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Morrey spaces and local regularity

of minimizers of variational integrals

G. CUPINI – R. PETTI

Riassunto: Si studia la regolarità (hölderianità, BMO, maggiore sommabilità)
dei minimi locali di funzionali integrali del Calcolo delle Variazioni nel caso scalare. Si
assume che la funzione integranda soddisfi una condizione di crescita in cui è presente
una funzione che appartiene a un certo spazio di Morrey. Non si fanno ipotesi di
differenziabilità. Risultati analoghi sono dimostrati per soluzioni deboli di equazioni
ellittiche non lineari del tipo del p-laplaciano.

Abstract: We study the regularity (Hölder continuity,BMO, higher summability)
of local minimizers of integral functionals of the Calculus of Variations in the scalar
case. We assume that the integrand satisfies a growth condition involving a function
which belongs to a certain Morrey space. No differentiability assumption is required.
Analogous results are proved for weak solutions of nonlinear elliptic equations of p-
Laplacian type.

1 – Introduction

We consider an integral functional of the type

(1.1) F(v; Ω) :=
∫

Ω

F (x, v(x), Dv(x)) dx ,

where F : Ω × IR × IRN → IR is a Carathéodory function satisfying the
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following growth assumption:

(1.2) |z|p ≤ F (x, v, z) ≤ L(|z|p + |v|p) + ϕ(x)

with N > p > 1, L > 1. We are concerned with the regularity of local
minimizers in W 1,p(Ω) of such functional.

It is well known that if ϕ is in Lr
loc(Ω) with r > N

p
then a minimizer (or

even a Q-minimizer) of F is locally Hölder continuous (see [6] and [11]).
On the other hand, if r ≤ N

p
simple examples show that the minimizer

needs not to be either continuous or locally bounded. In the case r = N
p
,

and under slightly more restrictive assumptions on F , in [8] it is proved
that any minimizer u is locally in VMO(Ω). If 1 < r < N

p
summability

results are stated in [4] for solutions of elliptic equations and in [9] for
the case of minimizers; more precisely in [9] the authors prove that if

|z|p ≤ F (x, v, z) ≤ L|z|p + ϕ(x)

and ϕ ∈ Lr
loc(Ω), then a local minimizer u is in L

(pr)∗
loc (Ω) (see also Remark

3.5 below).
As a further step in the study of regularity one can investigate the

case when ϕ belongs to intermediate spaces with respect to the Lp spaces.
In the framework of Lorentz spaces the problem has been studied in [8]. In

particular it is proved that if ϕ is in the Lorentz space L
N
p , 1p
loc (Ω) then u is

continuous (see Theorem 3.3 below); this result is sharp in the sense that
examples exist proving that the continuity of a minimizer u is no more

guaranteed if ϕ ∈ L
N
p , 1p+ε

loc (Ω) \ L
N
p , 1p
loc (Ω), for any ε > 0. Summability

results for solutions of elliptic equations in this framework are stated
in [2].

In this paper we study the regularity and the summability properties
of local minimizers of a functional F satisfying assumptions (1.1) and
(1.2) as ϕ varies in a Morrey space M r,γ

loc (Ω) (see Definition 2.1 below),
with 1 < r < N

p
. Our first result deals with the case when γ ≥ N − pr.

Theorem 1.1. Let u ∈ W 1,p(Ω) be a local minimizer of a functional
F of the type (1.1) satisfying (1.2) with ϕ ∈ M r,γ

loc (Ω), where 1 < r < N
p

and 0 < γ < N .
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(i) If N − pr < γ < N , then u is locally Hölder continuous in Ω;
(ii) if γ = N − pr, then u is locally in BMO(Ω).

In other words this result states that, differently from what hap-
pens when γ = 0 (in this case the Morrey space M r,0

loc (Ω) reduces to the
Lebesgue space Lr

loc(Ω)), we still have locally Hölder continuous minimiz-
ers when ϕ ∈ Lr

loc(Ω) with r < N
p
, provided that the decay of the integral

of |ϕ|r in a cube Q� is of order �γ with γ large enough. Moreover, in view
of the Sobolev imbedding Theorem 2.5 (ii) (which is sharp), also the con-
clusion (ii) is sharp. In order to compare this result with what is proved

in [8], notice also that if r < N
p

then L
N
p , 1p
loc (Ω) ⊂ L

N
p

loc(Ω) ⊂ M r,N−pr
loc (Ω).

In the case 0 < γ < N − pr we may only expect, in the same spirit of
[4], [2] and [9], to improve the summability properties of the minimizer
u. To state the result let us set qγ = q(N−γ)

N−γ−q
whenever q, γ ≥ 0 and

N − γ − q > 0.

Theorem 1.2. Let u and F be as in Theorem 1.1 above. If ϕ ∈
M r,γ

loc (Ω), with 1 < r < N
p

and 0 < γ < N − pr, then u is locally in
M (pr)γ(1−δ),γ+δ(N−γ)(Ω) for any δ > 0 such that (pr)γ(1 − δ) ≥ 1.

