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1 Introduction

In this paper we are interested in the study of the following elliptic problem:




−div(a(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,

(1.1)

Here Ω is a bounded, open subset of RN , with N > 2, and a(x, s) : Ω×R → R
is a Carathéodory function (that is, measurable with respect to x for every
s ∈ R, and continuous with respect to s for almost every x ∈ Ω) satisfying
the following conditions:

α

(1 + |s|)θ
≤ a(x, s) ≤ β , (1.2)

for some real number θ such that

0 ≤ θ < 1 , (1.3)
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for almost every x ∈ Ω, for every s ∈ R, where α and β are positive constants.
As far as the datum f is concerned, we will assume that it belongs to the

Lebesgue space Lm(Ω), for some m ≥ 1.
The main problem in dealing with problem (1.1) is the fact that, due to

hypothesis (1.2), the differential operator A(u) = −div(a(x, u)∇u), though
well defined between H1

0 (Ω) and its dual H−1(Ω), is not coercive on H1
0 (Ω)

when u is large (see [10] for an explicit proof of this fact). This implies that
the classical methods used in order to prove the existence of a solution for
problem (1.1) cannot be applied even if the datum f is very regular.

We will prove here the existence of solutions for problem (1.1), under
various hypotheses on the datum f . To do this, we will approximate problem
(1.1) with some nondegenerate problems (which thus have solution), and we
will prove some a priori estimates on the solutions of these problems. Once
this has been accomplished, the linearity of the operator with respect to the
gradient, as well as the boundedness and the continuity of a, will allow to
pass to the limit, thus finding a solution.

The first result considers the case where f has a high summability.

Theorem 1.1 Let f be a function in Lm(Ω), with m > N
2
. Then there exists

a function u in H1
0 (Ω) ∩ L∞(Ω) which is weak solution of (1.1) in the sense

that ∫
Ω
a(x, u)∇u · ∇v dx =

∫
Ω
f v dx , ∀v ∈ H1

0 (Ω) . (1.4)

Remark 1.2 The previous theorem is somewhat surprising, since the result
does not depend on θ, and coincides with the classical boundedness results
for uniformly elliptic operators (see [11]). The main tool of the proof will
be an L∞(Ω) a priori estimate, which then implies the H1

0 (Ω) estimate: it is
clear indeed that if u is bounded the operator A is uniformly elliptic.

The next result deals with data f which give unbounded solutions in
H1

0 (Ω).

Theorem 1.3 Let f be a function in Lm(Ω), with m such that

2N

N + 2 − θ(N − 2)
≤ m <

N

2
. (1.5)
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Then there exists a function u in H1
0 (Ω) ∩ Lr(Ω), with

r =
Nm(1 − θ)

N − 2m
, (1.6)

which is weak solution of (1.1) in the sense of (1.4).

Remark 1.4 The main part of the previous result is the fact that the solu-
tion u belongs to H1

0 (Ω), which cannot be directly derived from the equation
since u may be unbounded. Again, the proof will be achieved proving a priori
estimates in Lr(Ω), which will then be used, as well as the hypotheses on f ,
in order to prove that |∇u| belongs to L2(Ω). Moreover, we observe that both
terms of the weak formulation (1.4) are well defined in this case, the first for
the boundedness of a, and the second because the hypotheses on m imply
that f belongs to L

2N
N+2 (Ω), which is the dual of L2∗(Ω), where 2∗ = 2N

N−2
is

the Sobolev embedding exponent for H1
0 (Ω). As a further remark, we note

that r ≥ 2∗ for every possible value of θ and m satisfying (1.3) and (1.5).

Example 1.5 Let us consider the following function:

u(ρ) =
c

ρ
N
2
−1 (− ln ρ)β

− 1 ,

in the ball Ω = B1/2(0) = {x ∈ RN : |x| < 1/2}, where

ρ = |x| , c = 2−
N−2

2 (ln 2)β , β >
N + 2 − θ(N − 2)

2N(1 − θ)
.

It is easy to see that u belongs to H1
0 (Ω) but it does not belong to W 1,p

0 (Ω)
for any p > 2. Moreover, we have

−div

(
∇u(ρ)

(1 + |u(ρ)|)θ

)
= f(ρ) ,

where
f(ρ) =

c1

ρ
N
2

(1−θ)+1+θ (− ln ρ)β(1−θ)
+ lower order terms.

Such a function f belongs to Lm(Ω), with m = 2N
N+2−θ(N−2)

, but not to Ls(Ω),
with s > m. In this sense, the result of Theorem 1.3 is sharp.
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Remark 1.6 If θ = 0, the result of the preceding theorems coincide with
the classical regularity results for uniformly elliptic equations (see [11] and
[4]).

Remark 1.7 Even in the “classical” case θ = 0, if f belongs to L
N
2 (Ω), the

solution belongs to a suitable (exponential) Orlicz space (and in particular
it is not bounded). We will not deal with this limit case.

If we decrease the summability of f , we find solutions which do not in
general belong any more to H1

0 (Ω).

Theorem 1.8 Let f be a function in Lm(Ω), with m > 1 such that

N

N + 1 − θ(N − 1)
< m <

2N

N + 2 − θ(N − 2)
. (1.7)

Then there exists a function u in W 1,q
0 (Ω), with

q =
Nm(1 − θ)

N −m(1 + θ)
< 2 , (1.8)

which solves (1.1) in the sense of distributions, that is,

∫
Ω
a(x, u)∇u · ∇ϕdx =

∫
Ω
f ϕ dx , ∀ϕ ∈ C∞

0 (Ω) . (1.9)

Moreover, Tk(u) belongs to H1
0 (Ω) for every k > 0.

Remark 1.9 By Sobolev’s embedding, we still obtain that the solution u
given by the previous theorem belongs to Lr(Ω) with r as in (1.6): indeed,
q∗ = r, as can be easily calculated. The lower bound for m in (1.7) is due to
the fact that q must not be smaller than 1. If m = 1, the previous result is
not true in general. Indeed, if θ = 0, the value q given by (1.8) is N

N−1
, and

the solutions of problem (1.1) with θ = 0 and f in L1(Ω) do not belong to

W
1, N

N−1

0 (Ω), but to every W 1,s
0 (Ω), for every s < N

N−1
(see [3] and [9]). See

Theorem 1.17 for the precise result if m = 1.
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Remark 1.10 One can wonder when it is possible to choose u as test func-
tion in (1.1). If f satisfies the hypotheses of Theorem 1.1 or Theorem 1.3,
then u belongs to H1

0 (Ω) and so is an admissible test function. If f is less
summable, it is not clear whether u can be chosen as test function: for ex-
ample, the product f u has to belong to L1(Ω). In view of Theorem 1.8, this
is true if and only if

m ≥ N(2 − θ)

N + 2 −N θ
. (1.10)

We will prove in Proposition 2.7 that under hypothesis (1.10) one can take
ϕ = u in (1.9). The same condition on m is used in [10] to obtain a uniqueness
result for (1.1).

