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We prove continuity of minimizers of integral functionals of the form
fal fo(x, u, Du) + hDul, where the integrand fo(x, m, £) grows like |&|?, with
p>1 and A is in a suitable Lorentz space. Continuity of solutions of nonlinear
equations of the form div A(x, u, Du) = divh is also proved, where A(x,n, &)
grows like |£]”7%  © 1996 Academic Press, Inc.

1. INTRODUCTION
Let u € W22(Q) be a solution of the equation
Dj(a;(x)D;u) = divh, (1.1)

where [a;;] is a uniformly elliptic, bounded matrix. It is well known, see
[DG], that if 4 is in L°(Q) with s > n, then u is Holder-continuous in Q.
However, if 4 is only in L"(Q)) simple examples show that u is neither
continuous nor locally bounded.

A natural question is then to characterize those spaces to which 4
should belong in order to guarantee that u is continuous. Clearly these
spaces should lay between L*(Q)) and any L*(Q), with s > n.

A similar situation arises in considering weak solutions of the equation

Dj(a,;(x)Du) =g. (1.2)
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In this case if g € L*(Q) for some s > n/2 then u is Holder-continuous.
But again this result does not hold in the limit case s = n/2.

In the study of the continuity of solutions of equations like (1.1) or (1.2)
it is useful to introduce the Lorentz spaces L?7(Q), where p > 1, g > 0
(see definition in Section 2). For these spaces the following inclusion
relations hold,

L'(Q) CLP9(Q) C LPP(Q)
=LP(Q) CLP7(Q) CLP™(Q) C LI(Q),

whenever 0 < g <p <r < o,

Indeed one can prove, see [A, T], that if g belongs to the Lorentz space
L"/21(Q) and n > 2 any W;52(Q) solution of (1.2) is continuous. In the
framework of Lorentz spaces this result is optimal in the sense that if
g € L"/*1(Q), with g > 1, examples can be given showing that the solu-
tion u may be even unbounded. Similarly one can prove, see [F], that if
h € L"™Y(Q) and n > 2 any weak solution of (1.1) is continuous. Also this
result is optimal.

Another approach to the regularity of solutions of Eq. (1.1) is based on
the observation that weak solutions of this equation are indeed local
minimizers of the functional

f [aijDiuDju - h(x)Du]. (1.3)
Q
For a more general functional of the type

fﬂf(x,u(x),Du(x)) dx, (1.4)
with
MET —g(x) <f(x,m, &) < A(IE1” +Inl” +g(x)), p>1, (15)

Giaquinta and Giusti, see [GG], proved that if g(x) € L*(Q)) with s > n/p,
then a W 7(Q) minimizer u (or even a Q-minimizer) is Holder-continu-
ous. Clearly the functional (1.3) is of the type (1.4) with f satisfying (1.5)
for p =2 and g = |A|°. In a similar way one can study the regularity of
weak solutions u of an equation of the type

div(a(x)|Dul””*Du) = div h,

remarking that u is also a minimizer of a functional of the type (1.4) with
g(x) = clh(x)|”/?~ Y In conclusion HElder-continuity of solutions of many
linear and nonlinear elliptic equations can be obtained from the corre-
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sponding property of minimizers and Q-minimizers of functionals of the
type (1.4) (see [GG)).

In this paper we extend the continuity results for solutions of linear
equations to the case of minimizers of the functional (1.4). As a model
case covered by our Theorem 3.1, consider the functional

fn[fo(x,u(x),Du(x)) + h(x)Du] dx, (1.6)
where fy(x, m, ¢) is a Caratheodory function such that

€17 < fo(x,m, &) <L(L+ " +1€17),  p>1,

and h € L"/P~ D1/ P=D(Q), We then prove that if a function u in W*?())
is a minimizer of the functional (1.6), then u is continuous.

Note that in order to deduce the continuity of the minimizer u it is not
necessary to assume any differentiability of the integrand f,. In this
respect the regularity result given here is similar to the one proved in
[GG]. Here too the continuity of u is obtained using only the polynomial
growth of f, with respect to ¢ and the summability assumption on A(x).

However, our proof is different from the proof of the Holder-continuity
of minimizers of the functional (1.4) given by [GG]. In fact they prove that
if ue Wr(Q) is a minimizer of (1.4) and f satisfies (1.5) then both
functions u and —u satisfy the estimate

|Dul” dx < lu = kI” dx + ¢ [ g(x) dx

{u>k}NBg

(1.7)

c
/{u>k}me (R~ p)p ‘/;u>k}F‘|BR

for any ball By € Q, 0 < p <R, k>=0. Then, from the results of De
Giorgi (see [LU] it follows that if u and —u satisfy this estimate and
g € L°(Q), with s > n/p, u is Holder-continuous. It is not clear to us if
using the De Giorgi argument one can prove that if g isonlyin L"/71/7(Q)
and u and —u satisfy (1.7) then u is at least a continuous function.