We cannot expect u to be in a Morrey space M q,λ
loc (Ω) with q >

(pr)γ or with q = (pr)γ and λ > γ. In fact, in Section 4 we give an
example showing that u is neither in the Lebesgue space L

(pr)γ+ε
loc (Ω) nor

in the Morrey space M
(pr)γ ,γ+ε
loc (Ω), for any ε > 0. However, the question

whether u may belong or not to the borderline Morrey space M
(pr)γ ,γ
loc (Ω)

remains open. As far as we know the only case in which this inclusion
holds is the special case γ = 0, proved in [9], in which the borderline
Morrey space reduces to L

(pr)∗
loc (Ω).

All the results which are proved here have a natural and almost
straightforward counterpart in the case of nonlinear elliptic equations
of p-Laplacian type. These results are stated at the end of Section 3.

2 – Notations and preliminaries

In the sequel Ω denotes a bounded open set in IRN , QR(x) is the
N -dimensional cube centered in x with sides of length 2R parallel to the
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axes, that is {y ∈ IRN : |yi − xi| < R, for any 1 ≤ i ≤ N}. We write
Ω(x0, R) instead of Ω ∩QR(x0).

If f is an integrable function we set

fQR(x0) = fx0,R = −
∫
QR(x0)

f(x) dx =
1

|QR|

∫
QR(x0)

f(x) dx .

We omit x0 if no confusion may arise. If a < N then we set a∗ = Na
N−a

.
In the sequel the letter c stands for a generic constant which may

vary from line to line.
We recall now the definition of some functional spaces.

Definition 2.1. Let us consider a measurable function f : Ω → IR.
For any p ≥ 1, λ ≥ 0 and µ > 0 we say that
(i) f is in the Lorentz space Lp,µ(Ω) if

[f ]Lp,µ(Ω) :=
[∫ +∞

0

(
f∗(s)s

1
p

)µ ds

s

] 1
µ

< ∞ ,

where f∗ : [0,+∞) → [0,+∞) is the decreasing rearrangement of f
in Ω, that is

f∗(s) := sup{t ≥ 0 : |{x ∈ Ω : |f(x)| > t}| > s} ;

(ii) f is in the Campanato space Lp,λ(Ω) if f ∈ Lp(Ω) and

[f ]pLp,λ(Ω)
:= sup

x∈Ω
�>0

�−λ

∫
Ω(x,�)

|f − fΩ(x,�)|p dy < ∞ ;

(iii) f is in the Morrey space Mp,λ(Ω) if f ∈ Lp(Ω) and

||f ||p
Mp,λ(Ω)

:= sup
x∈Ω
�>0

�−λ

∫
Ω(x,�)

|f |p dy < ∞ ;

(iv) f is in the Sobolev-Morrey space W 1,(p,λ)(Ω) if f ∈ W 1,p(Ω) and

||f ||p
W1,(p,λ)(Ω)

:= ||f ||p
Mp,λ(Ω)

+ ||Df ||p
Mp,λ(Ω)

< ∞ ;
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(v) f is in BMO(Ω), where Ω is a cube in IRN , if f ∈ L1(Ω) and

[f ]BMO(Ω) := sup
Q̃∈A

−
∫
Q̃

|f − fQ̃| dy < ∞ ,

where A is the family of cubes included in Ω with sides parallel to
those of Ω.

In particular we recall the following lemma (see [12], [13]) which will
be used in the sequel.

Lemma 2.2. Let Ω be a bounded open set of IRN and let Q be a
cube in IRN with sides parallel to the coordinate axes. Then
(I) f ∈ Mp,λ(Ω) if and only if there exists δ > 0 such that

sup
x∈Ω

0<�<δ

�−λ

∫
Ω(x,�)

|f |p dy < ∞ ;

(II) ||f ||p
Mp,λ(Q)

is equivalent to

sup
Q�(x)⊂Q

�−λ

∫
Q�(x)

|f |p dy .

In the following proposition we briefly recall some properties of these
spaces (see [1], [12], [13] for proofs and more details).

Proposition 2.3. Let Ω and Q be as in Lemma 2.2. Then for any
p ≥ 1
(a) Mp,0(Ω) ≡ Lp(Ω);
(b) Mp,λ(Ω) ⊂ Lp,λ(Ω) and Mp,λ(Q) ≡ Lp,λ(Q) if 0 ≤ λ < N ;
(c) Mp,N(Ω) ≡ L∞(Ω);
(d) Lp,N(Q) ≡ BMO(Q);
(e) Lp,λ(Q) ≡ C0,λ−N

p (Q) if N < λ ≤ N + p;
(f) Lr(Ω) ⊂ Lp,λ(Ω) ⊂ Lp,p(Ω) = Lp(Ω) ⊂ Lp,µ(Ω) ⊂ Lq(Ω) if 1 ≤ q <

p < r and 0 < λ < p < µ;
(g) Mp,λ(Ω) ⊂ M q,µ(Ω) if and only if 1 ≤ q ≤ p, 0 ≤ λ, µ ≤ N and

N−λ
p

≤ N−µ
q

,
where the symbol ≡ means that the spaces coincide and have equivalent
norms.
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We will also make use of the following theorem, due to F. Riesz (see
[15] and [16]).

