
ON THE THEORY OF SPACES Λ

G. G. L O R E N T Z

l Introduction. In this paper we discuss properties of the spaces A(φ,p),

which were defined for the special case φ(x) — QLxa~ι, 0 < & < 1, in our previous

paper [δ] . A function f(x), measurable on the interval (0,/), I < + 0 0 belongs to

the class A(φ,p) provided the norm jι/jί , defined by

α.i) ii/ii =

is finite. Here φ(x) is a given nonnegative integrable function on (0,/), not identi-

cally 0, and / *(χ) is the decreasing rearrangement of \f(x) | , that is, the decreas-

ing function on (0,1), equimeasurable with | /Gc)| . (For the properties of decreasing

rearrangements see 1.5, 12, 7, and 8] .) We write also Λ((X,p) instead of A(φ, p)

with φ{x) = (Xx(x~ι, and A(φ) instead of Λ ( φ , l ) . We shall also consider spaces

A(φ,p) for the infinite interval ( 0 , + u 0 ) . In §2 we give some simple properties of

the spaces Λ, and show in particular that A(φ,p) has the triangle property if and

only if φ(x) is decreasing. In §3 we discuss the conjugate spaces Λ*(ψ,p), and

show that the spaces A(φ,p) are reflexive. In §4 we give a generalization of the

spaces A(φ,p), and characterize the conjugate spaces in case p = 1. In §5 we

give applications; we prove that the Ilardy-Littlewood majorants θ{x9 f) of a func-

tion f £ A(φ,p) o r / C Λ (φ,p) also belong to the same class. We give suf-

ficient conditions for an integral transformation to be a linear operation from one

of these spaces into itself, and apply them to solve the moment problem for the

spaces A{φ9p) and Λ ( φ , p ) .

2. Properties of spaces A(φ,p). We shall establish the following result.

THEOREM 1. The norm \\f\\ defined by (1.1) has the triangle property if and

only if φ{x) is equivalent to a decreasing function; in this case f9g £ A(φ,p)
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implies f + g £ A (<£, p).

G. G. LORENTZ

Proof, (a) Suppose that (|/|j has the triangle property. Let S > 0, A > 0, a > 0,

and a + 2Λ < I. Set

/(*) =

1 + S on (0, a + h)

1 on (α + h,a + 2h) g{χ) =

0 on (a +2h, l) ,

1 on (Offt)

1 + 8 on (/ι,α + 2 h )

0 on (o + 2h, 1)

then

2 + 2 S on (0, α)

2 + S on (a, a +2h)

0 on (a +2h, l) .

We have |j/|j = \\g\\; hence the inequality If + gl < Iff + |g:|| s equivalent to

((2 φ(x) dx + (2 + S)Pfa

a+2h φ(x) dx

or to

a+2h a+h
(2 + S)P far2n φ(x) dx < (2 + 2h)P Γ φ{*) dx

and thus to

If Φ(x) is the integral of <i over (0,#), we obtain from (2J), making δ —> 0,

Φ(α +/ι) > | LΦ(α) +Φ(α + 2/ι)];

that is, Φ(Λ) is concave, and thus φ U ) is equivalent to a decreasing function,

(b) Suppose that φ is decreasing. Instead of (2.1) we can now write

(2.2) ll/i
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the supremum being taken over all possible rearrangements φr of φ. It follows

from (2.2) that f,g CMΦ,p) implies/ + g CMΦ,p) and ||/ + g| | < ||/|| + \\g\\.

It is now easy to see that, for φ(x) decreasing, Λ(φ,p) is a Banach space;

the completeness may be proved by usual methods (compare [β] ). In general,

Λ(φ,p) is not uniformly convex. Suppose, for instance, that there is a sequence

8« —> 0 such that

(2.3) Φ(2δJ/Φ(δJ 1 .

