x) - u(y)I = I f u'dt! <

z
fl .X

ify<x

so that

JIu-1Idx I ff Iu(x) - u(y)I dx db
- a a, b)x(a.b)2 ff

b -a s<,1
f

Setting

fa'IF(x) = dt

the last term becomes

lu'I dt ! dxdy.

fb(JY b b

b 2 a
(F(y) - F(x))dx) dy = b? a f 1 f (x -a)Ju'l(W)dx) dy

a \JJ0

where the last equality has been obtained by integrating by parts. A further integration
by parts yields for this term

2

b-a
jb(

) -a )(b-y)Iu'I(y)dy

and, since (y - a)(b - y) < (b - a)2/4, we finally obtain

1b1 - I dx
b - a fbi,I

2

Once the inequality is obtained for smooth functions we may pass to all u E B V (a, b)
by using the density result of Proposition 2.34.

Remark 1 The inequalities of Propositions 2.39 and 2.40 cannot be improved; indeed,
taking (with (a, b) = (0, 1)) for every E > 0

Jx/E ifx <E
11 ifx>E

we obtain

JuE"x='-, fudx=l
2
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which proves, as e -+ 0, the sharpness of the inequality of Proposition 2.39. In order
to prove the sharpness of the inequality of Proposition 2.40 it is enough to consider the
function

u(x) =
1 ifx < 1/2

1 ifx > 1 /2

(again with (a, b) = (0, 1)) which gives

ri
u = 0, r juldx = 1, lu'I(0, 1) = 2.
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SEMICONTINUITY AND EXISTENCE RESULTS

According to our previous considerations, in order to apply the direct methods to integral
functionals F(u) on Sobolev spaces or in the class of absolutely continuous functions,
the key point is a semicontinuity theorem with respect to weak convergence in Sobolev
spaces. In the following sections we prove some fairly general semicontinuity theo-
rems. Then, under suitable coerciveness assumptions, the direct methods lead to various
existence results.

3.1 A lower semicontinulty theorem

Let I be a bounded interval in R. I = (a, b), and let F(x, u, p) be a continuous
Lagrangian from I x RN x RN into R. Consider the variational integral

.1(u) = J F(x,u(x),u'(x))dx. (3.1)

Then .F is defined for every absolutely continuous function on 1. In fact we have

Proposition 3.1 Suppose that F is non-negative or bounded from below by an
L 1 -function. Then the variational integral.F(u) is well defined, with the possible value
oo, for all functions u in the Sobolev space H 1-' (I. RN), m > 1.

This is an immediate consequence of the following lemma, stating the same result
if we replace continuity of F(x, u, p) by measurability in x and continuity in (u, p) for
almost every x.

Lemma 3.2 Let h(x, y) be a function of the real variables x E R", y E Rk which is
measurable in x for ally and continuous in y for almost all x. Then, for any measurable
function w : R" H Rk the function x -+ h(x, w(x)) is measurable.

Proof Let Is j } be a sequence of simple functions such that

w(x) = lim si (x) a.e. in R.

Each s j has the form

t;

sj(x) = LkiXA,
i=1
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where A 1 ... As, are measurable sets which can assumed to be disjoint. Observing that
for any real number a

it

(x ER": h(x, si(x)) > a) = U[(x E R": h(x,Ai)>a)f1AJ)
j .I

we infer that h(x, si(x)) is measurable. By the continuity of h(x, y) in y we obtain

h(x, si(x)) -+ h(x, w(x)) for x a.e.,

whence we conclude that h(x, w(x)) is measurable.

Our main question is now: under which conditions on the integrand F(x, u. p) is
the integral .F(u) sequentially lower semicontinuous with respect to the weak conver-
gence in H1.1(1), m > 1? Observing that if (uk) is a sequence of Lipschitz functions
with equibounded Lipschitz constants which converges uniformly to a function u. then
(uk) weakly converges to u in any H (1), m > 1, a necessary condition for lower
semicontinuity is given by the following theorem.

Theorem 3.3 If ,F(u) is sequentially lower semicontinuous with respect to the uniform
convergence of equi-Lipschirzian functions, i.e.

.F(u) < tim inf.F(uk) (3.2)

for all uk with supk Iuk Ii, < +oo and uk u uniformly, then for all xo E 1, uo E RN,

po a It and for all rp E C°O (1, RN) we have

J F(xo, uo, po + (p'(x)) dx >_ F(xo, uo, po) meas 1. (3.3)
t

In particular, the integrand F(x, u, p) is convex in p for all fixed x c- I and u E RN.

Proof To make the proof transparent, we first consider the case in which the integtand
F does not depend explicitly on x and u, i.e. F = F(p). Without loss of generality we
may assume that I is the unit interval centred at zero.

Given (p e CO0(1, RN). we extend it periodically to R and define rp for all positive
integers v by

PV(x) := v-Ig(vx).

Now set

uo(x):=uo+pox
u,,(x) uo(x) + (P,(x)
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The sequence (uv) has equibounded Lipschitz constants and converges uniformly to
uo. Thus, by assumption,

F(po) meal I < lim inf 1 F(po + Dcpv(x)) dx.v.x I

Now Dcpv(x) = 9p'(vx); hence, if we change variables in the integral vx = y we get

F(po)measI <lint inf 1fV I

=
J

F(Po + sp'(y))dy,
r

if we take the periodicity of (p into account. Inequality (3.3) is then proved in the case
F = F(P).

Let us now consider the general case. We again assume for the sake of simplicity
that 1 is the unit interval centred at zero and that cp is extended periodically to R. For
xo a 1, we consider the interval R := (xo, xo + h), choosing It so small that R C 1,
and, similarly to the above, we set

rpv(x) v-'hsp(vh-' (x - xo))

uo(x) uo + po(x - xo)
uv(x) := uo(x) + (pv(x)-

For each v, the integral.F(uv, R) can be written as a sum of integrals over v subintervals
I, of R of size v-th, given by

Ii (xi.xi+t). xi i =0....,v- 1.

On each of these intervals the integral is given by

F(x, uv(x), u' (x)) dx = v-1 h r F(xi + v-1hy, uv(xi + vhv), po + rp'(y))dy;
r, I

thus, passing to the limit for v - oo and using the continuity of F. we obtain

lim .F(uv. R) = J dx f F(x, uo(x). po + cp'(y))dv.

and, by assumption.

J dx
J

F(x. uo(x). Po + p (y))dy -> 1 F(x, uo(x). Po) dx.
R ! R

Dividing by h and letting h tend to zero, we then deduce (3.3).
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Finally, let us prove that (3.3) implies that F is convex in p. Clearly (3.3) holds also
for all Lipschitz functions (p with zero boundary values on al; also, as before, we can
assume without loss of generality that 1 = (0, 1). Set

At;) + 0 - A)1;2. A E (0. 1). i;l. 42 E RN.

and consider a Lipschitz function (x) from (0. 1) C R into RN satisfying

t j if x E (0. A)

2 if x E (),, 1):

obviously.

fo
p(1) = ip(0) + {'p'(t)dt = 0(0) +

J
1dt + 1 42 dx = p(0) +

0 A

Therefore, if we define V(x) := (x) - 0(0) - l;x. we have p(0) = (p(1) = 0. Hence
(3.3) yields

i
(xo. uo. rp') dxF(xo, uo, t) < fo F

x i

_ j F(xo, uo, 1) dx +f F(xo, uo, t2) dx
o

< AF(xo. uo. ! 1) + (1 - A)F(xo, uo, W.

[3

We say that the integrand F(x, u, p) is quasiconver (in the sense of Morrey) if (3.3)
holds. We remark that quasiconvexity is equivalent to saying that linear functions l (x) are
minimizers in the class of functions u with u(x) =1(x) on al of the 'frozen functional'

.Fo(e) := J F(xo. uo. Du) dx
it

for all xo E l and uo E R^'. In particular, if F is of class C2 in p. this at once
implies convexity of F in p, i.e. Fjp(xo. uo. p) > 0 for every p. as we have seen
in Theorem 3.3.

Remark 1 In fact, for every continuous F(x, u, p), we have seen in the proof of
Theorem 3.3 that quasiconvexity of F implies convexity in p. We note that convex-
ity trivially implies quasiconvexity; hence, in dimension 1 quasiconvexity and convexity
are equivalent. It can be seen that for multiple integrals defined on scalar functions (i.e.
when N = 1). again convexity and quasiconvexity are equivalent, while for multiple
integrals defined on vector-valued functions quasiconvexity is a strictly weaker condi-
tion than convexity. We refer the interested reader to the books by Morrey [ 1931 and
Dacorogna 1751 for a detailed discussion of convexity and quasiconvexity in variational
problems for multiple integrals; see also Giaquinta et al. [ 1201.
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We also deduce from Theorem 3.3 simply by changing signs that sequential upper
semicontinuity of F(u) with respect to the weak convergence in H (1). m > 1, implies
that the integrand F(x, u, p) is concave with respect to p. Thus, if .F(u) is continuous
with respect to the weak convergence of H t '" (1), m > 1, the integrand F must be both
convex and concave in p; that is, F(x, u, p) must be linear in p.

F(x, u, p) = A(x, u) + B(x. Op. (3.4)

for suitable functions A and B. On the other hand one can readily verify that inte-
gral funetionals with linear Lagrangians in p are sequentially weakly continuous in
H m > 1. Thus we obtain the following result:

Proposition 3A The integral .F(u) in (3.1) is continuous with respect to sequential
weak convergence of H 1-' (1), m > I (or equivalently with respect to the uniform
convergence of sequences (uk) with equibounded L t -norms of the gradients), if and
only if its Lagrangian F(x. u. p) is linear in p, i.e. ifand only if F(x. u, p) has theform
(3.4).

The next theorem shows that convexity in p is also a sufficient condition for the
semicontinuity of .F(u).

Theorem 3.5 (Tonelli's semicontinuity theorem) Let I be a bounded open interval in
R and let F(x. u. P) be a Lagrangian satisfying the following conditions:

(1) F and Fp are continuous in (x, u, p);
(ii) F is non-negative or bounded from below by an L 1 -function;
(iii) F is convex in p.

Then the functional .F(u) in (3.1) is sequentially weakly lower semicontinuous in Ht "'
(1, RN) forall m > 1, i.e. if NO converges weakly in Ht '"(1, RN) to U. then

.F(u) < lim
in
ilif .F(uk). (3.5)

Equivalently we can say that (3.5) holds if (uk) converges uniformly to u and the
L -norms of uk are equibounded

Proof It suffices to consider only the case m = 1, since if (uk) converges weakly to u
in RN) for some m > 1, it also converges to u in RN)

Let (uk} be a sequence which converges weakly to u in H','(1, RN). Passing to a
subsequence we can assume that (uk } converges to u in LQ (I, RN) for every q 2!: 1,
hence almost everywheze (and even uniformly, but this is not needed). Assume now that
F(u) is finite. For any positive e we can find a compact subset K C I such that, by
Egorov's theorem,

uk --> u uniformly in K,

and by Lusin's theorem,

u and u' are continuous in K,
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and by Lebesgue's absolute continuity theorem

j F(x, u, u') dx > J F(x, u, u') dx - E
K I

(if .F(u) = +oo, we can assume that.F(u, K) > 1 /E).
Since F is convex in p, we obtain

x, uk, u) dx.F(u,t) > fK F(

> fK F(x, uk, u')(uk - u') dx + f F(x, uk, u') dx
K

F,(x, u, u')(uk - u') dx= fK F(x, uk, u') dx + fK

+ f [Fp(x, uk, u') - Fp(x, u, u')](uk - u') dx.
K
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Since u and u' are continuous on K, the function Fp(x, u, u') is bounded; hence we infer
that

fFp(xuu)(Ut_u)dx_+O as k - oo.

Since (uk - u') are equibounded in L1(1) and Fp(x, uk, u') - Fp(x, u, u') converge
uniformly to zero on K as k -+ oo, we also obtain

fK
[Fp(x, uk, u') - Fp(x, u, u')](uk - u') dx -+ 0 ask -+oo.

Therefore we conclude that

Um f fK F(x, uk, uk) dx > IK F(x, u, u') dx > f F(x, u, u') dx - e.

Since this holds for all c, the result follows at once, taking (ii) into account. 0

Remark 2 The assumptions of Theorem 3.5 can be weakened considerably; for the
sake of completeness we present here another proof in which the integrand F(x, u, p) is
only assumed to be lower semicontinuous in (u, p) and convex in p. We want to mention
that the first proof, in which condition (i) of Theorem 3.5 is replaced by

(i') F(x, u, p) is a Caratheodory function, i.e. F is measurable in x for all u and p,
and continuous in (u, p) for almost every x,

was obtained by De Giorgi in 1968 in an unpublished paper [78]. Later, Olech in 1976
[208] and Ioffe in 1977 [146] independently generalized Theorem 3.5 to the case of
integrands F(x, u, p) which are only lower semicontinuous in (u, p). The proof which
we present here follows the scheme of loffe's proof.
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For further generalizations weakening also the lower semicontinuity assumption with
respect to u we refer the interested reader to the papers by De Giorgi er al. [80], Ambrosio
181. and to the book by Buttazzo [47] for a general discussion on the subject.

We consider functionals of the form

x. u(x), v(x))dp(x) (3.6).F(u, v) := fe F(

where (12, A, µ) is a measure space with a non-negative and finite measure p, F: 9 x
R' x R" H [0, +oo] is an A ® B," 0 B"-measurable function (B", and B" respectively
denote the a-algebras of Borel subsets of R' and W), and (u. v) varies in Lµ (12; R') x
Lµ (S2; R").

Let 12 = (a, b), µ be the Lebesgue measure, and n = m = 1. As soon as we have a
sequential lower semicontinuity result for.F above with respect to the strong Lµ (S2; R")

convergence on u and the weak Lµ (12: R") convergence on v, we immediately have a
sequential lower semicontinuity result for the functional

rb

a
F(x, u(x), u'(x)) dx

with respect to the weak H t- '(a. b. RN) convergence.

Theorem 3.6 Assume that the function F satisfies the following conditions:

(1) For p-a.e. X E S2 the function F(x, . ) is lower semicontinuous on R'° x W.
(ii) Forµ-a.e. x E f2 and foreverv u e ft" Ihefunction F(x. u. -)is convexon Rm x R".

Then the functional .F defined in (3.6) is sequentially lower semicontinuous on the space
Lµ (12: RI) x LI,(2; R") endowed with the strong topology on L,,(12: R") and the weak

topology on L (S2; R').

Proof Let uh -+ u strongly in Lµ (12: R'") and vh - v weakly in Lµ (Q: W): we have
to prove that

.F(u. v) < lim inf.F(uh. vh ). (3.7)
h-. C

Without loss of generality, passing to subsequences we may assume that the lim inf on
the right-hand side of (3.7) is a finite limit, i.e.

lim .F(uh. vh) = C E R.
h-+oo

(3.8)

Since [vh } is weakly compact in L1(S2: W' ), by the Dunford-Pettis theorem (compare
Theorems 2.11 and 2.12 of Section 2.1) there exists a function 0 : 10, oo) -+ [0. oo)
which can be taken as convex and strictly increasing, such that

lim
rF(t)

= oo and supJ r9(Ivhl)d.s < 1. (3.9)
1 hEN 12
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Setting

H(t) = r&(r)

4 (t) _ $(H-1(t))

th(x) = H (Ivh(x)I)

it is easy to see that

(i) H is strictly increasing and H(t)/t -> oo as t -> oo;
(ii) 0 is strictly increasing and (P(t)/t oo as t -> oo;
(iii) 0(t)/H(t) - co as t - oo;
(tv) 0(4 (x)) = (Ivh(x)I).
Therefore, by (3.9) we have

sup IO(WdL < 1

hEN 2

so that, again by the Dunford-Pettis theorem, the sequence is weakly compact in
Lµ(52). By Mazur's theorem a suitable sequence of convex combinations of ($h, vh) is

strongly convergent in Lµ (s2) x Lµ(92; R"). More precisely, there exist Nh -+ oo and
ai,h ? 0 with

Nh+l

E a;.h = 1
i=Nh+I

such that
Nh+t

vh = E ai,hvi --+ v strongly in Lµ(92; R")

E ai,hli - q strongly in Lµ(92).
i=Nh+I

By passing to suitable subsequences we may assume that vh -+ v u-a.e. on 92,
t1h --> t1 µ-a.e. on S2, and also uh -+ u p-a.e. on 0. Let x e S2 be a point where all the
convergences above occur, and set

Ch :=maxIJu(x)-ui(x)l: Nh <i <Nh+1)
Nh+I

Ah ai.hF(x.ui(x),vi(x))
i=Nr,+1

Ah ((v. i , h) E R"+2: t1= H(IIvII). A F(x. s, v)

for some s E R'" with is - u(x)I Eh}.

We have Eh 0 and, by definition of vh,11h, As,, the point (vh(x). gh(x),1Ah(x)) is
contained in the convex hull of Ah.
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Since Ah c Ri+2, CarathEodory's theorem on convex hulls in Euclidean spaces says
that the vector (vh(x), gh(x),)h(x)) can be written as a convex combination of n + 3
elements of ,Ah; that is, there exist

A,h ? 0, Vi.h E W. 1i,h 0, Ai.h 0 (i = 1, ,n+3)

such that (vi,h, tli,h, Xi,h) E ,Ah for every i, and

n+3 n+3

&h vi.h = Vh (x),
i=1 i=1

n+3 n+3

F,m,hgi,h = i1h(x). EA.hAi.h =,kh(x)
i=1 i=1

Therefore, for suitable Si,h E RI with Isi.h - u(x)I < ch we have

Ai,h F(x, S1,h, Vj,h)

Let us denote by I the set of indices i such that the sequence I vi,h I does not tend to cc
as h -> oo; since

n+3

E 6i,hH (Ivi.hI) = r1h(x) -+ n(x)
1=1

the set I cannot be empty. By passing to subsequences we may assume that

vi,h -" vi for all i E I

I vi.h l - + oo for all i ¢ 1

Ah - Pi for all i = 1,...,n+3.

From the relation

n+3

Efii,hVi.h = Vh(X) -+ V(x)
i=1

we obtain that Pi = 0 for every i It 1. Moreover, from

n+3 H
11hxAA11h 2: >Phtli.h =Efl,hIvi.hI

`IVi.hl

101 1§t/

I i ¢ 1,



A lower semiconunuily theorem

so that

F19i = 1, Efi i' = V(x)
fEl iet

Finally, by using the assumptions of the theorem,

F(x. u(x), v(x)) < E ,6i F(x, u(x), vi )
iEl

< lim inf 18i.hF(x. si,h, Vi.h)
h-.00

iE/
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n+3

< lim inf ri.h F(x, si.h. Vi.h )
i=1

< lim inf Ah (x)
h- b+ao

and by Fatou's lemma

I Ah (x)d pF(x, u, v)dµ lim inf fa
h-.oo

Nh;i

= Iim inf ai,h f F(x, ui, vi )dµ. (3.10)
i=Nh+i

If we fix e > 0 by (3.8) we obtain for sufficiently large h that

In
F(x,ui,vi)dµ <c+E foralli E [Nh+1,Nh+i].

By virtue of (3.10) we arrive at

.F(u, V) < C + E.

The conclusion now follows by letting e +0. 0

Remark 3 It is easy to see that Theorem 3.6 remains true if the measure µ is only
assumed to be a-finite.

Remark 4 For A ®B. (& tin-measurable functions F : Q x R"' x R" - [0, +oo),
and when µ is a non-atomic measure (such as the Lebesgue measure), it can be proved
that conditions (i) and (ii) of Theorem 3.6 are actually necessary for the sequential lower
semicontinuity of the functional F defined in (3.6) with respect to the strong topology
of Lµ (S2, R'") and the weak topology of Lµ (Q; W), provided Y is not identically equal
to +oo. (See the original paper by loffe [ 1461 or the book by Buttazzo [47].)
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3.2 Existence results in Sobolev spaces

Let I = (a, b) be a bounded interval in R and F(x. u, p) a Lagrangian defined on
I x RN x RN, N > 1. We say that F(x, u. p) has a superlinear growth if there exists a
function 0(p) such that

F(x, u, p) > 9(p) for all x, u, p

OW/ V -+ oo as IpI - oo.
(3.11)

We say that the Lagrangian F(x, u. p) has a polynomial growth in. if there are positive
constants co, ct, c2 and a constant m > 1 such that

colplm < F(x, u, p) < ct I p I" + c2 for all x. u. p. (3.12)

Obviously an integrand with a polynomial growth m > 1 is of superlinear growth.
An immediate consequence of Theorem 3.5 of Section 3.1 and of the weak compact-

ness criterion in HI -t (a, b) (cf. Theorem 2.12 of Section 2.1) is the following result.

Theorem 3.7 (Tonelll's existence theorem) Suppose that the Lagrangian F(x, u, p)
satisfies the following conditions:

(i) F(x. u, p) and Fp(x, u, p) are continuous in (x. u. p);
(ii) F(x. u. p) is convex in p;

(iii) F(x. u, p) has a superlinear growth.
Then there exists a minimizer of

F(u) := f F(x, u, u') dx
t

in the class

C(a, ,8) := {u E Ht ,t ((a, b), RN): u(a) = a, u(b)

where a. B are fixed vectors in RN.

Proof By (3.2) the functional F is bounded from below. Let {uk) be a minimizing
sequence in (a. )4). We may assume that inf F(uk) < +oo, otherwise F(u) +oo
identically on C(a, f). Since F has a superlinear growth, the sequence (uk} is equi-
bounded in H',(1, RN); moreover, the integrals

1,
9(uk)dx

are equibounded. Then applying Theorem 2.12 of Section 2.1 (a subsequence of) (uk )
converges weakly in H t t (1) and uniformly on 1 to some function u E H t t (I. RN)
with values a and iB respectively at a and b. The semicontinuity Theorem 3.5 of Section
3.1 then yields

F(u) < likrn of Y(110,

i.e. u is a minimizer of F on (a, P). 11
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Remark 1 Taking Remark 2 of Section 3.1 into account one readily sees that Theorem
3.7 remains true if, instead of (1), we require that F(x. u. p) is a Caratheodory function.
or more generally, by using Theorem 3.6 of Section 3.1. that F is L t$ BN 013N -
measurable (L denotes the a-algebra of all Lebesgue measurable subsets of I) and
that

for a.e. X E I the function F(x, , ) is lower semi continuous on RN x RN;
for a.e. X E I and for every u E RN the function F(x, u, ) is convex on RN.

Remark 2 We note that. if F has a polynomial growth m > 1, then the minimizer in
Theorem 3.7 is of class H 1-1 U. RN); moreover, any minimizer of .F in C(a, fi) is a
minimizer of .F in

Cm(a. 0) := (u E H"m (1, RN): u(a) = a. u(b) = j9)

and vice versa. Actually, in this case proving the existence of a minimizer in C, (a, P),
and consequently in C(a, fi). is slightly easier, since H I-' (I. RN) is reflexive, and we
do not need the weak compactness criterion in H t 1.

Remark 3 By a simple use of Poincarf's inequalities one immediately sees that the
boundary conditions u(a) = a, u(b) = f in the definition of C(a. $) can be replaced
by u(a) = a and no condition on b, or by no condition in a nor in b but requiring
f ab u dx = 0, and there will still be a minimizer in the corresponding classes.

Remark 4 Tonelli proved several extensions of Theorem 3.7. We mention here only
one of them: in Theorem 3.7 it suffices to require F to have a superlinear growth in p
outside a small set of (x, u)-values. for instance outside the graph of a curve of finite
length.

1 Consider for every a E R and p > I the functional

t

.F,.p(u) :=
J

x"iu',pdx
0

defined for every u e H t 1(0. 1). and the associated minimum problem

min(JF .p(u): u E Ht't(0. 1). WO) = a. u(1) = b) (3.13)

where a. b are two real numbers with a 0 b. Weierstrass observed that when a = p = 2
the minimum problem above does not admit any solution whenever a ,E b, because
taking the sequence of functions

uh(x)=a+(b-a)
airtan h

we obtain

2

F2 2 (uh) = 2h arctan2 h
(arctan h - 1 +h2

)
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which tends to zero as h -+ oo. Therefore

inf(-*F2.2(u): u E H1,1(0. 1), u(O) = a, u(1) = b) = 0.

On the other hand, no function u E HI.1(0, 1) with u (0) # u (t) may have F2, 2 (u) = 0
because this would imply u' = 0 almost everywhere on (0, 1) and so u(0) = u(1).

We now consider the general case Fa, F. When a < 0 the assumptions of the existence
theorem 3.7 (see also Remark 1) are fulfilled and so problem (3.13) admits a solution for
every a and b. The solution is also unique because of the strict convexity of the functional
Ya,p and, from the Euler-Lagrange equation, we obtain

xalu'Ip-2u' = c (c = constant)

whence

u(x) = a + (b - a)x(p-I-a)l(P-1).

When a > 0, the functional .Fa, p still remains sequentially weakly lower semicontinuous
on 1) but the integrand F(x, z) = xalzIP no longer verifies the superlinear
growth condition of Theorem 3.7. However, we shall see that for certain values of a and
p, we still have the existence of a solution for problem (3.13). More precisely this happens
if and only if p > a + 1. Indeed, let q be a real number such that I < q < p/(a + I);
we have by Holder's inequality

I Iu'Iq dx = f 1
((u'IgXag/P) x-aglP dx

I

< (fxu'IPdx q/P i (P-01P

(fo x-agl(P-q)dX

(p-q)/P
_ (Fa.p(u))q/P

p-q
p-q(a+1)

Therefore, a sequence (uh } which has.Fa, p bounded is bounded in H'.(0, 1) and
hence weakly relatively compact in H 1.1(0, 1), and this, together with the lower semi-
continuity of furnishes the existence result for problem (3.13). As before, the
solution is unique, and it is given by the function

u(x) = a + (b - a)X(P-1-a)/(p-1)

On the contrar)4 when p < or + 1, we have as in the Weierstrass case that

infVa,p(u): u e HI.1(0, 1), u(0) = a. u(1) = b} = 0, (3.14)

and so. by the same argument used before, no solution of problem (3.13) is possible
when a b. Since Jla, p >- -Fp.p whenever a <- S, it is enough to show (3.14) in the
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case p = a + 1. To do this, for every e > 0 consider the function

uf(x) = a + (b -
a)

log(1

log(1
+ x/E)
- 1/E)

which is in H ' t (0, 1) and satisfies the boundary conditions u(0) = a and u(I) = b.
We have

uF(x) _

so that

1 b-a
f +X log(1 + 1/E)

fa.p(uE)= j1ag(1+11/E)lpJot \ x

)P

l dx
E+X

lb - alp t
1 dx= lb - alp

log(1 + 1/E)lp Jo X + E log(1 + 1/e)lp-1

which tends to zero as e -+ +0.
The reader can show a similar result in the more general case of minimum problems

like

ia(x)lu'l"dx: u E H"'(0, 1). u(0) = a. u(1) = b . (3.15)jfm

More precisely, problem (3.15) admits a solution for arbitrary boundary data a and b if
and only if the function (a(x))t"(t -p) is in L1(0, 1). In this case the solution is unique.
and it is given by

u(x) = a + (b -a)
(

I a(t)11('-p)dt)
- t x a(r)'1('-p)d1.

\\\ 0 0

2 The convexity assumption (ii) in Tonelli's existence theorem (cf. Theorem 3.7)
cannot be eliminated. Indeed, consider the functional

fi.F(u) = - lu'l2)2 +u2)dx

whose integrand

F(u. P) = (1 - l Pl2)2 +u2

satisfies all conditions of Theorem 3.7 except convexity with respect to p; the minimum
problem

min(F(u): u e l), u(0) = u(1) =0)
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has no solution. In fact, if p(x) denotes the function defined by 1 /2 - Ix - 1/21 on [0, 1]
and periodically extended to all of R, the functions

uh(x) := I(p(hx), (h E N),

are in H"(0, 1), fulfil the boundary conditions uh (0) = uh (1) = 0, and give
i

.F(uh) = h2 fo 9,2(x)dx
12h2

because luh(x)I = 1 almost everywhere. Therefore the infimum of F on the admis-
sible class is zero, but no function u satisfies .F(u) = 0. because this would imply
f o u2 dx = 0; hence u = 0, and then F(u) = 1.

3 Consider now a slightly different example:

j [(I - Iu'I2)2

+u] dx.
0

In this case we will show that the minimum problem

min[F(u): u E 1), u(0) =a, u(1) = b) (3.16)

admits a solution for every a, b E R. though the integrand is not convex with respect to
u'. Indeed, consider the functional

1

9(u) = f [Sp(u') + u] dx
0

where the function V is defined as the convex envelope of the function (1 - Ip12)2, i.e.

V(P) = (I-IPI2)2 ifIPI> 1
0 iflpl<l .

The functional 9 satisfies all assumptions of the existence theorem, and so there exists
a solution u of the minimum problem

min[Q(u): u r= H1'(0, 1),u(0) = a. u(l) = b).

The Euler-Lagrange equation gives

cp'(u) = x + c a.e. on (0, 1) (c = const),

and since Sp'(p) = 0 for all p E (-1, 1), we obtain lu(x)I > 1 almost everywhere,
so that

Hence we have

P((u')_(1-lul2)2 a.e.on(0,1).

inf F < .F(u) = Q(u) = min 9 < inf F,

and this proves that ii is a solution of problem (3.16). It is not difficult to show that ii is
actually the unique solution of problem (3.16). The proof is left to the reader.
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As an examplelo we apply direct methods in the calculus of variations to discuss
the existence of a solution of

w" = f (x) - h(x)e"' ono<x<1 with w'(0)=w(1)=0. (3.17)

The first step is to reduce to the special case where f - const by letting z be a solution of
z" = f - c. z'(0) = z'(1) = 0, where c := f is the average of f, and letting u := w - z.
Then we want to solve

u" = c - h(x)e" on 0 < x < 1 with u'(0) = u'(t) = 0. (3.18)

Integrating (3.18) one immediately gets for 1 = (0, 1) that

f,
he" dx = c, (3.19)

which imposes a necessary sign condition on h. For instance, if c > 0, the function h
must be positive somewhere. The three cases c < 0, c = 0, and c > 0 are strikingly
different. As model examples we shall discuss the cases c = -1. c = 0, c = 1.

Case 1: c = -1, sou"=-1 -h(x)e".
The obvious functional to try is

J(u) :=
J

I Zui2 - u -he" I dx.

If h < const < 0 then -u - he" > const, so the Tonelli theory applies.
If h is zero or positive somewhere one must work harder. A key difficulty is to ensure

that the functional J is bounded from below. If one lets u = k = const, it becomes
clear that the functional is unbounded from below unless f h dx < 0. In fact, this is
also a necessary condition for a solution of the differential equation to exist. To see this,
multiply the equation by e-" and integrate by parts to find that

- f hdx =
J

(e-"u'` 0.
I I

(3.20)

With further work one can show that this is not sufficient. In addition, it turns out that for
any h there is a constant qo so that one can solve the equation u" = -I - (h(x) + q)e" if
q < qo but not if q > qo. The calculus of variations turns out not to be the best technique
for this case (the method of sub- and supersolutions is better).

Case 2: c = 0, so u" -h(x)e".
Let us assume that h $ 0. From (3.19), one necessary condition is that h change sign.
There is another necessary condition: just as for (3.20), multiplying the equation by a-"
and integrating by parts we find that - f h dx = f e-" u'2 dx > 0.

10This example has kindly been communicated to the authors by Jerry Kazdan.
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To set up the variational problem, write u = u + v, where i = f u dx is the average
of u and v 11. With the constraint (3.19) in mind, seek a minimum of

J(v) = 2 fy92 dx

where v e H 1 satisfies the two constraints

r
f he"dx=0 and

J
vdx=0.

Before going further we check that this solves the problem. The Euler equation is

v' = ahe' + A

where a and P are Lagrange multipliers. Integrating this and using the first constraint we
find that ft = 0. Similarly, multiply this by e' and integrate by parts, using f h dx < 0
to conclude that a > 0. Thus a = eY, and so u := v + y is the desired solution of
u" = -he".

It is routine to prove that this variational problem has a minimum since weak conver-
gence in H1 implies uniform convergence, so the weak limit also satisfies the constraints.
Thus, a necessary and sufficient condition to solve the equation is that h change sign
and f h dx < 0. We do not know any way to prove this except the above proof by the
calculus of variations. This identical proof still works for the partial differential equation

-Au = h(x)e" in 12

au
= 0 on 92

8n

in the case of a bounded two-dimensional region 12, although one does not have the
uniform convergence. In dimension 3 or higher, except for the necessary conditions,
nothing is known.

