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Abstract. We prove that if a vector-function f belongs to the Morrey space L1,λ(Ω, RN ), with
Ω ⊂ Rn , n ≥ 3, N ≥ 2, λ ∈ [0, n − 2], then there exists a very weak solution u of the system{ −Di (Aij (x)Dj u) = f in Ω

u ∈ W
1,1
0 (Ω, RN )

such that Du belongs to the space L
q,n−q(n−λ−1)
loc (Ω, RnN ) for any q ∈ [1, n

n−1 [, provided the matrix
of coefficients (Aij ) has L∞ ∩ VMO entries.

2000 Mathematics Subject Classification: 35J25, 35D10.

1 Introduction

The paper is devoted to the study of existence and regularity of solutions to the Dirichlet
problem associated to the system1

{
A(u) ≡ −Di (Aij (x)Dj u) = f

u ∈ W
1,1
0 (Ω, RN )

(1)

whereΩ is an open bounded subset of Rn (n ≥ 3) with C1-boundary, A is an ellipticoperator
with VMO-coefficients and f belongs to the Morrey space L1,λ(Ω, RN ), λ ∈ [0, n − 2].

The study of linear elliptic equations (N = 1) with L1 (or measure) right-hand side and
bounded coefficients was started by G. Stampacchia (see [33, 39]) and was treated later by
many authors and by different approaches (see [8, 19, 34, 4]); while, for elliptic systems
(N ≥ 2), several existence results were obtained under additional structural conditions.

As a matter of fact in [20] the authors consider nonlinear elliptic systems

−div σ(x , u(x), Du(x)) = μ in Ω
u = 0 on ∂Ω

The second author was supported by grants GACR 201/09/0917 and MSM 0021620839.
1 Einstein’s convention will be used throughout the paper.
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914 S. Leonardi and J. Stará

with p − q growth and a structural condition

σ(x , u, F) : MF ≥ 0(2)

for all x ∈ Ω, u ∈ RN , F ∈ RnN and all matrices M ∈ MN×N of the form

M = Id − a ⊗ a

with |a| ≤ 1 (which is satisfied for p -Laplacean).
In this paper we consider linear systems with VMO coefficients without further structural

conditions (as for instance condition (2)) and prove existence and regularity results for
(suitably defined) weak solutions. A main feature of the paper is that we show that the
regularity of solutions improves when the right-hand side function belongs to the Morrey
space L1,λ. The details of the proof show that the results are valid also for BMO coefficients
with sufficiently small BMO seminorm.

Here we also recall that the VMO space of functions with “vanishing mean oscillations”
(not only bounded), introduced by Sarason in [38], turns out to be very useful in the study of
smoothness of weak solutions to elliptic equations or systems (see [13] for a survey and [1]).
In fact the VMO condition provides the natural integral-type generalization of continuity
allowing for extending several classical results for constant coefficients problems to those
with variable ones.

An important ingredient in our approach is the so called A-harmonic approximation
Lemma of Duzaar & Steffen [24], a new method allowing for a rapid and elegant imple-
mentation of certain comparison procedures. The technique has already been employed in
the analysis of partial regularity of solutions to non-linear elliptic systems, while suitable
analogs have been obtained for degenerate and parabolic problems [22, 23]. Here we shall
use an extension of the A-harmonic approximation lemma, in the version which can be
found in the appendix of [21], suitable for applications to problems with a right-hand side
exhibiting certain decay properties; see Lemma 3.1 below.

We remark that recent regularity results in Morrey spaces of the type L1,λ are in the
papers [15, 16, 17, 35].

The paper is organized as follows: we start with notations and a few auxiliary results
in Section 2. In Section 3 we recall a known (see [41]) Morrey spaces regularity result
saying that for f ≡ Digi, with gi ∈ L2,λ(Ω, RN ), the gradient Du of the solution u to the
problem (1) belongs to the same space L2,λ(Ω, RnN ).

This assertion allows us to prove the existence of the very weak (briefly Stampacchia)
solution to (1) for any f ∈ L1(Ω, RN ) by duality method in Section 4.

An analog of Saint-Venant’s principle for solutionsof (1) with f ≡ 0 is given in Section 5.
In the last Section 6 these results, combined with a Campanato-type approach, yield the local
regularity of Du in a suitable Morrey space.

2 Some notations and auxiliary results

In Rn (n ≥ 3), with generic point x = (x1, x2, . . . , xn ), we shall denote by Ω a bounded
open nonempty set with diameter dΩ and C1-boundary ∂Ω.
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Regularity results for the gradient of solutions of linear elliptic systems 915

For ρ > 0 and xo ∈ Rn we define

B(xo , ρ) = {x ∈ Rn : |x − xo| < ρ},
Ω(xo , ρ) = Ω ∩ B(xo , ρ),

d (xo , ∂Ω) = dist(xo, ∂Ω).

If yo = (yo1, . . . , yon−1, 0) we define

B+(yo, ρ) = {x ∈ B(yo , ρ) : xn > 0},
Γ (yo, ρ) = {x ∈ B(yo , ρ) : xn = 0}.

Moreover, if u ∈ L1(Ω(xo , ρ), RN ) we denote by

uΩ(xo ,ρ) =
1

|Ω(xo, ρ)|
∫
Ω(xo,ρ)

u(x) dx

where |Ω(xo, ρ)| is the n-dimensional Lebesgue measure of Ω(xo, ρ).

Definition 2.1 (Morrey space). Let q ≥ 1 and 0 ≤ λ < n. By Lq,λ(Ω, RN ) we denote the
linear space formed by the vector-functions u ∈ Lq(Ω, RN ) for which

‖u‖Lq,λ(Ω) = sup
xo∈Ω, 0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x)|qdx

}1/q

< +∞.

Lq,λ(Ω, RN ) equipped with the above norm is a Banach space.

Definition 2.2 (Campanato space). Let q ≥ 1 and 0 ≤ λ < n + q. By Lq,λ(Ω, RN ) we
denote the space of all vector-functions u ∈ Lq(Ω, RN ) such that

[u]Lq,λ(Ω) = sup
xo∈Ω, 0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x) − uΩ(xo,ρ)|qdx

}1/q

< +∞.

Moreover we introduce the notion of BMO and VMO classes.

Definition 2.3 (John–Nirenberg space). Let Q be a cube in Rn . By BMO(Q) we denote the
space of all functions u ∈ L1(Q, RN2

) such that the seminorm defined by

[u]BMO(Q) = sup
Q̃⊂Q

1

|Q̃|
∫
|Q̃|

|u − uQ̃| dx

is finite, where the supremum is taken over all cubes with sides parallel to coordinate axes.
Let us recall that Lq,n (Q) ∼= BMO(Q), ∀q ≥ 1.
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916 S. Leonardi and J. Stará

Definition 2.4 (Sarason space). For a matrix-functionw ∈ L1(Ω, RN2
) and r > 0 we define

V(x , r) ≡ sup
0<ρ≤r

1

|Ω(x , ρ)|
∫
Ω(x ,ρ)

|w(y) − wΩ(x ,ρ)|dy

and we introduce the VMO-continuity modulus for w

V(r) ≡ sup
x∈Ω

V(x , r).

By VMO we denote the space of all matrix-functions w ∈ L1(Ω, RN2
) such that

V(r) < +∞ for all 0 < r ≤ dΩ

and

lim
r→0

V(r) = 0.

In Section 3 we will need the following simple

Lemma 2.1. Let gi ∈ L∞(Ω) ∩VMO for i = 1, 2. Then g3 ≡ g1 · g2 ∈ L∞(Ω) ∩VMO and

V3(r) ≤
√

2‖g1‖L∞(Ω) ‖g2‖L∞(Ω)

(√
‖g1‖L∞(Ω) V2(r) +

√
‖g2‖L∞(Ω) V1(r)

)
,(3)

where we denote, for i = 1, 2, 3,

Vi(r) ≡ sup
x∈Ω,0<ρ≤r

1

|Ω(x , ρ)|
∫
Ω(x ,ρ)

|gi(y) − (gi)Ω(x ,ρ)|dy.