Theorem 2.4. Let Q be a cube in IRN , f ∈ L1(Q) and p > 1. Then

(2.1)
∫
Q

|f |p dy = sup
P

∑
Qi∈P

[
|Qi|−(1− 1

p)
∫
Qi(x)

|f | dy
]p

,

where P = {Qi} is any decomposition of Q in a finite number of subcubes
with pairwise disjoint interiors and sides parallel to those of Q.

Finally we prove an imbedding theorem for Sobolev-Morrey spaces.
See also [5], [16], [13] and [12] for related results. In the sequel if p, λ ≥ 0
and N − λ− p > 0, we set

(2.2) pλ :=
p(N − λ)
N − λ− p

.

Theorem 2.5. Let Q = QR(x0) be a cube in IRN . Let f ∈
W 1,(p,λ)(Q) with p ≥ 1, 0 ≤ λ < N .

(i) If λ > N − p then f ∈ C0,
λ−(N−p)

p (Q);
(ii) if λ = N − p then f ∈ BMO(Q);
(iii) if λ < N − p then f ∈ Mpλ,λ(Q).

Proof. Poincaré inequality implies that for any Q�(x) ⊂ IRN

1
�p

∫
Q∩Q�(x)

|f − fQ∩Q�(x)|p dy ≤ c

∫
Q∩Q�(x)

|Df |p dy ≤ c�λ

with c not depending on x or �, so that f ∈ Lp,λ+p(Q). Using (e) and (d)
of Proposition 2.3, we respectively obtain (i) and (ii).

Let us finally consider the case λ < N − p.
Let P = {Qi} be a decomposition of a cube Q�(x) ⊂ Q in a finite

number of subcubes having pairwise disjoint interiors and sides parallel to
those of Q�(x). Let us denote by S the family of such decompositions P of
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Q�(x). Using Theorem 2.4, Hölder inequality and the Sobolev imbedding
theorem, we have

∫
Q�(x)

|f |pλ dy = sup
P∈S

∑
Qi∈P

[
|Qi|−

(
1− 1

pλ

) ∫
Qi

|f | dy
]pλ

≤

≤ sup
P∈S

∑
Qi∈P

[
|Qi|

1
pλ

− 1
p∗

(∫
Qi

|f |p∗ dy
) 1

p∗
]pλ

≤

≤ c sup
P∈S

∑
Qi∈P

[
|Qi|

1
pλ

− 1
p∗

(∫
Qi

(|Df |p + |f |p) dy
) 1

p
]pλ

where pλ is defined as in (2.2). Since f ∈ W 1,(p,λ)(Q�(x)), it follows that

∫
Q�(x)

|f |pλ dy ≤ c sup
P∈S

∑
Qi∈P

[
|Qi|−

λ
N

∫
Qi

(|Df |p + |f |p) dy

] pλ
p −1

×

×
∫
Qi

(|Df |p + |f |p) dy ≤

≤ c||f ||pλ−p

W1,(p,λ)(Q�(x))

∫
Q�(x)

(|Df |p + |f |p) dy .

From this inequality we have

sup
Q�(x)⊂Q

|Q�|−
λ
N

∫
Q�(x)

|f |pλ dy ≤

≤ c sup
Q�(x)⊂Q

||f ||pλ−p

W1,(p,λ)(Q�(x))

[
|Q�|−

λ
N

∫
Q�(x)

(|Df |p + |f |p) dy

]
≤

≤ c||f ||pλ
W1,(p,λ)(Q)

and the theorem is proved because of (II) of Lemma 2.2.
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3 – Proof of the main results

In this section we give the proof of the regularity results Theorems 1.1
and 1.2 stated in the introduction. Before that let us recall the following
definition.

Definition 3.1. We say that u ∈ W 1,p
loc (Ω) is a Q-minimizer of F if

there exists a constant Q such that

F(u;K) ≤ QF(v;K)

for any v ∈ W 1,p
loc (Ω), with K = spt(u− v) ⊂⊂ Ω.

In particular if Q = 1 we say that u is a local minimizer of F .

As we deal with local results it is not restrictive to assume global
regularity assumptions on ϕ (see (1.2)), instead of the corresponding local
assumptions. Hence, from now on we will assume that ϕ is in Lr(Ω),
M r,λ(Ω), Ls,µ(Ω) etc. instead of Lr

loc(Ω), M r,λ
loc (Ω), Ls,µ

loc (Ω).
Let us state an a priori estimate that will be crucial in the proofs.

Proposition 3.2. Let u ∈ W 1,p(Ω) be a local minimizer of the
functional (1.1) with the integrand function F satisfying (1.2).