Case 3: c = 1, so u" = 1 - h(x)e".
As above, the obvious functional to try is

1
.7(u) := f(uf2 + u -he" dx,

and we write u = U+ v, where v 11. Then we can solve (3.19) for u = - log(f hev dx)
and get

.1(v) .3(u) =
J

2v,2 dx - log
\ J

he'dx) - 1.

We seek a minimum of this among all functions v E H t with f v dx = 0. Note that for
this minimum we need only consider functions with f he" dx > 0. Because h is positive
somewhere there are some admissible functions v.
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First, observe that the Euler-Lagrange equation solves the correct problem. It is

-v"- he'
f he" dx

where A is a Lagrange multiplier from the constraint f vdx = 0. Integrating this we see
that A = 1. Then write f he" dx = eY. The desired solution is u = v - Y.

To prove that the minimizing problem has a solution we show that F is bounded
from below. By the Sobolev inequality we obtain Iv(x)I < IIv'II Thus if Ih(x)I < M
then

fh?dx < Me111'1

Therefore

.1(v)> fv'2dx-IIvll-logM-1.

Since IIv II :5,X + (1 /A)Ily Ill for any A > 0, if we let A = 4 we find that

.1(v) > 3IIv'II2 + cont.

Thus F is bounded from below, and minimizing sequences {vj } are bounded in H t .
A weakly convergent subsequence converges uniformly. so the remainder of the proof
is routine.

This proves that the equation u" = 1 - he" with Neumann boundary conditions
on 0 < x < I has a solution if and only if h is positive somewhere. On compact two-
dimensional surfaces without boundary the analogous partial differential equation has
been studied intensively, but except for the sphere S2 essentially nothing is known. In
higher dimensions essentially everything is open.

Let us return to the discussion before Q - 0. We note that Theorem 3.7 is very simple,
and it uses the weakest possible assumptions in order to apply the direct methods in the
class of absolutely continuous functions. Therefore we might have the impression that
we have found the correct space to work with and the correct generalization of minimum
problems for any variational integral whose Lagrangian has a superlinear growth.

Unfortunately, the situation is slightly more complicated. If we want to consider the
minimizer of Theorem 3.7 as a generalized solution of the classical problem `Minimize
.F in the class of smooth functions with u(a) = a and u(b) = P', we should at least
expect that .1(u) agrees with the infimum on the class of smooth functions, i.e.

inf{F(v) : v E H 1.1 (l, RN) : v(a) = a, v(b) = P)

= inf{.F(v): v smooth, v(a) = a, v(b) _ ,6). (3.21)
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We shall see that this is true when F has a polynomial growth of order m > 1. but it is
not true for general integrands with superlinear growth, or even satisfying the condition

coI plm < F(x. u. p). m > 1. co > 0.

When equality (3.21) fails we say that a Lavrentiev phenomenon occurs; this will be
discussed later in Section 4.3. For Lagrangians with a polynomial growth we have

Proposition 3.8 Let F(x. u, p) be a Caratheodory Lagrangian that is convex in p and
has a polynomial growth of order m > 1, i.e. (3.12) holds, and let IUk } be a sequence in
H I '(I, RN) If (uk I converges strongly in H t '" to u, then F(uk) converges to .F(u).

Proof Passing to a subsequence. we can assume that uk -* u(x) and uk (x) --+ u'(x)
for almost all x in 1, and also that

g(x) := IlukI" - lu,-I IP)
k=1

is an LI -function. In fact, since Iu' IP converges strongly in L' to Iu'IP, we can find a
subsequence luk, IP such that

f I lu, IP - Iukr-I l Pi dx < 2-'.

Consequently we have

F(x, uk(x), uk(x)) --. F(x. u(x). u'(x)) a.e. in I

I F(x, uk, uk)I < cl jut l + c2 < clg(x) + c2.

The claim then follows from Lebesgue's dominated convergence theorem. 0
Remark S We note that the previous proposition actually holds under the weaker
assumption

I F(x, u, p)I < cl Ipl' + c2.

As a trivial consequence of Proposition 3.8 we now obtain the following theorem
when we also recollect the observations of Remark 2.

Theorem 3.9 Let F(x, u, p) be a Lagrangian which is convex in p and has a polynomial
growth of order m > 1. Then we have:

(i) F(u) is finite if and only if u E HI -'"(1, RN).
(ii) The minimizers of .F in C(a, P) coincide with the minimizers of.F in C(a, f) fl

H'-- (1, RN). More precisely. u is a minimizer of.F inC(a. P) ifand onlyif.F(u) <
.F(v) for all v in C(a, fi) fl H I '" (I, R' V).

(iii) For every u with .F(u) < oo, i.e. for every u E HI.m(1,RN), there exists a
sequence of functions uk in Ct(I) with uk(a) = u(a). uk(b) = u(b) such that
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.F(uk) converges to .F'(u ). In particular .F(u) is the greatest lower semicontinuous
extension ofFonC1(I)oronC(a,1)f1C'(I), that is, wehaveforu E H(1, RN)

.F(u) = inf(lim inf.F(uk): Uk E C1 (7)- uk weakly converging to uk-.x
in Ht-t(1.RN)),

and for u E C(a, 8)

.F(u) = inf(lim inf .F(uk): uk E C(a. p) fl C1 (1), uk weakly converging

to u in H'-'(1. RN)).

Actually we can state more, namely

Proposition 3.10 Suppose that F(x, u. p) is a Lagrangian which is strictly convex in p
and has polynomial growth of order m > I. If (uk) converges weakly in H t m to u and
in energy, i.e. ,F(uk) -> .F(u), then (uk) converges strongly in H 1 m to u. In particular.
every minimizing sequence NO in C(a. P) converges to a minimizer u in C(a, f) not
only weakly in H 1.1 or H 1 ', but strongly in H 1 '".

Proof For the proof of this proposition in its full generality we refer the interested reader
to Reshetnyak [2201. here we prove Proposition 3.10 under the additional condition that
F be uniformly strictly convex, in the sense that

for some positive µo, satisfying Ito < co (co the constant in (3.12)), the Lagrangian

F(x. u, p) - t<ol pl'"
(3.22)

is convex.

In this case the functional

if
[F(x,u,u')-µolu'l'"jdx

is sequentially lower semicontinuous with respect to weak convergence in H t "' (1, RN);
hence, using the assumption.F(uk) - F(u), we deduce

1,
[F(x. u. u') - µo l u' l'"] dx < lim inf f [F(x, uk. uk) - uolu,t l'"] dx

k-+oc

= lira ,F(uk) - tLo lim sup r l uk l- dxk-x JI
p

= 1 F(x, u. u') dx - µo rim sup J lug dx.
1 k--+--,c I

limsupJ Iukl"'dx <J Iu'J'"dx.
k-+x I 1
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Therefore we conclude that

Iuk Im dx J Iu'I m dx (3.23)

since the inequality

Iu'Im dx < lim inf f Iuk IM
k-.oo t

is always true. But it is well known that (3.23) and the weak convergence of uk to u'
imply the strong convergence of uk to u' in U. Hence Proposition 3.10 under the extra
assumption (3.22) follows at once. 0

3.3 Lower semicontlnalty in the space of measures

When an integrand F(x, u, p) does not have a superlinear growth with respect to p, the
arguments of Section 3.2 do not apply; the reason is that minimizing sequences for
the functional F may not fulfil the Dunford-Pettis criterion of weak compactness in L 1

for the derivatives (u;, }. For instance, if

F(x, u, P) ='PI + j u - .f (x)I

with f E L 1(a, b). the only bound we may obtain on (u;,) is

for a suitable positive constant C. and we know that bounded sequences in L 1 may con-
verge, in the weak* sense of measures, to measures which are not absolutely continuous
with respect to the Lebesgue measure, as for instance the Dirac mass S. Therefore,
when we deal with a problem with linear growth, i.e.

F(x. u, p) > a I p I for all .r, u. p.

with a > 0, we have to expect solutions u with u' E M(a. b. RN): that is. U E
BV (a, b; HN). Notice that, for example, the integrands F(p) = Ipl and l _+1 P12
respectively have linear growth, and so the superlinear growth assumption fails.

In order to apply the direct methods of the calculus of variations to variational prob-
lems with a linear growth, we provide a lower semicontinuity theorem on B V (a. b; RI V)
which will be obtained by means of a lower semicontinuity theorem for functionals on
the space of measures.

In the sequel 92 will be an interval of the real line R, and µ is the Lebesgue measure
own. More generally S2 will be a separable locally compact metric space with a positive
finite Bore] measure µ. We denote by 8 the a-algebra of all Borel subsets of 92.



Lower semicontinuity in the space of measures 125

As already recalled in (2.33) of Section 2.3, for every vector-valued measure
I : B -+ RN and every B E 13 the total variation of X on B is defined by

x 00

AI (B) = sup IA(BJ)I: Bj E B pairwise disjoint, U Bj C B .

i=1 J=t

In this way, the set function B F- IAI (B) turns out to be a positive measure which will
be denoted by IAI

We need the following localization lemma.

Lemma 3.11 Let v be a non-negative Borel measure on c2 and let be a sequence
of non-negative v-measurable functions on Q. Setting f = sup(f : n E RI) we have

1 fdv=sup f (3.24)
Q iE1 I B

where the supremum on the right-hand side is taken overall futile Borel partitions (Bi )iE1
of 12.

Proof Inequality > is trivial. In order to prove the opposite inequality, we introduce the
functions

g,, := sup(f : 1 < i < n), n E N.

Clearly (g } is a non-decreasing sequence of v-measurable functions whose supremum
is f. Then, by the monotone convergence` theorem,

fn
fdv=sup{ f (3.25)

111n

Let us now consider disjoint Bore] sets Br , ... , B such that

c2=B1U...UBR and fion Bi.

From (3.25) we get

I fdv=sup > f fidv:nEN

f
e

sup fd v : (Bi )1 E J is a finite Borel partition of 2
,

which concludes the proof. 0
Given a convex and lower semicontinuous function F : RN -* [0, oo] we denote by

Fx its recession function (see for instance Rockafellar [228]), defined by

F '(p) := Jim
F(po + tp)

tac t

where po is any point such that F(po) < co. It can be shown that the definition above does
not depend on po, and that the function Fx turns out to be convex, lower semicontinuous,

Nand positively homogeneous of degree 1 on R



126 Semicontinuit and existence results

We are now in a position to prove the following lower semicontinuity theorem on
M(a, b: RN).

Theorem 3.12 Let F : 12 x RN [0, ool be a function such that the approximation
formula

forall(x,p)Ef2xRN (3.26)

holds for suitable sequences a E L' (9;,u) and bn E C(92: RN). Then the functional

= jF `(x,
dµ

dµ + F°° x, d_ dA' (3.27)
r /

fcz s

is sequentially weakly" lower semi continuous on M (a. b; RN ). where

is the Lebesgue Nikodvm decomposition of A with respect to µ, and F'D (x. -) denotes
the recession function of F(x, .) for any x E Q.

Proof For the sake of simplicity we denote the last term on the right-hand side of
(3.27) by

r F'(x, A') instead of
dA'

f Foo x(.)dIAI.

For every n E N we set

F.(x, p) [an(x) +bn(x) - p) . (x, p) E S2 x RN.

.F, (A. B) 1 F. (x. A dµ + J A E M(a, b: RN). B E 13(d ),
a dµ s

and fix A E M(a, b; RN). If we denote the measure µ + IMI by v. the It-negligible set
where A' is concentrated by Z, and set

I F(x,d±(x))

f(x) _
FOO x,

I
(x)

F° x,
dl'I(x)
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we have

.F(M) = fn f(x)dv. .Fn(.k) = j fn(x)dv.
tt

Therefore, by the lemma above,

.F(),) = sup Fi (I, Bi): (Bi);EI is a finite Borel partition of 92 . (3.28)
iEI

Since µ and Ix' I are regular measures, we have

..1 (A. Bi) = sup{.Fi ()L. K) : K compact, K c Bi I

so that by (3.28)

.F(A) = sup E .Fi (a, Ki) : (K1)11 disjoint compact subsets of S2 . (3.29)
if/

Since two disjoint compact sets have a positive distance, we deduce from (3.29) that

.F(A) = sup {J(A, Ai): (Ai)iEI disjoint open subsets of S2 . (3.30)

Thus, to conclude the proof it will be enough to show that for every n E N and any open
subset A of 9 the functional .Fn A) is sequentially weakly* lower semicontinuous on
M(a. b; RN).

By repeating an analogous localization argument we get

.F, (1, A) = sup (a. +bn
d1` ),pdp + f bn dJ pdIIs

(pECC(AI A dp JA d(A I

.sup fWandµ +
J

.pb,, d I
c ECC.(A)

{
A A 11

Therefore, it suffices to show the lower semicontinuity of the functionals

it "
J J

Vb. d k
A A

for every cP E C, (A), which is trivial because, owing to the assumptions made on an and
bn, these functionals turn out to be weakly* continuous. O

Remark 1 The approximation assumption (3.26) of the previous theorem is clearly
fulfilled if F = F(p) is independent of (x, u) and is convex and lower semicontinuous
on RN. or more generally (see for instance the book by Buttazzo [47], Corollary 3.4.2),
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if F(x, p) satisfies the following conditions:

(1) F is lower semicontinuous on Q x RN;
(ii) for every x E S2 the function F(x, .) is convex on RN;

(iii) there exists uo E L '(S2; RN) such that F(x. uo(x)) E Lµ (S2).

As a corollary we obtain the following lower semicontinuity Reshetnyak-type
theorem.

Theorem 3.13 Let F : S2 x RN --> [0, ooj be a function such that

(i) F(x, p) is lower semicontinuous in (x. p);
(ii) for every x E S2 the function F(x. ) is convex and positively homogeneous of

degree 1.

Then the functional

.F(A) = JI F(x, h)
st

is sequentially weakly* lower semicontinuous on M(a, b; RN), and we recall that the
notation fa F(x, A) stands for fn F(x, dA fd I AI) d IA 1.

Remark 2 In Theorem 3.12, when the measure µ does not charge the points of S2, i.e.
µ((x}) = 0 for all x E 12, the condition that F1 (x. p) is lower semicontinuous in (x. p)
is necessary for the lower semicontinuity of the functional F. Indeed, for fixed xo E 12,
po E RN, and given sequences x -* xo in S2 and pn -+ po in RN, it suffices to consider
the measures A = poSxa and An = pa6x,,. We have An i A weakly* in M(a. b; RN).
Thus the weak* lower semicontinuity of .F on M(a, b; RN) implies

.F(xo, po) = .F(A) < lim inf .F(An) = lim inf .F(x,,, p.).nix n_-+x

Therefore, in the Reshetnyak case of F(x, ) convex and positively homogeneous of
degree 1, the functional.F is sequentially weakly* lower semicontinuous on M (a, b; RN)
if and only if the function F(a, p) is lower semicontinuous in (x, p).

3.4 Existence results In the space BV

In this section we use the lower semicontinuity results of Section 3.3 in conjunction
with direct methods of the calculus of variations to prove the existence of solutions of
minimum problems in BV.

We recall that, given an interval I = (a, b) of the real line R, a function u : I -> RN
belongs to BV(1; RN) if and only if it is in L1(I, RN) and its first-order distribu-
tional derivative u' belongs to .M (I: RN). In Section 2.3 we have discussed the space
BV (I; RN) and its main properties. In the sequel the measure u' will often be decom-
posed into its absolutely continuous part ua with respect to the Lebesgue measure, and
its singular part us; moreover, we will denote by ti the density of u' with respect to the
Lebesgue measure. Therefore, the Lebesgue-Nikodym decomposition of u' reads

u'=ri dx+ui.

A straightforward application of Section 3.3 gives the following result.
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Theorem 3.14 Let F(x, p) be a function satisffing the approximation formula of
theorem 3.12 of Section 3.3 (compare also Remark I of Section 3.3). Then the func-
tional,F defined for every u E BVr(1; RN) In,

r
.F(u) = J F(x, u) dx + r F" (.r, us)

I I

is sequentially lower semicontinuous with respect to the weak * B V (I; RN) convergence.

Remark 1 Since weak* B V convergence implies strong L 1 convergence (cf. Propo-
sition 2.36 and Proposition 2.37 of Section 2.3), by Fatou's lemma we get that, if the
integrand F satisfies the assumptions of the theorem above, then the functional

.F(u) = J F(x, u) dx + f F°iG(x, u,) + fG(x. u) dx (3.31)

is also weakly* B V sequentially lower semicontinuous, provided that G (x. u) is a non-
negative Bore] function lower semicontinuous with respect to u.

Assume now that the integrands F and G in (3.31) satisfy the following estimates
from below:

F(x, p) al pl -a(x) (3.32)

G(x. u) ilul - b(x) (3.33)

for suitable positive constants a and $ and integrable functions a(x) and b(x). Then the
functional .F in (3.3 1) turns out to satisfy

(aAO)IIuJIev <.F(u)+C for every u E BV(1;R )

where we have set C = f! [a(x) + b(.x)] dx. Hence .F is coercive for the weak* conver-
gence on B V, and by the direct methods of the calculus of variations we get the existence
of a solution of the minimum problem

min(F(tt): U E BV(1; RN)}.

In order to investigate minimum problems with fixed boundary values u(a) = a. u(h) _
f, it is convenient to introduce an interval I' = W. h') with a' < a and h' > h and the
class

A.,,s = (it E BV(I'; RN): u(x) = a forx < u. u(x) = fi forx > h}.

The minimum problem for .F with boundary values u(a) = a and u(b) _ f is then the
problem

mine F(x,u)dx+ F"(x,u;)+J G(x.u)dx: u cA,.p(3.34)
h

fla.b]

rh

a u
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Note that a function u in .Aa, p may jump at the boundary points of 1; in this case we have

u' (a) = fu(a+) - al 8a, u; (b) = IB - u(h-)l Sb,
and therefore

ff F'°(x, u;) = '0(x, u;) + F'°(a, (u(a+) - a]) + F"(b, [P - u(b )])
)

F
a.bl a.b

By using Proposition 2.39 of Section 2.3 we obtain that under assumption (3.32) on F
there exist two positive constants c and co such that

ib
F(x. r )dx+J F"(x, uq) 2: cllullav - co

Ia.b11

for every u r= .Aa,p. Therefore, in this case we do not need assumption (3.33) on G in
order to obtain the coerciveness estimate.

Summarizing, we have found the following existence results.

Theorem 3.15 Let F(x, p) be a function satisfying the approximation formula of
Theorem 3.12 of Section 3.3 (compare also Remark I of Section 3.3) and inequality
(3.32). Then the minimum problem with fire boundary conditions.

hmin rF(x,ii)dx+J F' (x,us)+ jbG(x,u)dx: u E BV(1,RN
1JJu (a.b) a

admits a solution provided that G(x, u) is a non-negative Borel function which is lower
semicontinuous with respect to u and verifies inequality (3.33). On the other hand the
minimum problem with fixed boundary conditions,

F(x, u) + u) dx : u E .Aaj ,f'F(x fG(X.mi f r) dx 4 f
a .b) Jll

admits a solution even if the function G does not satisfy inequality (3.33).

Remark 2 If F(a, ) and F(b, ) have a superlinear growth, then

Fx(b, P) = F '(a. p) oo ifp00-
jo ifp=0

so that problem (3.34) can be written in the usual way:

fF(x. JG(x.mir) dx + f F" (x. u) + it) dx :
a.b)

U E BV(I; RN), u(a) = a, u(b) _ A}.

In the following examples we will show that in general variational problems with a
linear growth may admit solutions which are not in H (, 1.
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i Let ! be the interval [-1, 1 ] and let f : I -+ R be the function defined by

_ 1 ifx>0
f(x) -1 ifx <0.

For a given positive real number k we consider the functional

.Fk(u) = f [lu'l + klu - f(x)i] dx.

The functional Fk can be defined for every u E B V(1) by setting

.Fk(u) = flu'IIMW + k f lu - f (x) I dx.

Therefore the existence theorem 3.15 applies and furnishes a solution of the minimum
problem

min(.Fk(u): u E BV(I)). (3.35)

We will show that fork > I the only solution of problem (3.35) is given by u(x) = f (x),
and thus u it H1-1(1). We present the argument in three steps.

Step 1. It suffices to consider functions u E NBV(I) with (u(x)1 -< 1 for every x E I.
Indeed it is easy to see that for every u E NB V (1) the function u defined by

v(x) := max( -1, min{u(x), 1))

furnishes a smaller value for the functional .Fk.

Step 2. We may restrict ourselves to functions u E NB V (1) which are non-decreasing
on 1. In fact if I u I < 1 on I. it is easy to see that the function v defined by

_ 1inf(u(y): y > x) if x < 0
v(x)

sup(u(y): y <x) if x > 0

is non-decreasing and provides a smaller value for.Fk.

Step 3. If k > 1, the only solution of the minimum problem (3.35) is u = f . Indeed.
setting

a = lim u(x), f = lim u(x),
I I x-). 1

we have that a > -1, f rr< 1, and

r
.Fk(u)>_ I lu'+k fola+lldx+k fl10-1ldx

= fl-a+k(2+a-S)=2k+(f -a)(1 -k).
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Moreover, the inequality above is strict if u 96 f. Since f > a (by step 2) and k > 1 we
obtain

.Fj(u) > 2k + 2(1 - k) = 2

with a strict inequality if u 0 f . Finally, by the fact that Xk (f) = 2, we obtain that for
k > I the only solution of the minimum problem (3.35) is it = f.

With similar arguments the reader can show that for 0 < k < I the only solutions of
(3.35) are the constant functions it = c with tcl < 1, and fork = I the solutions are all
functions of the form

rs (.r) = Jc l if x < 0
C2 ifx>0

with-I <ci 5c2<1.
2 Let a : [0, 11 -o- R be a non-negative measurable function. We claim that for suitable
choices of M > 0 and of the function a(.r), the minimum problem

t

min If
U

does not have any solution; see Giaquinta, Modica, Sou6ek [ 1141. In fact if u E H"(0. 1)
were a solution, Euler's equation would yield that

a(x)u' - c (3.36)

I+ a(x) I U12

for a suitable constant c. Thus the solution it has to be non-decreasing if M > 0.
Moreover, we infer from (3.36) that

0 < c < infc (3.37)

where inf denotes the essential infimum on (0, 1). Solving (3.36) with respect to u' we
are led to

t/2

U'(X)
C2

(a'-(x) - cZa(x)

whence

I ( r2 IP
M , dr. (3.38)Ju'(x)dx f a`(.r)-c2a(x)

The function c -211(12(X)_(.2a (x) I is increasing with respect to C. and reaches its maximum
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for c = infer, on account of (3.37). Because of (3.38) we obtain

M <
I inf a

1I2

J dx.a2(x)-a(x)infa (3.39)

Thus, to achieve a contradiction, thereby proving the non-existence of an H'- 1-solution,
we choose a(x) in such a way that the right-hand side of (3.39) is finite; then (3.39) is
violated if M is chosen sufficiently large.

Note that the integrand

F(x, p) = 1 +a(x)I p12

satisfies all assumptions of the lower semicontinuity theorem 3.14 if a(x) is continuous;
hence if we require that in addition

a(x) ? a > 0 for all x r= (0, 1)

for a suitable positive constant a, the existence theorem 3.15 yields that the minimum
problem

min { f 1 vl'l-+ a(x)u2 dx + f a(x)Iu
I

+ a(0) Iu(0)I + a(l) I u(l) - MI: U E BV(0. 1)} (3.40)

has a solution. Note that problem (3.40) can also be written as JJJ

(
min {

ft1
+a(x)ti2 dx + ( a(x)Ius l: u E BV(F ),

l 0 JJto.II

u(x)=0 forx <0, u(x)=M forx> 1}.
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REGULARITY OF MINIMIZERS

In this chapter we discuss the regularity theory of minimizers of one-dimensional vari-
ational problems in the class of absolutely continuous functions or, more generally, in
the Sobolev spaces H t "'

In Section 4.1 we treat variational integrals .F(u) the Lagrangians of which have
polynomial growth of order m > 1. We shall prove that the minimizers in H" are as
regular as the integrand allows them to be; in particular they are of class C' or real
analytic, if the Lagrangian F is of class C' or real analytic.

In Section 4.2 we prove Tonelli's partial regularity theorem which describes the
regularity properties of minimizers of class AC.

In Section 4.3 we discuss the so-called Larrentiev phenomenon that was considered
in Section 3.2. Moreover, we present several examples due to Ball-Mizel [21 ] and Davie
[76] which show that Tonelli's result is optimal. Furthermore, we see from the examples
that singularities have to occur if we consider minimizers for general integrals in AC.
This will conclude the discussion that we begin in Section 4.2 with Mania's example.

4.1 The regular case
The main result of this section is the following regularity theorem.

Theorem 4.1 Let I = (a. b) be a bounded integral in R, and let F(.r, it. p) be a La-
grcmgian of class C2 defined on 1 x RN x RN, N > 1, satisfying the following conditions:

(1) there are constants co. ci > 0 such that for all (x, z. p) E 1 x RN x RN
colPI'" < F(x, Z. P) < c,(1 + (4.1)

(ii) there is a function M(R) > O such that

IF,(x,z,p)I+IFp(x,z,p)I M(R)(l+IpI2) (4.2)

for all (.r, z. P) E 7 x RN x RN with x2 + 1z12 < R2;

(iii) for all (x, z, p) E l x RN x RN and all t E RN - (0) we have
FP, P, (x, :, 0. (4.3)

Let C he the class of functions v E H "' (I, RN). I = (a, b), satisfiing the boundary,
conditions v(a) . = a and v(b) and suppose that u E C is a (local) minimizer of the
variational integral

.F(u) :.=
J

F(x, u(x), u'(x)) dx (4.4)
t
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in C. Then u belongs to C2(1, RN) and satisfies the Euler equation LF (u) = 0. Moreover,
if F is class Ck , 2 < k < oo, then u E Ck (7. RN), and u is real analytic if F U. z. p) is
real analytic.

We divide the proof of this theorem into several steps. We begin with

Proposition 4.2 Let it c- C 1(1, RN) be a weak extrental of Y. and suppose that Fp E
C I (U) fora suitable neighbourhood U of the curve (x. it (x ), u'(x)) and that Ft t, (x. 11(x),
u'(x)) is invertible forall x E 1. Then u E C2 1, RN).

Proof We can choose the neighbourhood U of l -graph it in such away that Fpp (x, z. p)
is invertible for every U. z, p) E U. By Proposition 1.9 of Section 1.1 there is a constant
vector c E WV such that we can write

F,(x, u(x), u'(x)) = 7r(x) for all x E I

where

,r(x) := J F, (t, u(t), u'(t)) dt + c. (4.5)
a

On account of the assumption on it and F we have it r: C1(7 ). Thus the mapping
G :7 x WV - RN defined by

G(x, p) := Fp(x, u(x), p) - ,r(x)

is of class C1 (7 x RN, RN) and satisfies

det G,(x, u'(x)) 0 0 for all x E 1

since Gp(x, u'(x)) = Fpp(x, u(x), u'(x)) for all x E 1. Since p = u'(x), x E
is a solution of the equation G(x, p) = 0 the implicit function theorem yields u' E
C1(1, RN). 0

If F is of a higher regularity class, then the implicit function theorem furnishes better
regularity for u. The following result is fairly obvious.

Proposition 4.3 Suppose that the Lagrangian is of class C4, 2 _< k < oo, on a
neighbourhood U of the 1-graph of a weak extremal u E C 1(1, RN) of F, and that
det Fpp (x, z, p) O for all (x, z. p) E U. Then it a Ck(1, WV). Moreover, u is real
analytic if F is real analytic on U.

Now we want to extend the result of Proposition 4.2 to weak Lipschitz extremals of
F. Here we need to assume that Fpp is positive definite because our proof requires a
global inverse of the map (x. z. p) - (x, z, y) with y = Fp(x. z, p). This follows from
the fact that u'(.r) is no longer continuous, and therefore we cannot merely operate in a
small neighbourhood of po = u'(xo) for any x0 E I.

Proposition 4.4 Let u E Lip(l. RN) be a weak Lipschitz extremal of F and suppose
that Fp is of class C1 on 1 x RN x RN and that Fpp(x, z. p) is positive definite on
7x RNxRN.Then uECWT RN).
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Proof Consider the mapping 40 : (x, z. p) --* (x. z, q) of 7 x RN x RN into itself
defined by

%P (x. z, p) :_ (x. z. Fp(x, z, p)).

Since Fpp > 0, a standard reasoning shows that %P is a C I -diffeomorphism of 7 x RN X
RN onto its image V := 41(1 x RN x RN). By virtue of Section 1.1, Proposition 1.11,
there is a constant vector c E RN such that

Fp(x, u(x), u'(x)) = 7r(x) a.e. on 1 (4.6)

where Jr(x) is again defined by (4.5). Clearly we have Jr E AC(1, RN). n'(x) _
F (x, u(x). u'(x)) a.e. on 1. and Jr' = U. u') E L=(1, RN). Set

a(x) := (x, u(x), u'(x)), e(x) := (x, u(x), 7r (x)).

The function a(x) is defined a.e. on 1, whereas e(x) is defined for all x E 1, and (4.6)
implies that

4i(o(x)) = e(x) a.e. on 1. (4.7)

In order to show that 4r- (x. u(x), 7r (x)) is well defined for all x E 1, we have to prove
that e(x) E V for all x E 1. This is not a priori clear since (4.7) merely yields e(x) E V
a.e. on I, whence e(x) E V for all x e I since e(x) is continuous on 1.

Since u e Lip(l, RN) there is a constant k > 0 such that

Iu(x)-u(t)I <kix - I forallx, E 1.
Then we obtain

Iu'(x)I < k a.e. on 1. (4.8)

Consider the set

1C:_(4'(x.u(x).p): xEl xRN.Ipi <k1.
Clearly 1C is a compact subset of V, and by (4.7) and (4.8) we have e(x) E IC a.e. on
1. Since e(x) is continuous on 1 it follows that e(x) E K C V for all x E 1: thus the
function

(x, u(x), v(x)) := 4'-1 (e(x)), x E 1.

is well defined and continuous. On the other hand relation (4.7) implies that

(x. u(x), u'(x)) = o(x) _ '-'(e(x)) a.e. on 1

and therefore

u'(x) = v(x) a.e. on 1.

Then

u(x) = u(a) + J u'(t)dt=u(a)+J v(t)dt

and we obtain that u e C1 (1, RN). Now we can apply Proposition 4.2 and arrive at
u E Cz(1, RN). D
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Proof of Theorem 4.1 Because of (4.1) the integral F(v) is well defined for any v e C.
Let rp E Lip(1, RN) and E E R. and suppose that I gp(x)I < Q on I and IV'(x)I < Q a.e.
on 1. Fix some FO with 0 < co < 1, and let IF I < co. Then there is a number R such that

x2 + I u (x) + E rp(x) I2 < R2 f o r all x E 1.

Furthermore,

Iu' + Eg-Im < 2m-t (Iu'lr + Qm)

On account of (4.2) we see that the function

FZ(x,U+EIp.U'+ESp')+Fp(x,U+Efp.u'+erp )

is a.e. dominated by the L I -function

QM(R)(1 +2'"-t(Q"' + Iu'Im)]

Then Lebesgue's dominated convergence theorem yields that O(E) := F(u + Er,) is
of class C t on (-co. co), and since u is a local minimizer of .F(v) in C. it follows that
0(0) < 0(E) for 16 I < Eo << 1 if Sp E C O(I, RN), whence 0'(0) = 0 and therefore

f,
(F.(x,u,u')-(P +Fp(x,u,u')-io')dx=0 (4.9)

for all cP E Cc' (I, RN), i.e. u E AC(1, RN) with u' E LI(1, RN) is a weak H
extremal of F. Furthermore, by virtue of (4.2), we have u, u') E Lt (I, RN).

Then we can proceed as in Section 1. 1, Propositions 1.9 and 1. 11, to show that there
is a vector c E R such that

Fp(x. u(x). u'(x)) = c +
J

FF(t, u(t). u'(t)) dt a.e. on Ix
a

and we arrive once again at eqn (4.6).
Now we can proceed as in the proof of Proposition 4.4 provided that the image set

e(I) of the mapping e : 1 -> R x RN x RN lies in the range of 'V. This is achieved
by assumption (iii), which implies Fp(x, z, RN) = RN, whence V = 1 x RN x RN.
Then the reasoning above yields u E C2(7. RN), and Proposition 4.3 yields the other
statements of Theorem 4.1. 0

The reasoning above actually yields the following result:

Theorem 4.5 If u E H I ,m (I. RN) is a 'critical point' of F. or more precisely, a weak
H t '-extremal, i.e.

