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Abstract

We consider the Dirichlet problem associated with equations whose prototype is

−1pu = f in Ω

where Ω ⊂ Rn , n ≥ 3, p ∈ [2, n[, −1p is the p-Laplacian operator and f belongs to the Morrey space L1,λ(Ω) with λ ∈]0, n−p].

Firstly, we prove that the gradient of the truncation T j (u) belongs to L p,λ
loc (Ω) for all j > 0 and, as a consequence, we establish

regularity results in suitable weak Morrey spaces for u and its gradient.
c© 2007 Elsevier Ltd. All rights reserved.

MSC: 35J25; 35D10

Keywords: Elliptic equations; Measure data

1. Introduction

In this paper we study the regularity of the solution of the following Dirichlet problem:{
−div(A(x, Du)) = f in Ω
u = 0 on ∂Ω (1)

where Ω is an open bounded subset of Rn (n ≥ 3), u 7→ −divA(x, Du) is a strongly monotone operator mapping
W 1,p

0 (Ω) into its dual W −1,p′

(p ∈ [2, n[, 1
p +

1
p′ = 1) and f belongs to the Morrey space L1,λ(Ω).

The study of problem (1) with L1-data (note that L1
= L1,0) was started in the linear case (i.e. p = 2 and

A(x, Du) = a(x) · Du, where a(x) is a uniformly elliptic matrix with bounded coefficients) by G. Stampacchia who
introduced the notion of “duality solution” (see [27,28]).

In the nonlinear framework the first attempt to solve problem (1) was made by L. Boccardo and T. Gallouët who
proved in [6,5] the existence of a solution of (1) in the sense of distributions which belongs to the space W 1,q

0 (Ω), for
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any q ∈ [1,
n(p−1)

n−1 [. Unfortunately, the distributional solutions of (1) are not unique (for a counterexample see [26]);
however, in [3] it has been proved that the distributional solution u of (1) satisfying an additional condition, the

so called entropy condition (see Section 2 for the definition), is unique and it is such that u ∈ M
n(p−1)

n−p (Ω) and

Du ∈M
n(p−1)

n−1 (Ω), whereMα(Ω) is the weak Lebesgue space.
Other results concerning nonlinear higher order equations with L1-right hand side can be found in [20].
Let us recall that a known result (see e.g. [10,9,15,21]) states that if A(x, Du) is nonlinear, p = 2 and f ∈ L2,λ(Ω)

with 0 ≤ λ < n, then the weak solution of problem (1) has a gradient which belongs to the Morrey space L2,λ
loc (Ω).

In this paper assuming f in the Morrey space L1,λ(Ω), 0 < λ ≤ n − p, for the entropy solution u of (1), we prove
that the gradient of the truncation T j (u) belongs to L p,λ

loc (Ω) for all j > 0.
As a consequence of this result we are able to establish the following regularity properties:

(i) If λ ∈]0, n − p[ then, for all H ⊂⊂ Ω , we have

u ∈Mpλ,λ(H), Du ∈M p̄λ,λ(H)1

where pλ =
(p−1)(n−λ)

n−λ−p and p̄λ =
(p−1)(n−λ)

n−λ−1 ;
(ii) if λ = n − p then, for any cube Q ⊂⊂ Ω , we have

u ∈ BMO(Q), Du ∈Mβ,λ(Q), ∀β < p.

Our results improve, at least locally, the regularity on u and Du obtained in previous quoted papers without
increasing the integrability on the datum f .

If p = 2, if the operator is linear, and if Ω has C1-boundary or it is a cube, the aforementioned results improve the
analogous ones of paper [12] (see Remark 5.2).

We point out that our work completes the paper of T. Kilpelänen [18] where the case λ > n − p was considered
(see Remark 2.2).

As regards the technique, as in the linear case, we use the approximation method used by L. Boccardo and
T. Gallouët in the nonlinear L1-setting (see e.g. [5,6,3]) mixed with the technique introduced by S. Campanato for
handling equations and systems of equations with L2,λ-data (see e.g. [8–10]).

2. Main notation, function spaces and statement of the results

In Rn (n ≥ 3), with generic point x = (x1, x2, . . . , xn), we shall denote by Ω a bounded open nonempty set with
diameter dΩ .

For ρ > 0 and xo ∈ Rn we define

B(xo, ρ) = {x ∈ Rn
: |x − xo| < ρ}

Ω(xo, ρ) = Ω ∩ B(xo, ρ).

Moreover, if u ∈ L1(B) we define

u B =
1

|B|

∫
B

u(x)dx

where |B| is the n-dimensional Lebesgue measure of the set B.

Definition 2.1 (Morrey Space). Let q ≥ 1 and 0 ≤ λ < n. By Lq,λ(Ω) we denote the space of all functions u ∈ Lq(Ω)

for which

‖u‖Lq,λ(Ω) = sup
xo∈Ω ,0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x)|qdx

}1/q

is finite. Lq,λ(Ω) equipped with the above norm is a Banach space.

1 We denote byMα,λ(H) the weak Morrey space. For the definition see Section 2.
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Definition 2.2 (Campanato Space). Let q ≥ 1 and 0 ≤ λ < n + q. By Lq,λ(Ω) we denote the space of all functions
u ∈ Lq(Ω) such that

[u]Lq,λ(Ω) = sup
xo∈Ω ,0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x) − uΩ(xo,ρ)|
qdx

}1/q

< +∞.

