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ANNALS OF MATHEMATICS
Vol. 51, No. 1, January, 1950

SOME NEW FUNCTIONAL SPACES

By G. G. LoreNTZ
(Received October 5, 1948)

The present paper is devoted to the study of two new types of Banach spaces
Aa), M(a), 0 < a < 1, whose elements are integrable functions over an interval
(or rather classes of functions; as usual, we identify functions equal almost every-
where). To a certain extent these spaces are akin to the F. Riesz’s spaces L, ;
there is a correspondence between A(a) and L, for p = o as well as between
M(a) and L, , p = (1 — &)~". The conjugate to A(a) is M(); but the conjugate
to M(a) proves to be not A(e), and so our spaces are not reflexive. §1 is devoted
to main properties of the spaces A(a), M(e) and to their relations to each other
and to the spaces L, . Some more general spaces are defined. In §2 we investigate
linear functionals in A(a), M(a) and find their general form in A(e); the inequal-
ity 2.1(1), proved here, plays a fundamental réle in our theory. In the last three
sections, §§3-5, we are concerned with applications to Fourier series, to the
integration of fractional order and to the moment problem for a finite interval.

§1. The spaces A(a), M(«) and their properties

1.1. For simplicity, we confine our attention to the interval (0, 1); our results
will be valid for any finite interval (0, a) as well (and, with some precautions,
described in 4.1, also for infinite range). A real measurable function f(z),0 <z < 1,
belongs to A(a), 0 < @ < 1, if and only if

11(1) 15 llsw = 51| = & [ &1%(a) da

is finite. Here and in the sequel we write f*(z) for the rearrangement of | f(z) | in
decreasing order, that is for the function f*(z) in 0 < z < 1, which is decreasing
(in the wider sense) and equimeasurable with | f(z) | . (For these notions see
Hardy, Littlewood, Pélya [8, pp. 276-279], Zygmund [17] and Lorentz [14]).

A measurable function f(x) belongs to M(a), 0 < a < 1, if

1@ Wl = 1711 = sup {mor= [ 1) da} < +;

here e signifies an arbitrary measurable subset of (0, 1). For the excluded value
a = 1 we would obtain for A(1) and M(1) the spaces L, and M (Banach [1]).
We define the sum f + g of two elements of A(a) or M(a) and the product af of
a real number a and an element in the natural way, and the norm || f || by 1.1(1)
or 1.1(2). Then we have

TaeoREM 1. A(e) and M(a) for 0 < a < 1 are Banach spaces.

We first show that A(a) and M(a) are linear normed spaces; for this purpose it

37
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38 G. G. LORENTZ

will be sufficient to prove, that with every pair f, g the sum f 4+ g also belongs to
A(a) and to M(a) respectively and that

1.1(3) Wf+gll=IFfll+1lgll-
By 1.1(2), this is immediate for M(a); and for A(e) we use the inequality

1@ [ K@ + 0@ e 5 [ h@r@ de+ [ Ao dn

Here f, g are arbitrary and h is decreasing and positive (in the wider sense). Put-
ting h(z) = oz, we obtain 1.1(3) for A(a).

To prove 1.1(4), observe first that for a step function A.(z) of the type h.(z) = 1
for0 <z <e¢ h(x) =0forc=r<1,0=c=1114)is

[Gtoras [ra+ [ od
0 0 0
and this is true, since, by definition of the rearrangement (f 4 g¢)*,

foc(f+g)"‘dac=f¢|f+glal=c

for some measurable set ¢ C (0, 1) with me = c. Returning to 1.1(4) we see that
this inequality is likewise true for any decreasing positive step function h, every
such h being a linear combination with positive coefficients of functions h. .
Finally, if h is any decreasing function, we can choose an increasing sequence of
decreasing step functions k, , and making n — « we obtain 1.1(4) by Lebesgue’s
theorem.

We shall now prove that A(a) is complete. Every fe A(a) isan mtegrable func-

tion, f ¢ Ly. Write || f || = f |f | dz for f € Ly, and ¢s(f) = aj; = de. do(f)

is a continuous function in the space L, , increasing for § — 0 +, and therefore
1

o(f) = a f 2 f*dx = limsops(f) is a lower semicontinuous function in L,
o

with values 0 < ¢ < + . Clearly, || f || £ a '¢(f).

Suppose now that f, ¢ A(e) and that ¢(fn — fm) — O for n, m — . Then
|| f = fm || — 0, and so a function f e L, exists such that || f» — f|| — O.
For every € > 0 there is a p for which ¢(f» — fm) < €if n, m = p. By the lower
semi-continuity of ¢,

¢(fn-'f) é,l,,l—_gr:o¢(f"—fM) _S_S, n = p.

