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We prove continuity of minimizers of integral functionals of the form
w Ž . x Ž . < < pH f x, u, Du q hDu , where the integrand f x, h, j grows like j , withV 0 0

p ) 1, and h is in a suitable Lorentz space. Continuity of solutions of nonlinear
Ž . Ž .equations of the form div A x, u, Du s div h is also proved, where A x, h, j

< < py1grows like j . Q 1996 Academic Press, Inc.

1. INTRODUCTION

1, 2Ž .Let u g W V be a solution of the equationl oc

D a x D u s div h , 1.1Ž . Ž .Ž .j i j i

w xwhere a is a uniformly elliptic, bounded matrix. It is well known, seei j
w x sŽ .DG , that if h is in L V with s ) n, then u is Holder-continuous in V.¨

nŽ .However, if h is only in L V simple examples show that u is neither
continuous nor locally bounded.

A natural question is then to characterize those spaces to which h
should belong in order to guarantee that u is continuous. Clearly these

nŽ . sŽ .spaces should lay between L V and any L V , with s ) n.
A similar situation arises in considering weak solutions of the equation

D a x D u s g . 1.2Ž . Ž .Ž .j i j i

Ž .*Work partially supported by MURST 40% .
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sŽ .In this case if g g L V for some s ) nr2 then u is Holder-continuous.¨
But again this result does not hold in the limit case s s nr2.

Ž . Ž .In the study of the continuity of solutions of equations like 1.1 or 1.2
p, qŽ .it is useful to introduce the Lorentz spaces L V , where p ) 1, q ) 0

Ž .see definition in Section 2 . For these spaces the following inclusion
relations hold,

Lr V ; L p , q V ; L p , p VŽ . Ž . Ž .
' L p V ; L p , r V ; L p , ` V ; Lq V ,Ž . Ž . Ž . Ž .

whenever 0 - q - p - r F `.
w xIndeed one can prove, see A, T , that if g belongs to the Lorentz space

n r2, 1Ž . 1, 2Ž . Ž .L V and n ) 2 any W V solution of 1.2 is continuous. In thel oc
framework of Lorentz spaces this result is optimal in the sense that if

n r2, qŽ .g g L V , with q ) 1, examples can be given showing that the solu-
w xtion u may be even unbounded. Similarly one can prove, see F , that if

n, 1Ž . Ž .h g L V and n ) 2 any weak solution of 1.1 is continuous. Also this
result is optimal.

Ž .Another approach to the regularity of solutions of Eq. 1.1 is based on
the observation that weak solutions of this equation are indeed local
minimizers of the functional

a D uD u y h x Du . 1.3Ž . Ž .H i j i j
V

For a more general functional of the type

f x , u x , Du x dx , 1.4Ž . Ž . Ž .Ž .H
V

with

< < p < < p < < pl j y g x F f x , h , j F L j q h q g x , p ) 1, 1.5Ž . Ž . Ž . Ž .Ž .
w x Ž . sŽ .Giaquinta and Giusti, see GG , proved that if g x g L V with s ) nrp,

1, pŽ . Ž .then a W V minimizer u or even a Q-minimizer is Holder-continu-¨
Ž . Ž . Ž .ous. Clearly the functional 1.3 is of the type 1.4 with f satisfying 1.5

< < 2for p s 2 and g s h . In a similar way one can study the regularity of
weak solutions u of an equation of the type

< < py2div a x Du Du s div h ,Ž .Ž .
Ž .remarking that u is also a minimizer of a functional of the type 1.4 with

Ž . < Ž . < prŽ py1.g x s c h x . In conclusion Holder-continuity of solutions of many¨
linear and nonlinear elliptic equations can be obtained from the corre-
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sponding property of minimizers and Q-minimizers of functionals of the
Ž . Ž w x.type 1.4 see GG .

In this paper we extend the continuity results for solutions of linear
Ž .equations to the case of minimizers of the functional 1.4 . As a model

case covered by our Theorem 3.1, consider the functional

f x , u x , Du x q h x Du dx , 1.6Ž . Ž . Ž . Ž .Ž .H 0
V

Ž .where f x, h, j is a Caratheodory function such that´0

< < p < < p < < pj F f x , h , j F L 1 q h q j , p ) 1,Ž . Ž .0

n rŽ py1., 1rŽ py1.Ž . 1, pŽ .and h g L V . We then pro¨e that if a function u in W V
Ž .is a minimizer of the functional 1.6 , then u is continuous.

Note that in order to deduce the continuity of the minimizer u it is not
necessary to assume any differentiability of the integrand f . In this0
respect the regularity result given here is similar to the one proved in
w xGG . Here too the continuity of u is obtained using only the polynomial

Ž .growth of f with respect to j and the summability assumption on h x .0
However, our proof is different from the proof of the Holder-continuity¨

Ž . w xof minimizers of the functional 1.4 given by GG . In fact they prove that
1, pŽ . Ž . Ž .if u g W V is a minimizer of 1.4 and f satisfies 1.5 then bothl oc

functions u and yu satisfy the estimate

cp p< < < <Du dx F u y k dx q c g x dxŽ .H H Hp
� 4 � 4 � 4R y rŽ .u)k lB u)k lB u)k lBr R R

1.7Ž .

for any ball B _ V, 0 - r - R, k G 0. Then, from the results of DeR
Ž w x.Giorgi see LU it follows that if u and yu satisfy this estimate and

sŽ .g g L V , with s ) nrp, u is Holder-continuous. It is not clear to us if¨
n r p, 1r pŽ .using the De Giorgi argument one can prove that if g is only in L V

Ž .and u and yu satisfy 1.7 then u is at least a continuous function.
Ž .Indeed, using a variational principle due to Ekeland see Theorem 2.3