Indeed, using a variational principle due to Ekeland (see Theorem 2.3)
we compare the minimizer u of functional (1.6) with the minimizer v of a
simpler functional to which the De Giorgi result applies. Then from the
gradient estimates satisfied by v we get similar estimates (see Proposition
3.6) for u. The continuity of u is then achieved by fully exploiting the
properties of Lorentz spaces (see Lemma 2.2) through a sharp version of
the standard iteration arguments.
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As an application of the techniques developed in Section 3 we also prove
(see Section 4) the continuity of solutions of the nonlinear equation

divA(x,u(x),Du(x)) + H(x,u) = divh,

where h € L"/@=DY=-1(Q), p > 1, Ax,n, &) grows like [£]”~* and
satisfies the usual monotonicity assumptions, and H(x,n) grows like
Inl?~ . It seems to us that in this case the monotonicity of A plays the role
of Ekeland principle which holds only for minimizers. We finally remark
that no sign conditions on H(x, n) are required.

2. PRELIMINARY RESULTS

In this section we recall the definition and some properties of Lorentz
spaces. In the following Q will always denote an open set in R”. The ball
centered in x,, with radius R will be denoted by Bx(x,), or simply by B,
and the average on such a ball of an integrable function f will be denoted
by

(f)xor = fo(x>dx

or just fx.

DeriNITION. A function f belongs to the Lorentz space L7 4(Q), with
1<p<o»0<qg<xif

+o g ds \M1
f (f*(s)s*/?) " when g > 0
0

sup (f*(s)s*?) when g = +
s>0

[f]p,q = (2.1)

is finite.
In (2.1) we have denoted by f*(s): [0, +o[— [0, +o the decreasing
rearrangement of f in Q

f*(s) = sup{t > 0: |{x € Q: [f(x)| > t}| > s}.
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Here and in the following, if f is a vector field, we say that f belongs to
LP1(Q) if |f| does. Using the definition above and Hardy inequality it is
possible to prove (see [BS]) that the following inclusions hold,

L'(Q) cL”i(Q) cL?”?(Q)
=LP(Q) cL”"(Q) cL?”(Q) cLi(Q),
whenever 0 < g < p <r < o, Further properties of Lorentz spaces can be
found in [BS]. It is easy to check that [-], , is a seminorm on the linear

space L77(Q). However, the following result (see [ON]) shows that one
can define a norm on L”7 which is equivalent to [f], .

THEOREM 2.1. Let us define for 1 <p < ©,0< g < ©

1/q

LT 1p q ds "
(j;) (f**(s)s )T) when g > 0

sup (f**(s)s™/?) when g = +o,

s>0

1fllp.q =

where for any s > 0
** 1 s * d
() = 5 [ £ ar

such that for any f € L?1(Q)

[f1p.q <Ifll,q SCp,q[f]P:‘{' (2.2)

Then there exists ¢ b

The following technical lemma will be useful at the end of next section.

LEMMA 2.2. Leta>0,b>1/a, f€ L*(Q0),0<q<b,d=1/n—
1/b + 1/q, 7 € (0,1). For any compact subset K of Q the series

S 1/q
,g(r"R)l‘d"( [, o dy) , (23)

TR
where R < dist(K, 9Q), converges uniformly for x € K.

Proof. Denoting by w, the measure of the unit ball in R”, and using
the properties of rearrangements we have

w,(T'R)"

f |f(Y)|aq dy SI (f*(s))" ds forany x € K,
B_ig(x) 0

TR
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where f* is the decreasing rearrangement of f in Bi(x). Hence the series
appearing in (2.3) is majorized by

(7'R)"

s

1/q
[( iR)n]1q+dqq/n f()wn(TlR)n(f*(s))aq ds)

<c(n,7,q) —21 [wn(f“lR)” _ a)n(TiR)n]

1

i

1

X( . n
(@, (r'R)")
<c Z /w (TiilR)”F(s) ds,

-1 0,(r'R)"

1/q
(T'R)" aq
1+q—-q/b _/(;w ’ (f*(s)) ds)

where

F(s) = ( q/bf(f*(s>)“qu) -

Therefore series (2.3) is controlled by

Va ds

¢ /O'BR(sl_l,,/b [ dt) M SO R

<cll |f|aq||Lb/‘1 1/4(BR)-

By (2.1) and (2.2) we may conclude that

) 4 s “ v Br 1/ab ad
500 (fg o T dY) < e[y S,

T RX

where f* is from now on the rearrangement of f in Q. Then series (2.3)
converges.

