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Abstract. In this paper we study a Dirichlet problem for an elliptic equation
with degenerate coercivity and a singular lower order term with natural growth
with respect to the gradient. The model problem is







−div

(

∇u

(1 + |u|)p

)

+
|∇u|2

|u|θ
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set of R
N , N ≥ 3 and p, θ > 0. The source f

is a positive function belonging to some Lebesgue space. We will show that,
even if the lower order term is singular, it has some regularizing effects on the
solutions, when p > θ − 1 and θ < 2.

1. Introduction

In this paper we study the following problem:

(1)







−div

(

b(x)

(1 + |u|)p
∇u

)

+B
|∇u|2

|u|θ
= f in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded set of RN , N ≥ 3, B, p > 0 and θ > 0. We assume
that b : Ω → R is a measurable function such that for some positive constants α
and β

(2) α ≤ b(x) ≤ β for a.e.x ∈ Ω .

Moreover f is a positive function belonging to some Lebesgue space Lm(Ω), with
m ≥ 1. We point out three characteristics of this problem: the operator A(v) =

−div

(

b(x)

(1 + |v|)p
∇v

)

is defined on H1
0 (Ω) but is not coercive on this space when

v is large, as proved in [20]. The lower order term has a quadratic growth with
respect to the gradient and is singular in the variable u. As we will see, existence
and summability of solutions to problem (1) depend on these features.
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It is known that the degenerate coercivity has in some sense a bad effect on the
summability of the solutions to problem

(3)

{

−div (a(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,

as proved in [9]. There f ∈ Lm(Ω) was not assumed to be positive, a : Ω ×

R → R was a Carathéodory function such that
α

(1 + |s|)p
≤ a(x, s) ≤ β, for p ∈

(0, 1) and α, β > 0. Apart from the case where m >
N

2
, the summability of the

solutions is lower than the summability of the solutions to elliptic coercive problems.

Indeed, in [9] it is shown that if
2N

N + 2− p(N − 2)
< m <

N

2
there exists a

H1
0 (Ω)∩L

r(Ω) distributional solution, with r =
Nm(1− p)

N − 2m
; if

N

N + 1− p(N − 1)
<

m <
2N

N + 2− p(N − 2)
, there exists a W 1,s

0 (Ω) distributional solution, with s =

Nm(1− p)

N −m(1 + p)
. For p > 1 the authors prove a non-existence result for constant

sources f . Note that a bad effect on the regularity of the solutions appears even
when the right hand side of (3) is an element of H−1(Ω), such as −div(F ), with
F ∈ L2(Ω). As a matter of fact, in this case the solutions are in general not in
H1

0 (Ω) (see [16]).
The presence of lower order terms can have a regularizing effect on the solutions.

In [7] and [14] three kinds of lower order terms are considered for elliptic problems
with degenerate coercivity, with no restriction on p. In the first paper the author
analyses a lower order term defined by a Carathéodory function g : Ω×R×R

N →
R
N with the following properties. There exists d ∈ L1(Ω), two positive constants

µ1, µ2 > 0 and a continuous increasing real function h such that g(x, s, ξ)s ≥ 0,
µ1|ξ|

2 ≤ |g(x, s, ξ)| when |s| ≥ µ2 and |g(x, s, ξ)| ≤ d(x)h(|s|)|ξ|2. It is proved that
for a L1(Ω) source there exists a H1

0 (Ω) distributional solution to
{

−div (a(x, u)∇u) + g(x, u,∇u) = f in Ω,

u = 0 on ∂Ω .

This proves that the summability of the gradient of the solutions is much larger
than that one of the solutions of problem (3). It is even larger than the summability
of the gradient of the solutions to elliptic coercive problems with L1(Ω) sources,
which is Ls(Ω) for every s < N

N−1 (see [10] for example). We remark moreover that
the lower order term gives the existence of a solution for p ≥ 1; for these values of
p, (3) has no solution.

In a previous article [14] we consider two kinds of lower order terms h(u). For
h(u) = |u|q−1u, with q > p+1, we stablish the existence of a distributional solution

u ∈ W 1,t
0 (Ω)∩Lq(Ω) , t <

2q

p+ 1 + q
, for any L1(Ω) source f . If f ∈ Lm(Ω),m > 1

and q ≥
p+ 1

m− 1
then there exists a distributional solution u in H1

0 (Ω) ∩ L
qm(Ω) .

If
p+ 1

2m− 1
< q <

p+ 1

m− 1
, there exists a distributional solution u in W

1, 2qm
p+1+q

0 (Ω)

such that |u|qm ∈ L1(Ω). These results show that if q is sufficiently large, there
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exists a distributional solution for any source; this is not the case for problem (3).
The second lower order term analysed in [14] is h(u), where h : [0, s0) → R is a
continuous, increasing function such that h(0) = 0 and lim

s→s
−

0

h(s) = +∞ for some

s0 > 0. The regularizing effects of this lower order term are even better than the
previous one. Indeed for a positive L1(Ω) source, there exists a bounded H1

0 (Ω)
solution.

In the literature we find several papers about elliptic coercive problems with
lower order terms having a quadratic growth with respect to the gradient (see
[6, 10, 11, 12, 8] for example and the references therein), that is, for problem

{

−div(M(x)∇u) + g(u)|∇u|2 = f in Ω,

u = 0 on ∂Ω.

In these works it is assumed that M : Ω → R
N2

is a bounded elliptic Carathéodory
map, so that there exists α > 0 such that α|ξ|2 ≤ M(x)ξ · ξ for every ξ ∈ R

N .
Various assumptions are made on g. With no attempt of being exhaustive, we
will describe some recent results where a singular g has been considered, namely

g(u) =
1

|u|θ
. The case where 0 < θ ≤ 1, introduced in [2, 3, 4], has been studied

in [2, 3, 4, 8, 13, 15]. From this body of literature one can deduce that for a

positive source f ∈ Lm(Ω), if
2N

2N − θ(N − 2)
≤ m <

N

2
there exists a strictly

positive solution u ∈ H1
0 (Ω) ∩ L

(2−θ)m∗∗

(Ω); if 1 < m <
2N

2N − θ(N − 2)
then the

solution u belongs to W 1,q
0 (Ω), with q =

Nm(2− θ)

N −mθ
. The authors of [5] consider

the general case θ < 2, assuming that f is a strictly positive function on every

compactly contained subset of Ω. They prove that if f ∈ L
2N

N+2 (Ω) there exists
a positive H1

0 (Ω) solution. Finally, in [15] the lower order term is taken to be

λu + µ
|∇u|2

|u|θ
χ{u>0}, where χ{u>0} denotes the characteristic function of the set

{u > 0}, λ > 0 and µ ∈ R.
In this paper we consider the same lower order term as above in an elliptic

problem defined by an operator with degenerate coercivity. We will see that if

0 < θ < 2, then
|∇u|2

|u|θ
has a regularizing effect, even if it is singular in u. We are

going to state our results. We will distinguish the cases 0 < θ < 1 and 1 ≤ θ < 2.

Theorem 1.1. Let 0 < θ < 1. Assume that f is a positive function belonging to

Lm(Ω), with m ≥
2N

2N − θ(N − 2)
. Then there exists a function u ∈ H1

0 (Ω), strictly

positive on Ω, such that
|∇u|2

uθ
∈ L1(Ω) and

(4)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ =

∫

Ω

fϕ ,

for every ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω).
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In the case where m <
2N

2N − θ(N − 2)
=

(

2∗

θ

)′

, we are able to prove the

existence of an infinite energy solution, belonging toW 1,σ
0 (Ω), with σ =

mN(2− θ)

N − θm
(smaller than 2).