Proof. For any x ∈ Ω, ρ ∈ ]0, r] we have

V3(x , ρ) ≤ 1

|Ω(x , ρ)|1/2

( ∫
Ω(x ,ρ)

|g1(y) g2(y) − (g1)Ω(x ,ρ) (g2)Ω(x ,ρ)|2dy
)1/2

≤ 1

|Ω(x , ρ)|1/2

{(∫
Ω(x ,ρ)

|g1(y) g2(y) − (g1)Ω(x ,ρ) g2(y)|2dy
)1/2

+
( ∫

Ω(x ,ρ)
|g2(y) − (g2)Ω(x ,ρ)|2|(g1)Ω(x ,ρ)|2dy

)1/2}

where we have used Hölder inequality and the fact that

∫
Ω(x ,ρ)

|g3(y) − (g3)Ω(x ,ρ)|2dy = inf
c∈R

∫
Ω(x ,ρ)

|g3(y) − c|2dy.
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Regularity results for the gradient of solutions of linear elliptic systems 917

As, for i = 1, 2, it is (gi)Ω(x ,ρ) ≤ ‖gi‖L∞(Ω) we have

V3(x , r) ≤
{

‖g2‖L∞(Ω)

√
2‖g1‖L∞(Ω)V1(r) + ‖g1‖L∞(Ω)

√
2‖g2‖L∞(Ω)V2(r)

}
and the thesis follows at once.

3 L2,λ -regularity of Du on Ω

If u : Ω → RN , we set

Di ≡ ∂

∂xi
, Du = (Diu

r ) i=1,...,n
r=1,...,N

.

Let Aij (x), i, j = 1, 2, . . . , n, be matrix-functions for which the following conditions are
satisfied:

Aij (x) =
(

Ars
ij (x)

)
r,s=1,...,N

∈ L∞(Ω, RN2
) ∩ VMO,

Ars
ij (x) = Asr

j i (x) for a.a. x ∈ Ω,

(4)

there exist two positive constants Λ1 and Λ2 such that

Λ2 |ξ|2 ≥ Aij (x)ξiξj ≥ Λ1 |ξ|2
for a.a. x ∈ Ω, ∀ξ = (ξr

i ) ∈ RnN .

(5)

For x ∈ Ω, 0 < r ≤ dΩ, we set

V(x , r) ≡ sup
0<ρ≤r

i,j =1,2,...,n

1

|Ω(x , ρ)|
∫
Ω(x ,ρ)

|Aij (y) − (Aij )Ω(x ,ρ)|dy.(6)

In this section we are concerned with regularity of a weak solution u ∈ W1,2
0 (Ω, RN ) of the

problem

Di(Aij (x)Dj u) = Digi in Ω(7)

where Ω is an open bounded domain with C1 boundary, gi ∈ L2,λ(Ω, RN ) and the coeffi-
cients satisfy conditions (4) and (5).

The main result of this section,Theorem 3.1, is not new and can be found in [41]. However
we present here a proof, for reader’s convenience, based on Steffen, Duzaar, Grotowski
method of A-harmonic approximation (see [24, 21, 30]).

Theorem 3.1. Let u ∈ W1,2
0 (Ω, RN ) be the weak solution to the problem (7), let conditions

(4) and (5) be satisfied. Assume that gi ∈ L2,λ(Ω, RN ), for λ ∈ [0, n[.
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918 S. Leonardi and J. Stará

Then Du ∈ L2,λ(Ω, RnN ) and there exists a positive constant c = cV(n,λ,Λ1,Λ2,Ω)
such that the inequality

‖Du‖L2,λ(Ω) ≤ c ‖g‖L2,λ(Ω)(8)

holds.2

In particular, if

λ ∈ ]n − 2, n[(9)

then u ∈ C0,γ(Ω, RN ), with γ = 1 − n−λ
2 , and the inequality

[u]C0,γ (Ω) ≤ c ‖g‖L2,λ(Ω)(10)

holds.

Corollary 3.1. Let Ω = B(xo , R), 0 < R ≤ 1, and assume the hypotheses of the theorem
with λ ∈ ]n − 2, n[. Then u ∈ C0,γ(Ω, RN ) and there exists a positive constant c =
cV (n,λ,Λ1,Λ2), which is independent of R, such that the inequality

[u]C0,γ (Ω) ≤ c ‖g‖L2,λ(Ω)(11)

holds.

Proof. The corollary is true for Ω = B(0, 1) by the previous theorem.
Let us perform the following change of variables

ũ(y) := R−1u(xo + Ry), Ãij (y) := Aij (xo + Ry),

g̃(y) := g(xo + Ry), y ∈ B(0, 1),

and note that the transformed coefficients Ãij are still in the VMO class.
In fact it is not difficult to see that, denoting by Ṽ the VMO-continuity modulus for Ãij ,

it holds

Ṽ(r) = V(Rr) ≤ V(r).

Moreover, ũ satisfies the system (7) with coefficients Ãij and right-hand side g̃ and

‖g̃‖L2,λ(B(0,1)) = Rλ−n ‖g‖2
L2,λ(B(xo,R)),

[ũ]C0,γ (B(0,1)) R1−γ = [u]C0,γ (B(xo,R)).

The aforementioned remarks prove the corollary.

2 As a permanent convention we will denote by cV(. . . ,Ω) a constant which depends on various
parameters, on the coefficients of the system through the smallnessof theirVMO-continuity modulus
and on the geometrical properties of the involved domainΩ.
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Regularity results for the gradient of solutions of linear elliptic systems 919

Before beginning the proof of the Theorem 3.1 we present some auxiliary results.
The first Lemma 3.1 has its origin in an A-harmonic approximation Lemma of F. Duzaar

and J. F. Grotowski (Lemma 2.1, p. 292 of [21]) reformulated by M. Giaquinta (see Lemma
A.1 of [21] ) and slightly modified by M. Pošta (for parabolic boundary case see [37]). The
second Lemma 3.2 can be deduced in a similar way from Lemma 2.1, p. 357 of [30].

Lemma 3.1. Let 0 < Λ1 < Λ2 and n, N ∈ N, with n ≥ 2, be fixed.
Then for any ε > 0 there exists a constant C(ε) > 0 such that the following holds:

for any bilinear form A on RnN , satisfying the conditions

〈A ξ, ξ〉 ≥ Λ1|ξ|2,(12)

|A| ≤ Λ2,(13)

and for any u ∈ W1,2(B(xo , ρ), RN ) there exists h ∈ W1,2(B(xo , ρ), RN ) such that

−div (A Dh) = 0 on B(xo , ρ),(14)

∫
B(xo ,ρ)

|Dh|2 dx ≤
∫

B(xo,ρ)
|Du|2 dx ,(15)

there exists ϕ ∈ C1
0(B(xo , ρ), RN ) so that

‖Dϕ‖L∞(B(xo,ρ)) ≤ 1

ρ
(16)

and

∫
B(xo ,ρ)

|u − h|2 dx ≤ C(ε) ρ4−n

(∫
B(xo ,ρ)

A Du Dϕ dx

)2

+ ε ρ2
∫

B(xo ,ρ)
|Du|2 dx .

(17)

Lemma 3.2. Let 0 < Λ1 < Λ2 and n, N ∈ N, with n ≥ 2, be fixed.
Then for any ε > 0 there exists a constant C(ε) > 0 such that the following holds:

For any bilinear form A on RnN , satisfying the conditions (12) and (13), and for any
u ∈ W1,2(B+(yo, ρ), RN ), such thatu = 0 onΓ (yo, ρ), there exists h ∈ W1,2(B+(yo, ρ), RN )
such that:

−div (A Dh) = 0 on B+(yo, ρ),

h = 0 on Γ (yo, ρ),

(18)

∫
B+(yo,ρ)

|Dh|2 dx ≤
∫

B+(yo,ρ)
|Du|2 dx ,(19)
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920 S. Leonardi and J. Stará

there exists ϕ ∈ C1
0(B+(yo, ρ), RN ) so that

‖Dϕ‖L∞(B+(yo,ρ)) ≤ 1

ρ
(20)

and

∫
B+(yo,ρ)

|u − h|2 dx ≤ C(ε) ρ4−n

(∫
B+(yo,ρ)

A Du Dϕ dx

)2

+ ε ρ2
∫

B+(yo,ρ)
|Du|2 dx .