We therefore have f, — f in the metric of A(a), which proves the result. The
proof for M(e) is similar, and our theorem is complete.
1.2. THEOREM 2. The spaces A(a) are separable, while the spaces M(a) are not.
For f € A(e) we put fa(z) = f(z) if |fz) | £ n, =niff(z) > nand = —nif
f(x) < —n. Then f.(z) is bounded and we have || f» — f ||a@ — 0. We thus may
confine our attention on bounded f ¢ A(e). For uniformly bounded functions
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SOME NEW FUNCTIONAL SPACES 39

|fa = fllac@ — O is equivalent to || fn — f||z, — 0. From the known facts
about L; we deduce that the two subsets of A(a): (a) the set of all linear combi-
nations of characteristic functions f.(x) = 1 for z ee, f.(x) = 0 for z & ¢ and
(b) the set of all polynomials with rational coefficients are everywhere dense in
A(a). Thus A(a) is separable.

To prove the second part of the theorem, we let correspond to every real
0 < 6 = 1 the dyadic expansion with an infinity of 1’s § = 0, 6, 6; - - - and the
function

folx) = 2979, 27 <z <27V, y=1,2--.
Then fy(z) < z* ' andife C (0, 1),

f folz) dx < fo 2 dr = o (me)®.

Thus all of the f; belong to M(a). On the other hand, they are at a distance
=1 from each other, for if 8’ > 6, then | 8, — 6, | = 1 for some n and therefore
2—(n—1)

U=l 22 [ U = folde = 27272 = 1

The f5(x) forming a non enumerable set, the space M(«) is not separable.

1.3. We investigate into the relations among the spaces A(a), M(a), L, .
Consider two linear normed spaces X, Y, whose elements are measurable func-
tions on (0, 1). It is convenient to write

1.3(1) X<y,

if every function f ¢ X also belongs to Y and if, for some constant K,
Wfllr = K|l fllx

for all f ¢ X. We have for instance,

132) A) < Al@), M) < M(@) for < .

THEOREM 3. For every 0 < a < 1,
1.3(3) Al@) < La—1,
1.3(4) Le-1 < M(1 — a).

1.3(4) is easily deduced from Hoélder’s inequality. For the proof of 1.3(3) we
need the inequality

! p—1 P ®
13(5) fo 7 f(z)? dz < K,{ _/: @) d:t} , p21,

where f(z) is positive and decreasing, the constant K, depending only on p. For
sums instead of integrals and with K, = p~* this has been proved by Hardy,
Littlewood and Pélya [9], [8, p. 100]; for convenience of the reader we insert a
simple proof for integrals which does not claim to obtain the best value of K, .
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40 G. G. LORENTZ

Let p be first an integer; then, with the aid of polar coordinates in the p-dimen-
sional space,

{folf(x) dx}p B fol dxy - ,[f(xl) o f(zp) dzy

x/2 /2 1

= f ddy -+ f ddp_1 f f(rsindy - -+ sin d,_1)f(r cos ¥y sin &, -+ sin J,_1)
o o 0

ces f(r coS Fp1)r" sin 9, -+ - sin® " 9,y dr

2 /2 x/2 1
> ‘[ f Sin 9 -+ 0”2 9,y ddy - -+ APyt f ()P dr
0 0

1
= K;j; 2 f(z)? da,

which is equivalent to 1.3(5). For an arbitrary p = 1 choose an integer po > p
and apply Holder’s inequality, with the exponents r = (p — 1)/(p — 1) and
8 = (po — 1)/(po — p), to the right hand side of

e = @Y

To prove 1.3(3), put p = & . For any f ¢ A(a), the function g(z) = z°7'f*(z)
is decreasing. We therefore have

1 »
s {[ o) = Kea Il
o
which completes the proof.
Counter-examples for Theorem 3 are provided by the functions f; = z™¢
1
log™ o f» = ¥ % We have, indeed, f1 € A(a), fie Lo—1 and fo € Lo-1 , f2e M(1 — a).
From the theorem we see that
1.3(6) Ale) < M1 — )
(this is easily proved immediately). A counterpart to this inequality is contained
in the theorem:

TreEOREM 4. M(1 — &) < Ale) if &' < a.
Suppose f e M(1 — a'); then

g(z) = fozf*(t) dt = ||f llma—ant™,

+(1—a fo 2% (x) de

1
0

f 1 27 f*(z) dx = f 2 dg(x) = 2 g()
0 0
S+ Q= lifl [ & e = Kallf I,

that isfe A(a) and Hf ”A =K ”f ”M .
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SOME NEW FUNCTIONAL SPACES 41

1.4. There is another mode of introducing the space M(«). For indefinite inte-
grals F(z) = f f(¢)dt we introduce, with Carathéodory [3, p. 511] the modulus of
0
total continuity of F(x):

7(8) = sup Z'_‘:l | F(b,) — F(a,) |, 6> 0;

the least upper bound being taken over all finite groups of intervals (a, , b,)
without common points, such that Y (b, — a,) < 8. Then M(a) can be con-
sidered as the totality of all f e L, such that 7(8§) < Ké&% 6 > 0, and the least
possible K in this inequality is || f ||m(a) . For this least K is

K = sup 87%7(3) = sup {0, — @)X |F(b) — F(a) |}

and the supremum is identical with 1.1(2).