Moreover we introduce the notion of BMO class.

Definition 2.3 (John–Nirenberg Space). Let Q be a cube in Rn . By BMO(Q) we denote the space of all functions
u ∈ L1(Q) such that

[u]BMO(Q) = sup
Q̃⊂Q

1

|Q̃|

∫
|Q̃|

|u − u Q̃ |dx < +∞,

where the supremum is taken over all cubes with sides parallel to coordinate axes.
Let us recall that Lq,n(Q) ∼= BMO(Q), ∀q ≥ 1.

Definition 2.4 (Weak Lebesgue Space). Let q ≥ 1. ByMq(Ω) we denote the space of all measurable functions u for
which

∃K > 0 such that |{x ∈ Ω : |u(x)| > σ }| ≤

(
K

σ

)q

, ∀σ > 0.

Definition 2.5 (Weak Morrey Space). Let q ≥ 1 and 0 ≤ λ < n. ByMq,λ(Ω) we denote the space of all measurable
functions u for which

∃K > 0 such that ∀σ, ρ > 0, ∀xo ∈ Ω ,

ρ−λ
|{x ∈ Ω(xo, ρ) : |u(x)| > σ }| ≤

(
K

σ

)q

.

If u : Ω → R, we set

Di ≡
∂

∂xi
, Du = (Di u)i=1,...,n .

Let A : Ω × Rn
→ Rn be a Carathéodory function (i.e. continuous in ξ for a.e. x ∈ Ω and measurable in x for

every ξ ∈ Rn) satisfying the following conditions, for a.e. x ∈ Ω and for every ξ, η ∈ Rn , with ξ 6= η:

〈A(x, ξ) − A(x, η), ξ − η〉 ≥ Λ1|ξ − η|
p, (2)

|A(x, ξ)| ≤ Λ2|ξ |
p−1, (3)

where Λ1, Λ2 are two positive constants, p ∈ [2, n[ and 〈·, ·〉 means the scalar product in Rn .
We observe that, by virtue of assumptions (2) and (3), u 7→ −divA(x, Du) is a Leray–Lions operator acting

between W 1,p
0 (Ω) and its dual W −1,p′

(Ω), p′
=

p
p−1 .

Let us define the truncation operator. For a given constant k > 0 we define the cut-function Tk : R → R as

Tk(s) =

{
s if |s| ≤ k
k sign(s) if |s| > k.

We introduce here the notion of entropy solution.

Definition 2.6. Let f ∈ L1(Ω). By an entropy solution of the problem (1) we mean a function u ∈ L1(Ω) such thatTk(u) ∈ W 1,p
0 (Ω), ∀k > 0∫

Ω
A(x, Du)DTk(u − v)dx ≤

∫
Ω

f Tk(u − v)dx ∀v ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

(4)
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Remark 2.1. The existence and uniqueness of the entropy solution of the problem (1) have been proved in [3] for any
p ∈]1, n] and with (2) replaced by a strict monotonicity assumption (weaker than (2)).

The entropy solution belongs to W 1,q
0 (Ω), for any q ∈ [1,

n(p−1)
n−1 [ if p ∈ [2 −

1
n , n], while if p ∈]1, 2 −

1
n [ another

functional setting must be used, since |Du| does not belong to L1(Ω).
In order to obtain our regularity result the strong monotonicity assumption (2) must be required (see (18) in

Theorem 3.2). For this reason, we restrict ourselves to the case p ≥ 2 which in turn implies n(p−1)
n−1 > 1.

Here we assume that

f ∈ L1,λ(Ω), λ ∈]0, n − p] (5)

and will prove the following results:

Theorem 2.1. Assume (2) and (3), and let u ∈ W 1,q
0 (Ω), q ∈ [1,

n(p−1)
n−1 [, be the entropy solution of the problem (1).

Then

Du ∈ Lq,ν

loc (Ω)

with ν = n −
q

p−1 (n − λ − 1) and

DT j (u) ∈ L p,λ

loc (Ω), ∀ j > 0.

Moreover, for all H ⊂⊂ Ω there exist two positive constants c1 and c2 depending on the data such that

‖Du‖Lq,ν (H) ≤ c1 (6)

and

‖DT j (u)‖L p,λ(H) ≤ c2 j1/p. (7)

As a consequence of the previous theorem we obtain the following regularity result for the solution u.

Theorem 2.2. Assume (2) and (3), and let u ∈ W 1,q
0 (Ω), q ∈ [1,

n(p−1)
n−1 [, be the entropy solution of the problem (1).

(i) If λ ∈]0, n − p[ then, for all H ⊂⊂ Ω , we have

u ∈Mpλ,λ(H)

where pλ =
(p−1)(n−λ)

n−λ−p ;
(ii) if λ = n − p then u ∈ BMO(Q), where Q ⊂⊂ Ω is a cube in Rn .

Finally, we can derive the following

Theorem 2.3. Assume (2) and (3), and let u ∈ W 1,q
0 (Ω), q ∈ [1,

n(p−1)
n−1 [, be the entropy solution of the problem (1).

(i) If λ ∈]0, n − p[ then, for all H ⊂⊂ Ω , we have

Du ∈M p̄λ,λ(H)

where p̄λ =
(p−1)(n−λ)

n−λ−1 ;
(ii) if λ = n − p then, for any cube Q ⊂⊂ Ω , we have

Du ∈Mβ,λ(Q), ∀β < p.

