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1 Introduction

This book is the result of undergraduate and Ph.D. courses that the first author has
given at La Sapienza University of Rome on elliptic problems. With the aim of giv-
ing the background to those who want to do research in this mathematical field, we
have divided this book into two parts. In the first one we present some classical re-
sults about the existence and the regularity of weak solutions to elliptic problems in
divergence form (so that we do not discuss the theory of classical solutions). After the
semilinear equations, we study the Leray—-Lions problem

~div(a(x,u,Vu)) = f, inQ,
u=20, on of),

where a is an elliptic operator, that is, a(x,s,&) - £ = «|E|?, and f belongs to
H1(Q). We prove the existence and regularity results due to Leray-Lions and Stam-
pacchia. We also treat the spectral theory of linear operators and the H® regularity
of solutions to linear problems. Even if in this book we focus our attention on partial
differential equations, we have presented a chapter about the Calculus of Variations,
since some of the differential problems that we treat are motivated by the minimiza-
tion of integral functionals.

The Leray-Lions problem is the origin of an important and still active area of
research. In the second part of this book we exhibit some possible directions: the
existence of solutions when the source f has a low summability (for instance f is
1 (Q) function or it is a measure) and the uniqueness of solutions. Moreover we will
study three problems where the hypotheses of the Leray-Lions problems are relaxed.
Indeed we will present a problem defined by an elliptic operator with a quadratic term
in the gradient; we will also study an equation defined by an elliptic operator with
a polynomial growth term. Finally we will analyze a problem defined by an elliptic
operator with degenerate coercivity.

We have made an effort to keep this book self-contained. However, for back-
ground in real analysis, functional analysis, and Sobolev spaces, we refer to the
book Functional analysis, Sobolev spaces and partial differential equations of Haim
Brezis [22]. For the reader’s convenience we have collected in the Appendices all the
main prerequisites.

Lucio Boccardo and Gisella Croce
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2 Some fixed point theorems

2.1 Introduction

In the study of the existence and uniqueness of solutions to differential equations the
fixed point theorems have a very important role. Indeed, it is often possible to look
for the solutions to a differential problem among the fixed points of a certain operator
related to the differential problem. We will present three fixed point theorems in this
chapter.

The first result, the Banach—Caccioppoli theorem, states that a function from
a complete metric space to the same space which contracts the distances has a unique
fixed point.

Thereafter, we will prove Brouwer’s theorem, which assures the existence of
a fixed point for a continuous map from a convex bounded closed subset of RY to
itself.

We will finally present Schauder’s theorem, which is a useful tool in the study of
certain differential problems, as we will see. [n some sense, it is the analog of Brouw-
er’s theorem for operators defined on any Banach spaces.

2.2 Banach-Caccioppoli theorem

Theorem 2.1. Let (X, d) be a complete metric space and let F : X — X be a map with
the following property: there exists @ € (0, 1) such that

d(F(x),F(y)) = 0di(x,y), Vx,yvelX. (2.2.1)
Then there exists a unique x € X such that F(x) = x, i.e., a unique fixed point of F.
Remark 2.2. A map F that satisfies condition (2.2.1) is called contraction.

Remark 2.3. Among the fixed point theorems that we present in this chapter, only
the Banach-Caccioppoli theorem gives the uniqueness. We recall that it is used in the
study of Cauchy problems for ordinary differential equations.

Proof. The proof is based on an elementary iteration argument. Let us fix any xp € X
and let us define
xn .= F{Xﬂ_l}, n = 1 . (2.2.2)

Using hypothesis (2.2.1), we have
d(Xni1,Xn) =d (Flxy), Fixy-1)) = 0d(xy,xp1) =+ = ﬂﬂd{xlsxﬂ} (2.2.3)

for every n = 0. The triangle inequality and (2.2.3) give, for every p € N,

p+1

A(Xn+p+1,Xn) = Z A(Xniis Xnei-1) = (0" + -+ 0") d(x1,x0).
i=1
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Now, applying Cauchy’s criterion for series to > ;,_, 0", we deduce that x,, is a Cauchy
series. Since X is complete, x;, converges to some x € X. The continuity of F, given
by (2.2.1), implies that F(x,, ) converges to F(x). Passing to the limit in (2.2.2), we get
the existence of a fixed point.

For the uniqueness, let x, v be two fixed points of F. By hypothesis (2.2.1)

d(x,y) = d(F(x),F(y)) < 0d(x, ).

Since @ < 1 we deduce that x = v, that is, there exists one and only one fixed
point. []

2.3 Brouwer’s theorem

Theorem 2.4 (Brouwer). Let K be a convex, closed, and bounded subset of R and let
f : K — K be a continuous function. Then f has a fixed point.

Remark 2.5. The hypotheses on f are different from those of Theorem 2.1: indeed,
in Brouwer’s theorem f is only assumed to be continuous; however the existence of
a convex, closed, and bounded invariant set is required.

We will follow the proof given in [35] (note that there exist several different proofs:
for example there is one which uses the notion of topological degree and another one
uses the notion of the homology group). Observe that we will make use of Banach-
Caccioppoli theorem.

We will denote with B(0, ) the set {x € RN : |x| < »}, forv > 0.

Theorem 2.6. Let F : B(0,1) — dB(0, 1) be a continuous function. Then there exists
x € 8B(0,1) such that F(x) # x.

Proof. We assume by contradiction that F(x) = x for every x € JdB(0,1). Let us
define the following continuous extension of F:

F(x), iflx| <1,

F(x) =
Y X x> 1

x|
we remark that If (x)| = 1. The Weierstrass density theorem implies the existence of

aCH(RN,RN) map f) such that

- 1
sup ‘f{xl - f1 [x}‘ < 5 (2.3.1)
xeB(0,2)

Let us consider any ¢p € C'(R) suchthat0 < ¢ < 1 and

by |1 =302,
0, ift =2,
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with ¢ decreasing for t € (3/2,2). We define the following combination of f and f;:

Jelx) =[1 = @pUxD1f(x) + Ppllx]) fL(x).

Finally, we set
_ f{ (2x)
A
With these definitions in mind, we prove the theorem in three steps.

Step I: Let us prove that N is C' (RN, R"Y) and Lipschitz continuous. For the regu-
larity it suffices to prove that f. € CH{RY, RN) and that f.(x) # 0 for every x € RV,
Now, we observe that if |x| > 1

N(x)

X
| x|

Je(x) = (1 = ¢p(Ix])) + ¢ (Ix]) f1(x)

andso f.isa C' functioninthe set {x € R": |x| > 1}. On the other hand, if | x| <3/2
then f. = fi,and f; € C'(RV,RN) by definition; therefore f. € C'(RV,RN). Also
fe # 0 for every x € RN, Indeed

rJ|=

fe)| = | F)| = dxD) | Fx) = fi(x)

due to (2.3.1). Thus N € C' (RN, RN).
Moreover N is Lipschitz continuous in B(0, 1), since N € C'(B(0, 1), RV). Away

from B(0, 1}, it holds that

=1 - ‘f{x‘}—fﬂx}‘ >

fo(2x) = [1 - Pp2|xDIf(2x) + p(21x) fL(2x) = f(2x) = ;—|

Therefore, away from B(0, 1)
X

N(x) = —
| x|
which is clearly Lipschitz continuous if |x| > 1. Consequently there exists M > 0
such that
IN(v) -N(w)| =M|v-w|, Vv,weR", (2.3.2)

Step II: Let us prove that I + t N is a diffeomorphism, for t € (0, %,; ), from B(0, 1)

to B(O,t + 1). It is easily seen that the image of B(0, 1) is contained in B(0,t + 1),
since, if |x| = 1, then |x + t N(x)| = x| + t|N(x) = 1 + t. Moreover, if v &
B(0,t + 1), there exists a unique x € B(0,1) such that v = x + tN(x). Indeed the
map T : RY — RV, defined by T(x) = v — t N(x), is a contraction by our choice
of t, since

IT(v) - T(w) =t|N(v)-Nw)| =tM|v-w|, Vv,weRN,

by (2.3.2). Theorem 2.1 implies the existence of a unique xy = v — t N(xq). Let us
prove that | x| = 1. Assume by contradiction that |xg| > 1; we have

X0
V| = ‘x.;} + [ ——

= |xpl+t>1+1.
| X0
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This is absurd, since v € B(0,t + 1). It remains to prove that
det(D(I + tN)) = 0

where D denotes the gradient of the map. If there were v = 0 such that vy = —-t(DN) v,
we would have |v| = t|DN||v| = t M|v|; this is in contradiction with the choice
of t. Thus I + t N is a diffeomorphism between B(0, 1) and B(0O,t + 1).

Step III: Let us prove the existence of x; € B(0, 1) such that det DN (xp) = 0.
Let us distinguish the cases det(I + t DN) > 0 and det(f + t DN) < 0. In the first
case, using a change of variables we have

(1+t)N J dy = J- dy = J‘ det(I + tDN(x)) dx .
B(0,1) B(0,t+1) B(0,1)

The last term is a polynomial in t of degree N, whose leading coefficient is

[ det(DN(x))dx .
B(0,1)

The identity principle of polynomials implies that

J dy = _[ det(DN(x))dx .
B(0,1) B(0,1)

From this identity we infer the existence of xy € B(0, 1) such that det DN (xy) = 0.
In the case det(l + DN) < 0, with a similar argument, one has

(1+6)N J. dy = J dy = - J det(] + tDN(x)) dx.
B(0,1) B(0,t+1) B(0,1)

As before,
j dy = — J det(DN (x))dx

B(0,1) B0, 1}

and so there exists xp £ B(0, 1) such that det DN (xq) = 0.
Now, since DN is an isomorphism, its kernel is composed of only the zero vector.
N (xp) belongs to the kernel of DN (xg): indeed, from the identity

(N(x)IN(x)) =1,

we deduce that DN(x) N(x) = 0 for every x € R™ and so N(xg) = 0. This is
a contradiction, as [N (x)| = 1 for every x € RV, ]

We can now prove Brouwer’s theorem.
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Proof. We divide the proof into two steps.

Step I: Let us prove the result in the case where K = B(0, 1). By contradiction,
assume that f(x) = x, for every x € B(0, 1). Define F(x), for every x € B(0, 1), as
the intersection point between the half-line f(x)+A(x— f(x)), A = 0,and dB(0, 1).
We claim that F is continuous. We have, forsome t(x) € (0, 1]

x =t(x)F(x)+ (1 —-t(x))f(x). (2.3.3)
This yields

F(x)=s(x)x+(1-s(x)) f(x),
where s(x) = %ﬂ = 1 is such that |F(x)| = 1. We are going to prove that s(x) is

continuous; this will imply that F is continuous. One has, since F(x) € dB(0, 1)
1= |F(x)|* = s°(x) Ix = f(x)° + [ f0)]° + 25(x) (x — f(x)]f(x)) ,
that is,
$2(x) [x = L7 +25(x) (x = LSOO (x) + [f(x)*P-1=0.
Now, for a fixed x,
Wis) = s7Ix = f(x)° + 2s(x = fx)f(x)) + [f(x)]° =1

is a polynomial of second degree, and so it has at most two zeros. Since (1) = 0 and
limg .., (s) = +co, (» has only one zero in [1, +o0). This implies that s(x) is well
defined. Moreover, s is continuous, since it is a zero of a polynomial of second degree
with continuous coefficients.

Let us prove that F(x) = x, for |x| = 1. From (2.3.3) we have to prove that
t(x) = 1.Ift(x) + 1, squaring (2.3.3) we obtain

E2(x) + (1= £ [F(x)]% + 28(x) (1 — t(x)) (F(x) | f(x) =1,
that is,
(1= t(x))* | f ()7 +2t(x) (1 - t(x)) (F(x) [ f(x)) = (1 - t(x)) (1 + t(x)) .
Dividing by 1 — t(x) we get
LX) [2(F(x) | f(x) = 1= [f(x) %] =1~ |f(x)|*,

that is,
E(x) |F(x) = f(x)]? = =1+ [f(x)]* .

This is a contradiction, since | f|¢ — 1 < 0. Therefore t(x) = 1 and x = F(x). We
have thus defined a continuous map F : B(0,1) — ¢B(0,1) and all the points of
dB(0, 1) are fixed points: this is in contradiction with Theorem 2.6.
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Step II: Let us study the case where K is any convex compact set. Since K is bound-
ed, there exists R > 0 such that K ¢ B(0, R). Let Py be the projection over K and

f: B(O,R) — K c B(0O,R)
x — f(Px(x)).

Due to Step I, f has a fixed point x € B(0, R); the image of fisinK,sox € K. [

Remark 2.7. In dimension 1, Brouwer's theorem states that if [ : [a,b] — [a, b] is
continuous, then f has a fixed point. In this case, the existence of a fixed point can be
proved in a very simple way: it is sufficient to apply the intermediate value theorem
tow(t) =1t — f(t).

2.4 Schauder’s theorem

Schauder’s theorem is a fixed point result for operators over Banach spaces. We will
present two different versions (see [46]).

Theorem 2.8. Assume that X is a Banach space. Let K be a compact convex subset
of X invariant under a continuous map F : K ¢ X — X. Then F has a fixed point in K.

To state the second version of Schauder’s theorem, we need the following defini-
tion:

Definition 2.9. Amap T : X — X is completely continuous if it is continuous and if,
for every bounded subset B of X, T(B) is compact.

Theorem 2.10. Let F be a completely continuous map and let K be a convex, bounded,
closed and invariant subset of X. Then F has a fixed point in K.

We are going to prove Theorem 2.8. We observe that we will make use of Brouwer’s
theorem. || x| will denote the norm of an element x € X and B(v,r) = {x € X :

lx =¥ <ri.

Proof (of Theorem 2.8). Let ¢ > 0. Since K is compact, there exist x1,...,xn, € K
such that
N
K c | B(xi,e). (2.4.1)
i=1
Now, let E; be the vector space generated by {x,...,xn,} andletb; : K — R, j =

1,..., Ng, be defined by
bi(x)= (g~ |lx—x;l)".

Since for every x € K, not every b;(x) is zero, we can define
Ne
21 bj(x) x;

Gelx) = :
>3 bi(x)
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G¢ is a convex combination of x, ..., xy,. This implies that G:(K) ¢ E; n K, as K
is convex. We remark that G, is continuous. We can apply Brouwer’s theorem to the
function G » F and to the compact convex set E; n K. Then there exists x; € K n E;
such that

Ge(Flxe)) = xc. (2.4.2)

Since K n E; is compact, there exists a subsequence x; converging to some x; € K.
The continuity of F implies that F(x:) — F(xg). On the other hand, observe that for
every x € K it holds

SN bj(x)x |5 o e - )|
”{ff(x] .1','“ — j-.,‘. — X J-.,‘.
is1bj {x} 2.2 bj(x)
N v (2.4.3)
_ Z : bj{x}"x_j x|l ) Z,I;':l E?j{x}E
) Z“f bix)  SYebix)
by (2.4.1). From (2.4.2) and the fact that F(x,) € K one has
£>||Ge(Fxe)) — Fixe)ll = llxe — Flxe)| .
At the limit as £ — 0, one gets xy = F(xq). ]

Proof (of Theorem 2.10). Let us fix € > 0. Since F(K) is compact, there exist
Ul,...,UN, € F(K) C K such that

.h'irf
F(K) c | B(vy, €). (2.4.4)
1=1
Now, let E; be the vector space generated by {vy,...,vy,} and let b; : K — R be

defined by
bj(x)=(e-|lx-vil)".

For every u € F(K), we define

G:(u) is a convex combination of vy,..., vy, : this implies that G e F(K n E¢) C
K n E;, as K is convex. We remark that G; ¢ F is continuous. Brouwer’s theorem gives
the existence of x; € K n E; such that G:(F(x:)) = x:. We observe that, for x € K,
one has
=Y i (Fo) () = Fo)

>0 bi(F(x))
{ > bi(F(x) vy — F(x)|
N Z:tl b;i(F(x))

|G (F(x)) — F(x)| =

= £

¥
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by (2.4.4). This estimate and the fact that G (F(x:)) = x; yield
||F{XE]_IE|I_*G: e — 0.

On the other hand, F(x.) € F(K) which is compact; up to a subsequence, F(x;) — xq.
Now,
lxe — xoll =[x = F(xe)|l + [[F(xe) — xoll

and the right-hand side tends to 0, as ¢ — (. This implies that x; — xp and
F(x:) — F(xg) from the continuity of F. We have already proved that F(x:) — Xxq.
The uniqueness of the limit of F(x.) gives the result. ]

Remark 2.11. In Brouwer’s theorem, the invariant set is closed and bounded, that is,
compact, since it is a set of RV, In infinite dimensional spaces, due to a theorem by
Riesz, the closed and bounded sets are not necessarily compact in general (see [22]).
This is why compactness is required in Schauder’s theorems.

The following example, due to Kakutani [31], shows that we can define in [° a con-
tinuous operator which maps the unit ball to itself without admitting a fixed point.

Example 2.12. Let T : [ — [ be defined by

ﬁm=(;lﬁmWLmﬁau),

for every x = (x1,x2,...) € %, where ||x||? = 3", |x;|%. T is continuous, since
2 1 2 212 2
ITG0) =TI = 3 [Iv1% = llxl? |+ llx =y 112
Moreover the unit ball is invariant: indeed, if ||x|| = 1, one has
, 1 I ,
ITCOI? = | 5= IxI®) | +Ix12 <1,
sincet — 1 — %{] — %)% — t° is positive and decreasing for t € [0, 1]. On the other
hand, it is easily seen that T has no fixed point in the unit ball. Indeed, if | x| = 1,
we have T(x) = (0,x1,x2,...); if T(x) = x, then x; = 0, for every j, and so

x|l =0=1.If||x|| =0 < 1,then T(x) = {%{1 — 0%),x1,x2,...)if T(x) = x,
then x; = %I['l — 02), for every j. This is impossible, since x € [°.



3 Preliminaries of real analysis

3.1 Introduction

This chapter, devoted to some important results of real analysis, is divided into two
parts. In the first one we will present Nemitski’s composition theorem. This result es-
tablishes the continuity of an operator defined between two Lebesgue spaces, through
the composition with a real function. In the second part of this chapter we will define
the Marcinkiewicz spaces M¥, since they will be used later in several regularity re-
sults.

3.2 Nemitski’s composition theorem

The aim of this section is to study the continuity of

®: LP(Q)— L1Q)

u(x) — flx,ulx))

defined between two Lebesgue spaces through the composition with a function f.

The proof of the result that we will present is based on several theorems of real
analysis. The following ones give some convergence results in L7 In the sequel Q will
be an open bounded subset of RV,

Theorem 3.1. Let f,, be a sequence of functions and [ be a functionin LV (Q2),p > 1.
Assume that

(1) fnis boundedin LV (£));

(2) fu— faeinQl,

Then f,, — finL1(Q)), forevery q € |1, p) and weakly in LV (().

Proof. Assumption (1) implies the existence of a constant L > 0 such that
lfn = fllerigy =L, VneN,. (3.2.1)

Let k =« R*., We have
k? meas({| fn — f] > k}) < j fn — I
(fu—f1>k}
< j fu— fIP < L7,

{1

(3.2.2)

Foreveryg € |1, p), one has

[tfa=spri= | Mfu-sree | tfa-s10
2

Hifn—fl=ki - fl=ki
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Using Holder’s inequality with exponent % on the right-hand side of this equality, we
get

i
Jlﬁ—fwz j = F1P | meas({lfn - f1 > k})'"F
0 Un—S=k!
; [ fn = f19.
H_flr_.ﬂ‘—:k‘}

Inequalities (3.2.1) and (3.2.2) imply then

[iw=rio<ea(5) "+ [ s
)

Ufn—fl=k}

For every fixed k € R* Lebesgue’s theorem implies that the second term of the right-
hand side goes to 0, as 1 — oo. Moreover, for every fixed £ > 0 there exists k¢ such
that the first term is smaller than &, for k = k.. For such k., there exists n. such that
the second term is smaller than &, for n = n.. In conclusion f,, — f in L9(Q) if
q<p.

