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Abstract. In this paper we study boundedness of commutators of the multi-dimensional Hardy type operators with BMO
coefficients, in weighted global and/or local generalized Morrey spaces L

p,ϕ
Π (Rn,w) and vanishing local Morrey spaces

V L
p,ϕ
loc(R

n,w) defined by an almost increasing function ϕ(r) and radial type weight w(|x|). This study is made in the
perspective of posterior applications of the weighted results to some problems in the theory of PDE. We obtain sufficient
conditions, in terms of some integral inequalities imposed on ϕ and w, and also in terms of the Matuszewska-Orlicz indices
of ϕ and w, for such a boundedness.

Keywords: Generalized weighted Morrey space, vanishing Morrey spaces, commutators, BMO functions, weighted Hardy inequalities,
weighted Hardy operators, Bary-Stechkin classes, Matuszewska-Orlicz indices
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1. INTRODUCTION

The classical Morrey spaces Lp,λ introduced in [16] in
relation to the study of regularity properties of solutions
to PDE, are well known, see for instance the books
[8], [11] and references therein, see also [21] where
an overview of various generalizations may be found.
The generalized Morrey spaces Lp,ϕ are obtained by
replacing rλ by a function ϕ(r) in the definition of the
Morrey space.

During the last decades various classical operators,
such as maximal, singular and potential operators and
their commutators with BMO functions were widely
investigated in both classical and generalized Morrey
spaces, we refer e.g. to papers [1, 2, 3, 6, 7, 17, 18, 22,
23, 31], see also references therein. Commutators with
functions in a subspace of BMO, named VMO (see [30]),
are useful in the study of regularity of solutions of ellip-
tic partial differential equations of second order, see e.g.
[5].

As is well known, the boundedness of commutators of
various operators, such as maximal and singular opera-
tors, in Lebesgue and Morrey spaces, is of importance in
applications to PDE. Such boundedness was not studied
in weighted spaces. The approach we used in the papers
[26], [27] for the study of maximal, singular and poten-
tial operators in weighted Morrey spaces, allows us to
reduce the problem of the boundedness of commutators
of such operators to the study of commutators of Hardy
type operators.

In this paper we start to study the boundedness of com-
mutators in the case of Hardy operators in weighted Mor-
rey spaces. Note that Hardy operators in Morrey spaces
were less studied in comparison with maximal, singu-
lar and potential operators. We refer for instance to the
paper [26] where there were proved weighted p → p -
estimates in Morrey spaces Lp,λ for Hardy operators on
R1
+ and one-dimensional singular operators on R1 (also

on Carleson curves in the complex plane), see also an
application of the latter in [13] to the study of singu-
lar integral equations in weighted Morrey spaces. In pa-
per [27] there were given conditions for the weighted
p→ q-boundedness of multidimensional Hardy and po-
tential operators within the frameworks of Morrey spaces
Lp,λ (Rn). In [19], there was applied another approach
which allowed to obtain weighted estimates in a more
general case. The radial type weights w(|x− x0|) admit-
ted in [19] were generated by functions w(r) from the
Bary-Stechkin-type class; these weights have possible
decay or growth at r = 0 and r = ∞, characterized by
the condition that the weight becomes almost increasing
or almost decreasing after the multiplication by a power
function. Such weights oscillate between two powers at
the origin and infinity (with different exponents for the
origin and infinity, in general), see an overview on such
weights in [20].

The results for their commutators and weighted esti-
mates obtained in this paper are new. It is planned to
give a further development of the obtained weighted es-
timations and give their applications for PDE in another
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paper.
Note that Morrey spaces, both the classical version

Lp,λ with λ > 0 and the generalized one Lp,ϕ with
ϕ(0) = 0 are not separable. A version of Morrey space
where it is possible to approximate by "nice" functions
is the so called vanishing Morrey spaces V Lp,λ (Ω) in-
troduced in [33]. This is a subspace of functions in
Lp,λ (Ω),Ω⊆ Rn, which satisfy the condition

lim
r→0

sup
x∈Ω

0<ρ<r

1
ρλ

∫
B̃(x,ρ)

| f (y)|pdy = 0, (1)

where B̃(x,r) = B(x,r)∩Ω.
In Definition in the next section we introduce more

general spaces of such a kind, the global version
V Lp,ϕ(Ω) and the local one V L

p,ϕ
loc;x0

(Ω).