1.5. We shall only mention, without going into details, definitions of some more
general Banach spaces, which we denote by A(a, p), @ > 0,p = 1 and M(e, p),
0 = a = 1,p = 1. They are obtained by putting

1 /p
A 9): 171 ={a [ = raras} .

1/p
M(e, p): [|f]l = sup (me)“"{flf(x) ” dx} .
eC(0,1) e

Spaces of this type had been considered indirectly formerly, and the well
known theorems of Hardy and Littlewood, and Paley (compare Zygmund [17,
pp. 208, 214]) may be regarded as to refer to the space A(p — 1, p), p > 1.
Without proof, we mention the inclusion

’

lIA
IIA

1 a
1.5(1) Ale, p) < M (}7 5 p’>, 1=p" =p
A special case is A(e, p) < M((1 — a)/p, p), which is more general than 1.3(6).

The inclusion

1.5(2) Aa, p) < A(d, D)

1,11

holds if and only if either ap™ < o/p" orap™ = o'p’™ and p = p’. Especially,
Ale, p) < Alep'p™, p') if p’ = p, and for p’ = pa™" we obtain A(a, p) < Lpa-1,
which contains 1.3(3).

§2. Linear functionals in the spaces A(e) and M(«)

2.1. We shall make a repeated use of the following inequalities:
THaEOREM 5. If f, g are measurable over (0, 1),

2.1(1) ] folﬂx)g(x) do | < sup {(mer“ [17@ ldx} a [ 4" g*@) dz;
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42 G. G. LORENTZ
and if f, g are positive and g is decreasing,

2.1(2) j: f@g(x) dz < §1>1§) {6“"f flx) dz } -aj: 27 g(z) dz.

popl 1
We have | f fgdx| = f f*g* dz, hence it will be sufficient to prove 2.1(2).
0 0

Suppose first that g(z) is a step function ga(z) = 1for0 < z =< A, and = 0 for
A < z < 1. Then 2.1(2) reduces to

j;Afdx =< sup {5““];5fdx} « A%,

and is clearly true. Again, 2.1(2) is true for any positive decreasing step function
g(xr) with a finite number of jumps, since such g(z) is expressible as a linear
combination with positive coefficients of the ga(z). And by passing to the limit,
as in Theorem 1, we obtain 2.1(2) for general g(z).

2.2. The main result of this paragraph is:

TrHEOREM 6. Every linear functional ®(f) in A(e) s of the form

2.2(1) o = [ 1)@ da

with an appropriate g e M(a); this g 1s uniquely determined by ® and
2.2(2) el =1lgllxew

We need a lemmas:

LeMma. Suppose that g(z); fx(x), g*(x) are measurable in (0, 1) (g*(z) being the
rearrangement of | g(x) | in decreasing order). Then there is a measurable f(x)
such that f and fx , as well as fg and fxg* are equimeasurable.

To prove the lemma, we use the fact (Lorentz [14]), that there are two decompo-
sitions K + Dtz Ky and K* + Xz K¢ of the interval (0, 1) in null sets such that
(a) on the corresponding sets K; and K; the functions g and g* take the same
value; (b) if a sum D ¢q K; is measurable, then also 2 _¢q K; is so (and con-
versely), and both sets have the same measure; (c) every set K; consists of a
single point.

We now define f(z) by f(z) = fs(y) for all x € K¢, if y is the only point of
K7 ; f(z) may be taken arbitrary on the set K. It is easily seen that f(z) is measur-
able and that it possesses the properties required by the lemma.

Proor oF THEOREM 6. If g e M(a), then 2.2(1) is a linear functional, and || & ||
=< |l g |lmc , according to 2.1(1). Conversely, suppose that ®(f) is a linear
functional in the space A(a). We wish to show that ® can be represented in the
form 2.2(1). Put ¢(e) = ®(f.) for any measurable set ¢ C (0, 1), where f, is the
characteristic function of e; ¢(e) is an additive set function. We have || fe ||a =

Nl = o fom 2 'dr = (me)® and therefore |o(e) | < || @] (me)® Thus
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SOME NEW FUNCTIONAL SPACES 43

o(e) is totally continuous and has a representation ¢(e) = f g(z) dz, with some
g € Ly ; and g is uniquely determined by ¢ (or by ®). We clearly have

o= [ fog da.

