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We study the regularizing effect of the interaction between 
the coefficient of the zero order term and the datum in some 
nonlinear Dirichlet problems.
The simplest example is the linear problem

⎧⎪⎨
⎪⎩

∫
Ω

M(x)∇u∇ϕ +
∫
Ω

a(x)uϕ =
∫
Ω

f(x)ϕ,

∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

where Ω is a bounded open set of RN , M is a bounded elliptic 
matrix and 0 ≤ a(x) ∈ L1(Ω). Even if f(x) only belongs 
to L1(Ω), the assumption

there exists Q > 0 such that
∣∣f(x)

∣∣ ≤ Qa(x)

implies the existence of a weak solution u belonging to W 1,2
0 (Ω)

and to L∞(Ω).
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1. Introduction

In this paper we study boundary value problems in a bounded, open subset Ω of RN , 
(N ≥ 2), and datum f(x) ∈ L1(Ω) and related minimization problems. Surprisingly, 
although (in general) the solution of an elliptic equation having a right-hand side in 
L1(Ω) is not bounded, nor has finite energy, we prove the existence of bounded solutions 
with finite energy.

Our initial scope was to study quasilinear problems which possess lower order terms 
having “natural” (i.e. quadratic) growth with respect to the gradient. Nevertheless, the 
obtained results are new in the particular cases of either linear or semilinear problems. 
In addition, a simplified proof for these cases can be given. Thus, for the sake of clarity, 
the first problem considered in this work is the linear one

{
−div

(
M(x)∇u

)
+ a(x)u = f(x), in Ω;

u = 0, on ∂Ω.
(1.1)

Next we study the semilinear problems
{

−div
(
M(x)∇u

)
+ a(x)g(u) = f(x), in Ω;

u = 0, on ∂Ω,
(1.2)

and finally we deal with quasilinear boundary value problem having lower order terms 
with natural growth

{
−div

(
M(x, u)∇u

)
+ a(x)u = B(x, u,∇u) + f(x), in Ω;

u = 0, on ∂Ω;
(1.3)

where we assume that M(x, s) (with M(x, s) = M(x) independent of s in the case of 
(1.1) and (1.2)) is a Carathéodory matrix (that is, measurable with respect to x for every 
s ∈ R, and continuous with respect to s for almost every x ∈ Ω) which satisfies, for some 
positive constants α, β, a.e. in x ∈ Ω, for every s ∈ R, and ξ ∈ R

N ,

α|ξ|2 ≤ M(x, s)ξξ (1.4)∣∣M(x, s)
∣∣ ≤ β. (1.5)

With respect to the coefficient a(x) of the zero order term and to the datum f(x), in 
addition to imposing that

f(x), a(x) ∈ L1(Ω) (1.6)

we also assume that there exists Q > 0 such that, for a.e. x ∈ Ω,
∣∣f(x)

∣∣ ≤ Qa(x). (1.7)
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In the semilinear problem (1.2), the continuous function g(s) satisfies

lim
s→−∞

g(s) = −∞ and lim
s→∞

g(s) = ∞; (1.8)

while, in the quasilinear problem (1.3), we also suppose that the lower order term 
B(x, s, ξ) is a Carathéodory function (that is, measurable with respect to x for every 
(s, ξ) ∈ R ×R

N , and continuous with respect to (s, ξ) for almost every x ∈ Ω) satisfying 
for some positive constant γ,

∣∣B(x, s, ξ)
∣∣ ≤ γ|ξ|2, (1.9)

for a.e. x ∈ Ω and for every s ∈ R, and ξ ∈ R
N . Thus the simplest example for quasilinear 

problems of type (1.3) is

{
−Δu + a(x)u = γ|∇u|2 + f(x), in Ω;
u = 0, on ∂Ω.

As it has been previously mentioned, our first result is for the linear problem (1.1)
under the hypotheses (1.4), (1.5), (1.6) and (1.7). Indeed, thanks to our main assump-
tion (1.7), we show in Theorem 2.1 the existence (and uniqueness) of a bounded weak 
solution in W 1,2

0 (Ω) of (1.1). Furthermore, adding condition (1.8), we also generalize in 
Theorem 2.4 the proof to cover the existence of a bounded weak solution in W 1,2

0 (Ω)
of (1.2).