In this paper, within the frameworks of the global
Lp,ϕ(Ω) and local spaces V L

p,ϕ
loc;0

(Ω), we study the com-
mutators

[a,Hw] f = aHw( f )−Hw(a f )

of weighted multidimensional Hardy operators

Hw f (x) =
w(|x|)
|x|n

∫
|y|<|x|

f (y)dy

w(|y|)

with functions a ∈ BMO.
The one-dimensional case includes the version

Hw f (x) = x−1w(x)

x∫
0

f (t)dt

w(t)

adjusted for the half-axis R1
+, so that in the sequel Rn

with n = 1 may be read either as R1 or R1
+. The notation

H = Hw

∣∣∣
w≡1

will be also used in the sequel.
We obtain conditions, for the weighted boundedness

of the commutators of Hardy operators with BMO func-
tions in global non-vanishing generalized Morrey spaces
and show that these conditions guarantee also that the
commutators act within the frameworks of the corre-
sponding local vanishing subspaces.

The paper is organized as follows: In Section 2 we
give definitions and necessary preliminaries. Section 3
contains some results on weighted Hardy-type opera-
tors in Morrey and vanishing Morrey spaces obtained
before, which we present with slight modification for
completeness of presentation and for convenience of the
reader. In Section 4 we present the main results, namely
we prove theorems on the weighted p→ p-boundedness
of the commutators of Hardy operators with functions

which satisfy some conditions of BMO-type at the ori-
gin in global Morrey spaces and in local vanishing Mor-
rey spaces. In Appendix we collect various properties of
weights from the Bary-Stechkin class which we need in
this paper. Most of them may be found dispersed in var-
ious papers, for instance, in [10, 14, 25, 26, 29], but for
reader’s convenience we gathered them in Appendix.

2. DEFINITIONS

Let Ω be an open set in Rn, Ω⊆Rn and �= diam Ω, 0 <
� ≤ ∞, B(x,r) = {y ∈ Rn : |x− y| < r} and B̃(x,r) =
B(x,r)∩Ω. Let also ϕ(r) be a non-negative function on
[0, �], continuous near the origin, such that

inf
δ<r<�

ϕ(r)> 0 (2)

for every δ > 0. Let also 1≤ p < ∞.
We introduce the vanishing generalized Morrey

spaces, global and local, by the definition below. We find
it convenient to give a definition unique for both cases
via a unifying their version, with a prescribed set Π⊆Ω,
where the "Morrey-type" behaviour should hold.

In the sequel Π ⊆ Ω is an arbitrary measurable set of
points.

Definition 1. The generalized Morrey space L
p,ϕ
Π (Ω)

is defined as the space of functions f ∈ L
p

loc
(Ω) with the

finite norm

‖ f‖p,ϕ;Π := sup
x∈Π,r>0

⎛⎜⎝ 1
ϕ(r)

∫
B̃(x,r)

| f (y)|p dy

⎞⎟⎠
1
p

< ∞.

(3)
In the case Π = Ω we obtain the global Morrey space,

in the case Π = {x0} we have the local Morrey space. In
these two extreme cases we will also use the notation

Lp,ϕ(Ω) := L
p,ϕ
Π (Ω)

∣∣∣
Π=Ω

(4)

and
L

p,ϕ
loc;x0

(Ω) := L
p,ϕ
Π (Ω)

∣∣∣
Π={x0}

.

In the next definition we use the notation

Mp,ϕ( f ;x,r) := sup
0<ρ<r

1
ϕ(ρ)

∫
B̃(x,ρ)

| f (y)|p dy. (5)

Definition 2. The generalized vanishing Morrey space
V L

p,ϕ
Π (Ω) is defined as the space of functions f ∈

L
p,ϕ
Π (Ω) such that

lim
r→0

sup
x∈Π

Mp,ϕ( f ;x,r) = 0. (6)
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This is a Banach space (closed proper subspace of
L

p,ϕ
Π (Ω) when ϕ(0) = 0) with respect to the norm (3).
Similarly to (4) we write

V Lp,ϕ(Ω) :=V L
p,ϕ
Π (Ω)

∣∣∣
Π=Ω

(7)

and
V L

p,ϕ
loc;x0

(Ω) :=V L
p,ϕ
Π (Ω)

∣∣∣
Π={x0}

.