Choose & > 0 arbitrary and put &€ = (0, 5). For the three functions g(z); f, () =
fi(z), g*(x) we find, according to the lemma, the fourth f(z), which is clearly
an f,(z) with me = 4. Since

3 1 1
[¢ds = [rar=[fgae =2 sl N5l =2l

we conclude that g e M(a); moreover, gl =121
Now @(f) and &(f) = f fgdz are two linear functionals in A(a), and

®(f) = &.(f) if f = f.. By 1.2(a) these functionals are identical on the whole
of A(c). This completes the proof.

For any fixed f e A(a), 2.2(1) is a linear functional in M(a) with the norm =
|| f lacwy - But this is not the general form of a linear functional in M(a),
since M(e) is not separable, and A(a) is (Banach [1, p. 189]).

2.3. TaEorEM 7. (1) If the integral

23(1) [ 1@q(@) d

exists for a fived measurable g and all f € M(a), then g € A(a); (i) If 2.3(1) exists
for a fixed g and all f ¢ A(a), then g e M(c).
(i) For the functions g(z); fx(z) = az®”, g*(x) we find, by the lemma of 2.2,

1
the corresponding f(z). Since fx e M(c), f also belongs to M(e:). Thus « f ™ g*dx =
0
1
[ s0 dz s fimite.
0

]
(ii) Suppose that g ¢ M(e), or that & ° f g* dz is not bounded. Then there is a
0

3
sequence 8, > 0, (§; = 1), decreasing monotonously to 0, such that | g*dz >
0

3
vo, (v = 2,3, ---). We may assume, that even / g*dr > v, holds for all

‘v+l
v =2,3,--- and that ) 87 < + . Choose a sequence of positive numbers a,
such that

> ad < 4w, Dwad =+
and put
fx(@) = a, for & =z <5,
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44 G. G. LORENTZ

For the three functions g; fx , g* we choose, by the lemma of 2.2, a fourth function
f. Since

1 © 3y
P f "y dr = Zaa,f *de £ Y 4,68 <+,
0 1

5v+l

1 1
we have f« € A(a) and hence f ¢ A(a). Therefore, _/; fxg*dz = f fg dz exists. On
0
the other hand, however,
f fxg* dz = Zf > > va,b) =
Sy41

This contradiction establishes our result.

§3. Applications to Fourier series

In this paragraph the range is 0 < z < 2.
3.1. THEOREM 8. A series

3.1(1) a/2 + 2 (an cos nz + b, sin nz)
n=1

s the Fourier series of a function f(zx) from M(a) or A(e), if and only if the first
arithmetical means o,(x) of the partial sums of 3.1(1) have the property
3.1(2) lonll =
in the metric of M(a) and A(a) respectively.
First, if 3.1(1) is a Fourier series of some f ¢ M(a) (or A(a)) then ¢.(z) =
.{.'
[ K.@)f(x + t) dt, K.(t) denoting the Fejér kernel. Suppose that g ¢ A(a)
(or M(e)) and that || g || = 1. We have

+r +r +x
[[ogar= [ K@a| sa+oo0assiisll [ Koat =I5}

Hence, by theend of 2.2, || 0, || = || F ]I

Now suppose that 3.1(2) holds. By Theorem 4 and from 1.3(3) we deduce that
|| o ||, are also bounded for some p > 1. Hence, by a theorem of W. H. Young
(Zygmund [17, p. 83]) the series 3.1(1) is the Fourier series of some f ¢ L, . Since
oa(z) — f(z) almost everywhere, we have also o (x) — f*(x) almost everywhere.
Hence, by Fatou’s lemma

IFll =1/l Slm |l on |l = lim|loa || S K,

in the metric of M(a) (resp. A(a)). Therefore, f belongs to M(a) (or A(e)).
TaHEOREM 9. For all f e M(a) (or A(a))
3.1(3) OTn — f

tn the metric of M(a) (or A(a)).
By Theorem 8, the norms of the linear operators ¢ = o.(f) are uniformly
bounded. Since 3.1(3) is fulfilled for all continuous f, the conclusion follows.
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SOME NEW FUNCTIONAL SPACES 45

TareoreM 10. Suppose that f € A(a), g e M(a) and that a, , b, are Fourier constants
of f and a, , by, are those of g, then

B0 43 (anan+ 00 =2 [ se)ete) da

where the sum means the Cesdro C, — sum and k any positive number.
The proof is the same as that in Zygmund [17, p. 88] and is omitted.
3.2. For the special case of the series

3.2(1) > a, cos nz, 3.2(2) X a,sinnz
1 1

where the coefficients are monotonously decreasing to 0, much simpler criteria
can be given in order that the sum belongs to A(a) or M(a). For similar questions
for other classes of functions, compare Hardy and Littlewood [7], Hardy and
Rogosinski [10] and Lorentz [13].