Remark 1.11 As a consequence of the previous theorems, we also have an
existence result for the problem

−div

(
∇u

ln(e + |u|)

)
= f ,

with zero boundary conditions and f in Lm(Ω). Since the function 1
ln(e+|s|)

satisfies hypothesis (1.2) for every θ > 0, we have the following:

1) if m > N
2

there exists a solution u in H1
0 (Ω) ∩ L∞(Ω);

2) if 2N
N+2

< m < N
2

there exists a solution u in H1
0 (Ω) ∩ Lr(Ω) for every

r < Nm
N−2m

;

3) if 1 < m ≤ 2N
N+2

there exists a solution u in W 1,q
0 (Ω), for every q < Nm

N−m
.

Up to now, we have obtained solutions belonging to some Sobolev space.
If we weaken the summability hypotheses on f , then the gradient of u (and
even u itself) may no longer be in L1(Ω). However, it is possible to give a
meaning to solution for problem (1.1), using the concept of entropy solutions
which has been introduced in [2]. In order to give the definition of entropy
solution, we define, for k > 0, the truncation function

Tk(s) = max{−k,min{k, s}} , (1.11)

and we recall the following result (see [2], Lemma 2.1).
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Proposition 1.12 Let u be a measurable function such that Tk(u) belongs
to H1

0 (Ω) for every k > 0. Then there exists a unique measurable function
v : Ω → RN such that

v χ{|u|<k} = ∇Tk(u) , almost everywhere in Ω, ∀k > 0.

If, moreover, u belongs to W 1,1
0 (Ω), then v coincides with the standard dis-

tributional gradient of u.

Definition 1.13 Let u be a measurable function such that Tk(u) belongs to
H1

0 (Ω) for every k > 0. We define ∇u, the weak gradient of u, as the function
v given by Proposition 1.12.

Definition 1.14 Let f be a function in L1(Ω). A measurable function u is
an entropy solution of (1.1) if Tk(u) belongs to H1

0 (Ω) for every k > 0 and if

∫
Ω
a(x, u)∇u · ∇Tk(u− ϕ) dx ≤

∫
Ω
f Tk(u− ϕ) dx , (1.12)

for every k > 0 and for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω).

Remark 1.15 We observe that every term in (1.12) is meaningful. This is
clear for the right hand side, while for the left hand side we have

∫
Ω
a(x, u)∇u · ∇Tk(u− ϕ) dx =

∫
Ω
a(x, u)∇TM(u) · ∇Tk(u− ϕ) dx ,

where M = k + ‖ϕ‖
L∞(Ω)

. The formulation (1.12), though apparently a

very weak one, is actually strong enough to obtain uniqueness results, under
additional hypotheses on the operator, if θ = 0 and f ∈ L1(Ω) (see [2]) or if
θ ∈ (0, 1) and f ∈ Lm(Ω), with m as in (1.10) (see [10]). We will not consider
the problem of uniqueness in the present paper.

Let us recall the definition of Marcinkiewicz spaces, also called weak
Lebesgue spaces.

Definition 1.16 Let p be a positive number. The Marcinkiewicz space
Mp(Ω) is the set of all measurable functions f : Ω → R (where, as usual, we
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identify functions which differ only on a set of zero Lebesgue measure) such
that

|{x ∈ Ω : |f(x)| > k}| ≤ c

kp
, for every k > 0 , (1.13)

for some constant c > 0. The norm of f in Mp(Ω) is defined by

‖f‖p

Mp(Ω)
= inf{c > 0 such that (1.13) holds} .

The alternate name of weak Lp space is due to the fact that, if Ω has
finite measure, then

Lp(Ω) ⊂ Mp(Ω) ⊂ Lp−ε(Ω) (1.14)

for every p ≥ 1, for every 0 < ε < p− 1.
We will prove the following existence result.

Theorem 1.17 Let f be a function in Lm(Ω), with

1 ≤ m ≤ max

{
N

N + 1 − θ(N − 1)
, 1

}
. (1.15)

Then there exists an entropy solution u of (1.1), with

u ∈ M r(Ω) , |∇u| ∈ M q(Ω) , (1.16)

with

r =
Nm(1 − θ)

N − 2m
, q =

Nm(1 − θ)

N −m(1 + θ)
.

Remark 1.18 If 0 ≤ θ < 1
N−1

, then (1.15) becomes m = 1 and q = N(1−θ)
N−1−θ

which is greater than 1. In view of the embeddings between Marcinkiewicz
and Lebesgue spaces, we have the u belongs to W 1,s

0 (Ω), for every s < q. If in
particular θ = 0, this is the same result obtained in [3] for elliptic equations
with L1(Ω) (or measure) data.

If 1
N−1

≤ θ < 1, then the upper bound on m is N
N+1−θ(N−1)

, which is the
lower bound on m given by Theorem 1.8.

The following is a picture which summarizes the different regularity re-
sults obtained in this paper in dependence of θ and m. If (θ,m) lies in region
A, then the solution u belongs to H1

0 (Ω)∩L∞(Ω) (see Theorem 1.1); in region
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B the function u is not bounded, though it still belongs in H1
0 (Ω) (see The-

orem 1.3); in the third region C the solution we find is no longer in H1
0 (Ω),

and belongs to some Sobolev space W 1,q
0 (Ω), with q < 2 (see Theorem 1.8).

Finally, in region D, we prove the existence of an entropy solution, which
does not belong to any Sobolev space (see Theorem 1.17). In the region
above the dashed line it is possible to choose u as test function (see Remark
1.10 and Proposition 2.7).

Figure 1

Remark 1.19 The same results of Theorems 1.1 and 1.3, as far as the part
of a priori estimates is concerned, have been obtained by A. Alvino, V. Ferone
and G. Trombetti by means of symmetrization techniques (see [1]).

Remark 1.20 The previous results can be extended in order to deal more
general, nonlinear equations, such as (for instance)

−div(a(x, u) |∇u|p−2 ∇u) = f ,

with p > 1, and a satisfying hypotheses similar to (1.2). Differently from the
present (linear) case, the a priori estimates are no longer enough in order
to pass to the limit in the approximate equations, since the operator is not
linear with respect to the gradient. In order to achieve the proof, it is thus
necessary a further result of almost everywhere convergence of the gradients
of the approximating solutions, as in [12] or in [3].

The study of the nonlinear equation will be the subject of a forthcoming
paper.
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The plan of this paper is as follows: in the next Section we will give the
a priori estimates and the proof of Theorems 1.1, 1.3 and 1.8. In the third
Section we will prove Theorem 1.17.

