
1

An Introduction to the Morrey and Campanato Spaces

Abstract

Regularity theorems which allow one to conclude higher regularity of a function from a lower regularity and a

differential equation play a central role in the theory of PDEs. One version of the Sobolev embedding theorem which

states that W p,k(Rn) ↪→ Cr,β(Rn) for k−r−a = n/p is such an example. The Campanato spaces, an enhanced version

of the Morrey spaces, extend the notion of functions of bounded mean oscillation and allow a full characterization

C0,β(Rn). The theory of Campanato spaces may come in useful when the Sobolev embedding theorem is not. The

main results of this project are summarized in Theorems 0.0.12, 0.0.14 and 0.0.22.

Notation 0.0.1.

1. Given a set Ω ⊂ Rn and an open ball Bρ(x), we denote Ω(x, ρ) := Ω ∩Bρ(x).

2. We will write the Lebesgue measure of a set E by |E|.

3. Vn denotes the volume of the unit ball Bn
1 (0) in Rn : Vn := |Bn

1 (0)|.

4. Given a function f : Ω −→ R, we denote the average of f over a set Ω by (f)Ω := 1
|Ω|

∫
Ω
f

5. d denotes the diameter of a bounded domain Ω ⊂ Rn : d := diamΩ.

Definition 0.0.2. (Hölder continuous functions) Let Ω be a domain in Rn and k ≥ 0, β > 0. We denote by Ck,β(Ω)

the subset of Ck(Ω) of functions f satisfying for every multiindex |i| ≤ k.

Hi,β(f) := sup
x,y∈Ω
x 6=y

|Dif(x)−Dif(y)|
|x− y|β

<∞

The functions in the space C0,β(Ω) are called Hölder continuous.

Definition 0.0.3. (Morrey and Campanato spaces) Let Ω ⊂ Rn be a bounded domain (open and connected),

1 ≤ p ≤ ∞ and λ ≥ 0.
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1. The Morrey spaces, denoted Lp,λM (Ω), are the collection of all functions f ∈ Lp(Ω) such that

M‖f‖p,λ :=

 sup
x∈Ω

0<ρ<d

ρ−λ
∫

Ω(x,ρ)

|f |p
1/p

<∞

2. The Campanato spaces, denoted Lp,λC (Ω), are the collection of all functions f ∈ Lp(Ω) such that

C [f ]p,λ :=

 sup
x∈Ω

0<ρ<d

ρ−λ
∫

Ω(x,ρ)

|f − (f)Ω(x,ρ)|p
1/p

<∞

Proposition 0.0.4.

1. M‖ · ‖p,λ defines a norm on the Morrey spaces, making them into a normed vector space.

2. C [·]p,λ defines a seminorm on the Campanato spaces. These can be made into normed vector spaces by setting

for every f ∈ Lp,λC (Ω), C‖f‖p,λ = ‖f‖p +C [f ]p,λ

Remark 0.0.5. C [f ]p,λ = 0 if and only if f�Ω(x,ρ) = (f)Ω(x,ρ) a.e. for every (x, ρ) ∈ Ω× (0, d), which implies that f

is a.e. constant on Ω.

Theorem 0.0.6. The Morrey and Campanato spaces are Banach.

Proof We prove completeness in the Morrey space, the other being very similar. Let {un} be a Cauchy sequence

in Lp,λM (Ω). Recall d := diamΩ. Choose x ∈ Ω, then sup
y∈Ω

dist(x, y) < d because if we had sup
y∈Ω

dist(x, y) = d, then

because x is an interior point we could find a small ball Bδ(x) ⊂ Ω and t ∈ Bδ(x) such that sup
y∈Ω

dist(x, y) > diamΩ,

a contradiction. This means that there is ρ∗ < d such that Bρ∗(x) ⊃ Ω. This gives us the relation

‖u‖p ≤

((
d

ρ∗

)λ ∫
Ω(x,ρ∗)

|u|p
)1/p

≤ d
λ
p

M‖u‖p,λ.