(21)

Proof. Let us outline the proof of the lemma.
Firstly observe that it is enough to prove it for ρ = 1 since the full assertion follows by

a standard homotopy argument. Lemma 2.1 of [30] in this case and in our notation reads as
follows:

Let 0 < Λ1 < Λ2 and n, N ∈ N, with n ≥ 2, be fixed.
Then for any ε > 0 there exists a constant δ(n, N ,Λ1,Λ2, ε) ∈]0, 1] with the following

property:

For any bilinear form A on RnN , satisfying the conditions (12) and (13), and for any w ∈
W1,2(B+(yo, 1), RN ), such that w = 0 on Γ (yo, 1),

∫
B+(yo ,1)

|Dw|2dx ≤ 1

and ∣∣∣∣
∫

B+(yo,1)
A(Dw, Dϕ)dx

∣∣∣∣ ≤ δ sup
y∈B+(yo ,1)

|Dϕ(y)|(22)

for all ϕ ∈ C1
0(B+(yo, 1), RN ), there exists a function v ∈ W1,2(B+(yo, 1), RN ) solving

−div (ADv) = 0 on B+(yo, 1)

such that∫
B+(yo ,1)

|Dv|2dx ≤ 1, v = 0 on Γ (yo, 1)

and ∫
B+(yo ,1)

|v − w|2dx ≤ ε.
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Regularity results for the gradient of solutions of linear elliptic systems 921

Let us deduce now the assertion of Lemma 3.2.
Fix any ε > 0 and find a δ, as in the quoted lemma, so that (22) holds for w :=

u∫
B+ (yo,1) |Du|2dx

.3 Then there is a function v satisfying the above requirements, i.e. the function

h := v
∫

B+(yo,1) |Du|2dx fulfills (18), (19) and (21) choosing ϕ ≡ 0.

If, vice versa, there is a nonzero ψ ∈ C1
0(B+(yo, 1), RN ) such that

∣∣∣∣
∫

B+(yo,1)
A(Dw, Dψ)dx

∣∣∣∣ > δ supy∈B+(yo,1)|Dψ(y)|,(23)

we set

h = 0, ϕ =
ψ

supy∈B+(yo,1) |Dψ| , C(ε) =
CP

δ

where CP is the constant from Poincaré’s inequality (see e.g. Theorem 2.2 p. 359 of [30]).
As ‖Dϕ‖L∞(B+(y0,1)) = 1, inequality (23) and Poincaré’s inequality imply

∫
B+(yo,1)

|w − h|2dx ≤ CP

∫
B+(yo,1)

|Dw|2dx ≤ C(ε)

∣∣∣∣
∫

B+(yo,1)
A(Dw, Dϕ)dx

∣∣∣∣ .

Then multiplying the last inequality by
∫
B+(yo,1) |Du|2dx we have the assertion.

Next we prove local interior and boundary analogues of Theorem 3.1. The following lemma
is the analog of Theorem 9.1 at p. 339 of [11].

Lemma 3.3. Let u ∈ W1,2(Ω, RN ) be a solution to the equation (7) where gi ∈ L2,λ(Ω, RN ),
with λ ∈ [0, n[, and let conditions (4) and (5) be satisfied.

Then there exist two positive constants c = c(n,λ,Λ1,Λ2) and ρo = ρV (n,λ,Λ1,Λ2)
such that

‖Du‖L2,λ(B(zo,R/4)) ≤ c
(

R−λ/2 ‖Du‖L2(B(zo ,R)) + ‖g‖L2,λ(Ω)

)
(24)

for any zo ∈ Ω and 0 < R < min{d (zo, ∂Ω), ρo}.

Proof. Let xo ∈ Ω and fix σ and ρ such that 0 < σ < ρ < d (xo, ∂Ω).
By Caccioppoli’s inequality (see e.g.Theorem 1.V at p. 46 of [12] or Lemma 5.II at p. 328

of [11]) we have

∫
B(xo ,σ/2)

|Du|2 dx ≤ c1(Λ1,Λ2)

[
1

σ2

∫
B(xo,σ)

|u − uB(xo ,σ)|2 dx +
∫

B(xo ,σ)
|g|2 dx

]
.(25)

3 Note that the assertion is trivial for
∫
B+(yo,1) |Du|2dx = 0.
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922 S. Leonardi and J. Stará

Set A = (Aij )B(xo ,ρ) and recall that Lemma 3.1 ensures the existence of a function h ∈
W1,2(B(xo , ρ), RN ) satisfying system (14) and inequalities (15) and (17). Thus, from (25)
we deduce

∫
B(xo,σ/2)

|Du|2 dx ≤ 2c1
1

σ2

(∫
B(xo ,σ)

|u − uB(xo ,σ) − (h − hB(xo ,σ))|2 dx

+
∫

B(xo,σ)
|h − hB(xo ,σ)|2 dx

)
+ c1 σ

λ‖g‖L2,λ(Ω).

(26)

As the function h is a solution to (14), by Poincaré and the well-known Campanato’s in-
equality (see Theorem 3.I at p. 54 of [12]), we obtain

I1 ≡
∫

B(xo,σ)
|h − hB(xo ,σ)|2 dx ≤ c2(n) σ2

∫
B(xo ,σ)

|Dh|2 dx

≤ c3(n,Λ1,Λ2) σ2
(
σ

ρ

)n ∫
B(xo ,ρ)

|Dh|2 dx

whence, by (15),

I1 ≤ c3 σ
2
(
σ

ρ

)n ∫
B(xo,ρ)

|Du|2 dx .(27)

On the other hand, (17) yields

I2 ≡
∫

B(xo,σ)
|u − uB(xo ,σ) − (h − hB(xo ,σ))|2 dx

≤
∫

B(xo,ρ)
|u − h|2 dx

≤ ε ρ2
∫

B(xo ,ρ)
|Du|2 dx + C(ε) ρ4−n

(∫
B(xo ,ρ)

(Aij )B(xo,ρ)Diu Dj ϕ dx

)2

(28)

for a function ϕ ∈ C1
0(B(xo , ρ), RN ) with ‖Dϕ‖L∞(B(xo ,ρ)) ≤ 1

ρ .
Using the fact that u is solution to (7) we have

∫
B(xo,ρ)

(Aij )B(xo,ρ)Diu Djϕ dx =
∫

B(xo,ρ)
[(Aij )B(xo,ρ) − Aij ]Diu Dj ϕ dx

+
∫

B(xo,ρ)
gi Diϕ dx
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Regularity results for the gradient of solutions of linear elliptic systems 923

whence, with ‖Dϕ‖L∞(B(xo,ρ)) ≤ 1
ρ and Hölder’s inequality, we get

∣∣∣∣
∫

B(xo ,ρ)
(Aij )B(xo ,ρ)Diu Dj ϕ dx

∣∣∣∣
2

≤ 2

ρ2

{∫
B(xo,ρ)

|Aij − (Aij )B(xo,ρ)|2 dx

∫
B(xo,ρ)

|Du|2 dx + ρn
∫

B(xo ,ρ)
|g|2 dx

}
.

(29)

Inserting (29) into (28) and using the properties of the matrix A = (Aij ), we achieve

I2 ≤ ε ρ2
∫

B(xo ,ρ)
|Du|2 dx

+ C(ε)Λ2 V(xo, ρ)ρ2
∫

B(xo,ρ)
|Du|2 dx

+ C(ε) ρ2
∫

B(xo,ρ)
|g|2 dx .

(30)

Combining together (26), (27) and (30) we obtain, for all 0 < σ < ρ < d (xo, ∂Ω) and for
all ε > 0,

∫
B(xo ,σ/2)

|Du|2 dx

≤ c4(n,Λ1,Λ2)

[
ε

( ρ
σ

)2
+ C(ε)Λ2 V(xo , ρ)

( ρ
σ

)2
+

(σ
ρ

)n
]∫

B(xo ,ρ)
|Du|2 dx

+ C1(ε)
(ρ
σ

)2
ρλ ‖g‖2

L2,λ(Ω)
.