Theorem 1.2. Let 0 < θ < 1. Assume that f is a positive function belonging to

Lm(Ω), with
N

2N − θ(N − 1)
< m <

2N

2N − θ(N − 2)
. Then there exists a function

u ∈ W 1,σ
0 (Ω), strictly positive on Ω, such that

|∇u|2

uθ
∈ L1(Ω) and

(5)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ =

∫

Ω

fϕ ,

for every ϕ ∈ C1
0 (Ω).

In the case where 1 ≤ θ < 2, we are able to prove the same results as in the case
0 < θ < 1, under a stronger hypothesis on f .

Theorem 1.3. Let 1 ≤ θ < 2 and p > θ − 1. Assume that f ∈ Lm(Ω), with

m ≥
2N

2N − θ(N − 2)
, and satisfies

ess inf {f(x) : x ∈ ω} > 0

for every ω ⊂⊂ Ω. Then there exists a function u ∈ H1
0 (Ω), strictly positive on Ω,

such that
|∇u|2

uθ
∈ L1(Ω) and

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ =

∫

Ω

fϕ

for every ϕ ∈ H1
0 (Ω) ∩ L

∞(Ω).

Theorem 1.4. Let 1 ≤ θ < 2 and p > θ − 1. Assume that f ∈ Lm(Ω), with
N

2N − θ(N − 1)
< m <

2N

2N − θ(N − 2)
, and satisfies

ess inf {f(x) : x ∈ ω} > 0

for every ω ⊂⊂ Ω. Then there exists a function u ∈ W 1,σ
0 (Ω), strictly positive on

Ω, such that
|∇u|2

uθ
∈ L1(Ω) and

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ =

∫

Ω

fϕ

for every ϕ ∈ C1
0 (Ω).

We remark that if θ <
N

N − 1
we are able to prove the existence of solutions

when the source f belongs to L1(Ω).
We would like to point out the regularizing effects of the lower order term, in the

case where p > θ−1 and 0 < θ < 2. Our results furnishH1
0 (Ω) solutions for less sum-

mable sources than for problem (3), since
2N

2N − θN + 2θ
<

2N

N(1− p) + 2(p+ 1)
.
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Even in the case where the source f is less summable, we get a better regularity

of solutions than for problem (3): indeed σ =
mN(2− θ)

N − θm
≥

Nm(1− p)

N −m(1 + p)
, as

m ≤
N

2
and p ≤ θ − 1.

In the case where 0 < p ≤ θ− 1, we are able to prove the existence of a solution
to problem (1) with the same regularity as the solutions of problem (3).

Theorem 1.5. Let 1 ≤ θ < 2 and 0 < p ≤ θ − 1. Assume that f ∈ Lm(Ω) and
satisfies

ess inf {f(x) : x ∈ ω} > 0

for every ω ⊂⊂ Ω.

(1) If m >
N

2
, then there exists a strictly positive H1

0 (Ω) ∩ L
∞(Ω) solution to

problem (1).

(2) If
2N

N + 2− p(N − 2)
≤ m <

N

2
, then there exists a strictly positive H1

0 (Ω)∩

Lr(Ω) solution to problem (1), where r =
Nm(1− p)

N − 2m
.

(3) If
N

N + 1− p(N − 1)
< m <

2N

N + 2− p(N − 2)
, then there exists a strictly

positive W 1,s
0 (Ω) solution to problem (1), where s =

Nm(1− p)

N −m(1 + p)
.

Moreover
|∇u|2

uθ
∈ L1(Ω).

In the case where θ ≥ 2, the situations changes. Indeed we will prove a non-
existence result of finite energy solutions. Let λ1(f) denote the first positive eigen-
value of

{

−∆u = λfu in Ω,

u = 0 on ∂Ω,

where f in Lq(Ω), with q > N
2 . Using a result of [5], it is quite easy to prove the

following

Theorem 1.6. Let f ≥ 0, f 6≡ 0, be a Lq(Ω) function, with q > N
2 . If either θ > 2,

or θ = 2 and λ1(f) >
β
Bα

, then there is no H1
0 (Ω) solution to problem (1).

2. A priori estimates

To prove the existence of solutions to problem (1) we use the following approxi-
mating problems:











−div

(

b(x)

(1 + |Tn(un)|)p
∇un

)

+B
un|∇un|

2

(|un|+
1
n
)θ+1

= Tn(f) in Ω,

un = 0 on ∂Ω,

where, for n ∈ N and s ∈ R

Tn(s) = max{−n,min{n, s}} .

These problems are well-posed due to the following result proved in [6, 11, 12].
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Theorem 2.1. Let f be a bounded function. Let M : Ω × R → R
N2

be a
Carathédory function such that there exist two positive constants α0 an β0 such
that

M(x, s)ξ · ξ ≥ α0|ξ|
2 , |M(x, s)| ≤ β0

for a.e. x ∈ Ω, for every (s, ξ) ∈ R×R
N . Let g(s) be a Carathéodory function such

that g(s)s ≥ 0, |g(s)| ≤ γ(s), where γ is a continuous, non-negative and increasing
function. Then there exists a H1

0 (Ω) bounded solution to
{

−div(M(x, u)∇u) + g(u)|∇u|2 = f in Ω,

u = 0 on ∂Ω .

By Theorem 2.1 the solutions un of the above approximating problems are
bounded H1

0 (Ω) non-negative functions, since f is assumed to be positive and the
lower order term has the same sign as un. This implies that un satisfies

(6)











−div

(

b(x)

(1 + Tn(un))p
∇un

)

+B
un|∇un|

2

(un + 1
n
)θ+1

= Tn(f) in Ω,

un = 0 on ∂Ω.

We are now going to prove some a priori estimates. The next lemma gives a control
of the lower order term.

Lemma 2.2. Let un be the solutions to problems (6). Then it results

(7) B

∫

Ω

un|∇un|
2

(un + 1
n
)θ+1

≤

∫

Ω

f .

Proof. Let us consider
Th(un)

h
, h > 0, as a test function in (6). We have, dropping

the non-negative operator term,

B

∫

Ω

|∇un|
2un

(un + 1
n
)θ+1

Th(un)

h
≤

∫

Ω

f
Th(un)

h
.

It is now sufficient to pass to the limit as h→ 0, using Fatou’s lemma and the fact

that
Th(un)

h
→ 1 as h→ 0. �

We prove now two a priori estimates on un, which are true for every p > 0 and
θ ∈ (0, 2). In the sequel C will denote a positive constant independent of n; µ(E)
will be the Lebesgue measure of a set E ⊂ R

N .

Lemma 2.3. Let 0 < θ < 2. Let f be a positive function belonging to Lm(Ω), with

m ≥
2N

2N − θ(N − 2)
. Then the solutions un to problems (6) are uniformly bounded

in H1
0 (Ω). Thus there exists a function u ∈ H1

0 (Ω) such that, up to a subsequence,
un → u weakly in H1

0 (Ω) and a.e. in Ω.

Proof. The assertion follows by proving that the solutions un to problems (6) are
uniformly bounded in H1

0 (Ω). If we take (un+1)θ− 1 as a test function in problem
(6) we obtain

B

∫

Ω

|∇un|
2

(un + 1
n
)θ+1

un(un + 1)θ ≤ B

∫

Ω

|∇un|
2

(un + 1
n
)θ+1

un +

∫

Ω

fuθn + C ,



AN ELLIPTIC PROBLEM WITH DEGENERATE COERCIVITY 7

dropping the positive operator term. We can estimate the right hand side using (7)
in order to get

B

∫

Ω

|∇un|
2

(un + 1
n
)θ+1

un(un + 1)θ ≤

∫

Ω

fuθn + C .