So in particular the sequence {un} is Cauchy sequence in Lp(Ω), which is complete, so there exists u ∈ Lp(Ω) such

that lim
n→∞

‖uj − u‖p = 0.
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We show that u ∈ Lp,λM (Ω). By Minkowski inequality, for all (x, ρ) ∈ Ω× (0, d),

ρ
−λ
p

(∫
Ω(x,ρ)

|u|p
)1/p

≤ ρ
−λ
p

(∫
Ω(x,ρ)

|u− un|p
)1/p

+ ρ
−λ
p

(∫
Ω(x,ρ)

|un|p
)1/p

.

Since the sequence is Cauchy in Lp,λM (Ω), the 2nd term on the RHS is uniformly bounded by, say, K. Then taking the

limit when n→∞ the 1st term on the RHS → 0 and we get

ρ
−λ
p

(∫
Ω(x,ρ)

|u|p
)1/p

≤ K.

Taking the supremum over all (x, ρ) ∈ Ω× (0, d) gives M‖u‖p,λ ≤ K. Remains to show that lim
n→∞

M‖un − u‖p,λ = 0.

Let ε > 0 be given. We have

ρ
−λ
p

(∫
Ω(x,ρ)

|u− un|p
)1/p

≤ ρ
−λ
p

(∫
Ω(x,ρ)

|u− um|p
)1/p

+ ρ
−λ
p

(∫
Ω(x,ρ)

|um − un|p
)1/p

≤ ρ
−λ
p

(∫
Ω(x,ρ)

|u− um|p
)1/p

+M ‖um − un‖p,λ

Choose no so that n,m ≥ no ⇒ M‖um − un‖p,λ < ε. Then taking the limit when m→∞ the 1st term on the RHS

→ 0. Finally taking the supremum over all (x, ρ) ∈ Ω× (0, d) gives M‖u− un‖p,λ ≤ ε.

Definition 0.0.7. A family {Er}r>0 of Borel subsets of Rn is said to shrink nicely to x ∈ Rn if :

• Er ⊂ Br(x) for all r > 0.

• There is a constant α > 0, independent of r, such that |Er| > α |Br(x)| = αVnr
n.

Remark 0.0.8. Given a bounded domain Ω ⊂ Rn, consider the family of sets {Ω(x, ρ) : x ∈ Ω, 0 < ρ < d}

=
⋃
x∈Ω

{Ω(x, ρ) : 0 < ρ < d}. Suppose that each family {Ω(x, ρ) : 0 < ρ < d} shrinks nicely, then we have strictly

positive constants {αx}x∈Ω such that |Ω(x, ρ)| > αx |Bρ(x)| for all x ∈ Ω, ρ ∈ (0, d). If the αx can be chosen so that

α := inf
x∈Ω

αx > 0 then we shall say that the domain Ω is type-α, that is to say, there exists α > 0 such that |Ω(x, ρ)|

> αVnρ
n for all (x, ρ) ∈ Ω× (0, d).
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Definition 0.0.9. For f ∈ Lp,λM (Ω), let

M‖f‖′p,n =

 sup
x∈Ω

0<ρ<d

|Ω(x, ρ)|
−λ
n

∫
Ω(x,ρ)

|f |p
1/p

Lemma 0.0.10. M‖ · ‖′p,n also defines a norm on the Morrey spaces. M‖ · ‖′p,n is finer than M‖ · ‖p,n and if Ω is

type-α, then the two norms are equivalent.

Proof Showing M‖ · ‖′p,n is a norm is straightforward. That M‖ · ‖′p,n is finer than M‖ · ‖p,n comes from the fact

that ρ−λ

V
λ
n
n

= 1

(Vnρn)
λ
n

= 1

|Bρ(x)|
λ
n
≤ 1

|Ω(x,ρ)|
λ
n

. If Ω is type-α, then there exists α > 0 such that for all (x, ρ) ∈ Ω× (0, d),

αVnρ
n ≤ |Ω(x, ρ)|, i.e. (αVn)

λ
n |Ω(x, ρ)|−λn ≤ ρ−λ.

