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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 22(9&10), 1629-1646 (1997) 

BOUNDEDNESS OF SOLUTIONS TO 
VARIATIONAL PROBLEMS UNDER GENERAL 

GROWTH CONDITIONS 

Andrea Cianchi 

Istituto di Matematica, Facolta di Architettura, 
Universitk di Firenze 

Via dell' Agnolo 14, 50122 Firenze, Italy 

1 Introduction and main results 

The present paper deals with minimum problems of the calculus of variations 
and quasilinear elliptic equations in divergence form. 

The minimum problems we take into account have the form 

min j" F ( x ,  v, Dv) dz 

{,,=", 0n.G. 

Here G is an open subset of Rn, whose Lebesgue measure m(G) is finite; n 2 2; 
F is a Carathkodory function from G x R x Rn into R; D stands for gradient; 
uo is a prescribed boundary datum. 
Our assumptions on integrand F amount to requiring that A, B and so exists 
such that 

for 1st 2 so, [ E Rn and a.e. x E G, where denotes the euclidean norm 
of E .  Here, so is a nonnegative number, A is a Young function, i.e. a convex 
increasing function from [0, m) into [O, co) vanishing at 0, and B is an increas- 
ing function from [O, co) into [0, cm). 

Copyr~ght 8 1997 by Marcel Dekker, Inc. 
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The boundary datum uo is assumed to be a bounded weakly differentiable 
function on Rn such that .[ A(IDuo() dz < m. 
The competing functions v in problem (1.1) are taken from the class KU", 
defined as 

(1.4) I(,A, = {u : u is a real-valued weakly differentiable function in G, 

J A ( I D ~ ~ )  dz < m and the continuation of rr - uo by 0 
G 

outside G is a weakly differentiable function in Rn). 

We are concerned with conditions on A and B ensuring that any minimizer 
of problem (1.1) is bounded in G. Our result can be stated as follows. 

T h e o r e m  1 Let n 2 2 and let A be a Young function such that 

where n' = n/(n  - l ) ,  the Holder's conjugate of n .  Let A, be the function 
defined by 

(1.6) A , = A o H , - ~ ,  

(In (1 .7)  A is modified, if necessary, near 0 in such a way that the integral be 
convergent). Assume that a positive constant c exists such that 

for large s. Then any minimizer u of problem (1.1) is bounded. 

Remarks .  1. If the assumption (1.5) does not hold, then a theorem of [8] 
(see also [3]) ensures that every function from the class 1(,A, is bounded. Thus, 
every minimizer is automatically bounded in this case. 

2. The function An defined by (1.6) plays the role of a Sobolev conjugate of 
A - see Theorem 3, section 2. Observe that A, is, in fact, a Young function. 
Actually, A, is the composition of A and H z 1 ,  both of which are Young 
functions, the former by assumption and the latter because H, is (strictly) 
concave, increases and vanishes at 0. 

3. Notice that assumption (1.8) of Theorem 1, which is required to hold for 
some c and for large s, is not affected by the way A is (possibly) modified near 
0 in definition (1.7). 
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4. Let us point out that, unlike most results in the theory of calculus 
of variations and of partial differential equations, the boundedness result of 
Theorem 1 does not have a corresponding a priori estimate for the maximum. 

5 .  In the special case where A and B are powers, Theorem 1 improves classical 
results appearing in [6] and [7]. Indeed, choose A(s) = sP for some p E [ l , n ]  
(when p > n every u E I<$ is bounded by Sobolev's embedding theorem). If 

p < n, then A,(s) = s p * ,  where p* = 5, the Sobolev conjugate of p. When 
n - v 

p = n, An(s) is equivalent near infinity to the function esn', in the sense that 

constants cl, cz exist such that An(cls) 5 es"' 5 An(czs) for large s. Thus, 
Theorem 1 ensures that any minimizer of problem (1.1) is bounded provided 

that either p < n and B(s )  < CSP' or p = n and B(s) < ecs"' for some c > 0 
and for large s. The boundedness of minimizers of (1.1) follows from Theorem 
3.2, chap. 5 of [6] or Theorem 6.2 of [7] under the stronger assumption that 
B ( s )  < csq for some q < p* in case p < n and for any q > 0 in case p = n. 