S.F(u,rp) =0 forallrp E CC°(l,RN).

then u E C2(7, RN), and u satisfies the Euler equation L F (u) = 0, provided that the
assumptions of Theorem 4.1 hold true. Moreover, U E Cr if F is of class CA, 2 < k < oo,
and u is real analytic if F is real analytic.
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Remark 1 A result analogous to Theorem 4.5 can be proved for solutions u E
(I. RN) of

1,
(A(x, u, u') cp' + B(x, u, u') cp] dx = 0 for all q E Cf°(I, RN),

i.e. for weak solutions u of

dA(x, u, u') = B(x. u. u') in I.

(4.10)

(4.11)

provided that the assumptions of Theorem 4.1 hold, where Fp and F. have to be replaced
by A and B respectively.

We conclude this section with three examples. The first two indicate that a non-
degeneracy condition of F,,, is necessary, while the third example shows that Theorem
4.1 is not optimal.

Every Lipschitz function uo in (0, 1) with the property that up takes only the values
I and -1 is obviously a minimizer of

10
(u'2 - 1)2 dx

in the class {u E 1): u(0) = uo(0), u(1) = uo(1) j. In this case we have
Fpp(p) = 12p2 - 4.

2 A solution of

1

min
J

u2(2x - u')2dx: u e H'-2(0, 1), u(-1) = 0. u(1) = 1

is the function

u(x)_ 0 if-1<x<0
X2 if0<x<I

which is of class CI-1 ([-1. 1]) but not of class C2. Here

Fpp(x, u, p) = 2u2 > 0.

This example was considered in Section 1.1.

3 The integrand of fo (u2 + u2 + e") dx does not satisfy the assumptions of Theorem
4.1 . Nevertheless, by observing that minimizers for Dirichlet boundary conditions exist
in H1-2 (a, b) and are bounded, one can apply a modification of Theorem 4.1 inferring
that minimizers are actually smooth.
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4.2 Tonelli's partial regularity theorem

We shall now discuss regularity of minimizers of general variational integrals. We shall
not require that the integrand F has a polynomial growth m > I as we did in Sec-
tion 4.1, but, for the sake of simplicity, we only treat the scalar case. t 1 The main result
is the following.

Theorem 4.6 (Tonelli's partial regularity theorem) Let F(x. u, p) be a smooth La-
grangian, say, of class C', satisfying Fnt,(x, u, p) > Ofor every (x, it. p). and suppose
that u E A C(a. b) is a strong local minimizer of the functional

b
.F(u) = f F(x, u, u') dx

a

in the class C of all absolutely continuous functions in [a, b] having the same boundary
values as u. Then u has a (possibly infinite) classical derivative [u'(x)] at each point of
[a, b], and [u'] : [a, b] ; R U {+oo, -oo] is continuous. Moreover, the singular set
E := {x e [a, b]: [u'(x)] = :Loo] is closed and has measure zero; finally. it is of class
C0° outside E.

After proving Theorem 4.6, we shall state a few corollaries which yield regularity
everywhere under extra assumptions. Then in the next section we shall present a result
which shows that:

(a) Under the general assumptions of Theorem 4.6, and even assuming that F has a
superlinear growth, the set E is in general non-empty. Indeed, any closed set with zero
measure can occur as the singular set of a minimizer of a suitable variational integral.

Other examples will be discussed in the scholia showing that:

(b) Euler's equation may fail to hold for minimizers in Theorem 4.6.

The proof of Theorem 4.6 uses some classical results concerning the local solvability
of Euler's equations associated with.F and some results of field theory (cf. Section 1.2).
The main ideas of the proof are the following. If at some point the difference quotients
of u are equibounded we can solve classically Dirichlet's boundary value problem with
data u for the Euler equation of F in a small neighbourhood of such a point. Moreover,
since the solution u' of the Dirichlet problem can be embedded into a Mayer field and
the Weierstrass condition is satisfied, u is a minimizer of F in such a small interval and
coincides with u; in particular u is regular in a neighbourhood of our point. Since a is
almost everywhere differentiable in the classical sense, we then infer that the difference
quotients are almost everywhere bounded; hence u is regular in an open set Stp and
E := [a, b] - S2o has measure zero.

Finally, before proving the theorem, we note that Theorem 4.6 obviously applies to
the minimizers obtained by Tonelli's existence theorem 3.7 of Section 3.2, provided that
N=1.

For the reader's convenience we first collect in Lemma 4.7 some standard results
from the theory of ordinary differential equations in the form to be used later.

I t For further results and for the vector-valued catie we refer to the scholia in Chap. 6
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Lemma 4.7 Let F(x. z. p) be a smooth Lagrangian satisfying FPP > 0. Moreover, let
A C R2 be a bounded open set and let M and d be positive constants. Then there exists
an E > 0 such that, if (xo, uo) E A, Ia1 < M. 101 < M. the classical solution u(x. a,
of the Euler equation

-dX FP (x, u, u') + F_. (x, u, u') = 0 (4.12)

satisfying the initial conditions

u(xo; a, 0) = uo + a, u'(xo; a, f) _ fl (4.13)

exists for Ix - xo I < e and is unique. Moreover, we have

(a) u and u' are C 1 functions of x, a,,6 in the set

S:=((x,a.f): Ix - xol < E,IaI <M,I$I <M);

(b) on the set S we have

Iu'(x; a, 0) - fiI < S 4.14)

as
(x; a, i6) > 0, sign a" (x; a, P) = sign(x - xo). (4.15)

Proof Since FPP > 0, solving (4.12) is equivalent to solving

u f (x, U. U')

where f (x, u. p) :_ (- pFP. - F,, + F )/ FPP. The existence, uniqueness, and smooth-
ness assertions, including smooth dependence on the data, then follow from standard
results on ordinary differential equations. Since

8u 8u
a, ) = 1

it easily follows that we can choose e sufficiently small so that (b) also holds. 0
Lemma 4.8 Let in. p. MI be three positive constants. Then there exists e > 0 such
that if (xo. xj) C [a, b], 0 < x i - xo < e, Iuo I < m, and 1(u - uo)/(x i - xo) I <
Mi. then there exists a unique solution u E C2([x0, xi ]) of (4.12) satisfying 6 (xo) =
u(xo), a (x i) = u t , and max[xo.x,1 In(x) -uol < p. Moreover, ti is the unique minimizer
of

x'.F(u: (xo, xj)) := fo F(x, u, u') dx

ver the seto

A:= (u E H'.i(xo.xi): u(xo)=uo,u(xt)=u1. max Ii(x) - uoI < p)
Ixox,I
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Proof Seta := m + p. A = (a, b) x (-a, a), and choose M > max(Mi, 2p), 0 <
S < M - Mt. Accordingly, let c > 0 be as in Lemma 4.7, and suppose in addition that
3ME < p. By integrating (4.14) we find that for x E [xo, xt ]

Iu(x;a,0)-uO-a-S(x-xo)I <S(x-xo). (4.16)

Therefore, observing that by assumption

uo - MI (x - xo) -< u1 -< uo + Mi(x - xo),

we get

u(xt;0,M) ? uo+Mi(xt -x0)+(M-Mt -S)(xt -xo) > ui
u(x1;0,-M) <uo - Mt(xI -xo) - (M - Mi - S)(xt -xo) <ut.

Since au/aj3(xi; 0, /3) > 0 for # E [-M. M], we infer that there is a unique
flo E [-M, M] such that u (x i ; 0,00) = u 1. We now define

u(x) := u(x; 0, fn).

Setting x = xt , a = 0, #0 in (4.16), we obtain

Iut - UO - flo(xt - xo)I < S(xt - xo);

thus

ICI <S+Mi. (4.17)

Therefore, again by (4.16), for x E [xo, x 11:

lu(x) - uol _< (S+IfloI)(x-xo) <(2S+Mt)E <p.

Now suppose that v E C2([xo, xt ]) is also a solution of (4.12) satisfying v(x0) _
uo, v(xt) = ut, and maxlx,,x21 Iv(x) - uol < p. Then for some x E (x0, xi)

v (x) =
ut - UO

xt - x0

and (x, v(x)) E A; thus, applying Lemma 4.7 and in particular (4.14) with (x, v(z))
replacing (xo, uo) and V(z) replacing /4, we deduce for x E [x0, xt]

v'(x)- u uo
S.xt-x0 -

In particular

Iv(xo)I <M1+S<M.

Since, as we have seen, there exists a unique fib r= [-M, M] such that the solution of
(4.12) with initial values u(xo) = uo, u'(xo) = 80 has values ut at xt, we deduce that
v'(xo)=fl,andthus v=u.
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To show that u minimizes F(u; (xO. xt)) in A, we consider the one-parameter family
of solutions (u(.; a, no): lal < M). By (4.16), (4.17) we have for x E [xo, XI ]

u(x;M,fo)-uo> M+(fo-S)(x-xo) > M-(2S+Mj)E > p

and

u(x; -M. flo) - uo < -M + (fo + S)(x - xO) < -M + (2S + M1)E < -p.

Since 8u/8a(x; a, fu) > 0, it follows that u is embedded in a field of extremals that
simply cover the region [xo, x, I x [uo - p, uo + p]. Since Fpp > 0, it follows from the
Weierstrass formula (cf. Section 1.3) that

.F(u; (xo, xt )) > .F(u; (xo, XI))

for all u E A, with equality if and only if u = u. 13

Proof of Theorem 4.6 Denote by C(a, b) the class of absolutely continuous functions
on (a, b) with the same boundary values as u. Then there exists a constant St > 0 such
that F(u) < F(v) for all v E C(a, b) with maxta,bl l u(x) - v(x) I < Si. Let x be a point
in [a, b] where the difference quotients of u are equibounded, or simply where

M(x) := lim inf
u(x) - u(x)I

< +oo. (4.18)
-.x
xeta,bl

x-x

Suppose that x 34 b and take xt > x with 11 - x sufficiently small so that
max.E(x,x,] lu(x) - u(z)l < Si/2. Choose Ml > M(x). By (4.18) we can apply
Lemma 4.8 with xo = x. uo = u(x), p = 81 /2, u l = u(xl), where xt E (7,71)
satisfies

u(xI) - U(z)
< MI.xI -x

Let u be the corresponding solution of the Euler equation. and let u E (a, b) be defined as

u(x) ifx E [x,xt]
u(x)

u(x) otherwise.

Then max[a,b] 14 (x) - u(x) I < 81, and so

F0)-.F(u)=.F(u;(x1,xt))-F(u;(xI,xt))>-0.

Since a is the unique minimizer of F(.; (11,xt)) with u(x,) = U(711), ii(xj), and
max l ii(x) - u (x t) l < 81/2, it f o l l o w s that u = u in [I, x t ] and hence that u E
C2([x, xt]). Similarly, if x 96 a then u E C2([xo, x]) for some xo < T. In particular u is
Lipschitz continuous in a neighbourhood of any 7 E [a, b] for which M(x) < oo, and
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thus by Proposition 4.4 of Section 4.1 u is smooth in a neighbourhood of any such 1.
Since u is differentiable almost everywhere in [a, b] it follows that

f2o :_ (x E [a, b] : M(x) < oo)

is an open subset of [a, b] of full measure, and that u e COO(Sto).
It remains to show that the classical derivative [u'(x)] of u(x) exists everywhere and

is a continuous function with values in 1R U (±oo). In order to prove this, it suffices
to consider points xo in E := [a. b)\f2o. We first assume that xo E (a, b); then, by
an appropriate reflection of the variables x and (or) u we can assume without loss of
generality that there exist points y j -> xo, y j < xo such that

lim
u(xo) -- u(x j) = +00.j-- xo - }j

In this case, the existence of [u'(xo)) = +oo and the continuity of [u'(x)] at xo follows
if we show that for x1 xo, Z j - xo, x j > z j we have

u(xj) - u(zj)
lim +oa. (4.19)
j-. c xj -Zj

Let M, S be arbitrary and apply Lemma 4.7 with uo = u(xO). The solutions (u a. M) :
j a I < M} of the Euler equation form a field of extremals simply covering some neigh-
bourhood of (xo, uo) in P2. Thus for Ix - xoI sufficiently small there exists a unique
a(x) with Ia(x)I < M such that u(x) = u(x: a(x), M), and by the implicit function
theorem and (4.15) a depends continuously on x. Clearly a(xo) = 0. We claim that a(x)
is non-decreasing near xo. Then we would obtain

u(xj) - u(Zj) u(xj. a(xj). M) - u(zj;a(zj). M)
xj - zj xj - zj

>
u(xj;a(zj), M) -u(zj;a(zj), M)

x, - I
= u'(wj; a(zj). M) > M - S

where x j > w j > z j and we have used (4.14). Since M, S are arbitrary we obtain relation
(4.19).

Let us finally show that a(x) is monotone near xo. Suppose this is not true; then there
exist sequences a j -r xo. b j -' xo. c j - xo with a j < b j < c j and a(aj) = a(c j )
a(bj). For large j the solution vj(x) := u(x: a(aj). M).aj < x < cj, satisfies

vj(aj) = u(aj). vj(bj) 96 u(bj). vj(cj) = u(cj). max Iu(x) - vj(x)I 81.

(a) cfl

Since vj is embedded in a field of extremals, Weierstrass's formula yields

F(x, vj, v') dxf
G1

F(x, u, u') dx > a;
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contradicting our hypothesis that u is a strong relative minimizer. Thus a is either non-
decreasing or non-increasing near xo; the latter possibility is excluded by noticing that
by integrating (4.14), compare (4.16), we obtain

a(ye)
< 3 + M -

u(xo) - u(yj)

so that a(yj) < 0 for j sufficiently large. By observing that a similar argument applies
if xo = a or xo = b, we complete the proof of Theorem 4.6. O

As a consequence of Theorem 4.6 we now have

Theorem 4.9 Suppose that F(x, u, p) is a smooth Lagrangian with superlinear
growth, i.e.

lim
F(x, u, p) - 00

Ip1-'OO IPI

whose Hessian Fpp satisfies Fpp > 0. Let U E AC(a. b) be a strong local minimizer of
the functional

b
.F(u) = f F(x. u, u') dx

JJa

with respect to its own boundary values, and suppose either that

Fz(-, U. U') E L1(a. b) (4.20)

or that

Fx(-, u, u') E L1(a, b). (4.21)

Then u is smooth and satisfies both the Euler equation

dxFp(x,u,u')+F.(x.u.u') = 0

and the DuBois-Reymond equation

(4.22)

dx
[F(x, U. u') - u'(x)Fp(x, u, u')] = FAX. U, u'). (4.23)

Proof Let 120 be a maximal interval in Q := [a, b) minus the singular set E of u. By
Theorem 4.6, u is smooth and satisfies (4.22) and thus (4.23) on 120. If (4.20) holds, by
integrating (4.22) we find that

IFp(x, u(x), u'(x))I < const forx E 92o; (4.24)
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if (4.21) holds, we deduce from (4.23) that

lu'(x)Fp(x, u(x), u'(x)) - F(x, u(x), u'(x))I < const forx E 120. (4.25)

The result then follows since superlinear growth and convexity imply

I Fp(x. u, P)I - oo pFp(x, u, p) - F(x. u, p) -' oo (4.26)

as I p I -- oo, uniformly in x E [a, b] and u in a compact set of R. Therefore from (4.24)
or (4.25) we see that u' is bounded in S2o, and thus S2o = [a, b]. Let us prove (4.26). By
the convexity of F(x, u, p) in p we have

F(x, u, 0) > F(x, u, p) - pFp(x, u, p):

hence, for p 36 0,

P F(x, u, p) F(x, u, 0)
T P-1

Fp(x, u,
p)

> 1 PI 1 PI

Therefore for fixed x, u we deduce that

lim Fp(x, u, p) = +oo lim Fp(x, u, p) = -oo.p -oo

Since Fp is increasing in p, we also have, for example, for p > M that

F(x, u, p) > F(x, u, M).

From this we deduce that the first limit in (4.26) is uniform in (x, u) in a compact set;
otherwise there would exist a convergent sequence (x j , u j) and a sequence p j +00
such that lim inf j_.ap Fp(x j, u j, p j) < oo, in contradiction to

lim inf Fp (x j, u j, p j) > tim inf Fp (x j , u j , M) ? Fp (x, u. M)
j--s-00 j-+oo

for all M. Similarly one proceeds if p --* -oo.
To prove the second claim in (4.26) we note that

F(x, u, 1) ? F(x, u, p) - (p - 1)Fp(x, u, p),

and hence

PFp(x, u, p) - F(x, u, p) ? F(x' u' P) p
- F(x, u, 1) Pp p-1 p-1

provided p > 1. Therefore, for fixed x, u

P [PFp(x u P) - F(x, u, p)) = oo.

Uniformity in x, u follows as before by observing that pFp - F is increasing in p. 0
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An immediate consequence of Theorem 4.9 is the following regularity result.

Theorem 4.10 Let F(x, u, p) be a smooth Lagrangian which has superlinear growth
and satisfies Fpp > 0. Suppose either that F depends only on u and p, F = F(u, p),
or that F depends only on x and p, F = F(x, p). Then any minimizer u E AC(a. b) of
F(u) with respect to its own boundary values is of class C'([a. b]).

Remark I Finally we remark that if I < m < oo then the previous theorems still
hold (with the same proof) if we replace AC by H 1.m both in the statements and in the
definition of strong relative minimizers.

4.3 The Lavrentiev phenomenon and the singular set

In this section we shall show that the strict inequality

inf(F(u): U E AC(a, b), u(a) = a, u(b) = P)

< inf(F(u): u E Ct ([a, b]), u(a) = a, u(b) _ P)

may even hold for variational integrals .F whose Lagrangians F(x, z, p) are superlinear.
This is the so-called Lavrentiev phenomenon, discovered by Lavrentiev in 1926 (see
[ 161 ]). and investigated later by the Tonelli's school in Pisa (cf. (2711), and in particu-
lar by Mania [ 178], who presented a polynomial example of a Lagrangian F(x. u. p)
exhibiting the Lavrentiev phenomenon.

We shall now discuss the Mania example in detail, together with some further
extensions.

Consider the variational integral

r1
F(u) :_ ( (u; - x)'u,6 dx. (4.27)

0

Obviously u(x) := x 113 is a minimizer of F(u) in the class

C(0. 1) :_ (u E l): u(0) = 0. u(1) = 1)

as we have F(u) > 0 for all u E C(0, 1) and F(x 113) = 0. The function X113 is also a
minimizer of F in the class C(0. 1) n C 1(0. 1).

We shall now show that there exists a positive constant rl such that F(u) > ?)for
any function in C(0, 1) with bounded derivatives in (0, 1). Moreover, for any sequence
of Lipschitz functions NO in C(0. 1) which converges uniformly to x 113 we have

F(uk) -+ oc. (4.28)

In particular we obtain

0 = inf F < inf F.
Clot) Cco.t)nLip<o.l)

(4.29)

Formulae (4.28) and (4.29) show that x 1 13 cannot be approximated in energy by functions
in C(0. 1) n Lip(O. 1), and also that, in extending the functional in (4.27) from the class
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C(0.1) fl Li p(0, 1) to all of C(0. 1) by means of the Lebesgue integral, we have picked
some semicontinuous extension of F which is not the best extension. i.e. not the largest
semicontinuous extension .F of F. Recall that this largest extension .F is given by

F(u) = inf f lim inf u E C(0, 1) fl Lip(0, 1), u u on [0, 1]} .

(Notation: 'u,, = u on [0. 1]' means that the functions u converge uniformly in (0. 1]
to u.)

The situation changes completely if we do not require that the approximating
sequence {un) satisfies the boundary conditions un(0) = 0, un(1) = 1. Then u(x) :=
x 113, 0 < x < 1, can be approximated by functions un E Lip(0, 1) such that un = u
on [0.1 ] and .F(un) -+ F(u), e.g. by

x 113 ifl/n<x<1
un(x):'

In-W if0<x<1/n.

The reader may verify that one can even choose a sequence of function un E
C' ([0, 1 ]) such that un =3 u in [0, 11 and F(un) -i F(u). Moreover. we can approxi-
mate u(x) = x'i3 by un E ca 1) fl C'(0. 1) such that u,, u and F(un) F(u),
simply by taking un = u. These considerations show that the most reasonable general-
ization of the problem

min(F(u): u r= C(0. I) fl Lip(0, 1))

is in general not the problem

min{F(u) : is E C(0. 1)).

but the problem

(P)

min(F(u): u E C(0.1)). (P)

The functional F is called the relaxed functional associated with F. and problem
(15) is the relaxed minimum problem associated with (P).

In general we have F(u) < .F(u), and the class {u E C(0. 1):F(u) < oo) may be
considerably smaller than C(0, 1), although every H'-1(0. 1)-function can be approxi-
mated in the H','-norm by functions of class Lip(0, 1) or even of class Cl([0. 1]).

It is an interesting question whether F has a Lagrangian, i.e. whether 7 can be
represented as an integral of the form

1

F(u) =
fo

F(x. u(x). u'(x)) dx.

We do not treat this question but refer the interested reader to Buttazzo-Mizel [S 1]
and to the survey paper of Buttazzo-Belloni [48] where a complete discussion of this
topic is given. Some remarks concerning this question can also be found in the scholia.
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A final remark is appropriate. One might think that all the trouble with the functional

.F stems from the fact that the Lagrangian F(x. z. p) = (z3 - x)21 p16 is not genuinely
superlinear and degenerates for u (x) = x 1/3. This, however, is not the case.

In fact. consider any real number a with I < v < 3/2, then x 1/3 E H 1-° (0, 1).
Therefore we can find a positive constant E such that

e
r

Dx1I31°dx < n.

Now set

f[(u3F1(u) -X)2U6+EIuI°Jdx.

Obviously

TI (u) > tJ

for all u in C(0,1) with bounded derivatives in (0, 1). whereas

F1(uo) < n foruo(x) = XI/3,

i.e. (4.29) holds with F replaced by .F1. The integrand F1 (x, u, p) of f1 is now non-
degenerate, convex in p, and satisfies

E I pl' < F1 (x. u. P) < c1 IPI6 + c2

where cl is a positive constant depending on the upper bound of u. We shall see later that
similar phenomena may also occur for integrands F(x, u, p) which are smooth, convex
in p, and satisfy growth conditions of the type

IP12 < F(x, u, p) < IPI" + C2,

with m>2.
Let us now prove our claims.
Denote by Co the curve (x. x113), 0 < x < 1, in the x. y-plane, and by r1 and r2

respectively the curves (x, Ix1/3), (x, 4x1/3), 0 < x < I (see Fig. 4.1).
Moreover, for any t E (0.1) we denote by Rf the region in the x, y-plane which

is bounded by I'1, r2, and the straight lines x = I; and x = 24. It is easy to see
that in RR the expression (y3 - x)2 has an absolute minimum given by e(4) _i2.
Let (x, u(x)), X1 < x < x2, be an absolute continuous arc contained in R4 such that
(X1, u(xl)) = (', Then

F(u, (XI, x2)) = ft22(u3(x) - X12Iu'I6 dx >
4912 /'X2 (u'I6

dx.
64 J/Xi
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24

FAG. 4.1.

x

By a simple convexity argument one can easily see that the integral fX; Iu'16dx takes
its minimum value for a linear function u in (xi, x2). Hence we have

.f(u, (XI, x2)) ? u(xt))6(x2 - x1)-5

Therefore, if (xt, u(xt)) 4tt/3) and (x2, u(x2)) Y2) with 4(24)1/3 <

Y2 < (24)1/3, then

f(u, (x1, x2)) 49 2 . _ 5 ( 1 ( 74 ) l / 3 _ 1 X1/3 1

4

= 4_649(21/3\-
1)61;-t

64

The last expression is positive and tends to +oo as t goes to zero; hence there is a
constant j 7I such that F(u , (x t , x2)) > ?11 if we take 1; E (0, 1/2) into account.

If again (xt, u(x1)) _ (, $z1/3) as stated, but (x2, u(x2)) = (x2, x?/3) with
:5 x2 :s 21;, then

f(u, (XI, X2)) ?

A(x2 ) (x2 )-5(x2 - )-5
(21

x2/; - 4 t/3)
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Thus, for any fixed 1; E (0, 1) we see that A(x2. ) -+ +oc as x2 , whence the
minimum of A must be either at x2 = 24 or at some x2 = at with I < a < 2. In the
first case we have again.F(u, (xt, x2)) > rlt. In the second case we obtain

d

dx2

and a must satisfy the equation

A(x2, )I1,=«t = 0'

(a-1)-Sot 2/3t 1a1/3- 1 =0
2 4)

which is independent of and does not admit any solutioriz E (1, 2).ThusF(u, (xi. x2))>
172 where '72 is a positive constant.

Finally if (x, u(x)), 1 < xt < x < x2 < I, is an arc lying between F1 and r2 with
end points on r2 and I71 respectively, then

axt/3 _< u(x) < 2X1 3 x1 < x < X2, u(xt) = qxj /3.
U(X2) =

whence

.F(u, (xl , x2)) > 2-2 (x2 - xl)-g ;x2 3 - 4x

andagain.F(u, (xt,x2))>F13where i is a positive constant. We set 17 := min(rii. 92-173).
Now, if (x, u(x)), 0 < x < 1, is any smooth arc C with u'(x) bounded in (0, 1), then

C is below F1 in some right-neighbourhood of the origin. Therefore C has a maximal
arc (x, u(x)), xt <_ x < X2, lying between I'1 and r2 and with end points on 1.2 and F1
respectively. If 0 < xt < 1, then.F(u) > min(r11, 172); if 1 < xl < 1, then .F(u) > q3.
Thus we obtain

t

f(u3 - x)2lu'6 dx --

for all Lipschitz functions u in (0, 1) with u (O) = 0. u (l) = 1.
From the previous discussions one readily sees that if (uk ] is a sequence of Lipschitz

functions with uk (0) = 0, uk(l) = 1, converging weakly in H1-1 to x 1'3, then.F(uk)
tends to +oo.

We conclude this section by proving that any closed subset E of [a, b] of measure zero
can occur as the singular set of a minimizer of a variational integral whose Lagrangian
F(x, u, p) has a superlinear growth and actually satisfies

F(x, u. p) > colp12 for every p

where co is a positive constant. We have
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Proposition 4.11 Let E be a closed subset of [a, b] having measure zero, and set

CO. 1) := (u c- AC(a, h): u(a) = 0, u(b) = 1).

Then we can find functions v E C(O, 1), and (p. * E C°0 (R), as well as a number e > 0
such that

* > 0,1(r" > 0 on R,* o v c- C°O(R).

and that for

F(x. u, p) := [(p(u) - Sp(v(x))]21b(p) + ep2

we have

(i) The functional .F(u) f b F(x, u, u') dx attains its inftmum on C(0, 1).
(ii) If u is any minimizer of F in C(O, 1), then the singular set of u is exactly E.

(iii) Lavrentiev's phenomenon occurs:

inf F < inf F.
C(0,1) C(0.1)fLip

Proof To construct the functions v, rp, *,we choose a sequence (Uk } of open sets of R
such that

mess Uk < 2-k. Uk+l C Uk. nkUk = E.

and a sequence of functions (gk} C CI(R) such that

O:5 gk:5 l. gk=0 on R" - Uk. gk=1
Now we set

x Pb

g:=1+>gk a:= 1 gdx.
k=1 a

on Uk+1.

Clearly we have

g - 1 E L2(R), g E C°O(R - E), g > I on R, g > k on Uk+I.

Finally we set

(t) :=a1 g(x)dx fort E [a, b].fv

One can easily see that

v E C(0, 1). V E L2(a. b). V E CX ([a. b] - E)

v'>a-1 on[a,b)

V >ka-1 onUk+,.

(4.30)

0
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Let F := v(E): then F is a closed and nowhere dense subset of [0. 1]. Setting
V :_ (0, 1) - F we can write

00

V_UG"
"=l

where (G") is a sequence of compact sets such that G. a G"+i. Let hn be of class
C110 (R), satisfy h" = 0 outside G", h" > 0 on R, and h" > 0 on G"_1, and define

0

r

y,"(r) := f h.(x)dx;

then Sp" E C'(R) and Sp,, o v e C°C([a, b]). For each n we choose S. > 0 such that, for

S.I&,p"(t) 2-", S"I D't(9, o v)(t) 2-" fort E (a. b].

and we define

V = 8" 9)";
n

this series and all its derivatives converge uniformly on R. Since (P' = E Sh" and
therefore Sp' > 0, we conclude that

Sp a COO(R), V o v E COO([a, b]), (p is strictly increasing on [0, 11.

For every t E [0, 2a) we define

q(t) := inf([{p(x) - rp(y)12: x, y E [0, 11. kx - y) > t/2a). (4.31)

Since rp is continuous and strictly increasing on [0, 1), q is continuous and increasing
on [0, 2a]. q(0) = 0. and q(t) > 0 for 0 < t < 2a.

F o r k = 1, 2, ... , let dk := dist(E. R - Uk) so that d" decrease to zero. Define p on
(0, oo) by

p(dn) := (n - 2)a-'/8. n = 3A.-
extendingextending p to be constant on [d3, oo) and linear on each interval [d"+1 . d" ], n =
3, 4, .... Then p is continuous and decreasing, and we have p(t) -). +oo as t -> 0.
Taking (16) into account we obtain

v'(t) >- 8p(dist(t. E)) for everyt E (a, b] - E. (4.32)

Furthermore, p is strictly decreasing on (0. d3], and has a continuous, decreasing inverse
function on (a-' /8, +00)

h(t) :--
t

p-'(t)q(p-'(t))'
Thereby we define a positive, continuous, increasing function h on [a-' /8, +oo). We
extend h to be continuous and increasing on 10. +oo). with h = 0 on (0. /f] for some
46>0.
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Finally, for t E R, we define

(t)2 k"/i(t):=h(1)+Eh(n+1)(n

where k are even positive integers chosen in such a way that the power series has an
infinite radius of convergence. Then we have i/r(t) > h(n + 1) for t E [n, n + 11. n =
1, 2, ... , whence

,/r(t) > h(t), t > 0. (4.33)

and* E C°C(18).* >0,*">_0.*(0)=0.
The key to the proof of Proposition 4.11 is in the following result:

Suppose that u E C(0. 1) and that for some to E E the derivative u'(to) exists and is
finite. Then

f

b

yo(u) := [ro(u(x)) - co(v(x))]2cp(u'(x)) dx.

u(to) < v(to), to < b.

or

u(to) > v(to), to > a.

Suppose now that u(to) < v(to), to < b: a similar argument works in the other case.
Since to E E, it follows that V (to) = +oo while u'(to) is finite and u(to) < v(to). Thus
we can find a number r with to < r < b and

u(r) - v(to) <
a

[v(r) - v(to)l. (4.34)

Moreover, since v(b) = u(b) = I we can find an s with r < s < b such that

u(s) - v(to) = 1[v(s) - v(to)1 (4.35)

and

u(t) - v(to) < 1[v(t) - v(to)], r < t < s.

Then for r < t < s we have

v(t) - u(t) > -[v(t) - v(to)] >- (t - to)/2a

since v' > a by (4.30). Using (4.31) we then obtain

[QP(u(t)) - ro(v(t))]2 > n(t - to). (4.36)
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On account of (4.32), (4.34), (4.35). and the fact that v(r) < v(s) for r < s, we arrive at
rs to

u(s) - u(r) ? 4[v(s) - v(to)) > 2 J p(t)dl. (4.37)
0

On the other hand

u(s)-u(r)=J u'(t)dt=J u'(t)dt+J u'(t) dt (4.38)S

r G H

where

G := It E (r, s): u'(t) < p(t - to)), H := (r, s) - G.

Then

Now if t E H, then by (4.33)

10

I u'dt < 1 p(t)dt. (4.39)
c o

1&(u'(1)) > h(ur(t)) >
u'(t)- (t - to)n(t - to)

since u'(t) > p(t - to) implies p-1(u'(r)) < t - to. Hence

IH
- t)q(t - to)1(u'(t)) dt

fs(t - tp(v(t))12*(u'(t)) dt
r

< (S - to)F0(u)

where we have used (4.36). Combining this with (4.37). (4.38), and (4.39) we obtain
1:-to

p(t)dt < (s - to)Fo(u),

and since p(t) > a /8 for all t we deduce that

Fo(u) ? a-1/8,

as required.
We are now ready to complete the proof of the proposition. Choose e > 0 in such a

way that

8a
jb,2<

l/E.

and observe that
b

F(v)=EJ ur2dt <a_1/8
a

since Fo(v) = 0. Assertion (i) follows from Tonelli's existence theorem. Let u be a
minimizer of I in C(0. 1). Then F(u) < .F(v) < a-' /8. whence Fo(u) < a-1 /8, and
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the result above yields that the singular set Eo of u contains E, and (iii) holds true. To
complete the proof we have only to show that E0 contains no points outside of E.