This condition is satisfied, for example, if φ(x) = x ι | log x\ ?, p > 1. We take

/nW = hn on (0, 28Λ),/„(*) = 0 on (2δΛ,Z); we take g n(χ) = hn on (0,δn),gn(x)

= —hn on (hn, 2§7 l), and gn(x) = 0on (2δ7 l,/); and we choose hn so that

Then we have

+gn(x)l =
hn on (0, δ j ,

0 elsewhere ,

and (1/2) (fn ~~ gn) (x) is the same function. Therefore

fn +

2

gn
P

fn —

2

gn

and so A.(φ9p) is not uniformly convex. In case of the spaces Λ(θί,p), the problem

remains open.

The remarks made above apply also to the spaces K(φ 9p) in case of the infinite

interval (0, + °°). We assume in this case that J o φ(x)dχ < -f °° for any I < +°°;

the additional hypothesis on / C h.(φ9p) is that the rearrangement f*{x) exists,

which is the case if and only if any set [ |/Gc)| > e] , e > 0, has finite measure.

The completeness of Λ(φ,p)in this case follows from the fact that the set of such

f is a closed linear subset of the Banach space of all f for which (2.2) is finite. If

(2.4) n φ{x)dx =

this subspace coincides with the whole space. Condition (2.4) is in particular

satisfied \{φ(x) = axa~~ι .
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3. Reflexivity of the spaces Λ(φ,p). We shall first give some definitions and

lemmas which will be useful in the sequel. If gix), gι(x) are two positive functions

defined on (0, I), 0 < I < -f00, we write g < gi , if for all finite 0 < x < I we have

fo

xg(t)dt <fo

x

gl(t)dt.

Integration by parts readily yields:

L E M M A 1. If g < gι, and f is positive and decreasing on (0,1), then

(3-D jC' f1

LEMMA 2. If g < g\$ and g, g{ are positive and decreasing, then also φig)

< φ(gι) for any convex increasing positive function, in particular for φ(u) = u?,

p > 1.

For the proof, let f{χ) = {φigM) ~ φ(g(x))]/{gιk) ~ g(x)\ if gix) ί giW,
and let f{x) be equal to one of the derivates of \p (u) at u — g(x) if g(x) = gι(x)

Then f(x) is the slope of the chord of the curve v = ψ(u) on the interval (u, u t ) ,

u = g(x), uι — g\{x) The slope decreases as both u, ux decrease. Therefore/(#)

is decreasing and positive. Applying Lemma 1, we obtain

Γf(x)[g(x)-gι(x)}dx <

which proves our assertion.

THEOREM 2. Suppose that fix), gix) are positive and decreasing on (0,Z), and

f C MΦ,p),p > 1 . Then

(3.2) fQ

l fgdx < ||/||Λ inf { flφD* dX Y\ - + - = 1 ,
υ φD> g ι υ J p q

where infimum is taken for all decreasing positive D ix) for which φD > g. More-

over, this infimum is equal to the supremum of J Q fg dx for all positive decreasing

f with 11/11 < 1, if there is a function D with φD > g and JφDqdx<+™, and is

to -f°° if there is no such D.

This theorem is due to I. Halperin. For the proofs, see a paper of Halperin ap-

pearing in the Canadian Journal of Mathematics and, for a simpler proof, [lO] .
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Inequality (3.2) is a combination of (3.1) and the usual Holder inequality. For

if gι = φD > g , then

(3.3) fo

lfgdx< £ fgidx = I1

<\\ή\lι

Here and in the next section, the following theorem will be useful:

THEOREM 3. Suppose that Xis a normed linear space of measurable functions

f(x) on (0,Z), 0 < I < +°o, with the properties: (i) X contains all constants; (ii) if

fγ is measurable and | / Ί ( * ) | < | / U ) | , f C X, then fx G X and \\fx || < | |/| |;

(iii) if f G X and fe denotes the characteristic function of the set e9 then | ) / / e | |

—>0 as mease —> 0.