(31)

The above inequality can be rewritten as

∫
B(xo,τρ)

|Du|2 dx

≤ c4 τ
α

[
ε τ−2−α + C(ε)Λ2 V(xo , ρ) τ−2−α + τ n−α

] ∫
B(xo,ρ)

|Du|2 dx

+ C1(ε) τ−2 ρλ ‖g‖2
L2,λ(Ω)

(32)

for any xo ∈ Ω, τ ∈ ]0, 1[, ρ ∈ ]0, d (xo, ∂Ω)[, ε > 0 and α ∈]λ, n[.

Let us fix α = n+λ
2 and choose τo ∈ ]0, min{1, ( 1

4c4
)

1
n−α }[ and εo ∈ ]0, 1

4c4
τ 2+α

o ]. Thus,
inequality (32) becomes

∫
B(xo,τoρ)

|Du|2 dx

≤ τα
o

[
1/2 + c4 C(εo)Λ2 V(xo , ρ) τ−2−α

o

] ∫
B(xo,ρ)

|Du|2 dx

+ C1(εo) τ−2
o ρλ ‖g‖2

L2,λ(Ω)
, ∀ρ ∈ ]0, d (xo, ∂Ω)[.

(33)
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924 S. Leonardi and J. Stará

Finally, observe that there exists ρo = ρV (n,λ,Λ1,Λ2) > 0 such that c4 C(εo)
· Λ2 τ

−2−α
o V(xo , ρ) ≤ 1/2 for all xo ∈ Ω and for all ρ ∈ ]0, min{ρo , dΩ}].4

Hence, for all ρ ∈ ]0, min{ρo , d (xo, ∂Ω)}[, inequality (33) becomes

∫
B(xo,τoρ)

|Du|2 dx ≤ τ
λ+n

2
o

∫
B(xo ,ρ)

|Du|2 dx + B ρλ(34)

where B = C1(εo) τ−2
o ‖g‖2

L2,λ(Ω).

Then Lemma 7.3 at p. 229 of [29] gives, for all 0 < θ < ρ < min{ρo, d (xo , ∂Ω)},
∫

B(xo,θ)
|Du|2 dx

≤ C(τo, εo ,λ, n) θλ
(

1

ρλ

∫
B(xo,ρ)

|Du|2 dx + ‖g‖2
L2,λ(Ω)

)
.

(35)

Let us fix now zo ∈ Ω, R ∈ ]0, min{ρo , d (zo, ∂Ω)}[, xo ∈ B(zo , R/4) and θ ∈ ]0, R/2].
Then, due to the fact that B(xo , R/2) ⊂ B(zo , 3/4R) ⊂⊂ Ω, we observe that R/2 <

min{ρo , d (xo, ∂Ω)}.
The aforementioned remarks and (35) yield

θ−λ
∫

B(zo ,R/4)∩B(xo,θ)
|Du|2 dx ≤ θ−λ

∫
B(xo ,θ)

|Du|2 dx

≤ C(τo, εo ,λ, n)

(
2λ

Rλ

∫
B(xo,R/2)

|Du|2 dx + ‖g‖2
L2,λ(Ω)

)

≤ C(τo, εo ,λ, n)

(
1

Rλ

∫
B(zo,R)

|Du|2 dx + ‖g‖2
L2,λ(Ω)

)

(36)

which, taking supremum for xo ∈ B(zo, R/4) and θ ∈ ]0, R/2], concludes the proof.

Corollary 3.2. Let u ∈ W1,2(Ω, RN ) be a solution to the system (7) where gi ∈ L2,λ(Ω, RN )
with λ ∈ [0, n[ and let conditions (4) and (5) be satisfied.

Then Du ∈ L
2,λ
loc (Ω, RnN ) and for all H ⊂⊂ Ω there exists a positive constant c =

c(n,λ,Λ1,Λ2), such that

‖Du‖L2,λ(H ) ≤ c
[
(min{ρo , d (H , ∂Ω)})−λ/2 ‖Du‖L2(Ω) + ‖g‖L2,λ(Ω)

]
(37)

where ρo is as in the previous lemma.

Proof. Let H ⊂⊂ Ω, xo ∈ H and set ρ1 = min{ρo, d (H , ∂Ω)}.

4 Note that ρo is independent of xo because of the uniform convergence V(xo , ρ) → 0 for ρ → 0
with respect xo ∈ Ω.
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Since ρ1 ≤ min{ρo , d (xo, ∂Ω)}, inequality (35) rewritten for ρ = ρ1 gives∫
B(xo ,θ)∩H

|Du|2 dx

≤ c(λ, n,Λ1,Λ2) θλ
(

1

ρλ
1

∫
Ω

|Du|2 dx + ‖g‖2
L2,λ(Ω)

)
, ∀ θ ∈ ]0, ρ1[.

For θ ∈ [ρ1, dH ] the proof is obvious.

Now, for fixed yo = (yo1, yo2, . . . , 0) and R > 0, let us take into account the system

Di(Bij (x)Dj u′) = Digi in B+(yo, R),

u′ = 0 on Γ (yo, R)

(38)

under the following structural assumptions:

Bij (x) =
(

Brs
ij (x)

)
r,s=1,...,N

∈ L∞(B+(yo, R), RN2
) ∩ VMO,

Brs
ij (x) = Bsr

j i (x) for a.a. x ∈ B+(yo, R),

(39)

there exist two positive constants Λ′
1 and Λ′

2 such that

Λ′
2 |ξ|2 ≥ Bij (x)ξiξj ≥ Λ′

1 |ξ|2
for a.a. x ∈ B+(yo, R), ∀ξ = (ξr

i ) ∈ RnN .

(40)

We denote by V ′ the VMO-continuity modulus for the matrix Bij .

Definition 3.1. A vector-function u′ ∈ W1,2(B+(yo, R), RN ) is a weak solution of the system
(38) if⎧⎪⎨
⎪⎩

∫
B+(yo,R)

Bij (x)Diu
′ Dj ϕ, dx =

∫
B+(yo,R)

Dig Djϕdx , ∀ϕ ∈ W
1,2
0 (B+(yo, R), RN )

u′ = 0 on Γ (yo, R).

The following lemma is the analog of Theorem 13.1 at p. 355 of [11].

Lemma 3.4. Let u′ ∈ W1,2(B+(yo, R), RN ) be a solution to the problem (38) where gi ∈
L2,λ(B+(yo, R), RN ), with λ ∈ [0, n[, and let conditions (39) and (40) be satisfied.

Then there exist two positive constants c = c(n,λ,Λ′
1,Λ′

2) and ρ = ρV′ (n,λ,Λ′
1,Λ′

2)
such that

‖Du′‖L2,λ(B+(yo,Ro))

≤ c
[
(min{ρ, R − Ro})−λ/2 ‖Du′‖L2(B+(yo,R)) + ‖g‖L2,λ(B+(yo,R))

](41)

for any 0 < Ro < R.
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926 S. Leonardi and J. Stará

Proof. The proof of the lemma follows the same procedure of the foregoing lemma. We will
outline it briefly indicating different steps.

Firstly, let us fix Ro ∈ ]0, R[, y ∈ Γ (yo, Ro) and 0 < σ < ρ < R − Ro.
By Caccioppoli’s inequality (see Lemma 5.III5 at p. 329 of [11]) we obtain

∫
B+(y,σ/2)

|Du′|2 dx ≤ c1(Λ′
1,Λ′

2)

[
1

σ2

∫
B+(y,σ)

|u′|2 dx +
∫

B+(y,σ)
|g|2 dx

]
.(42)

By Lemma 3.2 with A = (Bij )B+(y,ρ) we get a function h ∈ W1,2(B+(y, ρ), RN ) satisfying
(18), (19) and (21).

Thus,∫
B+(y,σ/2)

|Du′|2 dx

≤ 2c1
1

σ2

(∫
B+(y,σ)

|u′ − h|2 dx +
∫

B+(y,σ)
|h|2 dx

)
+ c1 σ

λ‖g‖2
L2,λ(B+(yo ,R)).