Ž .we compare the minimizer u of functional 1.6 with the minimizer ¨ of a
simpler functional to which the De Giorgi result applies. Then from the

Žgradient estimates satisfied by ¨ we get similar estimates see Proposition
.3.6 for u. The continuity of u is then achieved by fully exploiting the

Ž .properties of Lorentz spaces see Lemma 2.2 through a sharp version of
the standard iteration arguments.
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As an application of the techniques developed in Section 3 we also prove
Ž .see Section 4 the continuity of solutions of the nonlinear equation

div A x , u x , Du x q H x , u s div h ,Ž . Ž . Ž .Ž .

n rŽ py1., 1rŽ py1.Ž . Ž . < < py1where h g L V , p ) 1, A x, h, j grows like j and
Ž .satisfies the usual monotonicity assumptions, and H x, h grows like

< < py1h . It seems to us that in this case the monotonicity of A plays the role
of Ekeland principle which holds only for minimizers. We finally remark

Ž .that no sign conditions on H x, h are required.

2. PRELIMINARY RESULTS

In this section we recall the definition and some properties of Lorentz
spaces. In the following V will always denote an open set in R n. The ball

Ž .centered in x , with radius R will be denoted by B x , or simply by B ,0 R 0 R
and the average on such a ball of an integrable function f will be denoted
by

f s f x dxŽ . Ž .x , R e0
BR

or just f .R

p, qŽ .DEFINITION. A function f belongs to the Lorentz space L V , with
1 - p - `, 0 - q F ` if

1rq¡ q` dsq1r pf * s s when q ) 0Ž .Ž .Hž /s~ 0w xf s 2.1Ž .p , q
1r psup f * s s when q s q`Ž .Ž .¢

s)0

is finite.

Ž . Ž . w w w wIn 2.1 we have denoted by f * s : 0, q` ª 0, q` the decreasing
rearrangement of f in V

f * s s sup t G 0: x g V : f x ) t ) s .� 4Ž . Ž .� 4
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Here and in the following, if f is a vector field, we say that f belongs to
p, qŽ . < <L V if f does. Using the definition above and Hardy inequality it is

Ž w x.possible to prove see BS that the following inclusions hold,

Lr V ; L p , q V ; L p , p VŽ . Ž . Ž .
' L p V ; L p , r V ; L p , ` V ; Lq V ,Ž . Ž . Ž . Ž .

whenever 0 - q - p - r F `. Further properties of Lorentz spaces can be
w x w xfound in BS . It is easy to check that ? is a seminorm on the linearp, q

p, qŽ . Ž w x.space L V . However, the following result see ON shows that one
p, q w xcan define a norm on L which is equivalent to f .p, q

THEOREM 2.1. Let us define for 1 - p - `, 0 - q F `

1rq¡ q` dsq1r pf ** s s when q ) 0Ž .Ž .Hž /s~ 05 5f sp , q
1r psup f ** s s when q s q`,Ž .Ž .¢

s)0

where for any s ) 0

s1
f ** s s f * t dt.Ž . Ž .Hs 0

p, qŽ .Then there exists c such that for any f g L Vp, q

5 5w x w xf F f F c f . 2.2Ž .p , q p , qp , q p , q

The following technical lemma will be useful at the end of next section.
ab, aŽ .LEMMA 2.2. Let a ) 0, b ) 1ra, f g L V , 0 - q - b, d s 1rn y

Ž .1rb q 1rq, t g 0, 1 . For any compact subset K of V the series

1rq`
aq1ydnit R f y dy , 2.3Ž . Ž . Ž .Ý Hž /Ž .iB xt Ris1

Ž .where R - dist K,  V , con¨erges uniformly for x g K.

Proof. Denoting by v the measure of the unit ball in R n, and usingn
the properties of rearrangements we have

i naq Ž . aqv t Rnf y dy F f * s ds for any x g K ,Ž . Ž .Ž .H H
Ž .iB x 0t R
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Ž .where f * is the decreasing rearrangement of f in B x . Hence the seriesR
Ž .appearing in 2.3 is majorized by

1rq
` 1 i nn Ž . aqv t Rnit R f * s dsŽ . Ž .Ž .Ý Hqqdqyqrnnž /i 0is1 t RŽ .

`
n niy1 iF c n , t , q v t R y v t RŽ . Ž . Ž .Ý n n

is1

=

1rq
1 i nŽ . aqv t Rn f * s dsŽ .Ž .H1qqyqrbnž /iy1 0v t RŽ .ž /n

` iy1 nŽ .v t RnF c F s ds,Ž .Ý H
i nŽ .v t Rnis1

where

1rq
s1 aq

F s s f * s ds .Ž . Ž .Ž .H1qqyqr bž /s 0

Ž .Therefore series 2.3 is controlled by

1rq
s1 ds ds< < < <B B 1rqaq aqR R qr b < <c f * t dt s c s f ** sŽ . Ž .Ž . Ž .Ž .H H H1yqr bž / s ss0 0 0

5 < < aq 51r q
b r q , 1r qF c f .L ŽB .R

Ž . Ž .By 2.1 and 2.2 we may conclude that

1rq` dta< <aq B1ydn Ri 1r abt R f y dy F c f * t t ,Ž . Ž . Ž .Ž .Ý H Hž / tŽ .iB x 0t Ris1

Ž .where f * is from now on the rearrangement of f in V. Then series 2.3
converges.

