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a b s t r a c t

We give maximum principles for solutions u : Ω → RN to a class of quasilinear
elliptic systems whose prototype is

−
n∑

i=1

∂

∂xi

(
N∑

β=1

n∑
j=1

aα,β
i,j (x, u(x))

∂uβ

∂xj
(x)

)
= 0, x ∈ Ω ,

where α ∈ {1, . . . , N} is the equation index and Ω is an open, bounded subset
of Rn. We assume that coefficients aα,β

i,j (x, y) are measurable with respect to x,
continuous with respect to y ∈ RN , bounded and elliptic. In vectorial problems,
when trying to bound the solution by means of the boundary data, we need to bypass
De Giorgi’s counterexample by means of some additional structure assumptions on
the coefficients aα,β

i,j (x, y). In this paper, we assume that off-diagonal coefficients
aα,β

i,j , α ̸= β, have support in some staircase set along the diagonal in the yα, yβ

plane.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the system of N equations

−
n∑

i=1

∂

∂xi

⎛⎝ N∑
β=1

n∑
j=1

aα,β
i,j (x, u(x)) ∂uβ

∂xj
(x)

⎞⎠ = 0, x ∈ Ω , (1.1)

∗ Corresponding author.
E-mail addresses: leonardi@dmi.unict.it (S. Leonardi), leonetti@univaq.it (F. Leonetti), pignotti@univaq.it (C. Pignotti),

eugenio@ua.pt (E. Rocha), vasile@ua.pt (V. Staicu).

https://doi.org/10.1016/j.na.2018.11.004
0362-546X/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.na.2018.11.004
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:leonardi@dmi.unict.it
mailto:leonetti@univaq.it
mailto:pignotti@univaq.it
mailto:eugenio@ua.pt
mailto:vasile@ua.pt
https://doi.org/10.1016/j.na.2018.11.004


Please cite this article as: S. Leonardi, F. Leonetti, C. Pignotti et al., Maximum principles for some quasilinear elliptic systems, Nonlinear Analysis
(2018), https://doi.org/10.1016/j.na.2018.11.004.

2 S. Leonardi, F. Leonetti, C. Pignotti et al. / Nonlinear Analysis xxx (xxxx) xxx

where α ∈ {1, . . . , N} is the equation index and Ω is an open, bounded subset of Rn, with n ≥ 2. Moreover,
u : Ω ⊂ Rn → RN and u = (u1, . . . , uN ). Coefficients aα,β

i,j (x, y) are measurable with respect to x, continuous
with respect to y ∈ RN , bounded and elliptic.

In scalar case (N = 1) a maximum principle is available as

sup
Ω

u ≤ sup
∂Ω

u. (1.2)

In vectorial case (N ≥ 2), in general, we cannot expect to bound u inside Ω by means of its boundary
values: in [1] it is shown that it can be constructed a system of linear equations with measurable bounded
coefficients aα,β

i,j (x) whose solution is the function u(x) = x/|x|γ defined in the unit ball centred at the origin
with a suitable γ > 1. Then u(x) = x on the boundary of Ω but u blows up inside Ω ; see also [12,2], the
surveys [9,10] and the recent paper [11].

So, the main effort is finding (additional) structure assumptions on coefficients aα,β
i,j (x, u) that keep away

De Giorgi’s counterexample and that allow for regularity. A simple case of such a structure is the case in
which off-diagonal coefficients aα,β

i,j , with β ̸= α, are identically zero; in such a case, the system (1.1) is
(almost) decoupled, since Djuα = ∂uα

∂xj
appears only in the α row of the system

−
n∑

i=1

∂

∂xi

⎛⎝ n∑
j=1

aα,α
i,j (x, u(x)) ∂uα

∂xj
(x)

⎞⎠ = 0, x ∈ Ω , (1.3)

then, we can use the maximum principle for one single equation and we get

sup
Ω

uα ≤ sup
∂Ω

uα. (1.4)