First we note that if u is a minimizer of F, then u is monotonically increasing on
[a. b]. Otherwise, we can find points to. tt with a < to < tj < b such that u(to) = u(tt )
whereas u is not constant on [to. ti ]; then we can diminish .F(u) by making u constant
on [to, tj 1. Suppose now that E0 - E is non-void and let t E E0 - E. We can assume
that t is an end point of an open interval J C [a, b] on which u is smooth; we assume
that t is the right end point of J. (If t is the left end point of J we can argue similarly.)
The Euler equation

holds on J. and we have

Fz(, u, u') = 2W'(u)[SP(u) - (p(v)]*(u'),

Fp(.. U. u') = [W(u) - W(v)]2f'(u') + 2Eu.

Now since u is monotonically increasing and t is in the singular set E0 of u. we have
u'(s) -+ oo ass -+ t. s E J. Hence, ass -+ t, s E J.

Fp(s, u(s). u'(s)) -* +oc. (4.40)

If u(t) v(t) we have

I F (x. u(x). u'(x))I < const F(x, u(x). u'(x))

for x close to t and hence F; E L i (s. r) for s close enough to t. In view of the Euler
equation this contradicts (4.40). On the other hand if u(t) = v(t), then we infer from
u'(t) = oo and v'(t) < oo that we can find s < t such that u(x) < v(x) for s <
x < t. Then FF(x, u(x), u'(x)) < 0 for s < x < t, so that by the Euler equation
Fp(x, u (x), u'(x)) is decreasing on this interval, again contradicting (4.40).
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SOME APPLICATIONS

In this section we shall discuss a few applications of direct methods to some significant
examples with the aim of illustrating the existence and regularity results of the previous
sections.

Reversing the original idea that minimizers may be selected among solutions of
Euler's equations satisfying given boundary conditions, the direct methods and the reg-
ularity theory, developed in Chaps 3 and 4, provide existence and regularity of solutions
of boundary value problems associated with Euler's equations of one-dimensional van-
ational integrals. A few examples will be discussed in Section 5.1.

In Sections 5.2 and 5.3 we shall discuss the variational approach to eigenvalue prob-
lems for Sturm-Liouville operators and the vibrating string problem. The important role
of the vibrating string problem in the development of mathematical analysis and in par-
ticular in the process of definition of the concept of function, in the development of the
theory of Fourier series and eventually of the theory of Hilbert spaces is well known. We
shall also discuss briefly estimates for the first eigenvalue of linear operators.

In Section 5.4 we discuss the one-dimensional (non-parametric) obstacle problem
as the easiest example of a series of constrained variational problems which lead to
so-called variational inequalities.

In Sections 5.5 and 5.6 we shall discuss a few simple applications of direct methods to
the existence of periodic solutions, and in particular to the existence of periodic solutions
of Hamiltonian systems on energy-level sets.

Section 5.7 will deal with variational problems which do not satisfy the coercive-
ness assumptions; thus the direct methods cannot be applied, and some compatibility
conditions have to be added in order to provide the existence of a solution.

In Section 5.8 we describe a general framework to treat optimal control problems. In
the case of one-dimensional problems we present a general existence result for optimal
pair state control.

Finally, in Section 5.9 we discuss existence and regularity questions for parametric
variational problems.

5.1 Boundary value problems

Consider the variational integral

pt rt

2 f (v2 + v2) dx - J ,f v dx (5.1)
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where f is a given function in L2(0. 1). TonelIi's existence theorem, or simply observing
that

j(+v2)dx

is the square of the norm in Ho'2 (0, 1) and hence is lower semicontinuous with respect to

the weak convergence in the Hilbert space Ho (0, 1). while ff f v dr is continuous with
respect to the weak convergence in Ho (0, 1), yields at once the existence of a minimizer
of (5.1)in Ho.

Indeed, for all E > 0

F(u) >_

and, for e = 1/2,

1/2
1

112

(J'u2d)(u '2 + u2) dx -- J f'` dx
0

i f2dx.f(uF2 +u2)dx - j 101 u2dx - I16 fo

.F(u) > 4 I (u'2 +u2)dx _f f2dx.

Since for all qp c- Hol (0, 1) the function F(u + r(p) is differentiable with respect to t. the
minimizer u (which is unique because of the strict convexity of F) satisfies the Euler
equation

tit F(u + t(')!r-o = 0 for all v E Ho (0, 1)

which amounts to

1
I pt
(u'o'+urp)dx= J fopdx

a
for all (P E Ho (0, 1). (5.2)

Also, the regularity of u follows from the general results of Chap. 4, but in this case it
follows actually more easily, In fact, from (5.2) we deduce that u solves (in the weak
sense of distributions) the boundary value problem

- u" + u = f in (0, 1)

U(O) = u(1) = 0.
(5.3)

In particular:
G) Since f E L2(0, 1) and u E HO (0. 1), from (5.3) it follows that u" E L2(0, I ),

i.e. U E H2(0, 1); by induction we then find that if f E Hk(0, 1) with k E N, then
u E H1+2(0, 1)
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(ii) If f E C((0. 1]), since every function in Ht(0, 1) belongs to C((0, 1]), we
have that u" E C([0, 11), i.e. M E C2([0, 1]). As before we get, by induction, that
f E Ck ([0, U) gives u E Ck+2([0. 11).

Let us now replace the homogeneous Dirichlet conditions u (O) = u (l) = 0 by
non-homogeneous conditions, i.e. let us consider the problem

-u"+u=f in(0,1)
U(O) = a. UM = P.

(5.4)

By considering a smooth function uo such that uo(0) = a and uo(1) _ f, for instance
considering the linear affine function through the points (0, a), (1, f), we see at once
that (5.4) is equivalent to the homogeneous Dirichlet problem

-u"+u`= f+uo - uo
u(0) = u(1) = 0,

(5.5)

where we have set u = a+uo. Equivalently, problem (4) can be treated by minimizing the
variational integral .7' in (1) on the closed convex set, actually the linear affine subspace

C(a, f) := (v e H'(0, 1) : v(0) = a. r(1) =,6).

Both approaches of course yield similar results to those of the homogeneous case treated
above.

Suppose now that f belongs to Co([0, I]) and that u E H 1 (0, 1) is a weak solution
of (5.4), i.e. U E C(a. P) and (5.2) holds.

As we have seen, u then belongs to C2([0. 1]). Let xo E [0, 1] be a point where u
attains its maximum. If xo = 0. we have u(x) < a for all x E 10, 1]; if xo = 1, we have
u(x) < P for all x E [0, 1]; otherwise 0 < xo < 1, and then u'(xo) = 0, u"(xo) < 0,
and hence

u(xo) = f(xo) + u"(xo) <- f(xo)

Therefore we conclude that

u(x) < max }a, fl, sup f (x)} for all x E [0, 1]. (5.6)
(o.1)

Similarly we deduce that

min {a, 6, inf f (x) } < u (x)
(o.l) - for all x E [0. 11. (5.7)

These inequalities are known as maximum principle. They in fact hold for weak solutions
of (5.4), under the weaker assumption that f belongs to L°O(0, 1) and therefore u is
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not necessarily of class C2. The simplest way to see this is by means of the so-called
truncation method. It consists in the following. Set

k = max la, A sup f ).
(0.t)

As we have seen in Chap. 2 the function

I

(f - k)u(k) dx.(a(k))2 + (u(k))2) dx = io t

belongs to H' (0, 1), and actually to Ho (0, 1). Choosing W = u(k) in (5.2) we get

f t tea(k) dx +
J

' uu(k) dx = rI fu(kl dx,
0 0

1
and, since f - k < 0,

I

u(k)(x) := max{u - k, 0)

)

((uk)2 + (u(k))2)dx < 0.

i.e. u(k) = 0, which means u < k, namely (5.6). Similarly one proves (5.7) and we can
state

Proposition 5.1 (Maximum principle) Let I = (0, 1) and let u e H' (0, 1) be a weak
solution of (5.4) with f E L°G (0, 1) and boundary data u(0) = a, a (1) = P. Then

min {a, P. inf f } < u(x) < max {a. P, sup f } for all x E 1.
(0.)) (0.1)

In particular

(i) ifu>0on al and f >-Oon1.thenu>0in1:
(ii) ifu = 0 on 81 and f E L°C(1). then

and more precisely

IIUIIL-v) < IIfIIL' 1)

inf f < u(x) < sup f for all x e 7;
t

(iii) if f (x) 0 on I. then

haHL'c(I) <_ IIuIIL'(at)
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We now consider the homogeneous Dirichlet problem for a second-order linear
operator in 'divergence form', i.e.

- (pu')' + ru' + qu = f in 1 := (0, 1)
(5.8)

U(0) = 0, u(1) = 0

where p e C1(I), r, q E C0(7), f E CO(t) (or f E L2(1)) are given functions and we
assume that

p(x) > a > 0 for all x E 1. (5.9)

Often the differential operator -(pu')' + ru' + qu is referred to as the Sturm-Liouvile
operator.

In analogy with the above the weak formulation of (5.8) is:

Find It E Ho (0, 1) such that

I
Notice that every second-order linear differential operator

au"+bu'+cu, a EC'(1),bEC°(1).

can be written in the divergence form above, i.e. as a Sturm-Liouville operator, as

(au')' + (b - a')u' + cu.

Observe, however, that the weak formulation (5.10) makes sense even if p is just a
continuous function on 1.

Here an extra difficulty appears, as the bilinear form

a(u, rp) := I (pu'(p' + ru'rp + quip) dx
JJI

is not symmetric, and thus (5.10) cannot appear as the Euler equation of a variational
integral. We shall see how in this case a simple trick allows us to reduce problem (5.8)
to a variational problem. We introduce a primitive R of r/ p. i.e. a function R E C 1(1)
such that

R'= r
p

and set = e -R. The equation in (5.8) can be equivalently written after a multiplication
by as

-Cpu"-Cp'u'+Cru'+(qu =Cf
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or else

-(CPU,), + Cqu = sf

since C'p + Cr = 0.12 Thus we are reduced to study problems of the type

- (pu')' + qu = f
u(0) = u(1) = 0

161

(5.11)

where p. q. f satisfy the same regularity conditions as above and the coercivin, condition

p(x)>v>0 forallxE7.

Note that now the bilinear form

b(u. SG) := I (pu'{p' + quip) dx

(5.12)

is symmetric, and arises as the Euler operator of

2 + qv2) dx.

Suppose now that q > 0. Then, using Poincare's inequality, we see that the variational
integral

2
f(pi+gti2)dx - f fvdx

t

is coercive in Ho (I) and precisely

.F(V) > 41IvII , - cIl f IIL2(I)

In fact for any positive e we have

jr(v) > 2
J

i>' dx -11.f Ilc=ul111,11 =u)
r

2 f .1 dx - co11f 01)

>_ v f v c°IIIIh12 2 !.-t!) 2E Val

and hence (5.13) follows by taking E = v/2.

(5.13)

121n the weak formulation (5.10) this amounts to replacing 9 by Stp.
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The lower semicontinuity of F with respect to the weak convergence in Ho and the
coercivity now allow us to conclude at once with the existence of a minimizer of F(v)
in HJ (1). The minimizer u is then a weak solution of (5.11), i.e. it satisfies

b(u. rp) = ffcodx for all yo E Hp (I ), (5.14)

and one can easily verify that it is unique. Actually by means of the truncation method
one can see that a maximum principle holds.l z Finally, from (5.14), i.e. from

f pu'ce'dx = f(f -rqu)pdx for all (p E HH(1),

we deduce that pu' belongs to H 1(1); hence u' = I/ ppu' belongs to H1(1). Conse-
quently, we deduce that u belongs to H2(1) if f c L2(I), and u belongs to C2(1) if
f E C°(1). and it satisfies (5.11) in the classical sense.

We notice that if q < 0. the method breaks down; for instance, the problem

-u"-n2u=0 in (0.1)
u(0)=u(1)=0

has the infinitely many solutions csin Yrx.
As we shall see in the next section, r2 is an eigenvalue of the operator -it" with

zero boundary values on the interval (0, 1).
A similar approach also works for the Neumann problem. For instance, it is easily

seen that for f E L2 (1) there is a unique minimizer of

1 rl (0 +
u2

-) -
f

fu dx

in H 1(1); moreover, it satisfies for all cp e H1(1) the equality

r1f (USG + ucp) =
J

f cp dx. (5.15)
1 0

In particular (5.15) holds for all So in Hj (1); thus u E H2 (1) and hence it E C 1(7 ), and
-u" + u - f = 0 on 1. Integrating (5.15) by parts we find that for every cp r= H 1(I )

l (-u"+u - f)cpdr+ti(1)y,(l) -ti(0)cp(0) = 0.

Since the first integral is zero we then conclude that

a(l)W(1) - it(0)cp(0) = 0 for all cp E H1(1).

13Notice that the linearity of the Euler equation plus a maximum pnnciple imply umquenev,
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i.e. u (1) = u (0) = 0. Therefore we have solved the problem

-u"+u=f on (0,1)
«(0) = u(1) = 0.

Similarly, by minimizing the variational integral

f t

2(et2+u2)dx-1 fudx+au(0)-Pu(1)
t

one solves the problem

-u" + u = f on (0. 1)
ii(0)=a, t(1)_0.

(5.16)

Analogously we can treat mixed problems, where in one end point we prescribe
Dirichlet and in the other end point Neumann conditions, or periodic boundary value
problems, provided the associated energy is lower semicontinuous and coercive, i.e. we
avoid eigenvalues. But we shall not detail all these cases and we leave them to the reader.
We only want to mention that for solutions of problem (5.16) the following maximum
principle holds:

inf f< u (x) < sup f for al I x E I
I

as the reader might easily verify.

5.2 The Sturm-Liouville elgenvalue problem

The problem we want to investigate in this section is the following. Given a Sturm-
Liouville operator L on a bounded interval (a, b). i.e.

Lu := -(pu')'+qu

with p E Ct ([a. b]), q E C0([a. b]). where

p>v>0 for all xE[a,b]

and. for the sake of simplicity, q 0, we are concerned with the eigenvalue problem

-(pu')' +qu = ku
u(a) = u(b) = 0.

(5.17)

A being a real number. Values A for which problem (5.17) has a non-trivial solution
are called eigenvalues of the differential operator Au := -(pu')' + qu with Dirichlet's
boundary conditions, and the non-trivial solutions corresponding to an eigenvalue I are
called eigenfunctions associated with I.

Of course, in (5.17) we can replace the Dirichlet boundary conditions by Neumann
or mixed conditions: we leave the analysis of those eigenvalue problems to the reader.
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As we have seen in Section 5.1 every weak solution of (5.17) is in fact a classical
C2-solution; thus we should not worry about regularity, and we can work in the weak
Ho -context. Moreover, for reasons that will become clear in the sequel of this section.
it is convenient slightly to generalize problem (5.17) in the following form: find I and
u, u 1 0, such that

-(p(x)u')' +q(x)u = Xa(x)u
(5.18)

u(a) = u(b) = 0,

a (x) being a continuous and strictly positive function in [a. b] while p(x) and q (x)
satisfy the same assumptions as above. (Note that the assumption q(x) > 0 can be
omitted since we may add a term ca(x)u with a positive constant c to both sides of the
differential equation.)

The basic observation in approaching (5.18) is the following. Consider the Hilben
space Ho (a. b) and any closed linear subspace V of Ho (a. b). The general existence
results of Chap. 3 in conjunction with the continuity of the functional fa au2 dx in L2
yield at once

Proposition 5.2 Let V be a closed linear subspace of Ho (a. b) different from the trivial
space (0). Then the functional

jb
.F(u):= +qu2)dx

assumes its inftmum on the set

fW :=VnIuE H0(a.b):audx= 1}
111

in at least one element of W.

In fact Proposition 5.2 can be easily proved without appealing to the general results.
Let NO C W be a minimizing sequence, i.e.

.f(uk) --> A = inf.F(u).
W

Clearly (uk) is equibounded in Ho (a, b). Now we observe that the quadratic form F(u)
is derived from a symmetric bilinear form A(u, v) on Ho (a, b) by

.F(u) = A(u. u)

where

thus

Au, v) := J (pu'v' + quv) dx:
a

a(uk) = A(uk, uk) = A(Uk - u. uk - u) + 2A(u, uk) - A(u, u)

2A(uk, u) - A(u. u).

From the last inequality we deduce that .F is lower semicontinuous with respect to weak
convergence in Ha (a, b) and that a weakly converging minimizing sequence is in fact
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strongly converging in Ho (a, b). Hence, passing to a subsequence, uk --I. u weakly and

strongly in Ha (a. b) and f b auk dx -> fb au2 dx, i.e. fa au2 dx = 1.
We now define inductively a sequence of closed linear subspaces of Ho (a. b) as

follows: set

V
fa

b

I := Ho (a. b). W1 = VI n { u : au` dx = 1

Then Proposition 5.2 yields the existence of an element u 1 E W1 such that

.F(u 1) = A(u 1. u 1) = A l := inf {.F(u) : u E WI).

Next we define V2 as the closed linear subspace of all vectors in Ho (a, b) which are
.a-orthogonal' to u I, i.e.

rr

L
b

V2 {u E Ht(a.b): auul dx = 0j
ll rl

n{u: =1}.
I

Again Proposition 5.2 yields an element u2 E W2 with

.F(u2) = A(u2. u2) = A2 := inf{.F(u) : u E W2).

Thus we proceed by induction and at the nth step we have the subspace

{uEHt(a.b):j
h
auu;dx=0 i=1.2,....n-l}

( /'b 1

J au2dx=1}
a JJ1

and we find an element u E W. with

.F(un) = A(u, 1 := inf{.F(u): U E

Then Vr+1 will be defined as

rr
b

Vn+1 uEV.:
ll

Ja auu;dx=0 i=1.2.....n
JJJ

Since

(( j={uEV,:
l

1J
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we obtain

and therefore

Some applications

W1 DW2JW;D...DW.DWn+i D...

A) <A2 <... :5 X. _< 4+1 <... _
Moreover, the sequence {un } is 'a-orthogonal', i.e.

f
b

dx = Bnk. (5.19)

We now claim that An, u are for every n r= N respectively the eigenvalue and eigen-
function of the Sturm-Liouville operator Au = -(pu')' +qu with Dirichlet conditions.
This is a consequence of the results of Section 1.2, as can be shown as follows. If

b a(u; + Erp; )2 dx = 1, we find thatVi E V1, e 0, and L

.F(ui + Erpi) > Ai

whence
b

A(ui +Erpi.ui +Etpi) ? Ai f a(ui +Egii)2dx for all pi E Vi.
a

Developing this in a we get
b r b

2E
r
IA(ui,(Pi)-Aif auirpidx]+E2lA(Qi.cpi)-Ai ( acp; dxI >0
I. a L .1u

for all c E R. and this implies
b

Aui.o) -AJ auirpidx=0 for all (pi E Vi.

In conjunction with (5.19), we then arrive at

A(ui. Uk) = Ai&ik (5.20)

and hence

b

A(ui. (p) - Ai f ouivpdx = 0 for all td E Hp (a. b). (5.21)
L

which says that ui is a weak solution of (5.18) when A = Ai.
Thus we have proved that the sequence of consecutive minimum problems

( b

mini f (pti2+qu2)dx: u E
t a

defines a sequence {(An, un)) of eigenfunctions un and eigenvalues A.
Now we want to show that the system of the (An. un) is complete in the sense that

if (A, u) is a solution of (5.18) with u 96 0, then A must be one of the numbers An, and
u must be a multiple of un. This is expressed by saying that A is a simple eigenvalue.14

14Notice that eigenvalues corresponding to periodic boundary conditions are not simple: for instance.
A = n2 is a double eigenvalue of u ' + Au = 0, with eigenfunctions sin nx, cos nx in (0.21r ).
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We first prove

ltm L° = +x. (5.22)

Otherwise the sequence {1°} would be bounded and we could extract a subsequence
(u,,, ) converging weakly in Ho (a, b) to some it. Then (passing to a subsequence) we
would have

If
a (u - U,,, )2 dx -,1 0 as i --> oo

whereas (5.19) would imply that

for k0n
a

and therefore

jb
a(u - u°)2 dx =. 2 for all n,1

u

a contradiction. We now prove that every v e HH (a, h) can be developed as a a-Fourier
series, i.e.

Y = EC""

i=1

where c, are the a-Fourier coefficients of u with respect to u,, i.e.

C, J (Tvu, dx.
a

Set

n

v _ C,u,.
:=t

Clearly v - v belongs to V,,.t t, and we infer from the minimum property of An+t that

b

A(v - v,,, v - vn) ? kn+1
J

a(v _ vn)2 dx. (5.23)
°

The relations (5.19) and (5.20) imply that

fb( b n h h

v av2dx- cZ= J av2dx- forvdx (5.24)
° u

n

(5.25)
,_t
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Because of (5.22) there is some N such that An > 0 for all n > N. Hence we infer from
(5.23) and (5.25) that

f

b

0 < a(v - v)2 dx < v)

f
b

a(v-vn)2dx-+0

jb bj
a

or equivalently

E 2av` dx = ci .
1b
a 1=1

From (5.25) we also obtain

A(vn. vn) = D;c? < A(v, v)
i=1

Consequently, the series E,°_°_I Aic'7 also is convergent. Thus we have

ba ;=m+I
n

A(vn-vm.vn-Vm)= A; CJ --,- 0
i=m+l

(5.26)

(5.27)

(5.28)

if n > m and it. m -+ oo. On account of the coercivity of .F, we see that { vn) is a Cauchy
sequence in Ho (a. b) and in view of (5.27) we finally conclude that vn -+ v in Ho (a. b).
Moreover,

x
A(v. v) = Did.

i=1

Finally, consider an arbitrary solution (A, u) of (5.18). Then we have

f
b b

A auui dx = A(u, ui) = Ai) aulu dx
a
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whence

f

b

(A-A,) ouu, =0 for all i.

Consequently, if ),:A A, for all i, it follows from (5.28) that

f
b 00 rb

out dx = E J o uu, dx = 0
r_1 a

whence u = 0. Hence A = A, for some i. To prove that all A, are simple eigenvalues,
let us assume that A agrees with two eigenvalues in the sequence {An ). Then we can find
two linearly independent functions RI and 192 which are eigenfunctions associated with
A, and every linear combination

µ19) +YU256 0

is also an eigenfunction corresponding to A. Now we can obviously find numbers k and
y such that

µ191 (a) + yu2(a) = 0

9uj(a)+yuz(a)=0

but, by the unique solvability of the Cauchy problem, we would conclude that µu l + yi 2
is identically zero, contradicting the independence of VI and 192.

Therefore, the completeness of the system (A,,, un) is proved.
We now can summarize the results just proved.

Theorem 5.3 The eigenvalue problem (S.18) possesses infinitely many eigenvalues; they
cluster exactly at oo, and each eigenvalue is simple. A complete sequence {An, un) of
eigenvalues A and eigenfunctions u with Al < A2 < . . . < A. -+ oo can be obtained
by solving the recursive minimum problems

rb l
minIT(u) :=J (pui2+qu2)dx: u E

a )

where

rb
W,,:=V,fl{u: J rru2dx=1}

!!a JJ

and

VI = Ha (a, b)

f
b

ouufdx=0,
JJJ
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In other words,

In _ .F(un) = min :
U

9& 0, u E V,
Ia au-dx

Moreover, the sequence {(An, un)} satisfies the two completeness relations

h O rhr

J
avwdx =

J
avu, dx) awu, dx.

i=1 u u

n

A(v. w) _ A(r, u, )A(w, u, ),

and each v e Hp (a, b) can be written as a 'Fourier series' in the form

D

fa

b

v c,u,, c, . = avui dx.

Moreover, notice that we have Al > 0 whenever q > 0.

The quotient

(5.29)

.F(u)

fbau'-dx

is often referred to as the Raleigh quotient.

Remark l It is worth nothing that, actually, the Fourier series converges uniformly and
even in suitable classes Ck if v and the coefficients p, q, a are sufficiently smooth. We
also mention that for general boundary value problems the eigenvalues are not necessarily
simple, e.g. for periodic boundary values. The same is true for systems and for partial
differential operators.

The variational characterization of the nth eigenvalue A in Theorem 5.3 requires
knowledge of the previous n - I eigenfunctions u 1, ... , un_ 1; for this reason it is often
denoted as the recursive characterization of eigenvalues. The next theorem provides an
independent characterization.

Theorem 5.4 (Minimax characterization of elgenvalues) Consider n - 1 arbitrary
functions vi, vn_ 1 of class L2(a, b) and let d (vi , ... , vn_ i) be the infimum of the
Rayleigh quotient .F(u) J fb au` dx for all u E Ho (a, b). u 0 0, satisfying

rh

J
i=l,..

a

Then the nth eigenvalue An, defined by (5.29), is given by

An = max{d(vi, .... vii-0).
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Proof Let u, ..... u be the first n eigenfunctions of (5.18) defined in Theorem 5.3.
Set

nU

= E ci ui , ci ER.
i=1

and consider the n - I equations

b
auv;dx=0. i=1... ,n-1.

a

f o r the unknowns Cl , ... , c.. There is a non-trivial solution ct , ... , c which can be
normalized by the condition F"_I c' = 1. Then we have

"jb

and
i=1

and therefore

d(vi.....%,,-t) <A"

Ofor any vt.... , v"-, E L2(a. b). and JA" = d(ut..... U.-J).

To conclude our discussion on the eigenvalue problem for Sturm-Liouville operators
we notice that the eigenvalues depend on the boundary conditions and on the domain. In
particular the variational characterization and the uniqueness of solution of the Cauchy
problem yield that, if A4(a, b) denotes the kth eigenvalue of problem (5.18) for the
domain (a, b). we have

Ak(c, d) < Ak(a, b) whenever (a. b) C (c, d)

with strict inequality if (a. b) is a true subinterval of (c. d).
The weak monotonicity of the eigenvalues Ak(a. b) in dependence of the domain

(a. b) follows at once from Theorem 5.4 since the set of competing functions for the
larger interval contains that for the smaller interval. To prove strong monotonicity we
suppose for instance that c < a < b < d and Ak(c, d) = Ak(a. b). Then we choose a
sequence (Pm) of real numbers S," satisfying

b <#, <P_, <... <Pm <Pm+, <... <d.

Let Ak (c, P.) be the eigenvalues for (c. Pm) and uk E Ho (c, P,") be the corresponding
eigenfunctions. The weak monotonicity property of Xk implies

Ak(c. d) :5 Ak(c, )4m) < Ak(a, b)

whence

AA (c, d) = Ak(c. flm) = At(a. b) for all m E N.

Introduce vv. E H j (c, d) by wm (x) := uk (x) for x E [c. Pm) and wm (x) := 0
otherwise. The unique solvability of the Cauchy problem implies that uk (x) cannot
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identically vanish in a subdomain of (c, P,). Hence, for any m E N, the functions
WI,... , wm are linearly independent. Suppose now that VI..... v,,,-, E H,'(c, d) are
the eigenfunetions to XI (c, d), ... ,. km-t (c, d) respectively for the interval (c, d), and
set w = ci wt + - - + cmwm E Ho (c, d) with ci, ... , cm E R. Then we can determine
(cl...., cm) 96 (0...., 0) such that

rd

J owvjdx=0 forj=l,...,m-I.

Since wu..... wm are linearly independent we obtain w 96 0, and therefore we can also
achieve that

L
aw2dx = 1.

d

Then the minimum characterization of xm (c, d). given in Theorem 5.3. implies that

1m (c, d) < .F(w) for all m e N.

where we have set

F((P) := A(qv. *) and

Moreover, we have

d

A(m. Si) :_ f (p(p'O,'+gp*)dx.

J (pw'jrp'+gwj(p)dx=Ak(C,Pj) or wiVdxf
for all cp E Ho (c, fl j ). Thus it follows for / < j that

A(wj,wt)=Ak(c.d)J owjwldx.

Since A(w j. wt) = A(wt, w j ). this relation holds for any pair (j, 1), and therefore

f(w) _ cjc,A(wj, wt)
j.t=1

d

=Ak(c,d) cjcj awjwfdx = A&(c,d).
j,t=1 `

Hence it follows that

Am(c.d) <))k(c.d) for allm E N.

But this is impossible since ),m(c. d) -+ oo as m --), oo, and thus we have

xk(c, d) < ,tk(a, b) if (a, b) C (c, d), (a, b) 0 (c, d).

Finally, we notice that all the theory depends strongly on the fact that we considered
problem (5.18) in a bounded interval. On unbounded intervals the spectrum of a Sturm-
Liouville operator may be continuous.
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Now we prove the following result for the number of zeros of any eigenfunction u.
(Note that, by definition, u(x) 0 0.)

Theorem 5.5 The nth eigenfunction u of problem (5.18) has exactly n - 1 zeros in
(a, b), and between two consecutive zeros of u in [a. b] there is exactly one zero of
un+1

Proof We proceed in several steps.

(i) Any eigenfunction u can have at most finitely natty zeros in [a. b]. Otherwise there
would exist a cluster point c of zeros of u, whence u(c) = u'(c) = 0 and therefore
u (x) m 0, a contradiction.

(ii) The eigenfunction u r to the smallest eigenvalue A has no zero in (a. b). Otherwise we
consider the smallest zero i; of u r (x) in (a, b) and set v(x) := u t (x) in a < x 5 t
and v(x) := 0 in < x < b. Then v(x) $ 0 in (a, b) and v E Ha (a, b). Furthermore

from Au, v) = Al f' auvdx it follows that

Al = fb(pv2 +gv2)dx
ft' a v2dx

Since A i is the minimum of the Rayleigh quotient among all functions u 0 in
Ho (a. b). it follows that v is an eigenfunction to the eigenvalue Al and v(x) = 0 in

< x < b. This would contradict property (1).
(iii) Suppose that u is an eigenfunetion for (a, b) corresponding to the eigenvalue A.

and let a. P be two consecutive zeros of u(x) with a a < $ < b. Then A is
the smallest eigen slue for the interval (a. P), and it has uj,,,1 as a corresponding
simple eigenfunction. Clearly u(x) restricted to [a. #] is an eigenfunction on this
interval with the eigenvalue A. Let v1 be an eigenfunction for (a. f) corresponding
to the smallest eigenvalue /iI on this interval. If A > p1 then fa auvt dx = 0.
and yr (x) : 0 on (a, P) according to (ii). Since a(x) > 0 it follows that u(x) is
changing its sign within (a, P), which contradicts the assumption on u.

(iv) Suppose that u and v are eigenfunctions for (a. b) corresponding to the eigenvalues
A and u respective) Let a. P be two consecutive zeros of u in (a. b] with a < P
and assume that A < U. Then there exists at least one zero t of v with a < t < $.
Otherwise there would be two consecutive zeros y and S of v satisfying a < y <
a < B < S < b. It is impossible that both a = y and P = S because in this case u
and v were eigenfunctions for (a, f) corresponding to the smallest eigenvalue for
(a, i). This is a contradiction to A < µ. Thus (a. P] is a true subinterval of (y, S],
say, 0 < S, and v(,,, d, is the eigenfunction for (y, S) corresponding to the eigenvalue
it. which is the smallest eigenvalue for (y, 8) according to (iii). Therefore we have

f5(piv2 +gw2)dx
µ=min r

3
.wEHp(y,S), W O

fy' awe dx
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On the other hand it follows that

f, (prig + qu2) dx
il=

fQau2dx

since u(a) = u(S) = 0. Then the function w(x) defined by w(x) := u(x) for
a _<x :5 Pandw(x):=0fory <x <aandP <x <6is of class HH(y,8)and
satisfies

1= Y
a

>µ.
fy, aw2dx

This contradicts the assumption I < µ.
(v) Between two consecutive zeros of un there is at least one zero of un+l . This assertion

follows readily from (iv) applied to u = u and v = un+l, taking An < 1n+i into
account.

(vi) The nth eigenfunction u for the interval (a, b) has at least n - I zeros in (a. b).
By induction this follows from (v).