The uniform convergence follows from the observation that the Nth
Ž .remainder of 2.3

1rq`
aq1ydnit R f y dyŽ . Ž .Ý Hž /Ž .iB xt RisN



MINIMIZERS OF INTEGRAL FUNCTIONALS 33

Ž . Ncan be obtained from 2.3 substituting R with t R. Hence it is controlled
uniformly by

dta< <nBt R 1r abc f * t t ,Ž .Ž .H t0

a quantity which tends to 0 as N ª `.

Ž .Remark. If one takes q s b in Lemma 2.2, the series 2.3 may diverge.
As an example take the function

1
f x sŽ . 1q1rnn1r n < < < <v x log 1r xŽ .Ž .n

Ž .in the ball B 0 , with R - 1 small enough in order to guarantee that f isR
radially decreasing. Obviously,

1
f * s sŽ . 1q1rn1r ns log v rsŽ .Ž .n

n, 1Ž Ž ..and f g L B 0 . ThenR

1rn1rn` ` 1in nn v t Rnf y dy s dsŽ .Ý ÝH H nq1ž / ž /Ž .iB 0 0 s log v rsŽ .Ž .t Ris1 is1 n

1rn y1` 1 1
s log s q`.Ý in nž / ž /n t Ris1

Finally we recall the following variational principle due to Ekeland, see
w xE, Theorem 1 .

Ž . x xTHEOREM 2.3. Let V, d be a complete metric space, FF: V ª y `, q`
a lower semicontinuous functional such that inf FF is finite. Let e ) 0 andV
u g V such that

FF u F inf FF q e .Ž .
V

Then there exists ¨ g V such that

Ž . Ž .i d u, ¨ F 1;
Ž . Ž . Ž .ii FF ¨ F FF u ;
Ž . Ž . Ž . Ž .iii ¨ minimizes the functional GG w s FF w q e d ¨ , w .
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3. VARIATIONAL MINIMA

In this section we consider integral functionals of the type

FF u s FF u , V s f x , u x , Du x dx , 3.1Ž . Ž . Ž . Ž . Ž .Ž .H
V

1, pŽ . Ž .where u g W V , 1 - p - n, and the integrand f x, h, j satisfies the
following assumptions:

Ž . Ž . ni f x, h, j : V = R = R ª R is a Caratheodory function which´
can be written as

f x , h , j s f x , h , j q f x , h , j ;Ž . Ž . Ž .0 1

Ž .ii f satisfies the growth condition0

< < p < < p < < pj F f x , h , j F L 1 q h q j , p ) 1;Ž . Ž .0

Ž . Ž . prŽ py1.Ž . Ž .iii there exists g x g L V , g x G 0 such that

< <f x , h , j F g x j .Ž . Ž .1

Our aim is to prove the following
1, pŽ . Ž .THEOREM 3.1. If u g W V is a minimizer of functional 3.1 and f

Ž . Ž . Ž . n rŽ py1., 1rŽ py1.Ž .satisfies i ] iii , with g x g L V , then u is continuous.

In order to achieve the proof of this theorem we need to recall some
well known results concerning Q-minima.

Ž . 1Ž . Ž .DEFINITION. Let h x g L V , h x G 0, and Q G 1. We say that
1, pŽ .u g W V , p G 1, is a Q-minimizer of the functional

< < p < < p
GG ¨ s GG ¨ , V s D¨ q ¨ q h x dx 3.2Ž . Ž . Ž . Ž .Ž .H

V

1, pŽ .if for any test function f g W V0

GG ¨ , supp f F QGG ¨ q f , supp fŽ . Ž .
where, as usual, supp f denotes the support of f.

w xThe following result is contained in GG, Theorem 3.1 .
1, pŽ . Ž .THEOREM 3.2. If u g W V is a Q-minimizer of functional 3.2 , with

sŽ .p ) 1, and h g L V , s ) 1, then there exists q, with 1 - qrp F s and a
constant c ) 0 such that for any B ; V, R F 1,1 R

1rq 1rp 1rq
q q p p qr p< < < < < < < <Du q u F c Du q u q h .Ž . Ž .e e e1 ž / ž /ž /B B BRr2 R R
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A simple consequence of this theorem is
1, pŽ . Ž .COROLLARY 2.3. If u g W V is a minimizer of functional FF u and f

Ž . Ž . Ž . srŽ py1.Ž .satisfies i ] iii , g x g L V , s ) p, then there exists p - q - s and
a constant c ) 0 such that for any B ; V, R F 1,2 R

1rq
q q< < < <Du q uŽ .ež /BRr2

1rp 1rq
p p qrŽ py1.< < < <F c Du q u q g q 1 .Ž . Ž .e e2 ž / ž /B BR R

Ž .Proof. It is enough to remark that if u is a minimizer of FF u , then u is
Ž . Ž . Ž .a Q-minimizer, with Q ' Q L , of functional 3.2 , where h x s

prŽ py1.Ž .g x q 1.

ŽThe next result is well known as the Caccioppoli inequality see, for
w x.example, G .

1, pŽ . Ž .THEOREM 3.4. If u g W V , is a Q-minimizer of functional GG u ,
1Ž .and h g L V , then for any B ; VR

p< <u y uRp p< < < <Du F c q u q h , 3.3Ž .H H H HpRB B B BRr2 R R R

where c depends only on Q, n, p.

In the following we need a suitable version of a classical result due to
w x Ž w x.De Giorgi DG see also GG, Theorems 4.1 and 4.2 for Q-minimizers of

the functional

< < p < < p pGG ¨ , B x s D¨ q ¨ q k dx , 3.4Ž . Ž . Ž .Ž . HR 0
Ž .B xR 0

where k G 0 is a constant.
First of all we can make the following simple observation.