Remark 2.2. We point out that if λ > n − p we are out of the L1-framework since L1,λ(Ω) ⊂ W −1,p′

(Ω) (see the
Corollary on p. 165 of [16] and Lemma 1 on p. 105 of [25]). For this case the Hölder continuity of u has been proved
in [18].

Remark 2.3. In [3] it has been proved that there exists a unique entropy solution u of the problem (1) such that

u ∈M
n(p−1)

n−p (Ω) and Du ∈M
n(p−1)

n−1 (Ω).
In Theorems 2.2 and 2.3, our assumption (5), without increasing the summability of the datum f , improves the

regularity of u and Du (at least locally).
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Remark 2.4. In [5,6,19,13] the authors have proved that Du ∈ L
n(p−1)

n−1 (Ω) and u ∈ L
n(p−1)

n−p (Ω) under the additional
assumption f ∈ L1 log L1(Ω) or f ∈ L1

n
n−1

(Ω) (see the Appendix for details about these spaces). We point out that

L1,λ(Ω) is not contained in nor contains L1 log L1(Ω) as well as L1
n

n−1
(Ω); consequently our regularity results are

independent of those studied in the above quoted papers and moreover improve them (at least locally).

Remark 2.5. Theorem 2.3 completes the result of paper [14] giving a regularity property also for Du.

Remark 2.6. We thank G. R. Mingione who informed us, after completion of this work, that he has proved, among
others, Theorem 2.1 by a different method extending (ii) to the case β = p (see [24]).

3. Auxiliary results

In this section we assume that the structural conditions (2), (3) and (5) hold and we consider, at first, a weak solution
v of the nonlinear equation

div(A(x, Dv)) = 0 in Ω , (8)

that is, a function v ∈ W 1,p(Ω) such that∫
Ω

A(x, Dv)Dϕdx = 0, ∀ϕ ∈ W 1,p
0 (Ω).

Remark 3.1. Let us remark that if v is a solution of Eq. (8) then also v − h, ∀h ∈ R, satisfies the same equation.

The key step in our paper will be to prove the following

Theorem 3.1 (Saint-Venant Principle). Let v ∈ W 1,p(Ω) be a weak solution of Eq. (8).
Then there exist two constants µ = µ(n,Λ1,Λ2, p) ∈]0, 1[ and c = c(n, q, p,Λ1,Λ2) > 0 such that

‖Dv‖
q
Lq (B(xo,ρ1))

≤ c

(
ρ1

ρ2

)n−q+µq

‖Dv‖
q
Lq (B(xo,ρ2))

(9)

∀xo ∈ Ω , ∀0 < ρ1 ≤ ρ2 < dist(xo, ∂Ω), ∀q ∈ [1, p[.

Before proving the previous theorem, let us state two useful lemmata which are interesting in themselves.

Lemma 3.1. Let v ∈ W 1,p(Ω) be a weak solution of Eq. (8).
Then there exist two constants µ = µ(n, p,Λ1,Λ2) ∈]0, 1[ and c = c(n, q, p,Λ1,Λ2) > 0 such that

oscB(xo,ρ1) (v − h) ≤ c

(
ρ1

ρ2

)µ

ρ
−n/q
2 ‖v − h‖Lq (B(xo,ρ2)) (10)

∀xo ∈ Ω , ∀0 < ρ1 ≤ ρ2/2, with ρ2 < dist(xo, ∂Ω), ∀q ∈ [1, p[ and ∀h ∈ R.

Proof. Fixing xo ∈ Ω , ρ2 ∈]0, dist(xo, ∂Ω)[, q ∈ [1, p[ and h ∈ R, by (6.7), p. 111 of [17], there exists µ as in the
statement such that

oscB(xo,ρ1)v ≤ 2µ+1
(

ρ1

ρ2

)µ

oscB(xo,ρ2/2)v, ∀0 < ρ1 ≤ ρ2/2.

By (6.4), p. 110 of [17], and the above inequality we have

sup
B(xo,ρ2/2)

|v| ≤ c(n, p, q,Λ1,Λ2)ρ
−n/q
2 ‖v‖Lq (B(xo,ρ2)). (11)

The above two inequalities and Remark 3.1 yield

oscB(xo,ρ1) (v − h) ≤ c (ρ1/ρ2)
µ ρ

−n/q
2 ‖v − h‖Lq (B(xo,ρ2)). � (12)
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Lemma 3.2. Let v ∈ W 1,p(Ω) be a weak solution of Eq. (8).
Then there exists a positive constant c = c(n, q, p,Λ1,Λ2) such that

‖Dv‖
q
Lq (B(xo,ρ/4)) ≤ cρ−q

‖v − h‖
q
Lq (B(xo,ρ)) (13)

∀xo ∈ Ω , ∀ρ ∈]0, dist(xo, ∂Ω)[, ∀q ∈ [1, p[, ∀h ∈ R.

Proof. Fixing xo ∈ Ω , ρ ∈]0, dist(xo, ∂Ω)[, q ∈ [1, p[ and h ∈ R, by Caccioppoli’s inequality (see Lemma 3.32, p.
65 of [17]2) one has

‖Dv‖
p
L p(B(xo,ρ/4)) ≤ c(Λ1,Λ2)ρ

−p
‖v − h‖

p
L p(B(xo,ρ/2)).

