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1. INTRODUCTION 

In the following we shall denote by cy. the multi-index of integers 
[a1 >**-, CX,] and by j 01 / the sum C”= i r 01~ according to the standard 
notation used, e.g., by Lions in [7]. Let Sz be a domain in Euclidean it 
space, En and consider the classes WmLB(!2) or WmEB(Q) consisting 
of all functions u in the Orlicz spaces LB(G) or EB(Q) such that the 
distributional derivatives Dolu are contained in LB(Q) or EB(Q), 
respectively, for all 01 with 1 a: 1 < m. The classes of such functions 
may be given a norm 

where 11 * jlB is a suitable norm in LB such as the Luxemburg norm 
defined below. These classes will be Banach spaces under this norm. 
We shall refer to spaces of the forms WmLB(sZ) or W”E,(S2) as O&X- 
Sobolev spaces. They form a generalization of Sobolev spaces in 
much the same way as Orlicz spaces form a generalization of Lp spaces. 

In the following parts of this paper we shall deal with three of the 
questions which arise in the application of these spaces to differential 
equations: the separability of these spaces, the imbedding of Orlicz- 
Sobolev spaces in Orlicz spaces or spaces of continuous functions 
and, the relationship of complementarity for linear functionals on 
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these spaces. Our results extend analogous results for Sobolev spaces. 
In particular in Section 3, we obtain a series of imbedding results 
for the spaces IV%,(Q) f or arbitrary N functions B, which generalize 
directly the various imbedding results for Sobolev spaces, including 
imbeddings into spaces defined on lower-dimensional hyperplanes 
(see [I] or [lo]). Th e o f 11 owing three sections of the paper, concerning 
separability, imbeddings and complementarity, respectively, are 
independent and each may be studied separately. Section 2 is a 
straightforward extension of the standard density results for Sobolev 
spaces. However, the methods of Sections 3 and 4 are considerably 
different from the Sobolev space case and are, we feel, of intrinsic 
interest. Some of the results of this paper have been used by the 
first author in his work on the existence of solutions of nonlinear 
elliptic boundary value problems [4] and by the second author for 
regularity considerations [ 151. 

We devote the rest of this section to listing briefly some basic 
definitions and properties of Orlicz spaces to serve as a reference 
for the following sections. The reader desirous of more information 
should consult a work such as Krasnoselski-Rutickii [6]. 

Let A(t) be a real-valued continuous, convex, even function of 
the real variable t, satisfying 

lim A(t) = 0, lim A(t) 
t-+0 t 

- = co. 
t+m t (1.2) 

Then the Orlicz class LA’(Q) consists of all functions u such that 

s A@(x)) dx < co. 
s) 

The Orlicz space LA(Q) may be defined as the linear hull of L,‘(Q) 
together with the Luxemburg norm 

LA(a) is a Banach space under Eq. (1.3). To simplify notation, we 
we will generally write 11 u IlL,(D) = 11 u ]jA , as in Eq. (1.1). A defining 
function for an Orlicz space, which has the above properties, is 
called an N function. Associated with any N function A, we have 
the complementary function 2 given by 

J(x) = Jr’ a(t) dt, (l-4) 
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where 

a(t) = sup{s; a(s) < t}, u(s) = A’(s). 

Clearly, A = A and A, 2 are said to be complementary to each other. 
Furthermore, the following inequalities hold 

XY d 44 + 4Y) (Young’s inequality) (1.5) 

y < A-l(y) @(Y) < 2Y (I.61 

i uv dx < 2 II u IIA II v IIA 7 UEA,VEA (HGlder’s inequality) (1.7) 

provided meas G < co. 
For meas 52 < co, we will require the following two comparison 

relations for N functions. 
If for any two N functions A, , A, , there exist positive numbers 

x,, and K such that for all x > x0 , 

A,(X) < A,(%, W) 

then we write A, < A, . Note that this means that LA, CL,, . If 
A, < A,, A, > A,, we write A, - A, and hence LA1 = L,$ . 
Finally, if we have a stronger condition than Eq. (1.8), viz., 

lim A,A(x) 

x+m A,(x) = c0 (1.9) 

for every h > 0, then we write A, <( A, . This latter condition 
implies that LA, $ LA1 . In Section 3, we will make use of the following 
convergence criterion [6; pp. 99, 1151. If a sequence u, E LA(Q) 
converges in measure and is bounded in LA(Q), then u, converges in 
LB(Q) for any B << A (assuming, of course, meas Q < co). 

The space EA(Q) is defined to be the closure of the bounded 
functions in the LA(Q) norm. It follows that EA(Q) C LA’(Q) and 
IPEB(Q) C WmLB(Q). The spaces EA are separable. 

An important subclass of N functions is the class satisfying the 
A, condition. An N function, A, satisfies the A, condition if there 
exist positive constants x0 , K such that 

A(24 < kA(x) for x > x0 . (1.10) 

The spaces L, and EA coincide if and only if A satisfies the A, 
condition and the space LA is reflexive if and only if A and 2i both 
satisfy the A, condition. In general LA is the dual of Ed. The Orlicz- 
Sobolev spaces will, therefore, not in general be reflexive. 
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Some further properties of Orlicz spaces, not proved in [6], will 
be established in the particular sections of this paper where they 
are employed. 