By working in {un ≥ 1}, the previous inequality gives

B

2

∫

{un≥1}

|∇un|
2 ≤

∫

Ω

fuθn + C ≤

∫

{un≥1}

fuθn + C ≤ C

∫

{un≥1}

f(un − 1)θ + C .

We use the Sobolev inequality in the left hand side and the Hölder inequality

with exponent
2∗

θ
in the last term, recalling that f belongs to Lm(Ω) with m ≥

2N

2N − θ(N − 2)
=

(

2∗

θ

)′

. Thus

(8)

S
B

2







∫

{un≥1}

(un − 1)2
∗







2

2∗

≤
B

2

∫

{un≥1}

|∇un|
2 ≤ C







∫

{un≥1}

(un − 1)2
∗







θ
2∗

+ C .

Since we are assuming θ < 2, we deduce that
∫

{un≥1}

(un − 1)2
∗

≤ C .

It follows from (8) that

(9)

∫

{un≥1}

|∇un|
2 ≤ C .

Let us search for the same kind of estimate in {un < 1}. Taking T1(un) as a test
function in problem (6), we get

(10)
α

2p

∫

{un<1}

|∇T1(un)|
2 ≤ α

∫

{un<1}

|∇T1(un)|
2

(1 + un)p
≤

∫

Ω

fT1(un) ≤

∫

Ω

f

using hypothesis (2) and dropping the non-negative lower order term. As a conse-
quence of estimates (9) and (10), un is uniformly bounded in H1

0 (Ω). By compact-
ness, there exists a function u ∈ H1

0 (Ω) such that, up to a subsequence, un → u
weakly in H1

0 (Ω) and a.e. in Ω. �

Lemma 2.4. Let 0 < θ < 2. Let f be a positive function belonging to Lm(Ω), with
N

2N − θ(N − 1)
< m <

2N

2N − θ(N − 2)
. Then the solutions un to problems (6)

are uniformly bounded in W 1,σ
0 (Ω), σ =

mN(2− θ)

N − θm
. Thus there exists a function

u ∈ W 1,σ
0 (Ω) such that, up to a subsequence, un → u weakly in W 1,σ

0 (Ω) and a.e.
in Ω.

Proof. The assertion follows by proving that the solutions un to problems (6) are

uniformly bounded inW 1,σ
0 (Ω). Take (un+1)θ+2γ−1, with γ =

2∗ − θm′

2m′ − 2∗
, as a test
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function in problems (6). Note that γ < 0: indeed 2∗ − θm′ < 0 and 2m′ − 2∗ > 0,

since m <
N

2
. Moreover, θ + 2γ =

2∗(2− θ)

2m′ − 2∗
> 0, as θ < 2. Dropping the

non-negative operator term and using estimate (7), we get

B

∫

Ω

|∇un|
2

(un + 1
n
)θ+1

un(un + 1)2γ+θ ≤

∫

Ω

f(un + 1)2γ+θ + C .

By working in {un ≥ 1} the previous inequality gives
(11)

B

2(γ + 1)2

∫

{un≥1}

∣

∣∇
[

(un + 1)γ+1 − 2γ+1
]∣

∣

2
≤
B

2

∫

{un≥1}

|∇un|
2(un + 1)2γ

≤

∫

{un≥1}

f(un + 1)2γ+θ +

∫

{un≤1}

f(un + 1)2γ+θ + C ≤

∫

{un≥1}

f(un + 1)2γ+θ + C .

The Hölder inequality on the right hand side and the Sobolev inequality on the left
one imply

(12)

S







∫

{un≥1}

[(un + 1)γ+1 − 2γ+1]2
∗







2
2∗

≤ C

∫

{un≥1}

|∇un|
2(un + 1)2γ

≤ C + C







∫

{un≥1}

(un + 1)(2γ+θ)m
′







1

m′

.

We remark that the choice of γ is equivalent to require (γ + 1)2∗ = (2γ + θ)m′;

moreover
2

2∗
≥

1

m′
, due to the hypotheses on m and θ. Hence

(13)

∫

{un≥1}

(un + 1)(γ+1)2∗ =

∫

{un≥1}

(un + 1)(2γ+θ)m
′

≤ C ∀n ∈ N .

Now, with σ =
mN(2− θ)

N − θm
as in the statement, and recalling that γ < 0, let us

write
∫

{un≥1}

|∇un|
σ =

∫

{un≥1}

|∇un|
σ

(un + 1)−γσ
(un + 1)−γσ .

The Hölder inequality with exponent
2

σ
and estimates (12) and (13) give

(14)

∫

{un≥1}

|∇un|
σ ≤







∫

{un≥1}

|∇un|
2

(un + 1)−2γ







σ
2






∫

{un≥1}

(un + 1)−γσ
2

2−σ







2−σ
2

≤ C

since−γ
2σ

2− σ
= (γ+1)2∗. It remains to analyse the behaviour of∇un on {un ≤ 1}.

Taking T1(un) as a test function in (6) and dropping the non-negative the lower
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order term, we get

α

2p

∫

{un≤1}

|∇T1(un)|
2 ≤ α

∫

{un≤1}

|∇T1(un)|
2

(1 + un)p
≤

∫

Ω

fT1(un) ≤

∫

Ω

f

by hypothesis (2). This last estimate and (14) imply that un is uniformly bounded

in W 1,σ
0 (Ω). Since σ > 1, there exists a function u ∈ W 1,σ

0 (Ω) such that, up to a

subsequence, un → u weakly in W 1,σ
0 (Ω) and a.e. in Ω. �

In the following lemma, we will assume some hypotheses on p. This will give, in
some cases, some better estimates than Lemmata 2.3 and 2.4.

Lemma 2.5. Let 0 < p < 1. Let f ∈ Lm(Ω), r =
Nm(1− p)

N − 2m
and s =

Nm(1− p)

N −m(1 + p)
.

(1) If m >
N

2
, the solutions of (6) are uniformly bounded in H1

0 (Ω) ∩ L
∞(Ω).

Thus there exists a function u ∈ H1
0 (Ω) ∩ L

∞(Ω) such that, up to a subse-
quence, un → u weakly in H1

0 (Ω) and a.e. in Ω.

(2) If
2N

N + 2− p(N − 2)
≤ m <

N

2
, the solutions of (6) are uniformly bounded

in H1
0 (Ω) ∩ Lr(Ω). Thus there exists a function u ∈ H1

0 (Ω) ∩ L
r(Ω) such

that, up to a subsequence, un → u weakly in H1
0 (Ω) and a.e. in Ω.

(3) If
N

N + 1− p(N − 1)
< m <

2N

N + 2− p(N − 2)
, the solutions of (6) are

uniformly bounded in W 1,s
0 (Ω). Thus there exists a function u ∈ W 1,s

0 (Ω)

such that, up to a subsequence, un → u weakly in W 1,s
0 (Ω) and a.e. in Ω.

Proof. In problems (6) consider as a test function the same test functions as in [9].
With this choice, the lower order term is non-negative and we can take into account
only the term given by the operator. Therefore one can follow the same proofs as
in [9] to get the above estimates. �

Remark 1. Let p > θ − 1. Lemmata 2.3 and 2.4 give a further uniform estimate
on un than Lemma 2.5. Indeed, if one chooses un as a test function in (6), then,
by hypothesis (2)

∫

Ω

|∇un|
2

[

α

(1 + |un|)p
+

Bu2n
(un + 1

n
)θ+1

]

≤

∫

Ω

fun .

If p > θ − 1, the lower order term has a leading role in the left hand side of the
previous inequality.