Let Y consist of all measurable functions g for which JQ fg dx exists for all

f G X. Then

(3.4) F(f) =fQ

L fgdx, g CY,

is the general form of a linear functional on X, and its norm is equal to

| | | | fl fgdx <+oo.||g|| p^

Proof, (a) Let g C Y; then J^ f | g \ dx exists for all / G X, and | |g | | =
s u P J o ί\&\ dx9 where f runs through all positive f £ X with | |/ | | < 1. If | |g| |

= +oo, there is a sequence fn > 0, | | / n | | < 1 such that ffn\g\ dx > n3. Then

/ = Σ n~~2 fn C X, and therefore J j f\g\ dx must exist. However J / | g | dx >
n~~2 Iίn \&\ dx > n9 which is a contradiction. Hence \g\ < -h°° for g ζL Y. We

see now that for g ζ_ Y9 J fg dx is a linear functional with norm | |g| | .

(b) Suppose that F (/) is a given linear functional on X. By (i) and (ii), any

characteristic function fe(x) belongs to X. Define G (e) = F (fe); since \G(e) <

lip]] \\fe\\ —>0 as meas e —> 0, there is an integrable g(x) with G(e) = Je g dx.

This means that (3.4) holds for / = fe, and therefore also for all step-functions/

(which are linear combinations of the f e ) . For a bounded /, there is a sequence

Jn(x) —>f(x) uniformly. As \\Jn - /| | —> 0, this establishes (3.4) for all bounded

/. Now suppose / G X is such that fg- \f\ \ g \. Let fn(x) = f{x) if \f(x) \ < n,
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fn{x) = 0 otherwise; then j | / — fn\\ —> ϋ by (iii), and hence JJfngdx = F(f7Ί) has

a finite limit. This shows that J\f\ g \ dx < + oo therefore g £ Y. Repeating

the last part of this argument for an arbitrary / £ A9 we obtain (3.4).

REMARKS. (A) Let A have the additional property: (iv) fn(x)—> fix) almost

everywhere, fn £ A, and | |/Λ | ! < ;]/ imply f £ A7. Then the existence of J f g dx

for all g £ Y implies f £ A.

For taking the subsequence fn(x) —> /(#) of (b), we see that Fn{g) — Jfng dx

is a sequence of linear functionals convergent toward Jfg dx for any g £ Y.

Then the norms jjZ^|j = |j/Vz!ί a r e uniformly bounded, and using (iv) we obtain

f ex.

(13) Since I7 is the conjugate space to A, Y is a Banach space, and Y clearly

satisfies (ii). Suppose now that A satisfies (i)—(iv) and that Y satisfies (i) and

(iii). Then Remark A and Theorem 3 together imply that A is the conjugate space

of 1, in other words that any linear functional Fig) in }7 is of the form Fig) —

ffgdx, f £ A and j | F | | = | |/ | | .

(C) The above results hold for the interval (ϋ, +o°) if the conditions (i)~

(iii) [and eventually (iv)] are true for functions vanishing outside of a finite

interval, and also (v) for any f £ A, ||jf — / j —> 0 as I —> °°, where f is de-

fined by flix) = fix) on (0,Z) and fl (x) = 0 on (Z,

Applying these general results to the space Λ(φ,p) in case of a finite interval,

we see that (i) and (ii) are satisfied. Condition (iii) follows from

heW** < fQ Φf*P dx —-> 0 , rneas e —> 0 ,

[heix) is the function f{x)feix)], and (iv) from (2.2) and Fatou's theorem. We

obtain the result that the space Λ (φ,p) conjugate to Λ(φ,p) consists of all

measurable functions g such that there is a decreasing positive D with φD > g*

and f^φDq dx < +00; further,

(3.5) | |g | |Λ = iπf
φD>-g*

For it follows from Theorem 2 that

< j 0 / * g * ^ <
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a n d t h a t | jg | | ^* i s t h e s u p r e m u m of t h e i n t e g r a l J fg dx for a l l jj/jj < 1.

Now if g (x) = C > 0 i s a c o n s t a n t , we t a k e a n I1 > 0 wi th φ ( Z L ) > 0 a n d Cγ —

Cί[ίιφ(li)]'-1 . T h e n J^C^(x)dx > Cl; and if D (x) = Cι on ( 0 , / ^ , D (x) = 0

on (I ι,l), then φD > g. Therefore Λ satisfies (i). Also (iii) holds, for if he(x) —

g(x)fe(x),g C Λ*, g* < φD, then A* < φϋϊ9 where Ux(x) = D(x) on (0,meas e),

/^Gc) = 0 on (meas e,Z), and

0 , meas e —» 0.