A further step happens when off-diagonal coefficients aα,β
i,j (x, u), with β ∈ {1, . . . , N} \ {α}, vanish when uα

is large, namely,
uα > θα =⇒ aα,β

i,j (x, u) = 0 ∀β ∈ {1, . . . , N} \ {α}, (1.5)

see [12]. In this case, the α row of the system (1.1) becomes decoupled, like (1.3), when x ∈ {uα > θα}; then
we get

sup
Ω

uα ≤ max{θα; sup
∂Ω

uα}, (1.6)

see [12,3] and [7].
Actually, what matters is the possibility to suitably control from below the quantity

n∑
i=1

N∑
β=1

n∑
j=1

aα,β
i,j (x, u)DjuβDiu

α

as follows

uα > θα =⇒
n∑

i=1

N∑
β=1

n∑
j=1

aα,β
i,j (x, u)DjuβDiu

α ≥ να|Duα|2 − Mα, (1.7)

for a suitable positive constant να and a nonnegative constant Mα. Such an assumption guarantees the
following estimate

sup
Ω

uα ≤ max{θα; sup
∂Ω

uα} + c

(
Mα

ν

)1/2
, (1.8)

for a suitable positive constant c depending only on n and the measure of Ω , see [3].
Since we do not know the solution u, condition (1.7) is replaced by the following stronger version

yα > θα =⇒
n∑

i=1

N∑
β=1

n∑
j=1

aα,β
i,j (x, y)pβ

j pα
i ≥ ν|pα|2 − Mα, (1.9)



Please cite this article as: S. Leonardi, F. Leonetti, C. Pignotti et al., Maximum principles for some quasilinear elliptic systems, Nonlinear Analysis
(2018), https://doi.org/10.1016/j.na.2018.11.004.

S. Leonardi, F. Leonetti, C. Pignotti et al. / Nonlinear Analysis xxx (xxxx) xxx 3

Fig. 1. Support contained in a r-staircase set: off-diagonal entries aα,β
i,j

vanish on the white part of the picture; they might be non zero
only on the grey part.

for all y ∈ RN and all p ∈ RN×n. Let us mention that a kind of maximum modulus principle can be found
in [8] under the following structure assumption: there exist numbers λ > 0, L ≥ 0 and two nonnegative
functions d(x), g(x), such that

N∑
α=1

N∑
γ=1

yαyγ

|y|2

⎛⎝ n∑
i=1

pγ
i

N∑
β=1

n∑
j=1

aα,β
i,j (x, y)pβ

j

⎞⎠
≥ −

{
δ|p|2 +

(
1
δ

)λ

[d(x)|y|2 + g(x)]
} (1.10)

is fulfilled for all δ ∈ ]0, 1[ and all (x, y, p), with |y| > L.
Note that [8] and [3] deal with systems having a nonlinear dependence on the gradient Du.
Going back to condition (1.9) we stress that such an assumption requires that, when we are above the level

θα, the row α has such a good behaviour. In the present paper, we study a different situation: off-diagonal
coefficients aα,β

i,j (that are responsible of the appearance of the other components Duβ) appear above every
level θα but their support is contained in a sequence of squares, see Fig. 1.

Such a condition turned out to be useful when proving existence of solutions to elliptic systems with a
right-hand side which is a measure, see [4] and [5].

Under the assumption that the support of the off-diagonal coefficients aα,β
i,j have such r-staircase shape,

we consider the maximum of the boundary values of all components

M := max{sup
∂Ω

u1, . . . , sup
∂Ω

uN }; (1.11)

so
hr ≤ M < (h + 1)r (1.12)

for some integer h; then, we are able to prove that

uα ≤ S := (h + 1)r, (1.13)

provided h ̸= −1, see Fig. 2 (left); when h = −1 we have uα ≤ r, see Fig. 2 (right).
We are able to provide a minimum principle as well. The previous result is true when the support of

off-diagonal coefficients aα,β
i,j is contained in the squares along the diagonal yα = yβ . If we allow the support
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Fig. 2. (left) hr ≤ M < (h + 1)r, with h ̸= −1; (right) −r ≤ M < 0.