We are going to prove the a.e. convergence of the gradients of un. We will follow
the same technique as in [8]. Remark that a similar technique was used for elliptic
degenerate problems in [1].

Lemma 2.6. Let un be the solutions to problems (6) and u be the function found in
Lemmata 2.3, or 2.4 or 2.5, according to the summability of f . Up to a subsequence,
∇un converges to ∇u a.e. in Ω.



10 GISELLA CROCE

Proof. Let h, k > 0. In the sequel C will denote a constant independent of n, h, k.
Let us consider Th(un − Tk(u)) as a test function in problems (6). Then

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇Th(un − Tk(u)) ≤ h

∫

Ω

f +B

∫

Ω

|∇un|
2un

(un + 1
n
)θ+1

h .

By estimate (7) on the right hand side and by hypothesis (2) on the left one, we
get

∫

Ω

∇un · ∇Th(un − Tk(u))

(1 + Tn(un))p
≤ Ch .

Then we can write
∫

{|un−Tk(u))|≤h}

|∇(un − Tk(u))|
2

(1 + un)p
≤

∫

Ω

∇(un − Tk(u)) · ∇Th(un − Tk(u))

(1 + Tn(un))p

≤ Ch−

∫

Ω

∇Tk(u) · ∇Th(un − Tk(u))

(1 + Tn(un))p
.

At the limit as n→ ∞ one has

lim sup
n→∞

∫

{|un−Tk(u)|≤h}

|∇Th(un − Tk(u))|
2

(1 + un)p
≤ Ch .

Since un ≤ h+ k in {|un − Tk(u)| ≤ h}, we get

(15) lim sup
n→∞

∫

{|un−Tk(u)|≤h}

|∇Th(un − Tk(u))|
2 ≤ Ch(1 + h+ k)p .

We recall that un is uniformly bounded in W 1,η
0 (Ω), where η equals 2 or σ or s,

according to the statements of Lemmata 2.3, 2.4 and 2.5. Let q ∈ (1, η). We can
write

∫

Ω

|∇(un − u)|q =

∫

{|un−u|≤h,|u|≤k}

|∇(un−u)|
q+

∫

{|un−u|≤h,|u|>k}

|∇(un−u)|
q+

∫

{|un−u|>h}

|∇(un−u)|
q .

Using the Hölder inequality with exponent 2
q
on the first term of the right hand

side and exponent η
q
on the other ones, we have

∫

Ω

|∇(un − u)|q ≤

≤ C







∫

{|un−u|≤h,|u|≤k}

|∇(un − u)|2







q
2

+C
[

µ({|u| > k})1−
q
η + µ({|un − u| > h})1−

q
η

]

,

where we have used that un is uniformly bounded in W 1,η
0 (Ω) to estimate the last

two terms. By (15) the limit as n→ ∞ gives

lim sup
n→∞

∫

Ω

|∇(un − u)|q ≤ [Ch(1 + k + h)p]
q
2 + Cµ({|u| > k})1−

q
η .
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The limit as h→ 0 implies

lim sup
n→∞

∫

Ω

|∇(un − u)|q ≤ Cµ({|u| > k})1−
q
η .

At the limit as k → +∞, µ({|u| > k}) converges to 0. Therefore ∇un → ∇u in
Lq(Ω). Up to a subsequence, ∇un → ∇u a.e. in Ω. �

3. Existence results in the case 0 < θ < 1

To prove the existence of solutions to problem (1), the key point is to prove
that the function u found by compactness in the lemmata of Section 2 is strictly
positive. In the case 0 < θ < 1, we use a technique similar to that in [8].

Proposition 1. Let 0 < θ < 1. Let un and u be as in Lemma 2.6. Then u > 0.

Proof. We define, for s ≥ 0,

Hn(s) =

∫ s

0

t(1 + Tn(t))
p

α(t+ 1
n
)θ+1

dt , H(s) =

∫ s

0

(1 + t)p

αtθ
dt .

Observe that H is well-defined, since θ < 1. We choose e−BHn(un)φ, where φ is a
positive C∞

0 (Ω) function, as a test function in (6). This gives
∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇φ e−BHn(un) −

∫

Ω

Tn(f)e
−BHn(un)φ =

= B

∫

Ω

b(x)

(1 + Tn(un))p
e−BHn(un)|∇un|

2φH ′
n(un)−B

∫

Ω

e−BHn(un)|∇un|
2un

( 1
n
+ un)θ+1

φ

≥ B

∫

Ω

α

(1 + Tn(un))p
e−BHn(un)|∇un|

2φH ′
n(un)−B

∫

Ω

e−BHn(un)|∇un|
2un

( 1
n
+ un)θ+1

φ

by hypothesis (2). The last quantity is positive, due to the choice of Hn and φ. As
a consequence
∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇φ e−BHn(un) ≥

∫

Ω

Tn(f)e
−BHn(un)φ ≥

∫

Ω

T1(f)e
−BHn(un)φ .

Now, we set

Pn(s) =

∫ s

0

e−BHn(t)

(1 + Tn(t))p
dt , P (s) =

∫ s

0

e−BH(t)

(1 + t)p
dt .

With these definitions, we remark that we have just proved that the inequality

−div(b(x)∇(Pn(un))) ≥ T1(f)e
−BHn(un)

holds distributionally. Observe that for every n ∈ N, Pn(un) ∈ H1
0 (Ω), since P

′
n is

bounded and un ∈ H1
0 (Ω). Let zn be the H1

0 (Ω) solution to

−div(b(x)∇zn) = T1(f)e
−BHn(un) ;

let z be the H1
0 (Ω) solution to

−div(b(x)∇z) = T1(f)e
−BH(u) .

Then
−div(b(x)∇(Pn(un))) ≥ −div(b(x)∇zn) .
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The comparison principle in H1
0 (Ω) implies that Pn(un(x)) ≥ zn(x) for a.e. x ∈ Ω.

Up to a subsequence, zn → z weakly in H1
0 (Ω) and a.e. in Ω. At the limit a.e. in

Ω, as n→ +∞, we have P (u) ≥ z. By the strong maximum principle z > 0 and so
P (u) > 0. Since P is strictly increasing, u > 0 in Ω. �

Corollary 1. Let 0 < θ < 1. Let un and u be as in Lemma 2.6. Then
|∇u|2

uθ
∈

L1(Ω).

Proof. We pass to the limit in (7). The a.e. convergence of un to u (see Lem-
mata 2.3, 2.4 and 2.5), the a.e. convergence of ∇un to ∇u (see Lemma 2.6) and
Proposition 1 imply

B

∫

Ω

|∇u|2

uθ
≤

∫

Ω

f

by Fatou’s lemma. �

We are going to prove Theorem 1.1.

Proof. We are going to prove that the function u found in Lemma 2.3, and studied
in Lemma 2.6, Proposition 1 and Corollary 1, is a weak solution to problem (1).
We use the same technique as in [8].

We will prove that (4) holds true for every positive and bounded ϕ ∈ H1
0 (Ω).

The general case follows from the fact that every such function ϕ can be written as
ϕ+ − ϕ− with ϕ± bounded, positive and belonging to H1

0 (Ω).
We pass to the limit as n→ ∞ in

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇ϕ+B

∫

Ω

|∇un|
2un

(un + 1
n
)1+θ

ϕ =

∫

Ω

Tn(f)ϕ ,

where ϕ is a positive bounded H1
0 (Ω) function. Regarding the first term we observe

that
b(x)

(1 + Tn(un))p
∇ϕ strongly converges to

b(x)

(1 + u)p
∇ϕ in L2(Ω) and ∇un weakly

converges to ∇u in L2(Ω). For the second one we use the a.e. convergence of ∇un,
proved in Lemma 2.6. Fatou’s lemma implies

(16)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ ≤

∫

Ω

fϕ .