Ž . Ž .Remark 3.1. If u is a Q-minimizer of functional 3.4 in B x , R F 1,R 0
˜Ž . Ž .the function u y s u x q Ry rkR is a Q-minimizer of the functional˜ 0

< < p < < p¨ ª D¨ q ¨ q 1 dx ,Ž .H
Ž .B 01
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˜where Q depends only on Q, p, n. In fact, by the Q-minimality of u, it
Ž . Ž .follows that for any function w y with compact support on B 0˜ 1

< < p p < < pDu q R u q 1 dxŽ .˜ ˜H
supp w̃

< < p p < < pF Q Du q Dw q R u q w q 1 dx.˜ ˜ ˜ ˜H Ž .
supp w̃

Since, by the Poincare inequality on B ,´ 1

< < p py1 < < p py1 < < pu dx F 2 u q w dx q 2 w dx˜ ˜ ˜ ˜H H H
supp w supp w supp w˜ ˜ ˜

py1 < < pF 2 u q w dx q c n , pŽ .˜ ˜H
supp w̃

= p p< < < <Du q Dw dx q Du dx , 3.5Ž .˜ ˜ ˜H H
supp w supp w˜ ˜

from the above inequality, using the assumption R F 1, we have

1p p< < < <Du q u q 1 dx˜ ˜H ž /2csupp w̃

< < p < < pF Q Du q Dw q u q w q 1 dx˜ ˜ ˜ ˜H Ž .
supp w̃

2 py2 1p p< < < <q u q w dx q Du q Dw dx˜ ˜ ˜ ˜H Hc 2supp w supp w˜ ˜

1 p< <q Du dx.˜H2 supp w̃

It follows that

1 1p p< < < <Du q u q 1 dx˜ ˜H ž /2 2csupp w̃

2 py2 1 p p< < < <F Q q q Du q Dw q u q w q 1 dx ,˜ ˜ ˜ ˜H Ž .ž /c 2 supp w̃

which proves the assertion.
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1, pŽ Ž ..THEOREM 3.5. If u g W B x , R F 1, p ) 1, is a Q-minimizer ofR 0
Ž .the functional 3.4 , then there exists a ) 0, c ) 0 depending only on p, n, Q3

such that if 0 - r - R

nypqparp p p p p< < < < < < < <Du q u F c Du q u q k .Ž . Ž .H H3 ž /RŽ . Ž .B x B xr 0 R 0

3.6Ž .

Ž . Ž .Proof. If u is a Q-minimizer of 3.4 in B x , thenR 0

p p p p< < < <sup u F c u q k R . 3.7Ž .ež /BB RRr2

˜ p pŽ . Ž < < < <In fact, if u is a Q-minimizer in B 0 of the functional H D¨ q u q˜ 1 B1
. Ž w1 , it is well known that u is locally bounded. Moreover see GE, Theorem˜

x w x.7.4 or LU, Theorem 5.3, Chap. 2

p p< < < <sup u F c u q 1 .˜ ˜ež /BB 11r2

Ž .The estimate 3.7 then follows using Remark 3.1 and rescaling.
1, p ˜Ž Ž .. Ž .On the other hand, if u g W B 0 is a Q-minimizer in B 0 of the˜ 1 1

Ž < < p < < p . < <functional H D¨ q ¨ q 1 and sup u F 1, then u is locally˜ ˜B B1 1r2
ŽHolder-continuous in B for some exponent a ) 0. More precisely see¨ 1r2

w x w x.GE, Theorem 7.7 or LU, Theorem 6.1, Chap. 2 for every 0 - r - 1r2

p pnypqpa< < < <Du F cr Du q 1 . 3.8Ž .˜ ˜H H
B Br 1r2

˜< <If sup u s M ) 1 the function urM is obviously a Q-minimizer of the˜ ˜B1r2 p p p ˜Ž < < < < . Ž .functional H D¨ q ¨ q 1rM and a fortiori a Q q 1 -minimizer ofB1
Ž < < p < < p . < < Ž .the functional H D¨ q ¨ q 1 . Since sup urM s 1, from 3.8 we˜B B1 1r2

get that for any 0 - r - 1r2

p p pnypqpa< < < < < <Du F cr Du q sup u .˜ ˜ ˜H H
B B Br 1r2 1r2

Ž .Hence, from estimate 3.7 we obtain

p pnypqpa< < < < < <Du F cr Du q u q 1 ,Ž .˜ ˜ ˜H H
B Br 1

for any 0 - r - 1r2.
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Ž .If u is a Q-minimizer on B x of the functional GG, using again theR 0
˜Ž . Ž . Ž .fact that the function u y s u x q Ry rkR is a Q-minimizer on B 0 of˜ 0 1

Ž < < p < < p .the functional H D¨ q ¨ q 1 , from the estimate above we get, afterB1

rescaling,

pnypqpa < <r up p p< < < <Du F c Du q q k ,H H pž /R RB Br R

for any 0 - r - Rr2. Since u y u is a Q9-minimizer of functionalR
Ž < < p < < p < < p p. Ž .H D¨ q ¨ q u q k , for some Q9 s c p Q, applying the esti-B RR

mate above to u y u and the Poincare inequality, we have´R

pnypqpa < <r u y uRp p p p< < < < < <Du F c Du q q u q kH H Rpž /R RB Br R

nypqpar p p p< < < <w xF c Du q u q k ,Hž /R BR

for any 0 - r - Rr2.
Ž .Finally, by 3.7 , if 0 - r - Rr2, and since R F 1,

p p pn n p p< < < < < <u F r sup u F cr u q k RH e
B BBr RR r2

nr p p n< <F c u q k R ,Hž /R BR

which implies

nypqparp p p p p< < < < < < < <w xDu q u F c Du q u q k .Ž .H Hž /RB Br R

1, pŽ . Ž .PROPOSITION 3.6. If u g W V is a minimizer of functional 3.1 and
Ž . Ž . Ž . n rŽ py1.Ž .f satisfies i ] iii , with g x g L V , for any « ) 0 and B ; B ; V,r R

R F 1, the following estimate holds:

nypqpsrp p p pp< < < < < < < <Du q u F c q « q R Du q uŽ . Ž .H H4 ž /ž /RB Br R

prq
nŽ1ypr q. qrŽ py1.q c R g q 1 , 3.9Ž .Ž .H« ž /BR
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Ž .for some c ) 0, s ) 0, p - q - n depending only on n, L, p and c4 «

Ž .depending only on n, L, p, « .