2. SEPARABILITY PROPERTIES 

We establish below some theorems concerning the approximation 
of elements in IVmE,(fi) by smooth functions. By considering the 
natural imbedding of WmEs(JJ) into the product space nTN E,(Q) 
where N is the number of multi-indices 01, j a: 1 < m, we see that 
W~~~(!G?) is separable since EB(sZ) is separable. The spaces WmLB(J2) 
will clearly not be separable in general. In order to discuss separability 
properties of the spaces IPE,(1;2), a lemma on approximation is 
first necessary (see also Dankert [2]). 

LEMMA 2.1. Let p be a Com(En) function satisfying p > 0 and 
Jp(t)dt = 1. DJi e ne a sequence of Com(En) functions pk , k = 1, 2,... 
by pk(t) = kp(kt). Let B be an Nfunction, f E E, . Then the convolutions 
pK*f are in Es and jl pk*f - f jlB + 0 as k -+ 00. 

Proof. Let B be the complementary N-function to B and let 
gELB with jlglls = 1. Then 

where fi(x) = f (x - t). Hence 

II Plc*f -f Ile < 2 j lift -f IL? fr@) dt 

= 2 j llfm -f lb &) dt- 

Since f E Es and p has compact support, for every E > 0 there 
exists k sufficiently large such that 

jEn Ilft,k -f IlB p(t) dt G E j p(t) dt = E 

and the lemma is proved. Q.E.D. 
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If Sz g En, as in the Lp-Sobolev spaces, the C,” functions are not 
necessarily dense in the space. However, it is true that if JJ = E”, 
then the COm(En) functions are dense in the space WmEB(En) (although 
not, of course, in W”L,(E”)). T o s h ow this, one has the first density 
theorem: 

THEOREM 2.1. Com(En) is dense in W”E,(E”). 

Proof. We may first assume that u has compact support. For we 
may consider a sequence of C,” functions MR(x) such that MR(x) = 1 
for x < R and MR(x) = 0 for x > 2R. Then MR * u is a function 
with compact support and MR * u 4 u in WmE,(En). 

Assume now that u has compact support and let pk be the sequence 
defined in Lemma 2.1 above. Define 

U&Y) = u*pk(x) = j u(t) pk(x - t) dt, (2-l) 

and note that since D% E E, for all N, 1 01 / < m, and pk E Corn, we 
must have 

D%,(X) = Da j u(t) & - t) 

= 
s 

u(t) D”p,(x - t) dt 

= 
s 

D%(t) p& - t) dt. cw 

Clearly, uk E C,” for every k. One may then observe that for any 01 
with 1 01 j < m, 

II D”u, - Dau ljB = I/ Dnu*pk - D”lu [jB 

+O as k-+00. 

The theorem is proved. Q.E.D. 

A second important theorem on the separability properties of the 
spaces WmEB(Q) may be obtained by means of a generalization to 
Orlicz-Sobolev spaces of a theorem proved originally by Meyers 
and Serrin for Sobolev spaces in Ref. [8]. 

THEOREM 2.2. Let Sz be a bounded domain in En. Then C”(Q) is 
dense in WmEB(Q). 

Proof. It will be sufficient to show 
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LEMMA 2.2. Let u E WmEs(Q). Then for every E > 0 there exists 
a function v E C”(Q) such that 11 u - v IjwmE, < E. 

Proof. Let Q, be the open set defined by 

q={t;tEl2,ltI < v, distance(t, AC?) > l/v}, (2.3) 

where v = 1, 2,... . One may also define Q,, and Qn_, to be null sets. 
Let ,Z’# = 1 be a partition of unity on Q such that 

SUPP $4 c f&+1 - kl 2 v = 1, 2,... (2.4) 

For every v, I,&U E WmEB(E”). Therefore by Theorem 2.1 above for 
every integer v = 1,2,... there exists a Corn function K, such that 

(i) for every oi, 1 01 1 < m 

II K~~D%u - D%u lb d 4” 

(ii) SUPP K C {t; I t I < l/(v + l)(v + 2)} 

By expression (2.4) and condition (ii) above, 

supp KveD”a,bvu C s2,+2 - Qv-, . 

Hence the series 

converges and defines a function v E P(Q). 
Let K be an arbitrary nonnegative integer. Then by condition (i) 

and the convexity of B, one has that for every a, I 01 I < m, 

j,, B( [D%J - D%] l/c) dt = I,, B f$’ (Ky*Da& . u - D”z,$ . u) &) dt 

Hence, letting k -+ co, by the monotone convergence theorem 

j 
D 

B (f [D”v -D%]) dt < 1, 
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for every 01, 1 01 [ < m, and hence 

Q.E.D. 

The final density theorem gives conditions under which a statement 
similar to that of the preceding theorem may be made for the region 0, 
the closure of an open region a. We shall state it here together with 
the necessary definition for its formulation; the proof is an easy 
generalization of the argument for Sobolev spaces which may be 
found for instance in [l] or [7]. 