We recall a fundamental result that will be useful in the proof the subsequent theorem.

Theorem 0.0.11. (Lebesgue Differentiation Theorem) Supppose f ∈ L1
loc(Rn). Then for Lebesgue-almost all x ∈ Rn

lim
r→0

1
|Er|

∫
Er
|f(y)− f(x)|dy = 0 for every family {Er}r>0 that shrinks nicely to x.

Theorem 0.0.12.

1. For 1 ≤ p <∞, Lp,0M (Ω) = Lp(Ω), i.e. Lp,0M (Ω) and Lp(Ω) are continuously imbedded in each other.

2. For 1 ≤ p <∞, Lp,nM (Ω)←↩ L∞(Ω). If further Ω is type-α (see Remark 0.0.8), then Lp,nM (Ω) ↪→ L∞(Ω).

3. For 1 ≤ p <∞, λ > n, Lp,λM (Ω) = {0}.

4. For 1 ≤ p ≤ q <∞ and λ, µ ≥ 0 so that λ−n
p
≤ µ−n

q
then Lq,µM (Ω) ↪→ Lp,λM (Ω).

Proof

1. Straight from the definition of the Morrey norm we have M‖f‖p,0 = ‖f‖p. So the identity map from Lp,0M (Ω)

into Lp(Ω) and vice-versa is continuous.

2. Let f ∈ L∞(Ω). Then for all (x, ρ) ∈ Ω× (0, d) we have

1

ρn

∫
Ω(x,ρ)

|f |p ≤ |Ω(x, ρ)|
ρn

‖f‖p∞ ≤
|Bρ(x)|
ρn

‖f‖p∞ ≤ Vn‖f‖p∞.
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where Vn is the volume of the unit ball in Rn. From this we conclude that M‖f‖p,n ≤ V
1/p
n ‖f‖∞ and the identity

map from L∞(Ω) into Lp,nM (Ω) is continuous. This map is also surjective when Ω is type-α. To see this, suppose

that there exists f ∈ Lp,nM (Ω) \ L∞(Ω). Then f ∈ Lp(Ω). In particular |f |p ∈ L1(Ω) and so by the Lebesgue

differentiation theorem, lim
r→0

1
|Ω(x,r)|

∫
Ω(x,r)

|f |p = |f(x)|p for almost all x ∈ Ω. We also have ‖f‖∞ =∞. So given

C > 0 arbitrarily large, the set {x ∈ Ω : |f(x)| > C1/p} has strictly positive measure and almost all points

in that set are Lebesgue points. Thus we can find (x, ρ) ∈ Ω × (0, d) such that 1
|Ω(x,r)|

∫
Ω(x,r)

|f |p > C. We

conclude M‖f‖′p,n =∞ and using the assumption that Ω is type-α, this is equivalent to M‖f‖p,n =∞, but this

is a contradiction. Finally, since the identity map from Lp(Ω) to Lp,0M (Ω) is a continuous linear bijection, we

conclude by the bounded inverse theorem that the identity map from Lp,nM (Ω) to L∞(Ω) is continous.

3. For λ > n, say λ = n + ε, then by the Lebesgue differentiation theorem lim
ρ→0

ρ−n
∫

Ω(x,r)
|f |p ≤ Vn|f(x)|p for

almost all x ∈ Ω. From this we see that unless |f(x)| = 0 (almost everywhere) lim
ρ→0

ρ−ερ−n
∫

Ω(x,r)
|f |p =∞.

4. By Hölder’s inequality with conjugate exponents 1
p/q

and 1
1−p/q , we have

∫
Ω(x,r)

|f |p ≤ (
∫

Ω(x,r)
1)1−p/q(

∫
Ω(x,r)

|f |q)p/q

≤ (Vnρ
n)1−p/q(

∫
Ω(x,r)

|f |q)p/q ≤ V
1−p/q
n ρn(1−p/q)+µp/q(ρ−µ

∫
Ω(x,r)