Proof. Let us fix B ; V, R F 1, and consider the functionalR

FF w , B s f x , w x , Dw x dx ,Ž . Ž . Ž .Ž .H0 R 0
BR

1, 1Ž .with w g V, where V s u q W B . As it will be clear in the rest of the0 R
1, pŽ .proof, the use of V, instead of the ‘‘natural’’ space u q W B , is0 R

needed in order to apply Ekeland’s lemma.
Let us fix 1 ) d ) 0 and chose u g V such thatd

FF u , B F inf FF w , B q dRn .Ž . Ž .0 d R 0 R
wgV

Ž .By assumption ii on f we have

< < p < < p < < pDu F 2 L 1 q u q Du . 3.10Ž . Ž .H Hd
B BR R

By the minimality of u we have also

FF u , B s FF u , B y f x , u , DuŽ . Ž . Ž .H0 R R 1
BR

F FF u , B q f x , u , Du y f x , u , DuŽ . Ž . Ž .Ž .H0 d R 1 d d 1
BR

F inf FF w , B q H R q dRn ,Ž . Ž .0 R
wgV

Ž . Ž .where, by iii and 3.10 ,

< < p < < p prŽ py1.H R s m Du q u q c g q 1 , 3.11Ž . Ž . Ž .Ž .H Hm
B BR R

with 1 ) m ) 0 to be chosen later. Letting d go to zero, we have

FF u , B F inf FF w , B q H R .Ž . Ž . Ž .0 R 0 R
wgV

Ž .The functional FF w, B is lower semicontinuous with respect to the0 R
topology induced on V by the distance

y1rp ynŽ1y1r p. < <d u , u s H R R Du y Du .Ž . Ž .Ž . H1 2 1 2
BR
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Therefore, Theorem 2.3 implies that a function ¨ g V exists such that

¡ 1rp nŽ1y1r p.< <Du y D¨ F H R RŽ .Ž .H
BR

FF ¨ , B F FF u , B~ Ž . Ž .0 R 0 R

Ž .py1 rpH RŽ .
< <¨ minimizes the functional: FF w , B q Dw y D¨ .Ž . H0 R n¢ ž /R BR

3.12Ž .
1, pŽ . ŽActually ¨ g u q W B and it is a Q-minimizer with Q depending0 R

.only on L of the functional

H RŽ .p p< < < <w ª Dw q w q q 1 .H nž /RBR

1, pŽ .In fact, if w g W B , by the minimality of ¨ , we have0 R

1y1rpH RŽ .
< <FF ¨ , supp w F FF ¨ q w , supp w q DwŽ . Ž . H0 0 nž /R supp w

1 H RŽ .p< < < <F FF ¨ q w , supp w q Dw q c supp wŽ . H0 p n2 Rsupp w

1 1p p< < < <F FF ¨ qw , supp w q D¨ q D¨ qDwŽ . H H0 2 2supp w supp w

H RŽ .
< <q c supp w ,nR

Ž .hence, by ii ,

< < p < < p < < pD¨ F 2 L q 1 1 q ¨ q w q D¨ q DwŽ . Ž .H H
supp w supp w

H RŽ .
< <q c supp w . 3.13Ž .nR

Ž .Arguing as in the proof of 3.5 and using the assumption R F 1, we have

< < p py1 < < p¨ F 2 ¨ q w q c n , pŽ .H H
supp w supp w

= p p< < < <D¨ q Dw q D¨ .H H
supp w supp w

Ž .From this estimate and 3.13 one proves easily the Q-minimality of ¨ .
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Using Theorem 3.2 we get for some p - q - n,

1rp1rq 1rp H RŽ .q p p< < < < < <D¨ F c D¨ q ¨ q 1 q ,Ž .e e1 nž /ž /ž / RB BRr2 R

3.14Ž .

where q can be taken equal to the one appearing in Corollary 3.3.
Now Theorem 3.5 gives that for any 0 - r - R,

nypqparp p p p n< < < < < < < <D¨ q ¨ F c D¨ q ¨ q H R q R .Ž . Ž . Ž .H Hž /RB Br R

3.15Ž .

On the other hand

1rp qrq 1yq

p q< < < < < <Du y D¨ F Du y D¨ Du y D¨ .e e ež / ž / ž /B B BRr2 R r2 R r2

where 0 - q - 1 is such that qrq q 1 y q s 1rp.
Ž . Ž .From the first inequality in 3.12 , 3.14 , and Corollary 3.3 we have, for

some 0 - « - 1,

1rp
p< <Du y D¨ež /BRr2

1rq 1rq
q q< < < <F « Du q D¨e ež / ž /B BRr2 R r2

< <q c Du y D¨e«
BRr2

1rp 1rq
p p qrŽ py1.< < < <F « c Du q u q g q 1Ž . Ž .e ež / ž /B BR R

1rp1rp H RŽ .p p< < < <q D¨ q ¨ q 1 qŽ .e nž /ž / RBR

1rpH RŽ .
q c .« nž /R
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Using the Poincare inequality in B , the assumption R F 1, and the´ R
Ž .second inequality in 3.12 , the above inequality gives