Let us prove that [, — [ weaklyin L (Q2), p = 1. Since [}, is bounded in L7 (Q2),
we can extract a subsequence which converges weakly in L¥ ({2). The limit is neces-
sarily f, since f;, — fin L9(Q),q < p. To prove that f,, — f weakly in L¥ (€)) one
can argue by contradiction. [l

The following theorem gives us some sufficient conditions for the convergence in
LP(€)).

Theorem 3.2 (Vitali). Let [;, be a sequence of functions and [ be a function in LV ((}).

Assume that

(1) fn— faeinQ;

(2) limyneasiey—o0 I | fnl? = 0, uniformly with respect to n, if E is a measurable subset
of .

Then f,, — fin L7 ().
Proof. Letus fix £ > 0. Let E C () be a measurable set; we have

ju;—ﬂﬂzjLﬂ—fW+2W{ﬁUMP+MWL (3.2.3)
iyl E

(O\E

Using assumption (2), there exists &, (g) > 0 such that, if meas(E) < & (&), then

[Ij‘ﬁl’31 <&, VYVnekN,
E
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Since f € L7 (1) there exists 62(&) > 0 such that, if meas(E) < 62(£), then

jlfl*’-—is-
E

In conclusion the second term of the right-hand side of (3.2.3) is less than 27 . Let us
study the first one. Setting &6 = min{d (&), é>(£)}} and using Egorov’s theorem (The-
orem 3.19), there exist v, € N and a measurable set E; € Q such that meas(Ey) < &
and

| 1u-sir <,

(N En

for every n > v,. Choosing E = E; in (3.2.3), we get the result. ]
The following result is a corollary of Vitali’s theorem.

Theorem 3.3. Let f,, be a sequence of functions and f be a function in L? (Q), p = 1.

Then f,, — f in LV () if and only if

(1) fn — f in measure;

(2) limypeas(ey~0 Jg |fn!? = 0 uniformly with respect to n, where E is a measurable
subset of ().

Proof. We divide the proof into two parts.
Part I: assume that f,, — f in L¥ (). Clearly f,, — f in measure. Moreover, if E
is any measurable subset of (2, one has

[ Ufalr = [1fu= g+ 17 <27t [ 1= pip e 2r [ 1117
E - E

E E

Let us fix € > 0;since f € LV (Q) there exists (&) > 0 such that, if meas(E) < 6(¢),
then

J 1P| <e. (3.2.4)
)

On the other hand, since f,, — fin L? (}), there exists v; in N such that

(Iﬁnﬁ) (Jf") ﬂi(_[fnfl”) <e, VYn>v,. (3.2.5)
3 E E

This implies that V n > v, if meas(E) < 6(&) then

(lfnlp) ~‘:E+(E[If“’") < 2¢
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by (3.2.4). Since f1, ..., fv, € LF(Q), there exists &) (&) such that if meas(E) < &;(¢)
then

J.If”p{El I.I"'-'IF.J::]-'I"":-."'II-E-
E

This proves the result.

Part II: let us prove that assumptions (1) and (2) imply that f,, — [ in L7 ().
Since [, — f in measure, we can extract a subsequence such that f,, — f a.e.in Q.
Vitali’s theorem (Theorem 3.2) implies that f,, — f in LF(Q). Indeed, the whole
sequence f5 converges to f in L (€2). If there exist a subsequence [, and & > 0
such that

lfn, = fliri@) = €0, (3.2.6)
using the previous argument, we could extract from f;, a subsequence converging
to [ in L7 (£2). This is in contradiction with (3.2.6). ]

We now give the definition of a Carathéodory function.

Definition 3.4. A functiong = g(x, &) : Q@ x R™ — R is a Carathéodory function if it
is continuous with respect to &, for almost every x in {2 and measurable with respect
to x for every & in R™.

Lemma3.5. Let fix,t): QxR — R bea Carathéodory function. Let 1, be a sequence
of functions and 1y be a measurable function such that 1, — g in measure. Then
fix,un) — f(x,up) in measure.

Proof. Let € > 0 and let u be any measurable function. We set, for k > 0

Qp = {x e |up(x) —ulx)| < % = | flx,up(x)) — flx,ulx)) < E} :
Since f is continuous with respect to s, one has | ;- Qp = 2. Moreover limy . .
meas({)y) = meas(Q), as Q; C Q;, for i < j. Therefore, for any fixed n > 0, there
exists kp such that

meas(€)) — meas(Qy,) <

M|

Let us set

1
Ay = {x e |upx) —uplx) < k_} :
1)

since 1, — U in measure, there exists 1, such that

meas({)) — meas(A,) < n

2

for every n > ng. We set

Dy,=1{xeQ:|flx,uy(x))— flx,uplx))| < &}.
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By definition, one has A, n Qy, € D, and this yields

meas((2) — meas(Dy) < [meas(Q2) — meas(A, )] + [meas()) — meas(Qy, )|
n.n._
<5t =

This proves the result. CJ
We can now prove Nemitski’s composition theorem.

Theorem 3.6 (Nemitski’s composition theorem). Let p,g=1.Let f(x,t) :QxR—-R
be a Carathéodory function. Assume that there exist a positive function a € L9(Q)) and
a constant b > 0 such that

f(x, )] <alx) +blt]a. (3.2.7)

Then the operator
¢ LP(Q) — LY(Q)

uix) — flx,u(x))

IS continuous.

Proof. Assume that 1y, — 1 in LV (£2): we have to prove that ® (1) — ®(u) in L9(0).
We will prove that ®(u,, ) satisfies hypotheses 1 and 2 of Theorem 3.3. Clearly u, — u
in measure and so, using Lemma 3.5, f(x, un(x)) — f(x,u(x)) in measure, that is,
®(uy) — ¢(u) in measure. Let us prove that

lim J |® ()1 =0
meas(E) -CI'E

uniformly with respect to n. If E is a measurable subset of 2, using (3.2.7), we get

J flx, un(x))|? < 2d-1 Iﬂ{x}q +24-1p J U (X)) P,
E E E

and so limMmeas(£) -0 | |f (x, Uun(x))|4 = 0, uniformly with respect to n. Indeed the
first term tends to 0, since @ € L'(Q); the second term tends to 0 by Theorem 3.3
applied to the sequence u;,. Theorem 3.3 applied to the sequence f(x, 1, (x)) con-
cludes the proof. []

We end this section with a result that we will use in Chapter 5.

Theorem 3.7. letq > land p = 1. Let f(x,t) : Q x R — R satisfy the same hy-
potheses as Theorem 3.6. If uy, — u weakly in LV (Q)) and a.e. in O, then f{x,uy) —
[(x,u) weaklyin L2(Q)),

Proof. It is clear that f(x,u,) — fi{x,u) a.e.in . Since | uy|lzriq) is bounded,
due to (3.2.7), || f(x, un)llraiq) is bounded too. Therefore, applying Theorem 3.1 to
flx,uy), we get that f(x,uy) — fix,u) weakly in L9(€)). ]
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3.3 Marcinkiewicz spaces

In this section, we will define a functional space that will be natural in the study of
the regularity of the solutions to some differential problems.

Definition 3.8. Let Q be a bounded open subset of RV, Let p = 0. The Marcinkiewicz
space M¥ (()) is the space of all measurable functions f : 2 — R with the following
property: there exists a constant y > 0 such that
}f

meas({|f| > A}) = 7

YA=>0. (3.3.1)

The norm of f € M¥(Q) is defined by
I £l% ) = inf{y > 0: (3.3.1) holds} .

It is easy to see that MP(Q) = LV (Q) for p = 1, as the following proposition
shows:

Proposition 3.9. Let p = 1. Then LV ()) C MF(£)).

Proof. Let f be an L7 (Q) function. Then

Jlfll’z J AP = AP meas ({|f] > A}) |
0 1 F1=A}

that is, f belongs to M? (Q2). ]

Remark 3.10. The inclusion L¥ (£}) = MP(Q)) is strict; indeed it is sufficient to con-
sider the function f(x) = Ai in Q2 = (0,1) ¢ R. This function does not belong to
L'((0,1)), butto M'((0, 1)), because

meas(“i‘ }h})i%,

We now want to prove that M¥ (Q) is included in some Lebesgue space. We will
denote by Ay the set {|f| = k}, and by By the set {k < |f| < k + 1}. The following
lemma will prove to be useful:

Lemma 3.11. Letv = 1 and [ : Q — R be a measurable function. f € L"(Q) if and
onlyif > ;_o k" ' meas(Ay) < +o0.

Proof. We begin with some simple remarks. Note that
J-If'l" = > _[ fl". (3.3.2)
f k=0p

Moreover Ay = |J;_ B;, and this union is disjoint; therefore

oo

D k" 'meas(Ay) = > k"' > meas(B;) = > meas(B;) > k"', (333)
k=0 k=0 i~k i~0 k=0
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Moreover, if g : R™ — R is an increasing and continuous function, then

n n+1 "
> gk = J gitydt = > glk+1).
k=0 0 k=0

In particular, we may set g(t) = t" !, for v = 1; hence,

1

m—1 m" -1
> gt EJE*"ldE= < > G+, (3.3.4)
J=0 J=0

0

Step I: Assume that f € LV (Q). >;_, k" 'meas(Ay) < +o0. Using the first in-
equality of (3.3.4) in (3.3.3), we get

o ¥
> k" 'meas(Ag) < Z meas(B;) 1)
k=0 i=0 r
Since | f| = i over B, one has
> k" ' meas(Ag) < Z lj (1+[fD" = l'[{1+ N
k=0 i-0 " r
B 0)
2}’—1
< = |meas(Q) + J‘ fIT

where we have used (3.3.2).
Step II: Assume that

> k" !'meas(Ag) < +oo.

We are going to prove that f belongs to L (£2). One has, using (3.3.3) and the last
inequality of (3.3.4)

od

Z k" ! meas(Ay) = Z meas(B;) Z k'l
k=0 k=0

e .

Z meas(B;) Z (h+1)""' = > meas(B;) L?

i=() i=0)

and so

Zmeas(ﬂ )i < oo .
i=0
By the definition of B;

> meas(B;)i" = ZJUﬂ—H"':: % J |.fI" — meas(Q) .
i=0 =2 .

i=2p O\ (ByUBy )

This implies that f € L7 (Q). 0]
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Proposition 3.12. Letp > land 0 < & < p — 1. Then MV (Q2) C LV~ %(0Q2).

Proof. Let f € M? (). Using Lemma 3.11, it suffices to prove that

> kP meas(Ag) < o0
k=0

Since meas( Ay ) < EfT for some y > 0, one has
> kP ¢ !meas(Ag) = > kP! k;};’ :
k=0 k=0

the last series is finite since £ > (). This proves the result. ]

Proposition 3.13. Let f be an MV (Q)) function, p > 1. Then there exists B > 0 such
that, for every measurable set E C ()

j|f| < Bmeas(E)' 7, (3.3.5)
E

where B = B(|| f|lar ), P).

Proof. Once we prove that for every f € L' (Q)

—

I|f| _ [ meas(A¢ N E) dt, (3.3.6)
E 0
where E is any measurable set of €2, the statement of the proposition is easy to prove.
Indeed, if (3.3.6) holds, one has

+ 00

—I.Ifl = [ meas(A; N E)dl =
E 0

=

meas(E)

—I. meas(A; N E) dt + —I. meas(A; N E) dt

0 P
meas(f) P

+ o5

+ o0
1

< meas(E)' 7 + J meas(A; ) dt

1
meas(E} F

+ o0

I ;
<meas(E)" 7 + [ fllhm o) _[ L7 dt

1
meas(E) P

|
EBmeaS{E}"F,

where B depends on || f||mr ) and on p.
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Step I: Assume that f(x) = axp(x), o > 0.Then [ |f(x)| = a¢meas(E). On
the other hand,

E, ift = «,
ArnE={xeE:|[f(x)]>t}= _ (3.3.7)
w, ift > o,

and so

_[ meas(A; N E) dt = _[meas(E} dt = c¢meas(E) .
0 0

Therefore (3.3.6) holds true for f(x) = a xp(x), o > 0.
Step II: Assume that f(x) = Z;H: | &i XE,» where E; are measurable subsets of E
such that

\JEi=E, EinEj=0sei=+j,

i € R" and M € N. From Step I, one has

H — 00

!|f|:§J‘ME =5 [ meastau at

Il{']

where A;; = {x € Q: i xe (x) >t forie {1,...,M}. Now,

M M M M
A:ﬁE= U{AtﬁEf] = U[IEEf!Zﬁf}{ff }f} = UAJ‘J .
=1

This implies that
M +oe boo m
J- meas(A;;) dl = J Z meas(A; ;) dl = J- meas(A; N E)dt .
1

1= .DLI

Therefore, (3.3.6) holds true for positive step functions.
Step III: Let f be any function in L' (Q). There exists a sequence of positive step
functions such that
sulx) 7 | f(x) a.e.ink.

From Beppo Levi’s theorem and from Step I, one has

+ 00

Il‘ﬂ = Ailﬂljsﬂ = All‘[}g meas{x € E:|sy(x)| >t} dt
E 0

+ 00

= lim [ dt Jx{er:unn:x}l}t] .

n—oa
0 E

(3.3.8)
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Lebesgue’s theorem implies that

H—0a

lim J NixeE:|spix)|=t} = | XAnE - (3.3.9)
E E

We set

gnlt) = JX[er:uH{x} “t] .
E

Then (3.3.8) is equivalent to

o

,
jl.ﬂ = lim | gn(t)dt
E ()

and (3.3.9) means that g, () — meas(A; N E) if n — oo. To prove the result it suffices
to prove that

b oo + oo

lim gn(t)dt = I meas(A; N E) dt .

H— + 00
0 0

We have that g, (t) — meas(A; N E) a.e. in (0, + 00 ); moreover |g, ()| = meas(E);
it is sufficient to prove that meas(A; n E) belongs to L' ({0, + o)), and then apply
Lebesgue’s theorem. This is easy, since

+ o

1 + oo
I meas(A; N E)dt < J.TI]EEIS(A; N E)dt + J. meas(A¢) dt
0 1

(0
+ 00 p
MP (L)

< meas(E) + I "Jﬂ””?

L dt < 400 .

Therefore (3.3.6) is proved. ]

3.4 Appendix

We recall here the results on Lebesgue spaces that we use in this book (see [29] for
more details),
Let E be a Lebesgue measurable subset of RV, N = 1. Let 1 < p < co; p’ will

denote the number Elt:_l

Theorem 3.14 (Holder’s inequality). Let f € LP(E) and g € L? (E). Then

J.fg < |If1||LPL'E]|Ig”Lp’{E:, .
E
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Theorem 3.15 (Interpolation inequality). Let p,q,v € [1, +o) such that p < r < q.
Let f € L1(E). Then
If ey < AN e I F N e s

where 0 is such thm‘% = g + 1:1—0.

Theorem 3.16 (Beppo Levi). Let f, be a sequence of L' (E) functions such that
(1) 0= fulx) = fnalx)ae. inE foreveryn € N;
(2) |pfn < +oo foreveryn € N.

Then f,, — f in L' (E).

Theorem 3.17 (Lebesgue). Let [, be a sequence of L' (E) functions such that

(1) fu — fae inkE;
(2) there exists g € L' (E) such that | fn(x)| < g(x) a.e.in E.

Then fn — fin L' (E).

Theorem 3.18 (Fatou). Let f, be a sequence of L' (E) functions such that
(1) fn=0ae.inkE;
(2) |gpfn < +oo foreveryn € N,

Let f(x) = liminf,, .. fu(x) fora.e. x € E. Then | f < liminf, . [¢ fn.

Theorem 3.19 (Egorov). Let [, be a sequence of functions and | be a function defined
on E, with meas(E) < +co, Assume that f,, — [ a.e.in E. Then for every € > (0 there
exists a measurable subset A of E such that meas(E \ A) < € and f,, — f uniformly
onA,asmn — oo,

Theorem 3.20. Let 1 < p < oo. A sequence fy of LV (E) functions converges weakly
to fin LP(E) if [¢(fu — flg — 0O forevery g € LP (F). A sequence f, of L'(F)
functions converges weakly to f in L' (E) if [ (fn — f)g — O forevery g € L™ (E).

Theorem 3.21. Let 1 < p < oo, Every bounded sequence f, in LV (E) has a subse-
quence weakly converging to some f € LV (E).

Theorem 3.22 (Dunford—Pettis). Let f be a bounded sequence of L' (E) functions.
Assume that for every measurable subset A C E,onehas [, | fn| — 0,asmeas(A) — 0,

uniformly with respect to n. Then f, has a subsequence weakly converging to some
f € LY(E).

Definition 3.23. We recall that f,, converges to f in measure in F if meas({x € F :
| fn—fl=¢€})—0ase— 0.



4 Linear and semilinear elliptic equations

4.1 Introduction

In this chapter, we will study the existence of solutions to linear and semilinear el-
liptic problems. More precisely, let ) be an open bounded subset of RN, N > 3. We
assume that M(x) isan N x N symmetric matrix with the following properties:

(1) M is elliptic, that is, there exists &« > 0 such that M(x)E - &€ = x|E|2, V & € RN;
(2) M is bounded, meaning there exists f§ > O such that M{x)| =< f, V¥V x e (.

The first class of problems that we will consider is linear:

—diviM(x)Vu) = f, in Q,
u =10, on dQ.

Afterward we will add a nonlinearity in u of the form

—diviM(x)Vu) +g(u)=f, in Q,
u=0, on df.

The existence results that we will present are based on Functional Analysis results by
Lax, Milgram, and Stampacchia (see |32, 48, 51]).

4.2 The Lax—Milgram and Stampacchia’s theorems

In this section, we present the Lax-Milgram theorem and Stampacchia’s theorem.
They will be useful to study the elliptic problems of this chapter.

We will use the following notations. Let H be a Hilbert space: (1¢|v) will denote
the scalar product of two elements u,v € H, and ||ul = +/(u]u) will denote the
normofu € H.If @ € H', (g, v) will be the value of p at v € H.

Proposition 4.1 (Stampacchia). Let H be a Hilbert space and K = H a closed convex
set. Let a : K x K — R be a bilinear, continuous, coercive form, that is, there exist
&, B > 0 such that

a(u,v) = Blullllv]

and
alu,u) = o|lull|v|

for every u, v € H. Then, for every fixed g € H' there exists only one u € K such that

alu,v—-u)={g,v—-—u), vVvek.
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Proof. For g € H' fixed, Riesz theorem (Theorem 4.16) posits the existence of a unique
J € H such that
(g,v)=(flv), VYveH.

Moreover, for any fixed u, the map v — a(u, v) is continuous and linear on H. The-
orem 4.16 again implies that there exists A(u) € H such that a(u,v) = (A(u)|v).
The proposition will follow once we prove that there exists a unique # € K such that

(Alu) - flv-u)=0, Vv ek,

that is,
(-AAu)+Aflv-u)=0, Vvek,

forsome A > 0. Let C : H — K C H be the map which associates with z € H the
projection over K of z — AA(z) + A f. Property (4.6.1) of the projection implies that

(z—-AA(zZ)+Af-C(2)lv-Clz))y=0, VveK.