As h = 0 on Γ (y, ρ), by Poincaré (see e.g. [30]) and Campanato inequalities6 (see e.g. also
Proposition 2.7 at p. 206 of [28]) and (19) we deduce

I1 ≡
∫

B+(y,σ)
|h|2 dx ≤ c2(n) σ2

∫
B+(y,σ)

|Dh|2 dx

≤ c3(n,Λ′
1,Λ′

2) σ2
(
σ

ρ

)n ∫
B+(y,ρ)

|Dh|2 dx ≤ c3 σ
2
(
σ

ρ

)n ∫
B+(y,ρ)

|Du′|2 dx .

The estimate of I2 ≡ ∫
B+(y,σ) |u′ − h|2 dx can be obtained as in (28), (29) and (30) of

Lemma 3.3, taking use of Lemma 3.2 instead of Lemma 3.1.

5 The proof of this lemma remains unchanged in the case of several equations (N ≥ 2).
6 Campanato’s inequality∫

B+(y,σ)
|Dh|2 dx ≤ c(Λ′

1,Λ′
2)

(
σ
ρ

)n
∫

B+(y,ρ)
|Dh|2 dx

follows immediately gathering together Corollary 11.I and Lemma 11.II at p. 352 of [11].The proof
of Corollary 11.I requires only the extension of Lemma 11.I at p. 350 of [11] to the case of several
equations. To this goal it is enough to proceed as in the proof of the aforementioned Lemma 11.I
just observing that the normal derivative DnDnh satisfies the system of linear equations

(Bnn)B+(y,ρ)DnDnh = −
{

n−1∑

j =1
(Bnj )B+(y,ρ)Dj Dnh +

n−1∑

i=1

n∑

j =1
(Bij )B+(y,ρ)DiDj h

}

where the matrix (Bnn)B+ (y,ρ) is non degenerate and such that ‖((Bnn )B+(y,ρ))
−1‖ ≤ 1

Λ′
1

.
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Regularity results for the gradient of solutions of linear elliptic systems 927

So we obtain the following inequality analog to (33):

∫
B+(y,τoρ)

|Du′|2 dx

≤ τα
o

[
1/2 + c4 C(εo)Λ′

2 V ′(y, ρ) τ−2−α
o

] ∫
B+(y,ρ)

|Du′|2 dx

+C1(εo) τ−2
o ρλ ‖g‖2

L2,λ(B+(yo ,R)),

∀ ρ ∈ ]0, R − Ro[, ∀ y ∈ Γ (yo, Ro)

(43)

where the positive constants α, c4, εo and τo ∈ ]0, 1[ now depend on n,λ,Λ′
1,Λ′

2.
On the other hand there exists ρ = ρV′ (n,λ,Λ′

1,Λ′
2) > 0 such that c4 C(εo)Λ′

2 V ′(y, ρ)
· τ−2−α

o ≤ 1/2 for any ρ ∈ ]0, min{ρ, 2R}] and y ∈ Γ (yo, Ro).
Thus, as in (35), we deduce

∫
B+(y,θ)

|Du′|2 dx

≤ c5(λ, n,Λ′
1,Λ′

2) θλ
(

1

ρλ

∫
B+(y,ρ)

|Du′|2 dx + ‖g‖2
L2,λ(B+(yo,R))

)(44)

for all 0 < θ < ρ < min{ρ, R − Ro}.
Setting now do = 1

2 min{ρ, R − Ro}, for θ ∈ ]0, do[ the above formula yields7

∫
B+(yo,Ro)∩B+(y,θ)

|Du′|2 dx

≤ c5 θ
λ

(
1

dλ
o

∫
B+(y,do)

|Du′|2 dx + ‖g‖2
L2,λ(B+(yo,R))

)

≤ c5 θ
λ

(
1

dλ
o

∫
B+(yo,R)

|Du′|2 dx + ‖g‖2
L2,λ(B+(yo ,R))

)
.

(45)

Let us now fix y ∈ B+(yo, Ro), consider the point y ′ = (y1, . . . , yn−1, 0) and choose
0 < θ < 1

2 min{ρ, R − Ro} (the other case being obvious).
If θ ≥ yn then B(y, θ) ∩ B+(yo, Ro) ⊂⊂ B+(y ′, 2θ) and we can use (45).
On the contrary, if θ < yn then B(y, θ) ∩ B+(yo, Ro) ⊂⊂ B+(yo, R+Ro

2 ) and in this case
we can apply Corollary 3.2.

Proof of Theorem 3.1
Since Ω is of class C1 and bounded (see e.g. [31] p. 305), there exist a positive R and an
open finite covering {B(yj , R)}j =1,...,ν of ∂Ω such that for all yj there exists a C1-function
ζ j , defined on a domain D ⊂ Rn−1 such that with respect to a suitable system of coordinates
{y1, . . . , yn}, with the origin at yj :

7 The case when θ ∈ [do, 2Ro] is clear.
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928 S. Leonardi and J. Stará

(a) the set ∂Ω ∩ B(yj , R) can be represented by an equation of the type yn = ζ j (y1, . . . ,
yn−1),

(b) each y ∈ Ω ∩ B(yj , R) satisfies yn > ζ j (y1, . . . , yn−1).

Without loss of generality we can suppose that the system of coordinates is such that the
hyperplane tangent to ∂Ω at yj has equation yn = 0, that

ζ j (yj ) = Dζ j (yj ) = 0(46)

and that R is such that maxj =1,...,ν maxB(yj ,R)∩Ω
|D ζ j | < 1/2.

For such domains the portion of boundary within the ball B(yj , R) can be straightened
by means of the smooth transformation8

{
ψi(y) = yi − (yj )i for i = 1, 2, . . . , n − 1

ψn(y) = yn − ζ j (y1, . . . , yn−1).
(47)

It turns out that ψ(y) = (ψ1(y), . . . ,ψn(y)) is a C1(B(yj , R))-diffeomorphism verifying the
following properties (see e.g. [31] p. 305 or Theorem V at p. 375 of [11]):

(i) ψ(B(yj , R) ∩ ∂Ω) = {x ∈ Rn : xn = 0, |xi| < R, for i = 1, . . . , n − 1},
(ii) 1

2 |y − yj | ≤ |ψ(y)| ≤ 3
2 |y − yj |, ∀y ∈ B(yj , R) ∩Ω,

(iii) B+(0, R/2) ⊂ ψ(B(yj , R) ∩Ω) ⊂ B+(0, 3
2 R),

B(yj , 2
3 R) ∩Ω ⊂ ψ−1(B+(0, R)) ⊂ B(yj , 2R) ∩Ω.

If z ∈ B+(0, R) we set

Bik(z) = Ars(ψ−1(z))
∂ψi

∂yr
(ψ−1(z))

∂ψk

∂ys
(ψ−1(z)),

gi(z) = fr(ψ−1(z))
∂ψi

∂yr
(ψ−1(z)),

u′(z) = u(ψ−1(z))

(48)

where we have used the fact that the absolute value of the Jacobian determinant of ψ−1(z)
is equal to 1.

Let us observe that Lemma 2.1 guarantees that the coefficients Bik(z) still satisfy hypoth-
esis (39).

Moreover, from the definition (47) and the fact that maxB(yj ,R)∩Ω
|D ζ j | < 1/2, it follows

that

(1/2)2Λ1 |η|2 ≤ Bikηiηk ≤ (3/2)2Λ2 |η|2 ∀η = (ηi) ∈ RnN .(49)

8 For the sake of simplicity we will drop the index j relative to the diffeomorphism ψj.
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Thus, a change of variables in the system (7) yields⎧⎪⎨
⎪⎩

u′ ∈ W1,2(B+(0, R))
u′ = 0 on Γ (0, R)∫

B+(0,R)
Bik Dku′ Diφ dz =

∫
B+(0,R)

Dig Diφdz, ∀φ ∈ W
1,2
0 (B+(0, R)).

(50)

To the problem (50) we apply Lemma 3.4 and so we conclude that Du′ lies in
L2,λ(B+(0, Ro)), Ro ∈ ]0, R[, with norm estimate (41).