Everywhere in the sequel we assume that

lim
r→0

rn

ϕ(r)
= 0, (8)

and additionally

sup
0<r<∞

rn

ϕ(r)
< ∞ in the case Ω is unbounded, (9)

which makes the spaces V L
p,ϕ
Π (Ω) non-trivial, because

bounded functions with compact support belong then to
all such spaces. Note that the condition

sup
0<r<∞

rn

ϕ(r)
< ∞, (10)

means the similar non-triviality of the corresponding
non-vanishing spaces.

In the sequel, a non-negative function f on [0, �],0 <
�≤∞, is called almost increasing (almost decreasing), if
there exists a constant C(≥ 1) such that f (x)≤C f (y) for
all x≤ y (x≥ y, respectively). Equivalently, a function f
is almost increasing (almost decreasing), if it is equiva-
lent to an increasing (decreasing, resp.) function g, i.e.
c1 f (x)≤ g(x)≤ c2 f (x),c1 > 0,c2 > 0.

Definition 3. (see [9]). A real-valued locally inte-
grable function f on Rn is said to be in the space
BMO(Rn) if

‖ f‖∗ := sup
x∈Rn,r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)− fB|dy < ∞, (11)

where fB = 1
|B(x,r)|

∫
B(x,r)

f (y)dy.

Remark 1. As is known, the norm (11) is equivalent to
the norm

‖ f‖∗;p := sup
x∈Ω,r>0

⎛⎜⎝ 1
|B(x,r)|

∫
B̃(x,r)

| f (y)− fB|p dy

⎞⎟⎠
1
p

<∞,

(12)
and also to the norm

‖ f‖∗;p := sup
x∈Ω,r>0

inf
cB

⎛⎜⎝ 1
|B(x,r)|

∫
B̃(x,r)

| f (y)− cB|dy

⎞⎟⎠
1
p

<∞

(13)

where 0 < p < ∞. (We keep the same notation ‖ f‖∗;p for
both the norms.)

For Hardy operators, instead of BMO, we will use the
class of functions introduced in the next definition.

Definition 4. A real-valued locally integrable function

f on Rn is said to be in the space B̃MO
p
(Rn;0),1≤ p <

∞, if ‖ f‖∗0;p :=

sup
r>0σ∈Sn−1

⎛⎜⎝ 1
|B(0,r)|

∫
B(0,r)

| f (y)− f (rσ)|p dy

⎞⎟⎠
1
p

< ∞.

(14)

Remark 2. One could introduce the space
BMOp(Rn;0) of locally integrable functions with
BMO-behaviour at a single point, say x = 0, by the
condition: ‖ f‖∗;0;p :=

sup
r>0

⎛⎜⎝ 1
|B(0,r)|

∫
B(0,r)

| f (y)− fB(0,r)|p dy

⎞⎟⎠
1
p

< ∞. (15)

From the known inequality

1
|B|
∫
B

| f (y)− fB|pdy≤ 2p

|B|
∫
B

| f (y)−C|pdy (16)

for any constant C on the right-hand side, it follows that

‖ f‖∗;0;p≤ 2‖ f‖∗0;p, so that B̃MO(Rn;0)⊆BMO(Rn;0)

Definition 5. Let 0 < � < ∞.
1) By W = W ([0, �]) we denote the class of continuous
and positive functions ϕ on (0, �] such that there exists
finite or infinite limit lim

x→0
ϕ(x);

2) by W0 = W0([0, �]) we denote the class of almost
increasing functions ϕ ∈W on (0, �);
3) by W = W ([0, �]) we denote the class of functions
ϕ ∈W such that xμ ϕ(x) ∈W0 for some μ = μ(ϕ) ∈ R1;
4) by W = W ([0, �]) we denote the class of functions

ϕ ∈ W such that
ϕ(t)
tν is almost decreasing for some

ν ∈ R1.

Definition 6. Let 0 < � < ∞.
1) By W∞ = W∞([�,∞]) we denote the class of functions
ϕ which are continuous and positive and almost increas-
ing on [�,∞) and which have the finite or infinite limit
limx→∞ ϕ(x),
2) by W ∞ =W ∞([�,∞)) we denote the class of functions
ϕ ∈W∞ such xμ ϕ(x) ∈W∞ for some μ = μ(ϕ) ∈ R1.