(vii) The eigenfunction u has at most n - l zeros in (a. b). Suppose otherwise that un has
at least n zeros ti, .. , kn in (a. b). a =: to < t < 2 < < 4n < to+l .= b.
and set I j := [ti-l. tj), j = 1, 2..... n + 1, 1; := fin, I' := (a, l; ). i.e.

wj(x):=kjun(x)for x E Ijandwj(x):=0for
x E [a. b) - 1, 1 < j < n, where k j E P is chosen in such a way that

1.
awfdx=1.

b

Then the functions wl.... , wn are of class Ho (a. ) and satisfy

t
awjwk dx = 8jk

and

r
J

(Px'!wk +gwJwk)dz Jlnajk
a

Choose arbitrary functions v1 , ... , vn- i E L2 (a, l; ). Then we can determine an
n-tuple (ct, C2, ... , cn) E R" - {0) such that w := C2w2 + + CnWn E
Ho (a. ) satisfies

ft

awvtdx=0, 1<1<n-1.
a
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We can normalize (rI .... , c,,) in such a way that c1 + e2 + - + cn = 1, and thus
we also have

1.
aw2dx=1.

Because

4

e "
pH2+gw2)dx = AnbjkCjCk =An

° j.k=l

we then infer from Courant's maximum-minimum principle (Theorem 5.4) that the
nth eigenvalue A,, for the interval I' = [a, fl satisfies AR < A. On the other hand
this principle implies the strong monotonicity property A < A;, since /' = [a, fl
is a true subinterval of [a. b], and we have found a contradiction.

(viii) From (vi) and (vii) we conclude that the nth eigenfunction u for (a. b) has exactly
n - I zeros in (a, b). In conjunction with (v) we infer that there is exactly one zero
of between two consecutive zeros of un, a. P with a < a < b, and we
have un+1(a) 0 0 if a > a and un+I (0) 0 0 if 8 < b. 0

It is an interesting problem to give estimates for the eigenvalues, in particular for
the first eigenvalue. This question is obviously connected with the problem of optimal
inequalities such as the optimal constant in Poincare's inequality. For this purpose, direct
methods as well as field theory and Fourier series are very useful tools. We are not going
to treat this kind of problem in general. but we want at least to mention some simple
results concerning the operator -u".

First let us consider the eigenvalue problem

-u = Au in (a, b)
(5.30)

u(a) = u(b) = 0.

As we have seen, all eigenvalues of (5.30) are positive and the first eigenvalue AI is given
by the intimum of the Rayleigh-Ritz quotient

fbu'dx
Al = inf : u E 0'( ,ab). u 0

L u- d.r

Equivalently, the inverse of AI can be seen as the best constant in Poincarr<'s inequality:

b u2 dx <
fb

i2 dx for all u E Ho (a, b).
A

In this case we have

7r
AI

- -

b-a
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and more precisely

Proposition 5.6 The sequence (.l ] of eigenvalues of (5.30) is given by

2

n2\bna)
n=1,2,...

with eigenfunctions

un(x)=sin nn x-a
b - a

to particular,

jb(b-a J)2 f"u2dx for every u E H(a.b).

and equality holds if and only if u is proportional to the first eigenfunction,

u(x) = C sin n
x-a
b-a

Proof Since all eigenvalues of (5.30) are positive, the general solution of

u"+A.u =0

is given by

u(x) = C sin[J(x - xo)]

where C and xo are the integration constants. By imposing the boundary conditions
u(a) = u(b) = 0 we obtain that vII_(a - xo) and Nf;-L(b - xo) are both integer multiples
of r. which yields the equality

k=n2 \bTa) (5.31)

for some integer n. Therefore, every eigenvalue is of the form (5.31) and the correspond-
ing eigenfunction is given by

sin ntr
x-a
b-a (5.32)

On the other hand, it is easy to see that the functions u in (5.32) and the numbers
Xn = n2(ir/(b - a))2 satisfy the equation

u+ ,Xnun = 0
un(a) = un(b) = 0

and so they are eigenfunctions and eigenvalues of (5.30). Taking n = 1 we obtain the first
eigenvalue )i = (n/(b - a))2 whose inverse provides the best constant in Poincare's
inequality.
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Suppose now that on the admissible functions for f we require only u(a) = 0.
while u(b) is free to assume any value. By Section 1.2 we know that in this case the
Euler equation has the natural condition u'(b) = 0, i.e. the equation for eigenvalues and
eigenfunctions is

-u"=au in (a.b)
(5.33)

u(a) = 0, u'(b) = 0.

The general solution is given by

u(x) = C sin[/(x - xo))

and, im sing the boundary conditions u(a) = u'(b) = 0, we obtain that .(a - xo)
and A(b - xo) - nr/2 are both integer multiples of ir, which yields the equality

A =
\
(nn - 7r/2)2

(5.34)b-a
for some integer n. The corresponding eigenfunction is

x -a
2)Tb-a, (5.35)

On the other hand, the functions u in (5.35) and the numbers x given by (5.34) satisfy
the equation (5.33). Therefore, the first eigenvalue is XI =

s
(tr/(b-a))2, whose inverse

provides the best constant in Poincare's inequality where only u(a) = 0 is prescribed.
Summarizing, we can conclude with

Proposition 5.7 The sequence (An ) of eigenvalues of (5.33) is given by

1
2

It - 17

n-2)
\b It-a) n=1.2,...

with eigenfunctions

un(x)=sin[ 1n- 2)lrxb-a].

In particular,

1.
u(a) = 0,

b 2

u2dx
<4/b-a b

)
J

u2dx for every u E H1(a,b),`\
o

and equality holds if and only if u is proportional to the first eigenfunction, i.e.

u(x)=Csin x.r-a(-
\2 b - a
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We now consider the case when both u(a) and u(b) are free to assume any value.
This corresponds to the equation

-u" = Au in (a, b)
(5 36).

u'(a) = u'(b) = 0

for eigenvalues and eigenfunctions. By a procedure similar to the previous ones we obtain
that the eigenvalues are given by

\z
xn=(n-1)2(b r ) n=1.2....

and the corresponding eigenfunctions are

un(x)=cos((n-
1),,

b - a

Notice that for the first eigenvalue we have k 1 = 0, and the eigenspace corresponding to
AI = 0 is the subspace of constant functions; its orthogonal in L2 (a. b) is the subspace
of functions with zero average in (a, b). The variational characterization of eigenvalues
then yields at once that

rb
inf bu2dx :uEHt(a.b).J udx=0 b7a)2Ia

Thus we may conclude with

Proposition 5.8 For ever u E H r (a, b) with zero average, i.e. such that

rb
J u dx = 0,
0

we have

jbu2dx < b-a\2 /'blu'12dx
a ( Ir J Ja

and equality holds if and only if

x-a
u(x)=Ccos 2rb-a

Similarly, we obtain

Proposition 5.9 For even, u E H 1 (a. b) periodic and with zero average we have

fbu2dx
< (b_a)` f bIu'l2dx- 27r

u(x) = A cos + 623a x) + B sin (62na x) .
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More precisely, as a consequence of the Parseval identity, we find

Proposition 5.10 For every periodic function u E H 1 (a. b) we have

)2fb
fb u2 dx -

(b_ a
Iu'I2 dx <b 1 a

(fb
u

dx)2

b

u(x)=A+Bcos(bIT

X +Csin1 621ax J.

Proof With the change of variable

179

(5.37)

x=a+ba0-

and setting f (0) = u(a + (b - a)/(27r)0). formula (5.37) becomes

\f 2a
f 2 d0 - f

2a I f,12d0
< 2n (I2m f dB J . (5.38)

Expanding f (0) as a Fourier series, and using the fact that, since f E H 1(0, 2n) the
Fourier series converges in the H I -norm, we find that

1 'Of(0)= Ilao+1:(akcosk8+bksink0)
k=I

f'(0) = > k(-ak sinkO +bk coskO).
k=1

Then, by the Parseval identity we get

00f21r

f2dO=n 2ao+F(ak+bk)
k=I

J If'12 d9 = n k2(a+ b)
k=1

and hence (5.38) follows. Moreover, we see that equality in (5.38) holds if and only if

f(0) = 1

2ao+aI cos0 +b1 sin 0.

u (x) = A+ B cos (b2na x 1+ C sin 1 x 1. 0



180 Some applications

As we have seen in Section 2.1 the inequalities

u'I P dx(1' I ull dx c(P q) (fo l

hold for all u e Ho'P(0, 1) and all p, q > 1, or equivalently, by a scaling argument.

(fb
dx) c(p. q)(b - a)'-t/P+t/4

(jb
lu'IP dx) (539)/ l

for all u e Ha"P(a, b). We conclude this section by showing that the best constant c(p, q)
in (5.39) is given, when p > I. by

c(p.q) =
I q(1 + P'lq)'_P

2 (I +q/p')t/q B(1/q 1/p')
(5.40)

where p' is the conjugate exponent of p. I / p + lip' = 1, and B is the so-called beta
function. We recall that the beta function B(x. y) is defined for x. y > 0 as

i
B(x. Y) = fIx- I (1 - t)'-t dt

or equivalently by

it/2
os2r-t 8 sin2`v-' 0 d9.Mx. y) = 2 fo c

It is not difficult to show that, in terms of Euler's gamma function

x
r(x) = ftetdt (x > 0).

we have

r(x)r(y)
B(x,y) =

r(x + y)

We recall also that (for the proofs we refer for instance to Fleming [ 1011)

r(x+ 1) =xr(x) for all x > 0
r(n+1)=n! for all nERJ

B(1/2,1/2) = 1-(1/2) _ .

The result we shall prove is the following.
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Proposition 5.11 Let 1 < p < +oo and 1 < q < +oo. For every u E HH'P(a, b) we
have

rb I/9 /P
t r luI4dxl < I (b-a)t_t/P+l/Q q(1+P'19)IIP (('b`u'IPdx)

a / 2 (1 +q/P')t /gBO1q l /P') a

Proof By the change of variable

x=a+(b-a)t

we may assume that a = 0 and b = 1. The best constant c(p. q) in (5.39) is then
obviously given by the inverse of

I 1/P I

inf
(fo

Iu'IPdx) : u E Ho'P(0, 1),
J

luI4dx = 1 (5.41)
0

or equivalently by

I

q I/q

sup
(J0 lu! dx)

: u E H 1 'P(0, 1). U * 0 . (5.42)
(Jo u'lPdx)I/P °

By the direct methods of the calculus of variations and also taking into account the
compactness of the embedding Ho'P Lq. we see at once that the infimum in (5.41)
or the supremum in (5.42) are attained. By replacing each element u of a minimizing
sequence by Iu I we also see that the infimum in (5.41) (or the supremum in (5.42)) is
attained on a non-negative function u. From the general theory of Section 1.2 we also
know that u is a weak solution of

(lu'jP-2u')'+Auq-1 = 0
U(O)=U(l)=O. u0

in the sense that

10

(5.43)

I

q-1(pdx = 0 for all I E C!(0, 1). (5.44)lu'IP-2u'q,'dx - A fo 1 u

Here the Lagrange multiplier A is given by

f
rA

= Iu'{P dx/
1

Iu IQdx.
0

From (5.43) we deduce in particular that Iu'IP-2u' is an absolutely continuous function.
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Now fix xt < x2 in (0, 1) and choose in (5.44) the sequence apt defined by (it is clear
that (5.44) also holds for all Lipschitz-continuous functions cp with compact support
in (0, 1) )

0 if0<x<x,-l/n
n(x-xt+l/n) ifx, - l/n < x <x,

(pn(x)= I if X1 <x <x2

-n(x - x2 - IN ifx2 < x < x2 + 1/n

0 ifx2+l/n<x<1.

We find that

1r, 1

0 < a uQ-1 dx = lim u4-1 V,, dx
xi n+.x 0

1

lim fIu1v?_2u1Pdx
n-++=

Iu'(X1)l" 2u'(xl) - Iu'(X2)Ip-2u'(x2)

Moreover, the inequality is strict as soon as u does not vanish in (xt. X2). Hence Iu'Ip-2u'
is decreasing in (0. 1). and consequently u' is decreasing in (0, 1).

By possibly modifying the value of I we may normalize the function u so that

maxu=l.
10.11

Multiplying (5.43) by u' and observing that

u'(lu'I" 2u)' = II(Iu'I°)'

we deduce that

p, I u'lp + q u9 = const.

Writing this equation at the point x where u attains its maximum, u(x) = 1, we then
find that 1), 1 , a k

- 1'I'+9u9 = p,lu (x)ip+-q i/ (x) = 9.

and hence

Iu'l = p () - U?).
q
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It is easy to see that the point x is also the unique zero of u'; then we have

u'(1 - uq)-lip = (P'A/q)'IP on (0. z)
-(p'.k/q)t/p on Of. 1).

Consequently, since

r )(I _ u4)-tlpdu =
J

xu'(1 - u9)-)iodr = x(p'a/q)'IP
0 0
to r)

1 (I - uq)-'/Pdu = J u'(1 - uq)-'1pdx = (I - 1)(P Alq)'IP.

z

we find x = 1/2. Therefore,

(p'Alq)t I P = 2 (1 - uq)-t'Pdu = 2B(1 /q 1/P)fo q

and we deduce for u

u'(l - uq)-)1p =
2

B(I/q, l /p') on (0.1/2)
q

u(O)=O. u(1/2)=1.

Thus u is defined implicitly by

and by

fu(x)
{1

7
-Sq)-'IPdx=-r B(1/q.I/p') for0 - x <- 1/2

q

u(x) = u(1 - x) for 1/2 < x < 1.

After some simple calculations we find that

fo

Jo

I 1/2 I Uq P'uq dx = 2
J

Uq dx = 2
fo

-du =
a u' q + p'

' IuIP-1du = (28(1 /q I /P'))PIu Ip dx = 2
1/2

lu Ipdx = 2
1

J fo0 qP-t (q + p')

183

so that the conclusion follows at once by formula (5.42). 0
Remark 2 In the limit case p = 1 it is easy to see that the supremum in formula (5.42)
is not attained on Ho'' (0. 1) but on the function u E B V (R) given by

0 ifx <Oorx > Iu(x)=
1 ifxE(0.1) -
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so that

c(1, q) = 1/2 for all q > 1.

Analogously, when q = +oo and p 1, it is easy to see that the supremum

sup I
Uu

IIILa : u E Ho'p(U 1) u 0
is attained on the function u(x) = 1 - 12x - 11, so that

c(p, oo) = 1/2 for all p > 1.

5.3 The vibrating string

Consider a perfectly elastic string stretched under constant tension r along the x-axis
with its end points fixed at x = 0 and x = L; in this configuration the string is in
equilibrium. The string is permitted to vibrate freely in a plane containing the x-axis so
that each particle of the string moves in a straight line perpendicular to the x-axis. The
amplitude of vibration is supposed so small that the slope of the string at any point is
small at any instant; the elongation consequently is small so that we can assume that the
tension remains constant. We finally assume that the system is conservative, in particular
there is no friction. The transverse displacement at time t of the point x, 0 < x L, is
denoted by w(x, t); thus w(x, t) describes the shape of the string at time t and, since the
string is fixed at its end points, we have w(0, t) = w(L, t) = 0 for all t.

Since the string is perfectly elastic, the work necessary to reach a distorted configura-
tion is merely employed to increase the length of the string compared with its equilibrium
length. Thus the potential energy at a given instant is given by

rL
V=r / (Jl+_I)dx.

0

With the assumption that Iwxl is small, we may expand l + Iw:12 as

1 + Iw I2 = 1 + I Iwr I2 + o(Iww I2),

and, neglecting the higher-order terms in Iw., 12, we may assume that

V = 2r
jL

Iwzl2dx.
Ja

If a (x) denotes the density of the distribution of mass along the string, the kinetic energy
is given by

L

T = aIrvl2dx
0
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and, applying Hamilton's principle. the actual motion of the string is the one which
makes the integral

rr, 1

(T-V)dt -r w)dxdt

2

stationary. The motion is therefore described by d'Alembert's equation

a~'w a(x) a2u.
ax2 r at'-

(5.45)

which is the Euler equation of the preceding integral f i2 (T - V) dt. This Euler equation
is derived in a similar way as in the one-dimensional case. Equation (5.45) together with
the boundary conditions

t) = w(L. t) = 0

and the initial conditions on the position and the velocity

0) = O(x)

i(.r,0) = W(x)
(5.46)

determine the actual motion of the string.
Daniel Bernoulli proposed to attack the problem by searching for solutions in which

every particle executes a simple harmonic motion differing only in amplitude from the
motion of the other particles. Such a motion, which is called an eigenvibration of the
string, is represented by a function of the form

xw(x. t) = u(x) f (t) (5.47)

where u(x) represents the shape factor and f (t) the magnification factor. Inserting
(5.47) into (5.45) we get

r u'"(x) _ f"(t)
(T (.0 u(x) f (t)

(5.48)

Since the left-hand side depends upon x alone and the right-hand side upon t alone, the
only possibility is that both sides be equal to a constant that we denote by -X. Thus
(5.48) implies the two ordinary differential equations

d2u 2

t + Aa(x)u = 0 dt + If = 0

while the boundary condition yields

u(0) = u(L) = 0.
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This argument is often called the method of separation of variables. The first problem

r dz2 + Ao(x)u = 0

u(0) = u(L) = 0

is a Sturm-Liouville eigenvalue problem, and, as we have seen in Section 5.2, it has
non-trivial solutions only for a countable set of eigenvalues

0 <11 <A2 <... <k' <.... Xn --I- x.

with corresponding eigenfunetions u,. For each xn the general solution of

d2 =0
7t.-2

is given by

a cos b sin

where an and b are arbitrary constants. Thus we conclude that for each n the functions

wn(x, t) := un(x)(an cos k t + b sin Int) (5.49)

are solutions of (5.45) satisfying the boundary conditions. Since every smooth function
can be expanded as a Fourier series with respect to u as

x L

x)vun dx,v = ECRU cn :=
fo

v(
i=1

x oc

cos V)-,;t + b. sin ant) (5.50)
M=0 n=1

fits the initial conditions (5.46). In conclusion the actual motion is obtained as the su-
perposition of eigenvibrations.

Clearly the solution (5.49) is periodic in time with period 21r/ Xn and frequency
and the string has the possibility of vibrating with any of the discrete set

of frequencies which are determined by the eigenvalues k,,. The lowest eigenvalue X1
provides the fundamental frequency X1 /2rr of the string and the general motion of a
vibrating string is a linear superposition of the various frequency modes of vibrations
represented by (5.49).
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5.4 Variational problems with obstacles

Consider the variational integral

rb
.F(u) = I F(x. u. u') dxI

with a smooth Lagrangian F(x, Z. p) that is convex with respect to p. For simplicity we
also assume that F(x, :, p) has a polynomial growth m > I (see Section 3.2). By means
of direct methods we have proved in Section 3.2 that F(u) attains its absolute minimum
on each affine subspace of H'.m(a, b)

C(a. b) = [u E H1'" (a. b) : u(a) = a, u(b) _ }.

In exactly the same way one can show that.F(u) attains its minimum on any non-empty
closed convex set K of C(a, b).

Suppose now that u is a minimizer of F on a closed convex set K of C(a, b). In
general u will not be an 'inner point' of K; hence the first variation of F at u need not
vanish in all smooth directions. However, we have Au + (1 - A)v E K for all A E [0, 11
provided that v e K, and as in Section 1.1 it is not difficult to see that the function
0 : [0,11 --, R. defined by

0(A) := -1-[Au + (1 -

is differentiable. Then we conclude that 0'(1) < 0. which leads to the inequality

b

<0 (5.51)
a

for ally K.
Relation (5.51) is called a variational inequality. It has to be satisfied for all v e K

if u is a minimizer for.F on K. Such an inequality is a substitute for the vanishing of
the first variation of F at minimizers of F on the affine subspaces C(a. b).

An interesting example of this kind of problem is the so-called obstacle problem. We
choose a continuous function til' on [a. b) satisfying br(a) < a and *(b) < P. which
is called the obstacle, and consider the subset K* of functions u E C(a, b) satisfying
u(x) > V1 (x) for a < x < b. It is easily seen that Kr, is closed. convex, and non-empty.
Hence the minimum problem

n { 2
jb

mi tu' 12 dx : a E K* } (5.52)
III

has a solution which can be interpreted as the equilibrium position of an elastic string
(under small perturbations) which is forced to stay above the obstacle r and is fixed at
its two end points which lie 'above ttr' (i.e. above the graph of fl. The minimizer u of
problem (5.52) is uniquely determined since the functional 1 f b Ju'I2 dx is strictly convex
on K*. By the minimization procedure we obtain a minimizer u of class H 1.2(a, b), and
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FIG. 5.1.

FIG. 5.2.

therefore it E CO. 112([a, b]). Figure 5.1 suggests that u cannot be better than C l- 1. even
if the obstacle +/r is real analytic, and if fr is less regular than C' we should even expect
less regularity than C', as shown by Fig. 5.2.

We shall now briefly discuss the regularity question for the minimizer it. To this end
we introduce the coincidence set 1 := Jr .E [a, h] : u(x) = flx)) where the minimizer
u of problem (5.52) coincides with the obstacle *. This set is closed (since it and tJr are
both continuous), possibly empty, and certainly I C (a. b) since */r(a) < a = it (a) and
,y(b) < fl = u(b). The complement I' of 1,

I' := {x E [a, h] : u(x) > t/r(x)j.

is open in [a. h].
Weclaim that a"(x) = O on 1'. In fact, if x0 E I'fl (a, b) then there is a neighbourhood

U of ro in (a, b) and a number m > 0 such that u(x) ? m for all x E U. Hence for any
q E C°L(U) and JEJ << I we have u + eV E K*, whence

b
p(x) dx = 0L ii '(x)(

u
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and therefore it e C"-(1' fl (a. h)) and u"(x) = 0 for all .r E 1' () (a. h). Since
[a, a + S] U [b - S, h] C I' for 0 < S << 1, we infer that it E C" (I') and a"(x) = 0
on 1', whereas it (x) = ><i (x) for any x E I. Hence it (x) can be non-regular only at points
of coincidence.

Now we apply variational inequality (5.51) to the Lagrangian F(p) = ;1pJ2. the

confining set K = K* and to test function v = u +(p where tp is an arbitrary non-negative
function of class CC" (a, b). We obtain

J
h

(5.53)dx > 0 for all (o E C,' (a. b) with co(x) > 0.

Let {co j } be a sequence of functions of class C;"' (a, b) with support in a fixed compact
set A in (a, b) which converge uniformly to zero. We choose a function 4) E C" (a. h)
with c6(x) > 0 on (a, b) and c(x) > 1 on A. Then we obtain

-Ej 0(x) < tpf(x) < El0(x) fora < x < h

where (Et) is a suitable sequence of positive real numbers with Et -> 0. Applying (5.53)
to to = Ej 4 ± qJ we obtain

rh b

J
h

J a'(x)4)'(x)dx f u'(x)tp(x)dx E, u'(.x)4)'(.r)dr.-
w u

rh
lim

J
u'(x)So'' (x) dx = 0.lax a

Therefore the mapping T (cp) := fb u'(x)yo'(x) dx, cp E C"(a, h), is a continuous
positive linear functional on CNa, b) equipped with the sup convergence. By Riesz's
representation theorem this implies the existence of a positive measure p such that

Fb b

J u'yr'dx = f tpdµ for all E C,-(a, b).
a u

This relation can also be written as

(5.54)

in the sense of distributions on (a. h). Moreover, from what we have seen above, we infer
that the support of the measure µ is contained in the coincidence set 1. In particular, it
follows from (5.54) that the solution u is a concave function; hence locally Lipschitz on
(a, b). Therefore, as a consequence of the concavity, we have

tr'(x-) ? it'(x+} for everyx E (a. h). (5.55)
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Suppose now that is a point in the coincidence set 1. so that

u(x) - u(t) tJ'(x) for every x e (a, b).

If x < we therefore have

*(x)-Vr(
x- - x -l;

hence

u'(-) S On
provided exists, while, if x > ,

u(x) - u(4) > Ox) - *()
x - t - x - k

hence

u'(+) ? {Ir'(+)

provided that exists.
Suppose now that Tfr' has only discontinuities x E (a, b) satisfying

OX-) < {(r'(x+).

For instance. this is the case if is of class Ct. Then we find that

u'(r ) O c) ¢ :5 u'(t+).

and by virtue of (5.55) it follows that

u'(l ) =

u' (x) is continuous on I and therefore also on (a. b). Thus we obtain the following
result: If 1r E C1 (a, b) then also u E C1((a, b]), and u'(x) = *(x) for all x E I.
Actually we can show that the minimizer u coincides with the concave envelope Mfr of
the function y* defined by

('(x) for x E (a, b)
y*(x) of ifx=a

p ifx = b,

i.e. with the lQwest concave function which is larger than or equal to y*. Indeed, since
u is concave and u > y* we also have u > >%r. On the other hand we have u(x) =
*(x) < j(x) on I, while the function u is affine on every maximal subinterval I of I'
and coincides with y* at the boundary of Z, which implies u(x) < fi(x) on Z.
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Now we are going to prove that u E C j (a, b) if we assume that %r E C i (a, b).
First we show that u E H ac (a, b). For this purpose we introduce the difference-quotient
operator Ah by

Ahu(x) := h fu(x + h) - u(x)]

for h E R with 0 < Ih < S and x E (a + 8, b - 8), 0 < S « 1. It follows that

A-h[112(x),&hu(x)l

= h-21g2(x)u(x + h) + 1)2(x - h)u(x - h) - [ri2(x) + >l2(x - h)]u(x)) (5.56)

for any function q(x), and the analogous identity holds for & -h [72(x)Ah 111(x)]. For any
S with 0 < 2S < b - a we denote by I the interval (a + S. b - 8). Choose some r > 0
with 6r < b - a and some 17 E CI* (12,) with ii(x) = l on 13, and 0 -< n(x) < 1. Then
we fix some h with 0 < IhI < r and some e with 0 < 2E < r2 and set

v := u +42, (P:= EA-h[112Ah(u - *)] (5.57)

Then V(x) = 0 for x - a << 1 or b - x << 1, x E [a, b], and therefore v E C(a, b). On
account of (5.56) and (5.57) we have

v(x) = *(x) + [u(x) - tf(x) +(P(x)l

= *(x) + 11 - Eh-2[112(x) + 172(x - h)]}[u(x) - }(r(x)]

+ Eh-2{r12(x)[u (x + h) - >I'(x + h)] + r12(x - h)[u(x - h) - *(x - h )]),

and this implies v(x) ? V/ (x) for a < x < b, whence u e K*. By virtue of (5.51) it
follows that

-E r U,,&-h[t12Ah(u' - *')] dx < 0.
Q

Dividing by c we arrive at

fJ
b

u'(-A-h)(n2Ah (u' dx -< 0.
a

This inequality can be transformed into

f

b

112(Ahur)Ah(u' - *') dx <
0,
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and by Schwarz's inequality we obtain

h

ll2IAhui'I2dx < rl2(Ahlt')(eh*')dr

r r-[fh
t?`'ILhu'I'drfl2Iht/!'I2dx

cr J

This leads to

h

l!hu'I2dxn2f
b

I
(h-3r /'b-2r
I Iohu'I'`dx < J IOh*'!`dx.
u-3r a-2r

Since * E b) there is aconstant 0such that I*'(y)-*'(x)I < xI
for all x. Y E and thus it follows that

f
h-2r

IAI,*'hdx <r2(r)(b-a) =: c*(r).
-2r

Therefore we find that

f
h-3r

IAhu'I- dx < e(r)
u-3r

for any h satisfying 0 < Ih I < r. In particular we have

b-3r

u-3r I011rrtt'I2 dx < c*(r)

(5.58)

for all sufficiently large integers n. Hence there is a sequence {hj } of positive real numbers
with h. -+ 0 such that Ah Jtr' tends weakly in L2(Z3r) to some function w E L2(Z3r).
From

J a,

tpLh,u'dx =
-J'Itt'o-h,ydx

we infer that

r yow dx = - J u'V' dx.
Ty T ,

Thus w is the distributional derivative of u' on 2;r and we have u" E L2 (Z3r); that is,
u E Me (a, b) and therefore u E b) and u' E AC(Z) for any subinterval Zof
(a, b). Since u(x) = '(x) on the coincidence set I we obtain u'(x) = *'(x) a.e. on I.
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and therefore u"(x) = ""(x) a.e. on 1, whereas u"(x) = 0 for all x E 1. This implies
u" E L°G([a, b]) and u E C" ([a. b]), as we have claimed.

In essentially the same way we can prove analogous regularity results for solutions of

obstacle problems posed for the general variational integral Y(u) = fQ F(x, u, u') d x
with an elliptic Lagrangian F. i.e. for Lagrangians F(x. z, p) with a positive definite
Hessian Fpr,.

5.5 Periodic solutions of variational problems

Periodicity is an important feature of many motions in nature and especially in celestial
mechanics. Therefore it is not surprising that there is a large and very interesting literature
on the existence of periodic solutions of non-linear systems both in Lagrangian and
Hamiltonian formalism. Fortunately there are excellent recent books dealing with this
subject and in particular with applications of variational methods to this topic. such as
for instance Ekeland 1931. Mawhin-Willem [ 1811. Rabinowitz [2151, Struwe [247]. so
that we could be relieved from entering this area. But while we refer the interested reader
to the literature, we would nevertheless like to discuss some very simple examples in this
section, where we look for periodic solutions with a specified period. In the next section
we shall be interested in periodic solutions of autonomous systems whose period will
not be specified in advance.

For simplicity, we restrict our attention to the problem of the existence of periodic
solutions of the non-autonomous system

li(t) = VV(t, u(r)) in (0. TJ. (5.59)

i.e. to the existence of functions u E C2 ([0. T]; RN) satisfying eqn (5.59) and the
periodicity boundary conditions

u(0) = u(T). ii (0) = 6(T). (5.60)

We shall always assume that the potential V(t, x) is a smooth function, say of class
C'. from [0. TJ x RN into RN which is periodic with period T in the variable t. (This
periodicity assumption is not really necessary, but otherwise seeking a solution with
period T seems quite artificial.) Note that here V V means taking the gradient of V (t. U)
with respect to the u-variable only.

Formally (5.59) is the Euler equation of the variational integral

T

E(a) r r2Ju' + V(r, u(r))1 dr, (5.61)
o L J

and we would like to discuss a few elementary conditions on V which ensure the existence
of a minimizer of (5.61) in the class of smooth T-periodic functions. For the sake of
simplicity we shall denote by HT the subclass of Ht-2(0. T; RN) of periodic functions
in the sense that u(0) = u(T). i.e.

HT := (u E H1.2(0. T; RN) : u(0) = u(T)).
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Notice that we do not require the relation «(0) = ti(T), a kind of natural boundary
condition, which in principle is meaningless in H 1.2. It is worth mentioning that even
for the very special case

ii=f(t)

with V (t, u) = f (t)u there is an obvious necessary condition, f T f (t) dt = 0. More
generally we observe that a necessary condition to solve (5.59) is that there is a function
u : [0, T) -+ RN satisfying (5.60) and fT V V (t, u (t)) d t = 0.

Our first result is the following.

Proposition 5.12 Suppose that the potential V (t, x) is periodic in x, i.e. that there exist
linearly independent vectors rt, ... , rN E RN such that

V(t,x+rj)=V(t,x) for all tE[0,Tj and all xERN , j=1,....N.

Then the functional E(u) in (5.61) has at least one minimizer u in H. Moreover, u is of
class C2 in [0, T] and solves (5.59), (5.60).

Proof Since V is smooth and periodic we deduce that V (t, x) ? h(t) for some function
h E Lt (0, T), actually for some constant function h(t). Consequently there is a constant
c i such that

`
E(u) > 2 J Iii12 dt - cl for all u E H.

0

It follows that there exists a constant c2 such that any minimizing sequence (Uk) satisfies

I
T

(5.62)Ili 12 d t < c2 for all k c- N.

We now write Uk = Wk + uk where

and therefore

T
Uk := T f uk(t)dt,

Jo

T
T 10 udt = 0.

It follows from (5.62) and Poincare's inequality (Section 2.1) that

11ukNif ,._ < C3 for all k E N

and some constant c3 > 0. On the other hand the periodicity of V yields

E(u + rj) = E(u) for all u E HT, j = 1.... , N;



Periodic solutions of variational problems 195

hence also the sequence (vk I defined by

N

vk := uA + 11 AJkTJ, A Jk E Z.