To prove the result, it is sufficient to find a fixed point of C. Using property (4.6.2) of
the projection one has

IC(z1) = C(z2)11* < llz1 - 22 — A(A(z1) — A(22))]|”.
Since A is continuous and coercive, the following estimates hold:

IC(z1) = C(z2)I* < llz1 = z2lI* + A%[|A(z1) — A(z2) 7
—2A (21 = z2]A(z1) = Alz2))
< |lzy — 22|l + A2B%Iz) — z21¢ = 2@ A |2y — z21°
= (1 +A%B% = 2a]) 21 - z2°.

Therefore C is a contraction if 0 < A < 2/ 2. By Theorem 2.1 C has a unique fixed
point. []

Theorem 4.2 (Lax—Milgram). Let H be an Hilbert space and a : H x H — R a bilinear,
continuous, coercive form. Then, for every fixed @ € H', there exists a unique u € H
such that

alu,v)=(p,v), VveH.

Proof. Let ¢ € H'; by Proposition 4.1 there exists a unique u € H such that
alu,v—-u)={p,v-—u)y, vveH.
In particular

alu,tv-u)=(p,tv-u), VYvveH, Vielk,
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so that
tla(u,v) - {(@,v)] =alu,u) - (p,u), VtelR.
Hence
alu,v) —(@,v)=20
for every v € H. ]

Theorem 4.3 (Stampacchia). Let H be a Hilbert space. Let a : H x H — R be a contin-
uous and linear form in the second variable such that

(D) laly,w)—aly,w) =By —y2llllwll, Vy,@;,weH;
(2) alpy, @1 —w2) —a(Wa, @y — W2) = Clly, —y2ll*, Yy, p2 e H.

Then, for every @ € H' there exists a uniqgue u € H such that a(u,w) = @(w) for
every w € H.

Proof. We divide the proof into two steps.

Step I: Let us prove that if A : H — H satisfies for some positive o, y
D) A -APIl =ylx-»l, Vx,yeH
2 (x-y|A(x) - A(y) = allx - ¥|*, Vx,yeH

then, for every fixed f € H, there exists a unique u € H such that A(u) = f. For
this it is sufficient to prove that

Rv)=v-AA(v)+Af
is a contraction for some A, By definition

IR(v) — R(w)|I®> = (R(v) - R(w)|R(v) — R(w))
= v —wl® + A% A(v) = Aw)||° = 2A (v — w|A(v) - A(w)).

By the hypotheses on A, one has
IR(v) = R(w)||® = (1 4+ A°y? =2A) v — w|?.

Thus R is a contraction assoonas 0 < A < i—f”
Step II: By Riesz theorem (Theorem 4.16), for every fixed @ € H' there exists
a unique fy € H such that

pw) = (folw), VweH.
To prove the theorem we must find 1 € H such that

alu,w) = (folw)
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for every w € H. Now, for every v € H we can define the following linear continuous

functional on H:
TU . H - [R

w—alv,w).

By Theorem 4.16 again, there exists a unique vgp € H suchthat T, (w) = a(v,w) =
(vg|w ) for every w € H. The operator

A: H-H

v — Vg
satisfies inequalities (1) and (2) of Step I. Consequently, given f = H there exists
a unique u such that A(u) = f, thatis, a(u,w) = (A(u)|w) = (f|w) for every

w € H. Therefore there exists a unique u such that a(u, w) = (folw) = p{w) for
every w € H. ]

4.3 Linear equations

In this section we consider the linear problem

{—div{M{x}"FH] =/, in Q, (4.3.1)

u=20, on df2;

we remark that on taking M as the identity matrix, one has the Dirichlet problem for
the Laplacian operator:

~Au=f, in Q,
u==0, on df).

The proof of the existence and uniqueness of a solution to problem (4.3.1) is based on
Lax—Milgram theorem.

Theorem 4.4. Let f € L™(Q2),m = .ffg Then there exists a unique weak solution

u € H,(Q) to problem (4.3.1). In other words,

JM{I}‘FH -V = J fv, YveH\Q).
{) £}

Proof. Define a : H} (Q) x H)(Q) — R by

alu,v) = ( M(x)Vu-Vuv.
0
It is easily seen that a is continuous. Indeed, since M is bounded by hypothesis 2, the
Cauchy-Schwarz inequality gives

la(u,v)| < J IM(x)Vu-Vv| < BlIVuliziy IVUIliz, Vu,veH(Q).
0
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On the other hand, a is coercive, since M(x)E - € = «|&|- and so

JM{I]?H, -Vu = ﬁj|?H-|E, VueHQ).
£) {2

The result follows from the Lax—Milgram theorem. []

Remark 4.5. We will see a different proof of this theorem in Chapter 9.

4.4 Some semilinear monotone equations

In this section we study the following semilinear problem

(4.4.1)

—diviM(x)Vu) + gu) = f, in Q,
u=20, on df).

Theorem 4.6. Let g : R — R be an increasing function. Suppose that g is Lipschitz
continuous, that is, there exists a positive constant C such that

g(s)—gt)l =Cls—-t|, ¥V s, teR. (4.4.2)

Let f € L"(Q),m = hf:”_} Then there exists a unique solution u € Hj(Q) to prob-
lem (4.4.1) in the following sense:

JM{x}?u - VU + Jg{u}v = _[fv, Vv eH Q).
Q 0 0

Proof. Define the following form on H} (Q) x H{ (Q):

alu,w) = J M(x)Vu - -Vw + Jg{u}w .
£ {1

By the hypotheses on M and (4.4.2), one has

a(u,w) < B J Vul |[Vw| + j[mm + 9(0)] lwl,
£} )

that is, a is well defined. The form a is continuous and linear in the second variable.
Indeed, if wy, — w in H} (Q), then

J.M(x]?u - Vwy, — JFVI{I}?H - Vw
0 0

and

_[g(u}wn E [g(u}w
0 0
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since w, — w weakly in L?(Q) and |g(u)| = [Clu| + g(0)] € L?(Q). In other
words, a(u, w,) — a(u,w). Moreover, a satisfies hypothesis 1 of Theorem 4.3 be-
cause

la(u,w) —alu,w)| = JM{X}‘F{HL —us) - Vw + J[g{uli —gluz)w
0 0)
< BIV(uy —u2)llpzi IVl

+ Cluy — uallpzio lwllzo

the last inequality following from hypothesis 2 on M and hypothesis (4.4.2) on g.
Finally a satisfies hypothesis 2 of Theorem 4.3:

aluy, Uy —ur) —alur, Uy — uz) = J M(x)V{uy —uz) - Viu, — uz)
0
+ [ Loun) - gl - uz)
0
= ﬁ"v{ul _“E]HEE{Q*J

since M is elliptic and g is increasing. The result follows from Theorem 4.3. [

Theorem 4.7. Let g : R — R be an increasing locally Lipschitz continuous function.
Let f € L™(Q),m = ,.f:“_, Then there exists a unique solution u € H/} () to prob-
lem (4.4.1) in the following sense:

JM{x}vu VU + Jlg{u)v - qu, Vv eHNQ) NL*(Q).
£} £2 £}

Moreover, g(u) € L' (Q).

In the proof we make use of the following function defined for k > 0:

[k, s<-k,
Ty(s) =145, |s| =k, (4.4.3)
Hk, s=k.

Proof. Step I: We prove the existence of a solution by approximation. To this end, let
gn(l) = Ty(g(1)); let u, € H)(Q) be the solutions to problems

(4.4.4)

—diviM(x)Vuy) + gnluy) = f, in Q,
Un = ﬂ: on d{).

Such solutions exist due to Theorem 4.6, since g, is increasing and Lipschitz contin-
uous. Considering 1, as a test function in (4.4.4) one gets

J-M(x}ff'uﬂ - Vun + Jungn{un} = J.fun.
0 0 0
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Holder’s inequality on the right-hand side implies

J-M{x]l‘?un -Vun + J“rlﬂn{un] = "fHL'jMJ {H}”an IFES (02) » (4.4.5)
£2 {1

The ellipticity of M and the monotonicity of g used on the left-hand side of the above
inequality give
[ Vunlzz < IF]

L Ul @ -

By Sobolev’s inequality on the left-hand side, |||l g, is uniformly bounded. We

deduce the existence of a H}(Q) function u such that u,, — u weakly in H}(Q)
and a.e., up to a subsequence. Moreover, since | M(x)Vuy, - Vuy = 0, we deduce
from (4.4.5) that there exists a constant C > 0 such that

J“nﬂniunj = (C (4.4.6)
{1

for every n. Let us prove now that g, (u,) — g(u) in L' (Q). Itis clear that g, (uy) —
glu) a.e. in O by the continuity of g. Moreover, if E is any subset of Qand t € R™
one has

[mnt-unn - f Gn(un)| + j Gn ()|
E ixeE:|lunix)<t] (xeE:|un(x)| >t}
1
< j (D)) + 7 f Ung (1)
E IxeE: [un(x)| =t}

< |g(t)| meas(E) + %

due to (4.4.6). Consequently

: C
lim lgnlup)| = —, VI=>0.
meas{E}—-UE t

By Theorem 3.2, gn(uyn) — g(u) in L' (Q). Therefore for every ¢ € H,;ll{ﬁ] N L™ (Q)
we can pass to the limit in

thx}vun Ve + [gn{uﬂhp _ qu:-
0 0 0

to get

J.M[:x:}?u. -V + [g(u}tp = jftp
0 0 0

for every @ € Hj(Q) n L™ ().
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Step II: Let us prove that the solution to problem (4.4.1) is unique. By contradic-
tion, if 11 and wu> are two solutions, then

-

M(x)Vuy - VTi(uy —uz) + | glu)) T (uy —uz) = | f T(uy — up);

0 0 0

M(x)Vus - VTi(uy —uz) + | glu) Te(uy —u2) = | f Te(ug — uz).
0 0 0

This implies that

Jﬂ’f{f}"?{ul —Uuz) - VITp(up —uz) = J‘M{I}?Tk{ul —Uuz) - VT (up —uz) =0
Q 0

by the monotonicity of g. Since M is elliptic, Ty (1, — u2) = 0 a.e. for every k; there-
fore u; = u» a.e.in Q. ]

Example 4.8. Using the previous theorem one sees immediately that there exists a so-
lution u to

ue Hi (@) nIP 1(Q): —diviM(x)Vu) + |ulP u = fu e H (Q),
e —1el'(Q): —div(M(x)Vu) +e* - 1= f.

Remark 4.9. In Chapters 10 and 11, we shall again study approximating problems to
get a priori estimates and then pass to the limit.

4.5 Sub and supersolutions method

In this section we will study the semilinear problem

[-diu{M{x}?u}=ﬂiu}+.f~ in 0, (4.5.1)

u=>0, on 02,

under the following hypotheses:
A0
(1) f € LNz (Q);
(2) g: R — Risincreasing and continuous; there exists y > 0 such that

N+ 2
N-2

lg(s)]| = ylsl]4, a=

We recall that
(1) M iselliptic, that is, there exists & > O suchthat M(x)E - € = «|E|°,V & € RN,
(2) M is bounded, meaning there exists B > O such that |[M(x)| = 8,V x € Q.
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We remark that as in the previous section g is assumed to be increasing, but here it
appears on the right-hand side. We will solve this problem using the sub and super-
solutions method (see [45]).

Definition 4.10. A function u & H{I] (€2) is a subsolution to problem (4.5.1) if for every
positive v € H} (Q)

iM{x]‘?H- Vv = E[g{g}v +££f"u.

A function T € H{(Q) is a supersolution to problem (4.5.1) if for every positive v €
Hy(Q)

iM{x}‘FE - Vv = f[g(ﬁ}v +ifv.

Theorem 4.11. Under the previous hypotheses, let u and u be a sub and a supersolution
to (4.5.1) such that w < U a.e. in Q. Then there exists u € H(Q) to problem (4.5.1);
moreover = U = U a.e. in L2,

Theorem 4.12 (Maximum Principle). Let u € H}(Q).
(1) Assume that [ M(x)Vu - Vv < 0 for every positive v € H}(Q). Then u < 0.
(2) Assume that [ M(x)Vu - Vv = 0 for every positive v € Hy(Q). Then u = 0.

Proof. (1) Choose v = u ", that is, the positive part of u as a test function. Then

J-M[x}\?u' SAVETA =J.M{x}?[u' —u)-vVu' =0.
() £

Using the ellipticity of M, u' = 0.
(2) Choose v = u, that is, the negative part of u as a test function. Then

0= JM(x}?(u' —u ) -vVu = —JM{x}?u - Vu
() £

The ellipticity of M gives 1~ = 0, ]
We can now prove Theorem 4.11.

Proof. The proof is divided into two steps: in the first one we construct a sequence iy
in H; (Q) by induction and prove thatu < 1y < - -+ < Uy < - - - < U; in the second
one we prove that this sequence converges to a solution u to problem (4.5.1).

Step I: Set u =u; let uy, € Ha{ﬂ} be the solution to

-diviM(x)Vuy) = glup_1)+ f, in Q,
Uy = 0, on dq0.
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Such a solution exists by Theorem 4.4, since g(u,-1) + f € LN (€2). Let us prove
by induction that the sequence u,, is increasing. For every ¢ = 0, by the hypotheses
and the definition of 1>, one has

M(x)Vu, -V = [[glu) + fle
0 0

M(x)Vu> -V =|lglu) + fle.

0 Q

Consequently
JM{x}?{'til —Uz) -V =0,
0

Theorem 4.12 implies that 1, — u; < 0.
Let us prove that u, < U1, assuming that u, = u,-—1. We have

JM{x}?un -V = J[Q[Hri—l} + fl@
) £

[M(I]vﬂen+l -V = J[ﬂ(”fﬂ} +flg.
£} £

Consequently

JJ""”I]?{“H —Up+1) -V = I[g{“n—l} _H{Hn}] Q.
0 L}

Since g is increasing, g(u, 1) = g(u,) and so u,, = U1 by Theorem 4.12. There-
fore u, is increasing. With the same technique one can prove that u, =< .

Step II: We want to prove that 1, converges to a solution to problem (4.5.1). Let
us first prove that the u,, converges to some 1 € L* (Q). Since u,, is increasing and
Up = U, Up(x) hasalimit a.e., say u(x). It follows from Step I that |u,| = |u|+|ul;
passing to the limit, one has |u| < |u| + || € L*" (Q). Hence, for a positive constant
C(N)

Uy —ul® = CIN)(Jun|® + |ul®) = CIN)(Ju| + |u)® e LYQ).

Lebesgue’s theorem implies that uy, — u in L?" (Q)). Using Theorem 3.6 and hypoth-
esis2ong, g(uy) — g(u)in L~ (€2).
Let us prove that u is a solution to problem (4.5.1). By the definition of u,,, one

has

JM{X}an “Vuy = J{gfun—l] + f)uy.

0 ()
Using Holder’s inequality on the right-hand side and the ellipticity of M on the left-
hand side, one gets

D!II‘F’HH “E'_’iﬂ] = ||Q{HH—1} +f||L M ||H'”|IL3$ (€1) =

2
N+2 (L))



34 = Linearand semilinear elliptic equations

The right-hand side is uniformly bounded; therefore u,, is bounded in H Fl] (€2) and,
up to a subsequence, has a weak limit in HJ (Q), which necessarily is 1.. We can now
pass to the limit in

IM{x}vuﬂﬂ Vv = J[giun} +flv, VwveH)Q)
£} {2

to get

[M{x}?u-?v =I[g{u]+f]v, ‘?”UEH&{H}
() 0
that is, u is a solution to problem (4.5.1). n

Example 4.13. Let f be a positive L* (Q) function and Q ¢ RN, N < 6. Using the
previous theorem it is easy to prove that the following problem:

(4.5.2)

~—Au=u*-f, in Q,
u=20, on o€},

has a solution. Indeed u = 0 is a supersolution. On the other hand, using Theo-
rem 4.12 the solution yr to problem

—Ay =—f, in £,
W =20, on o2,

is a negative subsolution to problem (4.5.2).

4.6 Appendix

We recall here the results on Hilbert spaces and Sobolev spaces that we have used in
this chapter (we refer to [22] for more details).

4.6.1 A brief review of functional analysis

Definition 4.14. Let H be a Hilbert space. Let a : H x H — R be a bilinear form.
(1) a iscontinuous if there exists § > 0 such that

la(u,v)| = Bllullllvll, Vu,veH.
(2) a is coercive if there exists o« > (0 such that

alu,u) = al|u|l®*, vYueH.
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Theorem 4.15 (Projection). Let H be a Hilbert space and let K ¢ H be a closed, not
empty, convex set. Then for every g in H there exists a unique point in K, denoted by
Py g, such that

lg — Pxgll < llg—vll, Yvek.

Moreover, Px g satisfies
(g — Pxglv —Pgg) =0, VYvek (4.6.1)
and

\Pxgr — Pxg:ll = llgr —g2ll, Vag,g: K. (4.6.2)

Theorem 4.16 (Riesz). Let H be a Hilbert space and let ¢ : H — R be a continuous
linear functional. Then there exists a unique g € H such that

(p,v) =(glv), VYveH.

4.6.2 A brief review on Sobolev spaces

Let 1 = p < N; we will denote by p* the real number such that

1 1 1

Theorem 4.17 (Sobolev embeddings). The following embeddings are continuous:
(1) WhP(Q) cLP (Q)ifl =p < N;

2) WhP(Q) cL9(Q), Vqge [p,+=)ifp =N;

3) WhP(Q) c L=(Q)ifp > N.

In particular, for every u W,:], 7 (Q), there exists a positive constant S depending
only on N and p such that

Slhullpes () = IVUllr@);

this inequality is called Sobolev’s inequality.

Theorem 4.18 (Rellich-Kondrachov). The following embeddings are compact:
(1) WhP(Q) cL9(Q), Vge[l,p*)ifl =p < N;

2) WhP(Q) c L9(Q), Vge [1l,+x)ifp = N;

3) WLP(Q) c C(Q)ifp > N.

In particular, W7 (Q) c LP(Q) for every p and the embedding is compact.

Remark 4.19. We recall that if X and Y are Banach spaces, an operator T': X — Y is
compact if the image of a bounded subset of X is relatively compactin Y.
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Theorem 4.20. Let 1 < p < +oo, Then W{%’P(ﬂ] is reflexive, that is, the unit ball is
compact for the weak topology in I«‘l—’& PQ).

Theorem 4.21 (Poincaré’s inequality). Let 1 < p < +co, Then there exists a positive
constant ¢ = ¢ (€, p) such that

lulliriq) = cllVullprq), Yu € W{i’p{ﬂ}.

In particular, |V ullzrq)w is a norm on W{i'ﬁ{ﬂ} which is equivalent to the norm

Corollary 4.22. Let 1 < p < 40, Let u, be a bounded sequence of H-"'[}'F(ﬂ] func-
tions. Then there exist a subsequence and a th,“” (Q2) function u such that Vu, — Vu
weakly in LV (),

Theorem 4.23. Let F ¢ W L7 (Q),p € (1, ). Then there exist fo, fi,..., fn €
L (Q) such that

. Yv e Wy (Q).

N
(F,v) = [ﬁ;.u + > jﬁ- ;;"
£y
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5.1 Introduction

In this chapter, we prove an existence result for solutions to certain nonlinear elliptic
problems. More precisely, we study the following boundary value problem:

(LL) —div(a(x,u,Vu)) = F(x,u,Vu), in Q,
u =10, on dg.