As a consequence, the matrix-function Du′(ψ(y)), y ∈ B(yj , r)∩Ω, r ∈ ]0, 2
3Ro[, belongs

to L2,λ(B(yj , r) ∩Ω) that is, by the chain rule, Du ∈ L2,λ(B(yj , r) ∩Ω).
Thus, by changing back coordinates in (41) we deduce

‖Du‖L2,λ(B(yj ,r)∩Ω) ≤ c
[
‖Du‖L2(Ω) + ‖f ‖L2,λ(Ω)

]
,(51)

where c = cV(n,λ,Λ1,Λ2, R, R − Ro).
Since Ro is arbitrary it can be chosen sufficiently close to R so that the family

{B(yj , r)}j =1,...,ν still covers ∂Ω.
On the other hand, set

δ := min
∂Ω

d (x , Rn \ ν⋃
j =1

B(yj , r)) > 0,

the open set

H = {x ∈ Ω : d (x , ∂Ω) > δ/2} ⊂⊂ Ω

is such that H , B1, B2, . . . , Bν cover Ω.9

The aforementioned remarks, the use of Corollary 3.2 and Lax–Milgram theorem prove
the theorem (see e.g. [11] p. 365–366 or [1] p. 252–255).

4 Existence and uniqueness of the Stampacchia solution

G. Stampacchia proved in [39, 33], by duality method, the existence and uniqueness of the
weak solution to the Dirichlet boundary problem for elliptic equations with non smooth
coefficients and right-hand side measure.

For a right-hand side f ∈ L1(Ω, RN ) and an operator A satisfying conditions (4) and (5)
his procedure can be modified as follows.

Definition 4.1. Let f ∈ L1(Ω, RN ). We say that a vector-function u ∈ W1,1
0 (Ω, RN ) is a

very weak solution (briefly Stampacchia solution) of the system (1) if it satisfies∫
Ω

u A(ϕ) dx =
∫
Ω

f ϕ dx ,

∀ϕ ∈ Φ =
{
ϕ ∈ W1,2

0 (Ω, RN ) ∩ C0(Ω̄, RN ) : A(ϕ) ∈ C0(Ω̄, RN )
}

.

(52)

9 It is worth noticing that d(H , ∂Ω) ≥ δ/2 and that δ depends only on the covering of ∂Ω.
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The proof of the existence and uniqueness of the Stampacchia solution to (1) follows the
same steps as in papers [32, 17] and we give only an outline of it.

Theorem 4.1. Let Ω be a bounded domain with C1-boundary and f ∈ L1(Ω, RN ). Let
conditions (4) and (5) be satisfied.

Then there exists a unique Stampacchia solution u of the problem (1) such that u ∈
W

1,q
0 (Ω, RN ) for any q < n

n−1 .
Moreover, there exists a positive constant c = cV(n, q,Λ1,Λ2,Ω) such that

‖u‖
W

1,q
0 (Ω)

≤ c ‖f ‖L1(Ω).(53)

Proof. If A satisfies (4) then by Lax–Milgram theorem, there exists a linear continuous
operator G : W−1,2(Ω, RN ) → W1,2

0 (Ω, RN ) such that ũ = G(T ) is the unique weak
solution of the equation

A(ũ) = T .

For p > n consider T = Digi with gi ∈ Lp . Then, by Hölder inequality, gi ∈ L2,κ(Ω, RN )
with 0 ≤ κ ≤ n(1 − 2/p ) and

‖g‖L2,κ(Ω) ≤ c(n, p ) d
n(1/2−1/p )−κ/2
Ω ‖g‖Lp (Ω).(54)

Hence, for p > n and A satisfying (4) and (5) we can take κ > n − 2 and by Theorem 3.1
and (54) we have

max
Ω

|u| ≤ cV(n, p ,κ,Λ1,Λ2,Ω) d
1− n−κ

2 +n(1/2−1/p )−κ/2
Ω ‖g‖Lp (Ω).(55)

As the inequality (55) holds for any representation T = Digi we have

max
Ω

|u| ≤ cV(n, p ,κ,Λ1,Λ2,Ω) d
1− n−κ

2 +n(1/2−1/p )−κ/2
Ω ‖T‖W−1,p (Ω).(56)

Thus G maps continuously W−1,p (Ω, RN ) into C0(Ω̄, RN ).
On the other hand, any continuous function T can be represented as T = Digi with

gi ∈ Lp (Ω, RN ) so that

‖g‖Lp (Ω) ≤ c(|Ω|) max
Ω

|T |

and so (52) holds if and only if

∫
Ω

uψ dx =
∫
Ω

f G(ψ) dx , ∀ψ ∈ C0(Ω̄, RN )(57)

i.e. if and only if u = G�(f ) for G� adjoint of G.
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Since G maps continuously W−1,p (Ω, RN ) into C0(Ω̄, RN ), then G� is a continuous

linear operator from L1(Ω, RN ) into W
1,p ′
0 (Ω, RN ) with 1

p + 1
p ′ = 1 and ‖G∗‖ ≤ ‖G‖

which implies the thesis.

Corollary 4.1. LetΩ = B(xo , R) with 0 < R ≤ 1 and assume the hypotheses of the theorem.
Then there exists a unique Stampacchia solution u of the problem (1) such that u ∈

W
1,q
0 (Ω, RN ) for any q < n

n−1 .
Moreover, there exists a positive constant c = cV (n, q,Λ1,Λ2), which is independent of

R, such that

‖u‖
W

1,q
0 (Ω)

≤ c R1−n(1−1/q) ‖f ‖L1(Ω).(58)

Proof. The proof follows readily from (56) taking into account (11) from Corollary 3.1.

5 Saint-Venant’s principle

In this section we consider weak solutions of the homogeneous systems

−Di(Aij (x)Dj v) = 0 in Ω.(59)

As the right-hand side g ≡ 0, Lemmas 3.3 and 3.4 hold with any λ ≥ 0. For λ > n − 2 any
weak solution v ∈ W1,2 to problems (59) is locally Hölder continuous on Ω.

We start obtaining better estimates of Hölder seminorm.

Lemma 5.1. Let v be a solution to problem (59), let conditions (4) and (5) be satisfied and
assume λ ∈ ]n − 2, n[, γ = 1 − n−λ

2 , q ∈ [1, 2[.
Then there exists a positive constant c = c(n,λ,Λ1,Λ2) such that it holds

[v]C0,γ (B(xo,ρ)) ≤ c ρn(1/2−1/q)−λ/2‖Dv‖Lq(B(xo ,16ρ))(60)

where xo ∈ Ω and 0 < ρ < 1
16 min{ρo , d (xo, ∂Ω)} with ρo as in Lemma 3.3.

Proof. Let us fix xo ∈ Ω and recall that, according to (24) and embedding of Morrey space,
∀ 0 < R < min{ρo, d (xo , ∂Ω)} we have

[v]2
C0,γ (B(xo,R/4))

≤ c1(n,λ,Λ1,Λ2) R−λ ‖Dv‖2
L2(B(xo,R)).(61)
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932 S. Leonardi and J. Stará

The above formula, together with (2.5) at p. 14 of [12], Caccioppoli’s inequality and the
fact that v − z is still a solution of problem (59) for any z ∈ RN , gives

supB(xo,R/8) |v − z|
≤ c2(n)

(
Rγ[v]C0,γ (B(xo,R/8)) + R−n/2‖v − z‖L2(B(xo ,R/8))

)
≤ c3(n,λ,Λ1 ,Λ2)

(
Rγ−λ/2‖Dv‖L2(B(xo,R/2)) + R−n/2‖v − z‖L2(B(xo,R/8))

)
≤ c3

(
Rγ−λ/2−1‖v − z‖L2(B(xo,R)) + R−n/2‖v − z‖L2(B(xo,R))

)
= c3 R−n/2‖v − z‖L2(B(xo,R)).