TeEOREM 11. In order that the sum g(x) of the series 3.2(1) or 3.2(2) should
belong to M(a), the condition

3.2(3) an = 0(n™%)
1s necessary and sufficient; and for g e A(a) the condition s

3.2(4) Zl: n %a, < + o,

We confine our attention on the cosine series 3.2(1); the series 3.2(2) may be
treated on the same lines. We shall make use of the inequality (Hardy and Little-
wood [7, p. 7], Zygmund [17, p. 213])

3.2(5) a» = C G(x/n),

where G(z) = '/; g(t) dt and C (and later on Cy, C:, - - -) stands for a constant,

independent of g. If g e M(a), 3.2(3) follows. Suppose now g e A(a), write
g*(x) for the rearrangement of | g(z) | in 0 < z < = in decreasing order and put
1

G*@) = f g* dt. Then

Z n*a, £ C; Z n°G(x/n) = C1 D, n*G*(x/n)

n=2
x/(n—1) 3
saX [ @ = [ e 6*@) a.
x/n 0
To estimate the last integral observe that for 6 > 0

f @ des = —C; f G*dz™ ! = —Ca{x"”lG*
3 s

__f xa—lg* dx}
3 3

Cy6"G*(5) + Ci f8 2" g* da.
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46 G. G. LORENTZ

The first term of the right hand side is < Cs||g|lma-ay = Cillg |2,

and the same holds for the second term. Thus
;n'“a» = Cillgllam < + .

To prove that the conditions are sufficient, we note that by Abel’s lemma

lg() | = Zav

Consequently 3.2(3) implies

<> a + Cean/z.
1

Z a, COs vI
+1

n

3.2(6) lg@@) | = G2 a, < Ce 2o v™ < Con'™®
1

1
for #/(n+1) <z <a/n
Put h(z) = Con' *for v/(n + 1) < z < x/n; clearly | g(z) | < h(z) and therefore
also g*(z) < h(zx). Hence

1/n
*
f gd$<01o§1' (+1)_

so that g ¢ M(a), what we wished to show.
Again, if 3.2(4) holds, we deduce as in 3.2(6) that g*(x) =< h(z) where
h(z) = C1p 1as = A forr/(n 4+ 1) < z < x/n. Hence

o x/n
f “_l*dx_Zf “'lhd:v=C’uZA "l
n=1 Jx/(n+l)

Cu n

o0 -] -]
=Cp2a X0 =2Cs) v a < +ow.
»=1 n—y yms]

§4. Applications to fractional integrals

4.1. We first derive some inequalities dealing with functions in the range
(— o, + ) or (0, «). Here f*(z) need not to have a sense for an arbitrary
measurable f(z); f*(r) exists if, and only if, for every a > 0 the set | f(z) | > a
has a finite measure. If the spaces A(a), M(c) for an infinite range are restricted
to contain only functions of this kind, the results of §§1-2 are still applicable.

TuareoreM 12. Suppose that f(x), g(x) are positive for — o < z < 4 o, fe Ala),
geM(B),0<a<1,0<pB<landletp=2—a—p <1 Then

4w oo
s [ [T I gy < K o 19 e,
with a constant K = K(ou, B) depending only upon o and B.

By a well known inequality of F. Riesz (Hardy, Littlewood and Pélya [8, p.
279]), the integral in 4.1(1) can become only larger if we replace f, g by their
symmetrically decreasing rearrangements. Thus we may assume that f, g are
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SOME NEW FUNCTIONAL SPACES 47

decreasing in (0, + «) and even, and therefore replace the range (— o, 4 )
in 4.1(1) by (0, + ). But

fnfofglx—yl"‘dxdy
41(2) . , . .
= [ o dyf°f<x>1x—yr“dx+fo 1@ dz [ 9@ |2~y ™ dy.

v
Putting F(y) = f f(x) dz, we obtain
0

v v/2 y
l f@)(y — 2)™ de = _/; + fy o = W/2)*Fy/2) + f/2)(y/2) (1 — w)™
= iy 'F(y) + Coy"F(y) = Coy"F(y);

hence the first integral in the right hand side of 4.1(2) is < C; f y "F(y)g(y) dy.
0

A similar inequality holds for the second integral. Therefore, Theorem 12 is a
consequence of

TraeOREM 13. Suppose that f(z), g(x) are positive and decreasing in (0, + =)
and that F(y), G(y) are their integrals over (0,y). Let0 < a < 1,0 <8 < 1land
p=2—a — B < 1. Then

@) j: Tf(2)G(x) dr £ —— HfHA(a) Il g llsma-p,

@ [ e d s Kl el ke,
where the constant K depends only upon o and B.