If ϕ ∈ Lr(Ω), with 1 < r ≤ N
p
, then for any ε > 0 and for any

Q�(x) ⊂ QR(x) ⊂ Ω, with R ≤ 1,

∫
Q�(x)

(|Du|p+|u|p) dy≤ c

[(
�

R

)N−p+pσ

+ ε + Rp

] ∫
QR(x)

(|Du|p + |u|p) dy+

+ cεR
N(1− 1

r )

[∫
QR(x)

|ϕ|r dy
] 1

r

,

for some 0 < σ ≤ 1 and c, cε > 0 not depending on x, � or R.

Proof. The proof of the result closely follows the one of Proposition
3.6 in [8] . Henceforth we shall only indicate the necessary changes.

Define F0, F1 : Ω × IR × IRN → IR,

F0(x, u, z) := min{F (x, u, z), L(|z|p + |u|p)} ,
F1(x, u, z) := F (x, u, z) − F0(x, u, z) .
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By (1.2) it follows that

|z|p ≤ F0(x, u, z) ≤ L(|z|p + |u|p) ,
0 ≤ F1(x, u, z) ≤ ϕ(x) .

Fixed QR(x0) ⊂ Ω, with R ≤ 1, we set V = u+W 1,1
0 (QR(x0)). We define

the functional F0 : V → IR ∪ {+∞}, by

F0(w) :=
∫
QR(x0)

F0(x,w,Dw) dx .

For any δ > 0 there exists uδ ∈ V such that

F0(uδ) ≤ inf
w∈V

F0(w) + δRN .

This inequality, together with the minimality of u, implies

F0(u) = F(u) −
∫
QR(x0)

F1(x, u,Du) dx ≤

≤ F0(uδ) +
∫
QR(x0)

[F1(x, uδ, Duδ) − F1(x, u,Du)] dx ≤

≤ inf
w∈V

F0(w) + δRN + H(R) ,

with
H(R) :=

∫
QR(x0)

ϕ(x) dx .

From now on, the proof goes as in [8] with obvious variations.

Using Proposition 3.2 instead of Proposition 3.6 of [8] , we can restate
Theorems 3.9 and 3.1 of [8] under slightly more general assumptions.
More precisely:

Theorem 3.3. Let u ∈ W 1,p(Ω) be a local minimizer of a functional
F of the type (1.1) satisfying (1.2), with 1 < p < N .
(i) If ϕ ∈ L

N
p (Ω) then u ∈ VMOloc(Ω);

(ii) if ϕ ∈ L
N
p , 1p (Ω) then u is continuous in Ω.
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We are in position to prove Theorem 1.1, that is if ϕ ∈ M r,γ(Ω), with
γ ∈ (N − pr,N), then a local minimizer u of the functional (1.1) is in
C0,α

loc (Ω); if instead γ = N − pr, then u ∈ BMOloc(Ω).

Proof of Theorem 1.1. Let Q2R0
(x0) ⊂ Ω. Proposition 3.2 im-

plies that for any ε > 0, x ∈ QR0
(x0) and Q�(x) ⊂ QR(x) ⊂ Q2R0

(x0),
with R ≤ 1,

∫
Q�(x)

(|Du|p + |u|p) dy≤c

[(
�

R

)N−p+pσ

+ε + Rp

]∫
QR(x)

(|Du|p+|u|p) dy+

+ cεR
N−N

r +
γ
r ||ϕ||Mr,γ(Ω) ,

where c and cε are constants not depending on x or R. By an iteration
argument (see e.g. [8] , Proposition 3.7) it follows that there exists R1 ≤
min{1, R0} such that for any x ∈ QR0

(x0) and � < R ≤ R1

∫
Q�(x)

(|Du|p + |u|p) dy ≤ c

(
�

R

)N−p+pσ′ ∫
QR(x)

(|Du|p + |u|p) dy+

+ c�N−N
r +

γ
r ||ϕ||Mr,γ(Ω) ,

with 0 < σ′ < σ and c not depending on x or �. In particular for any
� < R1

(3.2)

∫
Q�(x)

(|Du|p + |u|p) dy ≤c

(
�

R1

)N−p+pσ′ ∫
Q2R0

(x0)

(|Du|p + |u|p) dy+

+ c�N−N
r +

γ
r ||ϕ||Mr,γ(Ω) .

If γ > N − pr, taking α = 1
p
min{pσ′, N − N

r
+ γ

r
− (N − p)}, from (3.2)

we have that
1

�N−p+pα

∫
Q�(x)

(|Du|p + |u|p) dy ≤ c

for any x ∈ QR0
(x0) and 0 < � < R1, with c not depending on x or �.

This implies u ∈ W 1,(p,N−p+pα)(QR0
(x0)). By Theorem 2.5 (i) we have

u ∈ C0,α(QR0
(x0)).

If γ = N − pr, from (3.2) we analogously have

1
�N−p

∫
Q�(x)

(|Du|p + |u|p) dy ≤ c ,
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that implies u ∈ W 1,(p,N−p)(QR0
(x0)). Theorem 2.5 (ii) yields that u is

in BMO(QR0
(x0)).