Fig. 3. Support contained in a crossed r-staircase set: off-diagonal entries aα,β
i,j

vanish on the white part of the picture; they might be
non zero only on the grey part.

to stay also in the other diagonal yα = −yβ , so that the support is contained in a crossed r-staircase set as
in Fig. 3, then we can prove the maximum modulus estimate

|uα| ≤ S∗ := r

(
1 + int

[
M∗

r

])
(1.14)

where
M∗ := max{sup

∂Ω
|u1|, . . . , sup

∂Ω
|uN |} (1.15)

and int [t] denotes the integer part of t, that is, the largest integer less than or equal to t.
We are also able to give other results assuming a different shape of the support of the off-diagonal

coefficients; they apply only to solutions satisfying suitable compatibility conditions.
The paper is organized as follows: in Section 2 we list all the required assumptions and we state the main

theorems whose proofs appear in Section 3. An example of a system verifying our assumptions but neither
(1.9) nor (1.10) is given in Section 4.
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2. Assumptions and results

Assume Ω is an open bounded subset of Rn, with n ≥ 2. For the sake of brevity, [k] denotes the set
{1, . . . , k} when k ≥ 1 is an integer. Consider the system of N ≥ 2 equations

−
∑
i∈[n]

∂

∂xi

⎛⎝ ∑
β∈[N ]

∑
j∈[n]

aα,β
i,j (x, u) ∂

∂xj
uβ

⎞⎠ = 0 in Ω , for α ∈ [N ]. (2.1)

(A) For all i, j ∈ [n], and all α, β ∈ [N ], we require that aα,β
i,j : Ω×RN → R satisfies the following conditions:

(A0) x ↦→ aα,β
i,j (x, y) is measurable and y ↦→ aα,β

i,j (x, y) is continuous;
(A1) (boundedness of all the coefficients) for some positive constant c > 0, we have

|aα,β
i,j (x, y) | ≤ c

for almost all x ∈ Ω and for all y ∈ RN ;
(A2) (ellipticity of all the coefficients) for some positive constant m > 0, we have∑

α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j (x, y) ξα

i ξβ
j ≥ m|ξ|2

for almost all x ∈ Ω , for all y ∈ RN and for all ξ ∈ RN×n;
(A3) (r-staircase support of the off-diagonal) there exists r ∈ (0, +∞) such that when α ̸= β,

aα,β
i,j (x, y) ̸= 0 implies either y ∈

{
|yα| < r, |yβ | < r

}
or

y ∈
⋃
h∈Z

{
hr < yα < (h + 1)r, hr < yβ < (h + 1)r

}
,

(see Fig. 1).

We say that a function u : Ω → RN is a weak solution of the system (2.1), if u ∈ W 1,2 (Ω ,RN
)

and∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j (x, u(x))Djuβ(x)Diφ

α(x)dx = 0, (2.2)

for all φ ∈ W 1,2
0
(
Ω ,RN

)
.

Remark 1. Suppose assumptions (A) hold. Then conditions of Leray–Lions Theorem (see [6]) are satisfied
and we get existence of weak solutions to (2.2) provided a boundary datum u∗ ∈ W 1,2(Ω ,RN ) has been
fixed.

In the aforementioned setting, weak solutions enjoy the following maximum principle.

Theorem 1. Suppose assumptions (A) hold. Then a weak solution u of system (2.1) satisfies

uα(x) ≤ S for almost every x ∈ Ω , for all α ∈ [N ] (2.3)

where

S :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r

(
1 + int

[
M

r

])
if 1 + int

[
M

r

]
̸= 0,

r if 1 + int
[

M

r

]
= 0,

(2.4)
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M := max{sup
∂Ω

u1, . . . , sup
∂Ω

uN }. (2.5)

Moreover
uα(x) ≥ I for almost every x ∈ Ω , for all α ∈ [N ], (2.6)

where

I :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−r

(
1 + int

[
M̃

r

])
if 1 + int

[
M̃

r

]
̸= 0,

−r if 1 + int
[

M̃

r

]
= 0

(2.7)

and
M̃ := − min{inf

∂Ω
u1, . . . , inf

∂Ω
uN }. (2.8)

We now modify the assumption on the support of the off-diagonal coefficients. Namely, we assume
(Ã3) (crossed r-staircase support of the off-diagonal) there exists r ∈ (0, +∞) such that when α ̸= β,

aα,β
i,j (x, y) ̸= 0 implies either y ∈

{
|yα| < r, |yβ | < r

}
or

y ∈
+∞⋃
h=1

{
hr < |yα| < (h + 1)r, hr < |yβ | < (h + 1)r

}
,

(see Fig. 3).
If we denote by (Ã) the set of assumptions (A0), (A1), (A2), (Ã3) we can prove the following companion

of Theorem 1.