2 Solutions in Sobolev spaces

The proof of all the existence results will be obtained by approximation. Let
f be a function in Lm(Ω), with m as in the statements of Theorems 1.1, 1.3
and 1.8. Let {fn} be a sequence of functions such that

fn ∈ L
2N

N+2 (Ω) , fn → f strongly in Lm(Ω), (2.1)

and such that
‖fn‖Lm(Ω)

≤ ‖f‖
Lm(Ω)

, ∀n ∈ N . (2.2)

Let us define the following sequence of problems:




−div(a(x, Tn(un))∇un) = fn in Ω,

un = 0 on ∂Ω.

(2.3)

Since
a(x, Tn(s)) ≥ α

(1 + n)θ
,

for almost every x ∈ Ω and for every s in R, and since fn belongs to H−1(Ω),
by well-known results (see [8]) there exists at least a solution un in H1

0 (Ω) of
problem (2.3) in the sense that

∫
Ω
a(x, Tn(u))∇un · ∇v dx =

∫
Ω
fn v dx , ∀v ∈ H1

0 (Ω) . (2.4)

We remark that, for every n in N, the function a(x, Tn(s)) satisfies con-
dition (1.2).

To prove the L∞(Ω) a priori estimate, we will need the following result,
whose proof will be given in the Appendix.
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Lemma 2.1 Let w be a function in W 1,σ
0 (Ω) such that, for k greater than

some k0, ∫
Ak

|∇w|σ dx ≤ c kθ σ|Ak|
σ

σ∗ +ε , (2.5)

where ε > 0, 0 ≤ θ < 1, σ∗ = N σ
N−σ

and

Ak = {x ∈ Ω : |w(x)| > k} .

Then the norm of w in L∞(Ω) is bounded by a constant which depends on
c, θ, σ, N , ε, k0, and |Ω|.

Lemma 2.2 Assume that m > N
2
, let f in Lm(Ω) and let un be a solution

of (2.3) in the sense of (2.4), with fn = f for every n ∈ N. Then the norms
of un in L∞(Ω) and in H1

0 (Ω) are bounded by a constant which depends on
θ, m, N , α, |Ω| and the norm of f in Lm(Ω).

Proof. Let us start with the estimate in L∞(Ω). Define, for s in R and for
k > 0,

Gk(s) = (|s| − k)+ sgn(s) = s− Tk(s) .

For k > 0, if we take Gk(un) as test function in (2.4), and use hypothesis
(1.2), we obtain

α
∫

Ak

|∇un|2
(1 + |un|)θ

dx ≤
∫

Ak

f Gk(un) dx

≤ ‖f‖
Lm(Ω)

[∫
Ak

|Gk(un)|m′
dx

] 1
m′

≤ c
[∫

Ak

|Gk(un)|m′
dx

] 1
m′

,

where m′ = m/(m− 1) and we have set

Ak = {x ∈ Ω : |un| > k} .

Therefore, if σ < 2, we can write, by the Hölder inequality:

∫
Ak

|∇un|σ dx=
∫

Ak

|∇un|σ

(1 + |un|)
θσ
2

(1 + |un|)
θσ
2 dx

≤
[∫

Ak

|∇un|2
(1 + |un|)θ

dx

]σ
2 [∫

Ak

(1 + |un|)
θσ

2−σ dx
] 2−σ

2

≤ c
[∫

Ak

|Gk(un)|m′
dx

] σ
2m′

[∫
Ak

(1 + |un|)
θσ

2−σ dx
] 2−σ

2

.

(2.6)
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Let us choose σ such that its Sobolev conjugate exponent σ∗ = Nσ/(N − σ)
is equal to m′, that is,

σ =
Nm

Nm + m−N
. (2.7)

It is easy to check that the hypotheses on m imply σ < N
N−1

< 2. From (2.6)
and Sobolev’s embedding theorem we obtain

∫
Ak

|∇un|σ dx ≤ c
[∫

Ak

|∇un|σ dx
] 1

2
[∫

Ak

(1 + |un|)
θσ

2−σ dx
] 2−σ

2

,

and therefore

∫
Ak

|∇un|σ dx ≤ c
[∫

Ak

(1 + |un|)
θσ

2−σ dx
]2−σ

. (2.8)

Since if k ≥ 1, one has on Ak that 1 + |un| ≤ 2(k + |Gk(un)|), we can write

∫
Ak

|∇un|σ dx ≤ c

{
kθσ |Ak|2−σ +

[∫
Ak

|Gk(un)| θσ
2−σ dx

]2−σ
}
.

Since θ < 1 and m > N/2, with our choice of σ one has

θσ

2 − σ
< σ∗ ,

and therefore, using Hölder’s, Sobolev’s and Young’s inequalities, one obtains

∫
Ak

|∇un|σ dx ≤ c

{
kθσ |Ak|2−σ +

[∫
Ak

|Gk(un)|σ∗
dx

] θσ
σ∗

|Ak|2−σ− θσ
σ∗

}

≤ c

{
kθσ |Ak|2−σ +

[∫
Ak

|∇un|σ dx
]θ

|Ak|2−σ− θσ
σ∗

}

≤ c
{
kθσ |Ak|2−σ + δ

∫
Ak

|∇un|σ dx + c(δ) |Ak|
(2−σ)σ∗−θσ

σ∗(1−θ)

}
.

If we choose δ small, we can take the term containing the gradient to the
right hand side, obtaining

∫
Ak

|∇un|σ dx ≤ c
{
kθσ |Ak|2−σ + |Ak|

(2−σ)σ∗−θσ
σ∗(1−θ)

}
.
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Since σ < N
N−1

we have

2 − σ <
(2 − σ)σ∗ − θσ

σ∗(1 − θ)
,

so that, for k ≥ 1, we can write, observing that |Ak| ≤ |Ω|,
∫

Ak

|∇un|σ dx ≤ c kθσ |Ak|2−σ .

Let now ε be such that 2 − σ = σ
σ∗ + ε; then it is easy to see that ε > 0.

Therefore we can apply Lemma 2.1, with w = un, and obtain a bound for un

in L∞(Ω).
The estimate in H1

0 (Ω) is now very easy. Taking un as test function in
(2.4), using hypothesis (1.2) one obtains, if ‖un‖

L∞(Ω)
≤ c1,

α

(1 + c1)θ

∫
Ω
|∇un|2 dx ≤

∫
Ω
f un dx ,

and the right hand side is trivially bounded since f belongs to L1(Ω).

The next result will be used in the proof of Theorem 1.3.

Lemma 2.3 Assume that m satisfies (1.5), let f belong to Lm(Ω), and let un

be a solution of (2.3) in the sense of (2.4), with fn = f for every n ∈ N. Let
r be as in (1.6). Then the norms of un in Lr(Ω) and in H1

0 (Ω) are bounded
by a constant which depends on θ, m, N , α, |Ω| and the norm of f in Lm(Ω).