We have earlier observed that the existence of a bounded solution u ∈ W 1,2
0 (Ω) is 

surprising if the right hand side only belongs to L1(Ω). Indeed, the existence result is 
not true for instance if a(x) = 0 (see [8,19]). Therefore, we put in evidence that in spite 
of the fact that the datum f only belongs to L1(Ω), the interplay given by (1.7) between 
it and the coefficient a(x) of the zero order term provides a regularizing effect on the 
problems (1.1) and (1.2).

For semilinear problems a strong regularizing effect (of the lower order term) is proved 
in [5]. We have to mention that the study of the semilinear case with nonregular datum 
f was initiated in [16]; problems with nonlinear zero order term with “L1 coefficients” 
like a(x)u are studied in [14]. In addition, we point out that the existence of solution in 
a Marcinkiewicz space is studied in [3] (more contributions can be found in [2,12,13,17]) 
when the datum f ∈ L1(Ω).

In contrast, in Theorems 2.1 and 2.4 we obtain solutions in W 1,2
0 (Ω) ∩ L∞(Ω). The 

keystone of the proofs of them is the deduction, by condition (1.7), of an L∞-estimate of 
the approximated solutions which implies the corresponding L∞-estimate of the solution 
(see (2.2) below).

We recall that for linear Dirichlet problems with lower order terms of order zero 
like (1.1), with a(x) ≥ a0 > 0, the classical estimate
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‖u‖
Lp(Ω)

≤
‖f(x)‖

Lp(Ω)

a0
, 1 ≤ p ≤ ∞,

plays an important role. Thus our L∞-estimate (2.2) below can be seen as an improve-
ment of the previous one.

Now, following the outline of [11], we can deduce as before by condition (1.7) an 
L∞-estimate of the solution and we see in Theorem 3.1 that (1.7) also gives a regularizing 
effect on the quasilinear problem (1.3) which implies the existence of bounded weak 
solutions in W 1,2

0 (Ω) of (1.3).
For quasilinear problems with lower order term B(x, s, ξ) having natural growth with 

respect to the gradient, assumptions concerning the sign of B(x, s, ξ) are imposed in 
order to have a regularizing effect (see [10,15]). We remark explicitly that, in contrast, 
in this paper, we only assume (1.9) on the function B(x, s, ξ).

Notice that the condition (1.7) implies that a(x) ≥ 0 a.e. x ∈ Ω, with f(x) = 0 a.e. 
on the set of these x ∈ Ω for which a(x) vanishes. Hence, we point out that (1.7) allows 
us to consider coefficients a(x) which are zero on a subset of positive measure.

Recall that, even with datum f with stronger summability, f ∈ L
N
2 (Ω), the size of 

f and the strict positivity of a(x) play an important role (see [6]). More recently, if 
f ∈ Lq(Ω) with q > N

2 , sufficient conditions for the existence of solution of (1.3) are 
given in [1] provided that the coefficient satisfies only that a(x) ≥ 0 (being able to vanish 
in a set in Ω of positive measure).

Similarly, in a straightforward way, we study in Theorem 4.1 the minimization in 
W 1,2

0 (Ω) of functionals of the type

J(v) =
∫
Ω

j(x, v,∇v) +
∫
Ω

[
1
2a(x)|v|2 − fv

]
, v ∈ W 1,2

0 (Ω),

where again a, f satisfy (1.6) and (1.7) and j is a Carathéodory function in Ω×R ×R
N

for which there exist β ≥ α > 0 such that

j(x, s, ξ) is convex on ξ, (1.10)

and

α|ξ|2 ≤ j(x, s, ξ) ≤ β|ξ|2, (1.11)

for a.e. x ∈ Ω and every s ∈ R and ξ ∈ R
N .