1rp
p< <Du y D¨ež /BRr2

1rp 1rq
p p qrŽ py1.< < < <F « c Du q u q g q 1Ž . Ž .e ež / ž /B BR R

1rp 1rpH R H RŽ . Ž .
q q c .«n nž / ž /R R

Hence, raising to the power p both sides of the previous inequality and
getting rid of the averages, we get

p p pp< < < < < <Du y D¨ F c« Du q uŽ .H H
B BRr2 R

prq
nŽ1ypr q. qrŽ py1.qR g q 1 q c H R .Ž .Ž .H «ž /BR

Ž . Ž .If 0 - r - Rr2, from this inequality and 3.15 we get, recalling 3.11 and
Ž .3.12 again,

< < p < < pDu q uŽ .H
Br

py1 < < p < < p py1 < < pF 2 D¨ q ¨ q 2 Du y D¨Ž .H H
B Br R r2

py1 < < pq 2 u y ¨H
BRr2

nypqpar p p ppy1< < < < < <F c D¨ q ¨ q 2 Du y D¨Ž .H Hž /R B BR Rr2

py1 < < p nq 2 u y ¨ q c R q H RŽ .Ž .H
BR

nypqpar p p ppy1< < < < < <F c Du q u q 2 Du y D¨Ž .H Hž /R B BR Rr2

< < p nq c u y ¨ q c R q H RŽ .Ž .H
BR
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nypqpar p p ppy1< < < < < <F c Du q u q 2 Du y D¨Ž .H Hž /R B BR Rr2

p < < p < < p nq cR Du q D¨ q c R q H RŽ . Ž .Ž .H
BR

nypqpar p pp p < < < <F c q « q R Du q uŽ .Hž /ž /R BR

prq
nŽ1ypr q. qrŽ py1.q c R g q 1 ,Ž .H« ž /BR

Ž .choosing m ' m « small enough.

Using a standard iteration argument, very similar to the one given in the
w xproof of Lemma 2.1, Chap. 3 of G , we obtain:

PROPOSITION 3.7. Under the assumptions of Proposition 3.6 there exists
R ) 0 such that for any B ; V, 0 - r - R F R ,0 R 0

nypqps 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H H5 ž /RB Br R

prq
nŽ1ypr q. qrŽ py1.qr g q 1 , 3.16Ž .Ž .Hž /BR

where 1 ) s 9 ) 0 and c ) 0 are constants independent of R.5

Ž .Proof. Let us put a s n y p q s p, b s n 1 y prq , t s rrR, and

< < p < < pw r s Du q u .Ž . Ž .H
Br

Ž .Then 3.9 can be written as

w t R F c t a q « q R p w R q c R bF R ,Ž . Ž . Ž . Ž .4 «

where
prq

qrŽ py1.F R s g q 1 .Ž . Ž .Hž /BR

Choose g such that
n y p - g - a ,

and 0 - t - 1 such that 2c t a - t g.4
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If « ) 0, R are chosen such that « q R p - t a, we have0 0

w t R F t gw R q c t R bF R ,Ž . Ž . Ž . Ž .

for 0 - R F R . Iterating, we get0

k
kq1 g Žkq1. k b b jŽgyb . kyjw t R F t w R q ct R t F t RŽ . Ž . Ž .Ý

js0

t k bR b

g Žkq1.F t f R q c F R .Ž . Ž .Žgyb .1 y t

Since for any 0 - r - R, there exists k G 1 such that

t kR F r - t ky1R ,

from the above inequality the assertion follows immediately.

As in Proposition 3.7, it is possible to prove the following:

PROPOSITION 3.8. Under the assumptions of Proposition 3.6 there exists
R ) 0 such that for any B ; V, 0 - r - R F R .0 R 0

nypqps 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H H6 ž /RB Br R

prn
nŽ1ypr n. n rŽ py1.qr g q 1 , 3.17Ž .Ž .Hž /BR

where 1 ) s 9 ) 0 and c ) 0 are constants independent of R.6

Ž .Remark 3.2. If ii is replaced by the growth condition

< < p < < pj F f x , h , j F L 1 q j , p ) 1,Ž . Ž .0

Ž . Ž .it is easy to check that in both sides of 3.16 and 3.17 the terms involving
< < pu can be dropped.

Before proving Theorem 3.1 we want to stress that, under the hypothe-
Ž .ses of Proposition 3.8, estimate 3.17 already contains interesting informa-

tion on the regularity of u. In fact we have:
1, pŽ . Ž .THEOREM 3.9. If u g W V is a minimizer of function 3.1 and f

Ž . Ž . Ž . n rŽ py1.Ž .satisfies i ] iii , with g x g L V , then u is locally VMO in V.

Ž .Proof. We remark that if u minimizes the functional in 3.1 , then u is
Ž . Ž . prŽ py1.Ž .a Q-minimizer of the functional in 3.2 , with h x s g x q 1.
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Ž .Then, using Proposition 3.8, the Poincare inequality, and 3.3 , for any´
0 - r - R F R and B ; V, we have0 2 R

p pnypqps 9< < < <u y u r u y ur 2 R p< <F c q uH H Hp pž /r R RB B Br 2 R 2 R

nypqps 9r
prŽ py1.q c g q 1Ž .Hž /R B2 R

prn
nŽ1ypr n. n rŽ py1.q cr g q 1Ž .Hž /B2 R

pnypqps 9 < <r u y u2 R p< <F c q uH H7 pž /R RB B2 R 2 R

prn
nŽ1ypr n. n rŽ py1.q cr g q 1 .Ž .Hž /B2 R

From this inequality it follows that, if 0 - r - R F R ,0

ps 9r 1p p p< < < < < <u y u F c u y u q ue e Hr R nypž /R RB B Br R R

prn
n rŽ py1.q c g q 1 . 3.18Ž .Ž .Hž /BR

It follows that for any x

prn
p n rŽ py1.< <lim sup u y u F c g q 1 .Ž .e Hx , r ž /Ž . Ž .B x B xrª0 r R

Clearly this inequality holds uniformly in compact subsets of V. The result
follows letting R go to zero.