On the other hand, Hölder’s inequality and the above inequality yield

‖Dv‖
q
Lq (B(xo,ρ/4)) ≤ c(n)ρn(1−q/p)

‖Dv‖
q
L p(B(xo,ρ/4))

≤ c(n, q,Λ1,Λ2)ρ
n(1−q/p)−q

‖v − h‖
q
L p(B(xo,ρ/2)). (14)

From (14) and (10) we deduce

‖Dv‖
q
Lq (B(xo,ρ/4)) ≤ c ρn(1−q/p)−q+nq/p−n

‖v − h‖
q
Lq (B(xo,ρ)). �

Proof of Theorem 3.1. The proof can be carried out like the proof of Theorem 3.1 of [12]. �

Let us observe now that if f ∈ L1,λ(Ω) then the sequence of functions {Tk( f )}k∈N satisfies:

(a) Tk( f ) ∈ W −1,p(Ω) ∩ L1,λ(Ω), ∀k ∈ N,
(b) Tk( f ) → f in L1(Ω) as k → +∞,
(c) ‖Tk( f )‖L1(Ω) ≤ ‖ f ‖L1(Ω), ∀k ∈ N,
(d) ‖Tk( f )‖L1,λ(Ω) ≤ ‖ f ‖L1,λ(Ω), ∀k ∈ N.

Fixing k ∈ N, let uk ∈ W 1,p
0 (Ω) be the weak solution3 of the equation

−div(A(x, Duk)) = Tk( f ) in Ω , (15)

that is,uk ∈ W 1,p
0 (Ω)∫

Ω
A(x, Duk)Dϕdx =

∫
Ω

Tk( f )ϕdx, ∀ϕ ∈ W 1,p
0 (Ω).

Fixing k ∈ N, xo ∈ Ω and 0 < ρ < dist(xo, ∂Ω) let us now consider the weak solution wk of the following
Dirichlet problem:{

wk ∈ W 1,p
0 (B(xo, ρ))

−div(A(x, D(uk − wk))) = 0 in B(xo, ρ),
(16)

that is a function wk ∈ W 1,p
0 (B(xo, ρ)) such that∫

B(xo,ρ)

A(x, D(uk − wk))Dϕdx = 0, ∀ϕ ∈ W 1,p
0 (B(xo, ρ)).

Let us observe that problem (16) is equivalent to
w̃k ∈ W 1,p(B(xo, ρ))

w̃k − uk ∈ W 1,p
0 (B(xo, ρ))

div(A(x, Dw̃k)) = 0 in B(xo, ρ)

which, for any k ∈ N, admits a unique solution (see [22,23]).

2 In that lemma we take as η the cut-off function in B(xo, ρ/4).
3 The existence of such a solution is ensured by the Leray–Lions theorem.
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Theorem 3.2. Let wk ∈ W 1,p
0 (B(xo, ρ)) be the weak solution of the problem (16).

Then there exist a constant c > 0 depending on n, q, p, Λ1, Λ2 such that

‖Dwk‖
q
Lq (B(xo,ρ)) ≤ c ρ

n−
q

p−1 (n−λ−1)
‖ f ‖

q
p−1

L1,λ(Ω)
(17)

∀k ∈ N, ∀xo ∈ Ω , ∀0 < ρ < dist(xo, ∂Ω), ∀q ∈ [1,
n(p−1)

n−1 [.

Proof. We will use a standard procedure which has been used by many authors (see e.g. [29,30,2,4,13]).
For h, t > 0 let us set

ϕh(s) =


sign (s) if |s| > t + h
s − t sign(s)

h
if t < |s| ≤ t + h

0 otherwise.

Choosing ϕh(wk) as a test function in the weak formulations of problems (15) and (16) we obtain∫
B(xo,ρ)

[A(x, Duk) − A(x, D(uk − wk))]Dϕh(wk)dx =

∫
B(xo,ρ)

Tk( f )ϕh(wk)dx .

Using the strong monotonicity assumption it follows that

1
h

∫
B(xo,ρ)∩{t<|wk |≤t+h}

|Dwk |
pdx ≤

1
Λ1

ρλ
‖ f ‖L1,λ(Ω). (18)

By the previous inequality, letting h → 0, we have

−
d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
pdx ≤

1
Λ1

ρλ
‖ f ‖L1,λ(Ω) (19)

Let q < p; by virtue of Holder’s inequality, we have

1
h

∫
B(x0,ρ)∩{t<|wk |≤t+h}

|Dwk |
qdx ≤

(
1
h

∫
B(x0,ρ)∩{t<|wk |≤t+h}

|Dwk |
pdx

) q
p

×

(
|{x ∈ B(x0, ρ) : t < |wk | ≤ t + h}|

h

)1−
q
p

. (20)

Letting h go to zero, we have, for a.e. t > 0,

−
d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
qdx ≤

(
−

d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
pdx

) q
p (

−µ′
ρ(t)

)1−
q
p (21)

where

µρ(t) = |{x ∈ B(x0, ρ) : |wk(x)| > t}|.