Observe that (1.11) implies that the first term in the definition of J is finite for all 
v ∈ W 1,2

0 (Ω), while the second one is bounded from below by (1.7) (see (4.2) below). In 
particular, J(v) is either finite, or ∞ for every v ∈ W 1,2

0 (Ω). Notice also that when the 
function j is differentiable, the Euler–Lagrange equation associated to every minimizer 
in W 1,2

0 (Ω) ∩ L∞(Ω) of the integral functional J is of the type (1.3).
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Under these hypotheses, we prove in Theorem 4.1 the existence of a minimizer u ∈
W 1,2

0 (Ω) ∩ L∞(Ω) among all functions in W 1,2
0 (Ω) ∩ L∞(Ω).

Remark 1.1. We note that we set all our problems in W 1,2
0 (Ω). However the results still 

hold, with the same proofs, for differential operators with growth of order p > 1 in the 
W 1,p

0 (Ω) framework.

2. Linear and semilinear Dirichlet problems

In the first part of this section we study the problem (1.1). For a solution of it we 
understand

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ W 1,2
0 (Ω) ∩ L∞(Ω):∫

Ω

M(x)∇u∇ϕ +
∫
Ω

a(x)uϕ =
∫
Ω

f(x)ϕ,

∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

(2.1)

Theorem 2.1. Assume (1.4), (1.5), (1.6), (1.7) and that the matrix M(x, s) = M(x)
does not depend on s. Then there exists a unique solution u ∈ W 1,2

0 (Ω) ∩ L∞(Ω) of the 
problem (1.1). Moreover,

‖u‖
L∞(Ω)

≤ Q. (2.2)

Proof. We define

fn(x) = f(x)
1 + 1

n |f(x)|
, an(x) = a(x)

1 + Q
n |a(x)|

, (2.3)

and, by the Schauder Theorem, we consider the solution un of the approximated problems

un ∈ W 1,2
0 (Ω): −div

(
M(x)∇un

)
+ an(x)un = fn(x), (2.4)

i.e., satisfying

∫
Ω

M(x)∇un∇ϕ +
∫
Ω

an(x)unϕ =
∫
Ω

fn(x)ϕ, ∀ϕ ∈ W 1,2
0 (Ω).

Since ψ(s) = s(1 + s
n )−1 is increasing, we deduce by (1.7) that

∣∣fn(x)
∣∣ = |f(x)|

1 + 1
n |f(x)|

≤ Qa(x)
1 + Q

n a(x)
= Qan(x). (2.5)
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We will use the following function defined for s ∈ R by

Gk(s) =

⎧⎪⎨
⎪⎩

0, if |s| ≤ k,

s− k, if s > k,

s + k, if s < −k.

The use of GQ(un) as a test function in (2.4) gives, thanks to (1.4) and (2.5),

α

∫
Ω

∣∣∇GQ(un)
∣∣2 +

∫
Ω

an(x)
[
|un| −Q

]∣∣GQ(un)
∣∣ ≤ 0,

which implies

|un| ≤ Q. (2.6)

Then, again by (1.4), the use of un as a test function in (2.4) gives, dropping a positive 
term,

α

∫
Ω

|∇un|2 ≤ Q

∫
Ω

|f |.

Thus the sequence {un} is bounded in W 1,2
0 (Ω) and then there exist a function u in 

W 1,2
0 (Ω) and a subsequence, still denoted {un}, such that un converges to u weakly in 

W 1,2
0 (Ω) and a.e. to u and |u| ≤ Q. Moreover, taking ϕ ∈ W 1,2

0 (Ω) ∩ L∞(Ω) as a test 
function in (2.4) we have∫

Ω

M(x)∇un∇ϕ +
∫
Ω

an(x)unϕ =
∫
Ω

fnϕ

which, by taking into account the L1(Ω)-convergence of an(x)unϕ and fn(x)ϕ to a(x)uϕ
and f(x)ϕ and passing to the limit, implies that u is a solution of (1.1) in the sense of 
(2.1) which satisfies (2.2).

To conclude the proof we just have to observe the uniqueness of solution of the lin-
ear problem (1.1) which is a clear consequence of the uniqueness for the homogeneous 
problem (f = 0). �
Remark 2.2. As we show in Section 4, if the matrix M(x) is symmetric, an alternative 
proof can be obtained by finding a bounded minimizer in W 1,2

0 (Ω) of the (bounded from 
below) functional J defined by

J(v) =
∫
Ω

M(x)∇v∇v +
∫
Ω

[
1
2a(x)|v|2 − fv

]
, v ∈ W 1,2

0 (Ω).