Theorem 2. Suppose assumptions (Ã) hold. Then a weak solution u of system (2.1) satisfies

|uα(x)| ≤ S∗ for almost every x ∈ Ω , for all α ∈ [N ] (2.9)

where
S∗ := r

(
1 + int

[
M∗

r

])
(2.10)

M∗ := max{sup
∂Ω

|u1|, . . . , sup
∂Ω

|uN |}. (2.11)

Now, we can give other results assuming a different shape of support for the off-diagonal coefficients.
However, they apply only to solutions satisfying suitable compatibility conditions. We assume,

(A∗
3) For fixed (L1

+, . . . , LN
+ ) ∈ RN , if α ̸= β, then

aα,β
i,j (x, y) ̸= 0 and yα > Lα

+ =⇒ yβ > Lβ
+,

(see Fig. 4).
Let us denote by (A∗) the set of assumptions (A0), (A1), (A2), (A∗

3).

Theorem 3. Suppose assumptions (A∗) hold. Then a weak solution u of system (2.1) with

sup
∂Ω

uα ≤ Lα
+, ∀ α ∈ [N ], (2.12)

satisfies
uα(x) ≤ Lα

+ for a.e. x ∈ Ω , ∀ α ∈ [N ]. (2.13)
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Fig. 4. Support verifying A∗
3 : off-diagonal entries aα,β

i,j
vanish on the white part of the picture; they might be non zero only on the grey

part.

Fig. 5. Support verifying A∗∗
3 : off-diagonal entries aα,β

i,j
vanish on the white part of the picture; they might be non zero only on the grey

part.

Remark 2. Note that (2.12) represents a compatibility condition between the boundary values of uα and
the supports of off-diagonal coefficients aα,β

i,j .

In the same spirit, one can give a minimum principle, under a compatibility condition on the boundary
datum, by assuming the following

(A∗∗
3 ) For fixed (L1

−, . . . , LN
− ) ∈ RN , if α ̸= β, then

aα,β
i,j (x, y) ̸= 0 and yα < Lα

− =⇒ yβ < Lβ
−,

(see Fig. 5).
Let us denote (A∗∗) the set of assumptions (A0), (A1), (A2), (A∗∗

3 ).
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Fig. 6. Support verifying A∗
3 and A∗∗

3 : off-diagonal entries aα,β
i,j

vanish on the white part of the picture; they might be non zero only on
the grey part.

Theorem 4. Suppose assumptions (A∗∗) hold. Then a weak solution u of system (2.1) with

inf
∂Ω

uα ≥ Lα
−, ∀ α ∈ [N ], (2.14)

satisfies
uα(x) ≥ Lα

− for a.e. x ∈ Ω , ∀ α ∈ [N ]. (2.15)

Corollary 1. Let (L1
+, . . . , LN

+ ) and (L1
−, . . . , LN

− ) be fixed vectors in RN with Lα
− ≤ Lα

+, ∀ α ∈ [N ].
Suppose assumptions (A∗) and (A∗∗

3 ) hold, see Fig. 6. Then a weak solution u of system (2.1) with

Lα
− ≤ uα ≤ Lα

+ on ∂Ω , ∀ α ∈ [N ], (2.16)

satisfies
Lα

− ≤ uα ≤ Lα
+ in Ω , ∀ α ∈ [N ]. (2.17)

Corollary 2. Suppose assumptions (A∗) and (A∗∗
3 ) hold with Lα

+ = Lα
− = 0, see Fig. 7. Then a weak

solution u of system (2.1) with
uα = 0 on ∂Ω , ∀ α ∈ [N ], (2.18)

satisfies
uα = 0 in Ω , ∀ α ∈ [N ]. (2.19)

3. Proofs of the results

Proof of Theorem 1. Let u ∈ W 1,2 (Ω ,RN
)

be a weak solution of system (2.1). Let L ∈ R be such that

sup
∂Ω

uα ≤ L for all α ∈ [N ].

Consider the test function

φα(x) := max{0, uα(x) − L}, for all α ∈ [N ].
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Fig. 7. Support verifying A∗
3 and A∗∗

3 with Lα
+ = Lα

− = 0: off-diagonal entries aα,β
i,j

vanish on the white part of the picture; they might
be non zero only on the grey part.