We have proved the theorem:

THEOREM 4. The space Λ(φ,p), p > 1, is reflexive. Its conjugate is defined

by (3.5).

We now consider the case of an infinite interval and assume J^φ dx ~ -f-°°.

Then / C Λ(φ,p) implies f*(x)—> 0 for x—> oo. If a > 0 is fixed and/ suf-

ficiently large, then the function \f (x) | of (v) will take values > /*(α) only on a

set of arbitrarily small measure. In view of (iii), condition (v) will follow for

A(φ ,p), if we can show that the norm of the function /*(α + x), 0 < x < -f00, tends

to 0 as a —>oo, or even if this is true for some sequence a—> °°. This norm does

not exceed

Γφ{χ)f*{xY 0 ,

as the integrand has the majorant φf*p, and f*(x + a)/f*(x) —> 0 for a —>o°.

To prove (v) for Λ (φ,p), we need a result going beyond Lemma 1, namely that

if g and D are decreasing and positive, and φD >- g, then there is another such

function Do for which φD >- φ/i 0 > g, and that except for certain open intervals

/ where DQ is constant, j^φD^dt — Jo

xg dt. (This fact is proved in the paper of

Halperin, mentioned at the beginning of this section and in [ lθ]) .As before, we

have to prove that if g C Λ (φ,p) is positive and decreasing, then the norm of

the function h{x) = g(x + a), x > 0, tends to 0 as a —> oo for certain values of

a. There is a D with φD > g and Jo°° φDq dx < + ™; and, by Lemma 2, Jo°° φDq

0 dx

< + oo . As J^φdx = + oo, we deduce that D 0U) —> 0 for Λ —> °°. Therefore
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On intervals /, J*φD0 dt is of the form CΦ(x) + Ci9 where Φ(x) = J*φ dt. If an

/ extends to -f oo, w e have C = 0, that is J*φD0 dt = Ct for all large x. and D0(x)

is necessarily 0 for all such x. In this case also g(x) — 0 for all large x, and our

assertion is trivial. If, on the other hand, there are arbitrarily large values a which

do not belong to any /, then we have for these a ,

It follows that j*φD0 dt > J* g dt, x > α, or φ(x + a)DQ(x + a) > g(x + a), and

this implies φ(x)DQ(x + a) > g{x + a). Therefore,

D0(x + α) q

for a —> oo. We obtain in this way:

THEOREM 5. The space K(φ,p), p > 1, / — oo is reflexive; its conjugate is

given by (3.5).

4 A generalization* There is an obvious generalization of the spaces Λ(φ,p).

Consider a class C of functions φ(x) > 0 integrable over (0,1), and let X (C9p)

consist of all those functions f(x) for which

(4.1) 11/11 = sup
φeC

A special type of these spaces is obtained if C is chosen to consist of all inte-

grable positive functions φ(x) whose integrals φι (e) satisfy the condition

(4.2) Φi(e) < Φ(e) ,

where Φ(e) is a given positive finite set function of measurable sets e d (0,Z).

We may then assume that

(4.3) Φ(e) = sup φ i ( e ) .
Φi

(A full characterization of set functions Φ(e) which may be represented in form

(4.3) by means of a class of positive additive φί will be given by the author else-

where [9] .) In particular, let φQ(x) be a fixed decreasing positive function, and

let Φ(e) = J^^ eφo dx; then condition (4.2) is equivalent to the condition
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Φ*(χ) <Φo(χ).

Therefore, in this case the norm (4.1) is equal to (1.1), and so X(Φ, p) — Λ(φ o,p).