The uniform convergence follows from the observation that the Nth
remainder of (2.3)

. 1/q
)If(y)l "dy)

el

(TfR)l‘d”(fB

i T+ RX
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can be obtained from (2.3) substituting R with 7VR. Hence it is controlled
uniformly by

B d
/‘I TR|(]¢~*(t)t1/ab) !

a quantity which tendsto 0 as N — «. |i

Remark. 1f one takes g = b in Lemma 2.2, the series (2.3) may diverge.
As an example take the function

1

f(x) = wi/"lxl(log(l/lxl"))H1/"

in the ball Bz(0), with R < 1 small enough in order to guarantee that f is
radially decreasing. Obviously,

1
f*(s) = sl/”(log(wn/s))Hl/n

and f € L"*(Bk(0)). Then

I
8

g 1 L
('/0 n+1 )
1 s(log( w,/s))

1 1/n 1 -1
\n "R

Finally we recall the following variational principle due to Ekeland, see
[E, Theorem 1].

1/n
/B ()If(y)I" dy)

OO (
i= iR i

I

l

THEOREM 2.3. Let (V, d) be a complete metric space FV =] — oo, +x]
a lower semicontinuous functional such that inf,, & is finite. Let € > 0 and
u € Vsuch that

Fu) < infF+ e.
v

Then there exists v € V such that

O du,v) <1
(i) Fv) <Fw),
(iii) v minimizes the functional £(w) = F(w) + ed(v,w).
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3. VARIATIONAL MINIMA
In this section we consider integral functionals of the type
F(u) = F(u,Q) = [Qf(x,u(x),Du(x)) dx, (3.1)
where u € W1 r(Q), 1 < p < n, and the integrand f(x, n, ¢) satisfies the

following assumptions:

@ flx,m, &) QX R X R" - R is a Carathéodory function which
can be written as

f(xim, &) =fo(x.m, &) + fi(x,m, £);
(i)  f, satisfies the growth condition
€17 < fo(x,m, &) <L(L+ " +1£17),  p>1,
(i) there exists g(x) € L?/?~D(Q), g(x) > 0 such that
| fi(x,m, )] <g(x)I€]

Our aim is to prove the following

THEOREM 3.1. If u € WX 2(Q) is a minimizer of functional (3.1) and f
satisfies (i)—(iii), with g(x) € L"/(P= DY =D(Q), then u is continuous.

In order to achieve the proof of this theorem we need to recall some
well known results concerning Q-minima.

DerINITION.  Let A(x) € LY(Q), h(x) >0, and Q > 1. We say that
ue whr(Q), p =1, is a Q-minimizer of the functional
g(v) =2(0,Q) = [ (IDvl” + |ol” + h(x)) dx (3.2)
Q

if for any test function ¢ € W3 7(Q)
Z(v,supp ¢) < QF (v + ¢,supp ¢)
where, as usual, supp ¢ denotes the support of ¢.
The following result is contained in [GG, Theorem 3.1].
THEOREM 3.2. Ifu € WY P(Q) is a Q-minimizer of functional (3.2), with
p>1 and h € L°*(Q), s > 1, then there exists q, with 1 < q/p <s and a
constant ¢, > 0 such that for any B, C (), R < 1,

1

1/p
+

][ hq/p)l/q\ _
By

1/q
(IDul” + Iulq)) < Cl[(][B (1Dul” + |ul”)

R
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A simple consequence of this theorem is

COROLLARY 2.3. Ifu € W*P(Q) is a minimizer of functional 7(u) and f
satisfies ()—(iii), g(x) € L*/?~Y(Q), s > p, then there exists p < q < s and
a constant ¢, > 0 such that for any B, C ), R < 1,

1

1/q
(I1Dul® + Iulq))
R/2
1/p
+

1/q\

Proof. It is enough to remark that if u is a minimizer of #(u), then u is
a Q-minimizer, with Q = Q(L), of functional (3.2), where Ah(x) =
gpﬂp—lxx)+_1. l

The next result is well known as the Caccioppoli inequality (see, for
example, [G]).

THEOREM 3.4. If u € Wtr(Q), is a Q-minimizer of functional Z(u),
and h € LNQ), then for any By C Q

< CZ[(J[B (IDul? + ul”) ](B (8977~ 4 1)

lu — ugl”
|Dul? < ¢ ——+ | W+ | A, (3.3)
B 2 '[BR R? ‘[BR '/BR
where ¢ depends only on Q, n, p.

In the following we need a suitable version of a classical result due to
De Giorgi [DG] (see also [GG, Theorems 4.1 and 4.2]) for Q-minimizers of
the functional

Z(0, Br(x0)) = [ ) )(IDUI” +[v|” + kP) dx, (3.4)

R

where k£ > 0 is a constant.
First of all we can make the following simple observation.