Then
Di φα = 1{uα>L}Di uα for all i ∈ [n] and α ∈ [N ].

Using the test function φ in the weak form (2.2) of system (2.1), we have

0 =
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjuβDiφ

α dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uα>L}Di uα dx.

Now, the r-staircase assumption (A3) guarantees that

aα,β
i,j (x, u(x))1{uα>L}(x) = aα,β

i,j (x, u(x))1{uβ>L}(x)1{uα>L}(x) (3.1)

when β ̸= α and L/r ∈ Z \ {0}. It is worthwhile to note that (3.1) holds true when α = β as well; then∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uα>L}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uβ>L}1{uα>L}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjφβDiφ

α dx.

Now we can use the ellipticity assumption (A3) with ξα
i = Diφ

α and we get

m

∫
Ω

∑
α∈[N ]

|Dφα|2 dx ≤
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjφβDiφ

α dx = 0.

This means that ∫
Ω

∑
α∈[N ]

|Dφα|2 dx = 0

and, since φα ∈ W 1,2
0 (Ω), we can use Poincaré inequality∫

Ω

|φα|2 dx ≤ C

∫
Ω

|Dφα|2 dx = 0
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obtaining max{0, uα − L} = φα = 0 almost everywhere in Ω , so

uα ≤ L almost everywhere in Ω .

We now select a suitable value for L. We take L = S given by (2.4) and we get (2.3).
Let ũ = −u. Then ũ ∈ W 1,2(Ω ;RN ) and, since u satisfies (2.2), then ũ verifies

0 =
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

ãα,β
i,j (x, ũ(x))Dj ũβ(x)Diφ

α(x)dx (3.2)

for every φ ∈ W 1,2
0
(
Ω ,RN

)
, where

ãα,β
i,j (x, y) := aα,β

i,j (x, −y). (3.3)

We observe that the new coefficients defined by (3.3) readily satisfy conditions (A0), (A1), (A2).
Moreover, if α ̸= β and ãα,β

i,j (x, y) ̸= 0 then, by (A3),

aα,β
i,j (x, −y) ̸= 0 as either − y ∈

{
|yα| < r, |yβ | < r

}
or

−y ∈
⋃
h∈Z

{
hr < yα < (h + 1)r, hr < yβ < (h + 1)r

}
.

Therefore either y ∈
{

|yα| < r, |yβ | < r
}

or

∃ h̃ ∈ Z : y ∈
{

h̃r < yα < (h̃ + 1)r, h̃r < yβ < (h̃ + 1)r
}

and we can conclude that ãα,β
i,j (x, y) satisfy (A3) as well. By (2.3) applied to ũ = −u we deduce that ũα ≤ S̃

where

S̃ :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r

(
1 + int

[
M̃

r

])
if 1 + int

[
M̃

r

]
̸= 0,

r if 1 + int
[

M̃

r

]
= 0

and
M̃ := max{sup

∂Ω
ũ1, . . . , sup

∂Ω
ũN }.

Note that

M̃ = max{sup
∂Ω

(−u1), . . . , sup
∂Ω

(−uN )} = max{− inf
∂Ω

u1, . . . , − inf
∂Ω

uN }

= − min{inf
∂Ω

u1, . . . , inf
∂Ω

uN }

so that

uα ≥ −S̃ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−r

(
1 + int

[
M̃

r

])
if 1 + int

[
M̃

r

]
̸= 0,

−r if 1 + int
[

M̃

r

]
= 0

and (2.6) is proved too. This ends the proof of Theorem 1. □

Proof of Theorem 2. Let u ∈ W 1,2 (Ω ,RN
)

be a weak solution of system (2.1). Let L ∈ R be such that

sup
∂Ω

|uα| ≤ L for all α ∈ [N ].
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Consider the test function

φ̃α(x) := max{0, uα(x) − L} + min{0, uα(x) + L}, for all α ∈ [N ].

Then

Di φ̃α = 1{|uα|>L} Di uα for all i ∈ [n] and α ∈ [N ].

Using the test function φ̃ in the weak form (2.2) of system (2.1), we have

0 =
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjuβDiφ̃

α dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{|uα|>L}Di uα dx.