Observe that the boundedness of the minimizer implies that it is a solution of (1.1).
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Remark 2.3. The argument based in (1.7) and used to deduce the estimate (2.6) can be 
also applied to conclude that every solution u of (1.1) (in the sense of (2.1)) has to satisfy 
‖u‖∞ ≤ Q (instead of GQ(un), take GQ(u) as a test function). Observe that essentially 
we are using that (u −Q)+ is subharmonic (Kato’s inequality [18]).

In the following result we show that the technique developed in the previous theorem 
also handles semilinear Dirichlet problem (1.2). In this case, for a solution of (1.2) we 
understand that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ W 1,2
0 (Ω) ∩ L∞(Ω), a(x)g(u) ∈ L1(Ω),∫

Ω

M(x)∇u∇ϕ +
∫
Ω

a(x)g(u)ϕ =
∫
Ω

f(x)ϕ,

∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Theorem 2.4. Assume (1.4), (1.5), (1.6), (1.7) and (1.8) with the matrix M(x, s) = M(x)
independent on s. Then there exists a solution u ∈ W 1,2

0 (Ω) ∩L∞(Ω) of the prob-
lem (1.2).

Proof. Following the argument of Theorem 2.1, we use the Schauder Theorem to take a 
solution un of the approximated problem

un ∈ W 1,2
0 (Ω): −div

(
M(x)∇un

)
+ an(x)g(un) = fn(x),

where recall that an(x) and fn(x) are given by (2.3). By (1.8), we can choose k0 > 0
such that

g(s)s ≥ 0, (2.7)

and

∣∣g(s)∣∣ ≥ Q (2.8)

for every s ≥ k0. The use of Gk0(un) as a test function in the approximated problem 
gives, thanks to (1.4) and (2.5) (which is deduced by (1.7)),

α

∫
Ω

∣∣∇Gk0(un)
∣∣2 +

∫
Ω

an(x)g(un)Gk0(un) ≤
∫
Ω

fn
∣∣Gk0(un)

∣∣ ≤ Q

∫
Ω

an(x)
∣∣Gk0(un)

∣∣.
By (2.7), this means

α

∫ ∣∣∇Gk0(un)
∣∣2 +

∫
an(x)

[∣∣g(un)
∣∣−Q

]∣∣Gk0(un)
∣∣ ≤ 0,
Ω Ω
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which, by (2.8) implies that ‖un‖L∞(Ω) ≤ k0 and the sequence {un} is bounded 
in L∞(Ω).

As a consequence, we can use un as a test function to deduce again by (1.4) that

α

∫
Ω

|∇un|2 − max
|s|≤k0

∣∣g(s)s∣∣ ∫
Ω

an(x) ≤ k0

∫
Ω

|fn|,

i.e.,

α

∫
Ω

|∇un|2 ≤ k0

∫
Ω

|f | + max
|s|≤k0

∣∣g(s)s∣∣ ∫
Ω

a(x),

and we obtain that {un} is bounded in W 1,2
0 (Ω), too. Thus there exist a function u in 

W 1,2
0 (Ω) and a subsequence, still denoted {un}, which converges weakly in W 1,2

0 (Ω) and 
a.e. to u with ‖u‖L∞(Ω) ≤ k0.

Moreover, using that |an(x)g(un)| ≤ a(x) max|s|≤k0 |g(s)|, we obtain by the dominated 
convergence theorem the L1(Ω) convergence of the sequence {an(x)g(un)} to a(x)g(u), 
which together with the L1(Ω) convergence of fn(x) to f(x) allows to pass to the limit 
in the approximated problems to conclude that u satisfies (1.2). �

3. Quasilinear Dirichlet problems having natural growth terms

This section is devoted to prove the existence of solution of (1.3). Specifically, for a 
solution of it we understand that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ W 1,2
0 (Ω) ∩ L∞(Ω):∫

Ω

M(x, u)∇u∇ϕ +
∫
Ω

a(x)uϕ =
∫
Ω

B(x, u,∇u)ϕ +
∫
Ω

fϕ,

∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω),

(3.1)

and we show the following theorem.