The above example can be generalised on taking into account functions 
A(s) having the form sPlogq(e + s) ,  where either p > 1 and q E R or p = 1 
and q > 0. Theorem I tells us that minimizers of (1.1) are bounded if 

When either p > n or p = n and q > n - 1, then every u E I<$ is bounded 
(see Remark 1). 

6. In [9] the question of boundedness of (1.1) was considered under the 
assumptions (1.3) and 

for some X > 0. Theorem 2 of that paper states that the relevant minimizers 
are bounded provided that the number S defined by 

6 = sup lim inf log[A(st)/A(s)l 
t > l  S++m log t 

is strictly greater than 1 and there exists a < 6 such that 

(1.11) 
ds - .- 00. 

Theorem 1 above improves this result in the following two directions. First, 
assumption (1.9) is more stringent than (1.2)-(1.8), since lim An(ks)/A(s) 

s-+m 
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for every k > 0. Second, Theorem 2 of [9] cannot be applied if B grows 
as fast as A, does. Actually, suppose that B(s) = A,(cs) for some positive 
constant c and for large s. Then A-'(B(s)) = H;'(cs) for large s .  On the 
other hand, assumption (1.10) ensures that for every E > 0, A(s) 2 s6-' 
if s is large (see e.g. Lemma 2 of (91). Hence, if 6 5 n (the only case of 
interest), [A-'(B(s))]"ln-' = [H;' (cs)]"ln-' 5 Const. s("-")/('-~+") for large 
s. Choosing E < 6 - a shows that (1.11) cannot hold. 

Now let us discuss the boundedness of solutions to boundary value problems 
of the type 

Here, ai, i = 1, ..A, and b are Carath4odory functions from G x R x Rn into 
R satisfying growth conditions of the form 

for Is1 2 so, E Rn and a.e. x E G, where so is a positive number, A 
is a Young function and B, C, D, E are increasing functions from [0, m) into 

[Ol m). 
We consider weak solutions to problem (1.12) from the class K t ,  where 

uo is a function as above (in particular bounded). A function u E KU", will be 
called a weak solution to (1.12) if 

for all test functions d, E K t .  Here, I(,A is defined as in (1.4) with uo 3 0. 
The next theorem gives conditions on the functions A, B, C, D ,  E ensuring 

that every weak solution to (1.12) is bounded in G. The notation Qi" is used 
throughout for the Young conjugate of a function : [O, m) 4 [0, m). Recall 
that 

QiW(s) = sup{rs --@(r) : r >_ 0). 

Theorem 2 Let n, A and A, be as in Theorem 1. Assume that: 

i) A o E-' is a Young function; 

ii) constants c > 0 and k > I exist such that 
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jor large s .  

Then any weak solution to problem (1.12) is bounded. 

R e m a r k  6 When A, ..., E are powers (with positive exponents), A ( s )  = sp, 
B ( s )  = so,  C(s) = sP,  D ( s )  = s7, E ( s )  = sq,  say, then Theorem 2 states that 
weak solutions to problem (1.12) are bounded provided that 

This result should be compared with Theorems 7.1, chap. 4, and 3.1, chap. 5 
of [6], where equality is not allowed in the inequalities involving cu, /3 and y. 

2 A Sobolev- type  inequal i ty  

In this section we establish an extension of the classical Sobolev-PoincarC in- 
equality which is a basic step in the proof of Theorems 1-2. 

T h e o r e m  3 Let n > 2 aud let A be a Young function such that 

Let An be the Young function defined by (1.6). Then 

for every weakly differentiable function u on R n  such that m ( { x  E Rn : 
I u ( x ) ~  > t ) )  < co for every t > 0 and such that J A(IDul)dx < co. Here, 

R" 
Cn = rnf2/r'(l + n / 2 ) ,  the measure of the n-dimensional unit ball. 