Remark 3.1. If u is a Q-minimizer of functional (3.4) in By(x,), R < 1,
the function u(y) = u(x, + Ry)/kR is a Q-minimizer of the functional

o= [ (IDol” +[vl” + 1) d,
B(0)
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where Q depends only on Q, p, n. In fact, by the Q-minimality of u, it
follows that for any function @(y) with compact support on B,(0)

| _(Ip@?” + RP@” + 1) dx
supp ¢

Since, by the Poincaré inequality on B,

J

supp &

77 dx < 2P*1f

supp supp

< 2P*1[ @ + |7 dx + c(n, p)
supp @

x| [ |D#+ D" dx + [ |Dmpdx}, (3.5)

supp ¢ supp @

from the above inequality, using the assumption R < 1, we have

J

1
(IDZZI” + —ul” + 1) dx
supp @ 2c

2072 1
+—— [ @+ dc+ [ |DE+ DG dr
c supp @ 2 Jsupp @
1 ~
+ = | Dul? dx.
2 supp §

It follows that

J

S|

1 1
(—IDEI” + —ul? + 1) dx
upp G\ 2 2¢

202

+ —

<
c 2

0+ | (1D + DB + 17 + §I” + 1) d,

supp @

which proves the assertion.
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THEOREM 3.5. Ifu € WhP(Bg(xy), R <1, p > 1, is a Q-minimizer of
the functional (3.4), then there exists a > 0, c; > 0 depending only on p, n, Q
such that if 0 < p <R

n—p+pa
[ (Dul? +lul?) < cs(ﬁ) [ (Dul” +ul? + k7).
R Br(xg)

Bﬂ(xo)

(3.6)
Proof. If u is a Q-minimizer of (3.4) in Bg(x,), then
suplul” < c[(f lul?| + kPRP} (3.7)
Bg 2

In fact, if & is a Q-minimizer in B,(0) of the functional [s(IDvl” + lul” +
1), it is well known that & is locally bounded. Moreover (see [GE, Theorem
7.4] or [LU, Theorem 5.3, Chap. 2])

suplil” < ¢ f 71
Bl

B/,

+ 1}.

The estimate (3.7) then follows using Remark 3.1 and rescaling.

On the other hand, if # € W?(B,(0)) is a Q-minimizer in B,(0) of the
functional  [5(IDv|” + [v]” + 1) and sup, il <1, then @ is locally
Holder-continuous in B, ,, for some exponent a > 0. More precisely (see

[GE, Theorem 7.7] or [LU, Theorem 6.1, Chap. 2]) for every 0 < p < 1/2

(3.8)

By,

/ |Dil? < an-w“[] |Dil?” + 1].
B

If supg,, |u| M > 1 the function u /M is obviously a Q minimizer of the
functional ]B(IDUIP + [v|” + 1/M?) and a fortiori a (Q + 1)-minimizer of
the functional [s(IDv]” + |v]” + 1). Since Supg,, /M| =1, from (3.8) we
get that for any 0< p<1l/2

/ |Dil? < an-w“[j |Di? + suplil”|.
Bp

BI/Z Bl/Z

Hence, from estimate (3.7) we obtain

f | Dl < cp”f’”’“[f (IDul” + |al” + 1)
Bl i

B,

forany0 < p < 1/2.
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If u is a Q-minimizer on Bg(x,) of the functional Z, using again the
fact that the function @(y) = u(x, + Ry)/kR is a Q-minimizer on B,(0) of
the functional [ (IDvl” + [v]” + 1), from the estimate above we get, after
rescaling,

, p n—p+pa , |u|l’
fIDuI <c|l= f |Dul” + — + k”
B, R By R?

for any 0 < p <R/2. Since u —u, is a Q'-minimizer of functional
J5,(IDvl” + [v]” + [ugl” + kP), for some Q" = c(p)Q, applying the esti-
mate above to u — u, and the Poincaré inequality, we have

|P
+ lugl? + k?

p n—p+pa u u
[ \pul” < c(—) [ |1Dul” + ==~
B, R By

RP

p n—pt+pa
<c|—= |Dul? + |ul” + k*],
&) |

R

forany 0 < p < R/2.
Finally, by (3.7), if 0 < p < R/2, and since R < 1,

f lul” < p" sup lul” < cp"[f |ul” + k”RP}
B, Bg > Bg

< c(%)n[/BRlulp + k”R”},

which implies

p n—p+pa
/ (IDul” + |ul?) < c(—) [ [1Dul” + lul” + k”]. 1
B, R By

PROPOSITION 3.6. If u € WYP(Q) is a minimizer of functional (3.1) and
[ satisfies ()—(iii), with g(x) € L"/?~(Q), forany & > 0 and B, € B, < Q,
R < 1, the following estimate holds:

)n—p+pa'

fB(iDul" +ul”) < q((% +e+ R”)fBR(lDulp + lul”)

r/q

Bg
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for some ¢, >0, o> 0, p<gq <n (depending only on n, L, p) and c,
(depending only on n, L, p, &).