DEFINITION 2.1. Let Q be a bounded domain and 0 its closure. 
0 will be said to satisfy a segment condition if there exists a finite, 
open covering {@J of D such that for every %i , if %!i n aJ2 + o, 
then there exists a vector yi such that for 0 < t < 1, x + tyi E Q 
for all x E Q n ei . 

THEOREM 2.3. Let Q satisfy a segment condition. Then C”(a) is 
dense in W”E,(Q). 

3. IMBEDDING THEOREMS FOR ORLICZ-SOBOLEV SPACES 

To simplify our presentation we consider initially the spaces 
WL,(Q) for arbitrary N functions B, i.e., the case m = 1. The 
general case, which follows by iteration, is treated at the end of 
this section. 

DEFINITION 3.1. The domain 8 C En satisfies a cone condition if 
there exists a fixed cone k, C En, such that each point x E as is the 
vertex of a cone kB(x) C Q and congruent to kD . 

That our main imbedding theorem, Theorem 3.2 below, holds for 
domains satisfying cone conditions is a consequence of part of the 
Sobolev imbedding theorem. For this reason and for comparison 
purposes, a statement of the latter follows. We will use arrows in 
the sequel to indicate continuous imbeddings. 

THEOREM 3.1 (Sobolev imbedding theorem). Let the domain Q 
satisfy a cone condition. Then 

(a) ifp < n, wlL,(sZ) -+ L&2) where p* = np/(n - p) 

(b) if p > n, WL,(Q) -+ L&2) n C(Q). 
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By C(Q) we mean the space of functions continuous in Q. The 
norm in L,(B) n C(Q) is the sup norm over Q. For a proof of 
Theorem 3.1, see, e.g., Ref. [l]. W e will generalize the cone condition 
in the following way: 

DEFINITION 3.2. A domain 52 C En is admissible if the conclusion 
of Theorem 3.1 holds in the case p = 1, i.e., IV%,(Q) -+L,,(,-r,(Q). 

In fact, we will see below that D is admissible if and only if the 
conclusion of Theorem 3.1 holds for all p. 

The exponent p* = np/(n - p) is usually called the Sobolev 
conjugate of p. We extend this notion to Orlicz spaces. Associated 
with any N function B, we define a function 

gB(t) = s ) t 3 0. (3.1) 

Let (B} denote an equivalence class of N functions, i.e., B, , B, E {B} 
implies B, N B, , and suppose that the members of {B} satisfy 

i 

m 

gB(t) dt = co. 
1 

(3.2) 

The Sobolev conjugate class {B*} of {B} is then defined as the class 
generated by the N-function B* given by 

@*)-I (I x 1) = 1;’ $$$ dt = jr’ ge(t) dt, (3.3) 

where B E {B) is so chosen that 

i 

1 
gB(t) dt < co. 

0 
(3.4) 

It is clear that from any class, (B}, an N function B satisfying the 
expression (3.4) may be chosen. In the sequel we will always assume 
that the expression (3.4) is satisfied.l Note that for B(t) = 1 t IP, 
1 < p < n, we have 

gB(t) = p-l/P-l, B*(t) = I 

P* 
(3.5) 

1 Note, however, that in the case of unbounded Q equivalent N functions may 
define different Orlicz spaces and hence the inequality (3.4) must be assumed to hold. 



60 DONALDSON AND TRUDINGER 

and that for B(t) = 1 t /It, we have 

&J(t) = t-l, B*(t) - eltl - j t 1 - 1. (3.6) 

Our main imbedding theorem is then 

THEOREM 3.2. Let Q be a bounded, admissible domain in En. Then 

(a) ifs: ge(t) dt = 00, WlL,(Q) --f L&Q), 

(b) if J; gB(t) dt < co, WL,(Q) -L,(Q) n C(Q). 

For the proof of Theorem 3.2 we invoke the following two lemmas: 
The first is a fairly well-known calculus lemma. 

LEMMA 3.1. Let u be a strongly dzyerentiable function on a domain 
Q C En (i.e. u E W,‘~‘“c(12)) and g a uniformly, Lipshitz continuous 
function on E. Then the composite function f = g 0 u is strongly 
dayerentiable and the chain rule holds, i.e., 

Df = g’ . Du a.e. (Sz) (3.7) 

Lemma 3.1 is crucial to our proof and is proved, e.g., in Ref. [9]. 
The second lemma is an elementary, interpolation result. 

LEMMA 3.2. Let f, g be continuous, non-decreasing functions on an 
interval (0, N), 0 < N < co and suppose lim,,,f/g = CO. Then for 
arbitrary E > 0, there exists a constant K depending on E such that 

L?(t) G cf (0 + K (34 

Proof. There exists N,, E (0, N) such that t > N,, implies g(t) < 
ef (t). Define K = SU~(~,~,) g. Q.E.D. 

Proof of Theorem 3.2(a). The function B* defined by Eq. (3.3) 
clearly satisfies the differential equation 

B-l(y)y' = yl+W, w 

and hence by the expression (14, the inequality 

y’ < yl W-l( y). 