Proof. Let us define, for k ∈ N, the function ϕk(s) = T1(Gk(s)). If we use
ϕk(un) as test function in (2.4), we obtain the inequality

α
∫

Bk

|∇un|2 dx ≤ (2 + k)θ
∫

Ak

|f | dx , (2.9)

where we have set

Ak = {x ∈ Ω : |un| ≥ k} , Bk = {x ∈ Ω : k ≤ |un| < k + 1} . (2.10)

In the following, we will use the same technique of [5].
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If γ ≥ 1, then, using the Sobolev inequality and (2.9), we obtain

[∫
Ω
|un|2

∗γ dx
] 2

2∗ ≤ c
∫
Ω
|∇(|un|γ)|2 dx = c

∫
Ω
|un|2(γ−1) |∇un|2 dx

= c
+∞∑
k=0

∫
Bk

|un|2(γ−1) |∇un|2 dx ≤ c
+∞∑
k=0

(1 + k)2(γ−1)
∫

Bk

|∇un|2 dx

≤ c
+∞∑
k=0

(1 + k)2(γ−1)(2 + k)θ
∫

Ak

|f | dx

≤ c
+∞∑
k=0

(2 + k)2γ−2+θ
+∞∑
h=k

∫
Bh

|f | dx .

Therefore, changing the order of summation, and recalling that

h∑
k=0

kρ ≤ c (h + 1)ρ+1 , (2.11)

with c = c(ρ), we have

[∫
Ω
|un|2

∗γ dx
] 2

2∗ ≤ c
+∞∑
h=0

∫
Bh

|f | dx
h∑

k=0

(2 + k)2γ−2+θ

≤ c
+∞∑
h=0

∫
Bh

|f | dx (3 + h)2γ−1+θ

≤ c
∫
Ω
|f | (3 + |u|)2γ−1+θ dx

≤ c ‖f‖
Lm(Ω)

(
1 +

[∫
Ω
|un|m

′(2γ−1+θ) dx
] 1

m′
)
.

(2.12)

We now choose γ such that

m′(2γ − 1 + θ) = 2∗γ ,

which is equivalent to

γ =
(N − 2) (1 − θ)m

2 (N − 2m)
.
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This choice of γ implies 2∗γ = r, with r as in (1.6). Since 2/2∗ > 1/m′ being
m < N/2, from (2.12) we obtain∫

Ω
|un|2

∗γ dx =
∫
Ω
|un|r dx ≤ c .

Moreover, since γ ≥ 1, the previous calculations imply∫
{|un|>1}

|∇un|2 dx ≤
∫
Ω
|un|2(γ−1) |∇un|2 dx ≤ c .

Since (2.9), written for k = 0, implies∫
{|un|≤1}

|∇un|2 dx ≤ c ‖f‖
L1(Ω)

≤ c ,

the last two inequalities yield∫
Ω
|∇un|2 dx ≤ c .

To end the proof we only have to prove that γ ≥ 1; it is easy to check that
this is equivalent to

m ≥ 2N

N + 2 − θ(N − 2)
.

Under a slightly weaker hypothesis it is possible to obtain a slightly weaker
result, in terms of Marcinkiewicz spaces.

We recall that, if f ∈ Mp(Ω), and E ⊂ Ω, the following Hölder’s type
inequality holds: ∫

E
|f | dx ≤ ‖f‖

Mp(Ω)
|E|1− 1

p . (2.13)

Lemma 2.4 Let m be a real number such that

2N

N + 2 − θ(N − 2)
< m <

N

2
, (2.14)

let f belong to Mm(Ω). Let un be a solution of (2.3) in the sense of (2.4),
with fn = f for every n ∈ N (such a solution exists since f belongs to

L
2N

N+2 (Ω) by the hypotheses on m and by (1.14)). Let r be as in (1.6). Then
the norms of un in M r(Ω) and in H1

0 (Ω) are bounded by a constant which
depends on θ, m, N , α, |Ω| and the norm of f in Mm(Ω)
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Proof. For k ≥ 1, let us define the function ψk(s) = Tk(Gk(s)). Then,
taking ψk(un) as test function in (2.4), one obtains, using (1.2),

α

(1 + 2k)θ

∫
Ω
|∇ψk(un)|2 dx ≤ α

∫
Ω

|∇ψk(un)|2
(1 + |un|)θ

dx ≤
∫

Ak

f ψk(un) dx .

Therefore, using Sobolev’s embedding and (2.13) we obtain

[∫
Ak

|ψk(un)|2∗ dx
] 2

2∗ ≤ c
∫
Ω
|∇ψk(un)|2 dx ≤ c (1 + 2k)θ

∫
Ak

f ψk(un) dx

≤ c (1 + 2k)θ ‖f‖
Mm(Ω)

|Ak|
N+2
2N [1− 2N

m(N+2) ]
[∫

Ak

|ψk(un)|2∗ dx
] 1

2∗

≤ c (1 + 2k)θ |Ak|
Nm+2m−2N

2Nm

[∫
Ak

|ψk(un)|2∗ dx
] 1

2∗
.

Thus, for k ≥ 1, one has

[∫
Ak

|ψk(u)|2∗ dx
] 1

2∗ ≤ c kθ |Ak|
Nm+2m−2N

2Nm . (2.15)

Since

[∫
Ak

|ψk(un)|2∗ dx
] 1

2∗ ≥
[∫

A2k

|ψk(un)|2∗ dx
] 1

2∗
= k |A2k|

1
2∗ ,

from (2.15) one obtains

|A2k| ≤ c
|Ak|

Nm+2m−2N
(N−2)m

k2∗(1−θ)
, for every k ≥ 1 . (2.16)

Let us define ρ(k) = kr |Ak|, where r is as in (1.6). Then (2.16) implies

ρ(2k) ≤ c ρ(k)γ ,

where γ = Nm+2m−2N
(N−2)m

belongs to (0, 1). Thus, by induction,

ρ(2nk) ≤ c
∑n−1

i=0
γi

ρ(k)γn ≤ c ρ(k)γn ≤ c (1 + ρ(k))

for every n ∈ N and for every k ≥ 1. Since ρ(k) is bounded for k ∈ [1, 2),
and since every real number h ≥ 1 can be written in the form h = 2nk, where

15



k ∈ [1, 2) and n ∈ N, we have proved that ρ(h) ≤ c, for every h ≥ 1. This
proves the estimate for ‖un‖

Mr(Ω)
.

In order to prove the bound in H1
0 (Ω), one could use the embeddings

(1.14) and Lemma 2.3. However, once the bound in M r(Ω) has been proved,
an estimate for the gradients follows more naturally from the simple calcu-
lation below. From (2.9) we obtain, for k ≥ 1,∫

Bk

|∇un|2 dx ≤ c (2 + k)θ
∫

Ak

|f | dx

≤ c (2 + k)θ ‖f‖
Mm(Ω)

|Ak|1−
1
m .