Theorem 3.1. Under the assumptions (1.4), (1.5), (1.6), (1.7) and (1.9), there exists a 
solution u ∈ W 1,2

0 (Ω) ∩ L∞(Ω) of the problem (1.3). Moreover, u satisfies (2.2).

Proof. We define the functions an and fn given by (2.3) and

Bn(x, s, ξ) = B(x, s, ξ)
1 + 1

n |B(x, s, ξ)|
.

We now consider the approximated Dirichlet problems{
un ∈ W 1,2

0 (Ω):

−div
(
M(x, u )∇u

)
+ a (x)u = B (x, u ,∇u ) + f (x).

(3.2)

n n n n n n n n
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By the Schauder Theorem, for every n ∈ N, there exists a solution un ∈ W 1,2
0 (Ω) of (3.2). 

Moreover every un ∈ L∞(Ω) (see [19]). Following [11], this allows us to choose for fixed 
λ > γ

2α , vn = (e2λ|GQ(un)| − 1) sgn(GQ(un)) as a test function in (3.2) to obtain

2λ
∫
Ω

M(x, un)∇un · ∇GQ(un)e2λ|GQ(un)| +
∫
Ω

an(x)|un|
(
e2λ|GQ(un)| − 1

)

≤
∫
Ω

∣∣Bn(x, un,∇un)
∣∣(e2λ|GQ(un)| − 1

)
+

∫
Ω

|fn|
(
e2λ|GQ(un)| − 1

)
.

Using the ellipticity condition (1.4) and hypothesis (1.9) we deduce that

(2αλ− γ)
∫
Ω

∣∣∇GQ(un)
∣∣2e2λ|GQ(un)| +

∫
Ω

an(x)|un|
(
e2λ|GQ(un)| − 1

)

≤
∫
Ω

|fn|
(
e2λ|GQ(un)| − 1

)
.

Moreover, assumption (1.7) again gives (2.5) which implies that

(2αλ− γ)
∫
Ω

∣∣∇GQ(un)
∣∣2 +

∫
Ω

an(x)
(
e2λ|GQ(un)| − 1

)[
|un| −Q

]
≤ 0.

Observing that the integrand in the second integral is zero if |un(x)| ≤ Q, we deduce that 
both integrals in the above inequality are positive (recall that λ > γ

2α ), and consequently 
we have ∫

Ω

∣∣∇GQ(un)
∣∣2 = 0,

which implies again (2.6).
For λ > γ

2α let now v = (e2λ|un| − 1) sgn(un) as a test function in (3.2) to obtain

2λ
∫
Ω

M(x, un)∇un · ∇une
2λ|un| +

∫
Ω

an(x)|un|
(
e2λ|un| − 1

)

≤
∫
Ω

∣∣Bn(x, un,∇un)
∣∣(e2λ|un| − 1

)
+
∫
Ω

|fn|
(
e2λ|un| − 1

)
.

Using again the ellipticity condition (1.4) and hypothesis (1.9) we deduce that

(2αλ− γ)
∫

|∇un|2e2λ|un| +
∫

an(x)|un|
(
e2λ|un| − 1

)
≤

∫
|f |

(
e2λ|un| − 1

)
,

Ω Ω Ω
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from which, by (2.6) and dropping the second positive term

(2αλ− γ)
∫
Ω

|∇un|2e2λ|un| ≤
(
e2λ|Q| − 1

) ∫
Ω

|f |.

In particular, since λ > γ
2α , the sequence {un} is bounded in W 1,2

0 (Ω) and thus there exist 
a function u in W 1,2

0 (Ω) and a subsequence, still denoted {un}, such that un converges 
weakly in W 1,2

0 (Ω) and a.e. to u. Moreover |u| ≤ Q.
If λ > γ

α , we take now vn = (e2λ|un−u| − 1) sgn(un − u) as a test function in (3.2) to 
obtain

2λ
∫
Ω

M(x, un)∇un∇(un − u)e2λ|un−u| +
∫
Ω

an(x)unvn

=
∫
Ω

B(x, un,∇un)vn +
∫
Ω

fnvn.