By W (R1
+) we denote the set of functions on R1

+
whose restrictions onto (0,1) are in W ([0,1]) and re-
strictions onto [1,∞) are in W ∞([1,∞)). Similarly, the set
W (R1

+) is defined.
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3. SOME RESULTS ON WEIGHTED
HARDY-TYPE OPERATORS IN

MORREY AND VANISHING MORREY
SPACES

In this Section, for completeness of presentation and for
reader’s convenience, we present some results which are
either published or to appear.

On belongness of some classes of radial
functions to Morrey and vanishing Morrey

spaces

In this subsection we present sufficient conditions for
radial type functions u(|x− x0|), x0 ∈ Ω, to belong to
generalized vanishing Morrey spaces. These conditions
were given in [28], conditions of belongness of radial
functions to non-vanishing Morrey space were given in
[19], Proposition 3.3 and in [28] in a bit different form.
We will use the notions of the Matuszewska-Orlicz in-
dices and Zygmund-Bary-Stechkin classes, the defini-
tions and properties of which are collected in Appendix.
In the sequel we suppose that

u ∈ Z−
n
p ([0, �]), if � < ∞ and u ∈ Z−

n
p ,− n

p (R1
+), if �= ∞.

(17)
see (48). Recall that

r∫
0

up(t)tn−1 dt ∼ rnup(r), 0 < r < � (18)

under this assumption, see Lemma 4. Note that (17) is
equivalent to the inequalities

pm(u)+n > 0, pm∞(u)+n > 0 (19)

in terms of the indices, where the second inequality is to
be used only in the case �= ∞, see (51).

Lemma 1. Let � = diamΩ ≤ ∞, ϕ(r) satisfy condi-
tions (2) and (10), and let u ∈W ([0, �]) and fulfill the
assumption (17). The condition

sup
0<r<�

rnup(r)

ϕ(r)
< ∞, (20)

is sufficient for the function f (x) := u(|x−x0|) to belong
to Lp,ϕ(Ω). It is also necessary when Ω is bounded or
Ω = Rn. Consequently, condition (20) is also necessary
for f to belong to Lp,ϕ(Ω) in these cases. The condition
(20) is sufficient also for f ∈ Lp,ϕ(Ω), in the following
two cases:
i) u(r) is bounded,
ii) M(u)< 0.

Let Ω be bounded. In terms of the indices of the functions
u and ϕ , the conditions for f to belong to L

p,ϕ
loc;x0

(Ω) or

Lp,ϕ(Ω) have the forms

M(ϕ)− pm(u)< n (sufficient conditions), (21)

m(ϕ)− pM(u)≤ n (necessary conditions) (22)

under the assumption that u, 1
ϕ ∈W ([0, �]).

Remark 3. The necessity of the condition (20) for
unbounded domains different from Rn in general depends
on the geometry of Ω at infinity. We do not touch this
case.

Corollary 1. Let Ω be bounded. A power function
|x− x0|γ belongs to the local space L

p,ϕ
loc;x0

(Ω) or global

space Lp,ϕ(Ω), if and only if

n+ γ p > 0 and sup
r>0

rn+γ p

ϕ(r)
< ∞. (23)

Lemma 2. Let a radial function f (x) = u(|x− x0|)
be in the local Morrey space L

p,ϕ
loc;x0

(Ω) or global Morrey

space Lp,ϕ(Ω). It belongs to its subspace V L
p,ϕ
loc;x0

(Ω) or

V Lp,ϕ(Ω), respectively, if and only if

lim
r→0

1
ϕ(r)

r∫
0

up(t)tn−1 dt = 0.

In particular, when Ω is bounded, a power function
|x− x0|γ belongs to V Lp,ϕ(Ω) and V L

p,ϕ
loc,x0

(Ω), if and
only if

n+ γ p > 0 and lim
r→0

rn+γ p

ϕ(r)
= 0.

Corollary 2. Let ϕ be a nonnegative measurable
function. Then

L∞(Ω)⊆V Lp,ϕ(Ω), (24)

if and only if (8) holds. In the case Ω is bounded and
ϕ ∈W ([0, �]), the condition m(ϕ) ≤ n is necessary for
(24) and M(ϕ)< n is sufficient.