|f |q)p/q. Now λ−n
p
≤ µ−n

q
⇔ λ ≤ n(1 − p/q) +

µp/q ⇒
(
ρ
d

)n(1−p/q)+µp/q ≤
(
ρ
d

)λ ⇒ ρn(1−p/q)+µp/q ≤ ρλdn(1−p/q)+µp/q−λ. Putting everything together we have

(ρ−λ
∫

Ω(x,r)
|f |p)1/p ≤ C(ρ−µ

∫
Ω(x,r)

|f |q)1/q and thus M‖f‖p,λ ≤ CM‖f‖q,µ, where Cp = V
1−p/q
n dn(1−p/q)+µp/q−λ is

a constant. It follows that the identity map from Lq,µM (Ω) into Lp,λM (Ω) is continuous.

Remark 0.0.13. Theorem 1.1.11 suggests that for fixed p ∈ [1,∞) the Morrey spaces {Lp,λM (Ω)}λ∈[0,n] provide a

certain scaling of the spaces between Lp(Ω) and L∞(Ω). Also, taking p = q in point 4, we have Lp,µM (Ω) ↪→ Lp,λM (Ω)

whenever µ ≥ λ, just like for finite Lp spaces.

Some, but not all, properties of the Morrey spaces also hold for the Campanato spaces:

Theorem 0.0.14.

1. For 1 ≤ p <∞, Lp,0C (Ω) = Lp(Ω).

2. For 1 ≤ p ≤ q <∞ and λ, µ ≥ 0 so that λ−n
p
≤ µ−n

q
then Lq,µC (Ω) ↪→ Lp,λC (Ω).
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In order to state the next major results concerning the Morrey and Campanato spaces we must first develop

useful tools. In what follows we will be assuming throughout that Ω is type-α.

Lemma 0.0.15. f ∈ Lp,λC (Ω) if and only if f ∈ Lp(Ω) and

|||f |||p,λ :=

 sup
x∈Ω

0<ρ<d

ρ−λ
(

inf
c∈R

∫
Ω(x,ρ)

|f − c|p
)1/p

<∞

.

Proof Clearly |||f |||p,λ ≤ C [f ]p,λ. This takes care of the ‘only if’ part of the statement. Now suppose that

f ∈ Lp(Ω) and |||f |||p,λ <∞. By convexity of t −→ |t|p for p ≥ 1, we have

∫
Ω(x,ρ)

|f − (f)Ω(x,ρ)|p

≤ 2p−1

(∫
Ω(x,ρ)

|f − c|p +

∫
Ω(x,ρ)

|c− (f)Ω(x,ρ)|p
)

= 2p−1

(∫
Ω(x,ρ)

|f − c|p + |Ω(x, ρ)|
∣∣∣c− 1

|Ω(x, ρ)|

∫
Ω(x,ρ)

f
∣∣∣p)

= 2p−1

(∫
Ω(x,ρ)

|f − c|p + |Ω(x, ρ)|1−p
∣∣∣ ∫

Ω(x,ρ)

(c− f)
∣∣∣p)

≤ 2p−1

(∫
Ω(x,ρ)

|f − c|p +
∣∣∣ ∫

Ω(x,ρ)

(c− f)
∣∣∣p)

≤ 2p−1

(∫
Ω(x,ρ)

|f − c|p +

∫
Ω(x,ρ)

|c− f |p
)

≤ 2p
(∫

Ω(x,ρ)

|f − c|p
)

Where c ∈ R is arbitrary and in the 2nd to last step we used the fact that ‖ · ‖1 ≤ ‖ · ‖p since we are in a finite

measure space. Since c ∈ R is arbitrary we can take the infimum on the RHS and then take the supremum over all

(x, ρ) ∈ Ω× (0, d) on both side. So we have C [f ]p,λ ≤ 2 |||f |||p,λ.

Corollary 0.0.16. |||·|||p,λ + ‖ · ‖p defines yet another norm on Lp,λC (Ω) which is equivalent to C‖ · ‖p,λ.
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Lemma 0.0.17. Then there exists a constant K = K(p, α, n), where α is the constant concerning the regularity of

Ω such that

0 < r < s < d⇒

∣∣∣∣∣(f)Ω(x,r) − (f)Ω(x,s)

∣∣∣∣∣ ≤ K

(
rλ + sλ

rn

)1/p
C [f ]p,λ

for all f ∈ Lp,λC (Ω) and x ∈ Ω.