Proor. The proofs of the two cases are different; and (i) is simpler. From the
“fundamental inequality” 2.1(2) we see that the integral in (i) does not exceed
]

|| £1] supssod™® f 2 “G dz; and since
0
'] t]
LI f r *G(z) dz = 8 “G() f ™ dz = #7'Q1) /(1 — p)
0 0

8
= (1—;;)“5"“_{ gdz = (1 —wlgll,

(@) follows.
To prove (ii), we again observe, that we need only prove the inequality for a
step function f(z) = 1for0 < z < §, f(x) = Ofor z > 4. For this f (ii) becomes

t )
413) fo 2 dz + 5 ﬁ 5 dz < Ko || gl

]
The first integral is < 8™ ‘é gdx £ 6| gllua-s - Moreover, if fi(z) is the
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48 G. G. LORENTZ

function = 0 for 0 < z < § and = z*for z = §, then fi (z) = (z + 8)™ and by
2.1(1),

5./; t™gdx < 8| gllma-p [ fillaa-p
=sllglla =0 [ @+ da =K lgll

where K = (1 — B) f (v + 1)™™* dv. This proves 4.1(3) and therefore (ii).
0

4.2. For an integrable function f(z) with the period 27 and mean value O the
fractional integral f,(x) of Weyl of the order 0 < p < 1 is defined by

42(1) 7@ = ot [0 - o a

fo(x) exists almost everywhere. The main result of Hardy and Littlewood
[6] is embodied in the fact that f € Ly, implies f, € Li/(a—p ,1f 0 < p < a. A similar
result is true for our spaces.

THEOREM 14. Let 0 < p < @ < 1. Then f € A(a) implies f, ¢ Al — p) and
feM1 — a) impliesf, e M(1 — a + p).

The proof follows the same lines as that of Hardy and Littlewood [6, p. 575]
(see also Zygmund [17, p. 232]); it depends upon the inequality 4.1(1) and is left
to the reader.

4.3. We note also the following inequality

TrreoreM 15. If f(x), g(x) are positive in 0 < x < + o, 1f f ¢ A(a), g e M(e)
and 0 < a < 1,then

£301) [ [ 2252 a2 ay < K@ 117 llco 1 o

We apply Schur’s argument in his proof of Hilbert’s inequality (I. Schur [15]
Hardy, Littlewood and Pélya [8, p. 230]). The integral in 4.3(1) is

= fo 9(y) dy f” (= + 97 flz) dz = fag dy fm (1 4+ &7 f(yt) dt
0 0 0 0
4.3(2) . .
= f a4+ dtf flzt)g(x) dz.
0 0

For any fixed ¢,
1£@t) ||acey = e fo 2 f(at)* de

= of f: W) du = |11,

and the result follows from 4.3(2) by means of 2.1(2).
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SOME NEW FUNCTIONAL SPACES 49

§6. Applications to moment problems

5.1. In this paragraph we deal with the moment problem for the interval (0, 1),
in the case when the generating function belongs to A(a) or M(a). The problem
consists in describing those real sequences u, , for which the system

5.1(1) B = fl:c"f(x) dz, n=2012---
0

possesses a solution f ¢ A(a) or f ¢ M(a). We first give necessary conditions on

Mn -
TeEOREM 16. If f ¢ A(c), then

5.1(2) ;n""lu,.l < +o;

and if f(x) is positive (that 7s, =0) and decreasing, then 5.1(2) is necessary and
sufficient in order that f ¢ Aa).
It is sometimes convenient to make use of the binomial coefficients 4% =

(n j; B) = n®/T(8 + 1) rather than of the powers n®. With their aid we have, if
feA(a),

-] 0 1 -]

X il S G E ATl S G [ 7@ |2 A7 dm

5.1(3)
=C, f: 1f) | (1 — 2)*dz < Cia*||f]l.

On the other hand, if f is positive and decreasing, from 5.1(2) we derive
2 A7%n < + ®, and, by 5.1(3), [ "z < + o,

TueoreM 17, If f € M(a), then
5.1(4) pn = 0(n™");

and for positive decreasing f(z) 5.1(4) s equivalent to f ¢ M ().
Suppose that f € M(a), then, by 2.1(2),

luell S U1l [ (0 = 272" d = aBn + 1, @) [171] = 063

Conversely, lel 5.1(4) be fulfilled and suppose f(z) = 0 and decreasing. If we
define the positive integer n by (n + 1)™ < 8 < n*, then for 0 < & < 3,

1 1
f flx) dz = le 2" f(x) de < Con ™ £ Cqpd”
1-8 13

and therefore f ¢ M(e).
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50 G. G. LORENTZ

For the sake of completeness we mention the theorem:

THEOREM 18. If f € Ly, p > 1 then Dy n” % | ua |” < + 0 ; and if this condition
18 fulfilled and f(x) is positive and decreasing, then f € L, .

The first part of the theorem was given by Hardy and Littlewood [5]; and
the second part is proved on the same lines as in Theorem 17.

5.2. We now proceed to solve the moment problems for general p, and prove
the Theorems 19 and 20 below. In the proof of the necessity of our conditions
the main difficulty consists in the estimating of certain sums involving the
“Newton probabilities”

520 @) = pale) = (") FA—2™; 0Sysn n=01-.