Now, the crossed r-staircase assumption (Ã3) guarantees that

aα,β
i,j (x, u(x))1{|uα|>L}(x) = aα,β

i,j (x, u(x))1{|uβ |>L}(x)1{|uα|>L}(x) (3.4)

when β ̸= α and L/r ∈ {1, 2, . . .}. Note that (3.4) holds true when β = α as well; then∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{|uα|>L}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{|uβ |>L}1{uα>L}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djφ̃βDiφ̃

α dx.

As in the proof of Theorem 1, we can use the ellipticity assumption (A3) with ξα
i = Diφ̃

α and we get |Dφ̃α| =
0; since φ̃α ∈ W 1,2

0 (Ω), we use Poincaré inequality and we obtain max{0, uα −L}+min{0, uα +L} = φ̃α = 0,
so

|uα| ≤ L almost everywhere in Ω .

Now we have to select a suitable value for L. We take L = S∗ given by (2.10) and we get (2.9). This ends
the proof of Theorem 2. □

Proof of Theorem 3. Let us consider the test function φ such that

φα(x) := max{0, uα(x) − Lα
+}, for all α ∈ [N ].

Since (2.12) holds true, then φα ∈ W 1,2
0 (Ω) and

Di φα = 1{uα>Lα
+}Di uα for all i ∈ [n] and α ∈ [N ].

Using the test function φ in the weak form (2.2) of system (2.1), we have

0 =
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjuβDiφ

α dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uα>Lα

+}Di uα dx.
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Now, assumption (A∗
3) guarantees that

aα,β
i,j (x, u(x))1{uα>Lα

+}(x) = aα,β
i,j (x, u(x))1{uα>Lα

+}(x)1{uβ>L
β
+}(x) (3.5)

when β ̸= α. Note that (3.5) holds true when β = α as well. Then,∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uα>Lα

+}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j Djuβ1{uα>Lα

+}1{uβ>L
β
+}Di uα dx

=
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

aα,β
i,j DjφβDiφ

α dx.

Now, as in Theorem 1, we can use the ellipticity assumption (A3) with ξα
i = Diφ

α and we get |Dφα| = 0;
since φα ∈ W 1,2

0 (Ω), we can use Poincaré inequality and we obtain max{0, uα − Lα
+} = φα = 0, so

uα ≤ Lα
+ almost everywhere in Ω .

This ends the proof of Theorem 3. □

Proof of Theorem 4. Let ũ = −u. Then ũ ∈ W 1,2(Ω ;RN ) and since u satisfies (2.2) then ũ verifies

0 =
∫
Ω

∑
α,β∈[N ]

∑
i,j∈[n]

ãα,β
i,j (x, ũ(x))Dj ũβ(x)Diφ

α(x)dx (3.6)

for every φ ∈ W 1,2
0
(
Ω ,RN

)
, where

ãα,β
i,j (x, y) := aα,β

i,j (x, −y). (3.7)
We observe that new coefficients defined by (3.7) readily satisfy conditions (A0), (A1), (A2). Moreover,

if α ̸= β and ãα,β
i,j (x, y) ̸= 0 then, by (A∗∗

3 ), we deduce that for −yα < Lα
− it must be −yβ < Lβ

−. Thus,
if ãα,β

i,j (x, y) ̸= 0 and yα > −Lα
−, then yβ > −Lβ

−. Therefore, we can conclude that ãα,β
i,j (x, y) satisfy (A∗

3)
with Lα

+ = −Lα
−, for α ∈ [N ]. By (2.13) applied to ũ = −u we deduce that

ũα ≤ −Lα
− almost everywhere in Ω

and then the claim is proved. This ends the proof of Theorem 4. □

4. An example

In this section we provide an example satisfying our structural conditions (A) but verifying neither (1.10)
nor (1.9). We fix n = 3, N = 2 and we set

a1,1
i,j (x, y) = a2,2

i,j (x, y) = δij ,

a1,2
i,j (x, y) = w(y)δi,j , a2,1

i,j (x, y) = −a1,2
j,i (x, y),

(4.1)

where δij is Kronecker delta, w(y) ≥ 0 is a bounded, continuous function, with support contained in the
r-staircase set, see Fig. 1. Furthermore, we require that w = 5 in the centre of every square of the sector
y1 ≥ r, y2 ≥ r, that is

w((h + 1/2)r, (h + 1/2)r) = 5,

for every h ∈ N. Note that

a1,1 = a2,2 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ a1,2 =

⎛⎝ w(y) 0 0
0 w(y) 0
0 0 w(y)