The existence of solutions u was proved by Leray and Lions in [34]. This is the reason
why we call (LL) Leray-Lions problem.

Theorem 5.1 (Leray—Lions). Let Q be an open bounded set of RN and p € (1, o). Let
a:OxRxRYN -~ RNandF: QxR xRN — R be two Carathéodory functions, with
the following properties:

(1) there exists B > 0 such that |a(x,s, &) < B[|s|P 1 + |E|P 1];

(2) there exists « > 0 such that a(x,s, &) - & = x|E|P, V &Ee RV;

3) [a(x,s,&) —alx,s,m]-[E-n]l>0ifE+n;

(4) there exists f € LP (Q) such that |F(x,s,&)| = f(x).

Then there exists a solution u € H-’,;i'ﬂ (Q)) to problem (LL), that is,

Ja{x,u,?u} Vv = J Fix,u,Vu)v, VveWw,?’ ().
£} £l

We point out that the proof of this theorem is based on an abstract result of surjec-
tivity. Related results proved by Brezis, Browder, and Minty can be found in [21], [25],
and [39], respectively.

As we will see, the nonlinearity a makes the problem much more difficult than
the semilinear problems of Chapter 4.

5.2 Surjectivity theorem

We will need the following definitions. If V is a Banach space, ||x|| will denote the
norm of an element x € V, ||@ |y the norm of an element @ € V' and finally (¢, v)
will denote (v ), forp € V' and v € V.
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Definition 5.2. Let VV be a Banach reflexive space. An operator A : V. — V' is pseu-

domonotone if

(1) Aisbounded, thatis, the image of a bounded subset of V' is a bounded subset of
Vv

(2) ifu; — uweaklyinV andiflimsup;_.,.(A(u;),u; — u) <0, then

liminf{A(u;),u; —v) = (Alu), u - v)
J—teoe

for every v in V.

Definition 5.3. Let V be a Banach reflexive space. An operator A : V — V' is coercive
if

— +oo, as |[v| — +eo.

In the proof of the surjectivity theorem we will use the following lemma:

Lemmab5.4. Let T : R™ — R™ be a continuous map, m = 1. Assume that there exists
P > 0suchthat T(&) - & = 0, for every & with |&| = p. Then there exists E with |§| = p
such that T(&) = 0.

Proof. By contradiction, assume that T(&) = O0in B(O,p) = {E € R |&| = pl. We
consider the following continuous map from B(0, p) to itself:

~-T(&)p
IT(E)|

TQ'—*

Brouwer's theorem (Theorem 2.4) implies that there exists a fixed point, that is, there

exists & such that
T)p

§=_|r{§}|'

We deduce that |&| = p. On the other hand, T(&) - &€ = —p|T(&)| < 0. This is in
contradiction with the hypothesis that T(&) - £€ = 0 for every & such that |E| = p. [

We can now prove the surjectivity theorem.

Theorem 5.5 (Surjectivity Theorem). Let V' be a Banach reflexive, separable space. Let
A 'V — V' be a pseudomonotone coercive operator. Then A is surjective, that is, for
every f in V' there exists u in V such that A(u) = f.

Proof. We will divide the proof into several steps.
Step I: Let {w,...wy, ...} be adense and countable subset of V. Let us denote
with V, the subspace of V' generated by {wy,...w,}. We define
T: V,, - Vy

v < Alv)- fiv>v.
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We are going to prove that T is continuous. It suffices to prove that v — (A(v), v) is
continuous on V,,. Assume that w,, — w: we claim that A(w,,) — A{w) weakly in
V. Since A is bounded, || A(wy, )|y is bounded uniformly. This implies that

lim (A{wy ), Wy —w) =0.

FR— 0

Moreover there exists a subsequence such that A{w,,, ) — g weakly in V', as V' is
reflexive. This and the pseudomonotonicity imply that

liminf{A(wm, ), wn, —v)=(g,w-v)=(Alw),w - v)

Mg —oa

forevery v € V. Then g = A(w) and therefore A(w,,, ) — A(w) weaklyin V".
Now, assume that A(w,, ) does not converge weakly to A(w) in V': the previous
argument implies a contradiction. Since A(w,) — A(w) weakly in V' and w,, — w
inV, then (A(w;,), wm) — (A(w), w}. This implies the continuity of T.
Step II: We are going to prove that for every n = K there exists u, € V) such that

(Alup),wi) = (fLw;), 1<j=n. (5.2.1)

We claim that T satisfies T(v) - v = 0 for every v with ||v|| = p, for a certain p > 0.
Since T is continuous by the previous step, Lemma 5.4 will imply the existence of u,,.
We have that T(v) - v = 0, because

(A(v),v) = (f,v) = (A(v),v) = |l fllv vl =0,

if ||v|l = p, for p sufficiently large, due to the coercivity of A.
Step III: From (5.2.1), we deduce that

(Alun ), un) = (fLun) = Lf v llunll .

Using the coercivity of A, we found that ||u, || is uniformly bounded. Since A is
bounded, || A(1uty )|y is uniformly bounded too. Consequently there exists a subse-
quence U, such that

Up, = U weaklyin V,
{ np Yy (5.2.2)

Ay, ) — X weaklyin V",
Passing to the limit for n — + o0 in (5.2.1), (with j fixed) we have for every j
(X,wj) = {(f,w;).
Since {wy,...,Wy,...} isadense setof V, x = f. Let us prove that

X =A(u).
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We claim that
lim SU}]{A(HHR}. Uy, — uy =0. (523)

i — o2

For a given £ > 0, there exists uy € Uy Vyy such that | |1 — ugl| = £. Now,

{A{.l{}'f;;)ruﬁk - H} = {.fruﬂk} - {A{Hﬂk}lu - H'(:'} - {A{“-Hk]!u{]}-

By (5.2.2) the first term of the right-hand side tends to { f, u) and the third one tends
to {x,uo) = {f,up); the second one can be estimated by C¢, for some C > 0, since A
is bounded. Using that | |1 — 1y|| < & we get (5.2.3). The pseudomonotonicity of A
implies that

(Alu),u —v) < liminf{A(uy, ), uy, —v) < (x,u—v)
Flp— oo

for every v € V. It follows that ¥ = A(u), thatis, / = A(u). ]

5.3 The Leray-Lions existence theorem

We are going to prove the Leray—Lions theorem. We recall the statement

Theorem 5.6. Let Q) be an open bounded set of RN and p € (1,).Leta : QO X R x
RN - RN and F : Q@ x R x RN — R be two Carathéodory functions, with the following
properties:

(1) there exists B > 0 such that |a(x,s,&)| < BlIs|P~ L + |EIP1];

(2) there exists ® > O suchthat a(x,s,&) - &= «|E|P, V EeRY;

(3) lalx,s, &) —alx,s,n)]-[E-—n]>0if& + n;
(4) thereexists f € LV (Q) such that |F(x,s,&)| < f(x).

Then there exists a solutionu € W, (Q) to problem (LL), that is,

Iﬂtx,u,?u} Vv = jF{x,-u,vu} v, VYveWwl(Q).
£} £}

Remark 5.7. An application a satisfying hypothesis 2 will be called elliptic.

In the Leray-Lions theorem we will apply the surjectivity theorem to the operator

A WP (Q) = W hr(Q)

v — —divia(x,v,Vv)) — F(x,v,Vv).

We will use the following lemma to prove that A is pseudomonotone.
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Lemma 5.8. Assume that u, — u weakly in W&":’{ﬂ} and that [a{x,un, Vi) -
alx,u,Vu)] - Viu, —u) - 0a.e.inQ. Then Vu, — Vu a.e.in Q.

Proof. Since
[H{I*H”*THHJ—IE{X,H,TH}]?{HH—H}—"U d.e. l]'l ﬂ

one has
[a(x,un, Vuy, ) —alx,u,Vu)l - Viuy, — u)l = C(x)

for some function C(x). Up to a Lebesgue measure zero set Z, the above inequality
holds pointwise. Let us prove that there exists a function ¢ such that

Vg, (x)] =cl(x). (5.3.1)
One has, by hypotheses 1 and 2 on a

C{I} = [{I{X,“nk,?uﬂk} o H{X,H,?H}] ) T{uﬂk o u}
> &[ [ Vg P + IVUlP] = |V, [[BUu|P ! + [VulP ] (5.3.2)
|\ Vul[B(un P + |Vul, ']

The H-"S'ﬂ (€2) weak convergence of 1, to u implies the existence of a subsequence
(still denoted by ut,,) and of a function g in L' (Q) such that

Un? '|Vul=g and u, -~ u ae.in Q.

Since in (5.3.2) we have a polynomial in |V u,|, (5.3.1) follows. We are going to prove
that
Viuplx) - Vulx) iIn Q\Z7Z. (5.3.3)

Assume by contradiction that there exists xp € 0 \ Z such that Vu, (xp) does not
converge to Vu(xp). The Bolzano—Weierstrass theorem implies that Vu,(xg) — b,
for some b € RY, up to a subsequence. Passing to the limit in

la(xo, Un(xp), VUun(xg)) — alxg, u(xg), Vulxg))] » V(un(xg) — ulxg))
we get
[a(xo,ul(xg),b) —alxg,ulxg), Vui(xg))] - (b — Vulxg)) =0

which yields b = Vu(xg) by hypothesis 3 on a. [l

Lemma 5.9. Let 1, U be Wil“"’ (€2} functions such that u, — u weakly in l-t-"{}’p (Q). If
I[a[x, Up, VUy) —alx,u,Vu)] - Viuy, —u) — 0, (5.3.4)
0

then a(x, Uy, Vily) — alx,u, Vu) weakly in LF" (Q).
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Proof. We claim that
[a(x, Uun, Vin) —alx,u,Vu)l - Viun —u) — 0 in LY Q). (5.3.5)

We can write
[a(x, Uy, Viuy) —alx,u,Vu)] - V{u, —u)

as the sum of
oy = lalx,uy, Vuy) —alx,uy, Vu)] - Viuy —u)

and
Bn =lalx,uy, Vi) —alx,u,Vu)] - Viu, — u).

We observe that 8,, — 0in L' (Q), since by Holder’s inequality

j [Bul = lla(x, un, Vi) —alx,u, Vu)llpp o) IVin — Vllreq) -

£}
Now, ||[Vun, — Vullpr ) is bounded, and a(x, un, Vi) — a(x,u,Vu) in L7 (Q)
due to Theorem 3.6, as Uy — u in LF(Q). By (5.3.4) fﬂ Xp + fn — Oand f,, — 0O
in L' (Q)) as we have just proved. This implies that [, o, — 0; since e, = 0 for the

monotonicity of a, we have that &, + B, — 0in L'(Q), that is, (5.3.5) holds.
Up to a subsequence,

[a(x, Uy, VUy) —alx,u,VUu)l - Viu, —u) -0

a.e.in {). By Lemma 5.8 Vu, — Vu a.e. in Q. Theorem 3.7 implies the result. ]
We can now prove the Leray-Lions theorem.

Proof. We will prove that A(v) = —=divia(x,v,Vv)) - F(x, v, Vv) is coercive and
pseudomonotone; the result will follow from Theorem 5.5.
Step I: Hypotheses 2 and 4 on a give

(A(v),v) = -:xj | Vv|P - J fllv] = mj IVUIP = fll oy IV e () -
£} y £}
Poincaré’s inequality implies the coercivity of A.
Step II: By hypotheses 1 and 4 on a one has

(A(v),w) = ja{x,v,?*u} -Vw — JF{x,v,‘F*u}w
0 0

< B lelf"‘ll‘?wl + J IVv|PHVw]| | + J’ | fllw|
0 0 0

- 1 r—1
< B [V IV Wlr) + IV o IV WliLe @)

s 1l oy Il
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and so [[A(V)|lw-1r(n) is bounded, if ||v ][, is bounded.

o ()
Step III: Assume that u,, — 1 weakly in H-"'[}‘p{ﬂ] and

0= limsup({A(uy), Uy — u)
n—+oo

= limsup | a(x, Uy, Vi) - V{uy — u) + J-F{x,uﬂ,"?uﬁ‘j{un —u). (5:36)
TR 0
We are going to prove that
lim |[a(x, Uy, Vuy) —alx,u,Vu)l - Viu, —u) =0, (5.3.7)

H— + 00
Ly

This will be used in Step IV to prove the pseudomonotonicity of the operator.

We observe that [, F(x, Un, VUy) (Un —u) — 0, since uy — uin L7 (Q) and the
sequence F(x, Uy, Vi) is bounded in L7 (Q) due to the hypotheses on F. By (5.3.6)
this implies that

limsup | [a(x, Uy, VUuy) —alx,u,Vu)] - V(uy, —u) = 0.
H—+oo
0

Using hypothesis 3 on a, we have

[[ﬂ{x, Un, Vip) —alx,u,Vu)l - V(uy — u)
)

= I[u[x,un, Vu) —alx,u,Vu)] - Viu, — u)
0

and this last term goes to 0, since a(x, Un, Vu) — alx,u, Vu) by Theorem 3.6. We
have thus proved (5.3.7).

Step IV: Assume that u,, — u weakly in I—-t-"'{:'ﬁ (Q2) and (5.3.6). We will prove that
for every w € I-t-"{}’lj(ﬂ)

Iminf{A(u,), Uy, —w) = (Alu), u —w). (5.3.8)

M= 400
We remark that

(AlUp), up —w) = Ja(x.u;-:,?un} - Vi{up —w) + [Ftix.'tfrn,?u;ﬂ(un —w).
() £

We will separately study the two terms of the right-hand side.
The limit of (5.3.7) allows us to apply Lemma 5.9 to deduce that a(x, uy,, Vuy,) —
al(x,u, Vu) weaklyin LP (Q), and so

Ia{x,uﬂ,?u.,,} - Vw — J‘u{x, u,vu) - vw (5.3.9)
() 0
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for every w € I-l-"l-}'p (€2). On the other hand, by Lemma 5.8, a(x, u,, Vi) —
a(x,u,Vu) and Vu, — Vu a.e.in Q. Since a(x, Uy, Vuuy) - Vu, = 0 by the
ellipticity of a, Fatou’s Lemma implies that

lL@i%fIﬂ,(x.u.ﬂ,?u.ﬂ} VU, = Iu,[x, u, Vu) - Vu. (5.3.10)
0 0

From (5.3.9) and (5.3.10), we deduce that

l}imjnf AlxX, Uy, VUy) - Viu, —w) = |alx,u,Vu) - Viu - w).

0

[,

3

Let us finally study
.I‘F{x:“rh v“n}{un - W}
0

Since 1y, — wand Vu, — Vu a.e.in Q and weakly in L7 (2), using Theorem 3.7 one
has that F(x, up, Vi,) — F(x,u, Vu) weakly in LP (). This implies that

IF[x, s Vi) (U — W) — IF{x,u,?u.}{u _w)
L] £

since 1y, — uin L¥ ().
We thus have obtained

Iiminf{A(uy), Uy, —w) = Ja{x,'u,?u} -Viu—-w)+ JF(x,u,‘?u.}(u —w)
0

H—+ 00
{

= (Aluw),u—-w).

Therefore A is pseudomonotone. ]

We observe that in the following chapters we will essentially use the case p = 2,
that is, the following corollary:

Corollary 5.10. Leta : QxR xRY — R be a Carathéodory function, with the following
properties:

(1) thereexists B > O suchthat |a(x,s,€)| < B[|s| + |El];

(2) there exists &« > 0 such that a(x,s, &) - € = «|E|°;

(3) [a(x,s,&) —alx,s,n)]-[E-n]>0if& + n.

Then the operator
A:v — —divia(x,v,Vv)),

defined on Hj(Q) into H~'(Q), is surjective. In particular, if f € L™ (L), with
m = 5, or f € M™(Q), with m > 25, there exists u € HJ(Q) solution to
—divia(x,u,Vu)) = f.
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We will also study elliptic problems with lower order terms, that is,

—divia(x,u,Vu)) +u = f, in Q,
u=~0, on o¢Q.

Theorem 5.11. Let Q2 be an open bounded set of RN and p € (1, ). Leta : Q x R x
RN — RN be a Carathéodory function, with the following properties:

(1) there exists B > 0 such that |a(x,s, &) < B[|s|P~1+ [E|P1];

(2) there exists « > 0 such that a(x,s, &) - € = x|E|P, VWV & e RN;

3) la(x,s,&) —alx,s,n)]-[E-nl>0ifE#n.

Let f € L"(Q), withm = nffz Then there exists a solution u € Hg(Q) to problem
—divialx,u,Vu))+u=f.

Proof. We are going to prove that

A: H}(Q) - H Q)

v — —divia(x,v,Vuv)) +v

is pseudomonotone, in order to use Theorem 5.5. In the proof of the Leray-Lions the-
orem we proved that v — —divia(x, v, Vv)) is a pseudomonotone coercive operator
from H{ﬁ (Q) to H (). For the first point of the definition of a pseudomonotone op-
erator (see Definition 5.2), we have only to prove that v — v is a bounded operator
from H} (Q) to H '(Q). Holder’s and Sobolev’s inequalities imply that

1
< <l

2N < 2N
LN=2{£}) S L N+2{L2)

|lw ||

Wl gt

v, wi= | vw = (V| 2~
(v,w) = [vw < vl oy,

0
and so ||[A(v) || g-10) is bounded, if |[v IIHMQ} is bounded. Moreover, to prove point 2

of Definition 5.2, we only have to show thatif u; — u weakly in H,(Q),asj — o, and
if imsup; ... Jouj(u; —u) < 0, then iminf; ., [ouj(u; —v) = [qu(u — v)
for every v in H; (Q). This is clear, since

J‘Hlj(l{j -v)—ulu-v) =Ju§ ~u’ —v(u;-u) -0,
Q Q

as u; — u weakly in H}(Q) and u; — wu in L2(Q). Finally, A is coercive, since
v — —div(a(x, v, Vv)) is coercive, as we have already proved. [

The Leray—Lions theorem can be proved under less strict hypotheses on a and F:

Theorem 5.12. Let Q) be an open bounded set of RN and p € (1, ). Leta : Q x R X
RN — RN and F : Q x R x RN — R be two Carathéodory functions, with the following
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properties:

(1) there exists 1 > O such that |a(x,s,&)| = B [|3|r:’_’_f + |E|P~1], for some £ > 0;
(2) there exists o > O such that a(x,s, &) - & = «|E|P, WV & € RN;
3) [alx,s,8) —alx,s,n)]-[E-n]l>0if&#n;
(4) there exist ky € LP" *¢(Q)) and B> > O such that |[F(x,s,&)| = kj(x) +
- £
Ba[ls|P" &1 + [E]r* ];

(5) thereexistk; € L'(Q) and B> > Osuchthat F(x,s,E)s = B3 |s|9-kz(x),q < p.

Then for every g € r* (€)) there exists a function u € Wc,l‘p{ﬂ] such that

Ja{x, u, Vu) - Vu + JF[I, u, Vu)v = jgu, Vv e I-‘r-"{:‘ﬁf{ﬂ},
0 3] 0



6 Summability of the solutions

6.1 Introduction

In the previous chapter, we have proved the existence of weak solutions to the Leray-
Lions problem:

—divia(x,u,Vu)) = f, in €,

u=10, on dQ.
In this chapter we are going to present some regularity results proved in [17, 49,
50, 52|. We will see that the regularity of the solution depends on the regularity
of the source. The starting points are some regularity results by Stampacchia. We
will assume that the source is a function f belonging to a Lebesgue space or to
a Marcinkiewicz space; we will also treat the case where the source is of divergence

type.