R e m a r k  7 Incidentally, let us sketch some consequences of Theorem 3 in the 
framework of Orlicz-Sobolev spaces. Recall that the Orlicz space L A ( R n )  is 
the Banach space of measurable functions f such that there exists A > 0 for 
which J A(l f ( x ) l / X )  dx < m. L A ( R n )  is equipped with the Luxemburg norm 

R" 
11 . IIL~(Rn) defined as 
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The Orlicz-Sobolev space W1,A(Rn) is defined by W1lA(Rn) = {u : u is a 
weakly differentiable function on R n  such that u and lDul E LA(Rn)).  

The integral inequality (2.2) is equivalent to the following norm inequality 
in Orlicz spaces: 

(2.3) I I u I I L A ~ ( R ~ )  < CO~S~.IIDUIILA(R~)  

for every weakly differentiable function u on Rn such that na({x E Rn : 
Iu(x)I > t ) )  < m for every t > 0. Actually, (2.3) is a consequence of (2.2) 
by the very definition of Luxemburg norm, whereas (2.2) follows on replacing 
A(s) by A(s)/  J A(1Dul)dx in (2.3). 

Rn 
Inequality (2.3) can in turn be shown to be equivalent to that established 

(with a different proof) in Theorem 1 of [4]. Thus, as a consequence of that 
theorem, inequality (2.3) is sharp, in the sense that LAn(Rn)  cannot be re- 
placed by any smaller Orlicz space. In particular, (2.3) improves the Sobolev 
inequality for Orlicz spaces contained in [5] (see also section 1 of [4]). 

An obvious consequence of inequality (2.3) is the (continuous) embedding 

In fact, a stronger information can be derived from Theorem 3. Actually, 
on exploiting inequality (2.2) as in the proof of Theorem 1 (Section 3) and 
observing that limA,(Xs)/A(s) = 0 for every X > 0, one can show that 

s-ro 

J A(lu(x)l/X)dx < cx, for every X > 0 whenever u E W1lA(Rn). Moreover, 
o n  
AL 

the same argument as in the proof of Theorem 2.1 of [2] tells us that 

Hence, 
W1!A(Rn) c closure of Lm(Rn)  in L ~ " ( R " ) ,  

a space which, in general, is strictly contained in LAn(Rn) .  

Our proof of Theorem 3 requires the following interpolation property. 

Theorem 4 Let (MI,  vl) and ( M z ,  v2) be positive non-atomic measure spaces 
and let T be a linear operator whose domain is some linear subspace of the set 
ofvl-measurable functions on Ml and whose range is contained in the set of vz- 
measurable functions on M2.  Let p E (1, oo). Assume that T is bounded from 
L1(Ml) into L P ' ( M ~ )  with norm 5 No and from the Lorentz space LP"(MI) 
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into Lm(Ml)  with norm < N l .  Let A be a Young function satisfying conditions 
(2.1) with n replaced by p, and let A, be the Young function deJined as in (1.6) 
with n replaced by p. Then 

for every Y-measurable function f on Ml such that J A(/  f (x) l )dvl (x)  < m .  
Ml 

Recall that, given a positive measure space (M,  v) and a real number p 2 1, 
LPll(M) is the space of those v-measurable functions on M1 for which the 
quantity 

m 

Ilf IIIPJ(MI  = Jv({lfl > s ~ ) ' ' ~ d s  
0 

is finite. Henceforth, { I f  1 > s) stands for (x E M : I f(x)l > s}. 