J=1

is a minimizing sequence for E, and we can therefore assume that

N

Iuk1 EIrJI.
J=1

Consequently we have found a minimizing sequence which is equibounded in H1,2, and,
since E is lower semicontinuous with respect to weak convergence in H 1.2, the existence
of a minimizer of E in Hy. follows at once.

By the results of Section 4.1 we readily deduce that the minimizer u belongs to
C2([O, T], R') and satisfies (5.59) and obviously u(O) = u(T). Thus it remains to
prove that u(0) = ri(T). Multiplying (5.59) by any smooth and T-periodic function rp
and integrating by parts we find that

rT
0 = J [-tip + VV(t, u)(p] dt + h(T)p(T) - u(0)rp(0) = [ii (T) - u(0)] - 0p(0)

0

which immediately yields ti(T) - i(O) = 0 since tP is arbitrary. 0

Problem (5.59), (5.60) becomes more complicated if we want to deal with non-
periodic potentials V. For this case we shall state two results. The first one deals with
the scalar case N = I and illustrates an early result by Lichtenstein [ 172] and Tonelli
[265], while, the apparently more recent second result (cf. Mawhin-Willem [181 ]) deals
with the case N > 1.

Proposition 5.13 Suppose that N = 1, and that for IxI larger than some fixed value I
and for all t c- [0, T] the inequality

xVx(t.x) > 0 (5.63)

holds true. Then the functional E(u) in (5.61) has at least one minimizer u on HT.
Moreover, u is of class C2 in [0, T } and solves (5.59), (5.60).

Proof We first observe that (5.63) yields

V(t,u) > min(V(r,x): r E [0,T],x E [-1,1]};

hence with a suitable constant cl we have

fT
E(u)> J Iul2dt-cl for all uEHg.

a
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It follows that there exists a constant c2 such that any minimizing sequence (uk ) in HT
satisfies

1
T

l u k 12 d t< c2 for all k E N.

Now we claim that we can assume that each uk takes at least one value in the interval
[-1, 1]. Otherwise we would have uk (t) > I or uk (t) < -1 in [0, T] since Uk is contin-
uous. Suppose for instance that uk(t) > I in [0, T], and let mk be the minimum of Uk in
[0, T]. Instead of uk we then consider the new function

4k(t) := uk (t) - (mk - /).

Then the minimum of uk is I and, because of (5.63), we have

E(uk) < E(uk).

In a similar way we can treat the case uk(t) < -1 in 10, T]. Since now uk assumes a
value in [-l. 1] at some point to, we deduce that

Iuk(t)I =
Pt T

J lik(T)dr +uk(to)I l + f IukI dt.
t0 - o

Hence (Uk } is equibounded in Hr, and we can complete the proof similarly to the proof
of Proposition 5.12. 0

Proposition 5.14 Suppose that V (t. X), x E RN, is convex in x for all t E [0, T ] and
that

I
T

V(t,x)dt -> oo if IxI -> oo. (5.64)

Then problem (5.59), (5.60) has a solution which minimizes E in Hg..

Proof As above it suffices to show that a minimizing sequence in HT is bounded in
H t.2. By assumption (5.64) the convex function

x f- f V (t, x) dt
0

has a minimum at some point x, and

1
Also, by convexity,

T
V,(t.X)dt =0.

V(r,x) > V(t.z)+VX(t..r)(x -x).
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Therefore, if (Uk) is a minimizing sequence for E, we deduce that

E(uk) I fT
Iukldt +

fT
V0,X)dt

+fT

-11dt
fT

1 (uk 12 dt + J
rT

V U. ) dr +
fT

V,r (r . s)uk(t) dt
0

rT
uk(t) := uk T J uk(t)dr.

0

On the other hand, since uk has mean value zero, we find

T

ukldt foralI t E [0, T],Iuk(t)I < fo I

IIukII(fT

Iukdt < T f Iukl2dt.
111 0

Hence we conclude that

T T
£(uk) Iukldt + f V(t.x)dt -

(fT
IVr(t..t)Idtl IIukIIx

U

for some constants ci and c,. Hence there exists a constant such that

(5.65)

f

T

lukI`dt <c3 for all k E N (5.66)

and, consequently, by (5.65)

Iluk II x < ca for all k E N. (5.67)

It remains to show that the sequence (Wk) of mean values

T

uk := I uk dt
0

is bounded. By convexity

V t. 2iik ) = V tr. 2 [uk(1) - uk(t)]) < -V(t, uk(t)) + 2V(l, -uk(t)):
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hence

f
rE(uk)

2 j V (r. 2) dr - V(r. -uk(r))dr,

and this implies by (5.67) that

/
E(uk) > 2

T

J
V I t, i dt -c52)

for some constant cs. Since NO is a minimizing sequence, we obtain by assumptions
(5.64) that (ilk) is bounded.

Remark We note that if V(t, x) is strictly convex in x, then (5.64) is equivalent to the
existence of some x E RN such that

10
VV(t,x)di =0. (5.68)

T

In fact, if (5.68) holds, x is then the unique minimal point for

T
X t+

J
V(t.x)dt;

0

hence

T
8:=min (V(r,x+x)-V(t,x)]dt>0.

Ixl=tfo

Thus we obtain for Ix I > I that

S< jT -)i dt - JT V(t..s)dt
J TX

T T T
V(t,x+x)dt+ 1 - --- V(t,x)dt - V(t,.r)dt

- 1x1 Jo ixll Jo

f
! r r

ix-1 ( f

V (t,x+x)dt > SIxI+ V(t, r)dt,f
r

fo

r

and we obtain relation (5.64).



Periodic solutions of Hamiltonian systems 199

5.6 Periodic solutions of Hamiltonian systems

In Hamiltonian mechanics one is naturally led to look for periodic solutions of
Hamiltonian systems

.ir(t) = 1H1(x(t)) (5.69)

where H is a C2-Hamiltonian in R2N. and I is the standard symplectic matrix operating
on R2N, i.e.

1=( 0 E.
-EO

where E denotes the unit matrix operating on R//N. In fact one is interested in periodic
solutions with a prescribed period. Since we obtain

dt 7H (x, (t)) = V H (x) . = -(11,1) = 0

along any solution x(r) of (5.69), we have H(x(t)) = const on solutions of (5.69). Thus
we are looking for periodic solutions on a given constant-energy surface. More generally,
one is interested in understanding the structure of all periodic solutions as this could give
information on the structure of all trajectories.

Equation (5.69) is the Euler equation of the associated Hamiltonian action

fT(2
71(x; (0. T)) = (x. Zx) + H(x(t))dt.

and solutions with prescribed period T may be regarded as critical points of 71(x) in
the set of T-periodic trajectories of class C 1. Also, periodic solutions on a given energy
surface (H = a) may be regarded as stationary points of 7{(x; (0. 1)) in the class

t

S. := Ix E OR, R2N) : x(r + 1) = x(t), o H(x(t))dt = a .

0

Indeed we may hope to show by means of the Lagrange multiplier rule that, under suitable
assumptions, at any critical point x of 71 in S. there exists a constant T # 0 such that

.i = TZH1(x).

Scaling time by a factor T we then obtain a T-periodic solution of (5.69) on the energy
surface (x : H(x) = a). However, the integral

I f(x.Ii)d:

is bounded neither from above nor from below, as we easily see by substituting

Xk(t) := (COS Xkr)XO - (sin ilkt)Jxo, Ak = 27rk. X0 E R2N. lx01 = I
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so that Ixk I = 1, (Jik. xk) = kk, and consequently

(xk. 9Xk)dt = - tx as kf
Because of this difficulty it was thought for a long time to be hopeless to approach the
existence problem for periodic solutions of Hamiltonian systems by variational meth-
ods. The turning point was Rabinowitz's paper [2131 where the existence of periodic
trajectories on a strictly convex hypersurface was established by minimax methods. A
short time afterwards it was proved that such trajectories could in fact also be obtained
by minimizing a suitable dual functional; see Clarke [63], [62] and Clarke-Ekeland 1661.
Since then several variational methods have been developed and many interesting results
are available. This area is still very fruitful, and challenging problems remain open. We
cannot survey this interesting but vast field of research; instead we refer the reader to
the well-written books by Ekeland [93], Mawhin-Willems it 8 1]. Rabinowitz 1215]. and
Struwe [247J that were quoted in the previous section. Here we content ourselves with
presenting the 'dual minimization proof' of the following basic result of Rabinowitz
[2131 and Weinstein [292]. which extends the earlier work of Seifert [235]: compare
also Moser [ 196].

Theorem 5.15 Suppose that H E CI (R2N) is strictly convex, non-negative. and coer-
cive, i. e. H(x) -+ ooas[xl - oc,with H(0) = 0. Thenfor an), a > 0there isaperiodic
solution x E Ct(R. R2N) of the Hamiltonian system

.x = IHL (x) (5.70)

with H(x(t)) = a for all t.

Proof We first show that whether or not a level surface H = const carries a periodic
solution of (5.70) is a question concerning the surface and the symplectic structure I
and not the particular Hamiltonian H.

Obviously the Hamiltonian H0 := 1/aH satisfies the same assumptions as H.
moreover, if the level surface Ha = I carries a periodic solution of the Hamiltonian
system

z = ZVHQ(x).

then by scaling the time by a factor of a we obviously find a periodic solution of (5.70)
on the surface H = a. Thus we can assume a = 1.

By strict convexity of H the level surface S = H - t (1) is the boundary of the convex
set

C := (x E R2N : H(x) < 1).

Consider now the distance function FF of the convex set C. which is defined as follows.
For any % on the unit sphere S2N-1 of R2N there exists a unique number 0 such
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that r(t')l E S; then we set for p ? 0 and l; E S2N-1

{p/r() if p > 0
0 ifp=0.

Now for a fixed number q. I < q < 2. we define Is

H(x) := 7q(X),

i.e.

201

H(p+t) - J if p > 0, t E S2N-1

0 ifp=0.
By the strict convexity of the Hamiltonian H. its differential map dH is strongly mono-
tone, and hence one-to-one. Then by the implicit function theorem r E CI (S2''-1), and
we deduce that H belongs to C1(R N ); also. H is positively homogeneous of degree q.
Moreover, if we set S := [x E R2N : 1Y(x) = 1}, we have S = S. hence VH(x) is
proportional to V H (x) for x E S, say

VH(x) = IX(x)VH(x) at any x E S.

After a parameter transformation

x(t) := i(s(t)). i(t) = ,X(i(s)),

a periodic solution i on S of

di = ZVH(i)
dt

will yield a periodic solution on H of the original Hamiltonian system (5.70). Finally,
one can easily verify that H is strictly convex. In conclusion we can assume from now
on that H is equal to H.

Let H* be the Legendre-Fenchel transform16 of H. Since H is positively homoge-
neous of degree q > 1, the function H* is everywhere finite. Moreover, H'(0) = 0 and
H" > 0. Since H has a strongly monotone gradient, we deduce that H E Cl; compare
for instance Giaquinta-Hildebrandt [ 113], Vol. II, Chap. 7, Section 3.3. Finally, denoting
by p = > 2 the conjugate exponent of q, we have

H'(y)
IyIP

y )l H(x):xER''N
IyI IyIP

sup
-1

H x (5.71)
1vIP-1

111

=sup I(1,1x

i.e. H* is positively homogeneous of degree p > 2.

1 SThe reason for such a choice will become clear in the sequel.
16Note that x includes both position and momentum variables. Thus the conjugate H' of H differs

from the usual Legendre transform of H which customarily only involves the momentum variables. We
recall that H'(y) := sup(xy - H(x): x E R2Ni.
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We are now ready to give an equivalent dual formulation of (5.70). We introduce the
space

rt
X:= v E Ln((0, 1).R2N) ,/J vdt =0

a

If x E Ct ([0, 11, R2N) is a 1-periodic solution of (5.70), the function

y'.=-2.r

belongs to X and solves the system of equations

t = -Ii (5.72)

y = VH(x). (5.73)

Introducing the compact integral operator K : X -> H' ((0, 1), R2N) defined by

r(Kv)(t) := J Ti' dt.
fl

we can invert eqn (5.72) up to an integration constant xfl E R2N. Since relation (5.73) is
equivalent to the relation x = VH*(y) (see for instance Giaquinta-Hildebrandt 11131,
Vol. II, Proposition 6, p. 91), we obtain that (5.72), (5.73) are equivalent to

x = Ky+xfl (5.74)

x = VH*(y) (5.75)

for some xfl a R2N. This leads to

Jo
[VH*(y) _ Ky]rldt = 0 for all ri E X. (5.76)

In turn, this equation implies (5.74), (5.75). In fact, if y e X solves (5.76), it follows
(cf. Section 1.1) that

VH*(y) - K(y) = const = xfl.

Hence y solves (5.74), (5.75) for some x E HI-p((0. 1). R2N). Transforming back to
(5.72), (5.73), we infer from (5.73) that y e C°([0, 1], R2N). Therefore x is of class
C1([O. I], R2N), and it is a 1-periodic solution of eqn (5.70) which is equivalent to
(5.76).

Now (5.76) is the Euler equation of the functional

?>f*(y) f [irw - (y. Ky)] dt.

By (5.71) the functional R* is coercive on X. Moreover, H* is convex and K is a
compact operator; hence i f* is lower semicontinuous with respect to weak convergence
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of U. Thus we easily deduce the existence of a minimizer y' in X which solves (5.76).

By (5.71) the quadratic term -f f (y, Kv) dt dominates near y = 0; thus, since K also
possesses positive eigenvalues. as we may easily verify, we deduce that

inf 7i` < 0;
x

consequently y; # 0. The discussion above shows that there is a constant xo such that
x = Ky" + xo solves (5.70). and, since y` # 0, x is also non-zero; hence H(x(t)) = 0
for some 0 > 0. But H = H is positively homogeneous; thus a suitable multiple i of x
will satisfy (5.70) with H(I(t)) = 1. as desired. 0

5.7 Non-coercive variational problems
In Section 5.5 we have already encountered minimum problems of the form

1 rr[
min j J Iu'12 + V (t, u)I dt : it E Ht (0, T: RN). u(0) = u(T)}If (5.77)

20

which are not coercive in the sense that there exist sequences of functions (un )fEs;
with equibounded energies that are not weakly compact. For instance, if in problem
(5.77) the potential V(t. ) is periodic in the sense of Proposition 5.12 of Section 5.5,
then the sequence u (t) := n r is not weakly compact in H r (0. T; RN), whereas the

fi [ 1u; I' +corresponding energies V (1, un) ) dt are equibounded.
In this kind of situation the direct methods of the calculus of variations cannot be

applied immediately, and further assumptions on the potential V have to be added in
order to guarantee the existence of minimizers (see Propositions 5.12, 5.13. 5.14 of
Section 5.5).

In this section we present a general scheme to attack non-coercive minimum prob-
lems, and we give some applications of it to minimum problems of the form (5.77).

From now on we denote by X a reflexive Banach space. and F : X --k R U (oa}
will be a given functional which is always supposed to be sequentially weakly lower
semicontinuous on X. We are interested in finding conditions on the functional Y which
are weaker than the usual coercivity but still imply the existence of a solution to the
minimum problem

min(F(u): u E X}. (5.78)

To this end we introduce the so-called recession functional r< , associated with f', which
is defined by

.T''; (u) = inf { lim inf +oc . u weakly in X
In-.+x, fn I

for every u E X. For the existence of a solution to problem (5.78) we obtain the following
necessary condition in terms of the functional F Q.

Proposition 5.16 If the minimum problem (5.78) admits a solution. then

.7-x; (u) > 0 for every u E X.
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Proof Assume that the minimum problem (5.78) admits a solution, or even less that

inf {.F(u): u E X) = in > -00.

Then, for every u E X

Fco(u) ?: inf lim inf
in

: to oo >- 0.n-00 to
1

O

In general, non-negativity of .1'x, does not guarantee the existence of a minimizer,
as we can easily see by taking X = R and F(u) = e". Therefore we add some further
assumptions on F which, together with the non-negativity of.F .. will imply the existence
of a solution of problem (5.78).

Theorem 5.17 Let.F : X -+ R U {oo} be a sequentially weakly lower semicontinuous
functional. Assume that

(i) the following compactness condition is fulfilled: for every t -+ oo and any weakly
converging sequence (un) the boundedness of .F'(tn un) front above implies that {u, }
converges strongly;

(ii) the necessary condition Fm ? 0 on X is satisfied;
(iii) the following compatibility condition is verified: if .:,,,,(w) = 0. then for some

suitable p > 0 we have

F(u - µw) < F(u) for all u E X.

Then the minimum problem (5.78) possesses at least one solution.

Proof Since. is lower semicontinuous with respect to weak convergence, the minimum
problem

min{,F'(u): u E X, (lull < n} (Pn)

has a solution u for any n E N. Moreover, again by the lower semicontinuity of F. we
may choose un in such a way that

Ilunll = min{pup: it solves (P,)}. (5.79)

If such a sequence {u,, } of minimizers un is bounded in norm, then a suitable subsequence
(still denoted by {iin }) converges weakly to some element u of X which is a solution of
problem (5.78) because

.F(u) < lim inf .F'(u,) = inf{F(u) : it E X }.

Now we show that such a sequence {ii,, } cannot be unbounded, which will complete the
proof. We argue by contradiction and assume that a subsequence of { Ilu,, 11 1 (which we
still index by it) tends to oo. Since the normalized vectors w" = u,, / 11 it. II are bounded, by
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the reflexivity of X we may assume (again extracting a subsequence) that (wn) converges
weakly to some w e X. Since u,, is a solution of problem (Ps) we have

F(un+i) < F(un) for everyn E N;

thus the values F(un) are bounded from above (as the case of F being constantly equal
to oo is trivial). By definition of F. we then obtain

_ F(un)F(Ilunl1W.) lmFe(w) <
Ilun

II mf
Ilunll

< 0.-
On account of the necessary condition (ii) we arrive at

F,G(w)=0.

Recall now that llun ll -,. oo, wn -+ w weakly in X, and that the values .F(Ilun Ilw'n) =
F(un) are bounded from above. Assumption (i) then implies that wn -+ w strongly in
X. and this implies that Ilwll = I because of IIw'n II = 1 for all n E N. Furthermore, since
Fac(w) = 0. compatibility condition (iii) implies that there is some p > 0 such that

F(un-Few)<F(un) foreverynEN.

Finally we have

Ilun - lAw'II = \I Ilunll) u, + µ(wn -- w)

r Ilunll +/.ellwn - Vol< \l Ilunll

= Ilunll +p(Ilwn - w'fl - 1).

(5.80)

and the right-hand side of the last equality is strictly less than Ilunll for n >> I since
Ilw' - w.11 0. Therefore. by (5.80), un - Aw is a solution of (Pn) whose norm is
strictly less than II un II for n >> 1. But this is a contradiction to (5.79). 0
Remark I The usual coercive case of the classical direct method of the calculus of
variations is covered by Theorem 5.17. In fact, consider a sequentially weakly lower
semicontinuous functional F on X which fulfils the standard coercivity condition: for
every t E R the set (u E X : F(u) < t) is bounded in X. This condition can be rephrased
by saying that there exists a function 0 : R R (which can be assumed to be continuous,
positive, and strictly increasing) such that the inequality F(u) < t implies Dull < 0(t).
This property turns out to be equivalent to the inequality

(lull <0(F(u)) for everyu E X. (5.81)

Now the existence of a minimizer for F is clearly equivalent to the existence of a
minimizer for the functional ((u) := 0(1(u)). Therefore, to establish the existence of
a minimizer for Y it is enough to show that the functional 0 satisfies all the assumptions
of Theorem 5.17 above. The lower semicontinuity of 0 follows immediately from that
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of F. and assumptions (i). (ii). (iii) are consequences of (5.81), as one can easily verify.
In particular, condition (iii) is trivial because 0,,(w) = 0 implies that x' = 0.

Let us particularly consider the case of convex (and sequentially weakly lower semi-
continuous) functionals F. here the definition of the recession functional F, actually
reduces to the more common convex recession .F°` defined by

F"(u) := Jim
.F(uo + tu)

r-.x I
(5.82)

(cf. for instance Rockafellar (2281) where uo is any element of X such that.F(uo) < Co.
Note that the limit on the right-hand side of (5.82) exists because of the convexity of
the function t r-+ F(uo + tu)/t. The equivalence between .F,, and .f" is shown in the
following proposition.

Proposition 5.18 Let.F : X -+ R U {x1 be a convex and sequentially weakly lower
semicontinuous functional. Then

.F,., (u) _ . "(u) for every u E X.

In particular. the definition (5.82) of F" does not depend on the choice of uo.

Proof Let u c- X. and let uo be any point with F(uo) < oc. By choosing a sequence
of numbers to with t -+ oo and

Y' (u) = Jim
F(un + tnu)

n-.x to

and setting u,, := u + uo/tn. we obtain

7',, (u) << lim inf
F(tnun) = lim F(uu + tnu)

_ Y (u ).
n-* In n='-;Q In

To prove the opposite inequality we use the convexity and the lower semicontinuity of
.F. For every t > 0 and for arbitrary sequences t - oc and un -- u weakly in X we
have

t
.F(uo+tu) <limmf.F 1 (1 -

1 - t) .F(u0) + .F(tnttn)
n- oc R In to

= F(u0) + Jim inf Y(tnun)n-+x rn

Since to --+ oo and u -r u were arbitrary sequences, we arrive at

.F(uo + (u) < .F(uo) + r.F= (u).
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Therefore,

.F(uo + tu) - F(uo) < (u)
t

for every t > 0, and passing to the limit as t --> oo, we obtain

,F°0(u) < .FW(u).

Remark 2 If .F is convex, a much simpler assumption implying the compatibility con-
dition (iii) of Theorem 5.17 above is the following:

(iii') the set ker.F''0 = (u e X: .Fl(u) = 0) is a linear subspace of X.

In fact, assume that (iii') is fulfilled and let w E X be such that .r (w) = 0. Then, since
kerF°Q is a linear subspace, we also have .F''°(-w) = 0. Therefore, if uo is a point
where J'(uo) < oo we have for every u E X that

F(u - w) <- F ((i -
I

to+ t (uo - tw) I

<- Jim in (i_i) .F( u) + tF(uO - tw)

_ 1(u) + (-x') = .1(u)

which is the compatibility condition (iii) with p = 1.

Remark 3 An inspection of the proof of Theorem 5.17 shows that in the case of a
product space Xi x x XN the compatibility condition (iii) can be replaced by the
following weaker condition:

(iii") If .Foo(wl, ... , wN) = 0, then for suitable positive numbers ul.... , lcN we
have

.F(ul-klwI,....uN-µNw,v)<F(ttl,...,UN) forall(ui,....UN).

We now specialize our results to the case when X is the space H. _ {u E H l (0. T :
RN): u(0) = to (T)) and the functional F is of the form

1(u) _ fT [ 2lu912 + V (t, u) ] dt

where V is a Bore] function with V(1, ) lower semicontinuous on RN and such that, for
suitable q < 2 and a(t), b(t) in L1 (0. T), we have

V(t, u) >- -a(t) - b(t)4ujq for t a.e. in (0, T) and for every u E CRN. (5.83)

The sequential weak lower semicontinuity of F is straightforward (cf. Section 3.1); let
us prove the compactness property (i) of Theorem 5.17. If t -* oo and u -+ to weakly
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in HT with .F(tnun) bounded from above, then we deduce by (5.83) that

lim
n- oc

T

Iu'}2 dt =0,

and this immediately implies the strong convergence of {un) to a constant. Furthermore,
we note that the necessary condition (ii).Fm (u) > 0 for every u E Hr is trivially fulfilled
if u is a non-constant function, because in this case we have Fw (u) = oo. Indeed, if
t -s oo and u - u weakly in HT with u being non-constant, we have

liminf fo 1u;,12dt
I

T Iu'12dt > 0.
n-+*O oT

Therefore, by (5.83) and using the fact that q < 2, we obtain

.F(tnun)

fo

T rtn , 2 q_l
91Rm

of to > 1R, = [2
lun I` - b(t )tn lun f I dt = oo.

The necessary condition (ii) is then reduced to

.F,* (c) > 0 for every constant vector c E RN. (5.84)

The simplest case of the existence of minimizers for problem (5.77) is that the potential
V satisfies a Lipschitz condition of the form

}V (t, u) - V(t, v)I < k(t)Iu - v} fort a.e. in (0, T) and for everyu, v E RN.
(5.85)

with k E L 1 (0, T) as well as the coercivity condition

fT
lim

1
V(t,c)dt = oo.

ICI-00 0
(5.86)

In this case problem (5.77) is actually coercive, and the existence result follows imme-
diately from the direct methods of the calculus of variations. We need only to show that
we have .F(u) -) oo as soon as 11u II11 - oo. By using the Lipschitz condition (5.85)
we obtain

.F(U) > fo T [2 lu'12 + V(t, u(0))I dt - I T k(t)Iu(t) - u(0)I dt
JJ

for every u E HT. Moreover, we have

Iu(t) - u(0)I I r u'(s)ds(T
fT

lu'l'` dt)
0if
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and therefore

[Iu'I l (fT
F(u ) f 2 + V (t, u(0)) ] dt -C IaI2 dt )

a /
for a suitable constant C. Since on HT' the norm is equivalent to

(fT
lu'l2 dt + Iu(0)12)

we immediately obtain that IIuIIHT -+ oo implies F(u) -+ co.
We now consider the case when V(t. ) is convex and V(t, uo(t)) is integrable for

some function uo E H. Then the functional F turns out to be convex, and Theorem
5.17 together with Proposition 5.18 and Remark 2 can be applied. Taking (5.84) into
account we have that the conditions

al x fo

T V(:, uo((r) + kc)
dt > 0 for every c E RN. (5.87)

and fr V(t. uo(t) +,kc)/A dt = 0 implies

ai f
r V (t. plc)

dt = 0.
0

(5.88)

yield the existence of a minimizer for F on Hi.. In other words. (5.87) and (5.88) are
equivalent to the property that for every c E RN the function defined by

f
r

4 (A):= V(t.uo(t)+.kc)dt, AER,

either is constant or satisfies

lire I Mk) = cc.hl-x
For instance, in the case of Proposition 5.14 of Section 5.5 we have

f' (c) > 0 for every c E RN - (0).

and then (5.87) and (5.88) are trivially satisfied.
Consider now the special case in which V (t. x) := V (x) -h(t) x. where V : RN

R U loo) is a convex lower semicontinuous function (finite in at least a point xo) and
h E L' (Q T). If V is differentiable, then the Euler-Lagrange equation associated with
the minimum problem for Y on H. is

-u" + VV(U) = h(t),
u(0) = u(T). u'(0) = u'(T).
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By (5.84) and (5.87), setting

rT
h := T

J
h(t) dt.

we infer that the necessary condition for existence reads as

h for every (5.89)

while, by (5.88). the compatibility condition, sufficient for the existence of a minimizer.
states:

h c = V"(c) implies VO'(-c) = V" (c). (5.90)

In the case when V is non-negative and positively homogeneous of degree q > 1, (5.89)
and (5.90) above become

h c < 0 whenever V (c) = 0, (1)

and

{c E R^' : V(c) = 0, h c = 0) is a subspace (ii)

respectively since

V'0(x) =
0 if V(x) = 0
oc if V(x) # 0.

The gap between the necessary condition (i) and the sufficient condition (ii) above
contains some interesting examples like the following one. Take N = I and consider
the differential equation

-u"+u+=h(r).
u(0) = u(T). u'(0) = u'(T).

The functional related to (5.91) is

(5.91)

F(u) = I T 1-11Uy + 1a+121- h(r)u } dr. (5.92)
2

Because of the convexity of F, solving (5.91) is equivalent to minimizing (5.92) on Hg..
By (5.89) and (5.90) above we obtain that:

- if h < 0 a solution always exists:
- if h > 0 no solution may exist.

It remains to analyse the case 0. Here we obtain the following results:

(a) A solution of problem (5.91) always exists.
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(b) Every solution of (5.91) is non positive.

To prove these claims we consider the linearized problem

-u" = h(t),
u(0) = u(T). u'(0) = u'(T).

(5.93)

Since h' = 0, problem (5.93) admits a solution w E H 1 (0, T) that, up to a suitable
addition of a constant, can be supposed to be non-positive. Then w solves problem (5.91)
too, and claim (a) is proved. Assume now that u is a solution of (5.91) with ut 0;
then for every c > 0 we have

.F(u - c) < .F(u)

which contradicts the fact that u is a minimum point for F. Hence u < 0 and (b) is
proved too.

Another interesting case in which the general scheme above applies is when V(t. )
is periodic (cf. Proposition 5.12 of Section 5.5): that is, for suitable independent vectors
r, E RN we have for almost all t E (0. T) and for every u E RN that

V(t,u+ri) = V(t.u). i = 1...., N.

We also assume that there exists a function a(t) in L1(0, T) such that

V(t, u) > a(t) for almost all t E (0. T) and for every u E RN.

In this case the necessary condition (5.84) is clearly fulfilled. Hence, to obtain the ex-
istence of a minimizer, it is enough to show that the compatibility condition (iii") of
Remark 3 holds too. This means that, for every c E RN. we have to find a vector .t E RN
whose components µi are positive and satisfy

.F(ui -µicI.....UN -hNCN) <-.F(uj.....UN) forall ut,....UN.

This can be achieved by choosing the vector (µ i c, .... , lcNCN) as one of the elements
of the lattice (hi ri : i = 1, .... N. hi E Z), a choice which is clearly always possible.

5.8 An existence result In optimal control theory

Optimal control problems are minimum problems which describe the behaviour of sys-
tems that can be modified by the action of an operator; therefore two kinds of variables
are involved: one of them describes the state of the system and cannot be modified by
a direct action of the operator. and is called the state variable; the second one, on the
contrary. is under the direct control of the operator who can choose his strategy among
the admissible ones. and is called the control variable.

The state of the system (i.e. the state variable) can be modified by the operator in
an indirect way, by acting on the control variable through a link control state. which
is usually given by a differential equation, the so-called state equation. Finally, acting
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directly on the control variables, the operator has to achieve a certain goal. This aim is
usually assumed to be the minimization of a functional which depends on control and
states. The functional to be minimized is called the cost functional.

Driving a car leads in many ways to an optimal control problem. For instance, the
cost functional could be the amount of fuel consumed, with position and velocity of the
car as state variables, while the acceleration and the steering wheel's angle are the control
variables. The state equation is given as the balance of forces. Other typical examples of
optimal control problems are the guiding of a rocket to a moving target in the shortest
possible time, or the management of an enterprise in order to maximize profits.

To fix ideas, we denote by Y the space of states, by U the set of controls, by A the
set of admissible pairs, i.e. the subset of all pairs (u, y) E U x Y such that y is linked to
u through the state equation, and by I the cost functional defined on U x Y. The optimal
control problem is assumed to be a minimization problem of the form

min(1(u, y): (u, y) E A). (5.94)

Note that constraints can be incorporated by defining I = +oo whenever the constraints
are violated.

Here we do not want to develop a general theory of optimal control problems since
many good books on the subject are available, for instance Berkovitz [31 ], Cesari [59],
or Warga [291 ]. As an application of the results presented in the previous chapters we
restrict our attention to the following very special class of problems:

I

T

min J f (t, y(t), u(t)) dt : y' = a(t. y) +b(t, v)u. Y(0) = Wj } . (5.95)

Here we take the space of states Y equal to the space H t 1 (0. T : Rk) of absolutely
continuous functions on (0. T), introduced in Chapter 2, the set of controls U equal to
the space L t (0, T ; R'), the set A of admissible pairs equal to all pairs

(u, y)EL1(0.T;Rm)x H'.t(0,T;Rk)

such that

y' = a(t, y) + b(t, y)u.
Y(0) = yo.

and the cost functional I as given by the integral

rT
1(u. Y) =

J
f (t, y(t), u(t)) di.

0

We shall prove that, under suitable assumptions on the functions a, b. f. the minimum
problem (5.95) admits a solution.

The following lemma deals with the behaviour of solutions of sequences of ordinary
differential equations.
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Lemma 5.19 Let gn : (0, T) x RN - RN be a sequence of CarathAodory functions
(i.e. g,, (1, y) are measurable in t and continuous in y) such that

(i) the Lipschitz condition

Ign (t, yi) .... gn (t , i2)] < L (t) I y1 - y21

holds, with (Ln (Oh. weakly compact in L1(0, T);
(ii) y) y) weakly in L1(0, T; RN) for every y E RN.