Weighted Hardy operators in generalized
global Morrey and local vanishing Morrey

spaces

The Lp → Lq-boundedness of the multidimensional
Hardy operators within the frameworks of Lebesgue
spaces (the case ϕ ≡ 1) with 1 < p < ∞ and 0 < q < ∞ is
known, see for instance, [12], p. 54.
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We call attention of the reader to the fact that, in con-
trast to the case of Lebesgue spaces, Hardy-type inequal-
ities in Morrey spaces different from Lebesgue spaces
(i.e. in the case ϕ(0) = 0) admit the value p = 1. We
need the following two recent results.

Theorem 1. Let 1 ≤ p < ∞ and ϕ and w satisfy the
conditions

sup
0<r<∞

rn

ϕ(r)
< ∞, w ∈W (R1

+), w(2t)≤ cw(t),

ϕ
1
p

w
∈W (R1

+). (25)

The operator Hw is bounded in the space L
p,ϕ
Π (Rn) for

every choice of the set Π, if sup
r>0

W(r)< ∞, where

W(r) :=
1

ϕ(r)

∫ r

0
ϕ(ρ)

(
1+

1
V (ρ)

∫ ρ

0

V (t)

t
dt

)p
dρ
ρ
(26)

and V (t) = t
n
p′ ϕ

1
p (t)

w(t) . Under this condition,

‖Hα
w f‖L

p,ϕ
Π
≤C sup

r>0
W

1
p (r)‖ f‖L

p,ϕ
Π

(27)

Theorem 1 was proved in [19] in a more general p→
q-setting. We gave its formulation here for the case q = p
for our goals. Note also that in [19] the formulation was
given for the cases Π = Rn and Π = {0}, see Theorems
4.1 and 4.2 in [19], but it holds for any Π, since the proof
in [19] was beside on the pointwise estimate via the norm
of a function in L

p,ϕ
loc,0, see the inequality (4.4) in [19].

Theorem 2. Let 1≤ p < ∞ and the conditions in (25)
be satisfied and

lim
r→0

rn

ϕ(r)
= 0. (28)

Then the operator Hα
w is bounded in the space

V L
p,ϕ
loc;0

(Rn), if sup
r>0

Ws(r)< ∞, and then

Mq,ϕ (Hw f ;0,r)≤CM( f ;0,r)sup
r>0

W(r). (29)

Theorem 2 was proved in [28], also in the p→ q-setting,
we gave here its formulation for the case q = p.

The following corollary gives sufficient conditions for
the boundedness of the operator Hw in terms of the
Matuszewska-Orlicz indices of the function ϕ and the
weight w.

Corollary 3. Let 1 ≤ p < ∞, the conditions in (25)
be satisfied. The operator Hw is bounded in the space
L

p,ϕ
Π (Rn) for any choice of the set Π, if

min{m(V ),m∞(V )}> 0 and min{m(ϕ),m∞(ϕ)}> 0.
(30)

It is also bounded in the space L
p,ϕ
loc;0

(Rn) under the

above conditions, if additionally (28) holds. The con-
dition min{m(V ),m∞(V )} > 0 is guaranteed by the in-
equalities

M(w)<
n

p′
+

m(ϕ)
p

, M∞(w)<
n

p′
+

m∞(ϕ)
p

.

In the case of the classical (localized) Morrey space, i.e.
ϕ(r) = rλ ,0 < λ < n, and the power weight w(r) = rμ ,
the conditions (30) reduce to

1≤ p < ∞, μ <
n

p′
+

λ
p

; (31)

conditions (31) are also necessary for the operator Hw to

be bounded in the space V L
p,λ
loc;0

(Rn).

4. MAIN RESULTS

In this Section we prove main result ( see Theorem 3) on
the boundedness of the commutator

[a,Hw] f = aHw( f )−Hw(a f ) (32)

with functions a ∈ B̃MO
s
(Rn;0), for the weighted Hardy

operator

Hw f (x) = |x|−nw(|x|)
∫

|y|<|x|

f (y)dy

w(|y|) , (33)

with quasi-monotone weights. We also obtain a theo-
rem on the corresponding boundedness in vanishing lo-
cal generalized Morrey space V L

p,ϕ
loc;x0

(Ω). The obtained
conditions on the weight functions are given both in
terms of integral conditions and also in terms of indices
of the parameters of spaces, i.e. ϕ and p.