Proof of Theorem 3. Consider the linear operator T defined by 

m 

T )  = J g r  for s 2 o 
3 

on functions g : [O, m )  -+ R . Minkowski's integral inequality yields 

Thus, T is bounded from L1(O,co) into ~ ~ ' ( 0 , m )  with norm 5 1. On the 
other hand, since r-'1"' decreases on (0, m), Hardy-Littlewood inequality tells 
us that 

m 

(2.6) J r-l lnllg(~)ldr 5 Jr-ll"'g*(r)dr, 
0 0 

where g* denotes the decreasing rearrangement of g. Recall that if (M, v) is 
a positive measure space and f is a v-measurable function on M, then f" is 
the decreasing function from (0, oo) into [0, w) equimeasurable with f .  It is 
easily verified that the right-hand side of (2.6) equals n/lgIILn,~co,,,. Hence, T 
is also bounded from LnJ(O, m )  into Lm(O, m )  with norm < n. Therefore, by 
Theorem 4. 
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03 

for every g such that J A(lg(s) l )ds  < m. 
0 

Now, let u be as in the statement. Then u* is locally absolutely continuous 
and the following Pblya-Szego type inequality holds 

(see e.g. [I]). The equimeasurability of u and u* and inequality (2.8)  ensure 
that 

du* 
Since u * ( s )  = J --dr for s 2 0, the conclusion follows from inequalities 

8 d~ 
(2 .7) ,  (2.8) and (2.9).  D 

Proof of Theorem 4. We begin by showing that T f is well defined whenever 

(2.10) J ~ ( l f ~ l )  d v 1 ( x )  < m. 
M1 

To this purpose, it suffices to show that if we set ft = sign(f) minit ,  I f  1) and 
f = f - f t  for t > 0 ,  then f t  E L 1 ( M l )  and ft E LP"(Ml). Since A is a Young 
function, then 

increases 
S 

and 

(2.12) A(") d A  for 2 0, L - ( s )  l - 
s  ds  s  

Thus 
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whence f t  E L 1 ( M l ) .  On the other hand, 

whence ft E L P J ( M l ) .  
Let us now prove inequality (2.4). Set 

- 
AP(s )  = ( A H 1 s s ) p '  for s 2 0,  

H,-'(s) 

where H, is the function defined as in (1.7) with n replaced by p. Let f be 
any function satisfying (2.10). Then, if k is any positive number, the following 
chain of inequalities holds 

00- a3 

= - J y$ J U ~ ( { I T ~  1 > 2ks})sp1-'ds dt. 
0 t ) 

Observe that the first inequality in (2.16) is due to (2.12) with A replaced by 
A,, whereas the second inequality is a consequence of Lemma 1 below. An 
integration by parts yields 



" 2  ( t )  d  
m 

- / -$- (P' v2({IT f I > 2ks})sp1- '  d s )  dt 
0 t 

+ 7; o (y)  ($ T v 2 ( { l ~ i l  t 
> 2ks))sp ' - I  ds  1 d l .  

From (2 .16)  and (2.17) we get 

Now, since d ( 2 , ( t ) / t p 1 )  2 0 and since v i ( { l T f  I > Z k s } )  = v 2 ( { I T ( f 1 +  f X ) I  > 
dt 

2 k s ) )  5 v 2 ( { ( T f A (  > k s } )  + v 2 ( { ( T f X (  > k s ) )  for every X > 0, then 

Here we have set 
(2 .20)  X ( t ) = H , - ' ( t )  f o r t L 0 .  

Call 11, J 1 ,  12, J 2 ,  the terms on the right hand side of (2 .19) ,  respectively. First, 
let us consider the terms I,, i = 1,2. Owing to  the fact that T is bounded 
from Lp,' into Lm with norm < N1 and to inequality (2.14) with t replaced by 
X( t )  we get 
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Hence, ~ ~ ( { 1 T f ~ ( ~ ) ]  > k s } )  = 0 provided that s  2 t and 

Thus, 
(2.23) Il = l2 = 0 

if k  is given by (2.22). 
Let us now take into account the terms J;, i = 1,2.  Since T is bounded 

from L1 into LP' with norm 5 No, one has 

From (2.13) with t replaced by X(t)  we get 

Clearly, (2.24) and (2.25) imply that 

Finally, let us estimate the term Jz. On making use of (2.24), integrating 
by parts and then making use of (2.25) one obtains 