For the space X(Φ ,p), the condition | |/| | = 0 is equivalent to f(x) — 0 almost

everywhere if and only if Φ(e) > 0 for any set e of positive measure. Suppose now

that Φ(e), defined by (4.3), vanishes on certain sets e with meas e > 0. There is

then [2, p. 80, Theorem 15] a least measurable set e 0 which contains any such

set e up to a null set; and e 0 is a union of a properly chosen denumerable set of

these sets e. Hence φι(e0) — 0, and Φ(e 0) — 0. It is easy to see that in this case

11/11 = 0 is equivalent to f(x) = 0 almost everywhere on (0,1) ~ e 0 , and that the

values of f(χ) on e 0 have no significance whatsoever for | | / | | . Omitting e 0 from

(0,/), we do not change the space X{φ,p), and we obtain a Φ(e) satisfying the

above condition. In the sequel, φ is assumed to have this property.

The spaces X(Φ,p) are normed linear spaces. Their completeness maybe

proved by usual methods, if for instance F (e) has the property that meas e —> 0

implies Φ(e) —> 0 and if / < +00.

The spaces X(C,p) satisfy the conditions (i), (ii), and (iv) of 3 [(iv) follows

easily by Fatou's theorem] . Condition (iii) is not fulfilled in general. We can

however enforce (iii) by defining the spaces Δ(C,p) and Λ(Φ,p) to consist of all

those functions / £ X(C,p) or / £ Z(Φ,p), respectively, for which | | // e | | —> 0

with meas e —> 0 in X. Then the conjugate space A*(C,p) and all linear function-

als in Δ(C,p) are given by Theorem 3. We conclude this section by describing the

spaces Λ (Φ, 1) more precisely:

T H E O R E M 6. /// G Λ(Φ,1), then

)φ(e)>0 Ψ

and the left integral exists provided the right side is finite; moreover, the supre-

mum M (g) in the right side is equal to the supremum of JQ fg dx for all f £ Λ(Φ, 1)

with 11/11 < 1.

Proof. Consider the function φo(x) = M (g)~~ι \g(x)\ then

j Γ ' l / l \g\dx = M ( g ) j Γ / φ 0 | / | ^ < M ( g ) | | / | i Λ )
jΓ

since
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j fφoW dx =M{gYι feg(x) dx < Φ(e) , e C ( 0 , l ) .

This proves (4.4). On the other hand, if e is an arbitrary subset of (0,/) with

Φ(e) > 0, then the function f(χ) = Φ(e)""1 fe(x) s igngU) has norm 1 in Λ(φ, l) ,

and

Therefore the integral / /g dx takes values arbitrarily close to M(g).

From Theorems 3 and 6 we deduce that the space M(Φ,1) = Λ*(Φ, 1) consists

of all g (x) for which

(4.5) llgH

In particular, the space M(φ), conjugate to Λ(φ), is given by

(4.6) h\\mφ) ^ s u p j φ i ί e ) - 1 ^ | g | d * } .

It is easy to see that the expression (4.6) is the limit, for p —> 1, of the norm of

g in the space Λ (φ,p), p > 1.

5 Applications. We shall make three applications.

5.1. Hardy-Littlewood majorants. We take in this section I = 1. We write

(5.1) θ(x,f) = sup — — fy \f(t)\dt,
o<y<i J "" x

and denote by θί{xff) and Θ2(x,f) the supremum of the same expression for

0 < y < x or x < y < 1, respectively. Then

(5.2) θ(x,f) <max {Θ1(x, f), Θ2{χ,f)\ .

On the other hand, it is well known [5, p.29l] that

(5.3) θΐ(χ,f)<θ(x,f*)=l- fo

xf*(t)dt,

and this is also true with θ2 in place of θi. From (5.2) we derive, for any p > 1,
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θP(x,f) <θP{x,f) +θP(χ,f)._

It follows that

Θ*(X,J)P < (Θ? + θξf < (#)* + (θξ)* =Θ?P +θ;p<2θ(x,f*y;

that is,

(5.4) &*{x,f)P< 2θ(x,f*Y .

We shall make repeated use of the inequality of Hardy [ l2, p. 72] :

.5)
p — s

where p > 1,5 < p — 1, 0 < Z < + o ° , and F (x) is the integral of the positive

function f(x).