The proof of the opposite inequality is more delicate. To this aim, we define, for
n ∈ N and s ≥ 0,

H 1
n
(t) =

∫ t

0

B(1 + s)p

α(s+ 1
n
)θ
ds , H0(t) =

∫ t

0

B(1 + s)p

αsθ
ds .

H0 is well-posed, since θ < 1. Let us consider

v = e
−H 1

n
(un)

e
H 1

j
(Tj(u))

ϕ ,

where j ∈ N and ϕ is a positive bounded H1
0 (Ω) function, as a test function in (6).

Then
∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇ϕe

−H 1
n
(un)

e
H 1

j
(Tj(u))
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+
B

α

∫

Ω

b(x)

(1 + Tn(un))p
ϕe

−H 1
n
(un)

e
H 1

j
(Tj(u))∇un · ∇Tj(u)

(Tj(u) +
1
j
)θ

(Tj(u) + 1)p

=

∫

Ω

Tn(f)e
−H 1

n
(un)

e
H 1

j
(Tj(u))

ϕ+
B

α

∫

Ω

b(x)|∇un|
2

(1 + Tn(un))p
(1 + un)

p

( 1
n
+ un)θ

ϕe
−H 1

n
(un)

e
H 1

j
(Tj(u))

−B

∫

Ω

|∇un|
2un

( 1
n
+ un)θ+1

e
−H 1

n
(un)

e
H 1

j
(Tj(u))

ϕ .

Note that by hypothesis (2) and inequality
(

un + 1

1 + Tn(un)

)p

≥ 1 >
un

un + 1
n

,

the sum of the last two terms is non-negative. At the limit as n→ ∞ we have
∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕe−H0(u)e

H 1
j
(Tj(u))

+
B

α

∫

Ω

b(x)

(1 + u)p
ϕe−H0(u)e

H 1
j
(Tj(u)) ∇u · ∇Tj(u)

(Tj(u) +
1
j
)θ
(Tj(u) + 1)p

≥

∫

Ω

fe−H0(u)e
H 1

j
(Tj(u))

ϕ+
B

α

∫

Ω

b(x)|∇u|2

uθ
ϕe−H0(u)e

H 1
j
(Tj(u))

−B

∫

Ω

|∇u|2

uθ
e−H0(u)e

H 1
j
(Tj(u))

ϕ ,

using the weak convergence of un to u in H1
0 (Ω) in the left hand side and Fa-

tou’s lemma in the right one. Now we pass to the limit as j → ∞, using that

e−H0(u)e
H 1

j
(Tj(u))

≤ 1 and Corollary 1. We obtain

(17)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ ≥

∫

Ω

fϕ−B

∫

Ω

ϕ
|∇u|2

uθ
.

Inequalities (16) and (17) imply that
∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

ϕ
|∇u|2

uθ
=

∫

Ω

fϕ

for every positive and bounded ϕ ∈ H1
0 (Ω). �

We are going to prove Theorem 1.2.

Proof. We are going to prove that the function u found in Lemma 2.4 and studied
in Lemma 2.6, Proposition 1 and Corollary 1, is a weak solution to problem (1).
We use the same technique as in [11, 21].

We first prove (5) for every positive C1
0 (Ω) function ϕ. With the same argument

as in the previous theorem (i.e., using Fatou’s lemma) one can prove that

(18)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ ≤

∫

Ω

fϕ .
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To prove the opposite inequality, we slightly modify the previous proof, since we
no longer have uniform estimates of un in H1

0 (Ω). Observe that, however, Tk(un)
is uniformly bounded in H1

0 (Ω). Indeed, it is sufficient to consider Tk(un) as a test
function in (6): we obtain

∫

{un≤k}

|∇Tk(un)|
2 ≤ Ck(1 + k)p ∀n ∈ N

by hypothesis (2). We will use, for k ∈ N and s ∈ R

Rk(s) =







1, s ≤ k
k + 1− s, k ≤ s ≤ k + 1
0, s > k + 1 ,

to define a test function. We set, for t ≥ 0,

H 1
n
(t) =

∫ t

0

B(1 + s)p

α(s+ 1
n
)θ
ds , H0(t) =

∫ t

0

B(1 + s)p

αsθ
ds .

This is possible, since θ < 1. We consider

v = e
−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un)ϕ ,

where ϕ is a positive C1
0 (Ω) function and j ∈ N , as a test function in (6). Then

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇ϕe

−H 1
n
(un)

e
H 1

j
(Tj(u))

Rk(un)

+
B

α

∫

Ω

b(x)

(1 + Tn(un))p
ϕe

−H 1
n
(un)

e
H 1

j
(Tj(u))∇un · ∇Tj(u)

(Tj(u) +
1
j
)θ

(Tj(u) + 1)pRk(un)

=

∫

Ω

Tn(f)e
−H 1

n
(un)

e
H 1

j
(Tj(u))

ϕRk(un)+

∫

{k≤un≤k+1}

b(x)|∇un|
2

(1 + Tn(un))p
ϕe

−H 1
n
(un)

e
H 1

j
(Tj(u))

+
B

α

∫

Ω

b(x)|∇un|
2

(1 + Tn(un))p
(1 + un)

p

( 1
n
+ un)θ

ϕe
−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un)

−B

∫

Ω

|∇un|
2un

( 1
n
+ un)θ+1

e
−H 1

n
(un)

e
H 1

j
(Tj(u))

Rk(un)ϕ .

The sum of the last two terms is positive, since b(x) ≥ α by hypothesis (2) and by
inequality

(

un + 1

1 + Tn(un)

)p

≥ 1 ≥
un

un + 1
n

.

Dropping the non-negative term

∫

{k≤un≤k+1}

b(x)|∇un|
2

(1 + Tn(un))p
ϕe

−H 1
n
(un)

e
H 1

j
(Tj(uj))

,

at the limit as n → ∞ we have, by Fatou’s lemma, the weak convergence of un in
W 1,σ

0 (Ω) and the weak convergence of Tk(un) in H
1
0 (Ω),

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕe−H0(u)e

H 1
j
(Tj(u))

Rk(u)+
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+
B

α

∫

Ω

b(x)

(1 + u)p
ϕe−H0(u)e

H 1
j
(Tj(u)) ∇u · ∇Tj(u)

(Tj(u) +
1
j
)θ
(Tj(u) + 1)pRk(u)

≥

∫

Ω

fe−H0(u)e
H 1

j
(Tj(u))

ϕRk(u) +
B

α

∫

Ω

b(x)|∇u|2

uθ
ϕe−H0(u)e

H 1
j
(Tj(u))

Rk(u)

−B

∫

Ω

|∇u|2

uθ
e−H0(u)e

H 1
j
(Tj(u))

Rk(u)ϕ .

As in the previous proof, it is now sufficient to pass to the limit as j → ∞ first,

using that e−H0(u)e
H 1

j
(Tj(u))

≤ 1 and Corollary 1, and then to the limit as k → ∞,
using that Rk(u) tends to 1. We thus obtain

(19)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ ≥

∫

Ω

fϕ−B

∫

Ω

|∇u|2

uθ
ϕ .

Inequalities (18) and (19) imply that

(20)

∫

Ω

b(x)

(1 + u)p
∇u · ∇ϕ+B

∫

Ω

|∇u|2

uθ
ϕ =

∫

Ω

fϕ

for every positive ϕ ∈ C1
0 (Ω). Now, let ϕ any C1

0 (Ω) function. We define ϕε± =
ρε ∗ ϕ± as the convolution of a mollifier ρε, for ε > 0, with ϕ±. Then ϕε± is a

positive C1
0 (Ω) function, for ε sufficiently small. By (20) we have

∫

Ω

b(x)

(1 + u)p
∇u · ∇(ϕε− − ϕε+) +B

∫

Ω

|∇u|2

uθ
(ϕε− − ϕε−) =

∫

Ω

f(ϕε− − ϕε−) .

