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 Vol. 51, No. 1, January, 1950

 SOME NEW FUNCTIONAL SPACES

 BY G. G. LORENTZ

 (Received October 5, 1948)

 The present paper is devoted to the study of two new types of Banach spaces
 A (a), M (a), 0 < a < 1, whose elements are integrable functions over an interval

 (or rather classes of functions; as usual, we identify functions equal almost every-

 where). To a certain extent these spaces are akin to the F. Riesz's spaces L,;
 there is a correspondence between A(a) and L, for p = a as well as between
 M(a) and Lo, p = (1 - a)-. The conjugate to A(a) is M(a); but the conjugate
 to M (a) proves to be not A (a), and so our spaces are not reflexive. ?1 is devoted
 to main properties of the spaces A(a), M(a) and to their relations to each other

 and to the spaces L, . Some more general spaces are defined. In ?2 we investigate
 linear functionals in A (a), M (a) and find their general form in A (a); the inequal-
 ity 2.1(1), proved here, plays a fundamental rdle in our theory. In the last three
 sections, ??3-5, we are concerned with applications to Fourier series, to the
 integration of fractional order and to the moment problem for a finite interval.

 ?1. The spaces A(a), M(a) and their properties

 1.1. For simplicity, we confine our attention to the interval (0, 1); our results
 will be valid for any finite interval (0, a) as well (and, with some precautions,
 described in 4.1, also for infinite range). A real measurable function f(x), 0 < x < 1,

 belongs to A (a), 0 < a < 1, if and only if

 1.1(1) IlfIIl^(a) = l 11Ac = Ilfil a Xa- f*(X) dx

 is finite. Here and in the sequel we write f*(x) for the rearrangement of I f(x) I in
 decreasing order, that is for the function f*(x) in 0 < x < 1, which is decreasing
 (in the wider sense) and equimeasurable with I f(x) I . (For these notions see
 Hardy, Littlewood, P6lya [8, pp. 276-279], Zygmund [17] and Lorentz [14]).

 A measurable function f(x) belongs to M (a), 0 < a < 1, if

 1.1(2) lIf lIM(a) = If II = sup{(me)-' lf(x) Idx} < +x;

 here e signifies an arbitrary measurable subset of (0, 1). For the excluded value
 a = 1 we would obtain for A(1) and M(1) the spaces L1 and AM (Banach [1]).
 We define the sum f + g of two elements of A (a) or M (a) and the product af of
 a real number a and an element in the natural way, and the norm I i f I I by 1.1(1)
 or 1.1(2). Then we have

 THEOREM 1. A (a) and M (a) for 0 < a < 1 are Banach spaces.
 We first show that A (a) and M (a) are linear normed spaces; for this purpose it

 37
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 SOME NEW FUNCTIONAL SPACES 55

 ing part of Theorem 19. Instead of the inequality 5.2(3) we use 5.2(4) to show
 that 5.4(1) implies

 E n + ) sv< C, (I > 1 a o).

 Thus 5.2(5) is fulfilled with some 0 < # < 1 instead of a, and the moment prob-
 lem possesses a solution f e AQ3). We then show that f e M(a) in the same manner
 as in Theorem 19.
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