In our present situation it follows from (5.3) and (5.5), if p > 1, that

and, by Lemma 1,

(5.6) ^ ψ

This is case (i) of the following theorem:

T H E O R E M 7. (i)// / C A(φ,p) and p > 1, then also θ(xj) C K{φ%p);

(ii) if f*{x) log (]/x) C Λ(φ), then θ{x,f) C Λ(φ); (iii) if f G Λ(φ), α ώ φ U )

is decreasing with respect to x for some S > 0, ίAê z θ(x9f) £1 Λ(φ).

To prove (ii) we observe that (5.4; with p — 1 and Lemma 1 imply

= 2fo

1f*(t)dtft

1 (tγdx<2fΰ

1φ{t)f*(t) log j d t <+oo.

Finally, if the hypothesis of (iii) holds, that is if φ(x) = Λ~ D{X) with a decreas-

ing positive D, then the preceeding inequality gives
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\\θ\\<2 I1 f*(t)D(t) f^x-'-

THEOREM 8. (i) If f*(x) log (1/*) G Λ*(φ,p), p > 1, ίΛen 0(x,/) G Λ * ( φ , P ) ;

(ϋ) i/f G Λ*(α,p), p > l, ίAen 6>(/) G Λ*(α,p).

Proof, (i) Let p > 1 [the case p = 1, Λ*(ς6,p) = U(φ) is simpler] . By (5.4),

and since θ(x,f*) decreases, we have

I|0(/)II'<2Ί|0(/ )||9 =2« inf Γφix)D(x)idx.ΐ
φD>θ(f*)

But by (5.3), we have

f0

Xθ(u,f*) da = f0

Xf*(t)dt j ; ^ < fo

Xf*(t) log i dt,

which means that θ(χ,f*) < /*U) log (l/x) = A U); hence

<2* inf flφD*dx =
φ h °

(ii) Let / C Λ*(Cί,p); because of (5.4) we may assume that / = /*, that is,

that / is positive and decreasing. Suppose / < φD and J^ φD** dx < + 0 0 with

φ(x) = OLxa-1. Then by (5.3) we have

θ(χj)=~ £f(t)dt <- 4xt«-*D(t)dt

say. The function DI(Λ ) is positive and decreasing, as

Di{x) = - α χ - α - 1 j J x t α - 1 D d t + x~ιD{χ)

<-aχ-°-ιD{x) f0

Xta-ιdt +χ-1D(x)=0.

Therefore, by Hardy's inequality, we have

\\θ(f)\\q ^αjf^^D'd* =
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<CJQ x"-CL>v-l)+«x-1><!D(x)« dx = C JΓ xa~ιD* dx

with some constant C. Thus θ(f) £ A*, which proves (ii).

It should be remarked that /* log (l/x) behaves very much like /* log+/* :

(a) // /* log (l/x) belongs to A*(ςό,p), p > 1, then f log+ | / | belongs to

A (φ,p). For if p > 1 [the case p = 1 is similar but simpler] , there is a D (x)

with /* log (l/x) < φD and J*φϋ dx < + oo. Then also /*(δ) log (l/x) < φD on

(0, δ); in particular,

1

/*(δ) J log "" dx < J φD dx < 1
0 ηr 0

if δ is small. Therefore /*(δ) < δ""1 for all small 8, which shows that

I/I C Λ*(φ, P ) .

(b) Now suppose φ(x) is such that, for some δ > 0, we have J* φ (x)x ~ dx <

+ oo. ///log f I/I belongs to Λ (φ,p), p > 1, ίΛerc /* log (1/%) α/so f/oes. In fact,

by Young's inequality [5, p. I l l ; or 11, p. 64] , for the pair of inverse functions

φ(u) — log u, \p(v) = e y , we obtain ab < a log + α + e (α, ̂  > 0) and therefore

/* log - < δ" 1 /* io g

+ (δ-1/*) + ^-δ < δ" 1 /* io g

+ 7 + δ" 1 /* i o g

+ /* + *"δ

% δ

< Af* log+ /* + b + x~δ

for some constants /I, 5.