Since ϕε− − ϕε− → ϕ uniformly in Ω and in W 1,q
0 (Ω) for every q ≥ 1, as ε → 0, the

result follows. �

4. Existence results in the case 1 ≤ θ < 2

As in the above case, we need to prove that the function u found in Section 2 is
not 0 in Ω. To this aim, we are going to prove that for every ω ⊂⊂ Ω there exists
a positive constant cω such that the solutions un to problems (6) satisfy un ≥ cω
in ω for every n ∈ N. We will follow a similar technique to that one in [5]. The
following theorem, proved in [18] (and in [5]), will be useful to us.

Theorem 4.1. Let B : Ω×R → R be a Carathéodory function such that for every
ω ⊂⊂ Ω there exists mω > 0 such that B(x, s) ≥ mωl(s) for a.e. x ∈ Ω and for
every s ≥ 0. Assume that l : R+ → R

+ is a continuous increasing function such
that l(s)/s is increasing for s sufficiently large and for some t0 > 0

(21)

∫ +∞

t0

dt
√

∫ t

0 l(s)ds
< +∞ .

Then for every ω ⊂⊂ Ω there exists a constant Cω > 0 such that every sub-
solution v ∈ H1

loc(Ω) of −div(b(x)∇v) + B(x, v) = 0 such that v+ ∈ L∞
loc(Ω) and

B(x, v+) ∈ L1
loc(Ω) satisfies v ≤ Cω in ω.
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Remark 2. We recall that a sub-solution of −div(b(x)∇v) + l(v)g(x) = 0 is a

W 1,1
loc (Ω) function such that

∫

Ω

b(x)∇v · ∇φ+

∫

Ω

l(v)g(x)φ ≤ 0

for every C∞
c (Ω) positive function φ.

Remark 3. In the literature condition (21) is called the Keller-Osserman condition,
due to the papers [17, 19] on semilinear equations.

Proposition 2. Let 1 ≤ θ < 2. Let un be the solutions of (6). Then for every
ω ⊂⊂ Ω there exists a strictly positive constant cω such that un ≥ cω in ω for every
n ∈ N.

Proof. Step 1. Let un be a H1
0 (Ω) ∩ L

∞(Ω) solution to (6). We perform a change
of variable in order to get a sub-solution of an elliptic semi-linear problem, as in
Theorem 4.1.

We set an(s) =
1

(1 + Tn(s))p
. Then un satisfies, distributionally,

−div (b(x)an(un)∇un) +
B

uθn
|∇un|

2 ≥ T1(f) ,

that is,

(22) − div(b(x)∇un)an(un)− a′n(un)b(x)|∇un|
2 +

B

uθn
|∇un|

2 ≥ T1(f) .

Let kn(t) =

∫ t

1

B

αrθan(r)
dr and ψn(s) =

∫ 1

s

e−kn(t)a
β
α
n (t)dt . We remark that

(23) ψ′
n(s) = −a

β
α
n (s)e

−kn(s) ,
ψ′′
n(s)

ψ′
n(s)

=
β

α

a′n(s)

an(s)
−

B

αsθan(s)
.

We define vn = ψn(un). Then

div(b(x)∇vn) = div(b(x)ψ′
n(un)∇un) = ψ′

n(un)div(b(x)∇un) + b(x)ψ′′
n(un)|∇un|

2

and therefore

−an(un)div(b(x)∇un) = −an(un)
div(b(x)∇vn)

ψ′
n(un)

+ an(un)b(x)
ψ′′
n(un)

ψ′
n(un)

|∇un|
2 .

By inequality (22) we have

T1(f) ≤ −an(un)
div(b(x)∇vn)

ψ′
n(un)

+an(un)b(x)
ψ′′
n(un)

ψ′
n(un)

|∇un|
2−a′n(un)b(x)|∇un|

2+
B

uθn
|∇un|

2 .

Using that a′n(s) ≤ 0,
ψ′′
n(s)

ψ′
n(s)

≤ 0 and hypothesis (2) we obtain

T1(f) ≤ −an(un)
div(b(x)∇vn)

ψ′
n(un)

+an(un)α
ψ′′
n(un)

ψ′
n(un)

|∇un|
2−a′n(un)β|∇un|

2+
B

uθn
|∇un|

2 .

Due to (23)

T1(f) ≤ −an(un)
div(b(x)∇vn)

ψ′
n(un)

.
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Observing that ψ′
n(s) = −a

β
α
n (s)e−kn(s) ≤ 0, vn satisfies

0 ≥ −div(b(x)∇vn) + T1(f)e
−kn(ψ

−1
n (vn))a

β
α
−1

n (ψ−1
n (vn)) .

Step 2. We now study, for s ≥ 0

s→ e−kn(ψ
−1
n (s))a

β
α
−1

n (ψ−1
n (s)) .

We remark that ψ−1
n (s) ≤ 1, since s ≥ 0 = ψn(1) and ψn is decreasing. Therefore

(24) a
β
α
−1

n (ψ−1
n (s)) ≥ a

β
α
−1

n (1) = a0 ,

as an is decreasing.
Recalling that

ψn(s) =

∫ 1

s

e−kn(t)a
β
α
n (t)dt , kn(t) =

∫ t

1

B

αrθan(r)
dr

and
{

an(s) = a1(s) , s ≤ 1
an(s) ≤ a1(s) , s > 1

it is not difficult to prove that

(25) ψn(s) ≥ ψ1(s) ,

distinguishing the cases s ≤ 1 and s > 1. Now, inequality (25) and the fact that
ψn is decreasing imply that ψ−1

n (s) ≤ ψ−1
1 (s) for every s ≥ 0. Recalling that

ψ−1
n (s) ≤ 1 and an(s) = a1(s) ≥ 0 for s ≥ 1, we deduce easily that

(26) e−kn(ψ
−1
n (s)) ≥ e−k1(ψ

−1

1
(s)) .

Due to (24) and (26), vn satisfies

0 ≥ −div(b(x)∇vn) +B(x, vn)

with

B(x, s) =

{

T1(f)a0 l(s) , s ≥ 0
0 , s ≤ 0 ,

where l(s) = e−k1(ψ
−1

1
(s)) − 1, s ≥ 0.

Step 3. We are going to prove that l satisfies the hypotheses of Theorem 4.1.
We observe that l is continuous and increasing, since ψ−1

1 is decreasing and k1
is increasing. We claim that l(s)/s is increasing for s sufficiently large. This is

equivalent to prove that Y (t) =
l(ψ1(t))

ψ1(t)
is decreasing for small positive t. Now,

Y ′(t) < 0 if and only if

(27) l′(ψ1(t))ψ1(t)−

∫ t

1

l′(ψ1(s))ψ
′
1(s)ds > 0 .

We remark that l′(ψ1(s)) =
B

αsθa
β
α
+1

1 (s)
. Let w0 ∈ (0, 1) be such that h(t) =

l′(ψ1(t)) =
B

αtθa
β
α
+1

1 (t)
is decreasing in (0, w0]. Therefore

l′(ψ1(t))ψ1(t)−

∫ t

1

l′(ψ1(s))ψ
′
1(s)ds =

∫ 1

t

e−k1(s)a
β
α

1 (s) [h(t)− h(s)] ds
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≥

∫ 1

w0

e−k1(s)a
β
α

1 (s) [h(t)− h(s)] ds

due to the choice of w0. Let

M1 =

∫ 1

w0

e−k1(s)a
β
α

1 (s)ds , M2 =

∫ 1

w0

e−k1(s)a
β
α

1 (s)h(s)ds .