On the other hand it is well known that (see [30])

1 ≤ C(n)
(
µρ(t)

) 1
n −1 (

−µ′
ρ(t)

)1−
1
p

(
−

d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
pdx

) 1
p

(22)

where C(n) depends only on n. Using (22) raised to the power q
p−1 in the inequality (21) we get

−
d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
qdx ≤ C(n)

q
p−1

(
µρ(t)

)(
1
n −1

)
q

p−1
(
−µ′

ρ(t)
)

×

(
−

d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
pdx

) q
p−1

.
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By virtue of (19) we conclude that

−
d
dt

∫
B(x0,ρ)∩{|wk |>t}

|Dwk |
qdx ≤ c

(
µρ(t)

)(
1
n −1

)
q

p−1
(
−µ′

ρ(t)
)
ρ

λ
q

p−1 ‖ f ‖

q
p−1

L1,λ(Ω)

with c > 0 constant depending only on n,Λ1, q, p.
The previous inequality implies∫

B(x0,ρ)

|Dwk |
qdx ≤ cρλ

q
p−1 ‖ f ‖

q
p−1

L1,λ(Ω)

∫
+∞

0

(
µρ(t)

)(
1
n −1

)
q

p−1
(
−µ′

ρ(t)
)

dt. (23)

Since the integral in the right hand side is finite for any q <
n(p−1)

n−1 and it behaves as ρ
n−

q(n−1)
p−1 , from (23) we obtain

(17).

4. Interior regularity

In this section we will connect the technique developed in [6] with the nowadays classical method of S. Campanato.
We will prove, first, the following

Theorem 4.1. Assume that assumptions (2), (3) and (5) hold and let uk be the solution of problem (15).
Then

Duk ∈ Lq,ν

loc (Ω), ∀q ∈

[
1,

n(p − 1)

n − 1

[
, ∀k ∈ N, (24)

with ν = n −
q

p−1 (n − λ − 1) and

DT j (uk) ∈ L p,λ

loc (Ω), ∀ j > 0 ∀k ∈ N. (25)

Moreover, for all H ⊂⊂ Ω there exist two positive constants c1, c2 depending on n, q, p, λ, Λ1, Λ2, dΩ , dist(H , ∂Ω),
‖ f ‖L1,λ(Ω) such that

‖Duk‖Lq,ν (H) ≤ c1, ∀k ∈ N (26)

and

‖DT j (uk)‖L p,λ(H) ≤ c2 j1/p, ∀ j > 0, ∀k ∈ N. (27)

Proof. Fix k ∈ N, xo ∈ Ω and ρ ∈]0, dist(xo, ∂Ω)[.
In B(xo, ρ) we can write uk = vk + wk where vk ∈ W 1,p(B(xo, ρ)) is a weak solution of the problem

div(A(x, Dvk)) = 0 in B(xo, ρ)

and wk ∈ W 1,p
0 (B(xo, ρ)) is the weak solution of the Dirichlet problem{

−div(A(x, D(uk − wk))) = 0 in B(xo, ρ)

wk = 0 on ∂ B(xo, ρ).
(28)

Gathering together (9) and (17) we deduce, for any σ < ρ,

‖Duk‖
q
Lq (B(xo,σ )) ≤ c

[(
σ

ρ

)n−q+µq

‖Dvk‖
q
Lq (B(xo,ρ)) + ρ

λ
q

p−1 +n−
(n−1)q

p−1 ‖ f ‖

q
p−1

L1,λ(Ω)

]

≤ c

[(
σ

ρ

)n−q+µq

‖Duk‖
q
Lq (B(xo,ρ)) + ρ

λ
q

p−1 +n−
(n−1)q

p−1 ‖ f ‖

q
p−1

L1,λ(Ω)

]
.
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Set now,

ϕ(σ) = ‖Duk‖
q
Lq (B(xo,σ )), A = c,

α = n − q + µq, β = λ
q

p − 1
+ n −

(n − 1)q

p − 1
,

Φ(σ ) = c‖ f ‖

q
p−1

L1,λ(Ω)
, ε = α − β,

and observe that λ ≤ n − p implies ε > 0; thus we can apply Lemma 1.1, p. 7 of [9], to the above inequality so that
we obtain, ∀σ < ρ,

‖Duk‖
q
Lq (B(xo,σ )) ≤ c

(
σ

ρ

)λ
q

p−1 +n−
(n−1)q

p−1

‖Duk‖
q
Lq (B(xo,ρ)) + σ

λ
q

p−1 +n−
(n−1)q

p−1 ‖ f ‖

q
p−1

L1,λ(Ω)

 . (29)

Observe that

λ
q

p − 1
+ n −

(n − 1)q

p − 1
> λ.

Now (24) and (26) can be proved as in Theorem 4.1 of [12] taking into account the uniform norm estimate in
W 1,q(Ω) of uk of [5].