Proof ∣∣∣(f)Ω(x,r) − (f)Ω(x,s)

∣∣∣p ≤ 2p−1
(∣∣∣(f)Ω(x,r) − f

∣∣∣p +
∣∣∣f − (f)Ω(x,s)

∣∣∣p)

⇒
∫

Ω(x,r)

∣∣∣(f)Ω(x,r) − (f)Ω(x,s)

∣∣∣p ≤ 2p−1

(∫
Ω(x,r)

∣∣∣(f)Ω(x,r) − f
∣∣∣p +

∫
Ω(x,r)

∣∣∣f − (f)Ω(x,s)

∣∣∣p)

⇒ |Ω(x, r)|
∣∣∣(f)Ω(x,r) − (f)Ω(x,s)

∣∣∣p ≤ 2p−1

(∫
Ω(x,r)

∣∣∣(f)Ω(x,r) − f
∣∣∣p +

∫
Ω(x,s)

∣∣∣f − (f)Ω(x,s)

∣∣∣p)

⇒ αVnr
n
∣∣∣(f)Ω(x,r) − (f)Ω(x,s)

∣∣∣p ≤ 2p−1
(
rλ + sλ

)C
[f ]pp,λ

where we used the regularity condition in the last step. Now regroup terms.

Lemma 0.0.18. There exists a constant K = K(p, λ, α) such that

∣∣∣∣∣(f)Ω(x,ρ) − (f)Ω(x, ρ
2k

)

∣∣∣∣∣ ≤ K C [f ]p,λ ρ
(λ−n)
p

k−1∑
m=0

2
m(n−λ)

p

whenever f ∈ Lp,λC (Ω) and (x, ρ) ∈ Ω× (0, d) and k ∈ N.

Proof Let f ∈ Lp,λC (Ω) and (x, ρ) ∈ Ω × (0, d) be given. By Lemma 0.0.7 we have for every m ∈ N (taking

r = ρ
2m+1 and s = ρ

2m
):

∣∣∣∣∣(f)Ω(x, ρ

2m+1 ) − (f)Ω(x, ρ
2m

)

∣∣∣∣∣ ≤ K

(
( ρ

2m+1 )λ + ( ρ
2m

)λ

( ρ
2m+1 )n

)1/p

C [f ]p,λ = Kρ
λ−n
p 2

m(n−λ)
p 2

n
p (1 + 2−λ)1/p C [f ]p,λ

⇒

∣∣∣∣∣(f)Ω(x, ρ

2m+1 ) − (f)Ω(x, ρ
2m

)

∣∣∣∣∣ ≤ K ′ρ
λ−n
p 2

m(n−λ)
p C [f ]p,λ
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Because K ′ = K2
n
p (1 + 2−λ)1/p is independent of m, we can sum over m = 0, 1, 2, ...k and use the triangle

inequality on the LHS to get the result.

Lemma 0.0.19. Let λ > n. Then for all f ∈ Lp,λC (Ω) there exists a function F defined on Ω that equals f a.e. in Ω

and such that F (x) = lim
ρ→0

(f)Ω(x,ρ) on Ω, the convergence being uniform.

Proof The existence of F is just Lebesgue’s differentiation theorem : lim
ρ→0

(f)Ω(x,ρ) = f(x) a.e. in Ω. We have to

show that the convergence is uniform. By Lemma 0.0.8 for any n, q ∈ N we have

∣∣∣∣∣(f)Ω(x, ρ
2n

) − (f)Ω(x, ρ

2n+q
)

∣∣∣∣∣ ≤ K ′′ C [f ]p,λ

( ρ
2n

) (λ−n)
p

, where K ′′ is a constant independent of x and q. Here we see that the sequence

{(f)Ω(x, ρ
2n

)}∞n=1

is Cauchy uniformly with respect to x. So for each x ∈ Ω, let

F (x) := lim
n→∞

(f)Ω(x, ρ
2n

)