We have 

From (2.27) and (2.28) we obtain 

Combining (2.19)) (2.23), (2.26) and (2.29) tells us that 

provided that k is given by (2.22). Hence, the conclusion follows. 0 

Lemma 1 Let p E ( I ,  m) and let A be a Young function satisfying (2.1)  with 
n replaced by p. Let A, be the function defined as i n  (1.6) with n replaced by 
p and let xp be the function defined by (2.15). Then 

1 
(2.30) 

1 
- A p ( s / 2 )  I x p ( s )  I - A p ( 2 s )  for s 2 0. 
P' P' 

Proof. Consider the auxiliary function 2, defined by 

s - 
A p ( s )  = / m d r  r for s 2 0 .  

0 

Since X p ( r ) / r  increases, we have 
- 

(2.32) A p ( s / 2 )  5 A,(s) _< x p ( s )  for s 2 0 .  

After the change of variable t = H p l ( r )  on the right-hand side of (2.31) one 
has 
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Inasmuch as A(t)/t increases, equation (2.33) implies that 

(2.34) 
1 1 
-A(H['(s)/2) < A^,($) 5 -A(H;'(s)) for s > 0. 
p' P' 

Since H;' is a Young function (see Remark 2), 

(2.35) cH;'(s) 5 Hi l (cs )  for s > 0 and c > 1. 

Inequalities (2.30) follow from (2.32), (2.34) and (2.35). 

3 Proofs of Theorems 1-2 

Proof of Theorem 1. Assume, by contradiction, that sup lul = co. Let 
t > 0 and set v(x) = sign(u)min{t, Iu(x)l}. Clearly, u E IC; provided that 
t > to, where to = sup luol Therefore, 

Hence, 

(3.2) J F(X,U, DU) h < J F(X, tsign(u), O) dx 

{luI>tl {lul>t> 

if t > to. This is the point where assumption (1.8) plays its role. Without 
loss of generality, we may suppose that (1.8) holds for s > so. Moreover, for 
simplicity, we assume that the integral in definition (1.7) is convergent, so that 
there is no need to modify A near 0. Thus, from (3.2) one infers that 

(3.3) / ~ ( l ~ u l )  dx 4 J AntcIsI)d~ + An(c t )~ ( t )  
tl.l>t) { l ub t l  

if t > maxito, so). Here, p ( t )  = m({luI > t}), the distribution function of u. 
1 

Now, let us set k ( t )  = -c:'" 
8 

( J A ( ~ D ~ ~ )  dx)-'In. Clearly, k ( t )  is an 

{l+t) 
increasing function of t which tends to infinity as t goes to infinity. Let t l  be 
such that 

(3.4) k(t) > 2c if t 2 tl. 
The convexity of An and inequality (3.4) ensure that 
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if t 2 t l .  On the other hand, by Theorem 3 we have 

if t > to. Combining (3.3), (3.5) and (3.6) and using the fact that A, is a 
Young function yield 

for t > t z ,  where k = 3 max{k(tl), c )  and tz = maxiso, to, t i ) .  
Jensen' s inequality tells us that 

Moreover, the coarea formula and the standard isoperjmetric inequality in Rn 
imply that 

m 

(3.9) n ~ ; / "  p ( ~ ) l / n l  dr 2 / 1 Dul dr 
t {I.l>t) 

if t > to (see e.g. the proof of Theorem 1 in [9]). From (3.7), (3.8) and (3.9) 
we deduce that 

.c,yn 
(3.10) 

~ ( t )  

A-l(An(kt)) ' Tp(T)l/n'dT 
t 

if t > t2. On raising both sides of (3.10) to the power l /n '  and integrating the 
resulting inequality between any number s > t2  and m, we obtain 

This is already a contradiction in case the integral on the left-hand side of 
(3.11) diverges. If, on the contrary, the relevant integral converges, one can 
conclude as follows. 