We turn now to the proof of Theorem 1.2. As a starting point we
state some preliminary result.

Lemma 3.4. Let u ∈ W 1,p(Ω) be a Q-minimizer of F , with F

satisfying assumptions (1.1) and (1.2). If ϕ ∈ Lr(Ω), with 1 < r < N
p
,

then ∫
Qτ (x)∩{|u|≥k}

|Du|p dy ≤ c

∫
Qt(x)∩{|u|≥k}

|ϕ| dy+

+ c

∫
Qt(x)∩{|u|≥k}

|u|p
(t− τ)p

dy

holds for any 0 ≤ τ < t ≤ R0, QR0
(x) ⊂ Ω and k ≥ 0, where c is a

constant not depending on x or R0.

A proof of this lemma for local minimizers of F with F satisfying the
growth condition

|z|p ≤ F (x, v, z) ≤ L|z|p + ϕ

can be found e.g. in [9]. The same proof actually holds for Q-minimizers
of F with F satisfying the growth condition (1.2).

Remark 3.5. We notice that, using Lemma 3.4 above in place of
Theorem 4.1 of [9], the regularity result stated in Theorem 2.1 of [9] can
be extended, with no other changes in the proof, also to Q-minimizers.
More precisely we have that if u is a Q-minimizer of a functional F with
F satisfying (1.2) and ϕ ∈ Lr(Ω), then u is locally in L(pr)∗(Ω).

The next lemma is proved following an idea contained in [4].

Lemma 3.6. Let ϕ ∈ Lr(QR(x)) and u ∈ W 1,p(QR(x))∩Lpq(QR(x)),
with q > 1, be two functions such that for any k ≥ 0

(3.3)
∫
Q�(x)∩{|u|≥k}

|Du|p dy ≤ c

∫
Q2�(x)∩{|u|≥k}

(
|ϕ| + |u|p

�p

)
dy

with 0 < � ≤ R
2
.
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(i) If q < r then

∫
Q�(x)

(|D|u|q|p + |u|pq) dy ≤

≤ c�
N
q −N

r

(∫
Q2�(x)

|ϕ|r dy
) 1

r
(∫

Q2�(x)

(|u| + 1)pq dy

)1− 1
q

+

+ c�−p

∫
Q2�(x)

(|u| + 1)pq dy ;

(ii) if q ≥ r then

∫
Q�(x)

(
|D|u|q− q

r+1|p + |u|p(q− q
r+1)

)
dy ≤

≤ c

(∫
Q2�(x)

|ϕ|r dy
) 1

r
(∫

Q2�(x)

(|u| + 1)pq dy

)1− 1
r

+

+ c�
N
r −N

q −p

(∫
Q2�(x)

(|u| + 1)pq dy

)1− 1
r+ 1

q

where c is a constant not depending on x, � or R.

Proof. Let us write QR instead of QR(x) and let Q(n) = {x ∈ QR :
n ≤ |u| < n + 1}. Let m be a positive number to be chosen later.

By (3.3) it follows that

∞∑
k=0

(k + 1)pm−1
∞∑

n=k

∫
Q�∩Q(n)

|Du|p dy ≤

≤ c
∞∑
k=0

(k + 1)pm−1
∞∑

n=k

[∫
Q2�∩Q(n)

(
|ϕ| + |u|p

�p

)
dy

]
.

Exchanging the summation order we get

∞∑
n=0

∫
Q�∩Q(n)

|Du|p
n∑

k=0

(k + 1)pm−1 dy ≤

≤ c
∞∑

n=0

[∫
Q2�∩Q(n)

(
|ϕ| + |u|p

�p

) n∑
k=0

(k + 1)pm−1 dy

]
.
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Since m > 0, there exist two positive constants c1, c2 not depending on
n such that

c1(n + 1)pm ≤
n∑

k=0

(k + 1)pm−1 ≤ c2(n + 1)pm ,

so that the previous inequality yields∫
Q�

|D|u|m+1|p dy ≤ c

∫
Q2�

|ϕ|(|u| + 1)pm dy + c�−p

∫
Q2�

|u|p(|u| + 1)pmdy.

Adding
∫
Q�

|u|p(m+1) dy to both sides we get

∫
Q�

(|D|u|m+1| + |u|m+1)p dy ≤ c

∫
Q�

|u|p(m+1) dy+

+ c

∫
Q2�

|ϕ|(|u| + 1)pm dy + c�−p

∫
Q2�

(|u| + 1)p(m+1) dy ≤

≤ c

∫
Q2�

|ϕ|(|u| + 1)pm dy + c�−p

∫
Q2�

(|u| + 1)p(m+1) dy .