Proof. Let us fix By € Q, R < 1, and consider the functional
Fo(w Br) = [ folx,w(x), Dw(x)) dr,

with w € VV, where V = u + W3 1(By). As it will be clear in the rest of the
proof, the use of V, instead of the “natural” space u + W, P(Bg), is
needed in order to apply Ekeland’s lemma.

Let us fix 1 > & > 0 and chose uz; € V" such that

Fo(us, Bg) < inf F(w, Bg) + 6R".
wevlv
By assumption (ii) on f we have
J 1Dus|? < 2L [ (1 +lul” + |Dul?). (3.10)
Bg By
By the minimality of u we have also

Fo(u, By) = 5w, Be) = [ fi(x,u, Du)

< 7otz Br) + [ (Fi(x,u5, Dutg) = fi(x., Du))
< inf F(w, Be) + H(R) + 8R",
where, by (iii) and (3.10),
H(R) = MfBR(|Du|P + [ul”) + chBR(gP/@*l) +1), (3.1

with 1 > © > 0 to be chosen later. Letting & go to zero, we have

F(u, By) < inf F(w, Bg) + H(R).
wev

The functional Z(w, Bg) is lower semicontinuous with respect to the
topology induced on V' by the distance

d(uy, uy) = (H(R))*“PR*M*/M[B |Du, — Du,|.
R
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Therefore, Theorem 2.3 implies that a function v € V' exists such that
[ 1Du = Dul < (H(R))"Rre2/»)

Bg

Fo(v, Bg) < F(u, Bg)

(p—=1/p
( )) fBIDW — Dul.

v minimizes the functional: #,(w, Bg) +
Rl'l

R

(3.12)

Actually v € u + Wy?(Bg) and it is a Q-minimizer (with Q depending
only on L) of the functional

H(R)

Rl’l

+1

w—>f (IDWI” + |w|? +
BR

In fact, if ¢ € W ?(Bp), by the minimality of v, we have

H(R)\'"'*
(,, ) ) f Dl
R supp ¢

7o ) 1[ el + B
<FH(v+ @, SUupp ) + — o|l” + ¢ -
) pp 27 Jeop o R

Fo(v,supp @) < F(v + @,supp ¢) +

)
lsupp ¢|

(o728 1 P 1 V4
< F(v+e,supp ¢) +§f |Du| +5/ |Dv + Do|

supp ¢ supp ¢
H(R) | |
+ S ,
¢ R upp ¢
hence, by (i),
/ |Dvl? < (2L + 1)/ (1 + v+ ¢l” + |Dv + Dol")
supp ¢ supp ¢
)
+c R lsupp ¢l. (3.13)

Arguing as in the proof of (3.5) and using the assumption R < 1, we have

f [v]? < 2"*1'/‘ v+ ¢l” + ¢(n, p)

supp ¢ supp ¢

f |Dv + Dol” +/ |Dv|p}.
supp ¢ supp ¢

From this estimate and (3.13) one proves easily the Q-minimality of v.

X
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Using Theorem 3.2 we get for some p < g <n,

f

Bg /2

1/p
+

1+

H;f) )lﬂ,

1/q
|DU|q) gcl[(]g (1Dvl” + |vl”)

(3.14)

where g can be taken equal to the one appearing in Corollary 3.3.
Now Theorem 3.5 gives that for any 0 < p < R,

[ (o +1017) < c(g)n_pw[fB (IDol” + [0]7) + H(R) + R"

(3.15)
On the other hand
1/p ¥/q 1-9
(][ |Du — DUIP) < (][ |Du — Dulq) (][ |Du — DUl) )
BR/z BR/2 BR/Z

where 0 < 9 < 1issuch that /g + 1 — 4 =1/p.
From the first inequality in (3.12), (3.14), and Corollary 3.3 we have, for
some 0 < ¢ <1,

1/p
(]( |Du — DUIP)
Br 2

& | Du|?
|:(f;3R/z

+c)[ | Du — Duv|

£
Br /2

80[(][3 (IDul” + |ul?)

1/q
+

IA

1/q
f |Du|‘f)
BR/z

1/p
+

1/q

IA

]( (g9/P~V + 1)
BR

1/p /p
+ (1 + H(R) ) ]
Rl’l

_|_

]{B(muv’ +[0”)

N Cg(H;j) )1/p.
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Using the Poincaré inequality in By, the assumption R < 1, and the
second inequality in (3.12), the above inequality gives

1/p
(][ |Du — DUI‘U)
Br 2

1/p
+

1/q

< 8C[(]€9R(|Du|p + |ul?) ]gR(gq/(pq) +1)

H(R 1/p H(R 1/p
+ ( ) +c ( ) .
R" “\ R"
Hence, raising to the power p both sides of the previous inequality and
getting rid of the averages, we get

f |Du — Dv|? < ce?