⎞⎠ = −a2,1. (4.2)

Observe that the coefficients defined in (4.1) readily satisfy conditions (A).
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4.1. Comparison with condition (1.10)

Let us recall condition (1.10): there exist numbers λ > 0, L ≥ 0 and two nonnegative functions d(x), g(x),
such that

I :=
∑

α∈[N ]

∑
γ∈[N ]

yαyγ

|y|2

⎛⎝∑
i∈[n]

pγ
i

∑
β∈[N ]

∑
j∈[n]

aα,β
i,j (x, y)pβ

j

⎞⎠
≥ −

{
δ|p|2 +

(
1
δ

)λ

[d(x)|y|2 + g(x)]
}

:= Q

(4.3)

is fulfilled for all δ ∈ ]0, 1[ and all (x, y, p), with |y| > L.
We want to show that the coefficients defined in (4.1) do not satisfy (4.3). To this purpose we choose

y1 = y2 > 0,
p2

1 = p1
2 = p2

2 = p1
3 = p2

3 = 0, p1
1 ̸= 0 (4.4)

and we replace in (4.3). According to the aforementioned definitions, we can rewrite

I = 1
2(p1

1)2(1 − w(y)), (4.5)

while
Q = −δ(p1

1)2 −
(

1
δ

)λ

[2d(x)(y1)2 + g(x)]. (4.6)

On the other hand
2d(x)(y1)2 + g(x) ≤ [2d(x) + g(x) + 1][1 + (y1)2]. (4.7)

We select y to be the centre of the squares of the sector y1 ≥ r, y2 ≥ r:

y1 = y2 =
(

h + 1
2

)
r (4.8)

with h ∈ N and h ≥ int
[
−1

2 + L

r
√

2

]
+ 1 in such a way that |y| > L and

w(y) = w(y1, y1) = 5.

Moreover, from (4.5) we get
I = −2(p1

1)2 (4.9)
and from (4.7) we deduce

2d(x)(y1)2 + g(x) ≤ 4[2d(x) + g(x) + 1](1 + r2)h2. (4.10)

Merging (4.10) into (4.6) and using (4.9), for any δ ∈ ]0, 1[, we obtain

Q ≥ −δ(p1
1)2 − 4

(
1
δ

)λ

[2d(x) + g(x) + 1](1 + r2)h2

= I + (2 − δ)(p1
1)2 − 4

(
1
δ

)λ

[2d(x) + g(x) + 1](1 + r2)h2

≥ I + (p1
1)2 − 4

(
1
δ

)λ

[2d(x) + g(x) + 1](1 + r2)h2, ∀ p1
1 ̸= 0.

(4.11)

So that, fixed any x ∈ Ω and choosing

p1
1 = 3h

√(
1
δ

)λ

[2d(x) + g(x) + 1](1 + r2),

we immediately deduce
Q > I.
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4.2. Comparison with condition (1.9)

Let us recall condition (1.9): for every α ∈ {1, 2, . . . , N} there exist θα ∈ R, Mα ≥ 0 and να > 0 such
that

yα > θα ⇒ Iα :=
∑
i∈[n]

∑
β∈[N ]

∑
j∈[n]

aα,β
i,j (x, y) pβ

j pα
i

≥ να|pα|2 − Mα := Qα. (4.12)

We want to prove that coefficients (4.1) do not satisfy (4.12) when α = 2. As before, we choose y to be
the centre of the squares but we change a little bit the matrix p:

p1
2 = p2

2 = p1
3 = p2

3 = 0, p2
1 = 1, p1

1 ̸= 0

y1 = y2 =
(

h + 1
2

)
r

(4.13)

with h ∈ N and h ≥ int
[
θ2/r − 1/2

]
+ 1, so that y2 > θ2. We then replace in (4.12). According to the

aforementioned definitions and recalling that

w(y) = w(y1, y2) = 5,

we can rewrite
I2 = −w(y)p1

1 + 1 = −5p1
1 + 1

Q2 = ν2 − M2
(4.14)

This, for p1
1 sufficiently large, implies that

I2 < Q2.
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