Then the solutions yn E H (0, T ; RN) of the Cauchy problems

y =gr,(t,y) in(0,T)'

Y(O) = yo

converge uniformly on [0, TI to the solution y,, E H I.1(0, T ; RN) of the Cauchy prob-
lem

y' = g_= (I, y) in (0. T)

Y(O) = y'o

a n d y . ' - y, weakly in L (0, T; RN).

Proof We show first that the function goo satisfies a Lipschitz condition similar to
(i). The sequence (Ln) has a subsequence (which we still denote by the same indices)
converging weakly in L 1 (0, T) to some integrable function L(t). Moreover, the Lipschitz
condition for gn yields

0

r rf (gn(t, yi) - gn(t, y2)) rl(t)dt < f Ln(t)Iy1 - y2IIn(t)Idt
o

for every function q E L°C'(0, T; RN). Passing to the limit as n -- oo we obtain by (ii)
that

o

T Tf (goo (t, yl) - 9%(t, y2)) 17 (t) dt < f L(t )lyi - y211r1(t)l dt,
JJo

and defining rlbyrl(t) z1rovvifr e (to, rr)with i' E RN, andbyrl(t) :=Gift ¢ (to, z),
we have

1 f'(g.(t, yl) - g%(t, y2)) - vdt < j T L(t)Iyj - y2111'I dt,
T - to , r - to o

which readily implies the Lipschitz condition (i) for gx, with L(t). Using Gronwall's
lemma, we deduce from (i) that (y,, } is bounded in L'°(0. T. RN) and, by the equations.
{y } is bounded in L 1(0, T : RN). Since L (t) and g,, (-, 0) are weakly compact in L 1,
we easily obtain that the yh are weakly compact in L 1 too; hence a subsequence of l y,, }
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tends to some function y E H " (0. T : RN). Since the Cauchy problem with g,, has a
unique solution, we only have to show that y' = g-,-(t, y), or equivalently that for every
IE[0.T]

I

r
lim gn(s, yn(s)) ds = g., (s. y(s)) ds. (5.96)

n-+x 0 o

For every e > 0 let yE be a piecewise constant function such that 11y - yE Ilx E; then,
by using the Lipschitz assumption (i). we obtain

g,, (s. yn(s))ds --- fo gx
(s. y(.t))ds0

I
J r

fo
Ign(s. y. (s)) - gn(s. yE (s)) I ds

r Igx(s. y(s)) - g,, (s. yE (s)) Ids+ I
0

+ jt g. (s. yv(s))ds - (r g=(s. y4(s))ds
0 0

r r
< IIyn - Y II f Ln(s)ds + Ily - yE 1k L(s)ds

r
0 0

+ 1J r gn(s. yc(s))ds -
J

r g-, (s. ye(s))ds
0 0

By assumption (ii) and by taking into account that the yE are piecewise constant, the last
term tends to zero as n --, oc; hence

t r

lim sup ifo gn(s. yn(s))ds - J g,,(s. y(s))ds < Ce
n-.x JJJO

for a suitable constant C. Thus we obtain (5.96) by letting E - 0.

Now we consider the minimum problem (5.95) with the following set of assumptions
on the data a, b. f . The functions a : (0, T) x Rk Rk and b : (0. T) x R' Rkm

are of Caratheodory type and

Ia(t, 1) - a(t. y2)1 < a(r)lyi -121 with CIE L'(0. T). (5.97)

a(t.0) E L'(0, T; Rk). (5.98)

Ib(t. rt) - b(r. y2)I < P(t)Ivj - }2l with j6 E LP (0. T). (5.99)

b(t. 0) E LP (0, T; Rkm). (5.100)

where p E 11. x] is given, and p' is its conjugate exponent. The integrand f : (0. T) x
Rk x R' - [0, +x] is supposed to be a Borel function (or at least G 0 8k (9 8m
measurable, as in Theorem 3.6 of Section 3.1) such that

f (t. . ) is lower semicontinuous on Rk x R. (5.101)

f (r. y, ) is convex on R. (5.102)
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and it satisfies a coercivity condition of the form: if p E (l. +oc) there exist c > 0 and
y E L' (0, T) such that

f(t. V, u) ? clult" - Y(t), (5.103)

if p = I there exist a superlinear function 0 : R - R and y E L' (0. T) such that

f (t. V. u) > e(lul) - y(t ). (5.104)

and if p = +oc there exists an R > 0 such that

f (t, y. u) = oc whenever Jul > R. (5.105)

Proposition 5.20 Under the assumptions (5.97)-(5.102) the functional

fT f(t, y.u)dtFlu. y) _
+oc

if y' = a(t. y) + b(t, y)u, y(0) = yo
otherwise

is sequentially lower semicontinuous with respect to the (weak at') x (weak H',1)-
convergence ((weak*L") x (weak in the case p = +oo).

Proof For the sake of simplicity we only consider the case p < oo. Let u --+ u weakly
in L v (0, T : R') and yn -, y weakly in H' - ' (0, T : Rk). Furthermore we may assume
that

lim inf F(un, yn) < oc.n-.x
since otherwise the assertion is trivially correct. By possibly passing to subsequences
we may then assume that F(un, yn) < oc for every n E N. As a consequence, the
differential equations

,, =a(t. yn)+b(t.Y.)un
'n (0) = yo

are fulfilled. Setting

gn(t. y) = a(t, y) + b(t. y)un(t)
g,c(t, v) = a(t, y) + b(t, v)u(t)

we are in the framework of Lemma 5.19. Therefore the limit function y(t) satisfies the
differential equation

y' = a(t. y) + b(r. y)u

!'(0) = V.

On the other hand, by the lower semicontinuity theorem 3.6 of Section 3.1 we have

1
whence

T r
f(t.y,u)dt <liminf

J
f(t,yn.un)dt.

n- oc 0

F(u. Y) :slim inf .F(un. y.). 0n-.x
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Now we obtain our main existence result.

Theorem 5.21 Under the assumptions (5.97)-{5.105) above the minimum problem (5.95)
has at least one solution.

Proof By Proposition 5.20 above only the coercivity of the functional F remains to be
proved. Again, for simplicity, we consider only the case p < oo. Let U, E LP(0. T ; RI°)
and y" E H t- t (0, T. Rk) be two sequences such that .F(u , y") < C for a suitable
constant C; we have to show that, by possibly passing to subsequences, (u,,) converges
weakly in LP (0, T. R") and converges weakly in T; R*). By assumptions
(5.103)-(5.105) we may assume that u" -+ u weakly in LP(0. T: RI) for some u. and
that

yn = a(t, y") + b(t. yn)u"
y(0) =:M.

Now it follows by Lemma 5.19 that y y weakly in H 1.1 (0, T. Rk) where y is the
solution of

y' = a(t, y) + b(t, y)u

y(0) = !.o. El

5.9 Parametric varlational problems
In this final section we deal with variational integrals

(x(t),x(t))dt (5.106)t.F(x) := f"3 F

whose Lagrangian F(x, v) is positively homogeneous of first order with respect to v.
Such integrals.F(x) are defined on curves x : [tt, t2 l RN in RN, and on account of
the homogeneity condition

F(x. Av) = AF(x, v) for A > 0

we see that.F is invariant under reparametrization of curves. That is, if

a : [ T1 . T21 - [tl , t2 l

(5.107)

is an arbitrary C I -diffeomorphism of [ri. r2] onto [ii. t2] with do/d r > 0, and if we set
z:=xoa.i.e.

z(r) = x(o(r)), r, < r < r2,

then we obtain

f1! T,

F(x(t).x(t))dt =J F(z(r).:(r))dn, (5.108)
T
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or in other words,

.F(x) = F(x o a).

It is not difficult to see that, conversely, the invariance property (5.108) implies that
the Lagrangian F(x. v) of (5.106) has to satisfy the homogeneity condition (5.107). The
most prominent examples are the Euclidean length

G(x) = f r I1(t)I dr (5.109)

of a curve in RN and its Riemannian length

r2

.F(x) = J g;k(x(t))x'(r)xk(t) dt (5.110)
I

with respect to a Riemannian line element given by

ds2 = g;k (x) dx' dxk.

In the following discussion we assume throughout that F(x. v) is a Lagrangian of class
C°(K x RN) satisfying (5.107) for all (x, v) E K x RN. Here K denotes a closed
connected set in RN. Clearly, F(x. 0) = 0. The integrands F(v) = Ivi and F(x, v) _
[grk(x)V A1'12 of the length functionals (5.109) and (5.110) show that we may not
assume F to be smooth at v = 0. Thus we shall assume F E C2(K x (RN - (0)))
whenever we want to state the Euler equations

F,(x, x) - dt F,(x. x) = 0 (5.111)

of the parametric integral (5.106). Since F,.(x, v), F,., (x, v), etc.. need not be defined for
v = 0. we have to confine ourselves to the regular curve x(t), t < t <_ t2, if we want to
avoid a special discussion of x(t) at singularities. i.e. we have to assume that

.i:(t) 34 0.

For a smooth curve we can then suppose that

Iz(t)1 = 1 on [r1, 121. (5.112)

A parameter curve x(t) with this property is called a normal curve or a normal represen-
tation. For every regular C2-curve x : [ti, r2 ] - K we can define the Eulerian covector
field e(t) = (et (t).... , eN (t)) by

e := LF(x) = F, (x. z) - dt F,.(x. x).

As an immediate consequence of (5.107) we obtain

(5.113)

(5.114)

i.e. the Eulerian covector field e(t) along any regular C2-motion x(t) is perpendicular
to the velocity field .r(t).
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In the sequel we assume that all curves x : I -s RN are parametrized on the fixed
interval 1 = (0, 11 where we have set I := (0. 1). Then we define the functional F(x)
by

i

.F(x) := I F(x. x) dr. (5.115)

We want to minimize .F(x) in a suitable class of curves x : I - K C RN connecting
two given points Pt and P2 of K. There are various difficulties in working with this
functional. For example, we could insert one or several `constancy intervals' into a given
curve x : 1 --+ K and reparametrize to I. For the resulting curve z : I --> K we
would have .F(z) = 1(x), but i(t) = 0 on a subset of positive measure in 1. Since
the derivatives of F(x. v) are not defined for v = 0, we therefore cannot conclude that
minimizers of F contained in the interior of the set K are necessarily 1-extremals. One
way out would be to restrict the minimization process to normal curves. But then we have
to impose the subsidiary condition Ix(t)I = 1 a.e. on I, which is not closed with respect
to weak convergence in the Sobolev space H t (I. RN) which is the natural space to use
if we assume that

m t Ivl F(x. v) < m2Ivl for (x, v) E K x RN (5.116)

where m 1. m2 denote constants satisfying 0 < m t < m2. In order to circumvent this and
related difficulties we shall, instead of

F(Y).
minimize the functional

1

Q(x) := f Q(x, z) dt (5.117)
0

with the Lagrangian

Q(x, v) := 2 F2(x. V) for (x. V) E K x RN, (5.118)

and then we shall make use of Proposition 1.16 and Remark 3 of Section 1.1. thereby
ensuring that any minimizer x of Q satisfies

Q(x(t), .z(t)) = h > 0 a.e. on 1. (5.119)

In conjunction with (5.116) we then conclude that Ill is of class L0°(I). whence x E
Lip(l. RN). We can apply the results of Section 1.1.1 leading to

aQ(x.)A) = 0 forall A E C°`(1)

and therefore to relation (5.119) since Q(x. v) is positively homogeneous of second order
with respect to v and consequently Q E C I (K x RN) if we assume that F is of class C t
on K x (RN -101).
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A curve x E H I.1(1, RN) satisfying (5.119) for some constant h > 0 is said to be
quasinormal. On account of (5.116) every quasinormal curve is of class RN)

and therefore Lipschitz continuous on I. and we infer from (5.116) and (5.119) that

2h/m2 < IY(t)I a.e. on 1.

This allows us to derive the Euler equations LQ(x) = 0 for any minimizer x of Q
satisfying x(l) C intK provided that F(x. v) is assumed to be of class C2 on K x
(RN - 10}), whence Q E C2(K x (RN - 10))). Note that (5.119) is equivalent to

F(x(t).x(t)) . 2h > 0 a.e. on 1.

since F > 0. Moreover, we have

Q,. = FF, and Qs = FFx

and therefore

LQ(x) = 2hLF(x)

with some constant h > 0 for any quasinormal curve x E C2(1, RN). Hence every
quasinormal F-extremal is a Q-extremal, and vice versa. Furthermore we shall see that
every minimizer of Q is a minimizer of F. Therefore we replace the minimization of
.F by that of Q thereby obtaining 'well-behaved' (i.e. quasinormal) minimizers and
extremals. This idea is well known from Riemannian geometry where one replaces the
length functional

C(x) _ gik(x).r'xk dt
0

by the Dirichiet integral

D(x) =
i
2

frg,k(x)x
xkdt.

0

Let us now fix our assumptions on the parametric Lagrangian F(x, v) which is defined
on K x RN

Condition A. The Lagrangian F(x. v) is of class C1 on K x (RN -10}) and has the
following properties:

(i) There are numbers m I and m2 with 0 < m, < m2 such that relations (5.116) are
satisfied.

(ii) F(x, v) is convex with respect to v.
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Now we fix two points P1 and P2 in K with P1 36 P2 and suppose that P1 and P2
can be connected in K by some Lipschitz arc. Then the set

C=C(P1,P2,K):_ (x E H1.2(I,RN), x(I)C K, x(0)= P1.x(1)= P2}

is not empty. Consider the variational problem

F -* min in C. (?')

We have the following existence result.

Theorem 5.22 Let K be a closed set in RN and let F(x, v) be a parametric Lagrangian
on K x RN satisfying Condition A. Suppose also that C = C(P1, P2, K) is non-void.
Then there is a quasinormal (and therefore Lipschitz-continuous) curve x E C which
minimizes Q in the set C. Moreover, x minimizes .F among all quasinormal curves in C
and even among all curves of C.

Proof First we note that

(ml/2)Iv12 < Q(x, v) < (tn2/2)Ivl2 for all (x, v) E K x RN.

Moreover, for any x E K, the function Q(x. v) is convex with respect to v E RN. Then
by Theorem 3.9 of Section 3.3.2 there is some x E C such that

Q(x) = inn Q.

It follows as in Section 1.1 that the inner variation 8Q(x.1) vanishes for all k E C'-(I),
and therefore

Q(x(t), i(t)) - h a.e. on I

according to Proposition 1.14 and Remark 3 of Section 1.1. On account of (5.118) we
have h > 0, and then we conclude that h > 0, since h = 0 would imply that 1i(t)I = 0
a.e. on 1, whence x(t) = const on 1 and therefore P1 = P2, a contradiction. Thus x is
quasinormal, and (5.116) yields that

li(t)I < mi l -,/2-h a.e. on 7

whence.i e L°O(1, RN). Thus x : I -+ RN is Lipschitz continuous.
Finally Schwarz's inequality implies that

F2(z) <_ 2Q(z) for all z E H1.2(I, RN) with z(!) C K,

and the equality sign holds if and only if Q(z(t), i(t)) = const a.e. on 1. Introducing
C' = C`(P1, P2, K) by

C' := {z E C: z is quasinormal),
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we then obtain

whence

z

Q(x)=inn

.F(x) = mf.F.

In other words, the minimizer x of the functional Q in C minimizes.F in the class C* and
therefore also in the set of all Lipschitz curves in C which by Lipschitz-continuous
parameter transformations r : I -* I with r' (u) > 0 a.e. can be transformed to
a quasinormal curve in C. This result suffices for all geometric purposes, but by the
following lemma we even obtain

inf .F = inf.F
C, C

and therefore

F(x) = me F

as we have claimed. O

Lemma 5.23 For any x E C C1 Lip(1, RN) we can find a quasinormal t E C such that
F() = .F(x).
Proof The continuous increasing function a (t) := fo Ii J dt has at most denumerably
many intervals of constancy; they agree with the constancy intervals of x. Removing the
interior parts and pulling the holes together we obtain, after a linear reparametrization,
some function z E C with.F(z) = .F(x) which has no intervals of constancy. Thus we
can assume that the original curve x has no constancy intervals and that or (t) is strictly
increasing. Then a defines a homeomorphism of I onto [0, 1] where 1 is the arc length
of x. Set := x o r where r is the inverse of or. Set sI = or(ti) and s2 = o (t2) for some
ti,t2E1, tj :s t2. Then

t2 12 s2

S2 -s, = f IXIdt=J IdxI=J

I (s2)-4(s1)I < Is2-siI f o r any si, s2 E [0, 1].

Therefore i(s) is Lipschitz continuous on [0, 11 and

LI

n
I4(s)Ids=s2-si for 0 <S1 <s2<1
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whence I = I a.e. on 10,11 and

.F(x) = f F(t, 4)ds.t
0

Thus we can assume that the original curve x is of class C n Lip(I, RN ) and satisfies
1 1 ( 1 ) 1 = ! > 0ae.onI.Set

c:= F(x..r)dt and a(t) := c-t
J

F(x. z) dt.0 0

By (5.116) we have c > 0. and a is a bi-Lipschitz-map of 1 onto itself. Then t := x oa - t
satisfiesF(x)=.F(t). EC.andF(1;(t),k(t))=caswellasQ(1;(t).i(t))=ice>0
a.e. on I.

Remark 1 It suffices to assume that

mI Ivl < F(x. v) for all (x. r) E K x RN

instead of (5.116).

If F is chosen as the length functional and if we choose K as a connected Riemannian
manifold that is isometrically embedded in some RN, we obtain that any two points P,
and Pz on K can be connected by a shortest line contained in K. The same is true if we
choose K as the complement R" - St of some open set 9 C RN, provided that R" -12
is non-void, and that any two points of K can be connected in K by some Lipschitz arc.
Thus we have solved the obstacle problem for the length functional and, more generally.
for a fairly extended class of parametric variational integrals.

As we have seen earlier we cannot expect that a minimizer of F in C is an extremal.
In fact there might even be only one Lipschitz curve in K connecting Pt with P; since
we have not imposed any regularity assumptions on K. However, we have

Proposition 5.24 Suppose that F(x. v) is of class C 1 on K x (RN - (0)) and let x E
C(Pj. P-,, K) be a quasinormal minimizer of.F among all curves in C (PI, P2 . K). P1 :
Ph. Assume also that x (1) C int K. Then x is a weak Lipschitz extremal of F.

Proof Let ip E Cx(I. RN) and consider the one-parameter family of curves

z(t. E) := X(t) + Eip(f), t E 1. IEI < CO.

For sufficiently small Eo > 0 and S > 0 we obtain that ;,(t. E) E K and t (t. E)1 > S a.e.
on I for all e E 1-Eo, Eo]. Hence f (f) :_ F( (. E )) is differentiable and f (t%) > f (O)
for IEI < co << 1. Then the reasoning of Section 1.1 yields f'(0) = 0. i.e.

i

S.F(x, So) = f [F.(x. i) to + F,.(.r. i) 01 dt = 0.
0

Next we shall prove a regularity theorem for weak Lipschitz extremals which can be
applied to minimizers x of F in C satisfying x(I) C intK.
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We say that F(x, v) is elliptic if the coefficients g!k (x, v) := Q,,,,& (x, v) satisfy

g1k(x, v)4'i;k > 0 for all l; E RN - {p) andx E K. v E R'v - (A). (5.120)

Note that

8A = F,, F,k + FF,,,A

and

F(x, v) = v' F,, (x, v), vk F,,,A (x, v) = 0.

Thus (F,,,,t) can never be a positive definite matrix since v is in the kernel of F.
Therefore the strongest possible assumption on F. is that F,.,, > 0 and that the null
space of F,,,,(x, v) is one dimensional. It is not difficult to see that this assumption agrees
with the ellipticity assumption formulated above.

Proposition 5.25 Suppose that F(x, v) is an elliptic Lagrangian of Class C2 which
satisfies the assumptions of Theorem 5.22. Moreover, let x be a quasinormal curve
in K which is a weak Lipschitz extremal of F. Then x is an extremal of f', i.e. X E
C2(I, RN), x(t) 0. and LF(x) = 0.

Proof There is a constant c > 0 such that F(x, z) = c, whence

0 < c/m2 < 1,i (t)I < c/mi for almost all t E 1. (5.121)

Then there is a constant vector A e RN such that

t
F,.(x(t),.*(t)) =,X + I F(x(s). i(s))ds. (5.122)

0

If we multiply (5.122) by c and set Q := I' F2, it follows that

t
Q,,(x(t), -0)) = Ac + I Q.(x(s), x(s))ds a.e. on I.

0

Introducing the Hamilton function (D(x, y) corresponding to Q(x, v) which is also of
class C2 for y 0, we obtain for the momentum y(t) := Qv,(x(t), x(t)) the equation

y(t) = Ac - J 4x(x(s), y(s))dx a.e. on I. (5.123)I t
a

Our assumptions imply that the integrand Ov(x(t), y(t)) is of class LOO (1, RN), whence
(5.123) yields that y(t) is Lipschitz continuous on 1. Thus 41(x(1), y(t)) is continuous
on 1, and (5.123) now implies that y(t) is of class CI on I. From

i(t) _ cs, (x(t), y(t))

and 0 E C2 we then infer that x E C 1(I, RN), i.e. x E C2(1, RN). Differentiating
(5.122), we obtain the Euler equation LF(X) = 0 on I.
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Corollary 5.26 In particularany solution x of the minimum problem (P) is a C2-extremal
of the functional F provided that x(I) C int K.

In a similar way it follows that x is of class C2 if K is a smooth Riemannian manifold
without boundary which is embedded in 1 N. This is proved by locally flattening K which
leads to a transformation of x and F by the flattening diffeomorphism u, and thereby a
local Euler equation for u is derived. For a detailed discussion we refer to Giaquinta-
Hildebrandt [ 1131 Chapter 2, Section 2, and Chapter 8, Section 4.4.
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6.1 Additional remarks on the calculus of variations

Variational problems such as the isoperimetric problem were already discussed in antiq-
uity. However, the beginning of the calculus of variations is usually set in the year 1696
when Johann Bernoulli formulated the brachistochrone problem in the Acta Eruditorum
Lipsiae. Actually Newton had already posed a true variational problem in 1686: his
celebrated problem of determining the shape of a rotationally symmetric body of least
resistance. The first textbook on the variational calculus was Leonhard Euler's Metho-
dus inveniendi lineal cunas maximi minimive proprielate gaudentes which appeared
in 1744. Here Euler treated notoriously difficult questions such as variational problems
with differential equations as subsidiary conditions. In two appendices he studied elastic
lines and gave the first satisfactory mathematical treatment of the least action princi-
ple. In 1755 Lagrange developed the so-called 5-calculus which he viewed as a kind of
'higher' infinitesimal calculus, while Euler showed in 1770 that, in fact, the 8-calculus
can be reduced to the ordinary infinitesimal calculus. For this purpose he 'embedded'
a given minimizing or maximizing curve in a one-parameter family of curves and dif-
ferentiated the variational integral evaluated on the curves of the family with respect to
the parameter, thus obtaining the value zero for the first variation of the integral at the
extremum. This is the classical approach to the Euler-Lagrange equations which is still
used today.

However, no sufficient conditions guaranteeing the minimum property for solutions
of Euler's equations were known at the time of Euler and Lagrange. It seems that only
Johann Bernoulli studied this question in a special case; his paper from 1718 remained
unnoticed for two centuries. The first time the 'question of sufficiency' was systematically
investigated was by Legendre in 1788. His paper was not correct as Lagrange pointed
out in 1797, but Legendre's ideas were influential to Jacobi who resumed the study of
sufficiency in 1837. In a very short paper he sketched his celebrated theory of conjugate
points, essentially without proofs, which were supplied by other mathematicians in the
following decades. About 50 years later L. Scheeffer and K. Weierstrass discovered
that positivity of the second variation does not suffice to establish the (local) minimum
property of an extremal, i.e. of a stationary curve. In 1879 Weierstrass discovered that
the minimum property can be proved by means of a method which has become known as
'Weierstrass field theory'. This method was further developed by A. Mayer, A. Kneser.
D. Hilbert, and C. Caratheodory. In Section 1.2 we have given a modified version of
Caratheodory's ideas. A detailed treatment of these ideas can be found in the treatise of
Giaquinta-Hildebrandt [ 113]. The scholia of that book can be used as an introduction
to the long history of the calculus of variations. A systematic study of this history
is presented in the monograph by H. H. Goldstine [1241. We also refer to the very
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interesting textbook by L. C. Young [294] which gives an original presentation both of
the classical methods and of some ideas connected with the direct methods leading to
the so-called Young measures. The study of these measures has in recent years become
an important branch of the calculus of variations which, unfortunately, could not be
discussed in our text. It is unavoidable that, in this book, the reader will miss many
topics and many historical facts about which he or she would like to learn more. We
should like to recommend Giaquinta-Hildebrandt [113] for further information and as
a guide to the literature.

6.2 Semicontintilty and compactness
Notions of general topology can nowadays be found in undergraduate texts or in books
about real functions or functional analysis, such as for instance Brezis [44]. Rudin [230],
Hewitt-Stromberg [ 1391, Natanson (1991, Yosida [293 ]. Dunford-Schwartz [90]; spe-
cific treatises are, for example. Kelley [153], Dugundji [89], Bourbaki [42]. For the
reader's convenience we collect here some basic definitions and results concerning the
notions of semicontinuity and compactness. Usually, these notions are set up in the con-
text of topological spaces.

Let (X, r) be a topological space, i.e. a set X where a family r. called topology, of
open sets has been specified. A mapping

.F:X-*RUfool

is said to be r-lower semicontinuous. r-l.s.c. or l.s.c. for short, if for every t E R the set

U7:=Ix EX:.F(x)>t)

is open in X, or equivalently the set

V'F := {x E X: .F(X) < t }

is closed in X. One easily verifies

Proposition 6.1 We have

(i) F : X - R U {oo} is l.s.c. if and only if its epigraph

epi(.F) := ((x. t) E X x (R U (oo)):.F(x) < r)

is closed in X x (R U fool).
(ii) If {.F; I;EJ is a family of Ls.c. functions, then the function

.F(x) := sup, (x)
let

is I.S.C.

(iii) if F and G are l.s.c. and). > 0. then F + g and .A.F are Ls.c.
(iv) If {x) is a sequence which r-converges to x, then

.F(x) < lim inf .F(xn).n-=
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Condition (iv) in general does not imply lower semicontinuity of F. but if (X, r)
satisfies the first countability axiom, i.e. if every x E X has a countable fundamental
system of neighbourhoods, then (iv) is equivalent to lower semicontinuity.

Actually, from the point of view of the calculus of variations we need not work with
a topological space, but with a space equipped with a notion of convergence and with
functions which are sequentially lower semicontinuous, in short s.l.s.c.

Definition 6.2 Let us assume that in X we have defined a notion of convergence. The
mapping.F : X -+ R U fool is said to be s.l.s.c. if for every sequence (xk } converging
to x E X we have

.F(x) < 1 m inf F(xk ).
k-oc

One can also prove that the notion of sequential semicontinuity is a topological
concept; in fact we have (cf. e.g. Dolcher [88]):

Proposition 6.3 Consider a topological space (X, r) and denote by rSeq the topology
on X whose closed sets are the sequentially r-closed subsets of X. Then

(i) rSeq is the strongest topology on X for which the converging sequences are r-
converging.

(ii) F is sequentially r-l.s.c. if and only if .F is rSeq-l.s.c.
(iii) rceq = r if (X. t) satisfies the first countability axiom.

Notice that in the calculus of variations one often works with notions of weak con-
vergence, for which r,Seq 0 r. However, for convex functions in a Banach space the
following result holds (see for instance Dunford-Schwartz [901 Vol. I, Chap. V).

Proposition 6A Let X be a Banach space and let F : X -). (-oo. oo) be a convex
function. Then

(i) F is strongly l.s.c. if and only if F is weakly l.s.c.;
(ii) if X" is separable, then F is weakly l.s.c. if and only if F is sequentially weakly

l.s.c.,
(iii) if X = V* and V is a separable Banach space, then F is weakly* l.s.c. if and only

if F is sequentially weakly* Ls.c.

The other concept which is important here is that of compactness.

Definition 6.5 A topological space X is called compact if every open covering of X has
a finite subcovering.

Even more important for us is the concept of sequential compactness.

Definition 6.6 A space X equipped with a notion of convergence is called sequentially
compact if every sequence in X has a converging subsequence.

There exist compact spaces which are not sequentially compact and sequentially
compact spaces which are not compact. But we have

Proposition 6.7 In a metric space X the notions of compactness and sequential com-
pactness coincide.
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Moreover, the following compactness criterion holds.

Proposition 6.8 Let X be a metric space. Then X is (sequentially) compact if and only
f X is totally, bounded, i.e. if and only if for every positive E, the space X can be covered
by a finite number of balls of radius less than e.

One of the most important compactness theorems, which in fact is the first step in
proving many other compactness results, is the following

Theorem 6.9 (Arzel6-Ascoli) Let X be a compact metric space and let K be a sub-
set of the space of continuous functions C°(X, R) equipped with the sup norm. Then K
is (sequentially) compact if and only if the functions in K are equibounded and
equicontinuous.

In the case X = (0, 1], Ascoli [161 pp. 545-549 showed the sufficiency of the
condition for compactness, and Arzelh [14] proved the necessity of this condition. A
clear presentation of this and related theorems was given by Arzela [ 15]. The extension
to a case in which the domain is a space with a notion of a limit (in particular a metric
space) was carried out by Frechet [ 1021, [103].1104].

We emphasize again that our interest in semicontinuity and compactness comes from
the following simple extension of Weierstrass's result on the existence of minimum
points.

Theorem 6.10 (Welerstrass) Lei F : X - R U (oo} be an s.l.s.c. function on X and
let C C X be a sequentially compact subset of X. Then .F attains its minimum on C.

The notions of compactness and sequential compactness coincide in a metric space,
as we have already stated in Proposition 6.7 above. For a Banach space endowed with
its weak topology we recall the Eberlein-Shmulian theorem (see for instance Dunford-
Schwartz [90] Vol. 1, p. 430):

Theorem 6.11 (Eberlein-Shmulian) Let E be a subset of a Banach space X. Then the
following conditions are equivalent,

(i) Every sequence in E has a weakly converging subsequence.
(ii) The weak closure of E is weakly compact.

6.3 Absolutely continuous functions
One of the central problems in the work of Lebesgue concerns the correspondence
between integral and primitive, i.e. the problem of determining a function from its
derivative. This had been an important question at the end of the last century. In [164]
Lebesgue showed that if f is integrable in (a, h) then the function

F(x) := J f(t)dt
u

is differentiable almost ever 'here with a derivative equal to f W. Conversely, if a
function g is differentiable in (a, b) and its derivative g' = f is bounded, then f is
integrable, and one has

g(x) - g(a) = J x f (t) dt.
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Much more complicated is the problem when g' is not bounded, since in this case g' is not
necessarily defined everywhere and integrable. Assuming that g is continuous, g' exists
almost everywhere, and that one of the nombres derives is everywhere finite, Lebesgue
then proved that g is necessarily a function of bounded variation. The functions of
bounded variation had been introduced by Jordan [ 1501 in connection with the problem of
the rectifiability of curves. Finally Lebesgue showed that a function of bounded variation
g has almost everywhere a derivative g' which is integrable, but that in general one
has not

g(x) - g(a) =
.

x g'(t) dt.
a

(6.1)

In a footnote on the last page of [164] Lebesgue claimed that for the validity of eqn (6.1)
one has to assume that the total variation of g over a countable set of intervals of total
length I tends to zero as I tends to zero.

It seems that Vitali discovered this condition independently of Lebesgue, and he gave
a complete characterization of the functions which are primitive [283]. Vitali introduced
the class of absolutely continuous functions in exactly the same way as we have done in
Section 2.2, and he proved the following result: A necessary and sufficient condition for
(6.1) to hold is that g be absolutely continuous in (a, b). He also exhibited an example
of a continuous non-decreasing function of bounded variation which is not absolutely
continuous. We mention that a similar example appears also in [ 1681.

In Chap. 3 we saw the relevance of the class of absolutely continuous functions for
the calculus of variations. Here we want to mention one more application connected with
the problem of defining the length of a curve.

The length of a continuous curve C in R3 represented by (x(t). y(t). ;.(t)), t E (a. b),
had been defined by Jordan [ 150] as the supremum of the lengths of all polygones with
vertices on the curve. A curve of finite length is called rectifiable. Jordan also proved
that a necessary and sufficient condition for the curve (x(t), y(t), z(t)) to be rectifiable
is that x(t), y(t), z(t) be functions of bounded variation.