Let us prove (25) and the uniform norm estimate (27).
Let now η(x) be the standard cut-off function in B(x0, σ ) and choose as test function in the weak formulation of

problem (15) the function ηp T j (uk) with j > 0 fixed.
Using (2) and (3) and the Hölder inequality we obtain∫

B(x0,σ/2)

|DT j (uk)|
pdx ≤ cj

[
σ−1

∫
B(x0,σ )

|Duk |
p−1dx + σ λ

‖ f ‖L1,λ(Ω)

]

≤ cj

σ
−1+n(1−

p−1
q )

(∫
B(x0,σ )

|Duk |
qdx

) p−1
q

+ σ λ
‖ f ‖L1,λ(Ω)

 . (30)

Joining together inequalities (30) and (29) we get, ∀σ < ρ,∫
B(x0,σ/2)

|DT j (uk)|
p dx ≤ cj

σ
−1+n(1−

p−1
q )

(
σ

ρ

)λ+n p−1
q −n+1

‖Duk‖
p−1
Lq (B(xo,ρ))

+ σ
λ+n p−1

q −n+1
‖ f ‖L1,λ(Ω)

 + σ λ
‖ f ‖L1,λ(Ω)


≤ cj

σ
−1+n(1−

p−1
q )

(
σ

ρ

)λ+n p−1
q −n+1

‖Duk‖
p−1
Lq (B(xo,ρ)) + σ λ

‖ f ‖L1,λ(Ω)

 .

The required assertions now follow again arguing as in Theorem 4.1 of [12]. �

5. Proof of the main results and final remarks

Proof of Theorem 2.1. We recall (see [5,3]) that

‖Duk‖Lq (Ω) ≤ c3, ∀k ∈ N, ∀q ∈

[
1,

n(p − 1)

n − 1

[
,

‖DT j (uk)‖L p(Ω) ≤ c4 j1/p, ∀ j > 0, ∀k ∈ N, (31)

with c3 and c4 positive constants independent of k.
This information allows us to deduce the following facts:
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(a) uk ⇀ u in W 1,q(Ω) as k → +∞,
(b) uk → u in Lq(Ω) and a.e. in Ω as k → +∞,
(c) Duk → Du a.e. in Ω as k → +∞ (see [6]),
(d) the function u is the entropy solution of the Dirichlet problem (1) (see [3]),
(e) DT j (uk) ⇀ DT j (u) in L p(Ω) (for fixed j) as k → +∞ (see [3]).

To conclude the proof we need only to show that Du ∈ Lq,ν

loc (Ω) and that DT j (u) ∈ L p,λ

loc (Ω), ∀ j > 0.
To this end let us fix H ⊂⊂ Ω , xo ∈ H , ρ ∈]0, dH ] and j > 0.
By (a), (e), (26) and (27) we have

‖Du‖
q
Lq (H(xo,ρ)) ≤ lim inf

k→+∞
‖Duk‖

q
Lq (H(xo,ρ))

≤ ρν lim inf
k→+∞

‖Duk‖
q
Lq,ν (H) ≤ c1ρ

ν

and

‖DT j (u)‖
p
L p(H(xo,ρ)) ≤ lim inf

k→+∞
‖DT j (uk)‖

p
L p(H(xo,ρ))

≤ ρλ lim inf
k→+∞

‖DT j (uk)‖
p
L p,λ(H)

≤ c2 jρλ.

The above inequalities conclude the proof. �

Before proving Theorem 2.2 let us state the following useful

Lemma 5.1. Let v ∈ W 1,p
0 (Ω) such that Dv ∈ L p,λ

loc (Ω), with λ ∈]0, n − p[. Then

v ∈ L pλ,λ

loc (Ω)

where 1
pλ

=
1
p −

1
n−λ

and for all H ⊂⊂ Ω there exists a positive constant c = c(n, p, λ, H) such that

‖v‖L pλ,λ(H) ≤ c [‖Dv‖L p(Ω) + ‖Dv‖L p,λ(H)]. (32)

Proof. Observe that by Lemma 4.22 of [1], for fixed H ⊂⊂ Ω , there exists H ′
⊂⊂ Ω with the cone property such

that H ⊂ H ′.
Moreover, since v ∈ W 1,p

0 (Ω), following the proof of Corollary 2.1 in [12], it can be proved that v ∈ L p,λ(H ′)

with norm estimate

‖v‖L p,λ(H ′) ≤ c [‖Dv‖L p(Ω) + ‖Dv‖L p,λ(H ′)]. (33)

Indeed, by the Sobolev embedding theorem and the standard properties of Morrey spaces it turns out that

v ∈ L p∗,0(Ω) ⊂ L p,µ0(Ω) ⊂ L p,µ0
loc (Ω), ∀µ0 ∈]0, p],

with norm estimate

‖v‖L
p,µ0
loc (Ω)

≤ c‖Dv‖L p(Ω). (34)

(i) If λ ∈]0, p] then v ∈ L p,λ

loc (Ω) and (34) holds with λ instead of µ0. Thus (33) is proved.
(ii) If λ > p then v, Dv ∈ L p,µ0

loc (Ω) and, by virtue of Theorem 1.2, p. 72 of [7], we have

v ∈ L p,µ

loc (Ω), ∀µ < p + µ0,

with norm estimate

‖v‖L p,µ

loc (Ω) ≤ c [‖v‖L
p,µ0
loc (Ω)

+ ‖Dv‖L
p,µ0
loc (Ω)

]

≤ c [‖D v‖L
p,µ0
loc (Ω)

+ ‖Dv‖L p(Ω)] (35)

by virtue of (34).
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If now λ < p + µ0 then v, Dv ∈ L p,λ

loc (Ω) and we have the estimate (35) with λ instead of µ0 and µ. Thus (33)
holds again.