By Lemma 0.0.18, we have ∣∣∣∣∣(f)Ω(x,σ) − (f)Ω(x, σ
2k

)

∣∣∣∣∣ ≤ K C [f ]p,λ σ
(λ−n)
p

k−1∑
m=0

2
m(n−λ)

p

Taking n→∞ we get ∣∣∣∣∣(f)Ω(x,σ) − F (x)

∣∣∣∣∣ ≤ K ′ C [f ]p,λ σ
(λ−n)
p

for some constant K ′. This says that (f)Ω(x,σ) → F (x) uniformly as σ → 0.

Lemma 0.0.20. Let 0 ≤ λ < n. Then there exists a constant K = K(α, p, λ, n) > 0 such that for all f ∈ Lp,λC (Ω)

and (x, ρ) ∈ Ω× (0, d) we have :

|(f)Ω(x,ρ)| ≤ |(f)Ω|+K C [f ]p,λρ
(λ−n)
p
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Proof Let f ∈ Lp,λC (Ω) and ρ ∈ (0, d) be given. Choose k ∈ N so that d
2k+1 ≤ ρ < d

2k
. We have

|(f)Ω(x,ρ)| ≤ |(f)Ω|+ |(f)Ω − (f)Ω(x, d
2k

)|+ |(f)Ω(x, d
2k

) − (f)Ω(x,ρ)|

To show the result, we must bound appropriately the 2nd and 3rd terms on the RHS. Since in fact (f)Ω = (f)Ω(x,d),

we can bound the 2nd term on the RHS using Lemma 0.0.8 We have

|(f)Ω − (f)Ω(x, d
2k

)| ≤ K2
C [f ]p,λ d

(λ−n)
p

k−1∑
m=0

2
m(n−λ)

p

= K2
C [f ]p,λ d

(λ−n)
p

2
k(n−λ)

p − 1

2
(n−λ)
p − 1

≤ K2
C [f ]p,λρ

(λ−n)
p 2(k+1)

(λ−n)
p

2
k(n−λ)

p − 1

2
(n−λ)
p − 1

≤ K2
C [f ]p,λ ρ

(λ−n)
p 2

k(λ−n)
p

2
k(n−λ)

p − 1

2
(n−λ)
p − 1

= K2
C [f ]p,λ ρ

(λ−n)
p

1

2
(n−λ)
p − 1

(
1− 1

2
k(n−λ)

p

)
Although the last term in brackets depends on k, it is bounded above by 1.

We bound the 3rd term on the RHS using Lemma 0.0.7

|(f)Ω(x, d
2k

) − (f)Ω(x,ρ)| ≤ K3

(
ρλ +

(
d

2n

)λ
ρn

)1/p

C [f ]p,λ

≤ K3

(
ρλ + (2ρ)λ

ρn

)1/p
C [f ]p,λ

≤ K3

(
ρ
λ−n
p (2λ + 1)1/p

)
C [f ]p,λ

≤ K ′3

(
ρ
λ−n
p

)
C [f ]p,λ
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Now take K = K ′3 +K2
1

2
(n−λ)
p −1

.

Lemma 0.0.21. There exists a constant K = K(α, n, λ) such that for all f ∈ L1,λ
C (Ω) and all x, y ∈ Ω,

ρ = 2|x− y| ⇒ |(f)Ω(x,ρ) − (f)Ω(y,ρ)| ≤ K C [f ]1,λ|x− y|λ−n

Proof Let f ∈ L1,λ
C (Ω) and x, y ∈ Ω be given. ρ = 2|x− y| ⇒ Ω(x, ρ) ∩Ω(y, ρ) contains both Ω(x, ρ) and Ω(y, ρ)

.

|(f)Ω(x,ρ) − (f)Ω(y,ρ)| ≤ |(f)Ω(x,ρ) − u|+ |u− (f)Ω(y,ρ)|

⇒
∫

Ω(x,ρ)∩Ω(y,ρ)

|(f)Ω(x,ρ) − (f)Ω(y,ρ)| ≤
∫

Ω(x,ρ)∩Ω(y,ρ)

|(f)Ω(x,ρ) − u|+
∫

Ω(x,ρ)∩Ω(y,ρ)

|u− (f)Ω(y,ρ)|

.