As a consequence of his results Lebesgue showed in [ 163], [ 164] that if i. v, z exist
everywhere, or if the functions x. y. z have bounded nombres derives, then

jb
length of C 2 + 2 + Z2 dt.

A complete answer was obtained by Tonelli (254]. Using Vitali's result, he proved the
following:

Theorem 6.12 The length ! of a rectifiable curve satisfies

pb
! >- J x2 + 2 + z2 dt.

a

and equality holds if and only if x(t), y(t), and z(t) are absolutely continuous.

Rather more complicated is the problem of defining the area of a surface, which
we shall not touch. Concerning classical results dealing with this problem we refer to
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[216], [232]. The question is related to the problem of minimal surfaces, one of the most
important problems in the calculus of variations, which has been the source of many
discoveries.

6.4 Sobolev spaces

The theory of Sobolev spaces was developed in connection with multidimensional varia-
tional problems, particularly in connection with Dirichlet's principle and with boundary
value problems for partial differential equations. It proved to be useful in many other
contexts such as, for example, approximation theory and real analysis. Consequently the
literature on this topic is very large, and it extends far beyond the limits of this trea-
tise. Many books on elliptic partial differential equations contain results about Sobolev
spaces. for instance [2], [1051, [1211, [144], [1451.11601. [1731. [1741. 11931, [2001; a
systematic study of Sobolev spaces is carried out in [ 1). 197]. [1581. [1821, and Ziemer
[2951. Some of these books also contain generalizations of Sobolev spaces such as
Nikolskii, Slobodeskii, and Besov spaces; the reader may consult [245], [205], [331,
[280], [279] for these topics.

It is nowadays customary to associate the name of S. L. Sobolev with these spaces
although this is not very much justified from a historical point of view. In fact, these
spaces were for quite some time called Beppo Levi spaces. In a systematic way Sobolev
spaces were introduced independently by S. L. Sobolev [2421. compare also 12431, and
by J. W. Calkin [53] and C. B. Money (1911, compare also [ 1921, but certainly these
authors were not the first to consider functions with generalized derivatives in more than
one variable.

Probably the first to use functions with generalized derivatives in the context of
calculus of variations was Beppo Levi [ 1711 in 1906. He considered continuous functions
which are absolutely continuous in each variable for almost all values of the others
and with first derivatives in L2. Similar classes of functions were also considered by
G. Fubini [ 1111, and then by Tonelli [2701. compare especially [275], and by Nikodym
[204]. Continuous functions which are absolutely continuous in each variable for almost
all values of the others and with derivatives in L 1 are often called absolutely continuous
in the sense of Tonelli. and the set of such functions is denoted by ACT.

Functions of Sobolev type were also used by G. C. Evans 1951. [96) in 1920 in
his potential-theoretic studies. In 1930 F. Rellich 12191 proved the L2-compactness of
bounded sets in H 1.2, and J. Leray [169] used H 1'2-spaces for his study of Navier-Stokes
equations. Probably many authors have used functions with generalized derivatives, but
an accurate historical account seems to be missing.

The study and the use of Sobolev spaces increased considerably during the 1940s
and 1950s. To quote just a few of the most influential writers we mention Morrey [ 190),
[ 1921, Friedrichs 1107], [1081. [1091, Kondrachov [ 1571. Shiffman [ 2371. Sigalov [240].
[2411, Deny 1841. Deny-Lions 185 1, Ladyzhenskaya [ 1591. [ 1601, Aronszajn-Smith [ 12],
[13), Nirenberg [206], John [148], [ 149], Lax [W). and Browder (46]. Starting in the
1950s the theory and its applications exploded, and it is extremely difficult to trace all
the contributions in a historically correct way.

General inequalities such as Poincare's inequality (often also referred to as Wirtinger s
inequality) are of crucial importance in the calculus of variations and in the theory of
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elliptic partial differential equations. These inequalities go back to Poincarr [2101. For
the early literature compare also [71, [2611, (1281, [136], [212].

The compact immersion theorem from H I - P into Lq is due to Rellich [2191 for the
case p = 2, and to Kondrachov [1571 in general.

6.5 Non-convex functlonals on measures and bounded variation functions

In Theorem 3.12 and Remark I of Section 3.3 we have seen that various integrands
F(x, p) which are convex with respect to p lead to weakly' lower semicontinuous
functionals on the space of measures. These functionals are defined as

.F(A) =
fin

F I X.
d,1

) dg + 1 Foe (x, As ). (6.2)` dµ n

The indicated lower semicontinuity holds true, for example, for Lagrangians of the form
F = F(p) with F convex and lower semicontinuous.

Similarly we obtain from Theorem 3.6 of Section 3.1 that all functionals of the form

.F(u) = fa F(x, u) dx (6.3)

re weakly lower semicontinuous on Lq(S2, RN) provided that F(x, p) is a measurablea
function in (x. p) which is convex and lower semicontinuous with respect to p.

Vice versa, it is possible to prove (see Buttazzo-Dal Maso [491) that functionals of
the form (6.3) with a measurable Lagrangian F which is convex in p are the only ones
that are weakly lower semicontinuous on Lq(S2, RN) and local in the sense that

.F(u + v) = .F(u) + ,F(v) whenever u v 0 a.e. on 12.

(Here we have assumed without loss of generality that .F(0) = 0.) In other words, for a
functional on Lq (92, RN), weak lower semicontinuity and locality imply convexity. This
is no longer true for functionals defined on the space M(S2, RN) of measures; in fact,
it is possible to show (see Bouchitte-Buttazzo [38]. (39J, (40]) that if we define locality
on M(S2. RN) by

F(A 1 +12) _ .FGA i) + .F(A2) whenever k 1. 12 are mutually singular on S2.

we obtain that functionals of the form (6.2) are the only ones which are local, weakly'
lower semicontinuous, and convex on M (92, RN). On the other hand, if we do not impose
convexity a priori we obtain the integral representation

40(x)) dp (6.4),F(A) _ f F 1 x,
dA

/ dµ + j Foc(x. As) + fAAn ` TA / n\A; AA

for a suitable measure A and integrands F and G, where Ax is the set of atoms of A,
is the counting measure, A= is the atomic part of A, and A=(x) denotes the value A([x)).
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The Lagrangian F(x. p) has to be convex in p. while G(x. p) has to be subadditive in
p. i.e.

G(x, p) + pp) < G(x. p)) + G(x. p2) for all x. pl. P2.

and F and G are related by the asymptotic condition

F"(x. p) = lim G(x,'p)

t
(6.5)

For instance, taking F(p) = 1pl2 and G(p) __ 1. condition (6.5) is fulfilled; therefore
the functional

dµ + :(A;,) if As = 0.F(I) dA I ` (6.6)

100 if ws 56 0

turns out to be local and weakly' lower semicontinuous on M(S2, RN), but it is not
convex.

An analogous discussion on B V (1, RN). I := (a. b). leads to functionals of the form

.F(;L) =
J

F(x. u)dx + J F-(x. us) + J G(x, [u]) d:
t ff S«

where ju ] denotes the jump of u and S. is the set of discontinuity points of u. For instance.
the functional in (6.6) becomes

b

.F(u) = J Iu I2 dx + if u = 0.
a

00 if us 0.

which is the one-dimensional case of more general model problems in fracture mechanics
or in image segmentation. We refer the reader to papers by De Giorgi [791, De Giorgi-
Ambrosio [801, Ambrosio [9]. De Giorgi et at. [83], Bouchitte el al. [411 where details
and references can be found.

6.6 Direct methods

As was mentioned before, the origin of direct methods can be found in the work of
Gauss. Thomson, Dirichlet. and Riemann in connection with Dirichlet's principle. The
first justification of Dirichlet's principle was given by D. Hilbert in 1900. compare 11401,
[ 1411. who showed that a direct approach can be used to solve one-dimensional regular
problems concerning the existence of geodesics on a surface and to justify Dirichlet's
principle. Inspired by these papers, further important contributions were given in 11631.
[551. [171], 11111, 1165). Particularly relevant in our context are papers by Lebesgue
[ 1631. [ 165]. where the importance of the concept of semicontinuity for the definition of
the length of a curve and the area of a surface was pointed out.
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Starting in 1911, in a series of papers Tonelli [256], [258], [260], (259] proved the
existence of minimizers of one-dimensional variational problems (both in parametric
and non-parametric form), and he applied his method to several specific questions such
as the existence of periodic orbits [257], the stability of the equilibrium of a liquid mass
under its molecular forces [2621, and the minimum property of the sphere [264].17 In his
proofs Tonelli stressed the importance of the notion of semicontinuity. This notion also
appeared in the papers of Lebesgue, but he and later authors established their existence
results by using the fact that the Euler equation can be solved locally. As a consequence
the essence of the direct methods and the reasons why they work remained hidden, and
so the field of applications for these methods seemed to be rather limited. This fact was
also observed by Hadamard (127]. [1261, who developed a steepest descent method for
proving the existence of a minimizer, and by Goursat 1125].

The very essence of the direct methods was first lucidly explained by Tonelli in his
work on one-dimensional variational problems. Tonelli's fundamental paper 1266] of
1915, anticipated by two short announcements [263] from 1914, is already written in the
modem style, and it can be viewed as the second important step in the development of
direct methods.

After the First World War Tonelli reviewed his theory 12671, [268], and he gave a
systematic exposition in his monograph [269]. He also described his ideas at several
conferences, in particular at the International Congresses of Mathematicians in Toronto
[2721 and in Bologna [274]. compare also [276], [277J.

Later he tried to extend his results to two-dimensional problems [273], [2751, still
working with absolutely continuous functions, since he believed that this class of func-
tions was the right tool to work with, and this probably was the main limitation of his
theory. In fact, in order to have compactness he was forced to work with integrands
having a growth larger than two with respect to the derivatives (because only in this case
is continuity granted by Sobolev embedding theorems), although he could also handle
certain limiting cases including Dirichlet's integral by means of so-called monotone
function in the sense of Lebesgue, compare [165] and [273]. [275].

An important turn took the development of the direct methods further in the work
of C. B. Morrey [1921. [190] where the space of absolute continuous functions was
replaced by function spaces which are equivalent to Sobolev spaces. Morrey's work was
the third decisive step in the development of direct methods. Using Tonelli's general
ideas, Morrey formulated the modern direct approach to the existence and regularity of
minimizers of multidimensional variational problems.

The semicontinuity and existence theorems of Chap. 3 appear in [2691, see also
1267]; in their presentation we have followed [276], 12771, [1921. and especially 11931.
Mani'a's example appeared in [ 179], 11781 following Lavrentiev's paper [1611; compare
also the paper 159] which we have followed. Example 0 is taken from Giaquinta et a!.
[1141.

In [269] one also finds a proof of the Lipschitz regularity of minimizers of regular
integrals. The step from Lipschitz (or actually from Cl) to C2 is due to Hilbert.

17The most important contributions of Tonelli to the calculus of variations are collected in Vols 2 and
3 of his Opere svelte (278] and in his monograph [269].
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The partial regularity theorem presented in Section 4.2 was discovered by Tonelli
[2691. The proof we have given follows that of Ball-Mizel [21 ] which, apart from minor
modifications and improvements, agrees with Tonelli's proof. Ball and Mizel were the
first to show that the singular set E can be non-empty; further discussions of the singular
set can be found in Clarke-Vinter [68), [70], [71], and in [76]: Proposition 4.11 of
Section 4.3 is due to Davie [76). An early result of a similar kind, but with a Lagrangian
F satisfying only

Ipl -< F(x, u, p) < const(1 + IPI`) (6.7)

and

F(x. it, p) -- oc as IPI - oa. (6.8)
IPI

was proved by Ball-Mizel [211.
We have already remarked that sunder assumption (6.7) the class of absolutely con-

tinuous functions is by no means a suitable class to work with since:

(a) limits of functions with equibounded gradients in LI are bounded variation func-
tions, and derivatives of these functions are measures which in general have non-zero
singular parts with respect to the Lebesgue measure;

(b) the existence of minimizers in AC may fail to be true. But even if a minimi7er exists
in AC , we would have to accept very pathological minimizers. For example, Davie
176] proved the following result.

Proposition 6.13 Given a closed set E C [a, h1 of measure zerrs, a firm tion v E C(0. 1)
which is C" outside E and satisfies v' > 0 and v'(x) a oo as dist(x. E) -+ 0. and
a continuous function p(x) on [it. h] which is C' outside E. we can find an inregrand
F(u, p) such that

F(ir, p) > 0, Frr, > 0, eolPl < F(u. p) < (.,(1 + Ip12)

Fr,(r(x). r'(x)) = p(x) for x E [a. b] - E

and v is a minimizer of F(u) flu. u') d.r.

In particular:

(a) If p is absolutely continuous, then Euler's equation will be satisfied in the sense that
F- (v, v') E L1 and F. U, v') is its indefinite integral.

(b) If p is such that p' ' L 1, then F (v, v') it L I and the Euler equation does not hold.
(c) If E is a Cantor set and p is the Cantor function then F = 0, but Fr, is not constant.

For Lagrangians depending only on x, p one has the following; see Davie [76].
Consider the Lagrangian

F(x. p) := (1 + IPI')t/2 +x`IPI' x E [-1. 1].
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and the associated variational problem with the boundary conditions u (I) = a, u (-I) =
-a (a > 0), and notice that FPP = (I + Ipl2)-3/2 + 2x2 > 0. Then there exists an
at > 0 such that
(a) if 0 < a < at, then.F(u) has a unique minimizer; this minimizer is of class C' if

a < at. and it has a singularity at x = 0 if a = at;
(b) if or > at there is no minimizer in AC with u(1) = a. u(-1) = -a.

Other examples can be found in (211, [761. For further results we also refer to 1221,
[2491, [250]. [248].

6.7 Lavrentiev phenomenon

The first example of a gap between the infima of the values of a variational integral
among smooth functions and absolutely continuous functions was given by Lavrentiev
[ 1611; a simpler example was described later by Mania [ 178]. Conditions for excluding
Lavrentiev's phenomenon were given by Angell [101, Loewen [ 1761, and Clarke-Vinter
[681. Further investigations and examples can be found in Ball-Mizel 1211, Davie [761.
Heinricher-Mizel [ 1381.1 1371.

We think that the following two facts are the reason why the gap phenomenon was
found to be surprising and disturbing.

(i) Tonelli's strong belief that AC is the right space in which to minimize reasonable
one-dimensional variational integrals; this conviction was and still is shared by
many mathematicians.

(ii) The bad behaviour of many functionals with respect to weak convergence when
they are extended (e.g. by means of Lebesgue's dominated convergence theorem).

More precisely, the occurrence of the gap phenomenon is caused by the fact that a
reasonable functional defined for smooth functions might become a strange object if it
is extended to absolutely continuous functions.

In order to have a complete picture of the Lavrentiev phenomenon. we want to present
here some aspects of relaxation described by Buttazzo-Mizel [511, together with some
further examples. In the abstract setting of relaxation we have two topological spaces
X and Y. with Y dense in X. and a functional F : X -> (-x, oo] which is lower
semicontinuous with respect to the topology of X. Considering the restriction Fly of F

to Y and its relaxation FI y defined by

TI y := max{Q : X - (-oc. +oc] : C is X-lower semicontinuous, C < F on Y}

we immediately have the inequality

.F < Fly on X.

Thus we can write

.Fly = F+L
where the functional L > 0 is called the Lavrentiev gap associated with F and to X, Y.
Note that L(u) makes sense only if F(u) < +oc, and we shall say that the Lavrentiev
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phenomenon is absent if the functional C vanishes identically. Since F)y s F on Y we
clearly have C(u) = 0 for every u E Y. but we may have C(u) > 0 for some u r= X \Y-.
in this case we say that F shows the Lavrentiev phenomenon between Y and X.

By the general theory of relaxed problems (see Buttazzo [47]) we have the relaxation
equality

inf(F(y): y E Y) = inf(,Fly(x): x E X)

= inf(F(x) + L(x) : x E X).

Thus

inf (F(y) : y E Y) = inf(F(x) : x E X) if C(u) =- 0.

Consider functionals F of the form

(x. u. u') drF(u) = f F

defined on the space H1-1(0. 1), where F : (0, 1) x R x R -> R is an integrand with
the following properties:

(i) F is a Caratheodory function (i.e. F(x. z. p) is measurable in x and continuous in
(z. p)):

(ii) F(x, z. ) is convex on R for every (x, z) E Q x R:
(iii) F(x. 0) = 0 for every (x, z) E S2 x R:
(iv) there exists a function w : 52 x R x R - (0. x) with w(x. r. t) integrable in x and

increasing in r and t such that

0<F(.r.:,p)<w(x.jzj.Ipl) forevery(x,z,p)EQxRxR.

To employ the abstract scheme above we denote by X the space of all functions
u E H I.1 (0. 1) with u(0) = 0. and by Y the space of all Lipschitz-continuous functions
u with u(0) = 0. The following result has been obtained in Buttazzo-Mizel (511.

Theorem 6.14 There exists a function W : (0, 1) x R --* R such that the Lavrentiev
gap functional C associated with F is given by the formula

C(u) = lim inf W(x. u(x))
=_,o

for even-u E H1 I'"'((0. 1]) n H,'(0. 1) with u(0) = 0.

Remark 1 Here Hl xx ((0, 1]) denotes the space of all functions which are Lipschitz
continuous on every interval L. 1 ] with 6 > 0. In other words we deal with functions u
which are singular only in one point (which for simplicity we choose to be the origin).
The problem of representing C(u) for an arbitrary u E H ' t (0, 1) with u(0) = 0 is, as
far as we know, still open.
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The function W of Theorem 6.14 is given by

W (x, s) = lim inf V (x. t)
1-ks

where V is the value function

V (x. t) := inf
UT

F(y, u, u')dy: u E HL c(0. x). u(0) = 0. u(x) = t

As an example we now discuss Lagrangians of Mania type:

(1) Fa.B.m (x, u. p) = (u to l a- t - xs )Z I P I,

with a > 6 > 0 and m > 1(note that the original Mania integrand was F3.1.6). Accord-
ing to the definition of Heinricher-Mizel [ 1371 the integrand F is called homogeneous
if

F(x.:, p) = IF(tx, tb:, tY-t p)

for every (x, p) and for every t > 0. where y is a suitable number in (0. 1). Then case
(1) is homogeneous if

m=a 1 +2P
a - P

Therefore we distinguish in our discussion three cases: the subhomogeneous, the homo-
geneous. and the superhonwgeneous case.

In the subhomogeneous case m < all + 2#)/(a - fi) the gap functional C is
identically zero and the Lavrentiev phenomenon does not occur. Indeed, every admissible
function u can be approximated by the Lipschitz-continuous functions

u(x) ifx > E
u(E)x/E ifx < E

for which we have

lim F(a,) = F(u).-A

In the homogeneous case m = all + 2/f)/(a -)9) we obtain

\mW(x,s)=Km-'(s!l m
(`s,

+1- 2m

LslxY1 2a+m

xYJ2a

a+rn xY

where

20 1+20K=1-m-1 y=1-
m
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For instance, on the function u(x) = xfil* we get

£(u) = Km-' 2a2
(a +m)(2a +m)

Note that, even if the integrands Fga,gp,m all vanish on the same function u(x) = xPla,
the corresponding gap functionals, evaluated on this function, are different.

In the superhomogeneous case m > all + 2fi)/(a - i6) we have

W(x,s) = Km-) (i!!)tm
XY

where K and y are as above. For instance, on the function u(x) = x't' we get £(u)
+00.

Another class of integrands for which the explicit computation of the function W
representing the gap t is possible is given by the functions

Fq.m(X.z.p)=Iz-x"I
IpIm

with 0 < q < 1. Here, the homogeneous case occurs when m = (1 + q)/(l - q), and
we have the following situation (see Belloni 130]).

In the subhomogeneous case m < (1 + q )l (1 - q) we infer by an argument similar
to the previous one that the gap functional L is identically zero; hence the Lavrentiev
phenomenon does not occur.

In the homogeneous case m = (I + q)/(I - q) we have

M Ll/m

(Xq)m

[mm xYJ(m+
W(x,s) _

m + 1)m m +
( z9)m+1 -

mm

l (
X.

\ m

In the superhomogeneous case m > (1 + q )l (I - q) we have

(i!!)W (X' s) = K'" 1

where

K=I - q
m-I'

Y=1-q+l

M

ifs < xq

ifs>xq.

The problem of deciding when the approximation of a minimizer is possible by
means of a minimizing sequence of Lipschitz functions was considered in the first paper
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of Lavrentiev [ 1611 where he found that the following condition is sufficient for excluding
the Lavrentiev phenomenon:

Foreveryr > Othere existscr > Osuchthatforeverv(x,z,p) E (0, 1)x[-r.r]xR

11z (x, z, P) l < C,

(the convergence used was the uniform convergence). In the same year Tonelli [277]
found a more general condition, still sufficient for C =- 0:

F(x, z, p) = G(x, z, p) + H(x, z. p) where G satisfies condition (a) below and H
satisfies one of conditions (Q) or (y) below:

(a) for even' r > 0 there exists some cr > 0 such that for every (x, z, p) E (0, 1) x
[-r, r] x03

IG(X. Z. p)I < cr(1 + Ipl):

(j6) for every r > 0 there exists some Cr > 0 such that for every (x. z, p) E (0, 1) x
[-r, r] x R

IH:(x. z, p)l < Cr(1 + IpI);

(y) for every r > 0 there exists some cr > 0 such that for every (x. z, w, p) E (0. 1) x
[-r, r] x [-r. r] x R

I HH(x, z, p)I < cr(I + IH;(x, w, p) 1).

In Clarke-Vinter [681 several cases have been considered where solutions of the
problem

rt
min f F(x, u. u') dx: u E H(O. 1). u(O) = a. u(I) = b

0

are Lipschitz continuous, under the following conditions:

(i) F(x. z. p) is locally bounded in (x, z. p) and measurable in x;
(ii) F(x, Z. P) is locally Lipschitz in (z. p) uniformly in x; that is, for ever yy r > 0 there

exists some cr > 0 such that for every x E (0. 1) and every I z 11.1:21, I P t 1, I P21 r
we have

IF(x. zi. Pt) - F(-r.:.2, P2)1:5 cr(lzt - Z21 + IPt - P2D;

(iii) F(x. z. p) is convex in p;
(iv) there exists a superlinear function 0 (i.e. 8(r)/r +oo as r -+ oo) such that

F(x, z. p) O(I pl )

We list some cases where minimizers are Lipschitz continuous.

(2) F. (X, u(x). u'(x)) E L'(O. 1);
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(3) there exist c > 0 and a E L 1 (0, 1) such that

I FZ(x, u(x), u'(x))I < cI Fp(x, u(x), u'(x)) I +a(x):

(4) Condition of Bernstein type: there exists a e L 1(0. 1) such that the expression

Fx - Fp - pFzp

Fpp

satisfies

14)(x, u(x). u'(x))I < a(x)(1 + Iu'(xH).

One can prove (compare Clarke-Vinter [68]) that conditions (2). (3). (4) respectively
are implied by the following assumptions:

(5) for every r > 0 there exist cr > 0 and ar E L t (0, 1) such that for every (x, :, p) E

(0, 1) x [-r, r] x R we have

IFx(x. Z, p)I < crI F(x, z, p)I + ar(x):

(6) for every r > 0 there exist cr > 0. dr > 0. ar E L 1 (0, 1) such that for every
(x.Z,p)E(0,1)x[-r.r]xR

IF (x, Z. p)I : crI F(x, Z. p)I +drIFp(x. z, p) I +a,(x):

(7) there exist ar > 1. k > 0, g : R -> R continuous. and for every r > 0 a positive
constant cr such that for every (x, z, p) E (0, 1) x [ -r, r] x R we have

F(x. z, p) > g(Z) + k1pl°

I F(x. z, p)I < cr(1 + (pI").

For integrands of the form F(x, p) (which do not depend on :) we have the following
proposition.

Proposition 6.15 If F : (0, 1) --> R x [0, ooI is a Borel function such that

(1) F(x. ) is convex and lower semicontinuous for almost all x E (0. 1).
(ii) there exists uo E H I 'O such that F(x, u'0) E L 1, then there is no Lavrentiev gap

between H'-' and H I .oo

Proof We reduce our discussion to the case ua = 0 by considering the function

G(x. p) = F(x. p + up(x)).

In order to show that the Lavrentiev gap functional G is identically zero, we have to
prove that for every weakly lower semicontinuous functional g : H I.1(0, I) -p [0. +oo]
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dominated by F from above on H we have G < F. To this end we fix an arbitrary
u E H1,1(0. 1) and define for n e N

wn(x) := maxi-n. min{u'(x), n)).
X

n(t)dtun(x) := u(0) + fo w

We have that un E H I O0 (0, 1), un (0) = u (O), and un --> u strongly in H I -I; indeed, for
a suitable constant C > 0

Hun-UIIHI.1 <Cf (n+Iu'l)dx
Ilu'I>n)

< 2C f lu'I dx.
Ilu'I>n)

and the last integral tends to zero as n -+ oc because of u E H
Since F(x, ) is convex we have

G(u) <liminf F(un)
n-+%

= lim inf F(x, u') dx + f F(x. n) dx + f F(x, -n) dx
n-"0 ( tIu'I$n) u '>n) u -n) 111

n
< lim inf JF(x ,u') dx +

'I
F(x, u')- lu'lsn) u

+ ( I -
lu'I ) F(x. 0)] dx }

i

< f F(x, u') dx + lim inf f F(x. 0) dx.
o n-+'0 tlu I>n)

By the integrability of F(x, 0) and the fact that meas(lu'I > n) 0 as n --b- oo we
obtain Cg(u) < F(u) as required. 0

In the autonomous case F = F(z, p) the following general approximation result has
been obtained by Alberti-Serra Cassano [6].

Theorem 6.16 Let F : RN x RN -+ [0, ac] be a Bore! function, and assume that for
every r > 0 there exist c, > 0 and M, > 0 such that for Iz1 < r and I pI < c, we have

F(z. p) < Mr.
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Then, for ever} m E [ 1. oo) and every u E H I m (1. RN), I = (0. 1). there exists a
sequence u E H1. (1, RN) which converges to u in the H -norm and approximates
u in energy, i.e.

I
It

0
F(u.u')dx asn -- +oo.

Moreover, if the Lagrangian F is bounded on bounded sets, the approximating sequence
can be taken in C t (1, RA I). Finally, if F is continuous, the approximating sequence can
be taken in C°°(1, RN).

Theorem 6.16 can be generalized as follows (see Remark 2.9 of 161). Let D be a
subset of RN, let V be a family of mappings from [0. 11 to RN, and let k, m be positive
real numbers: we say that V (k. a)-connects D when

- all functions v E V are k-Lipschitz continuous;
- all functions t H F(v(t), v'(t )) with v r= V are uniformly integrable on [0. 1],
- for every y1, y2 E D there exist v E V and x i , x2 E [0, 1 ] such that y1 = v(xI), y2 =
v(x2). and ixi - x21 a lyl -- `2I.

Then we have the following generalization of Theorem 6.16 (see Alberti-Serra
Cassano [61):

Let u be a function which belongs to H I .m (0. 1: RN) for some in E [ 1, O C), and
assume that there exists a family V which (k. a)-connects the image of u for some
k. a. Then u can be approximated in energy by a sequence of Lipschitz functions which
converge to u in the H'-' -norm.

This statement may be applied to functionals of the form

I

(u. u') dx.F(u) = fo F

with a constraint of the form u E T. where

T:= (u e H"(1: RN): U(t) E M for alit e [0, 1]),

and M is a closed Lipschitz submanifold of RN; then our autonomous functional assumes
the value +oo if u if T. but the approximation result above still holds true. We want to
point out that for Lagrangians of the kind F(z, p) a constraint of the type (u >_ 01 does
not affect the approximation by regular functions, while for autonomous second-order
integrands a constraint of this type may produce a gap (see Cheng-Mizel [611).

6.8 The vibrating string problem

In 1747 D' Alembert found the general solution of the equation

82u , a2u

ate
a°

8x2
(6.9)



The vibrating string problem 243

in the form

(p(x+at)+*(x-at).

Shortly afterwards, in 1753, Daniel Bernoulli treated the same problem by an entirely
different method. Earlier, Taylor had observed that the functions

ntrx nzra(t - A)
sin cos

,
n = 1.2... .

are solutions of the differential equation (6.9) which also satisfy the boundary conditions

u(0. t) = 0 u(!. t) = 0.

This led Bernoulli to the conclusion that each solution of (6.9) could be written as the
superposition of tones. Euler did not accept Bernoulli's solution as he could not see how
such a sum of analytic functions could produce arbitrary initial data. This question was
clarified by the work of Fourier and the subsequent work of Dirichlet, Riemann, and
many other mathematicians at the beginning of this century.

The concepts and methods developed for the vibrating string problem proved to be
of great importance for many other problems in physics. in particular the idea that the
motion of a physical system near an equilibrium configuration can be obtained as a
superposition of eigenvibrations. To describe this idea, following Lagrange we analyse
a system with finitely many degrees of freedom.

In this case the potential energy with respect to generalized coordinates is given by a
function U (q ). which we may assume to be zero at q = 0. the equilibrium position. If this
equilibrium position is stable, we can represent the potential energy up to higher-order
terms as a positive definite quadratic form

U = Eaikgigk

Similarly the kinetic energy is expressed by a positive definite quadratic form

T = 1: bik(q)4i4k.

and, up to higher-order terms, we can even think of the bik(q) as constants. In this case
the Euler equations

d aT aU-+-=0
dt a4i 8qi

take the form

Bq + Aq = 0 (6.10)

where A and B respectively denote the matrices (aik) and (bit). Replacing the coordinates
qj by suitable new Cartesian coordinates xj we can transform T and U simultaneously
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to the diagonal forms

T=.i +...+Xn'.

Then egos (6.10) reduce to the n harmonic oscillators

i1+Aixi=0 1=1..... n.

Thus we see that the motion near a stable equilibrium point can be obtained as a finite
sum of eigenvibrations. The systematic introduction of eigenvibrations into physics is
described in the treatises of Thompson-Tail, Rayleigh, and Courant-Hilbert.

For a detailed historical account we refer to Truesdell [2811 and to Cannon-Dostrovski
[54].

The variational approach to eigenvalue problems goes back to Rayleigh and Fischer.
Important applications of this ideas are due to W. Ritz, H. Weyl, and later to R. Courant.
A systematic presentation of pertinent ideas can be found in the treatise of Courant-
Hilbert [74). For a modern approach with applications to differential geometry we refer
to Chavel [60].

Best constants in inequalities and estimates of eigenvalues play an important role in
physics as well as in geometry. The interested reader is referred for instance to [ 136],
[212], [29], and [60].

6.9 Variational Inequalities and the obstacle problem. Non-coercive problems

Variational problems with inequalities as constraints were investigated by Steiner,
Weierstrass, Bolza, and Hadamard. The systematic study of variational inequalities be-
gan with the fundamental paper by Fichera [100] on Signorini's problem in 1964 and
the work on monotone operators by G. J. Minty [ 1871, [188] in 1962 and 1963. Further
important contributions in the 1960s were made by G. Stampacchia, J. L. Lions-G. Stam-
pacchia, F. E. Browder, H. Lewy, H. Lewy-G. Stampacchia, H. Brdzis-G. Stampacchia,
and J. C. C. Nitsche. In the following two decades the subject was thoroughly investi-
gated. We refer the interested reader to the treatises of D. Kinderlehrer-G. Stampacchia
[ 1541 and A. Friedman (106] for further information.

A general theory of non-coercive problems, involving the recession functional as-
sociated with the total energy of the system, was developed by Baiocchi et al. in [ 191,
together with several applications to problems from continuum mechanics. We refer the
interested reader to this paper as well as to the related articles [ 181, [521, 1253]. [2181 for
details.

6.10 Periodic solutions

Our treatment of the important and fascinating topic of periodic solutions of Hamiltonian
systems is rather inadequate, just as the treatment of the other items in Chap. 5 is fairly
casual. In fact, Chap. 5 is no more than a collection of examples meant to illustrate the
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general theory presented in the preceding chapters. Nevertheless we should like to refer
the reader also to the classical treatises of Poincard [2111, Birkhoff [34). Siegel-Moser
[2391, and to the encyclopedia article by Arnold et al. [ 111. Despite its age the research
on periodic solutions is very much alive and experiencing rapid progress. Problems
involving singular potentials such as the Newtonian potential are of particular interest,
and many questions still remain to be answered.
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