Since ϕ ∈ Lr(QR), using Hölder inequality we obtain that

(3.4)

∫
Q�

(|D|u|m+1|+|u|m+1)pdy≤c

(∫
Q2�

|ϕ|rdy
)1

r
(∫

Q2�

(|u|+1)
pmr
r−1 dy

)1− 1
r

+

+ c�−p

∫
Q2�

(|u| + 1)p(m+1) dy .

If q < r we choose m such that m+ 1 = q, thus m r
r−1

= r q−1
r−1

< q. Using
Hölder inequality in (3.4), we get (i).

Analogously, if q ≥ r we choose m such that m r
r−1

= q and so
m + 1 = q − q

r
+ 1 ≤ q. Hölder inequality again gives (ii).

The following proposition gives a first information on the summability
of u.

Proposition 3.7. Let u ∈ W 1,p(Ω) be a local minimizer of a
functional F of the type (1.1) satisfying (1.2) where ϕ ∈ M r,γ(Ω) with
1 < r < N

p
and 0 < γ < N − pr. Then u is locally in Mpr,γ+pr(Ω).
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Proof. As in the proof of Theorem 1.1, (3.2) holds; since γ < N−pr

we have
1

�N−N
r +

γ
r

∫
Q�(x)

(|Du|p + |u|p) dy ≤ c

where c is a constant not depending on x or �. This implies that u is
locally in W 1,(p,N−N

r +
γ
r )(Ω) with N − N

r
+ γ

r
< N − p. By Theorem 2.5

(iii) we have that u is locally in Mpq0,λ0(Ω), with λ0 = N − N
r

+ γ
r

and
q0 = N−λ0

N−λ0−p
.

If q0 = r the thesis is proved. If q0 > r Proposition 2.3 (g) implies
that u ∈ Mpr,γ+pr

loc (Ω). If q0 < r let us define

λi := λ0 − ip ,

qi :=
N − λi

N − λ0 − p

for any i ∈ IN. Let n ∈ IN ∪ {0} be such that qn < r ≤ qn+1. By Lemma
3.4 and Lemma 3.6 (i) if u ∈ Mpqi,λi

loc (Ω) and i ≤ n then

∫
Q�(x)

(|D|u|qi |p + |u|pqi) dy ≤ c�
N
qi

−N
r +

γ
r +λi(1− 1

qi
) + c�λi−p ≤ c�λi+1 ,

so that |u|qi is locally in W 1,(p,λi+1)(Ω). Theorem 2.5 (iii) implies that

|u|qi is in M
p
qi+1
qi

,λi+1

loc (Ω) and henceforth u ∈ M
pqi+1,λi+1
loc (Ω). Iterating

this argument we get u ∈ M
pqn+1,λn+1
loc (Ω).

As before, if qn+1 = r we have the result; if qn+1 > r we use Proposi-
tion 2.3 (g).

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. For any i ∈ IN ∪ {0} let

γi := γ + pr

(
1 − 1

r

)i

,

qi := r
N − γi

N − γ − pr
.

The sequence γi is decreasing and converging to γ and the sequence qi is
increasing and converging to r N−γ

N−γ−pr
.

We will prove by induction that u ∈ Mpqi, γi
loc (Ω) for any i ∈ IN.
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As γ0 = γ + pr and q0 = r, by Proposition 3.7 u ∈ Mpq0,γ0
loc (Ω) and

the first step of the induction is proved.
Suppose now that u ∈ Mpqn,γn

loc (Ω). Since qn ≥ r we can apply
Lemma 3.6 (ii) with q = qn. Noting that N/r − N/qn − p +γn/qn = γ/r

and γ/r + γn(1 − 1/r) = γn+1, we have

∫
Q�(x)

(
|D|u|qn− qn

r +1|p + |u|p(qn− qn
r +1)

)
dy ≤

≤ c�
γ
r +γn(1− 1

r ) + c�
N
r − N

qn
−p+γn(1− 1

r+ 1
qn

) ≤ c�γn+1 ,

that is |u|qn− qn
r +1 ∈ W

1,(p,γn+1)

loc (Ω). Since

qn − qn
r

+ 1 = r
N − γn+1 − p

N − γ − pr
,

Theorem 2.5 (iii) implies u ∈ M
pqn+1,γn+1
loc (Ω).

For any ε > 0 let n ∈ IN such that qn > r N−γ−ε
N−γ−pr

. As u ∈ Mpqn, γn
loc (Ω),

Proposition 2.3 (g) implies u ∈ M
(pr)γ(1−δ),γ+δ(N−γ)
loc (Ω) where δ = ε

N−γ
.

As in [8] and [9] analogous regularity results can be proved in the
case of weak solutions of nonlinear partial differential equations.