Br >

fB(|Du|" + lul?)

r/q

+Rn(1—p/q>(f (gq/(p—l) + 1) + CgH(R).
BR

If 0 < p < R/2, from this inequality and (3.15) we get, recalling (3.11) and
(3.12) again,

fB(|Du|P + ul?)

< 21’*1[ (IDv|” + |vI?) + zp*l/ |Du — Dv|?
B, Bg

+20 [ w0l

Br 2
p n—p+pa
sc(—) (IDvl” + |vl”) 4+ 2771 |Du — Dv|?
R '/BR /;?R/Z
+2771 [ Ju—vl” + ¢(R" + H(R))
Bg
p n—p+pa
Sc(—) f (I1Dul? + ful”) +21”1f |Du — Dv|?
R By Br;

+cf lu—vl” +c(R" + H(R))
By
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p n—p+pa )
<c|l— |[Dul? + |ul?) + 2¢~
I )2

|Du — Dv|?
R B2

+ cRPfB (IDul” + |Dv|?) + ¢(R" + H(R))

p n—p+pa
5c«—) +3P+Rﬁj(mmp+wh
R By

pr/q

l

+ ¢ R"-p/D
&£

a/p=D 4 1
J, (s )

choosing w = u(e) small enough. |

Using a standard iteration argument, very similar to the one given in the
proof of Lemma 2.1, Chap. 3 of [G], we obtain:

PropPoSITION 3.7. Under the assumptions of Proposition 3.6 there exists
Ry > 0 such that for any B, € Q,0 < p <R <R,

[ (Dul” + 1ul”) < ¢

B,

p n—p+po’
J— D P + 14
(R) J, (oul” + )

+pn<1p/q>(fB (g9/P~Y + 1)
R

r/q
\, (3.16)

where 1 > o' > 0 and c5 > 0 are constants independent of R.

Proof. Letusput a=n—p+op, B=nll —p/q), 7=p/R, and
e(p) = [ (IDul” +1ul").
Bp

Then (3.9) can be written as
e(TR) <c,(t*+ e+ R")p(R) + ¢, RPF(R),

where

p/q

F(R) = (f (g9/P~Y + 1)

Choose +y such that
n—p<vy<a,

and 0 < 7 < 1 such that 2¢,7¢ < 7.
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If £ >0, R, are chosen such that ¢ + Rf < ¢, we have
¢(TR) < 7%(R) + ¢(7)RPF(R),
for 0 < R < R,,. Iterating, we get
k . .
o(T*R) < 77" Vp(R) + ct*PRP Y 11 BF(757IR)

j=0

TkBRE

< 7 D(R) + ¢ F(R).

Since for any 0 < p < R, there exists k > 1 such that
"R < p < Tk 1R,
from the above inequality the assertion follows immediately. i

As in Proposition 3.7, it is possible to prove the following:

PropPosITION 3.8. Under the assumptions of Proposition 3.6 there exists
Ry > 0 such that for any B, € Q,0 < p <R < R,,.

)n—p+ptr’

fB(lDul” +ul”) < ce[(g fB (1Dul” + |ul?)

+pn(1—p/n)(fBR(gn/<p—1> +1)

p/n
\, (3.17)

where 1 > o' > 0 and cq > 0 are constants independent of R.

Remark 3.2. If (ii) is replaced by the growth condition

€17 < fo(x,m, &) <L(1+1£1"),  p>1,

it is easy to check that in both sides of (3.16) and (3.17) the terms involving
lu|? can be dropped.

Before proving Theorem 3.1 we want to stress that, under the hypothe-
ses of Proposition 3.8, estimate (3.17) already contains interesting informa-
tion on the regularity of u. In fact we have:

THEOREM 3.9. If u € WYP(Q) is a minimizer of function (3.1) and f
satisfies (1)—(iii), with g(x) € L"/?~Y(Q), then u is locally VMO in ().

Proof. We remark that if « minimizes the functional in (3.1), then u is
a Q-minimizer of the functional in (3.2), with h(x) =g?/ Y(x) + 1.
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Then, using Proposition 3.8, the Poincaré inequality, and (3.3), for any
0<p<R<R,and B, C Q, we have

|l/l —u |P p n—p+po’ |Ll —u |P
]—PSC(_) [ S [l
B p? R Byr R? B

p 2R

)np+p¢r'

p
+cl — r/p=1H 4 1
(% J, (s )

+ Cpn<1—p/n)(/ (g"/=b +1)
BZR

p n—p+po’ |I/t —u |P
SC7(—) f - T2RE +/ lu|?
R Byx R? B

2R

p/n

p/n
+ Cpn(lp/n)(f (gD + 1)
BZR

From this inequality it follows that, if 0 < p < R < R,

p\P 1
— p < _ _ P + P
et <) St s |

p/n

+c (3.18)

n/(p=1 4 1
fBR(g )

It follows that for any x

p/n

IimsupJ[ Iu—ux,plpsc(/ (g"/P~1 +1)
p—0 B,(x) Br(x)

Clearly this inequality holds uniformly in compact subsets of . The result
follows letting R go to zero.