Inequalities (3.5)-(3.6) ensure that JAn(XJul)dx < m for every X > 0. 
G 
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Thus, for every X > 0 the function 

lim w A ( t )  = 0. 
t++m 

Obviously, q ( t )  2 A,(Xt )p( t )  for t 2 0. Hence, 

for every X > 0 and s 2 0. Notice that, since we are assuming that the integral 
on the left-hand side of (3.11) converges, then the integral on the left-hand 
side of (3.13) is a fortiori convergent. Equation (3.12) implies, via H6pita11 s 
rule, that 

CO ",, ( t ) ' l n l  O3 1 - 1 

S%CO A,(Xt) l ln l  dt (! An(Xt ) l i n l  d )  = O  

for every X > 0. Combining (3.11), (3.13) and (3.14) leads to a contradiction, 
owing to Lemma 2 below. 

Proof of Theorem 2. We argue by contradiction and suppose that u is 
unbounded. Let us call to the sup of 1 ~ 0 1 .  On choosing 4 = sign(u) max{jul- 
t , O ) ,  with t > to, as test function in (1.15) we have 

As in the proof of Theorem 1,  we assume for simplicity that the integral in 
definition (1 .7)  is convergent. Thanks to inequalities (1 . l 6 ) ,  (1.17) and (1 . la ) ,  
which, without loss of generality, may be assumed to hold for s 4 so, equation 
(3.15) implies that 

for t > maxito, so). We have 
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Observe that the first inequality in (3.17) is a consequence of the very definition 
of Young conjugate, and that the second one holds because Ao E-' is a Young 
function and k > 1 by assumption. From inequalities (3.16)-(3.17), on using 
the fact that A, is a Young function and 3 k / ( k  - 1) > 1, one obtains 

for t > max{to, so) .  Note that, apart from a missing term, inequality (3.18) is 
analogous to inequality (3.3) appearing in the proof of Theorem I .  Therefore, 
the conclusion follows in exactly the same way as Theorem 1 follows from 
(3.3). The details are omitted for brevity. 0 

Lemma 2 Let p E (1, m) and let A be a Young function satisfying (2.1) with n 
replaced by p. Let A, be the Young function defined as in (1.6) with n replaced 
b y  p .  If k > 2, then 

CO 

Proof. In the case where J[A-'(A,(t))]-'fp'dt = cm there is nothing to 
prove. Thus, we may assume that the last mentioned integral is finite. Let x, 
be the function defined by (2.15). By Lemma 1, it suffices to prove that 

A change of variables shows that ( 3 . 2 0 )  can be written as 
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for s > 0 ,  where Hp is the function defined as in (1.7) with n replaced by 
p. Owing to (2.35) with c = k / 2 ,  inequality (3.20) will follow if we show 
that an analogous inequality, with lower limits of integration H i 1 ( k s / 2 )  and 
H;'(s) replaced by k z / 2  and z ,  respectively, holds for every z 1 0. Since the 

function ~ , ( r ) - p '  (Air))P' - decreases on ( 0 ,  m),  the inequality in question is a 

consequence of Lemma 3 below. 0 

Lemma 3 Let p E ( 1 ,  m) and let h > 1. l f g  is any decreasing function from 
( 0 ,  co) into [O,  m),  then 

Proof. We shall show that 

for every decreasing function II, : (0, m) -t [0, m). Clearly, (3.21) follows from 
(3.22) on choosing $ ( r )  = g(r)'lpr-'Ip'.  In order to establish (3.22), observe 
that, since $ is nonnegative and decreasing, then 

(3.23) ( r  - s ) )  ( t )  dt if r 2 s. 
S 

Thus, since we are assuming that h > 1, 

w 

(3.24) ( J $ ( r ) ' ~ - ' & )  ' I p  
hs 

< (7 (L) (1  $( t )d t )  p- l$(r)dr)  for s > 0.  - 
r - S  

hs s 

Inasmuch as r / ( r  - s )  is a decreasing function of r in [hs ,  m) ,  the right-hand 
side of (3.24) does not exceed 
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The last expression equals 

Hence, (3.22) follows. 0 
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