Let C = (B*)l-ltm. Then from the inequality (3.10) 

c’< 
n-l - - B-l(CW-1)). 

n 

(3.10) 

(3.11) 
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We will prove now that FIX,(Q) -+ L,*(Q) for any C satisfying the 
inequality (3.11) with B* = C?/(n-l). In fact, a trivial extension of 
our proof will show that the imbedding will hold for any C satisfying 

c’ < a + bB-l(Cn~(y, (3.12) 

where a is a continuous mapping from LB(Q) to L,(Q), (e.g., 
a = constant) and b is a constant. 

We let u E II%,(Q) and assume at first that 11 is bounded. Let 

k = II 24 IILB*(n) = inf 
s-2 

l-i*(+) dx < 11. 

Since u is bounded, f(s) = sn B*(u/s) dx is a continuous function 
of s withf(0) = co, f( CD) = 0. Hence we have, in fact, 

1 B*(u/K) dx = 1. (3.13) 
R 

Let g = C(u/K). By Lemma 3.1, g E IV&(Q), and since Q is 
admissible 

II g lln,(n-l) G All Dg 111 + II g II,) 

where the constant y is independent of u. Therefore, 

(3.14) 

1 j, B*(u/k) dxlldin < ; j, C’(u/k) 1 Du 1 dx + y j C(u/k) dx. 
a 

Applying Holder’s inequality (1.7) to the first term on the right side 
and using Eq. (3.13), we have 

1 G % II @WNs II Du lb + Y j, CW4 dx- (3.15) 

Now 

II C’W>lls < + 11 B-lB*(u/k)ll~ (by (3.11)) 

= Ginf 1s; J, B [~BFB*(u/k)l dx < 11 

n-1 
<------ n (by (3.13)). 
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Also applying Lemma 3.2 to the functions B*(t)/t, C(t)/t for 
t = 1 u I/k, E = l/27, N = co, we obtain 

j, C(u/k) dx G +, j, B*(G) dx + K j, I u I/k dx 

= & + ; II u Ill (by (3.13)). 

Hence on substituting in the expression (3.19, we obtain 

and hence 

k< 4yb--1) 
n II Du IL + 2K II u /II . (3.16) 

To extend the estimate (3.16) to arbitrary u E PiX,(sZ) we define 
the sequence {urn}, m = 1,2,... by 

I 
u 

u = 
for I u I < m 

?n m sign u for / u j > m. 

Clearly, by Lemma 3.1, u, E W&(sZ) A La(Q), and hence by the 
expression (3.16) 

km = II urn lb < Ch I Q I) II urn h,m 

G Ch I Q I> II u IlW’L,k2) , 
(3.17) 

where C is a constant depending on n and 1 fi I. Since the sequence 
{k,} is also nondecreasing, it converges by Eq. (3.17). Let K = lim k, . 
By Fatou’s lemma, 

i 
B*(u/k) dx < lim 

s 
B*(u,/k,) = 1. 

R Jz 

Hence u EL&G) and by Eq. (3.17) 

II 21 lb < Ch I Q I) II u ll~~,b) . Q.E.D. (3.18) 

Proof of Theorem 3.2(b). Theorem 3.2(b) follows in a manner 
similar to Theorem 3.2(a), if we widen our concept of N function 
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to include the class of Young functions (see [16]). Let A(t) be a 
positive, convex function on an interval (0, N) with A(O) = 0, 
A(N) = co. We extend the domain of A to [0, co) by defining 
A(t) = CO for t > N. Using the Luxemburg norm with the function 
A we may define an equivalent norm on L,(Q), viz., 

II u II.4 = inf [k; IQ 4 u Ilk) dx < 11. (3.19) 

Clearly, 

To prove Theorem 3.2(b), we let 

Then the function B* given by its inverse 

(B*)-l(x) = s,” &) dt 

(3.20) 

defines a function of the above type on the interval (0, N). The proof 
of Theorem 3.2(a) extends automatically to B* and we obtain once 
more 

II u IliT* < C(l $2 I, 4 II 24 IIW~L&) , (3.18) 

and hence by the expression (3.20), 

s 
m SUP I u I G C(lQ I, 4 II4lw$&2, =ltt) dt 
Otl+lln * (3.21) 

R 

To establish the continuity of u E JPL,(&?), let y ES and 6 > 0 
satisfy 

-Q,,(y) = (x; I xi -yi I < 26)CQ. 

Then for x E 52,(y) and h satisfying sup ( h, 1 < 6, we apply the 
expression (3.21) to the function 

q&(x) = u(x + h) - U(X). 
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We obtain, therefore, 

I %(Y)I d const II 4x + 4 - 4Gv’L,(s2s) 

--f 0 as h -+ 0. 

Hence u E C(G). Note that by u continuous, we strictly mean that 
u is equivalent in measure to a continuous function. The continuity 
of the imbedding of Theorem 3.2(b) is then guaranteed by the 
expression (3.21). Q.E.D. 