Subtracting 2λ 
∫
Ω
M(x, un)∇u∇(un − u)e2λ|un−u|, we have

2λ
∫
Ω

M(x, un)∇(un − u)∇(un − u)e2λ|un−u| +
∫
Ω

an(x)unvn

=
∫
Ω

B(x, un,∇un)vn +
∫
Ω

fnvn − 2λ
∫
Ω

M(x, un)∇u∇(un − u)e2λ|un−u|.

By (1.4) and (1.9), we get

2λα
∫
Ω

∣∣∇(un − u)
∣∣2e2λ|un−u| +

∫
Ω

an(x)unvn

≤ γ

∫
Ω

|∇un|2|vn| +
∫
Ω

|f ||vn| − 2λ
∫
Ω

M(x, un)∇u∇(un − u)e2λ|un−u|,

which implies that

∫
Ω

∣∣∇(un − u)
∣∣2[2λα− 2γ] +

∫
Ω

an(x)unvn

≤ 2γ
∫
Ω

|∇u|2|vn| +
∫
Ω

|f ||vn| + 2λ
∫
Ω

M(x, un)∇u∇(un − u)e2λ|un−u|.

Observing that thanks to the Lebesgue Theorem and (2.6), the last four integrals tends 
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to zero as n goes to infinity, we obtain that

‖un − u‖
W 1,2

0 (Ω)
→ 0.

Therefore, it is possible to pass to the limit in the weak formulation of (3.2) to conclude 
that u satisfies (3.1) with ‖u‖

L∞(Ω)
≤ Q. �

4. A related minimization problem

In this section, we assume the hypotheses (1.6), (1.7), (1.10) and (1.11) to study the 
functional J defined in W 1,2

0 (Ω) by

J(v) =
∫
Ω

j(x, v,∇v) +
∫
Ω

[
1
2a(x)|v|2 − fv

]
, v ∈ W 1,2

0 (Ω). (4.1)

First, note that J is bounded from below. Indeed, by (1.11) the first integral of J is 
bounded from below; while, thanks to (1.7), we have

∫
Ω

[
1
2a(x)|v|2 − fv

]
≥

∫
Ω

a(x)
[
1
2 |v|

2 −Q|v|
]
≥ −Q2

2

∫
Ω

a, (4.2)

and the second integral of J is bounded from below, too.
Our result is the following.

Theorem 4.1. Let J be given by (4.1) and assume that conditions (1.6), (1.7), (1.10)
and (1.11) hold. Then there exists u ∈ W 1,2

0 (Ω) ∩ L∞(Ω) such that

J(u) ≤ J(ϕ), ∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω). (4.3)

Proof. For every n ∈ N, let fn be given by (2.3) and consider the approximated functional 
Jn defined for each v ∈ W 1,2

0 (Ω) by setting

Jn(v) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

j(x, v,∇v) + 1
2

∫
Ω

a(x)|v|2 −
∫
Ω

fnv, if a(x)|v|2 ∈ L1(Ω),

+∞, otherwise.

By (1.10), (1.11) and the Fatou Lemma, Jn is weakly lower semicontinuous and coercive 
(from (4.2)). Thus, there exists un ∈ W 1,2

0 (Ω) minimizing Jn. In particular,

∫
Ω

j(x, un,∇un) + 1
2

∫
Ω

a(x)|un|2 −
∫
Ω

fnun ≤ Jn(0) = 0.
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By (1.11), we deduce that

α

∫
Ω

|∇un|2 + 1
2

∫
Ω

a(x)|un|2 ≤
∫
Ω

|f ||un|.

On the other hand, we also have∫
Ω

|f ||un| ≤
1
4

∫
{4|f |≤a(x)|un|}

a(x)|un|2 +
∫

{4|f |>a(x)|un|}

|f ||un|.