Theorem 3. Let 1≤ p < ∞,a∈ B̃MO
s
(Rn;0) for some

s ≥ p′ and ϕ and w satisfy the conditions of Theorem 1.
Then commutator (32) is bounded in L

p,ϕ
Π (Rn) for every

Π⊆ Rn, if
sup
r>0

Ws(r)< ∞, (34)

where

Ws(r) :=
1

ϕ(r)

∫ r

0
ϕ(ρ)

(
1+

1
Vs(ρ)

∫ ρ

0

Vs(t)

t
dt

)
dρ
ρ
(35)

and Vs(t) =
t

n(p−s′)
p ϕ

s′
p (t)

wp(t) . Under this condition

‖[a,Hw] f‖L
p,ϕ
Π
≤C‖a‖∗0;s‖ f‖L

p,ϕ
Π

. (36)

where C does not depend on a and f . The operator Hw is
also bounded in V L

p,ϕ
loc;0

(Rn) under the above conditions,

if additionally (28) holds.
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Proof. The proof is based on the following pointwise
estimation of the commutator via Hardy operator [a,Hw]

of the function | f |s′ with the weight ws′ :

|[a,Hw] f (x)| ≤C‖a‖∗0;s

(
H

ws′ (| f |s′)
) 1

s′
. (37)

To prove (37), we apply the Hölder inequality with the
exponent s in the integral:

[a,Hw] f (x) =
w(|x|)
|x|n

∫
|y|<|x|

[a(x)−a(y)]
f (y)dy

w(|y|)

and obtain

|[a,Hw] f (x)| ≤

⎛⎜⎝ 1
|x|n

∫
B(0,|x|)

|a(x)−a(y)|s dy

⎞⎟⎠
1
s

×

⎛⎜⎝ws′(|x|)
|x|n

∫
B(0,|x|)

| f (y)|s′dy

ws′(|y|) dy

⎞⎟⎠
1
s′

which proves (37).
Applying (37), we have

‖[a,Hw] f‖L
p,ϕ
Π (Rn) ≤C‖a‖∗0;s ·

∥∥∥∥(H
ws′ (| f |s′)

) 1
s′
∥∥∥∥

L
p,ϕ
Π (Rn)

=C‖a‖∗0;s ·
(∥∥∥H

ws′ (| f |s′)
∥∥∥

L

p
s′ ,ϕ
Π (Rn)

) 1
s′
,

which enables us to apply Theorem 1 with p replaced
by p

s′ > 1 and w by ws′ . This transforms the condition of
Theorem 1 on Ws(r) to the conditions (34)-(35). Then
the conditions (34)-(35) and Theorem 1 yield

‖[a,Hw] f‖L
p,ϕ
Π (Rn) ≤C‖a‖∗0;s ·

(∥∥∥| f |s′∥∥∥
L

p
s′ ,ϕ
Π (Rn)

) 1
s′

=C‖a‖∗0;s ·
∥∥∥| f |s′∥∥∥

L
p,ϕ
Π (Rn)

, ,

which proves the theorem in the case of the spaces
L

p,ϕ
Π (Rn). The proof for the space V L

p,ϕ
loc;0

(Rn) is ob-
tained in a similar way from the estimate (37) with ap-
plication of Theorem 2.

From the proof of Theorem 3 and Corollary 3
we obtain the following Corollary in terms of the
Matuszewska-Orlicz indices.

Corollary 4. Let 1 ≤ p < ∞,a ∈ B̃MO
s
(Rn;0) for

some s≥ p′ and the conditions in (25) be satisfied. Then

the commutator [a,Hw] is bounded in the space L
p,ϕ
Π (Rn)

and also in V L
p,ϕ
loc;0

(Rn) when (28) additionally holds, if

min{m(ϕ),m∞(ϕ)}> 0, (38)

M(w)< n

(
1
s′
− 1

p

)
+

m(ϕ)
p

and

M∞(w)< n

(
1
s′
− 1

p

)
+

m∞(ϕ)
p

. (39)