Let us consider the equation

(3.5) div(A(x, u,Du)) + H(x, u) = divf

where A : Ω × IR × IRN → IRN and H : Ω × IR → IR are Carathéodory
functions satisfying the following assumptions:
(I) |A(x, η, ξ)| ≤ L(1 + |ξ|p−1) ∀(x, η, ξ) ∈ Ω × IR × IRN ;

(II) For all (x, η) ∈ Ω × IR and ξ1, ξ2 ∈ IRN




〈A(x, η, ξ1) −A(x, η, ξ2), ξ1 − ξ2〉 ≥ ν|ξ1 − ξ2|p if p ≥ 2

〈A(x, η, ξ1) −A(x, η, ξ2), ξ1 − ξ2〉 ≥
≥ ν|ξ1 − ξ2|2(|ξ1|2 + |ξ2|2)

p−2
2 if 1 < p < 2 ;

(III) |H(x, η)| ≤ L(1 + |η|p−1) ∀(x, η) ∈ Ω × IR .
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Theorem 3.8. Let u ∈ W 1,p(Ω), 1 < p < N , be a weak solution of
(3.5) with A and H satisfying assumptions (I), (II), (III) and |f |

p
p−1 ∈

M r,γ(Ω), with 1 < r < N
p

and 0 < γ < N .
(i) If N − pr < γ < N then u is locally Hölder continuous in Ω;
(ii) if γ = N − pr then u is locally in BMO(Ω);
(iii) if 0 < γ < N − pr then u is locally in M (pr)γ(1−δ),γ+δ(N−γ)(Ω) for any

δ > 0 such that (pr)γ(1 − δ) ≥ 1.

Proof. Under the assumptions of the theorem an analogous result
to Proposition 3.2 is proved in [8] with (3.1) replaced by

∫
Q�(x)

(|Du|p + |u|p) dy ≤ c

[(
�

R

)N−p+pσ

+ ε

] ∫
QR(x)

(|Du|p + |u|p) dy+

+ cε

∫
QR(x)

(
|f |

p
p−1 + 1

)
dy .

On the other hand it is easy to prove that Lemma 3.4 still holds (see the
proof of Theorem 5.1 in [9]). Arguing as in the proofs of Theorems 1.1
and 1.2 with ϕ = |f |

p
p−1 , the thesis follows.

A different approach has been used in [14] (see also [7]) to prove
analogous regularity results for weak solutions of linear elliptic differential
equations in the case p = 2 and r = 1.

4 – Example

We now give the example mentioned in the introduction. This ex-
ample is inspired by the one given in Section 10 of [13].

In the sequel N = 3, p = 2, 1 < r < 3
2

and 0 < γ < 3 − 2r. Let

ri =
(
2i

)− 1
γ , di =

(
e2i

)− 1
3−γ

, ψi =

[(
ri

γ

di
3

1
e2i

1
i2

) 1
3

]3

,

where i ∈ IN and [·] stands for the integer part. Let Si = {(x, y, z) ∈
Qri(0) : ri+1 < z < ri}. In each Si let us consider ψi cubes Dij =
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Qdi/2(cij) where the centers cij = (cij1 , cij2 , cij3) are defined as follows:

cij1 = −ri +
di
2

+ j1
2ri − di

ψ
1/3
i − 1

,

cij2 = −ri +
di
2

+ j2
2ri − di

ψ
1/3
i − 1

,

cij3 = ri −
di
2
− j3

ri − ri+1 − di

ψ
1/3
i − 1

,

for j1, j2, j3 = 0, 1, . . . , ψ1/3
i − 1. Let

i0 = min

{
i ∈ IN :

ri − ri+1 − di

ψ
1/3
i − 1

≥ 2di

}
.

We notice that if i ≥ i0 the cubes Dij are disjoint.
We divide each Dij into six pyramids. In particular we define

Dx+

ij = {(x, y, z) ∈ Dij : x− cij1 > |y − cij2 |, |z − cij3 |} ,
Dx−

ij = {(x, y, z) ∈ Dij : cij1 − x > |y − cij2 |, |z − cij3 |} ,
Dy+

ij = {(x, y, z) ∈ Dij : y − cij2 > |x− cij1 |, |z − cij3 |} ,
Dy−

ij = {(x, y, z) ∈ Dij : cij2 − y > |x− cij1 |, |z − cij3 |} ,
Dz+

ij = {(x, y, z) ∈ Dij : z − cij3 > |x− cij1 |, |y − cij2 |} ,
Dz−

ij = {(x, y, z) ∈ Dij : cij3 − z > |x− cij1 |, |y − cij2 |} .

Let Ω = Qri0
(0). Let us now define the function u : Ω → IR, such that

u(x, y, z) =




0 if (x, y, z) ∈ Ω \ ∪i,jD̄ij(
e2i

)1/2r

(di − |x− cij1 |) if (x, y, z) ∈ Dx+

ij ∪Dx−
ij(

e2i
)1/2r

(di − |y − cij2 |) if (x, y, z) ∈ Dy+

ij ∪Dy−
ij(

e2i
)1/2r

(di − |z − cij3 |) if (x, y, z) ∈ Dz+

ij ∪Dz−
ij .
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Let f : Ω → IR3 be the vector valued function (f1, f2, f3) such that

f(x, y, z) =




(0, 0, 0) if (x, y, z) ∈ Ω \ ∪i,jD̄ij(
∓

(
e2i

)1/2r

, 0, 0
)

if (x, y, z) ∈ Dx±
ij(

0,∓
(
e2i

)1/2r

, 0
)

if (x, y, z) ∈ Dy±
ij(

0, 0,∓
(
e2i

)1/2r
)

if (x, y, z) ∈ Dz±
ij .