If instead λ ≥ p + µ0 then v, Dv ∈ L p,µ1
loc (Ω), with µ1 =

p
2 + µ0, and a new application of the same theorem

yields

v ∈ L p,µ

loc (Ω), ∀µ < p + µ1

with norm estimate

‖v‖L p,µ

loc (Ω) ≤ c [‖v‖L
p,µ1
loc (Ω)

+ ‖Dv‖L
p,µ1
loc (Ω)

]

≤ c [‖D v‖L
p,µ1
loc (Ω)

+ ‖Dv‖L p(Ω)] (36)

by virtue of (35) and the embedding properties of Morrey spaces.
Iterating the above procedure we can prove that

v, Dv ∈ L p,µm (Ω), ∀m ∈ N

with

µm =

{
λ if λ < p + µm−1
p

2
+ µm−1 if λ ≥ p + µm−1

and norm estimate

‖v‖L p,µm
loc (Ω) ≤ c [‖Dv‖L p,µm

loc (Ω) + ‖Dv‖L p(Ω)], ∀m ∈ N.

Since, for all m ∈ N,

µm =

{
λ if λ < p + µm−1

m
q

2
+ µ0 if λ ≥ p + µm−1,

after a finite number of steps we obtain (33).
On the other hand, by a well known representation formula, we have

v(x) ≤ c(n)

∫
Rn

V1(y) + V2(y)

|x − y|n−1 dy, for a.e. x ∈ H (37)

where

V1(y) =

{
|v(y)| y ∈ H
0 y ∈ Rn

\ H

and

V2(y) =

{
|Dv(y)| y ∈ H
0 y ∈ Rn

\ H.

The result can be proved by applying to formula (37) a slight modification of the proof of Theorem 2 of [11] and from
(33).

Remark 5.1. The result of the previous lemma can be refined if Ω has the cone property and Dv ∈ L p,λ(Ω). Namely,
it can be proved that

‖v‖L pλ,λ(Ω) ≤ c‖Dv‖L p,λ(Ω). (38)

Proof of Theorem 2.2. (i) Let us fix H ⊂⊂ Ω , xo ∈ H , ρ ∈]0, dH ] and j > 0. Thus we have

|{x ∈ H(xo, ρ) : |u(x)| > j}| ≤

(
1
j

) p(n−λ)
n−λ−p

∫
H(xo,ρ)

|T j u|
p(n−λ)
n−λ−p dx

≤ ρλ

(
1
j

) p(n−λ)
n−λ−p

‖T j u‖

p(n−λ)
n−λ−p

L
p(n−λ)
n−λ−p ,λ

(H)

. (39)
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Gathering together (39), (7) and (31), by virtue of Lemma 5.1, we obtain

|{x ∈ H(xo, ρ) : |u(x)| > j}| ≤ c ρλ

(
1
j

) p(n−λ)
n−λ−p

j
n−λ

n−λ−p

which concludes the proof of the first case.
(ii) Let Q ⊂⊂ Ω be a cube, xo ∈ Q and ρ ∈]0, dQ[. Then, the Poincaré inequality and (6) imply∫

Q(xo,ρ)

|u − uQ(xo,ρ)|
qdx ≤ cρq

∫
Q(xo,ρ)

|Du|
qdx

≤ c ρq+(n−q)
‖D u‖

q

Lq,n−q
loc (Ω)

≤ cc1ρ
n .

Thus, u ∈ Lq,n(Q) ∼= BMO(Q). �

Remark 5.2. If p = 2, if the operator is linear and Ω has C1-boundary (and thus the cone property) or is a cube the
result of Theorem 2.2 can be extended to the whole Ω . Observe that this result improves the analogous ones of the
paper [12].

To this end, in the proof of case (i) of Theorem 2.2 (the proof of case (ii) remains identical) it will be enough to
replace (7) by the following:

‖DT j (u)‖L2,λ(Ω) ≤ cj1/2, ∀ j > 0 (40)

and then use Remark 5.1.
To prove (40) we will argue as in the proof of Theorems 4.1 and 2.1.
Let us fix xo ∈ Ω , ρ ∈]0, dΩ ] and let η(x) be the standard cut-off function in Ω(x0, ρ).
Then, choosing η2 T j (uk), with j > 0 fixed, as test function in the weak formulation of problem (15) we obtain∫

Ω(x0,ρ/2)

|DT j (uk)|
2dx ≤ cj

[
ρ

−1+n(1−
1
q )

(∫
Ω(x0,ρ)

|Duk |
q dx

) 1
q

+ ρλ
‖ f ‖L1,λ(Ω)

]
.

So that, if σ ∈]0, dΩ/2], the above inequality and formula (18) from Theorem 4.1 of [12] together with Lemma 4.2
of [12] yield

σ−λ

∫
Ω(xo,σ )

|DT j (uk)|
2dx ≤ cj[1 + ‖ f ‖L1,λ(Ω)]. (41)

If σ ∈]dΩ/2, dΩ ] inequality (41) is obvious and in both cases (40) follows by approximation as in the proof of
Theorem 2.1.

Proof of Theorem 2.3. The proof follows the lines of Lemma 4.2 in [3]. We will prove here only the case λ = n − p
for the reader’s convenience.

Fix a cube Q ⊂⊂ Ω , xo ∈ Q, ρ > 0 and recall that since u ∈ BMO(Q) then, by embedding, u ∈ Mq,λ(Q), for
any q > 1, that is

∀q > 1, ∃K > 0 such that ρ−λ
|{x ∈ Q(xo, ρ) : |u(x)| > σ }| ≤

(
K

σ

)q

, ∀σ > 0.