We illustrate here the results of this chapter in a schematic way. We recall that for
an open bounded subset Q of RN N = 3,a: Q x R x RV — RN is a Carathéodory
map with the following properties:

(1) there exists f > O suchthat la(x,s,&)| = Blls| + |&|];
(2) there exists « > O suchthata(x,s,&) - & = «|&|?, V Ee RN,
3) lalx,s,&) —alx,s,n)]-1&-n]=>0if& # n.

We will show the following results:

fel™O), m>N/2=uclL”(Q)
fel™Q), me|[2N/(N+2),N/2)=uecl

H*-‘F

(Q)
Fel?(Q) = e2°(Q), VA>0

feM™Q), m>N/2=ueclL”(Q)

feEM™Q), me[2N/(N+2),N/2)=>uecM"™ (Q)

fEM"—l’II{ﬂ} = 3b > 0: Je*”"'”' < 00,
Q)

When the source is the divergence of a vector field F : Q — R" such that divF
L2(Q), if u is a solution, we will prove that

Fe (L™ , m>N=ueclL*(Q)
Fe(™OQ)WN 2<m<N=>uel™(Q).

In the case where a satisfies the following coercivity:
a(x,s,8) - &= «EP, VEeRY

it is possible to prove similar results with the numbers (p*)’, N/p playing the role of
2NN+ 2), N/2.



48 =—— Summability of the solutions

6.2 Preliminaries

In this chapter we will often use the function

_k, s<—k,
Ti(s)=+s, |[Is| =k,
k, s=k,

for k = Oand Gy (s) = s — T (s). Moreover, if f : {2 — R is a measurable function,
we will use the following notation:

gl(k) = '[ 1Gr(f)]
0

and
A = {I1f] > k}.

Lemma 6.1. Let f = L' (Q). Then g(k) is differentiable a.e. and g' (k) = —meas(Ay).

Proof. Let us prove that
glk) = J (w — k)

fw—k=0}

is differentiable with respect to k. To this end, let us set
A+ ={w —k > 0}.

The function g(k) is differentiable a.e., since it is monotone. Let us compute its
derivative. Let h € R™; the incremental rate of g is

gk+h) —gk) 1 ,
) _h(.[ {w—k—h.}—I{w—RJ)

Veth,+ ﬂ-i;,+
| [
= — J —h — J (w — k)
h
k4an {k<w=k+h}
i 1
= = | X{w=k+h} — h J (w — k).
fl lk<w=k+h)
We have
0 = J (w—-k) = _[ h
Ik<w=k+h} {k<w=k+h}
and so

1
0 = E J (w—-k) = .[X{k{uwk+h.ﬁs
k<w=k+h} 9]
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which converges to 0, as h — 0. Consequently

o glk+h)—g(k) :
E{g}ﬂ( ; gl _ _}11£1;1}f[xgwk+;,_} = —meas({w > k}),

thatis, g' (k) = —meas( Ay ;).
For the general case, it is sufficient to use that

g(k) = j (w - k) + [ —(w-k). -
w-k=0} f—(w=k)>0}

The following lemma will be useful to us:
Lemma 6.2. Let f € L1(Q) such that g(k) satisfies for every k
g(k) = Cmeas({Ag)"

withot > 1 and C > 0. Then f € L™ (L)) and there exists a constant y = y(, () such
that

Ifllp=y = Cy.
Proof. Using Lemma 6.1, one has
glk) = Cl-g' (k)™

that is,
g (K [gk)] & < ——

(6.2.1)

1
¥

™

Integrating this inequality on (0, k) we get

1 1-1
glk)'~ = - ANy -

(1Y Kk ot - gk
(1-=) = = gt 5 - g(0)

Consequently, for every k > 0,

k
Ceo

g% < £ TE — (1 . 1)
s — L1

(X

1
I-&

'\-I ]
(o« “._IF”L]I:EJI

1
1-%

In particular this inequality holds true for kg = . This implies that g(ky) =

0, that is,
N
C o« |IJF”L1 (1)

|f|£kﬂ= ]
=%

By the Holder inequality

L 1
Co || fll;~ (5, meas(Q)! =

1 - L

k)

Ifl =

that is, .
— 1
I fllLe oy = (1 - é) meas(Q)* 1 C. n
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Remark 6.3. If the inequality
g(k) = Cmeas(A )"

holds for every k = hg, for some hy € N, then one can slightly modify the above
proof to prove that

I fllL=) =¥,

where y = y(C, &, hp, Q). Indeed it is sufficient to integrate (6.2.1) on (hg, k) and to
follow the same technique as above.

We will use the following results in the case where the source f in the Leray-
N
Lions problem belongs to M = (€2).

Proposition 6.4. Let f be a measurable function defined on ) and let a be a positive
constant. Then [, e? /| < oo ifand only if > ;_, e** meas(Ay) < .

Proof. We observe that

ey

o0 20 o 1
> e“*meas(Ag) = > e?* > meas(B;) = > meas(B;) > e?* (6.2.2)
k=0 k=0 i=k i=0 k=0

ifBi = {i < |f| <i+1}.Sincet — e? isincreasing and continuous

i+ 1

" n
> etk < I edtdt = » edkrl), (6.2.3)
k:ku kij k:kl_:l

We will divide the proof into two parts.
Step I: Assume that [, e?l/| < oo; we are going to prove that 3’|, e**meas(Ay)
is finite. Using (6.2.2) and the first inequality of (6.2.3), one has

e e

> e*®meas(Ay) < > meas(B;) J et dt
k=) 1=() 0

I
M
=
[
=,
=)
oo
L
—
&
==
—
M
o
|._.
1

A
=%
[~ 2

':.3"———-,,
1
m.-.

~

B
I—

since [, e4lf < o,
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Step II: Assume that >} _,e%*meas(A;) < oo; we are going to prove that
[q e < 0, Using (6.2.2) and the second inequality of (6.2.3), we have

L]

meas(B;) Z e

k=0
o0 i-1
Zmeas{B;-‘l P ARY

i=-1

2kmeas(Ay) =

||'[\/]g

k=0

Z meas(B;) J atdi

1=(}

=ZmEES{Bf][€ _ }

i—0 a

1 « :
E Z J[Ed{jl—]} o E—{l]
il:ﬂﬂi

I

[Eﬂ ([F1-1y _ E_”] ‘

[l
S| -
o LE—

and so [, e4fl < oo, []

Proposition 6.5. Let | be a measurable function defined on (}; if there exist a,c > 0,
ko € N such that meas(Ay) < =z for every k = ko, then | e?/' < oo for every
b < a.

Proof. Using Proposition 6.4, one has |, e?'/| < « if and only if

ey

> e’ meas(Ay) < .
k=0

By hypothesis we have

Z e"*meas(Ay) < Z e’
k=ko k=ko

bk

The last series is finite due to the choice of b, and so > |_, ¢”*meas(Ay) is finite. [

6.3 Sources in Lebesgue spaces

We are now going to prove some regularity results of the solutions to

—div(a(x,u,Vu)) = f, in Q,
/ (6.3.1)
u =20, on dQ,
2N
N+2°

when the source f belongs L™ (Q)), with m =
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Theorem 6.6. Let f  L™(Q) with m > N/2. Then every solution u € H}(Q) to
problem (6.3.1) is bounded; moreover the estimate

lullr=y = Cllfllmq)

holds, where C depends on N, o« and m.

Proof. Let us take v = Gy (u) as a test function in the weak formulation of (6.3.1). By
the ellipticity of a we have

crj VGr(u)l? < [fmu}. (63.2)
) £

Sobolev’s inequality implies that

< j fGr(u). (6.3.3)

Let us now study the right—hand_ s_ide: applying the Holder inequality twice, first with
exponent 2* and then with m ‘”‘gjf , We get

N+ 2
2N

Ap

[ G < | [1Geaor | [ [ 115
) ’ 1 (6.3.4)

i3

2M J N+

1 y 2% l - 7 S
< [l fllzma) Jlirk{l;-!}H meas (A ) 1~ o | W
0

Estimates (6.3.3) and (6.3.4) thus give

2 1

2% 2%

2N ] WNe+2

s’ [lGHuJIT < I fllema) Jlr;k(un'—“ meas (A, )1~ | 5
() 0

that is,
. e

2N M2

aS? jmuunﬁ” ‘—:||f||1m{ml'l'lEHS{Ak}|l (6.3.5)
()

By Holder’s inequality with exponent 2* one has

1
-_._:-:
M4

J‘|Gﬁ:(1ﬂ| < JIG:.:{H}IE* meas(Ay) 2V
£2 0
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and so (6.3.5) implies that

alk) = J Grlu)l = ||f||£"f{ﬂ:m935(ﬂk]l+%_’:_'+
)

xS?

. . 0 1 , 1 . i
Lemma6.2witha =1+ 5 — -and C = = [[f | 1m () gives the result. ]

By considering the same proof and dropping the positive contribute given by the
lower order term, one has the following result:

Theorem 6.7. Let f € L™(Q) with m > N/2. Then every solution u € H}(Q) to
problem
—div(a(x,u,Vu))+u=f, in Q,
L{.:[}, on ofl.

is bounded.

Remark 6.8. Observe that if a function u satisfies inequality (6.3.2), then u is bound-
ed.

We can now pass to the regularity of the solutions in the case where f = L™ (),

* Elr i
with 2% < m < X,

N+2 — 2

Theorem 6.9. Let f € L™ (Q) with x5 < m < . Then every solutionu € H}(Q) to
problem (6.3.1) belongs to L™~ (C)); moreover the estimate

| H”Lm** () = C ”f”f.f“ ()
holds, where C depends on N, m and «.

Proof. Consider as a test function

o = 1T\ Tie(w)
2A + 1 ’

with A > 0. We will study separately the two sides of the weak formulation of (6.3.1).
For the left-hand side we have
| :
2A+1

[ae,u, 7w - 9T i) = as? | [ 1T 02

0 {1
by using the ellipticity of a and Sobolev’s inequality. For the right-hand side, we get

1
m’

1 (2A+1)m’ -
- [m{un Warers
L

1 |
I JIITMH}IE“TR{H} <
£}
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by using Holder’s inequality with exponent m. We have thus proved that

2 1

2w mi'

xSZ(2A + 1) I|Tkrju}|{=‘+“2* < J|Tk(1.;.)|['=’-’*+1”“’ IL£ N Lm iy -
) £

Now it is sufficient to choose A such that (A + 1)2* = m'(2A + 1), that is,

—mN + 2N —2m

A= 4m — 2N

Using that 5= — - > 0, one deduces that
||Tk'[”-}||1m** 0 = Clo, S, m,N) ”f”f.”!{ﬂ} .

Fatou’s Lemma, as k — oo, implies the result. ]
Let us now study the limit case where ' € L 3 (€2).

Theorem 6.10. Let | < L7 (Q). Then every solution u € H{(Q) to problem (6.3.1) is
such that e belongs L*" (Q}) for every A > 0.

Proof. Let us take v = [e2V /Gl _ 1sen(Gr(u)), k > 0 as a test function in the
weak formulation of problem (6.3.1) and study the two sides separately. We can esti-
mate the right-hand side using the following inequality, satished by every ¢ = 0 and

every Q > 1:

> a2 1
t2 -1 <Q(t-1) o1
We then obtain
[f[ef-" GL0T — 1sgn(Gr (u)) EQJ FILeM 0T = 1]2 4 Q1_1 j ViR
0 A Ak

Hoélder’s inequality with exponent % implies

If[eﬂ Cel _ 1]sgn (G (u))
0

a
.|.,

ol
o

, - 1 ,
< Q”f”ﬁm“ I[e“'ﬁﬂ“} —-1]° + 01 I .
Q A
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As a is elliptic, the left-hand side can be estimated from below by
, N 12,22 G (w)] _ - 1 N Ge(w)] ?
2Ax | [VGr(u)|2e2N G0l = 2p ﬁ|v(g 1) ],
0

Sobolev’s inequality yields

_[::I{x, w, Vu) - V[e2MGl _ 1]sen(Gr(u)) = —Eu:x J’[E‘J" Gilu)l _ 1727
()

Therefore by the previous estimates we get

2
%

S° o4
=2 j[emmmn 172
9]

2
o=

AMGplu)| _ 1127
<alfl,y,, ||t 1]
()

_1[|f|

that is,

SE
ﬁ (2:‘&&'

I~
Mad

' 1
MMGeplu)| _ 112
ij}) J[e 1] ﬂQ_]JIfI.
{1

There exists kj such that

AQIIfIl
2Ao - 5_”‘“}0. V k> ka
since || f IIL Y 4y " 0 se k — +oo. Therefore the previous inequality implies that the

sequence e Gl — 1 for k = kj, is bounded in L?" (Q). It is easy to deduce that
e 4l belongs to L2" (Q). Indeed

[E?I.IHI . 1]2* [ AT luw)+Gelu)| 1]2"‘“ [E ﬂlfk{ujl ?-J: + E:"l.k . l]E*
23 -1 lkT*[ AlGelu)| 1] 2* + 22*—] [E:' . 1]2* _

Therefore, for every k = k,

J-[E.:'I. |14 | o 1]2* < 22*—]8.&&:2* j[E""|Gk(HH _ 1]2* + 23*—1 [E-’lk _ ]_]E*mﬂaﬁ(ﬂ],
£

that is, e '*! belongs to L2" (Q) for every A > 0. ]
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6.4 Sources in Marcinkiewicz spaces

We are now going to study the regularity of the weak solutions to (6.3.1), in the case
where f belongs to the Marzinkiewicz space M ((2).

Theorem 6.11. Let f € M (Q)), with m > % Then any solution u € H, (Q) to prob-
lem (6.3.1) is bounded.

Proof. The result follows from Theorem 6.6, and from the inclusion M™ () C
L 5(Q)) (0 < £ < m — 1), proved in Proposition 3.12. ]

Theorem 6.12. Let f  M™(Q)) with (2*)" < m < N/2. Then any solution u <
H; () to problem (6.3.1) belongs to M™" " (Q2).

Proof. We take v = Gp(u) as a test function in the weak formulation of prob-
lem (6.3.1). We study separately the two sides of the equation. For the first one, we
have

Ja.[x, u, Vu) - VGr(u) =z &« J Vu|°
0 Ak

I

as? | |16k

by using the ellipticity of a and Sobolev’s inequality. For the right-hand side, we get

1y M+
/2 N

[ e < | [1Geaor | | {11
Q 0 .

E-'ir

2% []_ 2N ]3.;
=C Gr(u)l meas(Ag )l W2m ] EN
0

where ¢ is a constant depending on m, || f|| s () ), by using Hilder’s inequality with
miN+2)

exponent 2* and Proposition 3.13 (applied to |f|% c M ). We have thus ob-
tained

1

5%

I Ge(w)|* | =
0
Using Holder’s inequality on the left-hand side of the above estimate we get

L1 1
meas(Ap)2 N m

{
x S

. C 1+2_—1
Grlit)| = — meas( A NTm,
L:[| ()] <~ meas(Ay)

By Lemma 6.1, this is equivalent to

x §°
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where
V= mi = |
mN +2m - N '

Integrating over (0, k) we get

2
(v—1) (ﬁ; ) k=[glk)]'™ —[g(0)]"Y

that is,

1

o0 - (%) ke tgopr] s Ctme)

since v > 1. We note that A», C A, and so

glk) = j 1Gr(u)| dx = I (Ju| — k)dx = kmeas(A->) (6.4.1)
Aok Azp
therefore c \ o
meas( Ao ) < (e Lm’ ) ,
-
thatis, u € M™ " (Q). O]

Theorem 6.13. Let f < M3 (€2). Then there exists a constant b > (0 such that
J e? Ml < oo
0

for every solution u € H/ () to problem (6.3.1).

Proof. Choosing v = Gy (1) as a test function in the weak formulation of (6.3.1), and
arguing as in the proof of the previous theorem, we get

¢ gk
xS gl(k)
Integrating with respect to k we have

k k
as-< [0
j = b g{t}

0
that is,
c lullpr o
k = - 1 ) =1 = —l — | .
< anE[ ng(k) —Ing(0)] = 52 ( 2K )
This implies that
okas?ie (R7TRIFRRTSY
g(k)
If k = 1, we get, arguing as in (6.4.1)
I AIFRY
kmeas(Ay) = glk) = ekw%‘?ff :

The theorem follows from Lemma 6.5. []
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6.5 Sources in divergence form

In this section, we focus our attention on

—div(a(x,u,Vu)) = —=divF, in Q,
{ (6.5.1)

u=0, on d€,

under the hypothesis that F ; Q — RY is a vector field such that divF € L*(Q). We
note that the existence of a weak solution in H [ﬁ (£2) is guaranteed by the Leray-Lions
theorem (Theorem 5.1).

Theorem 6.14. Let F = (L™ (Q))N,m > N. Then any weak solution u € H;(Q) to
problem (6.5.1) is bounded; moreover, the estimate

lullr=q) = ClIF|lpmq)
holds, where C depends on N, m and «.

Proof. Take G (u) as a test function in the weak formulation of (6.5.1):

| atx,u,vu) - v6rw = [ F- V6.

0) 0
Using the ellipticity of a on the left-hand side and the Cauchy-Schwarz inequality on
the right one we get

1/2 1/2
[ Iveaw < | [1FE] | [IvGaani?]
0 Ay 0

where Ay = {|u| > k}. Using Holder’s inequality with exponent m /2 on the right-
hand side, one has

Tod| =i

/m

1
X _[I'FG;((H}IE < j |F|™ meas(Ag) 2w :
9. k

Sobolev’s inequality allows us to say that
1/2*

xS I|Gk{“}|r = ||F|I]‘_H|{£1JmeaS{Ak]%_':_: . (6.5.2}
0

We again use Holder’s inequality on the left-hand side of (6.5.2):
1/2*

JIGk{u}I < JIGHH}IT meas(A)! 12
L Y

1/2*

_ Jlf;k{uﬂz* meas(A; )2V,
£}
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Estimate (6.5.2) therefore yields

jmaw < C(ot, S)||F||pm(oymeas(Ag) !~ m+N .
)

Using Lemma 6.2 we get the result. []
In the case m < N, we prove the following result:

Theorem 6.15. Let F € (L™ (Q))N,2 < m < N. Then any weak solution u € H}(Q)
to problem (6.5.1) belongs to L™ (Q)); moreover the estimate

||H||;_m* Q) = C ||I'1||I.i'”{£1,1

holds, where C depends on N, m and «.

Proof. Let us consider v = | Ty (1) |%Y Tk (1) as a test function in the weak formulation
of problem (6.5.1). We have, due to the ellipticity of a

X [ [V Ti(w) 12| Ti(u) |2 = jF VT (w) [ Ti(w) 2
{1 {2
Holder’s inequality on the right-hand side yields
1/2 1/2
mj VT (w) || T (1) |* < IlFFlTktunE}’ jlvn{ualflmu‘;ﬁ-‘*’ ,
) (2 £}

and consequently

afjwnmnzwmﬁf < j FI2| Te(u) |2
) 0

Using again Holder’s inequality with exponent m /2 on the right-hand side, one gets

¥

e

m

2 1]° 2 2my
{1 0

We use Sobolev’s inequality on the left-hand side of the previous inequality:

[y me—2
P "

2
L

¥

o2 | [ 1T V2 | < [l | [ ITaol 7| (653)
0 0

Now, let us choose y in such a way that

2my
m -2

(y+1)2% =
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With this choice, estimate (6.5.3) can now be written as

¥ 1 -
[ 1T < =5 |IFllEna
{1

2 . . .
We note that ﬁ. — 7= > 0, since m < N. Fatou’s lemma implies

el pm# () = CHF||pm),

withO) < C = Clot, N, m).