Therefore

∫
Ω
|∇un|2 dx =

+∞∑
k=0

∫
Bk

|∇un|2 dx ≤ c

(
1 +

+∞∑
k=1

(2 + k)θ

k
r(m−1)

m

)
.

Under hypothesis (2.14), r(m−1)
m

− θ > 1, so that the series on the right hand
side converges. Hence an estimate for un in H1

0 (Ω) follows.

The next result deals with the case in which the sequence un is not
bounded in H1

0 (Ω).

Lemma 2.5 Assume that m satisfies (1.7), let {fn} be a sequence of func-
tions satisfying (2.1) and (2.2), and let un be a solution of (2.3) in the sense
of (2.4). Let r be as in (1.6) and let q be as in (1.8). Then the norms of un

in Lr(Ω) and in W 1,q
0 (Ω) are bounded by a constant which depends on θ, m,

N , α, |Ω| and the norm of fn in Lm(Ω). Moreover, for every k > 0,∫
Ω
|∇Tk(un)|2 dx ≤ c (1 + k)1+θ , (2.17)

with c depending on α and on the norm of fn in L1(Ω).

Proof. We begin with the proof of (2.17). Taking Tk(un) as test function
in (2.4), and using (1.2), we get

α

(1 + k)θ

∫
Ω
|∇Tk(un)|2 dx ≤

∫
Ω
a(x, Tn(un))∇un · ∇Tk(un) dx

=
∫
Ω
fn Tk(un) dx ≤ k ‖fn‖

L1(Ω)
,

16



which then implies (2.17).
Now we turn to the estimates in W 1,q

0 (Ω). As in the proof of Lemma 2.3,
taking ϕk(un) as test function in (2.3) we obtain inequality (2.9). From this,
if λ is a positive number (to be fixed later), we can write

∫
Ω

|∇un|2
(1 + |un|)λ

dx =
+∞∑
k=0

∫
Bk

|∇un|2
(1 + |un|)λ

dx

≤
+∞∑
k=0

1

(1 + k)λ

∫
Bk

|∇un|2 dx ≤ c
+∞∑
k=0

(2 + k)θ(1 + k)−λ
∫

Ak

|fn| dx

≤ c
+∞∑
k=0

(1 + k)θ−λ
+∞∑
h=k

∫
Bh

|fn| dx ,

where Ak and Bk are the sets defined in (2.10). Changing the order of
summation, and using again (2.11), we obtain

∫
Ω

|∇un|2
(1 + |un|)λ

dx ≤ c
+∞∑
h=0

∫
Bh

|fn| dx
h∑

k=0

(1 + k)θ−λ

≤ c
+∞∑
h=0

(1 + h)1+θ−λ
∫

Bh

|fn| dx ≤ c
+∞∑
h=0

∫
Bh

|fn| (1 + |un|)1+θ−λ dx

= c
∫
Ω
|fn| (1 + |un|)1+θ−λ dx ≤ c‖fn‖Lm(Ω)

[∫
Ω

(1 + |un|)(1+θ−λ)m′
dx

] 1
m′

≤ c

{
1 +

[∫
Ω
|un|(1+θ−λ)m′

dx
] 1

m′
}
.

Let r and q be as in (1.6) and (1.8). Then one can check that q < 2, and
that r = q∗ = Nq/(N − q). Therefore, using the Sobolev inequality, we have

[∫
Ω
|un|r dx

] q
r ≤ c

∫
Ω
|∇un|q dx = c

∫
Ω

|∇un|q

(1 + |un|)
λq
2

(1 + |un|)
λq
2 dx

≤ c

[∫
Ω

|∇un|2
(1 + |un|)λ

dx

] q
2 [∫

Ω
(1 + |un|)

λq
2−q dx

] 2−q
2

(2.18)

≤ c

{
1 +

[∫
Ω
|u|(1+θ−λ)m′

dx
] q

2m′
} {

1 +
[∫

Ω
|un|

λq
2−q dx

] 2−q
2

}
.
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We now choose λ such that λq/(2 − q) = r, that is,

λ =
2N − 2m(1 + θ) −Nm(1 − θ)

N − 2m
.

It is easy to check that this implies

(1 + θ − λ)m′ ≤ r .

Therefore the previous calculations and the Hölder inequality imply

[∫
Ω
|un|r dx

] q
r ≤ c


1 +

[∫
Ω
|un|r dx

] (1+θ)q
2r


 . (2.19)

Since θ < 1, the last exponent in (2.19) is smaller than q/r. Therefore
inequality (2.19) implies an estimate for the norm of un in Lr(Ω). Going
back to (2.18), this in turn implies an estimate for the norm of |∇un| in
Lq(Ω). Lemma 2.5 is therefore completely proved.

We are now in position to prove Theorems 1.1, 1.3 and 1.8.

Proof of Theorems 1.1, 1.3 and 1.8. Let fn be a sequence of functions
satisfying (2.1) and (2.2), with m as in the statements of the theorems; if
the hypotheses of Theorems 1.1 or 1.3hold, take fn = f for every n in N.
Let un be a sequence of solutions of (2.3). Using the results of Lemmas 2.2,
2.3 and 2.5, we obtain that the sequence {un} is bounded in the Sobolev
and Lebesgue spaces as in the statements of the theorems. Thus, up to a
subsequence, it converges weakly to some function u which belongs to the
same spaces. Moreover, un converges to u almost everywhere in Ω as a
consequence of the Rellich theorem.

Let ϕ be a function in C∞
0 (Ω), and take ϕ as test function in (2.4). We

obtain ∫
Ω
a(x, Tn(un))∇un · ∇ϕdx =

∫
Ω
fn ϕdx .

The right hand side passes to the limit as n tends to infinity since fn converges
(at least) in L1(Ω). As for the left hand side, we have

a(x, Tn(un)) → a(x, u) ∗-weakly in L∞(Ω) and almost everywhere in Ω,

∇un → ∇u weakly in L1(Ω;RN),
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so that

lim
n→+∞

∫
Ω
a(x, Tn(un))∇un · ∇ϕdx =

∫
Ω
a(x, u)∇u · ∇ϕdx .

Hence, u is a solution of (1.1) in the sense (1.9). If, moreover, m satisfies the
hypotheses of Theorems 1.1 or 1.3, then u belongs to H1

0 (Ω). Therefore it is
possible, by standard density arguments, to extend (1.9) to include also test
functions in H1

0 (Ω), that is, to obtain (1.4).
The fact that Tk(u) belongs to H1

0 (Ω) if the hypotheses of Theorem 1.8
hold follows easily from (2.17).