In the case of the classical (localized) Morrey space, i.e.
ϕ(r) = rλ ,0 < λ < n, and the power weight w(r) = rμ ,
the conditions of the boundedness of the commutator

[a,Hw] in both the spaces L
p,λ
Π (Rn) and V L

p,λ
loc;0

(Rn)

reduce to

1≤ p < ∞, μ < n

(
1
s′
− 1

p

)
+

λ
p
. (40)

Recall that the Hardy operator Hw itself is bounded in
the considered spaces when instead of the conditions
on w in (38) we have M(w) < n

p′ +
m(ϕ)

p , M∞(w) <

n
p′ +

m∞(ϕ)
p . This means that the least possible restric-

tion on the weight w in (38) should coincide with the
case 1

s′ − 1
p = 1

p′ , i.e s = ∞. This choice of s is inadmis-
sible for us, since it would then mean that a ∈ L∞(Rn)
and yield the triviality of the result for the commutator.
Though we can take s arbitrarily large, taking into ac-
count that the interval for M(w) and M∞(w) are open.
This yields the consequence of the above corollary given
below. Note that weakening restrictions on the indices
M(w) and M∞(w) of the weight by taking s larger, we si-
multaneously impose stronger condition on the function
a, since the norm ‖a‖∗0;s is an increasing function of s:
‖a‖∗0;s1

≤ ‖a‖∗0;s2
for s1 ≤ s2.

Corollary 5. Let 1≤ p < ∞ and the conditions in (25)
be satisfied. Then the commutator [a,Hw] is bounded in
the space L

p,ϕ
Π (Rn) and also in V L

p,ϕ
loc;0

(Rn) when (28)

additionally holds, if

min{m(ϕ),m∞(ϕ)}> 0 and M(w)<
n

p′
+

m(ϕ)
p

,

M∞(w)<
n

p′
+

m∞(ϕ)
p

. (41)

and a ∈ B̃MO
s
(Rn;0) with s sufficiently large,

namely, s ≥ p′ and n
s < n

p′ +
min{m(ϕ),m∞(ϕ)}

p −
max{M(w),M∞(w)}
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5. APPENDIX:
MATUSZEWSKA-ORLICZ (MO) TYPE

INDICES

ZBS-classes and MO-indices of weights at
the origin

In this subsection we assume that � < ∞.
We say that a function ϕ belongs to a Zygmund class

Zβ , β ∈ R1, if ϕ ∈W ([0, �]) and∫ x

0

ϕ(t)
t1+β dt ≤ c

ϕ(x)
xβ , x ∈ (0, �),

and to a Zygmund class Zγ , γ ∈ R1, if ϕ ∈W ([0, �]) and∫ �

x

ϕ(t)
t1+γ dt ≤ c

ϕ(x)
xγ , x ∈ (0, �).

We also denote Φβ
γ :=Zβ ⋂Zγ , the latter class being also

known as Bary-Stechkin-Zygmund class [4].
It is known that the property of a function to be

almost increasing or almost decreasing after the mul-
tiplication (division) by a power function is closely
related to the notion of the so called Matuszewska-
Orlicz indices. We refer e.g. to [14], [15], [20],
[24], [25], for the properties of the indices of such
a type. For a function ϕ ∈ W , the numbers m(ϕ) =

sup0<x<1

ln
(

limsup
h→0

ϕ(hx)
ϕ(h)

)
lnx = limx→0

ln
(

limsup
h→0

ϕ(hx)
ϕ(h)

)
lnx and

M(ϕ) = supx>1

ln
(

limsup
h→0

ϕ(hx)
ϕ(h)

)
lnx = limx→∞

ln
(

limsup
h→0

ϕ(hx)
ϕ(h)

)
lnx

are known as the Matuszewska-Orlicz type lower and
upper indices of the function ϕ(r).

The following statement is known, see [10], Theorems
3.1, 3.2 and 3.5. (In the formulation of Theorem 4 in
[10] it was supposed that β ≥ 0,γ > 0 and ϕ ∈W0. It
is evidently true also for ϕ ∈W and all β ,γ ∈ R1).