⇒ |(f)Ω(x,ρ) − (f)Ω(y,ρ)|
∣∣∣Ω(x, ρ) ∩ Ω(y, ρ)

∣∣∣ ≤ ∫
Ω(x,ρ)

|(f)Ω(x,ρ) − u|+
∫

Ω(y,ρ)

|u− (f)Ω(y,ρ)|

⇒ |(f)Ω(x,ρ) − (f)Ω(y,ρ)|
∣∣∣Ω(x, ρ) ∩ Ω(y, ρ)

∣∣∣ ≤ 2ρλ C [f ]1,λ

Since Ω(x, ρ
2
) ⊂ Ω(x, ρ) ∩ Ω(y, ρ) and |Ω(x, ρ

2
)| ≥ αVn

(
ρ
2

)n
by regularity of Ω, we get

|(f)Ω(x,ρ) − (f)Ω(y,ρ)| ≤ Kρλ−n C [f ]1,λ

for some constant K.

Theorem 0.0.22. Let 1 ≤ p <∞

1. For λ ∈ [0, n), Lp,λC (Ω) = Lp,λM (Ω)

2. For λ ∈ (n, n+ p], Lp,λC (Ω) = C0,β(Ω), where β = λ−n
p

.

3. For λ > n+ p or β > 1, the spaces Lp,λC (Ω) and C0,β(Ω) contain only constant functions.

4. For λ = n, L∞(Ω) ↪→ Lp,nC (Ω), but L∞(Ω) 6= Lp,nC (Ω).

Proof
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1. Let λ ∈ [0, n) and f ∈ Lp,λM (Ω). By Corollary 0.0.6,

C‖f‖p,λ ≤ 2
(
‖f‖p + |||f |||p,λ

)

= 2

‖f‖p +

 sup
x∈Ω

0<ρ<d

ρ−λ
(

inf
c∈R

∫
Ω(x,ρ)

|f − c|p
)1/p


≤ 2

(
‖f‖p +M ‖f‖p,λ

)
≤ KM‖f‖p,λ

where K is some constant; the last inequality is derived in the proof of Theorem 0.0.6. Hence f ∈ Lp,λC (Ω) and

the identity operator from Lp,λM (Ω) into Lp,λC (Ω) is continuous.

Conversely, suppose f ∈ Lp,λC (Ω). We have :

∫
Ω(x,ρ)

|f |p ≤ 2p−1

(∫
Ω(x,ρ)

|f − (f)Ω(x,ρ)|p +

∫
Ω(x,ρ)

|(f)Ω(x,ρ)|p
)

The 1st term on the RHS is bounded above by ρλ C [f ]pp,λ and to bound the 2nd term on the RHS we have by

Lemma 0.0.20

|(f)Ω(x,ρ)|p ≤
(
|(f)Ω|+K C [f ]p,λ ρ

(λ−n)
p

)p
≤ 2p−1

(
|(f)Ω|p +Kp C [f ]pp,λ ρ

λ−n)
Therefore, ∫

Ω(x,ρ)

|f |p ≤ 2p−1
(
ρλ C [f ]pp,λ + |Ω(x, ρ)|2p−1

(
|(f)Ω|p +Kp C [f ]pp,λ ρ

λ−n))
= 2p−1

(
ρλ C [f ]pp,λ + |Ω(x, ρ)|2p−1|(f)Ω|p + |Ω(x, ρ)|2p−1Kp C [f ]pp,λ ρ

λ−n)
≤ 2p−1

(
ρλ C [f ]pp,λ + 2p−1 |Ω(x, ρ)|

|Ω|
‖f‖pp + Vnρ

n2p−1Kp C [f ]pp,λ ρ
λ−n
)