7 H? regularity for linear problems

7.1 Introduction

In this chapter, we focus our attention on the regularity of the solutions to linear el-
liptic problems. We study

|—d1v(M(x}‘FH} =f, in Q, (71.1)

u =20, on Jf),

where Q is an open bounded subset of RV, N = 3, and f € L?(Q). Moreover M (x)
is a RM*N matrix such that M(x)& - € = «|&|° for every & € RV and the entries m;;
of M are Lipschitz continuous, that is,

myj(x) —mi(¥v)| <K|x-y|, Vx,yeQ, Vi j=1,.N.
In Chapter 4, we proved the existence of a unique distributional solution u € H} (Q).
Now we prove that u belongs to H*, following the proof by Nirenberg, given in [40].
Theorem 7.1. Let u € H}(Q) be the solution to problem (7.1.1). Then, for every Q' CcC

Q, u belongs to H*(Q)') and the following estimate holds:

Ullgziny = C{H’HHH[{{ﬂﬁ + Il f lpz ) (7.1.2)

whereC = C(Q, K, o, d), withd = dist(£)', 0€)).

7.2 Preliminaries

We define the incremental rate of a function. We denote by ¢; € R the vector having
all the coefficients 0, except the ith, which is 1.

Definition 7.2. Let f : (2 — Rand h € R\ {0}. The incremental rate of f with respect
to e; is the function
AlfiixeQ:x+he;eQ} — R,

defined by
f(x +hei) - f(x)

R o
Al F(x) -

We remark that A!" f is defined in
Qip = {x € Q : dist(x,09Q) > |h|}.

From now on, we will write A" instead ﬂfﬂf. We will denote by V; f the ith compo-
nent of the vector V f.
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Proposition 7.3. The incremental rate of a function has the following properties:
(1) Iff € WP (Q), then A" f € WLP(Qp)) and

Viahf)y = ah(vif). (7.2.1)

(2) If one of the functions [ or g has support contained in Qy,, then

J falg = - [gﬂf’*f- (7.2.2)
0 0
(3) The following equality holds:
AMfg)(x) = flx + he)Alg(x) + g(x)AM f(x) . (7.2.3)

Lemma 7.4. Let v € WLP(Q). Then A"v € LP(Q) for every Q' ccC Q such that
h < dist(()', dQ)) and the following estimate holds:

1AM Ip ) < IViV e @) -

Proof. Assume that v € C1(Q) n W17 (Q). Then

vix + hei) —vix

Alv(x) = .

h
1
- E,['Fiv{xh---,i’i—hfi + & Xit1,---, XN)AE .
0

Holder’s inequality implies

h
17
Iﬂ?u(xlllf’ < —J IViv(X1,. o0y Xio1,Xi + &, Xi01,..., XN |PdE

h
0

and so

h
J Alv|P < %J-J Viv|P dE < J Viv|P.
() )

00
Using the density of C1(Q) n WP (Q) in W17 (Q) we can prove the general result.
]

We now prove that the previous estimate is sufficient for f to be in WJ'P (€2), in
some sense,

Lemma 7.5. Let v € LF(Q2),]1 < p < oo, and suppose that there exists K such that
IA"U||rry < K forevery h > 0 and Q' cc Q such that h < dist(Q)', 8Q)). Then the
distributional gradient Vv exists and satisfies ||V V||Lrq) = K.
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Proof. Let hy,, — 0;let us define, fori =1,...,N,

g 1= ﬂ?”’b’ in ﬂlhnl
" 0 in Q\Qn

"
Hl

The sequence g, is bounded in L¥ ({2) and so there exists a subsequence, still denot-
ed by g, which converges weakly to v € L¥ (Q), with ||U;|[rriq) = K. Therefore for

every @ € C,(Q) one has
jq:'&?"'v — '[q?ﬁj :
0

(l

On the other hand, for h,, < dist(supp ¢, ¢Q}), we have, using (7.2.2) and Lebesgue’s
theorem

J’q:r&?”*u = — [ uﬂ;““qﬂ — —J-*U‘Fl-q:-, n — oo.
(1

0 0
We deduce that for every @ € Cj(Q)
J PU; = _['U?i'qj
0 0

and so v; = Vv, L]

7.3 H?(Q) regularity of the solutions

This section is devoted to the proof of Theorem 7.1. Note that this result allows us to
say that u solves —div(M (x)Vu) = fa.e. in Q" cc Q, sinceu € H*(Q)').

Proof of Theorem 7.1. The solution u satisfies

N
> [mi-j{x}v‘,-uviu = J-fu, Vv e HQ).
=13 O

Let v be a function with compact support in Q and |2h| < dist(supp ¢, Q). Let
v =A@, for1 < k < N: properties (7.2.1) and (7.2.2) imply

N N
> Jﬂ.ﬁimijﬁj'u}?ﬁ} =— > Jmij?ju?;&kHQ? = - '[f&k”‘t;u.
ij=1§ ij=1g o

Using property (7.2.3),

A (i Viu) (x) = mii(x + hep) APV ju(x) + Viu(x) Al m;;j(x)
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one has
N
Z Jm;-j{x+ hep) ARV ju(x)Vip
— Z J .& mij(x)?ju{x)?iq?+mij{x]viu(x}?i&‘;hq}]
NE ]ﬂ
- — Z [ Al'mii () Vu(x)Vip + fA"@].
Lij=1p
Therefore

Z Imu (x + her) ALV ju(x)Vip = - j[g‘-‘?w A ],
Li=1g 0

where g = (g!,...,g") with g = Al'm,;;V ju. Using the Cauchy-Schwarz inequali-
ty and Lemma 7.4 we get

Z J?ﬂrj{x+h€k}ﬂk Viulx)Vip = (KIVullpzi + 1 ez IVellizg,
Li=10

since m;; are Lipschitz continuous functions. Property (7.2.1) implies

Z J’Tﬂu{x+h£§k}?jﬁﬁ’u{x}?g(p = [K”u'HH{J;(['g}"'_ | f ez IV@llrziy. (7.3.1)
Li=1g

Letn € Cé (€2) besuch that 0 = n = 1 and define @ = nzﬂ.’k"u, Writing V@ in
an explicit way and using (7.2.1), we get

N
> J-nzm.,-.,-(x + hey) ViAuV Alu
hi=1g
N
= > Imfj(x + hep) VAT u(Vip — 2A%unvin) . (7.3.2)
=10

The ellipticity of M gives

N
Jln?&kul D IHszij{:’f+hEk}ﬂﬁ'foﬂ£?jH.
Li=1g)
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As for the right-hand side of (7.3.2) one has, due to (7.3.1) and the Cauchy-Schwarz
inequality

j.".'-
Z jmf,j{x + hek]?jﬂiu(?fq:' — 2&2Hﬂvj”}
ii=17

N

< Z J-m[-,j{x + hEH?jﬂﬁH?gQﬂ + 2 ng,J-{x + hEk}?jﬂEu&ﬂunvin
Li=1g 0

< (Kllully ) + 1 lz@) IV (P AR 2 ) + 2KInV AR ull 2 ) AR uV nll2 ()

< (Kllullyy ) + 1F 2@ 120V nAfu + n* VAR ul 12 o)

+ 2K InVARull 2 AT UVl 1202y -
(7.3.3)

We remark that
12nVnARu + n*VARull 2y < 12V nAfullz) + InVARull 2 )
since 0 = n < 1. We deduce from the previous estimates and (7.3.3) that
Jh.‘r
Z J m; j(x + hek}?j,ﬁi‘u{?f{p - E&fgur;.'?!-n}
1.] 0}

< (Kl g ) + 11z @) U2V nAfullz ) + InVALullp2 )
+ 2KINnVALull 20 1AF UV Rl 12(q) -

Therefore we have got from (7.3.2)

xlInVALulT ) < ||!}Tﬂﬂﬁ||12{m(Kllullﬂﬁfm + 1 fllrz2))
+ 2 |I&ﬁuvn“!.3(ﬂ} {K” HHH._I| (1)
+ 1 flz) + 2KInV AR ull 20y 1AT UV 1200 -

It follows from the Young inequality that
mllnv&ﬁullfz[m < E-I_E{K”u“”d[ﬂ] + 1 £ 2 ))* + %HHTﬂ?””EE[m
+ %{K Il @y + 1L ll2 @) + ENAZUVNIT2 g
+ ek ||H?ﬂiu||izm] + ]E”ﬂﬁi"v””%?f{ﬂ} :

or equivalently,

E b
([x -5 - EK) InVARullzz g,
3

: : 1 .
- . 2 h 2
= ZE{K"u”HEHﬂ} + ”f”b’tﬂ}] + (E + E) ”'ﬂkuv”"j_;’{ﬂ} -
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Choosing ¢ sufficiently small, one gets, if ¢ denotes a constant depending just on k
and «

InV ARz o) < ¢ Kllullgr ) + 1 lz@)? + clAFuvnllfz o

. a
< c (lullgy ) + 1f Iz + 1AFuVNlr20)°.

By using (7.2.1)

h . . ah
InA,Vullpzg) =c¢ [||H||Hg]{n;| + | F Lz + sup IV nlA w2 spe )
Y

where spt nis the support of n. Lemma 7.4 implies

||r}'ﬂx??1.-a! ||I_3[§'1] =c(|lu ||”ll:|{m + ||f||!.3{ﬂj +sup [Vn| ”‘FH”LE{H}}
£

and so, for every )" CC () fixed

InARVullz@) < c(1+ sxép VD Ul g o) + 1L llz)
Now, n can be chosen as a cut-off function, such that p = 1 on Q" and |Vn| =
=, where d = dist(Q)’, 3Q). From Lemma 75 we get that Vu € H'(Q') for every
Q' cc Q, and so u € H?(Q). Estimate (71.2) is thus proved, using Poincaré’s in-
equality. ]



8 Spectral analysis for linear operators

8.1 Introduction

In this chapter, we will focus on the eigenvalue problem

(8.1.1)

—diviM(x)Vu) = Au, in £,
u =20, on df},

under the following assumptions. (2 is an open bounded subset of RY, N = 3, and
M(x)isa N x N symmetric matrix, with bounded entries such that there exists o« > 0

satisfying
M(x)E-E = a|E|?

for every £ € R™. We will first study the existence and some properties of the eigen-
valuesof L(v) = —div(M (x)Vv). Later we will see some applications of the spectral
theory to some semilinear (noncoercive) equations. We will present some existence
and multiplicity results by Dolph [36], Ambrosetti and Prodi [2].

8.2 Eigenvalues of linear elliptic operators

Theorem 8.1. There exists an orthonormal basis wn, € L?(Q) and a sequence of real
positive numbers Ay, such that

(1) Ay — +o0, asm — +oo;

(2) forevery m € N, wy, is a solution to

—diviM(x)Vv) = Apv, in Q,
v =20, on df).

The proof of this theorem is based on important properties of

T: L2(Q) — L2(Q)
f—u

where u € Hr_‘]{ﬂ} solves —div(M (x)Vu) = f.

(8.2.1)

Lemma 8.2. Let T be defined by (8.2.1). Then T is self-adjoint and compact.

Proof. T is well defined by Theorem 4.4 and is linear. We claim that T is self-adjoint
(according to Definition 8.22). Let U = T(u) and V. = T(v). Then for every o
Hy(Q)

JM{x}‘FU -V = Ju @
L2 {2
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and ,
M{x)VV -V = Iv Q.
2 0
Let us choose ¢ = V in the first equation and o = U in the second one. The symmetry

of M implies that
Iu V= ( v U,

Q 0

that is, T is self-adjoint. Let us prove that T is compact. If T(f) = u, then

[,

N |
xl|Vullizq, = [ MIX)Vu-Vu = | fu = | fllza iz 2 cllfllzallVullzao,
L=(C2)
0 0

using the ellipticity of M on the left-hand side and Hélder’s and Poincaré’s inequality
on the right one. We deduce that

C . .
ITA iy < ZIflz, Ve L*(Q).

Since the embedding H[_ll (Q) — L?(Q) is compact, T is compact. ]
We can now prove Theorem 8.1.

Proof. Using Lemma 8.2, we can apply the spectral theorem (Theorem 8.25) to the
operator T defined by (8.2.1). Therefore there exists an orthogonal basis w,, of L%(Q)
with
[ fwniz =1 (8.2.2)
0

and a sequence U, converging to 0, as n — oo, such that T(w,) = puyw,, thatis,

IM{x}?wn .V = 1 j wap, V@eH\(Q).

My
€2 ()

Observe that w, € H/(Q). Moreover u, = 0, since by the ellipticity of M, we have

m[l?wﬂlz < 1 [wft
0 Hn 0
On the other hand u,, = 0, otherwise w,, = 0 from T (w,,) = 0. []

Definition 8.3. According to the notations of the previous theorem, we will say that
{Am binewn is the set of the eigenvalues of L(v) = —div(M(x)Vv): this means that
{ ,LL tmern 18 the set of eigenvalues of

T: L%(Q) — L%(Q)

f—u

where u € H,(Q) satisfies —div(M(x)Vu) = f. By an eigenfunction of L(v) =
—div(M (x) Vv ) we shall mean an eigenfunction of T,
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The following theorem concerns A, the first eigenvalue of L(v) = —div(M(x)
Vuv). Let
A{U} _ IHM{}:]?E ' ?’U )
Jov

Theorem 8.4. Let Ay be the smallest eigenvalue of L(v) = —div(M{x)Vv). Then

A= min A(v).
veH) (1)
)

Moreover, each function u that minimizes A is an eigenfunction of L corresponding
to Aq.

Remark 8.5. Poincaré’s inequality, for p = 2 reads: there exists a positive constant
¢ = ¢(£2) such that

1
= lullz) < IVullz@), Vu € Hi(Q).

Theorem 8.4 allows us to say that the smallest eigenvalue for the operator L(v) =
—Av is equal to the square root of the best constant in Poincaré’s inequality.

We will use the following lemma to prove Theorem 8.4:
Lemma 8.6. A(v) has a minimizer over H (£2).

Proof. First of all we observe that A is bounded from below, by Poincaré’s inequality.
Let vy, be a minimizing sequence, that is, A(vy) — inf A, as n — +o00. Note that

Un

Zn =
||Tf'ﬂ||Hilr[ﬂ]

satisfies ||z, g1y = 1.Uptoa subsequence, z, — z in L2(Q) and weakly in H} (Q).
Observe that

0=Mx)V(zy—2)V(zy—2)=M(x)Vz,-Vz,—2M(x)Vz, - Vz+M(x)Vz-Vz.
Therefore,
J‘M{x}?z,, -VZn = EJ.HJ(:{}TEH -Vz - [M{x}?z -VZz.
0 0 0
If we pass to the limit in the above inequality, we have
Iil[;n inf | M(x)Vz, -Vz, = [M{x]?z -Vz. (8.2.3)
0 0

Note that z,, is a minimizing sequence for A, as A is homogeneous. Thus

JoM(X)Vzy - Vzp _ [gM(x)Vz-Vz
.[113% - jﬂzz

infA = ylll_l-l;la A(zy) = liﬂm_igf = A(z),
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where we have used (8.2.3) and the fact that z,, — z in L?(Q). Consequently z is
a minimizer for A, We have only to check that z = 0. Since z,, is @ minimizing se-
quence, A(z,) is a bounded sequence, that is, there exists a positive constant C such
that ,

J M(x)Vzy Vzp<C [ z5 .

0 Y

:xjwzﬂﬁgcjzﬁ,
() Ly

The ellipticity of M gives

This implies that
. ) C .
]- — I|zﬂ|li2u'1} + H?En”i::u'H = (l + E) ”zHHiE[g]] -
At the limit as n — co we get || 2|12y > O. ]

We can now prove Theorem 8.4.

Proof. Let u € H{I, (€2) be a minimizer for A. Using the previous lemma the function

g(t) = Alu + tw), where w € H(Q) attains its minimum at 0. Since g is differen-

tiable, g’ (0) = 0, that is,

JoM(x)Vu - Vu
Jo u?

JM{x}‘Fu -Vw = Juw = (inf A) juw, Vw e H) Q).
2 (

=

(8.2.4)
In other words, if u € H/(Q) minimizes A, then u is an eigenfunction of L(v) =
—div(M(x)Vv) and

IHM[I}TH : ?H
Jo u?

is the corresponding eigenvalue.
Let us prove thatinf A = A;. Since A, is the smallest eigenvalue of —div(M{x)Vv),
one has
A =iInfA.

Let us prove the opposite inequality. Let w; be the eigenfunction corresponding to

A1; we have
[M{x]?wl VU = A jw] v, VYveH)Q).
0 0

Consequently, choosing v = w; we obtain

ian=inf'[—ﬂM{fo Vv - hM{x}‘Fw_: Vw: _ jﬂ,?‘-.ltgl_ AL O
Jo v? Jo wi Jo wi
Remark 8.7. As we will see in Chapter 9, Example 9.9, (8.2.4) is the Euler equation for

the functional A.
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Corollary 8.8. Any eigenfunction w, of L{v) = —diviM(x)Vv) corresponding to A,
is of constant sign on Q).

Proof. By the definition of eigenfunction corresponding to A, w; solves
JM{x}?wl -V = Ay Jw] v, YwveH;Q).
() £3

Considering v = w, one has

_JoM(x)Vw - Vw|

A Jo(wy)? ’

that is, w, is a minimum for A. By Theorem 8.4, w, is an eigenfunction of L(v) =
~div(M (x)Vv) corresponding to A;. []

Remark 8.9. One can prove more about A; (see [37]). Indeed A; is simple and
the corresponding eigenfunctions are strictly positive (negative)., This is a con-
sequence of Harnack’s inequality (see [50]): if u is a nonnegative solution to
L(u) = —-diviM(x)Vu) = Au, then for any compact G C € there exists a pos-
itive constant K, independent of u, such that max; u < K ming u. The constant K
depends on «, the L™ ({2) norm of the matrix M, A, G, and Q.

More generally, we have the following expression for A;,:
Theorem 8.10. Let m > 1. Then

— JE]M{X}TH"]H - vwm _ “.-If' J‘ilM{I}?U . 'FU
fﬂ wfﬂ VEPy_1,v+0 .[1‘1 v2

Am

where P,,, = {*u EHE,{H] gwpv =0, n= 1,...,m{>,

We can now prove the last result of this section: the eigenfunctions of (8.1.1) are
bounded.

Theorem 8.11. Let u be an eigenfunction of L(v) = —div(M(x)Vv) corresponding to
an eigenvalue A. Then u is bounded and the following estimate holds:

ﬂ
Nl =) = c(et, N)AZ |[u| 1) . (8.2.5)

Proof. We take G (1) = u — Tp(u) as a test function in (8.1.1): in this way

ﬂf-[ VG (u)|? < [M[x}\?u -Vu = AJ’H Gr(u),
Ay 1 1
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by the ellipticity of M. Let us now estimate the right-hand side. Writing u as u — k + k,
we get, by Young’s inequality

L

hJqu(u] < A J Gr(u)? + A | k|Gr(u)
0 A

Ap
' > A 2, 12
< A J |Grlu)= + 5 _[IGHH}I + K meas{Ak‘J]'
Ay LAk

— 3% J 1Gr(u)]° + kE%mEHS'[Ak}f

Ay
where Ay = {|u| = k}. We have thus proved that

o I VGr(u)|? < 3% [ |G () |? + k:’%measmk}. (8.2.6)
Aj f‘:hr
We are going to estimate the first term of the right-hand side by using Hélder’s and

Sobolev’s inequalities:

1
2 2F
S Jmk(uu? < S fmk(un?* meas(Ag) ¥
Ag

Ar
¢ (8.2.7)

< Jw{;k(unf meas(Ag) ¥ .
A

k

Inequality (8.2.6) implies that

o J IVGr(u)|? < 2332 meas(Ay) ¥ J‘ IVGr(u)]* + kE% meas(Ay) .