We have that u is a W 1,2(Ω) solution of ∆u = divf . Hence u is a local
minimizer of the integral functional

F(v; Ω) =
∫

Ω

(
1
2
|Dv(x)|2 − 〈Dv(x), f(x)〉

)
dx .

Setting ϕ = |f |2, that is

ϕ(x, y, z) =

{
0 if (x, y, z) ∈ Ω \ ∪i,jD̄ij

(e2i)1/r if (x, y, z) ∈ Dij ,

we prove that

1) ϕ is in M r,γ(Ω), but neither in Lr+ε(Ω) nor in M r,γ+ε(Ω).

2) u is in M
(2r)γ ,γ
loc (Ω), but neither in L

(2r)γ+ε
loc (Ω) nor in M

(2r)γ ,γ+ε
loc (Ω).

1) i) Let us prove that ϕ is in Lr(Ω), but neither in Lr+ε(Ω) nor in
M r,γ+ε(Ω).

For any i ≥ i0 is

∫
Qri (0)

|ϕ|r+ε =
∑
k≥i

∫
Sk

|ϕ|r+ε =
∑
k≥i

ψkd
3
k

(
e2k

)1+ ε
r ∼

∑
k≥i

1
2k

1
k2

(
e2k

) ε
r
.

So, for any ε > 0, ϕ is not in Lr+ε(Ω). Observing that for any µ ≥ 0

1
rγ+µ
i

∑
k≥i

1
2k

1
k2

≥ 1
i2

(2i)
µ
γ

we have that ϕ is not in M r,γ+µ(Ω) if µ > 0.
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ii) Let us prove that ϕ is in M r,γ(Ω).
Denote by Q̃ a cube Q�(x, y, z). We will consider three different cases:

Case I. Q̃ ⊂ Si for some i.
If � ≤ di/2, Q̃ intersecates at most one of the cubes Dij and we have:

1
�γ

∫
Q̃∩Dij

|ϕ|r ≤ 1
�γ

∫
Q�(cij)

|ϕ|r = c�3−γe2i ≤ cd3−γ
i e2i .

If � > di/2, the number of cubes Dij intersecated by Q̃ is less than c�3

r3
i
ψi,

so that
1
�γ

∫
Q̃

|ϕ|r ≤ c
�3−γ

r3
i

ψid
3
i e

2i ∼ c
�3−γ

r3−γ
i

1
i2

as � < ri.

Case II. Q̃ ∩ Si �= ∅, Q̃ ∩ Si+1 �= ∅, Q̃ ∩ Sj = ∅ for j �= i, i + 1.
If � ≤ (ri+1 − ri+2)/2

1
�γ

∫
Q̃

|ϕ|r ≤ 1
�γ

(∫
Q�(x,y,ri+1+�)

|ϕ|r +
∫
Q�(x,y,ri+1−�)

|ϕ|r
)
≤

≤ c

�γ

(
�3

r3
i

ψid
3
i e

2i +
�3

r3
i+1

ψi+1d
3
i+1e

2i+1

)
≤ c

i2
.

If � > (ri+1 − ri+2)/2 we have � >
(

1
2

)1+ 1
γ

[
1 −

(
1
2

) 1
γ

]
ri and

1
�γ

∫
Q̃

|ϕ|r ≤ 1
�γ

(∫
Si

|ϕ|r +
∫
Si+1

|ϕ|r
)
≤

≤ c

rγi

(
ψid

3
i e

2i + ψi+1d
3
i+1e

2i+1
)
≤ c

i2

with c depending only on γ.

Case III. Q̃ ∩ Sj �= ∅, for j = i, i + 1, . . . , i + n with n ≥ 2.

It follows again that � > (ri+1 − ri+2)/2 >
(

1
2

)1+ 1
γ

[
1 −

(
1
2

) 1
γ

]
ri and

1
�γ

∫
Q̃

|ϕ|r ≤ 1
�γ

∑
j≥i

∫
Sj

|ϕ|r ≤ c
1
�γ

∑
j≥i

ψjd
3
je

2j ≤ c
rγi
�γ

≤ cγ

with c depending only on γ.
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2) Let us prove that u is in M
(2r)γ ,γ
loc (Ω), but not in L

(2r)γ+ε
loc (Ω) nor in

M
(2r)γ ,γ+ε
loc (Ω).

Simple calculations show that

∫
Dij

|u|(2r)γ = c
(
e2i

) 1
2r (2r)γ

d
3+(2r)γ
i

where c does not depend on i. By definition of di we have that

∫
Dij

|u|(2r)γ = ce2idi
3 = c

∫
Dij

|ϕ|r

and the thesis follows arguing as in 1).
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