It follows from these remarks, that Theorem 7 (ii) may be regarded as a gener-

alization of the theorem of Hardy-Littlewood [ 12, p. 245] that /log | / | £! L

implies θ(f) £ L .

Theorems 7 and 8 have many applications which may be derived in the same

way as the corresponding results for the spaces Lp (see [12, p,246]). As an

example, we give the following result. Let k > 0, and let σ^Hx9f) denote the

Cesaro sum of order k of the Fourier series of a function f(x). If θ(x9f) is taken

for the interval (0,4ττ), we have: if f(x) satisfies one of the hypotheses of Theo-

rems 7 or 8, then \σ^ (x9 f)\ < Cfίθ(x9f), n — 0,1, . We may give another

formulation of this result. In the spaces A(φ,p) and Λ (φ,p) we introduce a
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partial ordering, writing/! < f2 if f\(x) < /2M almost everywhere. With this order-

ing, Λ and Λ become Banach lattices for which the order convergence fn —> f is

identical with the convergence fn{x) —> f{x) almost everywhere and the existence

of a function h{x) of the lattice such that j fn(x) \ < h(x)almost everywhere. This

is an immediate consequence of the fact that the lattices Λ, Λ satisfy the condi-

tion (ii) of Theorem 3 (see [6, pp. 154-156] ). Then the above result implies that

&n —> / in order in the corresponding space. Theorems of this section may also

be used to obtain analogues of theorems of Hardy [3] and Bellman [ l ] for spaces

Λ and Λ*; see Petersen [ l l ] .

5.2. Integral transformations. Let K(x, t) be measurable on the square 0 < x < 1,

0 < t < 1, and let

(5.7) F(x) = £lK(x,t)f(t)dt.

THEOREM 9. Suppose that there is a constant M such that

(i) J \K(x, t)\ dt < M almost everywhere;

(ii) for any rearrangement φr{x) of φ{x), the function hr{t) = J^φrMK (x, t)dx

belongs to Vί(φ) and has a norm not exceeding M. Then (5.7) is a linear operator of

norm < M mapping Λ(φ,p) into itself. Condition (ii) may also be replaced by

(iϋ) f \K(x, t)\ dx <M almost everywhere .

Proof. Condition (ii) is equivalent to

(5.8) h*(t) < Mφ(t) .

Assuming/ £ A(φ,p), p > 1, we have

ΦΛX) \F(x)\>>dx ϊ tfφrdxtfW \f(t)\ dt\P

<*"" fo

l\fM\P dt tfφΛx) \K(x,t)\ dx

Ch*r{t)f*{t)Pdt;
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by (5.8) and Lemma 1, this is

which proves the first part of the theorem. Suppose now that (i) and (iii) hold. Let

δ > 0, e an arbitrary set of measure 8, and eι a set of measure δ such that φr(x)

> φ(S) on ei and φr (x) < φ (δ) on the complement C e ι of e ι . Then we have

f e \ h r ( t ) \ d t < I d t jei\φr(x)\ \K\dx+ JΓ /c e i

l A V j Γ j Φ r M I dx + φ ( δ ) Jf d t l l \ K ( x , t ) \ dx

<MΦ(S) +MSφ(δ) < 2MΦ(δ) .

This shows that the norm of hΓ{t) in M{φ) does not exceed 2/1/, and proves (ii).

REMARK. If the conditions of Theorem 9 are satisfied, then

(5.9) G ( ί ) = I1 K(x, t)g(x) dx

is a linear operator of norm < 2M mapping Λ (φ,p) into itself.

We have in fact, for g £ Λ (φ,p) and / £ Λ(φ,p),

Jo

lG{t)f(t) dt = Jo

1g(x)dxfo

1K{x,t)f{t)dt = fo

1g(x)F(x)dx

(the integrals evidently exist), and this shows that G C Λ* and that \\G \\ < M | |g | | .