(62)

Following now the idea of [27] p. 80–81, by (62), we deduce for any τ ∈ ]0, R[, q ∈ [1, 2[
and z ∈ RN

sup
B(xo ,τ )

|v − z| ≤ c3 (R − τ )−n/q‖v − z‖Lq(B(xo ,R)).(63)

Then from (61), (63), Caccioppoli and Poincaré inequalities it follows, ∀ 0 < ρ < 1
16

min{ρo , d (xo, ∂Ω)},

[v]2
C0,γ (B(xo,ρ))

≤ c3 ρ
−λ‖Dv‖2

L2(B(xo,4ρ))

≤ c3 ρ
−2−λ‖v − vB(xo ,8ρ)‖2

L2(B(xo,8ρ))

≤ c3 ρ
−2−λ supB(xo ,8ρ) |v − vB(xo ,8ρ)|2−q ‖v − vB(xo ,8ρ)‖q

Lq(B(xo,8ρ))

≤ c3 ρ
n(1−2/q)−λ ‖Dv‖2

Lq(B(xo,16ρ)).

(64)

As a consequence of previous lemma we obtain the following

Theorem 5.1 (Saint-Venant Principle). Let conditions (4) and (5) be satisfied.
Then, there exists a positive constant c = c(n,λ,Λ1,Λ2) such that, for any weak solution

v to the system (59), it holds

‖Dv‖q
Lq(B(xo ,ρ1)) ≤ c

(
ρ1

ρ2

)n−q+γq

‖Dv‖q
Lq(B(xo,ρ2))(65)

∀ 0 ≤ ρ1 ≤ ρ2 ≤ min{ρo , d (xo, ∂Ω)} with ρo as in Lemma 3.3. and ∀q ∈ [1, 2[, where
γ = 1 − n−λ

2 .

Proof. The assertion is obvious for ρ1 ≥ 1
32ρ2. Hence assume that 0 < ρ1 < 1

32ρ2.
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Regularity results for the gradient of solutions of linear elliptic systems 933

Then by Hölder’s inequality, (35) and Caccioppoli’s inequality we have

‖Dv‖q
Lq(B(xo,ρ1))

≤ c1(n) ρn(1−q/2)
1 ‖Dv‖q

L2(B(xo,ρ1))

≤ c2(n,λ,Λ1,Λ2)

(
ρ1

ρ2

)λq/2

ρ
n(1−q/2)
1 ‖Dv‖q

L2(B(xo,ρ2/32))

≤ c2

(
ρ1

ρ2

)λq/2

ρ
−q
2 ρ

n(1−q/2)
1 ‖v − vB(xo ,ρ2/16)‖q

L2(B(xo ,ρ2/16)).

(66)

As in the proof of Lemma 5.1 we estimate

‖v − vB(xo ,ρ2/16))‖2
L2(B(xo,ρ2/16))

≤ c3(n)
(
ρ
γ
2 [v]C0,γ (B(xo ,ρ2/16))

)2−q ‖v − vB(xo,ρ2/16))‖q
Lq(B(xo,ρ2/16)).

Using Poincaré’s inequality and (60) we get

‖v − vB(xo ,ρ2/16))‖2
L2(B(xo,ρ2/16))

≤ c4(n,λ,Λ1,Λ2) ργ(2−q)+q+(2−q)[n(1/2−1/q)−λ/2]
2 ‖Dv‖2

Lq(B(xo,ρ2)).

Inserting the above estimate into (66) we obtain

‖Dv‖q
Lq(B(xo,ρ1)) ≤ c5 (n,λ,Λ1,Λ2)

(
ρ1

ρ2

)n+ q
2 (λ−n)

‖Dv‖q
Lq(B(xo,ρ2))(67)

which proves the theorem.

6 Local regularity of the Stampacchia solution

In this section we will gather the techniques developed in [9] with the nowadays classical
method of S. Campanato as we have done in paper [15]. We reproduce this procedure here
for reader’s convenience.

First of all let us introduce the truncation operator. For a given constant k > 0 we define
the cut off function Tk : R → R as

Tk(s) =

{
s if |s| ≤ k

k sign (s) if |s| > k.

For a vector-function f = (f r(x))r=1,...,N , x ∈ Ω, we define the truncated vector-
function fk = (Tk(f r ))r=1,...,N pointwise: for every x ∈ Ω the value of fk at x is just
(Tk(f r(x)))r=1,...,N .
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934 S. Leonardi and J. Stará

Throughout this section we shall assume the right-hand side of (1) as

f ∈ L1,λ(Ω, RN ), λ ∈ [0, n − 2].

For such a vector-function let us consider a sequence of functions {fk}k∈N such that

(i) fk ∈ W−1,2(Ω, RN ) ∩ L1,λ(Ω, RN ), ∀k ∈ N,

(ii) fk → f in L1(Ω, RN ) as k → +∞,

(iii) ‖fk‖L1(Ω) ≤ ‖f ‖L1(Ω), ∀k ∈ N,

(iv) ‖fk‖L1,λ(Ω) ≤ ‖f ‖L1,λ(Ω), ∀k ∈ N.

An example of a sequence satisfying the above requirements is the sequence {Tk (f )}k∈N.

For fixed k ∈ N, let uk be the weak solution of the system

−Di(Aij (x)Dj uk) = fk in Ω(68)

that is,

⎧⎨
⎩

uk ∈ W1,2
0 (Ω, RN )∫

Ω
Aij (x)Dj uk Diφ dx =

∫
Ω

fk φdx , ∀φ ∈ W
1,2
0 (Ω, RN ).

We will prove, at first, the following

Theorem 6.1. Assume that hypotheses (4), (5) hold and let uk be the weak solution of
problem (68).

Then

Duk ∈ L
q,ν
loc (Ω, RnN ), ∀q ∈

[
1,

n

n − 1

[
, ∀k ∈ N,

with ν = n − q(n − λ − 1), and for all H ⊂⊂ Ω there exists a positive constant c =
cV (n,λ, q,Λ1,Λ2, d (H , ∂Ω)) such that

‖Duk‖Lq,ν(H ) ≤ c
[
‖Duk‖Lq(Ω) + ‖f ‖L1,λ(Ω)

]
, ∀k ∈ N.(69)

Proof. We will follow the idea of the proof of Theorem 4.1 of [15].
Fix k ∈ N, xo ∈ Ω and ρ ∈ ]0, min{1, ρo , d (xo , ∂Ω)}[ with ρo as in Lemma 3.3.
In B(xo , ρ) we can write uk = vk +wk where vk ∈ W1,2(B(xo , ρ), RN ) is a weak solution

of the problem

−Di(Aij (x)Dj vk) = 0 in B(xo , ρ)
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and wk ∈ W
1,2
0 (B(xo , ρ), RN ) is a weak solution of the Dirichlet problem

{−Di(Aij (x)Dj wk) = fk in B(xo, ρ)

wk = 0 on ∂B(xo , ρ).
(70)

Since any weak solutionof the problem (70) is also a very weak solution of the same problem
then, by (58) and by item (iv) it follows that, for any q ∈ [

1, n
n−1

[
,

‖wk‖q

W1,q (B(xo ,ρ)) ≤ c1(n, q,Λ1,Λ2) ρn+q−nq‖fk‖q

L1(B(xo ,ρ))

≤ c1 ρ
n+q+λq−nq‖f ‖q

L1,λ(Ω)
.

(71)

Gathering together (65) and (71) we deduce, for any σ < ρ,

‖D uk‖q
Lq(B(xo ,σ))

≤ c1

[(
σ

ρ

)n−q+γq

‖Dvk‖q
Lq(B(xo,ρ)) + ρn+q+λq−nq‖f ‖q

L1,λ(Ω)

]

≤ c1

[(
σ

ρ

)n−q+γq

‖Duk‖q
Lq(B(xo,ρ)) + ρn+q+λq−nq‖f ‖q

L1,λ(Ω)

]
.

An application of Lemma 1.1 p. 7 of [12]10 to the above inequality gives

‖D uk‖q
Lq(B(xo,σ))

≤ c1

[(
σ

ρ

)n+q+λq−nq

‖Duk‖q
Lq(B(xo,ρ)) + σn+q+λq−nq‖f ‖q

L1,λ(Ω)

]
.