In the sufficiency part we use an idea of T. H. Hildebrandt [12], applied by
him to a solution of Hausdorff’s moment problem. We write

m»—()”" =(){Fv nl_vnv+x+~-+(-1)"_’#n};

0sv=n n=01,---.

In the same manner p,, is expressed by the powers z”. Therefore 5.1(1) implies

5.2(2) Py = fo Prv(@)f(2) de.

We also write un, for the |pa |, » = 0, -+ -, n, arranged in decreasing order.
Finally, we state some inequalities, concerning finite sums, and analogous to the
inequalities for integrals of §§1-2. We have

n n P
5.2(3) Z_)o 0+ 1D"'a? = K, (E__‘; a,) , p > 1,
if g, are 20 and decreasing,

524) ”“) @} 5 Kup max {(’i—l)—“Zm..}

kywo- n + 1 =0

l1—a<B<l;

whenever 0 < @ < 1,0 < 8 < 1land 1 — a < B; here the maximum runs over
allintegersO§k§nandO Sw<<n<---<p=n

k4 1\ |a, > v+1)°‘"1 "
< %
® pax {( +1> §n+1}§(n+1 b

0<a<l

5.2(5) by

Of these inequalities, 5.2(3) is the Hardy, Littlewood and Pélya inequality
mentioned in 1.3; 5.2(4) corresponds to Theorem 4 and 5.2(5) to the inequality
2.1(1). They may be proved by arguments similar to those used for the integral
inequalities, or derived from these; we leave the details to the reader.
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5.3. THEOREM 19. A sequence u, is the moment sequence of a function f e A(e)
if and only if for some constant K

5.3(1) >+ )i, < K(n + D™, n=12--

v==(

a) The condition is necessary. If p = p(v) is an appropriate rearrangement of
the v = 0, 1, - - - , m, then, according to 5.2(2) and by 2.1(1) for the sum 5.3(1)
we have

n 1 n
26+ D7l S f @) 1 2 6 + D™ Pasr(@) do

= || 1lac sup {5_“ f Zn: (o + 17 pa,(z) dx}; (6 = me).
>0 e »=0

The last integral is

[ Rt [Ze

ev<nd

A

T e+ 0+ 0+ @ [ T g, de

y<nid >néd
< Ci(n + 1) (n8)* + 8(nd)* " S Caln + 1)*7* 5%

Hence our sum is =C:||f|| (n + 1)*7, and 5.3(1) follows.
b) The condition is sufficient. Let 5.3(1) be fulfilled; applying 5.2(3) to

a=@+1)"u,»=0,1,---,nandp = o}, we obtain
Zlﬂnv"’:Z#:vpéCl(n'l'l)l-P: n=1r2:"°'
»=0 »=0

But according to Hausdorff [11] (see also Widder [16, p. 109]) this is sufficient
to guarantee that the moment problem 5.1(1) is solvable by a function f € L, .
It remains to show that this f belongs to A(a).

Let P(x) = ap + awx + - -+ + a,z™ be an arbitrary polynomial; we denote by

53(2) Ba(®) = Z_,:, Pe/n)pwm(@) = ai” + oz + -+ 4 ol 2"

its n*® Bernstein Polynomial; it is known that a{” — a; when n — . Hence

f ' P(0)f(@) dz = lim f BE()f(z) dz;
0 n—w J0
on the other hand, by 5.3(2), 5.2(2), 5.2(5) and 5.3(1),

1 n
fo Bif dz| = | 2 PO/n)un

k+ 1\ "5 . 1
s k& mox {(E20Y" 3 poym 1 1),
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52 G. G. LORENTZ

Write II.(z) for the function, equal to |P(v/n)| in »/(n + 1) <
z < (v 4+ 1)/(n + 1); then the last sum is = f II, dx over some set e, whose
measure is equal to (¢ + 1)/(n + 1). Therefore,

1
LBﬁfdx S Co || || M -

Since II.(z) — | P(z) | uniformly and since || I, || — || P ||, as n» — =, this
obtains

| [ P& az| 5 €21l Pllwco

For an arbitrary bounded measurable function ¢(z), 0 < = < 1, there is a se-
quence of polynomials P,(z), uniformly bounded on 0 < z < 1 and converging
almost everywhere to ¢(z). It is easy to see that || P, || = || ¢ ||. We thus obtain

1 1
'/;sofdx = C:]| ¢ ||; and replacing ¢ by ¢ sign f, fo ¢|fldx = Ce|l¢||. Using