A Ag

Let us now consider k = kg, where kg = kg(A) is such that
X = % meas(Akn}-% .
Note that kg meas(Ag,) < ||u|r1(q). Therefore, in the sequel we will consider

3A
52

N
z
k = kp = [ ] Nl piy - (8.2.8)

In this way

ol j IVGr(u)|® < k* Ameas(Ay) . (8.2.9)
Al
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From estimates (8.2.9) and (8.2.7) we deduce that

=

[J Gk{ulg} < E [Ameaﬁ{ﬂk]]i meas(Ay) ¥ .
; S X
k

By Holder’s inequality on the left-hand side one has

j'Gk(“”E Jmk{un? meas(Ax)? < meas(Ap) ¥ k(S2x) ZAL.
A A

Setting g(k) = Lﬂ“[ |G (u)| and using Lemma 6.1, the last estimate is equivalent to
Sat g(k) < [-g' (k)] ¥ kAT,

that is,

N | N

g’{k]g{k} j'ﬁ] ,];‘Ei.i‘?l—n < -k .n.r+ll (Sex2 )W+,

Integrating over (kg, k) we have

—_ 1

GR)TT < g(ko) ¥ + (S oz) W1 A~ 7T [T — kT ],

Since g(ko) = [[ullp10) we get

1 w N L
gk T < [[ull iy, + (S az) i A2 [kt — kv ]

For k = k,

. N N 1 1 qN+1
k = [(S H%}'Nﬂ:l AT ””“ﬁ:ﬁ + ko ] , (8.2.10)

the right-hand side is zero. Thus g(k) = 0, if k = k. Observe that k = kj.
Note that, by using (8.2.8), we get

N N
k<clo, NYAZ Jullpq -

Therefore
N
Ul gy = clo, N)AZ |lullpq) - L]

Remark 8.12. That the eigenfunctions of L(v) = —diviM(x)Vwv) are bounded is
a consequence of the following bootstrapping technique. By definition, wy, H.ﬁ is

a solution to
[—div{M{x]?wm]=hmwm, in Q,

Wy =0, on dfl.
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Since Hj(Q) < L*" (Q), using Theorem 6.9 we have w,, € L*" " (Q). Using Theo-
rem 6.9 in an iterative way we get, after a finite number of steps, the L7 (Q) summa-
hility with p > N /2, forany N = 3. To this end, we define

(g0 = 2%

: NEE'
Lq.k'l'] :q:* = Jl..q,'_zqtq kED.

By contradiction, assume that
qr = N /2

for every k. Since qy, is strictly monotone, there exists

l:=limgy.
One has, necessarily
0<l=N/2.
Passing to the limit on k, we get
- NL
- N-=-21"

this equality implies [ = 0 which is a contradiction. Therefore there exists k = 0
such that g; > N/2. It is sufficient to use Theorem 6.6 to get the result. We note that
the previous theorem gives us an additional information with respect to the above
bootstrapping technique: estimate (8.2.5).

Corollary 8.13. Let u be an eigenfunction of L(v) = —diviM(x)V 1) corresponding
to an eigenvalue A. Then

lullp=i0) = clo, N) AZ meas(Q)? .

Proof. It is sufficient to apply Hélder’s inequality on the right-hand side of esti-
mate (8.2.5) and to use (8.2.2). ]

8.3 Applications to some semilinear equations

In this section we will study some semilinear (noncoercive) equations using the re-
sults of spectral analysis of the previous section. More precisely we will study

{_dw(M(x}?H) =guw)+f, In Q, (8.3.1)

u =0, on dfl),
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under different hypotheses on g. Note that we have already studied some semilinear
equations in Chapter 4. We will begin by the linear problem

(8.3.2)

—diviM(x)Vu) = pu+ f, in Q,
u =20, on 0,

where u € R.

Theorem 8.14. Let yu = R with u = A for every k € N, where {Ay | kew are the eigen-
values of L(v) = —div(M(x)Vv). Then for every f € L?(Q) there exists a unique
solution w to problem (8.3.2).

Proof. We can suppose that gy + 0, because we have already seen in Theorem 4.4
that there exists a unique H; () solution to problem —div(M(x)Vu) = f.Let T
be the operator defined by (8.2.1). Then p ! is not an eigenvalue of T. Consequently,
using Theorem 8.27 (Fredholm alternative), for every f € L?(Q) there exists a unique
solution to the equation

plu—-Tu=p'Tf,

that is, there exists a unique solution to problem (8.3.2). [

Theorem 8.15. Let u = Ay, where for some k € N, Ay is an eigenvalue of L(v) =
—div(M(x)Vv)). Let f € L*(Q) be such that [, f wi = 0 for every eigenfunction wy
corresponding to Ay. Then there exists a solution to problem (8.3.2).

Proof. As in the above theorem we will use the operator T defined by (8.2.1). By Theo-
rem 8.27 (Fredholm alternative), there exists a solution to

plu—-Tu=p'Tf

(i. e., to problem (8.3.2)) provided |, T f@ = 0 for every @ such that u~'@ = T,
that is, for every eigenfunction of L(v) = —diviM(x)Vv)) corresponding to p. Now,
since T is self-adjoint, one has

o= [1fe=|rro=u"|re. =
) )

0

The existence of the eigenfunctions of L(v) = —div(M (x) Vv ) is sometimes use-
ful to find a subsolution (or a supersolution) in view of an application of Theorem 4.11,
as the following theorem shows.

Theorem 8.16. Let @ € (0, 1). Then there exists a positive solution u € H{(Q) to
problem

~Au=u", in Q,
(8.3.3)

u =20, on dQ).
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Proof. Let ¢ € H; (Q) be the positive solution to problem

~Ap =1, in Q,
y =0, on d0.

From Theorem 6.6 we know that ( is bounded; then for any a > 0 such that

1—¢&
a?® = |yllr=),

U = ay is a supersolution to problem (8.3.3). On the other hand, let ¢, be an eigen-
function corresponding to the first eigenvalue A; of L(v) = —Av: @ can be chosen
positive by Theorem 8.8 and is bounded by Theorem 8.11. Choosing £ > 0 such that

At P <1,

one has that u = t @, is a subsolution to problem (8.3.3). To prove that u < u, we
remark that, by linearity,

~Alay —t@y) =a—-Ate,.

It is then sufficient to consider T such that T = At|@qllr=:inthiswayu = u
from Lemma 4.12. The result follows from Theorem 4.11. ]

In the following two theorems, the hypotheses on the function g in prob-
lem (8.3.1) are related to the eigenvalues of L(v) = —diviM(x)Vv).
We are now going to state Dolph’s theorem.

Theorem 8.17 (Dolph). Let g : R — R be a function with the property that there exists

o0 > 0 such that

U{hk+5{g“i_g{5}

{‘)“'k+1 _5:

forsome k € N, where {Ay | are the eigenvalues of L(v) = —diviM (x)Vv). Then, for
every f € L?(Q), there exists a solution u € H} (Q) to problem (8.3.1).

In the proof we will use the following result:
Lemma 8.18. Let u € R with u + Ag. Let S be defined by
S: L%(Q) - L*(Q)
[ —w
where w € H;(Q) solves —div(M (x)Vw) = pw + f. Then S is compact.

Remark 8.19. Observe that S is well defined by Theorem 8.14.
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Proof. 1t is sufficient to prove that S : L*(Q) — H}(Q) is continuous, as the embed-
ding H& (Q) = L*(Q) is compact. We will prove, by linearity, that if f,, — 0in L*(Q),
then the corresponding solutions z,, to problem (8.3.2) converge to 0 in H} (€)). Let us
consider a test function in (8.3.2) @, the eigenfunctions of L(v) = —div(M (x)Vv):
one has

(A —M}Jznﬂ:ﬂf = IM(x}"an - V@ —sznq?f = j.fnqs'f-
) ) ) )

Since f,, — 0in L?(Q) we have _fﬂ Zp; — 0,as n — co. The sequence {@;} is
an orthonormal basis of L?(£), as proved in Theorem 8.1: this implies that z,, — 0
weakly in L* (Q2). Consequently, choosing z, as test function in (8.3.2), one has

n:J IVz,|% < JM(J{}?:H Vz, = ujzfl + '[fnzﬁ ) (8.3.4)
0 0 0 Q)

Since the right-hand side is uniformly bounded, up to a subsequence, z,, has a weak
limit in H (©2) which is necessarily 0 and z,, — 0 in L* (). Consequently the right-
hand side of (8.3.4) goes to 0 and so z,;, — 0 in H& (€2). This proves the lemma. ]

We now prove Dolph’s theorem:

Proof. Problem (8.3.1) is equivalent to

—diviM(x)Vu) —Au=g(u) —Au+ f, in Q,
u=>0, on 0,

where A = 15—'3'—“& We observe that A # 0 and that A is not an eigenvalue of L. This
means that lg is not an eigenvalue of the operator T defined by (8.2.1). Let

S: LQ) - L2(Q)
f—w

where w solves —diviM (x)Vw) - Aw = f.ByLemma 8.18 § is continuous.

Setting | __
®: L°(Q) — L% (Q)

v — S[g(v) — Av + f]

it is sufficient to prove that © has a fixed point. We are going to apply Theorem 2.1. To
do that we are going to prove that 5 is a contraction. The linearity and the continuity
of § imply

1OV — Qw20 = IS rzian lglv) —glw) = Av — w2 - (8.3.5)

Let us now estimate ||g(v) — g(w) — A(v — w)|j2(q). From the hypotheses on g we
deduce

gw) —gw) | _ A1 — Ak
V- w 2

-0
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this is equivalent to

9(0) - gw) - Aw - w)] < (HLZ - 5) v -,
and so
19(v) - gw) - Aw - Wl < (EEE - 5) v - wilp ).
By (8.3.5), one has
1OV — Owllr2(q) = ISIle2@ (hh]z_ A _ 15) v — w2 -
We claim that
1S 2z (&kuz— Ak ﬁ) 1

(8.3.6)

(8.3.7)

Let usestimate ||S|| 7(12(q)). We denote by vy, the eigenvalues of —diviM (x)Vv)-Av,

that is,
—diviM({x)Vzyr) — Az = v 2.

This equality implies that vi = Ay — A, where Ay are the eigenvalues of L{v)

—div(M (x)Vv). The eigenvalues of S are therefore

1
A — A

v =
Theorem 8.26 implies that

1
ISl a~=m\———‘
L{L2(€1)) T_II' A — A

for § is compact, as seen in Lemma 8.18. Since 0 < -+« < Ap < A < Ap41 < ...

have

. 1
||5||£{:.£[511:| = s5up ‘ —‘ :
T ickks1 TA A

Moreover the fact that A — Ay = Ag, 1 — A implies that

| 2
ISlewson = ¥R T M - A

we

We then deduce (8.3.7). Hence @ is a contraction. Theorem 2.1 implies that there exists

a unique u € L*(Q) such that

—diviM(x)Vu) + Au=glu) + Au + f.

Since S : L?(Q) — H{ () we have that u € H} (Q), that is, u is the solution.

L]
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We are now going to prove the following theorem:

Theorem 8.20 (Ambrosetti—-Prodi). Let g : R — R be a Lipschitz continuous function
such that g(0) = 0. Assume that
QEEHM%:Y*'t Y—ﬂih]{}!+{‘}"21
where A1 and A> are the first two eigenvalues of L(v) = —diviM(x)Vv). Then for
every f € L*(Q), there exists t € R such that:
(1) if [ f1 > t, thereis no solution to problem (8.3.1);
(2) if | fp1 = L, there exists a solution to problem (8.3.1);
(3) if [o fp1 < t, there exist two solutions to problem (8.3.1).

We will use the following result.

Lemma 8.21. Under the same hypotheses on g as in Theorem 8.20, let 1, u € L*(Q)
be such that w,, — win L<(Q), asn — +co.

(1) Ifty — +oo, then Lol .y b —y u~ in L (Q).

2) Ifty — —oo, then LMl v y+ — y. u—in L2(Q).

ml

Proof. Set

HHHH.H'[I:'] 5
pﬁ{I}Z fnUplx) ? if HH{:{} :’t[}:
0, if uy(x)=0.
We observe that the sequence p,, is bounded, due to the hypotheses on g. Conse-

quently p,, (1, — u) — 0in L=(Q).
(1) Assume that t,, — +co. Studying separately

Q, ={xeQ:uylx) <0}
Q) = {x e Q:uy(x) =0}
Q, ={xeQ:uy(x) >0}

one gets that p,u — y-u™ — y_u_ a.e. in ). Lebesgue’s theorem implies that
pnUt — yiut — y_u in L*(Q). Therefore pputy — yout — y_u— in L*(Q).
(2) The case where t,, — — oo is similar to the previous case. ]

We can now prove Theorem 8.20.

Proof. Let @21 be a positive eigenfunction of L(v) = —diviM(x)Vv) corresponding
to the first eigenvalue A, such that |||/ 2(q) = 1. We will prove that for every s € R
there exists a unique solution z = z; € H;(Q) to

() () {2

—I.M{x}?z-?w = Ig{z+5w1}w+Ifw. Yw € Hj(Q): (wq:n =0 (8.3.8)
0 (
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and |, zg = 0. We will afterward study the existence of a real s such that

AIS_IE{E+5¢)]}¢3I =Jf¢n. (8.3.9)
£ )

It is easily seen that the existence of a solution to problem (8.3.1) is equivalent to the
existence of z and s.

Step I: Let us study problem (8.3.8). For every fixed s € R, we will find a unique
solution z; to problem (8.3.8) using Theorem 4.3. Indeed, define

aly,w) = JM’(I}TQJ - Vw — Jg{w+5{p1}w
0 3

on the Hilbert space made up of functions w € Hj () such that [, wq; = 0. This
form is linear in the second variable. Using the Cauchy-Schwarz inequality and the
fact that g is Lipschitz continuous, we can find a positive constant C such that

la(y,w) —alpz,w)| = CIIVwlrzi IV = w2z

Moreover it is easy to see that

alWy, Wy — W) —alw:, @y — )
> JMIxJ‘F{wI — ) - V(Y —P2) -y, J-“P'l — al?.
£ L)

By Theorem 8.10 and the ellipticity of M we deduce that

alWy, 1 —2) —aly, g — Y2) = (1 - %) o[V - sz)Hffs[m-
We can then use Theorem 4.3 and state that for every s € R there exists a unique
solution z; to problem (8.3.8).

Step II: Let us prove that

his) =A1s - (g{zs +s@1) @)

€1

is a continuous function. Obviously it is sufficient to prove that the second term is
a continuous function from R to R. To this end, let s,, be a real sequence. We claim
that the corresponding sequence z;, of solutions to problem (8.3.8) is uniformly
bounded in H} (©2). We can write

Jg{zgh + Su @)z, + Ifzg,, .

—I- ﬁfffl'}vﬁjh . ?35”
(1 (1 0
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Multiplying and dividing by z;, + s, @) in the right-hand side and using the limit
hypothesis on g, we have

J‘J“"HXJ"T-“'E;” -VZs, = ¥4 "zﬁﬂ + | F 2 125, L2 () -
0 Q)
By Theorem 8.10 and the ellipticity of M we have

Y+
x| 1 - " ||?35,-.,||2: y = ||f||L2{ﬂ}||35H ”Lf{ﬂ?-
Ao [={£2]

Poincaré’s inequality implies that the sequence z;, is bounded in H} (Q). Now, as-
sume that s, — $g as n — co. Up to a subsequence, z,, converges weakly to a func-
tion w in H} (Q). Theorem 3.6 implies that

glzs, +Ssp@r) — glw + sp@q)

in L2 (Q)). We have to prove that w = z,,, that is, w is the solution to problem (8.3.8)
corresponding to sy. Passing to the limit in

JM{X}"FL-H -V = J.g{zj-w + S + thp, ‘v’lp:qum =0
Q) 0 0 0

we get
_[M{x}'\?w -V = Ig{w + So@ )y + J’ftp.

£} £} )
From Step [ there exists a unique solution to problem —diviM (x)Vz,, ) = glzs, +
so@1) + S and so necessarily w = z;,. Consequently, up to a subsequence,

Jﬁ{isu + Sn @)@y — J‘H(ESU + So@1) @ .
£1 €3

Arguing by contradiction, it is easily seen that

J‘H(Esﬂ + Sp@1) @ — JH{E.q(] + SoQP1 )@
0 0

and not only a subsequence. This implies that h is a continuous function.
Step III: Let us prove that

sSince
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it is sufficient to study the last term. We remark that z; is uniformly bounded in
H}(Q) as we have already proved in the previous step. Consequently = ~ 0in
Hj () ass — co. Setting vy = = + @1 we have that v; — @ in L°(Q).

(1) Assume that s — +co. By Lemma 8.21, we have

g(svg)
5

=Y+ @] - y-@;

in L*(Q). Since ¢ is positive,

< P — Y.

Jﬂ[ﬂ(? 1))

(2) In asimilar way, one can study the case s — — oo,

Step IV: Problem (8.3.9) is equivalent to h(s) = |, f. Since
Al =y, <0<A -y,

using the result of the previous step, we can say that h has a maximum. Therefore
(1) if [, f1 < maxg h, then problem (8.3.1) has at least two solutions;

(2) if [, f1 = maxg h, then problem (8.3.1) has at least one solution;

(3) if [, f@1 > maxg h, then problem (8.3.1) has no solution. ]

8.4 Appendix

We recall here some classical results of spectral theory for linear operators. For the
proofs, see [22].

Definition 8.22. Let H be a Hilbert space. Let T : H — H bhe a linear operator. Let
By = {x € H:|x]| = 1}.We will say that

(1) T isself-adjointif (Tu|v) = (u|Tv) forevery u,v € H;

(2) T iscompactif T(Bgy) is relatively compact for the strong topology.

Definition 8.23. Let E be a Banach space. Let T : E — E be a linear operator.

(1) wesetp(T)={AcR:T—-Al:E— E isone-to-one};

(2) thespectrumof Tiso(T) =R\ p(T);

(3) Alisaneigenvalueif Ker (T — AI) + 0. We will denote by AT (T') the eigenvalues
set.

Remark that the eigenvalues set of T is contained in o (T'), but it is not equal in
general.
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Theorem 8.24. Let E be Banach space. Let T : E — E be a linear compact operator.
Then

(1) 0 o(T);

(2) o(T)\ {0} = AT(T) \ {0};

(3) either o(T) \ {0} is finite or o(T) \ {0} is a sequence which goes to 0.

Theorem 8.25 (Spectral Theorem). Let H be a Hilbert separable space. Let T be a lin-
ear, self-adjoint compact operator. Then H has an orthonormal basis composed on
eigenvectors of T. Moreover, the sequence of the corresponding eigenvalues A,, is such
that |A,,| — 0asn — o0,

Theorem 8.26. Let H be a Hilbert space. Let T : H — H be a linear, compact, self-
adjoint operator. Then, if y,, are the eigenvalues of T, one has

I Tl £y = sup [Hnl .
F

Theorem 8.27 (Fredholm alternative). Let H be a Hilbert space. Let T : H — H be
a linear, compact, self-adjoint operator. Let A € R\ {0}. Then the following alternative
holds: either for any & € H the equation Ax — Tx = & has a unique solution or else
Ax = Tx has solutions x + 0 and Ax — Tx = & has a solutionif & | Kev(AI - T).