Remark 3.3. Notice that, if f satisfies (i)—(iii) with p=n, ge
L"/=9(Q), we can still conclude as in Theorem 3.9 that u is locally VMO
in Q and (3.18) holds. In fact, Theorem 3.5 and Propositions 3.6, 3.7, 3.8,
hold true with the same proof also in this case.

Now we are in position to prove Theorem 3.1.
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Proof of Theorem 3.1. Using Proposition 3.7 and arguing as in the proof
of (3.18), we get, for 0 < p < R < R,,,

P\ 1
- p < . _ P + p
][Bp|u uPI c( R) []S?Rlu tl R"P LRM }

pr/q

+ Cppan/q)(f (g9~ + 1) (3.19)
Br

In view of Theorem 3.9 it is not restrictive to suppose u € BMO(Q).
Hence we may estimate

R”—Pf lul” <c, R,
BR

forany 0 < y < 1.
Let us fix y, then if 0 < 7 < 1/2, R < R,, By C Q, estimate (3.19) can
be written in the form

][ lu —ugl” < c771’”'][ lu — ugl” + cR™
BTR BR
r/q

+ C(TR)p(ln/q)(/ (gq/(pfl) + 1) . (3_20)
Br

Now let us fix 7, such that c,7¢”" < 1/2” and let us define

1/p

From Theorem 3.9, a; goes to 0 as i goes to + o, uniformly on compact
subsets of ().
Then (3.20) implies

1/q

A

a,,, < Ea,- + CriYRY + c(TO)(TéR)l_"/" / (g7 + 1)
2 Br{,R(x)

1 .
Z% T+ CT'RY + ¢(79)b;.

l
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From this we have immediately

Y a,<a,+2CRYY, 1l + 2¢c(7y) X b,
i=k+1 i=k i=k

Using Lemma 2.2, with a = 1/(p — 1) and b = n, we have that the series
generated by b, converges uniformly. Since also a, goes to zero uniformly,
the series
1/p
lu — uTéle’)

converges uniformly on compact subsets of ).
Since

pf

B,ip(x)

1/p
e rprig = gl < f |u—ux,,éR|sc(f |u—ux,75R|"),

BT(‘)”R(X) BTéR(x)

the sequence

U(x) = u(y)dy

TéR(x)

converges uniformly. Being U;(x) continuous and converging almost every-
where to the precise representative of u(x), the continuity of u(x) follows.

4. SOLUTIONS OF NONLINEAR EQUATIONS

Some of the technical tools developed in the previous sections turn out
to be useful also in order to study continuity of solutions of nonlinear
equations. Namely, once one gets in this new framework an estimate like
(3.9), it is still possible to use Lemma 2.2 and Proposition 3.8 to prove a
result similar to Theorem 3.1. However, in the case of equations, there is
no counterpart of the Ekeland variational principle. Hence, to get (3.9), we
need to make a monotonicity assumption that we did not have in the case
of variational minima. Again, as in the previous section, we will refer to a
model case.

Let us consider a solution u € W' ?(Q), 1 < p < n, of the nonlinear
equation

div(A(x,u, Du)) + H(x,u) = divf, (4.1)

where f is in the Lorentz space L"/(»~D¥/(=1(Q), the vector field
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A(x, m, &) satisfies the following assumptions:

(N A(x,m,€): Q X R X R" — R" is Carathéodory and
|A(x,m, €) < L(1+1€177Y);
(1)
(A(xlnlgl)_A(x!n!§2)l§1_§2)2V|§l_§2|p |fp22
(A(x:”’), gl) _A(x!nv 52)1 gl - fz)

> ol - &P (167 +1617)" 7 if1<p<2;

and H(x, n) satisfies

(11) |H(x,m)| <L(1+n""?).

We are going to prove the following:

THEOREM 4.1.  Suppose u € W r(Q), 1 < p < n, is a solution of (4.1),
under the assumptions ()—(111), and f is in L™/ P~ DY P=D(Q). Then u is
continuous.