1
the lemma of 2.2, we deduce f Yf*dz = C,||¢ || for any bounded measurable
0

function ¢(z). Putting ¢(z) = ax* " ford < z < 1,¢() = 0for 0 < z < 5,
this becomes

o [0 do s G, G > 0).
3

Thus in fact f(z) belongs to A(a).
5.4. THEOREM 20. A sequence un is the moment sequence of a function f € M(a)
if and only if there is a constant K such that

k k+1a
5°4(1) Elﬂnnl .§ K —), 0 é v < o0 < g é n, n= 1,2, e
=0 n+1

a) The condition is necessary. For brevity, we write

k

5.4(2) s(z) = g pﬂl’i(x)y o(z) = Z pm(x)

yu=(

Using 5.2(2), we deduce for the sum of our condition 5.4(1),

k 1 k
> | S [ 17@)] 3 pon(@) a2 5 |15 e 18 lacor
=0 0 =0

Thus our proof will be complete if we can show that for the function s(z),

5.4(3) sl s ¢ (BH2),
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SOME NEW FUNCTIONAL SPACES 53

where the constant C is independent of the choice of the integersn, k, v, -+ , v .
This is easy for the function ¢(z), for o(z) is readily seen to decrease, and so

lelhw = « 2 (7) [0 - 2 oo

v=0

k

_ n _ _ L I+ )T(n+ 1)
_“;()B(”"'“’n vt D= e e T DT D)
o+ D= (k + 1)"
§C1Z( +1)a§02 n¥i/
Thus we only need to show that
5.4(4) lsll = Csllo]l.

We need the following lemma:

LemMA. Let g(z), h(z) be positive on (0, 1) and suppose that h(x) is decreasing.
If for every measurable set ¢ C (0, 1)

fe g(z) dz < j; h(z) dz,
then, in the metric of A(a),
5.4(5) Ngll < |R]|.

£ £ ;
For the function ¢g* we have _/; gtdr < j; h dx, and hence f fdx = 0 for
(]

every0 £ £ = 1, with f = h — g*. By the second law of mean, for every bounded
decreasing positive function ¢(x) we have

1 1
[ordr =00 [ 1+ o [ sas

0 0 ¢
5.4(6) .
= (6@ — o] [ fdz+ o0 [ fdz 2 0.

Putting o(z) = 2°'ind <z < land o(x) = 6°'in 0 < z < 5 and making
8 — 0 we obtain

1 1
‘i P g*de < L ' h dz,

which is equivalent to 5.4(5). This establishes our result.
By the lemma, and since o(x) is decreasing, it is sufficient to show that for
some constant C;

me.

I

5.4(7) f s(z) dz < Cs fo ' (@) d, 5
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54 G. G. LORENTZ

We have

k 1
fs(x) dr £6 and = Z j‘: Pm;(ﬁ?) dr = :’—j:—::.
e 1=0

First suppose k¥ = 0. Putting & = min (5, (n 4+ 1)), we obtain

n—+1
which proves 5.4(7). Next suppose k = 1. 5.4(7) will follow, if we can show that

81 81 n
fadzgf (1-—x)"dng (1—_1- dz = Ch, C>o0,
0 0 0

]
fo ¢(z) dz = C, min (3, k/n), C. >0,
Let 6, = 27" min (3, k/n), then

] 81 81 ]
54(8) foadx;fo > p.d:cgfo > podz = folal(x)dz,

y<2nd; »S2nz

say. We wish to show that the sum o¢y(z) has a positive lower bound for all
0=z =dandalln = 1,2, --- . (This fact has a simple probabilistic meaning.)
By an inequality of S. Bernstein [2] (see also Fréchet [4, p. 130])

5.4(9) Pw(z) < 267 ,

|v—nz| =2a(nz(l—z))}
i
5.4(10) 0<z<1 and 0 = a £ (1l — 2)L.

L]
If we put « = %(1_”_’.”_90) ,5.4(10) is fulfilled for 0 < z < & < } and by 5.4(9),

5.4(11) v;z Pun(Z) = l > pulr) < 2e7™,

y—nz|>nz

Let A be so large, that 2 exp (—A4/4) < }; for £ > An™" the sum 5.4(11) is
<%, and thus

@) = X pu(@) =}
v<2nz

On the other hand, if 0 < z < An™,
01(z) Z paole) = (1 — An7)" = Cs,

the constant Cs > 0 being independent of n. Therefore, putting Cs =
min (Cs, 1), we have ¢1(x) = Cefor all 0 < =z < §; and from 5.4(8) we deduce

']
f o(x) dz = Cooy,
0

which completes the proof.
b). The condition s suffictent. The proof runs parallel to that of the correspond-
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SOME NEW FUNCTIONAL SPACES 55

ing part of Theorem 19. Instead of the inequality 5.2(3) we use 5.2(4) to show

that 5.4(1) implies
n p—1
;(;—}—i) uh o< 0, @ >1-a).

Thus 5.2(5) is fulfilled with some 0 < 8 < 1 instead of «, and the moment prob-
lem possesses a solution f ¢ A(8). We then show that f e M(a) in the same manner
as in Theorem 19.
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