Ž . Ž .Remark 3.3. Notice that, if f satisfies i ] iii with p s n, g g
n rŽny1.Ž .L V , we can still conclude as in Theorem 3.9 that u is locally VMO

Ž .in V and 3.18 holds. In fact, Theorem 3.5 and Propositions 3.6, 3.7, 3.8,
hold true with the same proof also in this case.

Now we are in position to prove Theorem 3.1.
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Proof of Theorem 3.1. Using Proposition 3.7 and arguing as in the proof
Ž .of 3.18 , we get, for 0 - r - R F R ,0

ps 9r 1p p p< < < < < <u y u F c u y u q ue e Hr R nypž /R RB B Br R R

prq
pŽ1yn r q. qrŽ py1.q cr g q 1 . 3.19Ž .Ž .Hž /BR

Ž .In view of Theorem 3.9 it is not restrictive to suppose u g BMO V .
Hence we may estimate

1 p g p< <u F c R ,H gnypR BR

for any 0 - g - 1.
Ž .Let us fix g , then if 0 - t - 1r2, R F R , B ; V, estimate 3.19 can0 R

be written in the form

< < p ps 9 < < p g pu y u F c t u y u q cRe et R 7 R
B Bt R R

prq
Ž .p 1ynrq qrŽ py1.q c t R g q 1 . 3.20Ž . Ž .Ž .Hž /BR

Now let us fix t such that c t ps 9 F 1r2 p and let us define0 7 0

1rp
p< <ia s u y u .ei t R0ž /Ž .iB xt R0

From Theorem 3.9, a goes to 0 as i goes to q`, uniformly on compacti
subsets of V.

Ž .Then 3.20 implies

1rq1 1ynrqig g i qrŽ py1.a F a q ct R q c t t R g q 1Ž . Ž .ˆ Ž . Hiq1 i 0 0 0 ž /2 Ž .iB xt R0

1
ig g' a q ct R q c t b .Ž .ˆi 0 0 i2
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From this we have immediately
` ` `

g iga F a q 2cR t q 2c t b .Ž .ˆÝ Ý Ýi k 0 0 i
iskq1 isk isk

Ž .Using Lemma 2.2, with a s 1r p y 1 and b s n, we have that the series
generated by b converges uniformly. Since also a goes to zero uniformly,i k
the series

1rp`
p< <iu y uÝ e t R0ž /Ž .iB xt Ris1 0

converges uniformly on compact subsets of V.
Since

1rp
p< < < < < <iq1 i i iu y u F u y u F c u y u ,e ex , t R x , t R x , t R x , t R0 0 0 0ž /Ž . Ž .iq1 iB x B xt R t R0 0

the sequence

U x s u y dyŽ . Ž .ei
Ž .iB xt R0

Ž .converges uniformly. Being U x continuous and converging almost every-i
Ž . Ž .where to the precise representative of u x , the continuity of u x follows.

4. SOLUTIONS OF NONLINEAR EQUATIONS

Some of the technical tools developed in the previous sections turn out
to be useful also in order to study continuity of solutions of nonlinear
equations. Namely, once one gets in this new framework an estimate like
Ž .3.9 , it is still possible to use Lemma 2.2 and Proposition 3.8 to prove a
result similar to Theorem 3.1. However, in the case of equations, there is

Ž .no counterpart of the Ekeland variational principle. Hence, to get 3.9 , we
need to make a monotonicity assumption that we did not have in the case
of variational minima. Again, as in the previous section, we will refer to a
model case.

1, pŽ .Let us consider a solution u g W V , 1 - p - n, of the nonlinear
equation

div A x , u , Du q H x , u s div f , 4.1Ž . Ž . Ž .Ž .
n rŽ py1., 1rŽ py1.Ž .where f is in the Lorentz space L V , the vector field
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Ž .A x, h, j satisfies the following assumptions:

I A x , h , j : V = R = R n ª R n is Caratheodory andŽ . Ž . ´
py1< <A x , h , j F L 1 q j ;Ž . Ž .

IIŽ .
p< <¡ A x , h , j y A x , h , j , j y j G n j y j if p G 2Ž . Ž .Ž .1 2 1 2 1 2

A x , h , j y A x , h , j , j y j~ Ž . Ž .Ž .1 2 1 2

Ž .py2 r22 2 2¢ < < < < < <G n j y j j q j if 1 - p - 2;Ž .1 2 1 2

Ž .and H x, h satisfies

py1< <III H x , h F L 1 q h .Ž . Ž . Ž .

We are going to prove the following:
1, pŽ . Ž .THEOREM 4.1. Suppose u g W V , 1 - p - n, is a solution of 4.1 ,

Ž . Ž . n rŽ py1., 1rŽ py1.Ž .under the assumptions I ] III , and f is in L V . Then u is
continuous.