Theorem 9 is akin to the "convexity theorem" of M. Riesz [ 12, p. 198] . We

mention for completeness that there is a generalization of this theorem, in which

the different spaces Lp involved are replaced by the spaces A(φ,p) with the same

φ. The proof, which follows closely the proof of M. Riesz's theorem in [12] , is

omitted.

5.3. Moment problems. We give an application of Theorem 9 to moment problems

of the form

(5.10) μn = fo

lχnf{x)dx, n = 0, l ,2, •••.
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We shall write

μnv = (^)Δ"-Vv = f0

1f(x)pnΛx) dx ,

Pnv = ί - | * v ( l ~ x)n~v , v = 0, l. . n ,

and μnV for the decreasing rearrangement of the \μnv | , v = 0,1, * , n. More-

over, we set

/ x / V V + 1
(5.11) /„(*) = (n + l)/iBv for — — - < x < ~ ~ ,

n Ί- 1 n T 1

and obtain

(5.12) /nU) = j C ^ n U O / C O d t ,

n + 1 rι + 1

For the special case φ(x) = CX%a-1 and p = 1, the following theorem (with an-

other proof) has been given in [δ] .

THEOREM 10. The sequence of real numbers μn is a moment sequence of a

function of the space Λ(φ, p) or of Λ (φ,p) [for the case Λ(0,1), we assume φ(x)

—> °°/or Λ;—> 0 ] if and only if the norms of the functions (5.11) are uniformly

bounded in this space.

For the space A(φ,p)9 the condition is

(5.13) £ Φnvμ*nζ <M(n + l)~P ,

and for A (φ,p), p > 1,

n

(5.14) μ*v < ΦnI,Z)nv , Σ §nvDq

nv <Mq,
v=0
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with some positive decreasing Dnv> v — 0 ,1, , n.

Proof. If / C Λ(φ,p), then condition (5.13) is satisfied by Theorem 9, because

the kernel (5.12) satisfies (i) and (iii) with M = 1.

Conversely, let | | / Λ | | ^ < M. Since

fe\fn(x)\ dx < meas e =

it follows in case p = 1 that the integrals J e \fn\ dx are uniformly absolutely

continuous and uniformly bounded. In case p > 1, this follows by Holder's ine-

quality. We deduce that for a certain subsequence fnk(x), the integrals Jefn^χ) dx

converge for any e = (0, x] with x rational; hence they converge for any measurable

set e C (0,1). We then have

(5.15) lim Jefnk(x)dx = fef(x)dx,

with some / £ L. Then also

(5.16)

for any bounded \p, For any such \p we have, by (3.2),

hence this must be true for any \p in Λ . Thus by §3, it follows that f £ Λ(φ,p).

We remark also that it follows easily from (5.16) that we have

(5-17) Sa

lfnhΦkdx^>fQ

lfφdxt

if the sequence ip^ix) is uniformly convergent towards a bounded function ψ(x).

Now let P be the vector space of all polynomials

ψ(x) = a0 + aix + ••• + amxm

with usual addition and scalar multiplication. On P we define an additive and

homogeneous functional F by
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F(φ) = aoμo

 J" a i μ i + ••• + aMμn .

L e t

n I \

P Φ ( \ ^"* / I 1 ^ \

be t h e B e r n s t e i n p o l y n o m i a l of order n of ψ(x); t h e n it i s k n o w n [ l O ] t h a t

and that α / ^ — > aι for TZ —> oo. Hence F (B^) —> F(ψ). In particular, let

Λ;m. We have

(5.18) () H )
n I v \m n I v \m

^) = Σ H F(Pnv) = Σ - ) ' nv

where ψn(x) is equal to {v/n)m in the interval ίV/(rc + l), (v + l)/(n +1)]. As ψn{x)

—»</;(%) uniformly, we deduce from (5.18) and (5.17) that

J o

l f { x ) x n d x = l i m F(Bn) = f { φ ) = μ Λ , « = 0,l, .

Since / C Λ(φ,p), this proves that the condition is sufficient in case of the

space Λ. The proof for the space Λ*(ςέ,p), which is similar, is omitted.
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