In the remainder of this section we deal with some extensions 
and refinements of Theorem 3.2. We remark here that imbedding 
theorems for Orlicz-Sobolev spaces appear to have been first con- 
sidered by Dankert [2] who used a potential representation but 
imposed very stringent conditions on the N functions involved. The 
potential estimates of O’Neill [ll] yield Theorem 3.2(a) for the case 
where Sz satisfies a cone condition and B satisfies a A, condition. 
The first imbedding result for arbitrary N-functions, B, was obtained 
by Donaldson [3] who established Theorem 3.2(a) for a class of 
smooth domains. His method, although motivated by the differential 
equation (3.9), proceeds by an approximation technique and is 
considerably different from the above proof. The present proof of 
Theorem 3.2(a) and its extensions to Theorem 3.2(b) and the results 
following in this section are due to the second author. 

An immediate generalization of Theorem 3.2 follows by replacing 
the exponent n/(n - 1) in the definition of admissibility by an expo- 
nent v satisfying 1 < v < KZ/(YZ - 1). Defining B,* by 

m*)F1(4 = J; $g > (3.22) 

we obtain from the proof of Theorem 3.2. 

THEOREM 3.3. Let Q be bounded and let it satisfy WL(Q) --+ L”(Q) 
for some v, 1 < v < n/(n - 1). Then 

(a) if Jy B-1(t)/(t2-11~) dt = CO, WL,(sZ) --+ L,**(Q), 

(b) if j; B--l(t)/(t2--lq dt < CO, WL,(52) + L&2) n C(sZ). 

Next, we define a further Orlicz-Sobolev space, W,,mLB(Q) to be 
the closure of Corn in WmLB(Q). We have WOmL,(s2) C 14’mEB(sZ) with 
equality holding if Sz = E” (Theorem 2.1). For the spaces W,,1LB(i2), 
as with the Sobolev spaces W,l(sZ), no restrictions are necessary on 
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the domains Q for the imbedding results to hold. In fact, let the 
constant r(n) satisfy 

II u L/h-l) < A4 II Du II1 (3.23) 

for all u E Corn(P). In the proof of Theorem 3.2 applied to u E C,m(Q), 
Lemmas 3.1 and 3.2 are not required. We readily deduce 

THEOREM 3.4. Let f2 be a domain in En. Then 

(a) ;f JT go dt = ~0, W,,lL,(Q) -+ L&Q) and for any 
u E W,lL,(Q) 

11 24 IIB’ < 2y(n - l) 
?z II Du IIB (3.24) 

(b) if JT gB(t) dt < CO, W,lL,(Q) --f C(o) and fog any 
u E W,lL,(Q) 

sup I u I < 2y(n - ” 11 Du lie jrn g8(t) dt 
R n ” 

(3.25) 

The example (3.4) shows that the Sobolev theorem, Theorem 3.1, 
is a special case of Theorem 3.2. There are two refinements of the 
Sobolev theorem pertaining to the cases p = n, p > n, respectively, 
which we discuss now in the light of our results. First, in the 
case p = n, Theorem 3.2 yields WL,(Q) -+ L,*(Q), where B* = 
elll - j t / - 1. This result is not as sharp as the imbedding theorem 
of Trudinger [14], WL,(Q) ---f Lc(12), where C = elil”“n-l’ - 1, 
derived using a potential representation.2 Hence Theorems 3.2 and 
3.4 are not optimal in the sense that for any N function B, L,*(Q) 
is not necessarily the smallest Orlicz space possible in the conclusions. 
Using the method of [14], our results can be improved in the range 
B > / t IQ for all 4 < n. However, the details being messy are not 
presented here. It is our contention though that the results are optimal 
in the cases B < I t /* for some q < n. 

Imbeddings into Spaces of Continuous Functions 

In the case p > n of Theorem 3.1, we have for strongly Lipshitz 
domains the result of Morrey [l], WL,(Q) + Cal(O), 01 = 1 - n/p, 

z The result in [14] has recently been shown to be optimal. The proof will appear 
in a forthcoming note by J. Hempel, G. R. Morris and N. S. Trudinger. 

SW+-5 
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where P(O) denotes the space of functions, uniformly Holder 
continuous in I? with exponent 01 and 

ll4Ic”m = "",P I u I + 2;s 
I 44 - 4Y)l 

/ x -y lol * (3.26) 

By a strongly Lipshitz domain Sz we will understand a domain Sz, 
where each x E 8.Q has a neighbourhood aZ such that in some 
coordinate system, with origin at x, 0 (7 eZ is represented in % by 
E, < F(5’)Y E’ = (fl ,‘*** 8,-r) with F a Lipshitz continuous function. 

An analogous refinement of Theorem 3.2(b) then follows for 
strongly Lipshitz domains using essentially the same method as 
Morrey [9]. W e will instead derive the generalization here directly 
from a more general result of Spanne [13]. 

THEOREM 3.5 (Ref. [13]). Let Q,, be a cube in En, ugLI(Qo) and 
suppose that for every parallel subcube Q of Q. , 

s I u - uQ I dx d 1 Q 1 ~(1 Q I”?, Q 
where uQ = j Q 1-l Jo u dx and p is a positive, nondecreasing function. 
Then if Ji p/t dt < GO for some 6 > 0, u E C(Q,) and the modulus of 
continuity estimate 

j 

r 
1 u(x) - u(y)1 < const pit dt, *== lx-Yl, x, Y E Qo (3.28) 

0 

holds. 