(72)

The proof can now be completed as in Corollary 3.2 making use of (72).

Now we are in the position to prove the following

Theorem 6.2. Assume Ω be a bounded domain with C1-boundary and hypotheses (4), (5)
be satisfied. Let moreover u be the Stampacchia solution of the problem (1).

Then

Du ∈ L
q,ν
loc (Ω, RnN ), ∀q ∈

[
1,

n

n − 1

[
,

10 Setϕ(ρ) = ‖D uk‖q
Lq(B(xo,ρ)),A = c1,α = n−q+γq,β = n+q+λq−nq,Φ(ρ) = c1 ‖f ‖q

L1,λ(Ω)
,

ε = γq + q(n − λ− 2).
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936 S. Leonardi and J. Stará

with ν = n − q(n − λ − 1), and for all H ⊂⊂ Ω there exists a positive constant c =
cV (n,λ, q,Λ1,Λ2, d (H , ∂Ω)) such that

‖Du‖Lq,ν(H ) ≤ c
[
‖Du‖Lq(Ω) + ‖f ‖L1,λ(Ω)

]
.(73)

Proof. We have already remarked (see Theorem 2.1 formula (53)) that

‖Duk‖Lq(Ω) ≤ cV (n, q,Λ1,Λ2,Ω) ‖f ‖L1(Ω), ∀k ∈ N, ∀q ∈
[

1,
n

n − 1

[
.

This information allows us to deduce that there exists a subsequence {unk } ⊂ {uk } such that

(a) unk ⇀ v in W1,q(Ω, RN ) as k → +∞, ∀q ∈ [1, n
n−1 [,

(b) unk → v in Lq(Ω, RN ) and a.e. inΩ as k → +∞, ∀q ∈ [1, n
n−1[,

(c) the function v is a Stampacchia solution of the Dirichlet problem (1).

By the uniqueness of the Stampacchia solution we can conclude that v = u.
To achieve the thesis we need only to show that Du ∈ L

q,ν
loc (Ω).

To this purpose let us fix H ⊂⊂ Ω, xo ∈ H and ρ ∈ ]0, dH ].
Hence, by (a), we have

Dunk ⇀ Du in Lq(H (xo, ρ), RN ).

By virtue of Proposition 3.5 in [5] p. 53 (see also [42] Ch. V, Theorem 1) and (69) we obtain

‖D u‖q
Lq(H (xo,ρ))

≤ lim inf k→+∞ ‖D unk ‖q
Lq(H (xo ,ρ))

≤ ρν lim inf k→+∞ ‖D unk ‖q
Lq,ν(H )

≤ cV(n,λ, q,Λ1,Λ2, d (H , ∂Ω)) [‖Du‖Lq(Ω) + ‖f ‖L1,λ(Ω)] ρ
ν .

The above inequality proves the theorem.

Corollary 6.1. Assume the same hypotheses of Theorem 6.2 and that λ ∈ ]0, n − 2[. Then

u ∈ L
β,ν
loc (Ω, RN )

for all β ∈
[
1, q(n−λ−1)

n−λ−2

[
.

The proof of Corollary 6.1 is an easy consequence of the following useful lemma applied
to each component of u.

Lemma 6.1. Let v ∈ W
1,p
0 (Ω, R) such that D v ∈ L

p ,κ
loc (Ω, Rn), with κ ∈ ]0, n − p [. Then

v ∈ L
pκ ,κ
loc (Ω, R)

where 1
pκ

= 1
p − 1

n−κ .
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Moreover, for all H ⊂⊂ Ω there exist H ′ ⊂⊂ Ω such that H ⊂⊂ H ′ and a positive
constant c = c(n, p ,κ, H , H ′) such that

‖v‖Lpκ ,κ(H ) ≤ c [‖D v‖Lp (Ω) + ‖D v‖Lp ,κ(H ′)].(74)

Proof. Observe that by Lemma 4.22 of [3], for any fixed H ⊂⊂ Ω, there exists H ′ ⊂⊂ Ω
with the cone property such that H ⊂⊂ H ′.

Moreover, since v ∈ W
1,p
0 (Ω), following the proof of Corollary 2.1 in [15], we will prove

that v ∈ Lp ,κ(H ′) with norm estimate

‖v‖Lp ,κ(H ′) ≤ c1(n, p ,κ, H ′) [‖D v‖Lp(Ω) + ‖D v‖Lp ,κ(H ′)].(75)

Indeed, by Sobolev embedding theorem and the standard properties of Morrey spaces it
turns out that

v ∈ Lp∗,0(H ′) ⊂ Lp ,μo (H ′) ∀μo ∈ ]0, p ],

with norm estimate

‖v‖Lp ,μo (H ′) ≤ c1 ‖D v‖Lp (Ω).(76)

(i) If κ ∈ ]0, p ] then v ∈ Lp ,κ(H ′) and (76) holds with κ instead of μo. Thus (75) is
achieved.

(ii) If κ > p then v, Dv ∈ Lp ,μo (H ′) and, by virtue of Theorem 1.2 at p. 72 of [10], we
have

v ∈ Lp ,μ(H ′), ∀μ < p + μo,

with norm estimate

‖v‖Lp ,μ(H ′) ≤ c1 [‖v‖Lp ,μo (H ′) + ‖D v‖Lp ,μo (H ′)]

≤ c1 [‖D v‖Lp ,μo (H ′) + ‖D v‖Lp (Ω)]

(77)

by virtue of (76).
If now κ < p + μ0 then v, Dv ∈ Lp ,κ(H ′) and we have the estimate (77) with κ instead

of μo and μ. Thus (75) is achieved again.
If instead κ ≥ p + μo then v, Dv ∈ Lp ,μ1 (H ′), with μ1 = p

2 + μo, and a new application
of the quoted theorem yields

v ∈ Lp ,μ(H ′), ∀μ < p + μ1,

with norm estimate

‖v‖Lp ,μ(H ′) ≤ c1 [‖v‖Lp ,μ1 (H ′) + ‖D v‖Lp ,μ1 (H ′)]

≤ c1 [‖D v‖Lp ,μ1 (H ′) + ‖D v‖Lp (Ω)]

(78)
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938 S. Leonardi and J. Stará

by virtue of (77) and the embedding properties of Morrey spaces.
Iterating the above procedure we can prove that

v, Dv ∈ Lp ,μm (H ′), ∀m ∈ N

with

μm =

{
κ if κ < p + μm−1

p
2 + μm−1 if κ ≥ p + μm−1

and norm estimate

‖v‖Lp ,μm (H ′) ≤ c1 [‖D v‖Lp ,μm (H ′) + ‖D v‖Lp (Ω)], ∀m ∈ N.

Since, for all m ∈ N,

μm =

{
κ if κ < p + μm−1

m p
2 + μo if κ ≥ p + μm−1,

after a finite number of steps we obtain (75).
Let η ∈ C∞

0 (Ω) such that 0 ≤ η ≤ 1 in Ω, η ≡ 1 in H and supp(η) ⊂⊂ H ′. Set w = v η

on Ω and w = 0 otherwise. Then w ∈ W
1,p
0 (Rn), w, Dw ∈ Lp ,κ(Rn), supp(w) ⊂ H ′ and

w = v on H .11

Thus, an application of Theorem 2 from [14] (see also Theorem 3.1 of [2]) to w completes
the proof.

Corollary 6.2. Assume the hypotheses of the Theorem 6.2 be satisfied and suppose that
λ = n − 2. Then the solution u of the problem (1) belongs to BMO(Q).

Proof. Let Q ⊂⊂ Ω be a cube, xo ∈ Q and ρ ∈ ]0, dQ]. Then, Poincaré inequality implies∫
Q(xo,ρ)

|u − uQ(xo ,ρ)|q dx

≤ c(n) ρq
∫

Q(xo,ρ)
|D u|q dx ≤ c(n) ρq+(n−q) ‖D u‖q

Lq,n−q(Ω).

Thus, u ∈ Lq,n(Q) ∼= BMO(Q).

Acknowledgments.The authors thank the referee for very valuable suggestions and remarks
which contribute to improve the manuscript.
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