≤ K ′
(
ρλ C [f ]pp,λ + ρn‖f‖pp

)
for some constant K ′. Multiplying both sides by ρ−λ, taking the supremum and using the fact that n− λ > 0

gives us M‖f‖p,λ ≤ K ′′ C‖f‖p,λ.
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2. Let λ > n and α = (λ− n)p−1, f ∈ C0,α(Ω).Then

∫
Ω(x,r)

|f − (f)Ω(x,r)|p

=

∫
Ω(x,r)

|Ω(x, r)|−p

∣∣∣∣∣
∫

Ω(x,r)

(f(y)− f(t)dt

∣∣∣∣∣
p
 dy

≤
∫

Ω(x,r)

|Ω(x, r)|−1

 ∫
Ω(x,r)

|f(y)− f(t)|pdt

 dy

where we have used precisely the following basic relation for finite Lp spaces: ‖f‖1 ≤ ‖f‖p|Ω(x, r)|1−1/p.

≤
∫

Ω(x,r)

|Ω(x, r)|−1

 ∫
Ω(x,r)

|f(y)− f(t)|p

|y − t|αp
|y − t|αpdt

 dy

≤
∫

Ω(x,r)

|Ω(x, r)|−1

 ∫
Ω(x,r)

Hp
0,αr

αpdt

 dy

= |Ω(x, r)|Hp
0,αr

αp

⇒ r−λ
∫

Ω(x,r)

|f − (f)Ω(x,r)|p ≤ Vnr
nHp

0,αr
αp−λ

⇒C [f ]p,λ ≤ VnH
p
0,α

Also ‖f‖p ≤ ‖f‖∞|Ω|1/p = ‖f‖C(Ω)|Ω|1/p.

So taking K = max{Vn, |Ω|1/p} (for example) we get C‖f‖p,λ ≤ K‖f‖C0,β(Ω).

For the converse, by part 4 of Theorem 0.0.12, Lp,λC (Ω) ↪→ L1,β+n
C (Ω) whenever β ≤ λ−n

p
, so it is enough to show

that L1,β+n
C (Ω) ↪→ C0,β for β ∈ (0, 1]. Let f ∈ L1,β+n

C (Ω). By Lemma 0.0.19 F (x) = lim
r→0

(f)Ω(x,r) and F = f a.e.

in (Ω) Let x, y ∈ Ω, r = 2|x− y|. We have
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|F (x)− F (y)| ≤ |F (x)− (f)Ω(x,r)|+ |(f)Ω(x,r) − (f)Ω(y,r)|+ |(f)Ω(y,r) − F (y)|

By the last relation in the proof of Lemma 0.0.19, we have

|(f)Ω(x,r) − F (x)| ≤ K1
C [f ]1,β+n r

β

and

|(f)Ω(y,r) − F (y)| ≤ K1
C [f ]1,β+n r

β

and by Lemma 0.0.21 we get

|(f)Ω(x,r) − (f)Ω(y,r)| ≤ K2
C [f ]1,β+n (r/2)β

Putting everything together, we have

|F (x)− F (y)|
|x− y|β

≤ KC [f ]1,β+n

⇒ H0,β(f) ≤ KC [f ]1,β+n

3. The result is well known for C0,β(Ω).

4. Let f ∈ L∞(Ω) and (x, ρ) ∈ Ω× (0, d). We have:

∫
Ω(x,ρ)

|f − (f)Ω(x,ρ)|p

≤ 2p−1

 ∫
Ω(x,ρ)

|f |p + |Ω(x, ρ)||(f)Ω(x,ρ)|p


≤ 2p|Ω(x, ρ)| (‖fp‖∞ + ‖f‖p∞)

≤ Vnρ
n2p‖f‖p∞
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⇒C [f ]p,N ≤ K‖f‖∞

So this gives us L∞(Ω) ↪→ Lp,nC (Ω).

For n = 1, say Ω = (0, 1), then log|x| is a typical example of a function that doesn’t belong to L∞(0, 1), but

that does belong to Lp,nC (0, 1). This can be generalized to higher dimensions and more arbitrary domains.
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