As a corollary of Theorem 3.5, we then have 

THEOREM 3.6. Let 9 be a strongly Lipshitz domain, and let 
u E WL,(S) with SF g,(t)dt < co. Then for any x, y E ii? 

s 
m 

I 44 - u(r>l G KII u lbl;,(n) -~ g&) dt, p = j x -y 1 (3.29) 
P 

where the constant K depends on n and a. 

Proof. Since Q is strongly Lipshitz, it is sufficient to consider the 
case where Q is a cube. Using the Holder inequality (1.7), we have 

s I Du I dx < 2 II Du lie II 1 IIB R 
= 2 II Du 11~ I Q I B-l (A). 
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By the PoincarC inequality for WIL,(sZ) [12], 

s R I u - ug 1 dx < const / Sz jlln / / Du 1 dx. (3.30) 
R 

We may therefore obtain, for any parallel subcube Sz’, 

s I u - u,t I dx d R, const 1 Q jl+lln B-r i 1 ~ II Dull,. , $!j , 

Therefore, applying Theorem 3.5, we have 

1 u(x) - u(y)1 < const 11 Du llB Se B-~(V) dt, P=Ix-Y 
0 

by substituting s = t-n. Q.E.D. 

We may express Theorem 3.6 in the form of a continuous imbedding 
into a class of continuous functions. Let p(t) denote an increasing, 
continuous function of t 3 0 with ~(0) = 0. We define the space 
CU(Q) to be the set of functions, continuous in J2 and satisfying 

The space C,(G) is a Banach space under the norm (3.31). From 
Theorems 3.2(b) and 3.6, we have, therefore, 

COROLLARY 3.1. Let r;;! be strongly Lipshitx, jy gs(t) dt < CO. Then 
WL,(D) --t C,(Q) where p(t) = ST% ge(s) ds. 

Compactness of the Imbeddings 

We begin with two criteria for compactness. 

LEMMA 3.3. Let A, , A, be N functions with A, <( A, . Let 
lnUJIA* G K II u Ilwx, * Then BIWL, , the unit ball in WIL, is compact 

4 ’ provided I l2 I < CO. 

Proof. Since JV = B,WlL, is compact in L, , it is compact in 
measure. Hence, by the hypothesis and the criterion for convergence 
mentioned in the introduction, Jlr is compact in LA 1’ Q.E.D. 
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The second criterion refers to compactness in the C, spaces. 
We say that two functions p1 , pLz of the type defined above satisfy 
the relation p1 <( ps if 

where p is a function of the same type. We then have 

LEMMA 3.4. BICU,, the unit ball in C@, , is compact in C&, ij 
t-%x P2 * 

P~ooj. We have 

G SUP I 24 I + 44 II 24 lluz + & ";P I 24 I> for any E > 0 
n 

= I1 +&I “;P I 24 I + d4 II u I/u* ; 

and since C,,, --+ C is compact by the Ascoli theorem, the result 
follows from the above interpolation inequality. Q.E.D. 

We now have, as a corollary of Theorems 3.2(a) and 3.6 and of the 
above lemmas, 

THEOREM 3.7. Let 52 be a bounded, admissible domain in En. Then 

(a) ij JT gs(t) dt = co, the imbedding WlL,(Q) --+ Lc(Q) is 
compact for any C < B”. 

(b) if SF g8(t) dt < co and l2 is strongly Lipshitz, the imbedding 
VL,(Q) --t C,(Q) is compact for any p(t) < JtTngs(t) dt. 

Traces on Hyperplanes 

Let Q satisfy a cone-condition and 1;2, denote the intersection 
of J2 with a k-dimensional hyperplane in En. We then have the 
following imbeddings for Sobolev spaces (see [l] or [IO]) 
WILP(Q) -+ LleP,(+&Qk) for n > k > n - p (k 2 n - p if p = 1). 
We extend this result to Orlicz-Sobolev spaces in the following way: 

THEOREM 3.8. Let ~2 be bounded and let it satisfy a cone condition; 
then if SF gs(t) dt = CO and n - p < k < n, where p > 1 is such that 
B(tllp) is an N function, we have the imbedding WL,(Q) -+Lo,,k1.(52,). 
For p = 1, we may let k = n - 1. 
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Proof. We use an argument similar to the proof of Theorem 3.2. 
Let u E WlL,(sZ) be bounded, and suppose that 

1 = II u IL. (B*plnb?.J 3 II u llLB*@, - (3.32) 

Let C = (B*)llp--l/n = (B*)r/p*. Apply the above imbeddings to 
the function C(u/Z). We obtain 

From Eq. (3.32) and the definition of C, we have, therefore, 

Applying the Holder inequality (1.7), we obtain 

where a(t) = B(t’l”). 
Now, since C = (B*)llp*, we have 

C’ = $ (B*)l/P*-l(B*)’ 

= $ (B*)lIPB-yB*) 

by Eq. (3.9), and so 

(C)p = (-$)‘B* - B-l(B*)p 

1 lJ s 
( ) 
T B* . D-l(B*) 
P 

by the definition of D 

< -$ ’ D-l(B*) 
( 1 

by the expression (1.6). 