Remark 2.6 Observe that under the hypotheses of Theorem 1.1, since the
norms of un in L∞(Ω) are bounded by a constant c, then the function un is
a solution of (1.1) if n > c, since Tn(un) = un. In other words, in this case
there is no need of passing to the limit as n tends to infinity.

We now state and prove the results concerning the possibility of choosing
u as test function.

Proposition 2.7 Assume that m satisfies (1.10), that is

m ≥ N(2 − θ)

N + 2 −N θ
.

Let u be a solution of (1.1) found, as in Theorems 1.1, 1.3 or 1.8, by approx-
imation. Then ∫

Ω
a(x, u)∇u · ∇u dx =

∫
Ω
f u dx .

Before giving the proof, we need the following “weak lower semicontinu-
ity” result.

Lemma 2.8 Let {vn} be a sequence of functions which is weakly conver-
gent to v in H1

0 (Ω), and let un be a sequence of functions which is almost
everywhere convergent to some function u in Ω. Then

∫
Ω
a(x, u) |∇v|2 dx ≤ lim inf

n→+∞

∫
Ω
a(x, Tn(un)) |∇vn|2 dx ≤ c .
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Proof. We start from the inequality

0 ≤
∫
Ω
a(x, Tn(un)) |∇(vn − v)|2 dx ,

which we can rewrite as

2
∫
Ω
a(x, Tn(un))∇vn · ∇v dx−

∫
Ω
a(x, Tn(un)) |∇v|2 dx

≤
∫
Ω
a(x, Tn(un)) |∇vn|2 dx .

Due to the boundedness and the continuity of a(x, s), and on the hypotheses
on vn and un, the left hand side converges to∫

Ω
a(x, u) |∇v|2 dx ,

so that the result is completely proved.

Proof of Proposition 2.7. If we are under the hypotheses of Theorems
1.1 or 1.3, the result is trivial since u belongs to H1

0 (Ω). It remains to deal
with the case of solutions not in H1

0 (Ω). In this case, let {un} be a sequence
of solutions of (2.3) with data fn satisfying (2.1) and (2.2). By Lemma 2.5,
un is bounded in Lr(Ω), with r as in (1.6), and Tk(un) is bounded in H1

0 (Ω).
Moreover, it is easy to see that, under our hypotheses on m, we have r ≥ m′.

Taking Tk(un) as test function in (2.4), we have∫
Ω
a(x, Tn(un)) |∇Tk(un)|2 dx =

∫
Ω
fn Tk(un) dx ≤ c .

Applying Lemma 2.8 with vn = Tk(un), we thus have∫
Ω
a(x, u) |∇Tk(u)|2 dx ≤

∫
Ω
f Tk(u) dx .

Letting k tend to infinity, we obtain∫
Ω
a(x, u) |∇u|2 dx ≤

∫
Ω
f u dx ≤ c . (2.20)

Let {ϕn} be a sequence of functions in C∞
0 (Ω) which converges to Tk(u)

strongly in H1
0 (Ω) and ∗-weakly in L∞(Ω), and choose ϕn as test function in

(1.9). We obtain ∫
Ω
a(x, u)∇u · ∇ϕn dx =

∫
Ω
f ϕn dx .
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The sequence a(x, u)∇u · ∇ϕn converges almost everywhere. Moreover, if E
is a measurable subset in Ω, we have

∫
E
a(x, u)∇u · ∇ϕn dx ≤

(∫
E
a(x, u) |∇u|2 dx

) 1
2

(∫
E
a(x, u) |∇ϕn|2 dx

) 1
2

,

so that it is now easy to prove that the sequence a(x, u)∇u · ∇ϕn is equi-
integrable by the hypotheses on a, on ϕn and by (2.20). Therefore, using
Vitali’s theorem, we can pass to the limit to obtain∫

Ω
a(x, u) |∇Tk(u)|2 dx =

∫
Ω
f Tk(u) dx .

A further limit on k yields the result.

3 Solutions not in Sobolev spaces

In this section we are going to consider data f such that the solution does
not belong to any Sobolev space, proving Theorem 1.17.

We begin with an a priori estimate on functions satisfying a certain in-
equality.

Lemma 3.1 Assume that m satisfies (1.15), and let f in Lm(Ω). Suppose
that u is a measurable function such that Tk(u) belongs to H1

0 (Ω) for every
k > 0, and suppose that u satisfies∫

Ω

|∇Tk(u)|2
(1 + |u|)θ

dx ≤ c
∫
Ω
|f | |Tk(u)| dx , (3.1)

for every k > 0. Then u belongs to M r(Ω), with r as in (1.6), and ∇u, the
weak gradient of u, is such that |∇u| belongs to M q(Ω), with q as in (1.8).

Before the proof, we need a technical lemma.

Lemma 3.2 Let u be a measurable function in M s(Ω) for some s > 0, and
suppose that there exists a positive constant ρ such that∫

Ω
|∇Tk(u)|2 dx ≤ c kρ , ∀k > 0 .

Then ∇u, the weak gradient of u, is such that |∇u| belongs to Mp(Ω), with
p = 2s

ρ+s
.
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Proof. We follow the lines of the proof of [2], Lemma 4.2. Let λ be a fixed
positive real number. We have, for every k > 0,

|{|∇u| > λ}|= |{|∇u| > λ , |u| ≤ k}| + |{|∇u| > λ , |u| > k}|

≤ |{|∇u| > λ , |u| ≤ k}| + |{|u| > k}| .
(3.2)

Moreover,

|{|∇u| > λ , |u| ≤ k}| ≤ 1

λ2

∫
Ω
|∇Tk(u)|2 dx ≤ c

kρ

λ2
.

By the hypothesis on the Marcinkiewicz regularity of u, (3.2) then implies

|{|∇u| > λ}| ≤ c
kρ

λ2
+

c

ks
,

and this latter inequality holds for every k > 0. Minimizing on k, we easily
get

|{|∇u| > λ}| ≤ c

λ
2s

ρ+s

,

which is the desired result.

Proof of Lemma 3.1. Starting from (3.1), and applying Hölder inequality,
we get ∫

Ω

|∇Tk(u)|2
(1 + |u|)θ

dx ≤ c ‖f‖
Lm(Ω)

(∫
Ω
|Tk(u)|m′

dx
) 1

m′
. (3.3)

We distinguish now among three cases: m > 2N
N+2

, 1 < m ≤ 2N
N+2

, and m = 1.