Proof. Using standard existence results for monotone operators (see,
e.g., Theorem 2.8 of Chap. 2 in [L]), one can easily check that under the
assumptions on A(x, n, ¢£) and H(x, n), there exists 1 > R, > 0, depend-
ing only on L, v, p, n, such that, if R < R,, the problem

div(A(x,u,Dv)) + H(x,v) =0 in By
(4.2)
vV=1u on dBg,

admits a solution v € W*?(Bg). Furthermore (see Theorem 2.1 in [GG])
v is a @-minimizer in By, with O depending only on L, v, p, n, of the
functional

w —>f (IDwl? + |wl? + 1).
Bg
Then v is Holder-continuous and, see Theorem 3.5,

[ et w1y <e( 2] e v v 1), @3)

B,
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for any 0 < p < R. Moreover from Egs. (4.1) and (4.2) it follows that

fB(A(x,u,Du) — A(x,u,Dv), Du — Dv)

= [ (H(x,u) = H(x,0))(u = v) + [ (f, Du = Dv).
B Bg
If p > 2, from (I11) and (111) we get, for any & > 0,

J1Du = Dol” <c,f fu—uvl” +ef (ul”+1ol” +1) +cf [f17/77D
By By By B

R

<R[ \Du—Dol’ +cef lul”+cf (If17/7°7+1).
R 'R R

Hence there exists R, < R, (R, depends also on &) such that, if R < R,

Du — Dvl? < p p/(r=1 4 1),
fBR| u — Dul <cs[BR|u| +cf (If] +1)

Bg

Combining the above inequality and (4.3) we have, forany 0 < p < R < R;,

/B(|Du|P + lul?)

p n—p+pa
SC[(—) + ¢
R

A similar estimate can be obtained also in 1 < p < 2. In fact, subtracting
Eqg. (4.2) from (4.1), we have

P P p/(p—1)
fBR(IDul + lul )+c/B (If1 +1).

R

(4.4)

[ 1Du = Do (IDul® + Do)
BR

<c [ lu—ol”+ef (Jul”+ol” + 1)
Bg Bg
+ef (IDul” +1Dul”) +c, [ 1f17/¢7Y
BR BR

<c,R” [ |Du—Dol” +cef (1Dul” +ul” + 1) +c, [ 1f17/¢7Y,
Bg By Bg
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Taking into account the fact that, if 1 < p < 2, the following inequality
holds (see [AF, Lemma 2.2]),
[&1" < c(p.n)|1&I7 + 16 — §2|2(|§1|2 + |§2|2)

(p—z)/z]

Vflr §2 € an

we obtain again (4.4), for 0 < p < R < R;, with R, depending on .

Inequality (4.4) is analogous to (3.9) with ¢ = p (actually it is simpler).
Then the same argument used to prove Propositions 3.7 and 3.8 shows that
there exists 0 < R, < R;, R, = R,(L, v, p, n), such that, for any 0 < p <
R <R,,

)n—p+pa’

[ (1Dul” +1ul?) < c(% J (1Dul” + 1ul")

+ef (117770 + 1), (4.5)

BR
and

p n—p+pa’
f(lDul”JrIuI”) 3c(—)
B R

P

/B (1Dul? + Ju|?)

p/n
+ cpn—p(/ (lfln/(p—l) + 1) , (4.6)

Bg

for some 0 < @’ < a. The conclusion then follows as in the proof of
Theorem 3.1. |

If instead of a solution of (4.1) we consider a solution u € W 7(Q) of
the equation
div(A(x,u,Du)) + H(x,u) =g + divf, (4.7)
with fe L/r-DYe=-D) ¢ e /P P=D(Q), an argument similar to
the one used to prove (4.5) gives

)n—p+poz’

[ (1Dul” + ul”) < c(% [ (1Dul” + lul")

+ Cf (|f|p/(pfl) + 1)
B

R

(p*=1)/p*Xp/(p—1))
e )

/ |g|p*/(p*fl)
Bp
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where, as usual, p* denotes the Sobolev exponent of p. Similarly one gets,
instead of (4.6),

)n—p+pa'

[, (1Dul” +1ul”) < c(% [, (1Dul” + 1ul”)

p/n

i cpnp(f (|f|n/(pfl) 4 1)

Bg

p2/n(p—1)
) (4.8)

+ cp”_p(/ lg|"/?
B

R

Hence, using Lemma 2.2 with a =1/(p — 1), b=n(p — 1)/p, and g =
p*(p — 1) /(p* — 1), it is possible to obtain the following:

THEOREM 4.2.  Suppose u € WHP(Q), 1 < p < n, is a solution of (4.7),
under the assumptions (D—-(11), and f € L/ *P-DYVer-D(Q), g€
L"/PY/P=I(Q). Then u is continuous.

Finally, we remark that, in order to obtain (4.8), it is enough to assume
fe L"/®D(Q)and g € L"/7(Q). Hence, as in Theorem 3.9, we have:

THEOREM 4.3.  Suppose u € WP(Q), 1 < p < n, is a solution of (4.7),
under the assumptions ()—(11), and f € L"/?~Y(Q), g € L"/?(Q). Then u
is locally VMO in Q).
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