Therefore, from Eqs. (3.34) and (3.32), we obtain 

(3.33) 

(3.34) 
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Next, using Lemma 3.2, we have 

and hence we obtain from the expression (3.33) 

(3.35) 

From the expression (3.35) and Theorem 3.2(a), then follows the 
estimate 

1 G C(l fJ If % P) II 24 IIW’Ls (3.36) 

for any 1, not necessarily satisfying the restriction (3.32). 
For unbounded u, consideration of the sequence u, , as in the 

proof of Theorem 3.2, yields the estimate (3.36) again. The theorem 
is thus proved. Q.E.D. 

As a corollary of the proof of Theorem 3.8, we note that the cone 
condition may be relaxed in the following way: 

COROLLARY 3.2. The &beddings of Theorem 3.8 continue to hold 
if in the hypotheses we assume WlL,(Q) -+ L,/(,,,)(O,), instead of Q 
satisfying a cone condition. 

From Lemma 3.3 also follows 

COROLLARY 3.3. Under the hypotheses of Theorem 3.8, the 
imbeddings WlL,(Q) + L&Q,) are compact for any C <( (B*)kln. 

The Embedding Theorem for WmLB(sZ) 

For an N function B, we define a sequence of N functions C, , 
v = 1, 2,... by the formulas 

c;‘(x) = s ’ s dt, 
C,(x) = gx;. (3.37) 

We assume that Ji C;‘/(t l+lln) dt < CO, by replacing C, if necessary 
by an equivalent N function. We obtain in this way a finite sequence 
of N functions C, , C, ,..., C , 
s; C&( t)/( tl+l/n) = 

where q < n + 1 is such that 
CO, but ~~*C;‘(t)/( tl+lin) dt < co. Let us denote 

this integer q by q(B). 
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We define Cm+(Q) to be the space of functions m times continuously 
differentiable having derivatives Pu, 1 01 1 = m in the spaces P(Q), 
defined by Eq. (3.31) with 

We can now state 

THEOREM 3.9. Let Q be a bounded, admissible domain in En. Then 

(a> rf m G da WmLB(sZ) --t L,-(8) and the imbedding 
WmLB(Q) + L,(Q) is compact for any C << C,, . 

(b) If m > p(B), WmL@) --L(Q) n C(Q). 

(c) If m < g(B) and !2 is strongly Lipshitx, then WmLB(Q) + 
Cm-q--l,u(Q), where p(t) = St?% C;l(s)/(sl+l/lz) ds and the imbedding 
W”L,(Q) + C”-“-‘(W) is compact. 

Theorem 3.9 is an immediate consequence of Theorems 3.2, 3.6 
and 3.7. To conclude this section, we note that if we replace WmLB(sZ) 
by WmEB(Q) in Theorem 3.9, we obtain, in part (a), an imbedding 
WmEe(Q) + E, (Q). This follows since the bounded functions are 
dense in WrnEB@), (in fact the sequence u, , defined earlier in this 
section, converges to u for any u in WlE,(Q)). 

4. COMPLEMENTARITY FOR ORLICZ-SOBOLEV SPACES 

It is the purpose of this section to show that basically similar 
kinds of relationships hold for linear functionals on Orlicz-Sobolev 
spaces as hold for Orlicz spaces themselves. We first make a definition. 

DEFINITION 4.1. Let X and Y be two Banach spaces such that 
XC Y* and Y C X*. Then we shall say that X and Y are a com- 
plementary pair if there exist closed subspaces X0 C X and Y, C Y 
such that X0* = Y and Y,* = X. 

The following proposition follows immediately from standard 
theorems of functional analysis. 

PROPOSITION 4.1. Let X and Y be a complementary pair with 
X0 C X = Y,,* and Y, C Y = X,,*. Then the unit ball of X is compact 
in the weak” topology given by Y, , and similarly for the unit ball of Y. 
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For many purposes it is useful to know a method by which, given 
a complementary pair X = Y,,* and Y = X0*, and a closed subspace 
E,, C X,, , one may construct spaces E C X and F = E,,* C Y such 
that E and F form a complementary pair. 

PROPOSITION 4.2. Let E,, be a closed subspace of X0 , where 
X = Y,* and Y = X,,* form a complementary pair. Then there exists a 
complementary pair E and F such that E,, C E = F,,* C X and 
F, C F = E,,*. Furthermore, the equality 

E = wk*cl E, = F,* = (E,I)l n X holds. 

Proof. Let F = E, *. Since E, C X,, , F = Xo*/Eo’- = Y/E,,-‘-. Let 
F, = (YJE,,l), and finally let E = F,,*. Clearly, E C F,* = E C X. 

To show that F,,* = wk*cl E,, , it is clear that wk*cl E,, C F,,*. 
Let E1 = wk*cl E,, . The inclusion E0 C E1 C E = F,,* then holds. If 
v,, E E and v. $ E1 , then since E, is wk* closed, there must exist 

f. + Eo’ E (Yo/Eo9;;;hs;~;;(; ,fj-E- Eol) = 1 and (v, f0 + EoI) = 0 
for every v E E, . 0 1 , (v, f. + E,l) = 0 for every 
v E E,L; hence f. E E, 1. Therefore, (v. , f. + E,l) = 0 since v. E F,*. 
This is a contradiction. 