If m > 2N
N+2

, then m′ < 2∗, and this implies that there exists ρ < 2 such
that ρ∗ = m′. We have

∫
Ω
|∇Tk(u)|ρ dx=

∫
Ω

|∇Tk(u)|ρ

(1 + |Tk(u)|) ρθ
2

(1 + |Tk(u)|) ρθ
2 dx

≤
(∫

Ω

|∇Tk(u)|2
(1 + |Tk(u)|)θ

dx

) ρ
2 (∫

Ω
(1 + |Tk(u)|)

ρθ
2−ρ dx

)1− ρ
2

,

and, recalling the choice of ρ and using (3.3), this implies, by Sobolev’s
embedding,

(∫
Ω
|Tk(u)|m′

dx
) 1

m′
≤ c

(∫
Ω
|Tk(u)|m′

dx
) 1

2m′
(∫

Ω
(1 + |Tk(u)|)

ρθ
2−ρ dx

) 2−ρ
2ρ

.
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We suppose now that ρ and m are such that

ρθ

2 − ρ
> m′ , (3.4)

so that, for k ≥ 1,

∫
Ω

(1 + |Tk(u)|)
ρθ

2−ρ dx ≤ c k
ρθ

2−ρ
−m′

∫
Ω

(1 + |Tk(u)|m′
) dx .

We thus have

(∫
Ω
|Tk(u)|m′

dx
) 1

2m′
≤ c k

θ
2
− (2−ρ)m′

2ρ

(
1 +

∫
Ω
|Tk(u)|m′

dx
) 2−ρ

2ρ

.

It is easy to see that this latter inequality implies that there exists a positive
constant c, independent on k, such that for every k ≥ 1 one has

(∫
Ω
|Tk(u)|m′

dx
) 1

2m′
≤ c k

θ
2
− (2−ρ)m′

2ρ

(∫
Ω
|Tk(u)|m′

dx
) 2−ρ

2ρ

.

Thus (∫
Ω
|Tk(u)|m′

dx
) 1

2m′− 2−ρ
2ρ ≤ c k

θ
2
− (2−ρ)m′

2ρ . (3.5)

If Ak = {x ∈ Ω : |u| > k}, and since |Tk(u)| = k on Ak, the latter inequality
yields

k
1
2
− (2−ρ)m′

2ρ |Ak|
1

2m′− 2−ρ
2ρ ≤ c k

θ
2
− (2−ρ)m′

2ρ ,

so that, after some easy calculations,

|Ak| ≤ c k−r ,

where r is as in (1.6). We only need to check that (3.4) holds true. It is easy
to see that it is equivalent to

m <
N(2 − θ)

N + 2 −Nθ
,

which is easily proven to hold if 2N
N+2

< m < N
N+1−θ(N−1)

(see also Figure 1).
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Let us give now the gradient estimate. We start from (3.5), which can be
rewritten, recalling the relations between ρ and m, as

(∫
Ω
|Tk(u)|m′

dx
) 1

m′
≤ c k

θN(m−1)+2N−2m−Nm
N−2m .

From (3.3) we get

∫
Ω
|∇Tk(u)|2 dx ≤ (1 + k)θ

(∫
Ω
|Tk(u)|m′

dx
) 1

m′
,

and so, if k ≥ 1, ∫
Ω
|∇Tk(u)|2 dx ≤ c k

θm(N−2)+2N−2m−Nm
N−2m . (3.6)

Applying Lemma 3.2, one obtains that |∇u| belongs to M q(Ω), with q as in
(1.8).

Now we turn to the case 1 < m ≤ 2N
N+2

. Since m′ ≥ 2∗, we can write

(∫
Ω
|Tk(u)|m′

dx
) 1

m′
=

(∫
Ω
|Tk(u)|2∗ |Tk(u)|m′−2∗ dx

) 1
m′

≤ k1− 2∗
m′

(∫
Ω
|Tk(u)|2∗ dx

) 1
m′

.

(3.7)

Substituting in (3.3), and using Sobolev’s embedding, we have

(∫
Ω
|Tk(u)|2∗ dx

) 2
2∗ ≤ c (1 + k)1+θ− 2∗

m′

(∫
Ω
|Tk(u)|2∗ dx

) 1
m′

,

so that (∫
Ω
|Tk(u)|2∗ dx

) 2
2∗−

1
m′

≤ c (1 + k)1+θ− 2∗
m′ .

Thus, since |Tk(u)| = k on Ak, we have

k2− 2∗
m′ |Ak|

2
2∗−

1
m′ ≤ c (1 + k)1+θ− 2∗

m′ .

Since 2
2∗ − 1

m′ = 1−θ
r

, with r as in (1.6), we then have, for k ≥ 1,

|Ak|
1−θ

r ≤ c kθ−1 ,
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and this implies that u belongs to M r(Ω). Now we consider the estimates
on the weak gradient of u. Taking again the estimates (3.3) and (3.7) into
account, one obtains

∫
Ω
|∇Tk(u)|2 dx ≤ c (1 + k)1+θ− 2∗

m′

(∫
Ω
|Tk(u)|2∗ dx

) 1
m′

,

which, again by Sobolev’s embedding, yields

∫
Ω
|∇Tk(u)|2 dx ≤ c (1 + k)1+θ− 2∗

m′

(∫
Ω
|∇Tk(u)|2 dx

) 2∗
2m′

,

that is to say, if k ≥ 1, one re-obtains (3.6), and so the estimate for the weak
gradient in M q(Ω), with q as in the statement.

Finally, if m = 1, from (3.1) we deduce, for k ≥ 1,

∫
Ω
|∇Tk(u)|2 dx ≤ c k1+θ .

Using Sobolev’s embedding and reasoning as before, we have

k2 |Ak|
2
2∗ ≤

(∫
Ω
|Tk(u)|2∗ dx

) 2
2∗ ≤ c k1+θ ,

which then implies
|Ak| ≤ c k−r

with r = N(1−θ)
N−1

, which is the value of r given by (1.6) with m = 1. Applying
Lemma 3.2, we then get that |∇u| belongs to M q(Ω), with q as in (1.8)
written for m = 1.

Before the proof of Theorem 1.17, we need another technical result whose
proof can be found in [2].

Lemma 3.3 Let {un} be a sequence of measurable functions such that
Tk(un) is bounded in H1

0 (Ω) for every k > 0. Then there exists a mea-
surable function u, with Tk(u) belonging to H1

0 (Ω) for every k > 0, and a
subsequence, still denoted by un, such that

un → u almost everywhere in Ω, Tk(un) → Tk(u) weakly in H1
0 (Ω).
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Proof of Theorem 1.17. Let m as in the statement, let {fn} be a sequence
of functions satisfying (2.1) and (2.2), and let un be the solutions of (2.3).
Reasoning as in the proof of Lemma 2.5, we have that Tk(un) is bounded in
H1

0 (Ω) for every k > 0. Thus, by Lemma 3.3, there exists a subsequence,
still denoted by un, and a function u such that un converges to u almost
everywhere in Ω, and Tk(un) converges to Tk(u) weakly in H1

0 (Ω). Moreover,
choosing Tk(un) as test function in (2.4), we have∫

Ω
a(x, Tn(un)) |∇Tk(un)|2 dx =

∫
Ω
fn Tk(un) dx .