Hence, by (1.7), we obtain

α

∫
Ω

|∇un|2 + 1
4

∫
Ω

a(x)|un|2 ≤ 4Q
∫
Ω

|f |,

which implies the existence of R > 0 such that∫
Ω

|∇un|2 ≤ R, (4.4)

and ∫
Ω

a(x)|un|2 ≤ R.

In consequence, thanks to (4.4), there exist u in W 1,2
0 (Ω) and a subsequence (not rela-

beled) {un} weakly converging in W 1,2
0 (Ω) and almost everywhere converging to u.

Note that j(x, s, 0) = 0 by (1.11). Thus, if TQ(s) := min{Q, max{−Q, s}}, the mini-
mality inequality Jn(un) ≤ Jn(TQ(un)), i.e.,

∫
Ω

j(x, un,∇un) + 1
2

∫
Ω

a(x)|un|2 −
∫
Ω

fnun

≤
∫

{|un|<Q}

j(x, un,∇un) + 1
2

∫
Ω

a(x)
∣∣TQ(un)

∣∣2 − ∫
Ω

fnTQ(un)

implies, dropping a positive term, that

1
2

∫
Ω

a(x)
[
|un|2 −

∣∣TQ(un)
∣∣2] ≤ ∫

Ω

fnGQ(un) ≤
∫
Ω

|f |
∣∣GQ(un)

∣∣,
and by (1.7) then

1
2

∫
a(x)

[∣∣GQ(un)
∣∣2 + 2Q

∣∣GQ(un)
∣∣] ≤ ∫

Qa(x)
∣∣GQ(un)

∣∣.

Ω Ω
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Thus we have ∫
Ω

a(x)
∣∣GQ(un)

∣∣2 ≤ 0,

that is, |un| ≤ Q.
To conclude the proof, we use that un minimizes Jn, i.e.,

∫
Ω

j(x, un,∇un) + 1
2

∫
Ω

a(x)|un|2 −
∫
Ω

fnun ≤ Jn(ϕ),

for every ϕ ∈ W 1,2
0 (Ω) ∩L∞(Ω). Observe that we can pass to the limit in the first term 

(by weak lower semicontinuity in W 1,2
0 (Ω)), in the second term (by Fatou Lemma) and 

in the third term (by Lebesgue Theorem, since |fnun| ≤ Q|f |). Thus we prove that

u ∈ W 1,2
0 (Ω) ∩ L∞(Ω): J(u) ≤ J(ϕ), ∀ϕ ∈ W 1,2

0 (Ω) ∩ L∞(Ω). �
Remark 4.2. Even if it is only assumed that f belongs to L1(Ω), we do not need the 
T -minima framework of [4] for the study of the minimization problem (4.3).

Remark 4.3. Observe that every minimizer in W 1,2
0 (Ω) of J has to belong to L∞(Ω). 

Indeed, similarly to the argument used in the proof for a minimizer in W 1,2
0 (Ω) of Jn, 

if for every minimizer u ∈ W 1,2
0 (Ω) of the functional J given by (4.1), we use that 

J(u) ≤ J(TQ(u)), it is easy to deduce that the minimizer u ∈ L∞(Ω).

Remark 4.4. The approach used in the previous problems can be used to prove the 
existence of a bounded solution of some unilateral problem. Indeed, let

K =
{
v ∈ W 1,2

0 (Ω) : v(x) ≥ 0 in Ω
}

and consider the unilateral problems

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ un ∈ W 1,2
0 (Ω):∫

Ω

M(x)∇un∇(un − v) +
∫
Ω

a(x)un(un − v) ≤
∫
Ω

fn(x)(un − v),

∀v ∈ W 1,2
0 (Ω),

under the assumption of Theorem 2.1. Again we can prove the estimate

|un| ≤ Q,

which, following the proof of Theorem 2.1, has as a consequence the existence of solution 
u of the unilateral problems
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ≤ u ∈ W 1,2
0 (Ω) ∩ L∞(Ω):∫

Ω

M(x)∇u∇(u− ϕ) +
∫
Ω

a(x)u(u− ϕ) ≤
∫
Ω

f(x)(u− ϕ),

∀ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Thus, even if it is only assumed that f belongs to L1(Ω), we do not need the framework 
of papers [7,9] for the study of the above unilateral problem.
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