To show that (E,l)l n X = Fo*, it is sufficient to show that 
F,* C (E,l)l n X since clearly (Eol)l n X C F,*. But let v. gFO*. 
Then u. defines a linear functional on the equivalence classes 
f. + E,I. Therefore, for every eoJ- E EoJ-, (v. , eo’) = 0. This implies 
v. E (E,l)l. Clearly, o. E X since F,* C X. Q.E.D. 

In the case of Orlicz-Sobolev spaces, one may regard WmL,(Q) 
in a natural way as a subspace of the product space nN L, where 
N is the number of multi-indices 01, 1 01 1 < m. We obtain automatically 
from this imbedding that the spaces WmLB(sZ) are reflexive if B and 
B satisfy the A, condition, i.e., when the spaces L,(Q) are reflexive. 
We examine the situation, in general, in the light of the preceding 
proposition. 

PROPOSITION 4.3. The spaces n L, and n L, form a complementary 
pair, 

This proposition is clear from the observation that LB and LB 
form a complementary pair. 

We now show that the Orlicz-Sobolev spaces W”L, and WmEB 
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may be realized through the process of Proposition 4.2, as subspaces 
of n LB with E,, = W”E, , E = WmLB .3 

THEOREM 4.1. The following characterization holds 

WmL, = wk*cl WmEB = In EB/[WmE,ll’/ * = [ WmEB]ll n n L, . 

Proof. The equality of the last three terms follows if one carries 
through the process of Proposition 4.2, setting E,, = WmEB . To show 
the first equality, we need to show first that EC WmL, and second 
that WmL, C E, where E is defined as in Proposition 4.2. For the 
first containment, let f = (fi ,..., fm) E E. Then by the equalities of 
Proposition 4.2, there exists a sequence fk = (fik,..., f,“) E E, = WmEB 
such that fk --+ f in the w eak* topology. Hence, in particular, since one 
may take g E EB of the form (0, O,..., g, , O,...) it follows that 
(fsk - f, , g”) --+ 0 for every / s 1 < m and every g” E EB . Therefore, 
f,k --+ f, EL, . To show that f E WmL, it is sufficient to show that 
for every s, 1 s 1 < m, fs = D”fi . Th is is equivalent to the statement 
that for every p E C,“(Q) 

j- 
12 

fsp dx = ~pf& dx. 

But since fsk --+ fs and fsk = Dsf k, one may take 

1 j-, (fs - %)P dx 1 G / j-, (fs -f,“)p dt ( + / s, (fi - fi”)Dsp dt / ---f o 

Therefore, EC WmL, . 
To show that WmLB C E, a lemma will be necessary. 

LEMMA 4.1. Let A be an N-function, and suppose w E EA . Then 
there exists an N-function A, > A such that w E LA, . 

Proof. Let 9, = {t, J2; i 6 I w(t)1 < i + I>. Since w E EA , 
J’n A[(k + 1) w(t)] dt < CO for every integer k. Furthermore, it is 
clear that 

7 

i A[(k + 1) w(t)] dt = f 1 A[(k + 1) w(t)] dt < CO. 
0 i-0 Qi 

a Theorem 4.1 has been employed by Donaldson [4] to extend some aspects of 
monotone operator theory for reflexive Banach spaces to the nonreflexive Orlicz- 
Sobolev spaces. 
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Since the series above converges for every k, there exists n, such 
that 

f j A[(k + l)w] dt < 2-k. 
i=nl, Qi 

Clearly, one may choose the sequence nk so that nk increases and 
nk-+cc as k+co. Let n, = 0. Define an N function H by 
dH(t)/dt = k + 1 for x E [nk , nk+l). Let A, = A o H. Clearly, 
A, > A. Furthermore, 

j A,(w) dx = 1 A[H(w)] dx 
D 52 

= $, j, 4fW)l dx + FI ‘=f+’ I,, AIH(w)l dx 
z K * 

< z j A[H(w)] dx + f ‘=g+’ j” A[@ + l)w] dx 
i=o R< k=l i=nk Rj 

< 2 j A[H(w)] dt + 5 2-” 
i-0 Pi k=l 

since on U& A& , the function w is bounded from the definition of 
J&. Thus WE&. Q.E.D. 

To complete the proof of the theorem, suppose there exists 
f E WmLB - E. Since E is closed in the n Es topology, there exists 
gEnE3suchthat(f,g)= land(W”E,,g)=O.Sinceg~nE~, 
every component gs E EB . Since the set of g” is finite, one may construct 
by the lemma an N function I$ such that g” E LB0 C Eg for every s, and 
hence g E n LBo. Since B,, > B, B > B, and n LB C n EBo . Since 
f E WmLB , f E WmEBo, and there exists, therefore, a sequence of 
Cm functions fk such that /I fk - f /IwmLBo --f 0. So 

. 

Kfk -f, .d G llfk -fllw”LBo II g IlLSo --+ 0 

But fk E P(sZ) C WmEB . Hence by the above assumption [ ( fk -PJ\ ; 
I(f,g)i # 0. This is a contradiction. . , . 
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