Theorem 4. Let ϕ ∈ W and β ,γ ∈ R1. Then ϕ ∈
Zβ ⇐⇒ m(ϕ) > β and ϕ ∈ Zγ ⇐⇒M(ϕ) < γ. Besides
this

m(ϕ) = sup
{

μ > 0 :
ϕ(x)
xμ is almost increasing

}
,

(42)

M(ϕ) = inf
{

ν > 0 :
ϕ(x)
xν is almost decreasing

}
.

(43)

We define the following subclass in W 0:

W 0,b =

{
ϕ ∈W 0 :

ϕ(t)
tb

is almost increasing
}
, b ∈ R1.

ZBS-classes and MO-indices of weights at
infinity

Following [29], Subsection 2.2, we introduce the fol-
lowing definitions:

Let −∞ < α < β < ∞. We put Ψβ
α := Ẑβ ∩ Ẑα ,

where Ẑβ is the class of functions ϕ ∈W ∞ satisfying the
condition∫ ∞

x

(x

t

)β ϕ(t)dt

t
≤ cϕ(x), x ∈ (�,∞), (44)

and Ẑα is the class of functions ϕ ∈W ([�,∞)) satisfying
the condition∫ x

�

(x

t

)α ϕ(t)dt

t
≤ cϕ(x), x ∈ (�,∞) (45)

where c = c(ϕ)> 0 does not depend on x ∈ [�,∞).

The indices m∞(ϕ) and M∞(ϕ) responsible for the be-
havior of functions ϕ ∈ Ψβ

α([�,∞)) at infinity are intro-
duced in the way similar to m(ϕ) and M(ϕ): m∞(ϕ) =

supx>1

ln
[

liminf
h→∞

ϕ(xh)
ϕ(h)

]
ln x , M∞(ϕ) = infx>1

ln
[

limsup
h→∞

ϕ(xh)
ϕ(h)

]
ln x .

Properties of functions in the class Ψβ
α([�,∞)) are eas-

ily derived from those of functions in Φα
β ([0, �]) because

of the following equivalence

ϕ ∈Ψβ
α([�,∞)) ⇐⇒ ϕ∗ ∈Φ−β

−α([0, �
∗]), (46)

where ϕ∗(t) = ϕ
( 1

t

)
and �∗ = 1

� . We have

m∞(ϕ) =−M(ϕ∗), M∞(ϕ) =−m(ϕ∗). (47)

We say that a continuous function ϕ in (0,∞) is
in the class W 0,∞(R1

+), if its restriction to (0,1) be-
longs to W ([0,1]) and its restriction to (1,∞) belongs to
W ∞([1,∞]). For functions in W 0,∞(R1

+) the notation

Zβ0,β∞(R1
+) = Zβ0([0,1])∩Zβ∞([1,∞)), (48)

Zγ0,γ∞(R
1
+) = Zγ0([0,1])∩Zγ∞([1,∞)) (49)

has an obvious meaning (note that in (48) we use
Zβ∞([1,∞)) and Zγ∞([1,∞)), not Ẑβ∞([1,∞)) and
Ẑγ∞([1,∞))). In the case where the indices coincide,
i.e. β0 = β∞ := β , we will simply write Zβ (R1

+) and
similarly for Zγ(R1

+). We also denote

Φβ
γ (R1

+) := Zβ (R1
+)∩Zγ(R1

+). (50)

Making use of Theorem 4 for Φα
β ([0,1]) and relations

(47), one easily arrives at the following statement.
Lemma 3. Let ϕ ∈W (R1

+). Then

ϕ ∈ Zβ0,β∞(R1
+) ⇐⇒ m(ϕ)> β0, m∞(ϕ)> β∞

(51)
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and

ϕ ∈ Zγ0,γ∞(R
1
+) ⇐⇒ M(ϕ)< γ0, M∞(ϕ)< γ∞.

(52)

Lemma 4. Let 0<�≤∞ and ϕ ∈ (W )[0, �]∩(W )[0, �],
that is, ϕ has both finite indices m(ϕ) and M(ϕ) (and
also finite indices m∞(ϕ) and M∞(ϕ)) in the case �= ∞.
Then the inequality∫ x

0

ϕ(t)
t1+β dt ≤ c

ϕ(x)
xβ , x ∈ (0, �), (53)

implies the inverse inequality

ϕ(x)
xβ ≤ c

∫ x

0

ϕ(t)
t1+β dt, x ∈ (0, �).
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