We then apply Lemma 2.8 to the left hand side, with vn = Tk(un), and find
that u is such that∫

Ω
a(x, u) |∇Tk(u)|2 dx ≤

∫
Ω
f Tk(u) dx .

Using (1.2), we have that u satisfies the hypotheses of Lemma 3.1, and so it
belongs to M r(Ω), while |∇u| belongs to M q(Ω).

Now we have to prove that u is an entropy solution of (1.1). Let ϕ be a
function in H1

0 (Ω)∩L∞(Ω), and choose Tk(un − ϕ) as test function in (2.4).
We have∫

Ω
a(x, Tn(un))∇un · ∇Tk(un − ϕ) dx =

∫
Ω
fn Tk(un − ϕ) dx .

The right hand side easily passes to the limit as n tends to infinity. As for
the left hand side, we can write it as∫

Ω
a(x, Tn(un)) |∇(un − ϕ)|2 dx +

∫
Ω
a(x, Tn(un))∇ϕ · ∇Tk(un − ϕ) dx .

For the first term we have, observing that it is equal to∫
Ω
a(x, Tn(un)) |∇Tk(un − ϕ)|2 dx ,

and applying Lemma 2.8 with vn = Tk(un − ϕ),

∫
Ω
a(x, u) |∇Tk(u− ϕ)|2 dx

≤ lim inf
n→+∞

∫
Ω
a(x, Tn(un)) |∇Tk(un − ϕ)|2 dx ,
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while the second converges to

∫
Ω
a(x, u)∇ϕ · ∇Tk(u− ϕ) dx ,

as n tends to infinity. Putting together the terms, we thus have

∫
Ω
a(x, u)∇u · ∇Tk(u− ϕ) dx ≤

∫
Ω
f Tk(u− ϕ) dx ,

for every ϕ in H1
0 (Ω) ∩ L∞(Ω) and so u is an entropy solution of (1.1).

Remark 3.4 We remark explicitly that in the part of the preceding proof
concerning the existence of an entropy solution we have never used the fact
that m satisfies (1.15). In other words, the solution u obtained in Theorems
1.1, 1.3 and 1.8 is also an entropy solution of (1.1). Observe that, in the cases
of the three theorems above, the weak gradient of u is indeed the standard
distributional gradient of u.
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Appendix

by Raffaele Mammoliti

In this Appendix we give the proof of Lemma 2.1. This result is similar
to the result of Lemma 5.3 in Chapter 2 of [7]. This latter result has slightly
more general hypotheses, but gives an a priori estimate on u in L∞(Ω) de-
pending on the norm of u in L1(Ω). The present results gives instead an
estimate in L∞(Ω) independent on other norms of u.

Lemma 2.1. Let w be a function in W 1,σ
0 (Ω) such that, for k greater than

some k0, ∫
Ak

|∇w|σ dx ≤ c kθ σ|Ak|
σ

σ∗ +ε , (A.1)

where ε > 0, 0 ≤ θ < 1, σ∗ = N σ
N−σ

and

Ak = {x ∈ Ω : |w(x)| > k} .

Then the norm of w in L∞(Ω) is bounded by a constant which depends on
c, θ, σ, N , ε, k0, and |Ω|.
Proof. We use the same technique used in [11]. Applying Sobolev’s in-
equality to the left hand side of (A.1), we get

(∫
Ak

|Gk(w)|σ∗
dx

) σ
σ∗

≤
∫

Ak

|∇w|σ dx ≤ c kθ σ|Ak|
σ

σ∗ +ε .

Choosing h > k > 0, and observing that Gk(w) ≥ h− k on Ah, we thus have

(h− k)σ |Ah|
σ

σ∗ ≤ c kθ σ|Ak|
σ

σ∗ +ε ,

which can be rewritten as

|Ah| ≤
c

(h− k)σ∗ k
θ σ∗ |Ak|1+

ε σ∗
σ .

The result then follows from Lemma A.1 below, applied with λ = ε σ∗

σ
, ρ = σ∗

and ϕ(h) = |Ah|.
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Lemma A.1. Let ϕ : R+ → R+ be a non increasing function such that

ϕ(h) ≤ c0
(h− k)ρ

kθ ρ [ϕ(k)]1+λ ∀h > k > 0 , (A.2)

for some positive constant c, with ρ > 0, 0 ≤ θ < 1 and λ > 0. Then there
exists k∗ > 0 such that ϕ(k∗) = 0.

Proof. For k0 > 0, define the increasing sequence

ks = k0 + d− d

2s
s ∈ N ,

where
dρ = c0 Λ [ϕ(k0)]

λ 2(1+λ) µ ,

with Λ a positive real number to be chosen later, and µ = ρ
λ
> 0. We claim

that, with such definitions, we have

ϕ(ks) ≤
ϕ(k0)

2sµ
∀s ∈ N . (A.3)

Indeed, formula (A.3) is trivially satisfied for s = 0. Assuming that (A.3)
holds for s > 0, we have, applying (A.2) with h = ks+1 and k = ks, and
recalling the definition of d,

ϕ(ks+1) ≤ c0
(ks+1 − ks)ρ

kθ ρ
s [ϕ(ks)]

1+λ ≤ c0

dρ
(

1
2s − 1

2s+1

)ρ k
θ ρ
s

[ϕ(k0)]
1+λ

2sµ(1+λ)

=
c0 k

θ ρ
s 2ρ(s+1)

c0 Λ [ϕ(k0)]
λ 2µ(1+λ)

[ϕ(k0)]
1+λ

2sµ(1+λ)
=

kθ ρ
s

Λ

ϕ(k0)

2(s+1) ((1+λ)µ−ρ)

=
kθ ρ

s

Λ

ϕ(k0)

2(s+1)µ
≤ (k0 + d)θ ρ

Λ

ϕ(k0)

2(s+1)µ
.

Thus, (A.3) will hold true with s replaced by s + 1 if there exists a positive
constant Λ such that

(k0 + d)θ ρ ≤ Λ (A.4)

(recall that d depends on Λ). If θ = 0 this is trivial. Otherwise, setting

c̃0 = c0 [ϕ(k0)]
λ 2(1+λ) µ ,
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and recalling the definition of d, (A.4) can be rewritten as

k0 + c̃
1
ρ

0 Λ
1
ρ ≤ Λ

1
θ ρ .

As Λ tends to infinity, and since θ < 1, the right hand side of the preceding
inequality diverges faster than the left hand side. Thus, there exists Λ > 0
such that (A.4) holds, that is, (A.3) is proved. Passing to the limit as s tends
to infinity in (A.3), since ϕ is non increasing and µ is positive, we get

0 ≤ ϕ(k∗) ≤ lim
s→+∞

ϕ(ks) ≤ lim
s→+∞

ϕ(k0)

2µs
= 0 ,

where k∗ = k0 + d. This concludes the proof.
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