ŽProof. Using standard existence results for monotone operators see,
w x.e.g., Theorem 2.8 of Chap. 2 in L , one can easily check that under the

Ž . Ž .assumptions on A x, h, j and H x, h , there exists 1 ) R ) 0, depend-0
ing only on L, n , p, n, such that, if R - R , the problem0

div A x , u , D¨ q H x , ¨ s 0 in BŽ . Ž .Ž . R 4.2Ž .½ ¨ s u on  B ,R

1, pŽ . Ž w x.admits a solution ¨ g W B . Furthermore see Theorem 2.1 in GGR
¨ is a Q-minimizer in B , with Q depending only on L, n , p, n, of theR
functional

< < p < < pw ª Dw q w q 1 .Ž .H
BR

Then ¨ is Holder-continuous and, see Theorem 3.5,¨

nypqparp p p p< < < < < < < <D¨ q ¨ F c D¨ q ¨ q 1 , 4.3Ž . Ž . Ž .H Hž /RB Br R
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Ž . Ž .for any 0 - r - R. Moreover from Eqs. 4.1 and 4.2 it follows that

A x , u , Du y A x , u , D¨ , Du y D¨Ž . Ž .Ž .H
BR

s H x , u y H x , ¨ u y ¨ q f , Du y D¨ .Ž . Ž . Ž . Ž .Ž .H H
B BR R

Ž . Ž .If p G 2, from II and III we get, for any « ) 0,

< < p < < p < < p < < p < < prŽ py1.Du y D¨ F c u y ¨ q « u q ¨ q 1 q c fŽ .H H H H«
B B B BR R R R

p < < p < < p < < prŽ py1.F c R Du y D¨ q c« u q c f q 1 .Ž .H H H«
B B BR R R

Ž .Hence there exists R F R R depends also on « such that, if R F R ,1 0 1 1

< < p < < p < < prŽ py1.Du y D¨ F c« u q c f q 1 .Ž .H H H
B B BR R R

Ž .Combining the above inequality and 4.3 we have, for any 0 - r - R F R ,1

< < p < < pDu q uŽ .H
Br

nypqpar p p prŽ py1.< < < < < <F c q « Du q u q c f q 1 .Ž . Ž .H Hž /R B BR R

4.4Ž .

A similar estimate can be obtained also in 1 - p - 2. In fact, subtracting
Ž . Ž .Eq. 4.2 from 4.1 , we have

Ž .py2 r22 2 2< < < < < <Du y D¨ Du q D¨Ž .H
BR

< < p < < p < < pF c u y ¨ q « u q ¨ q 1Ž .H H«
B BR R

< < p < < p < < prŽ py1.q « Du q D¨ q c fŽ .H H«
B BR R

p < < p < < p < < p < < prŽ py1.F c R Du y D¨ q c« Du q u q 1 q c f .Ž .H H H« «
B B BR R R
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Taking into account the fact that, if 1 - p - 2, the following inequality
Ž w x.holds see AF, Lemma 2.2 ,

Ž .py2 r2p p 2 2 2< < < < < < < < < <j F c p , n j q j y j j q j ,Ž . Ž .1 2 1 2 1 2

;j , j g Rn ,1 2

Ž .we obtain again 4.4 , for 0 - r - R F R , with R depending on « .1 1
Ž . Ž . Ž .Inequality 4.4 is analogous to 3.9 with q s p actually it is simpler .

Then the same argument used to prove Propositions 3.7 and 3.8 shows that
Ž .there exists 0 - R F R , R s R L, n , p, n , such that, for any 0 - r -2 1 2 2

R F R ,2

nypqpa 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H Hž /RB Br R

< < prŽ py1.q c f q 1 , 4.5Ž .Ž .H
BR

and
nypqpa 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H Hž /RB Br R

prn
n rŽ py1.nyp < <q cr f q 1 , 4.6Ž .Ž .Hž /BR

for some 0 - a 9 - a . The conclusion then follows as in the proof of
Theorem 3.1.

Ž . 1, pŽ .If instead of a solution of 4.1 we consider a solution u g W V of
the equation

div A x , u , Du q H x , u s g q div f , 4.7Ž . Ž . Ž .Ž .
n rŽ py1., 1rŽ py1. . n r p, 1rŽ py1.Ž .with f g L V , g g L V , an argument similar to

Ž .the one used to prove 4.5 gives

nypqpa 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H Hž /RB Br R

< < prŽ py1.q c f q 1Ž .H
BR

ŽŽ . .Ž Ž ..p*y1 rp* pr py1
p*rŽ p*y1.< <q c g ,Hž /BR
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where, as usual, p* denotes the Sobolev exponent of p. Similarly one gets,
Ž .instead of 4.6 ,

nypqpa 9rp p p p< < < < < < < <Du q u F c Du q uŽ . Ž .H Hž /RB Br R

prn
n rŽ py1.nyp < <q cr f q 1Ž .Hž /BR

2 Ž .p rn py1
n r pnyp < <q cr g . 4.8Ž .Hž /BR

Ž . Ž .Hence, using Lemma 2.2 with a s 1r p y 1 , b s n p y 1 rp, and q s
Ž . Ž .p* p y 1 r p* y 1 , it is possible to obtain the following:

1, pŽ . Ž .THEOREM 4.2. Suppose u g W V , 1 - p - n, is a solution of 4.7 ,
Ž . Ž . n rŽ py1., 1rŽ py1.Ž .under the assumptions I ] III , and f g L V , g g

n r p, 1rŽ py1.Ž .L V . Then u is continuous.

Ž .Finally, we remark that, in order to obtain 4.8 , it is enough to assume
n rŽ py1.Ž . n r pŽ .f g L V and g g L V . Hence, as in Theorem 3.9, we have:

1, pŽ . Ž .THEOREM 4.3. Suppose u g W V , 1 - p - n, is a solution of 4.7 ,
Ž . Ž . n rŽ py1.Ž . n r pŽ .under the assumptions I ] III , and f g L V , g g L V . Then u

is locally VMO in V.
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