Setting, for σ, γ > 0,

Φ(σ, γ ) = |
{

x ∈ Q(xo, ρ) : |u(x)| > σ, |Du(x) |
p > γ

}
|

we get

Φ(0, γ ) ≤ Φ(σ, 0) +
1
γ

∫ γ

0
[Φ(0, s) − Φ(σ, s)]ds ≤ cρλ

[
σ−q

+
σ

γ

]
.

Minimization of the above formula in σ and setting γ = t p give the result.
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Appendix

In this section we repeat some examples, taken from [12], which indicate the relationships among the spaces L1,λ,
L1 log L1 and L1

n
n−1

.

Let us start with the definitions of the last two spaces.

Definition A.1. We denote by L1 log L1(Ω) the space of measurable functions f : Ω → R such that∫
Ω

| f | log(1 + | f |)dx < +∞.

Definition A.2. We denote by L1
n

n−1
(Ω) the space of the functions f ∈ L1(Ω) such that∫

|Ω |

0
[σ f ∗∗(σ )]

n
n−1

dσ

σ
< +∞

where

f ∗∗(σ ) =
1
σ

sup
|F |=σ

∫
F

| f |dx .

Remark A.1. Let f (x) ∈ L1(B(0, ε)); then the function g : Ω = B(0, ε)×]0, 1[→ R defined by the law

g(x, t) = f (x)

belongs to the space L1,1(Ω).
Indeed, fixing yo = (xo, to) ∈ Ω and ρ ∈]0, dΩ ], we have∫

Ω(yo,ρ)

|g(x, t)|dxdt =

∫
Ω(yo,ρ)

| f (x)|dxdt

≤

∫
(B(0,ε)∩B(xo,ρ))×(]0,1[∩]t0−ρ,t0+ρ[)

| f (x)|dxdt

≤ ρ

∫
B(0,ε)

| f (x)|dx .

Finally we are ready to review the relationships among the above spaces.
(a) L1 log L1

6⊂ L1,λ.
It is well known that the function f (x) = |x |

−α belongs to L1 log L1(B(0, R)) for α ∈]0, n[.
On the other hand, for any ρ ∈]0, R], it turns out that

ρ−λ

∫
B(0,ρ)∩B(0,R)

|x |
−αdx = ρ−λ

∫
B(0,ρ)

|x |
−αdx

and the right hand side blows up as ρ → 0+ if α ∈]n − λ, n[.
(b) L1,λ

6⊂ L1 log L1.
Let 0 < ε < 1 and

f (x) =
1

|x |n log2
|x |n

, x ∈ B(0, ε).

By Remark A.1 the function g : Ω = B(0, ε)×]0, 1[→ R defined by the law

g(x, t) = f (x)

belongs to the space L1,1(Ω).



G.R. Cirmi, S. Leonardi / Nonlinear Analysis 69 (2008) 230–244 243

On the other hand, the maximal function of g does not belong to L1(Ω) and thus g does not belong to the space
L1 log L1.

(c) L1
n

n−1
6⊂ L1,λ.

The function

f (x) =
1

|x |n log2
|x |n

, x ∈ B(0, ε), 0 < ε < 1,

belongs to the space L1
n

n−1
(B(0, ε)) (see [13]) but direct calculations show that f does not belong to L1,λ(B(0, ε)) for

any λ ∈]0, n[.
(d) L1,λ

6⊂ L1
n

n−1
.

Let n > 2, Ω ⊂ Rn−1 and choose a function f ∈ L1(Ω) such that f 6∈ L1
n−1
n−2

(Ω).

By virtue of Remark A.1, the function g : Ω×]0, 1[→ R defined by the law

g(x, t) = f (x)

belongs to the space L1,1(Ω×]0, 1[).

We will prove now that g 6∈ L1
n

n−1
(Ω×]0, 1[).

In fact, if g belongs to L1
n

n−1
(Ω×]0, 1[) then, by definition, we would have∫

|Ω×]0,1[|

0
[σg∗∗(σ )]

n
n−1

dσ

σ
< +∞

where

g∗∗(σ ) =
1
σ

sup
|F |=σ

∫
F

|g(x, t)|dxdt.

Observing now that

f ∗∗(σ ) ≤ g∗∗(σ ), σ ∈]0, |Ω |[

and that σ f ∗∗(σ ) is an increasing function, we deduce∫
|Ω |

0
[σ f ∗∗(σ )]

n−1
n−2

dσ

σ
=

∫
|Ω |

0
[σ f ∗∗(σ )]

n
n−1 [σ f ∗∗(σ )]

n−1
n−2 −

n
n−1

dσ

σ

≤ [|Ω | f ∗∗(|Ω |)]
n−1
n−2 −

n
n−1

∫
|Ω |

0
[σg∗∗(σ )]

n
n−1

dσ

σ
< +∞

whence f ∈ L1
n−1
n−2

(Ω) which contradicts the assumption.
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[7] S. Campanato, Proprietá di inclusione per spazi di Morrey, Ric. Mat. 12 (1963).
[8] S. Campanato, Equazioni ellittiche del IIo ordine e spazi L2,λ, Ann. Mat. Pura Appl. 69 (1965).
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