We have proved that

l′(ψ1(t))ψ1(t)−

∫ t

1

l′(ψ1(s))ψ
′
1(s)ds ≥M1h(t)−M2 .

If t is sufficiently small, the last quantity is positive, since h is decreasing for small
positive t. Therefore (27) holds.

We are going to study the last condition on l, that is, the existence of a positive
t0 such that

(28)

∫ +∞

t0

dt
√

∫ t

0
l(s)ds

<∞ .

Using the change of variable τ = ψ−1
1 (s) we get

∫ t

0

l(s)ds =

∫ t

0

[e−k1(ψ
−1

1
(s)) − 1]ds =

∫ 1

ψ
−1

1
(t)

[e−k1(τ) − 1]a
β
α

1 (τ)e−k1(τ)dτ .

It is easy to see that e−k1(τ) − 1 ≥
1

2
e−k1(τ) for τ ≤ τ0 sufficiently small. Moreover

a1(τ) ≥
1
2 , for τ ≤ 1. Therefore it suffices to find t0 sufficiently large (t0 > ψ1(τ0))

such that
∫ +∞

t0

dt
√

∫ 1

ψ
−1

1
(t)
e−2k1(τ)dτ

<∞ .

The last integral can be estimated, using the change w = ψ−1
1 (t) and the fact that

a1(s) ≤ 1, in the following way:

∫ 0

ψ
−1

1
(t0)

ψ′
1(w)dw

√

∫ 1

w
e−2k1(τ)dτ

=

∫ ψ
−1

1
(t0)

0

e−k1(w)a
β
α

1 (w)dw
√

∫ 1

w
e−2k1(τ)dτ

≤

∫ ψ
−1

1
(t0)

0

dw
√

∫ w0

w
e2[k1(w)−k1(τ)]dτ

where w0 is chosen in such a way that k′1 is decreasing in (0, w0]. We observe that
∫ 1

0

√

k′1(t)dt < ∞, as θ < 2. Hence it suffices to prove that there exists a strictly

positive constant c such that

k′1(w)

∫ w0

w

e2[k1(w)−k1(τ)]dτ ≥ c .

Now, since k′1(τ) is decreasing in (0, w0],

k′1(w)

∫ w0

w

e2[k1(w)−k1(τ)]dτ ≥

∫ w0

w

k′1(τ)e
2[k1(w)−k1(τ)]dτ =

1

2
−

1

2
e2[k1(w)−k1(w0)] .

Observe that e2k1(w) → 0 as w → 0, since k1(w) =

∫ w

1

B

αtθa1(t)
dt → −∞ as

w → 0, by hypothesis θ ≥ 1. Therefore (28) is proved.
Step 4. Theorem 4.1 applies and gives, for every ω ⊂⊂ Ω, the existence of a

constant Cω > 0 such that vn ≤ Cω. Recalling that ψn(s) ≥ ψ1(s) by (25), we have
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Cω ≥ vn = ψn(un) ≥ ψ1(un). Since ψ1 is decreasing, un ≥ ψ−1
1 (Cω) = cω > 0 in

every ω ⊂⊂ Ω. �

Corollary 2. Let 1 ≤ θ < 2. Let un and u be as in Lemma 2.6. Then
|∇u|2

uθ
∈

L1(Ω).

Proof. As in the proof of Corollary 1, we pass to the limit in (7) using the a.e.
convergence of un to u (see Lemmata 2.3, 2.4 and 2.5), the a.e. convergence of ∇un
to ∇u (see Lemma 2.6) and Proposition 2. �

Corollary 3. For every ω ⊂⊂ Ω there exists a positive constant c̃ω such that
un

(un + 1
n
)1+θ

≤ c̃ω ∀x ∈ ω .

Proof. It is sufficient to observe that in every subset ω ⊂⊂ Ω

un

(un + 1
n
)1+θ

≤
1

uθn
≤

1

cθω
= c̃ω ,

since un ≥ cω > 0 in ω by Proposition 2. �

As in [5] we prove the strong convergence of Tk(un) in H1
loc(Ω). This will be

used to compute the limit of the lower order term in problems (6).

Lemma 4.2. Let un be the solutions to problems (6) and u be the function found
in Lemmata 2.3, 2.4, 2.5. Then, up to a subsequence, Tk(un) → Tk(u) in H

1
loc(Ω).

Proof. We are going to prove that

lim
n→∞

∫

Ω

|∇(Tk(un)− Tk(u))|
2φ = 0

for all positive φ ∈ C∞
c (Ω). Let ϕλ(s) = seλs

2

, λ > 0. As in [11], we will consider
as a test function ϕλ(Tk(un)− Tk(u))φ, where λ will be chosen later. In the sequel
ε(n) will denote any quantity converging to 0, as n→ ∞. From (6) we get
(29)

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇(Tk(un)− Tk(u))ϕ

′
λ(Tk(un)− Tk(u))φ

+B

∫

Ω

un|∇un|
2

(un + 1
n
)θ+1

ϕλ(Tk(un)− Tk(u))φ

= −

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇φϕλ(Tk(un)− Tk(u)) +

∫

Ω

Tn(f)ϕλ(Tk(un)− Tk(u))φ .

It is not difficult to prove that
∫

Ω

Tn(f)ϕλ(Tk(un)−Tk(u))φ→ 0 ,

∫

Ω

b(x)

(1 + Tn(un))p
∇un·∇φϕλ(Tk(un)−Tk(u)) → 0 ,

as n→ ∞. Indeed for the first limit one can use the Lebesgue Theorem. For the sec-
ond one it is sufficient to observe that ∇un converges weakly in some Sobolev space

given by the statements of Lemmata 2.3, 2.4 and 2.5 and
b(x)

(1 + Tn(un))p
∇φϕλ(Tk(un)−

Tk(u)) is uniformly bounded with respect to n.
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We are going to treat the left hand side of (29). We choose ωφ ⊂⊂ Ω, with
suppφ ⊂ ωφ. Then

B

∫

Ω

un|∇un|
2

(un + 1
n
)θ+1

ϕλ(Tk(un)−Tk(u))φ ≥ −Bc̃ωφ

∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)−Tk(u))|φ

by Corollary 3. We deduce from (29) that

(30)

∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇(Tk(un)− Tk(u))ϕ

′
λ(Tk(un)− Tk(u))φ

−Bc̃ωφ

∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)− Tk(u))|φ ≤ ε(n) .

We remark that
∫

{un≥k}

b(x)

(1 + Tn(un))p
∇un · ∇(Tk(un)− Tk(u))ϕ

′
λ(Tk(un)− Tk(u))φ = ε(n) .

Hence inequality (30) is equivalent to

(31)

∫

{un≤k}

b(x)

(1 + Tn(un))p
∇un · ∇(Tk(un)− Tk(u))ϕ

′
λ(Tk(un)− Tk(u))φ

−Bc̃ωφ

∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)− Tk(u))|φ ≤ ε(n) .

Remark that
∫

{un≤k}

b(x)

(1 + Tn(un))p
∇Tk(u)·∇(Tk(un)−Tk(u))ϕ

′
λ(Tk(un)−Tk(u))φ→ 0 , n→ ∞ .

Adding the above quantity in both sides of (31) we get
∫

{un≤k}

b(x)

(1 + Tn(un))p
∇(un − Tk(u)) · ∇(Tk(un)− Tk(u))ϕ

′
λ(Tk(un)− Tk(u))φ

−Bc̃ωφ

∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)− Tk(u))|φ ≤ ε(n) .

By hypothesis (2) on b, we obtain

(32)

∫

{un≤k}

α

(1 + k)p
|∇(Tk(un)− Tk(u))|

2ϕ′
λ(Tk(un)− Tk(u))φ

−Bc̃ωφ

∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)− Tk(u))|φ ≤ ε(n) .

It is easy to prove that
∫

Ω

|∇Tk(un)|
2|ϕλ(Tk(un)−Tk(u))|φ ≤

∫

{un≤k}

2|∇(Tk(un)−Tk(u))|
2|ϕλ(Tk(un)−Tk(u))|φ+ε(n) .
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We deduce from (32) that the quantity
(33)

∫

{un≤k}

[

α

(1 + k)p
ϕ′
λ(Tk(un)− Tk(u))− 2Bc̃ωφ

|ϕλ(Tk(un)− Tk(u))|

]

|∇(Tk(un)−Tk(u))|
2φ

tends to 0. Now, ϕλ has the following property: for every a, b > 0, aϕ′
λ(s) −

b|ϕλ(s)| ≥
a

2
if λ >

b2

4a2
. Therefore there exists λ > 0 such that

α

(1 + k)p
ϕ′
λ(s)− 2Bc̃ωφ

|ϕλ(s)| ≥
α

2(1 + k)p
∀ s ∈ R .

Applying this inequality to the quantity (33), the statement of the theorem is
proved. �

We are now going to prove Theorems 1.3 and 1.4 in a unique proof. As we will
see the only difference is the choice of the test functions ϕ. Theorem 1.5 can be
proved with the same technique.

Proof. By Lemmata 2.3 and 2.4 the solutions un to (6) are uniformly bounded in

H1
0 (Ω) and W

1,σ
0 (Ω) respectively; moreover ∇un converges to ∇u a.e. in Ω up to a

subsequence, by Lemma 2.6. The solutions un satisfy
∫

Ω

b(x)

(1 + Tn(un))p
∇un · ∇ϕ+B

∫

Ω

|∇un|
2un

(un + 1
n
)1+θ

ϕ =

∫

Ω

Tn(f)ϕ .

For the proof of Theorem 1.3 we consider for ϕ a bounded H1
0 (Ω) function. For the

proof of Theorem 1.4, ϕ is a C1
0 (Ω) function. To compute the limit of the first term

in the case where un weakly converges to u in H1
0 (Ω) (Theorem 1.3) it is sufficient

to use that
b(x)

(1 + Tn(un))p
∇ϕ strongly converges to

b(x)

(1 + u)p
∇ϕ in (L2(Ω))N for

every ϕ ∈ H1
0 (Ω)∩L

∞(Ω). In the case where un weakly converges to u inW 1,σ
0 (Ω),

with σ < 2 (Theorem 1.4), one uses that
b(x)

(1 + Tn(un))p
∇ϕ strongly converges to

b(x)

(1 + u)p
∇ϕ in (Lr(Ω))N for every r ≥ 1 and for every ϕ ∈ C1

0 (Ω).

To compute the limit of

∫

Ω

|∇un|
2un

(un + 1
n
)1+θ

ϕ we will use the same technique as in

[5]. We are going to prove that
|∇un|

2un

(un + 1
n
)1+θ

is equi-integrable. Let E ⊂⊂ ω ⊂⊂ Ω.

Then
∫

E

|∇un|
2un

(un + 1
n
)1+θ

≤

∫

E∩{un≤k}

|∇un|
2un

(un + 1
n
)1+θ

+

∫

E∩{un≥k}

|∇un|
2un

(un + 1
n
)1+θ

≤ c̃ω

∫

E∩{un≤k}

|∇Tk(un)|
2 +

∫

{un≥k}

|∇un|
2un

(un + 1
n
)1+θ

,

where we have used Corollary 3 to estimate the first term. Now, if we choose
T1(un − Tk−1(un)) in problems (6) we have, dropping the non-negative operator
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term,

(34) B

∫

{un≥k}

|∇un|
2un

(un + 1
n
)θ+1

≤

∫

{un≥k−1}

f .

Observe that there exists a constant C > 0 such that µ({un ≥ k − 1}) ≤
C

k − 1
, as

un are uniformly bounded in L1(Ω). This implies that the right hand side of (34)
converges to 0 as k → ∞, uniformly with respect to n. We deduce that there exists
k0 > 1 such that

(35)

∫

{un≥k}

|∇un|
2un

(un + 1
n
)θ+1

≤
ε

2
∀ k ≥ k0 , ∀n ∈ N .

Moreover, since Tk(un) → Tk(u) in H
1
loc(Ω) by Lemma 4.2, there exist nε, δε such

that for every E ⊂⊂ Ω with µ(E) < δε we have
∫

E∩{un≤k}

|∇Tk(un)|
2 =

∫

E

|∇Tk(un)|
2 ≤

ε

2c̃ω
∀n ≥ nε .

This and (35) imply that
|∇un|

2un

(un + 1
n
)1+θ

is equi-integrable. Now, recall that
|∇un|

2un

(un + 1
n
)1+θ

converges a.e. to
|∇u|2

uθ
, belonging to L1(Ω) by Corollary 2. By Vitali’s theorem

we have the result. �

5. A non-existence result in the case θ ≥ 2

We are going to prove Theorem 1.6 about the non-existence of finite energy
solutions to problem (1) when θ ≥ 2. We will use the following result of [5]:

Theorem 5.1. Let M(x, s) be a N × N matrix whose entries are Carathéodory
functions mij : Ω× R → R, for every i, j = 1, . . . , N . Assume that there exist two
positive constants α1, β1 such that M(x, s)ξ · ξ ≥ α1|ξ|

2 and |M(x, s)| ≤ β1 for a.e.
x ∈ Ω, and for all (s, ξ) ∈ R× R

N . Let g : Ω × (0,+∞) → R
+ be a Carathéodory

function such that for some constants s0,Λ > 0 and θ ≥ 2 it holds

g(x, s) ≥
Λ

sθ
∀ s ∈ (0, s0] .

Let f ≥ 0, f 6≡ 0, be a Lq(Ω) function, with q > N
2 . If one of the following

conditions holds:

(1) θ > 2

(2) θ = 2 and λ1(f) >
β1

Λα1
,

then there is no H1
0 (Ω) solution to problem

{

−div (M(x, u)∇u) + g(x, u)|∇u|2 = f in Ω,

u = 0 on ∂Ω.

Proof. (of Theorem 1.6) By the change of variables

v =







1− (1 + u)1−p

p− 1
, p 6= 1

ln(1 + u) , p = 1 ,
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problem (1) is equivalent to

(36)

{

−div (b(x)∇v) +Bg(v)|∇v|2 = f in Ω,

v = 0 on ∂Ω,

with

g(s) =



















[1− (p− 1)s]
2p

1−p

([1− (p− 1)s]
1

1−p − 1)θ
, p 6= 1

e2s

(es − 1)θ
, p = 1 .

It is easy to prove that g(s)sθ → 1, as s → 0+. Hence for every fixed 0 < ε < B
there exists sε > 0 such that Bg(s) ≥ B−ε

sθ
for every s ∈ (0, sε]. Theorem 5.1

therefore applies to problem (36). We deduce that there is no H1
0 (Ω) solution to

problem (36) if either θ > 2, or θ = 2 and λ1(f) >
β

(B−ε)α , for every 0 < ε < B. As

a consequence there is no H1
0 (Ω) solution to problem (1) if either θ > 2, or θ = 2

and λ1(f) >
β
Bα

. �
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