9 Calculus of variations and Euler’s equation

9.1 Introduction

Although this book is devoted to partial differential equations, we would like to recall
some results of the Calculus of Variations. We will see how the Calculus of Variations
can be used to study the existence of solutions to differential problems.

We will first present a simple but significant version of De Giorgi’s theorem on
weak lower semicontinuity of integral functionals. We will then write their Euler’s
equation and study the summability of minimizers. In the last part of this chapter we
will study Ekeland’s principle.

9.2 Direct methods in the calculus of variations

In this section we will recall some classical results of the Calculus of Variations which
will be useful to study the minimization of a functional. We refer to [27] for the proofs.

We will often use the following two theorems (in the Appendix we will recall some
definitions).

Theorem 9.1 (Weierstrass). Let X be a Banach reflexive space. Let J : X — R be coer-
cive, bounded from below and weakly lower semicontinuous. Then J has a minimizer.

Proof. Let x;,, be a minimizing sequence, that is, J(x,) — inf J. Note that J(x,) is
bounded. Since J is coercive, x, is bounded in X. Therefore, up to a subsequence,
xn — Xp weakly in X, for some xp € X, since X is reflexive. Since J is weakly lower
semicontinuous, liminf, .. J(x,) = J(xg). Hence J(xp) = inf J. ]

We will essentially consider integral functionalsin this chapter:

.f{v}=Jj[JE.v,‘Fv},

0

defined on W, (Q) with p € (1, ), with Q bounded open subset of RV. Note that
these spaces are reflexive. The following theorem gives a sufficient condition for the
functional to be weakly lower semicontinuous in W{; P (Q) (see [26]).

Theorem 9.2 (De Giorgi). Let j: Q) x R x RN — R be a Carathéodory function, convex
with respect to the last variable. Letp > 1and1 = q <pTifp < Nandl = q < +o
if p = N. Assume that there exists «; € (LP (Q)V, o2 € R, 3 € L1 (Q) such that

J(x,5,&) = ot1(x) - E+ 2|59+ a3(x).

Let iy, u € i-l-"&'” (Q) be such that u, — u weakly in W' (Q). Then

Jj{x,u, Vi) = limian-j{x, Un, VUn).

H— +00
(] £1
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The proof of this theorem is quite complicated. We will present it for a particular
class of functionals. The symbol V¢ j will denote the gradient of j with respect to &.

Theorem 9.3. Let j : QO x R x RN — R be a Carathéodory, convex function with respect
to the last variable. Assume that there exist «, B > 0 such that «|&|F = j(x,s,&) =
BIE|P. Assume that for a.e. x € Q and forevery s € R j(x,s, -) is differentiable and
there exists v > 0 such that |Vgj(x,s,&)| = vIEIP" 1. Then J(v) = [ j(x,v,Vv),
defined on W,'F (Q), has a minimizer.

Proof. J is coercive and bounded from below, since j(x,s,&) = o|&|¥. Let us prove
that it is weakly lower semicontinuous. Let v, be a sequence weakly converging to v
in I'«-t-"{f"t’ (©2). The hypotheses of convexity and differentiability on j imply

J(x,8,8) = jix,s,n) + Vgjlx,s,n) - (E—n),

and therefore

Ij{x, U, VU, ) = jj{x, Vp, VU ) + j?gjl[x, Un, VU ) - (Vv = V). (9.2.1)
0 0 0

By the continuity of j(x, -, &) and the growth conditions on j, we can apply The-
orem 3.6 to have that j(x, vy, Vv) converges in L'(Q) to j(x,v,Vv). Moreover
Vv, — Vv converges weakly to 0 in (L7 (€)™ by hypothesis. By the continuity of
J(x, -, &) and the growth conditions on V¢ j we can apply again Theorem 3.6 to have
that Vg j(x, vy, VU) converges to Vg j(x,v,Vv) in (LP" (Q))N . Passing to the lim
infin (9.2.1), we get

lErgﬂij{x,vn,?vH] = Ij(x, v, V). ]
0 0

Example 9.4. Let J be defined on H) (Q) by

J(v) = %JI‘F’EIE 1 J|u|F’ —~ va
P
2 ) )

with p € [1,2) and f € L°(€). We claim that this functional has a minimizer. Note
that, by Holder’s and Poincaré’s inequalities

1 1
J(v) = EII"F'UIIEE{Q} " J‘ v —cllfllzolIVulizo, -

0}

By Rellich-Kondrachov theorem, there exists a positive constant C such that
1V lfe ) < CIIVVI}2 g, Therefore

1 C
j{l’} = E”?U“E:iﬂ] - E”?v”i;{ﬂ} = C ||f|ILEI:ﬂ'.} I|?UI|L3{D1J .
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The last quantity converges to +oo if ||VVU|;2(q) — +0oo, since p < 2. This means
that J is coercive. Moreover the last inequality implies that J is bounded from below.
Finally it is easy to verify that J satisfies the hypotheses of Theorem 9.2. By Theo-
rem 9.1 J has a minimizer.

9.3 Euler equation

We will now give the definition of the Euler equation associated with a functional. The
Euler equation is related to the Gateaux differentiability of the functional. We will use
the same notations as in Definition 9.29,

Definition 9.5. Let X be a Banach space. Let J : X — R be a functional attain-
ing its minimum at u. Suppose that J is Gateaux differentiable. The equation
< J'(u),p >= 0, @ € X, is the Euler equation associated with J.

We are now going to state a result that allows us to write the Euler equation as-
sociated with integral functionals. We will assume a p-growth in the gradient, with
p < N. We refer to [27] for the case p = N and for the proofs.

Theorem 9.6. Let j: Q2 x R x RN — R. Let

Tw) = | i, 7o)
Q)

be defined on 1-1-"&“”{9‘;. Assume that j = j(x,s,&), % Ve J are Carathéodory func-

tions. Let 1.g be a minimizer for J. Then the Euler equation

J Vejlx,up, Vi) - V@ + '[ g—“;{x, U, Vug)p =0
0 0

is satisfied for every @ € Wﬂ"""[ﬂ} if there exist x; € L'(Q), x» € LFH-":-_:‘{D},
o3 € LP (Q) and B = O such that

1) [j(x,5,8)] = or(x)+ B(|ulP” +[E7);

2) 1] = oa(x) + B (lul™ + [E]"), |Vejl = az(x) + B (luld + [EP~) withry <

& ) Np—-N+p Np-N
pr-Lr=s"g 4= Jop

Remark 9.7. In the case where j satisfies condition 1 of the above theorem and the

derivatives of j satisfy % < o1 (x) + BIEIP, [Vejl = az(x) + BIEIP! for some

o> € LP (Q), the Euler equation is verified for every @ € W&'p (Q)NL™(€2), provided
the minimizer 1 is bounded. We will see in the next section sufficient conditions
assuring the boundedness of minimizers.

We are going to give some applications of the previous results.
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Example 9.8. Let
J: H{(Q) —~ R,
be defined by
J(v) = % [M{xwu V- J-fv
0 0

where M (x) is a RV*N matrix with bounded entries and such that M(x)&- & = «|&|?
for some o > 0; moreover f € L2(Q). It is easy to see that J attains its minimum at u
using Theorems 9.1 and 9.2. Note that the coercivity of J is easily obtained by Holder’s
and Poincaré’s inequalities:

(X : b o .
J(v) = EIITUH}{:.{H} I fllzz@ v liz2(0) = EII?UIIEJ[H] =l f iz VU2 -

The Euler equation that u satisfies is

—diviM(x)Vu) = f, in Q,
u =70, on dQ,

by Theorem 9.6.
With the same technique one can prove the existence of a minimizer u € H; (Q)
of

J(v) = %JM[I]?U - VU - [fu + J‘G{U}!
Q 0 0

where G : R — R is a C! function such that 0 < G(s) < y;|s|%, q; < 2* and
g(s) = |G (s)| = y21s|92, g» = 2% — 1, with y;,y2 = 0. Therefore there exists
a solution u € Hy(Q) to

—diviM (x)Vu) + g(u) = f, in Q,
u=0, on o).

Example 9.9. Let
J: H{(Q) — R,
be defined by
J(v) = (Ml{x]?v - Vv - A [uf
£ £
where M (x) is a RV*N matrix with bounded entries and such that M(x)&- € = «|&|°
for some &« > 0; moreover A; is the smallest eigenvalue of L(v) = —div(M(x)Vv).

As a consequence of Theorem 8.4, J attains its minimum at u € H;(Q)), which satis-

fies
{—div(M{x]‘Fu}=h|u., in Q,

u=0, on 40,
by Theorem 9.6.
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Remark 9.10. There exist however equations that are not the Euler equation associat-
ed with some functional, as we will see in Example 9.16.

In the next example we will solve a constrained minimization problem. We will
see a different proof in Theorem 9.25.

Example 9.11. Let J be defined on H} (Q) by

1 5 1
JW}=;IWM~—EJwW
"0 0

with 2 < p < 2*. We claim that J does not have a minimizer in H} (Q). Indeed, if
@1 € Hj(Q) is the eigenfunction corresponding to the first eigenvalue of the Lapla-
cian operator (that is, —A@; = A1@1), one has, for t > 0,

t? , P t? S
.,’{h;'?1}=—J-|TlP]|£——J|¢?I|F=.—?tl.l‘*l?‘iz— J-|Q}I|F-
2 p 2 p

0 0 ) 0

The limit as t — + oo proves that J is unbounded from below, since p > 2. Neverthe-
less we are going to prove that J has a minimizer on

A= vEHMﬂMJWW=1
£l

It is clear that J is bounded from below on A, by Poincaré’s inequality:

.
c 5 1, p 1
J(v) = ?Ilvll;,z[m - E”U“Li'{ﬂ} = -

Moreover if v,, is a minimizing sequence, up to a subsequence, v, converges weakly
in Hf];,{ﬂ} to some function u in A, which is a minimizer, as J is weakly lower semi-
continuous. Let us write the equation that u satisfies. We have that

Jm}ij( urty ),

lu+ tv|| e

for every t € R and for every v € H} (Q). Let us set

u+tv
(t) =J .
g (II*H + H’llmm)

We note that

d
d_t J-Iu+tv|p :pJ-|u+tL'|F E[H+EU}’U.
£ {1
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Using that u € A we obtain

g'(0) = J"*Fu AVEY, —JITHIEIIHIF"ELW =0.
0 0 0

Therefore 1 satisfies

 Aay 2 p—2,, _
Au IIHIIHMH}IH.| u=>~0.
Now, let w = tu, fort > 0; then w satisfies
tllulls,
N . H[]‘.ﬂ:' F_E
Aw = = w | u.
. ! l“”fr'fm : : 1 :
Choosing t such that —;-{— = 1 we infer the existence of a H;({}) solution to

~Aw = |lw|Ptw.

Example 9.12. We prove the existence of a W&'p (€)) solution to the following prob-
lem:

{—divuvuw-fvu}=b{x,u}, in Q, 931

u=20, on 0},

where p = 2 and b(x,s) : Q@ x R — R is a Carathéodory bounded function. We
remark that this problem is a Leray-Lions problem (see Chapter 5). Here we want to
show how it can be solved using the tools of the Calculus of Variations and Schauder’s
theorem.

Let us define o : W&‘F{Q} - W&‘F (€2) as the map that associates with w €
W{:'F{Q] the solution z € 'F-I-'};:'F? (Q2) of

(9.3.2)

~div(|Vz|P?Vz) = b(x,w), in Q,
z =10, on dQ.

This map is well defined, since by Theorems 9.1 and 9.2

J(v) = lJI“FUI""" —Jb{x,w}tf
ﬂﬂ £l

has a minimizer and the Euler equation is
~div(|Vz|P°Vz) = b(x,w).

Moreover such a minimizer is unique, by the strict convexity of J.

Let us prove that there exists a bounded, convex, invariant set for o and that  is
completely continuous. The existence of a solution to problem (9.3.1) will follow from
Theorem 2.10. Let us consider z in the weak formulation of problem (9.3.2) as a test
function: by Poincaré’s inequality, we have

IV21F s = [ Vz|?P°Vz.Vz= J-b{x,w}z = ClIVzllLro
) 0
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since b is bounded. This implies that there exists R such that if | Vw/|/;rq) = R then
IVz|ri) = R, that is, there exists a convex, bounded, invariant set for o.

To prove that o is completely continuous, it is sufficient to prove that if w,, — w
weakly in W, (Q) then o (wy) — o (w) in WP (Q). To this end, by choosing z,, — 2
as a test function, we have

JI?EHIF_ETEH-?{EH—E}= bix,wy)(zy - 2)
0 0

[I‘lep‘z'ﬁzﬁ?{zn—z): b(x,wizy —2).
) 0
Subtracting side by side

[ [1v2al7 2920 = 1921P2V2] - V(20 = 2) = [ (b (x,wn) = bx,w)1(2n - 2).
£} 01

Now, let us use the inequality [|s|? s — [t|P~?t](s —t) = C|s — t|P fors,t € R on
the left-hand side and Hélder’s inequality on the right-hand side. We obtain

CJ. (Vizn — 2)|F = Ib(x,wy) - b{XJW}||Lr1'{{;]|I|EH - EHLI"{Q:I-
y
Poincare’s inequality implies

ClIV(Zn — 2 p iy < 10X, W) — b(x, W) () -

By Theorem 3.6 b(x, w;) — b(x,w) in LP' (Q), since wy, — w in L”(Q). Conse-
quently z,, — z in Wy (Q), thatis, o (w,) — o (w) in W) (Q).

9.4 Summability of minimizers of integral functionals

In this section we study the regularity of the minimizers of the functionals

where j : Q x R x RN — R is a Carathéodory function, convex in the last variable,
such that
j(x,s,8) = «|E|° (9.4.1)

for some positive ««. Moreover we assume that j(x,s,0) = 0. Observe that if f be-
longs to | (), the assumptions on j assure the existence of a minimizer u €
Hﬁ (€2) of J, by Theorems 9.1 and 9.2. We are going to present some regularity results
on u, according to the summability of f, proving the following results (see [18]):

ferm™qQ), m>N/2=uc H}(Q)nL”(Q)
feLm™Q), me (2N/(N+2),N/2) = u <€ H}(Q)n L™ (Q)
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Remark 9.13. We observe that we have the same summability of the solutions to
Leray-Lions problem (see Theorems 6.6 and 6.9).

Remark 9.14. In the case where f has a lower summability, we will introduce the
notion of T-minimum in Chapter 11.

In the sequel we will use the following sets:
Ay =1{lul =k}, Br={k=|ul<k+1}.

Theorem 9.15. Let u < H(_l,{fl) be a minimizer of J. Let [ € L™(Q), with m > }
Then u is bounded.

Proof. By the minimality of u, we have J(u) < J(Ty(u)), thatis,

Ij(x,u.?u] < Jj{x, Ti(uw), VTi(uw)) + Jf(}k(-u},
0 0 0

This is equivalent to .
I Jlx,u,vu) < J fGrlu).

A £

Assumption (9.4.1) on j implies that

cxj VGr(w)]? < J;‘{;k(u}. (9.4.2)
Ay ()

As observed in Remark 6.8 we deduce from estimate (9.4.2) that u is bounded. []

Example 9.16. Let J: H[l, (2) — R be defined by

J(v) = %vanvuﬁ - [fu (9.4.3)
0 0

under the following hypotheses:

(1) 0 <« <al(s) < p, forsome , B > 0;

(2) aisdifferentiable and there exists y > O such that [a’(s)| < y;
(3) f belongs to L¥2 (Q).

By the above result, J attains its minimum at u € H}(Q) n L™ (Q) satisfying

J-a[u.}?u - Vv + %Ia’{u}l‘?ulzv — va =0, VveH Q) nL”Q)
0 0 0

by Remark 9.7. Consequently the equation
—divia(u)Vu) + glu)|Vul® = f

is the Euler equation associated with a functional ifand only if g = a’ /2.
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Theorem 9.17. Let u € H{(Q) be a minimizer of J. Let f € L™(Q), with 525 < m <
%* Thenu € L™ (Q).

Proof. We are going to show the regularity of u« in a recursive way.
Step I: As in the proof of Theorem 9.15, we have, by the minimality of u

rx[ IVGr(u)|? < j f11Ge )]
Ap Ay

(see inequality (9.4.2)). This implies that

n:j IVul? < [ Fllul. (9.4.4)

Ag Ak

Let A > 1 and let M be a positive integer. Multiplying inequality (9.4.4) by (1 + k)=A—3
and summing up for k from 0 to M we have

M M
o > (1 + k)3 J Vul® = > (1+k)*3 J fl . (9.4.5)
k=0 A, k=0 Ay

We are going to study the right-hand side of (9.4.5). Since Ay = U}f"’k B;, we obtain
M

M £
> A+ [l = Y+ 3 [ ifllul
k=0 A, k=0 h=k p,
- e Twih) |
= > flﬂlm > (1 + k)3,
h=0 j k=0

by exchanging the summation order. We now observe that for any h € K it results

Twth)

o 1 .
1+k) 3 < 2 + Ty (h))yW-b2,
}g”{ ) E(ﬁ—l}{ min))

Moreover on By, one has (1 + Ty (h))?1Y2 < (1 + | Ty (u) ) AY2, Therefore, the
right-hand side of (9.4.5) can be estimated by

M -
> (1 + k)23 J- fl ) < =—— S _[ LFl[2 + | Tay ()] A D2
k=0 2(A-1) =

By,

A

1 (A=1)2
< s | Iz + 1Ty o1,
{1

We handle the left-hand side of (9.4.5) in a similar way:

jllrf (w3

M
> +k]3‘““jj|'~?'u|2 = > (1+k)*3 > jwmf
Ak

k=0 k=0 h=k g,

T (h) (9.4.6)

+ oo
= > [|‘~?u,|2 D (L+ k)23,
k=0

Itil='|._.:| EJ:
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We observe that

- : h)
[1+ IMU’L”H_”L} Tﬁi 2213
< (1 + k)2,

2(A - 1) =

Moreover on By, one has | Ty ()| 12 < (1 + Ty (h)) 12, Therefore, by (9.4.6),
the left-hand side can be estimated from below by

Tee Twth)
X . | | |
2(A-1) _[ Vul? | Ty ()12 < o ) _[ Vul® > (1+k)=?
o JLI:“E,[, k=1)

M
o > (1 + k)= I Vul®.

k=0

Ap
In conclusion, if A is any real greater than 1, it holds
x WHFwymn“*”ﬂjﬁﬂmu2+uhuuuﬂ4”. (9.4.7)
0 0
Step II: We are going to prove that
f] w2 e LHQ) . (9.4.8)
Let no = 2*. Since f belongs to L™ ((2) and u belongs to L™ (Q2), by Hélder’s in-
equality, (9.4.8) holds true if A > 0 is such that % + ﬂ"—;] = 1, that is,
1/n
h=h{ﬂ}=E(E—l)+l
Define Y
r)‘u.l_'] = ?i“':.'ﬂ} = E [’H“II - ]] +1.

Thus (9.4.8) holds for A = Ag. We have Ag > 1, since m > (2*)’. Letting M tend to
infinity in (9.4.7), we get

H[Ivull |.H|[:‘L[]—IJE < J |JL| (2 + |H|}L§-\n—1}2+l _
0y )

The Sobolev inequality on the left-hand side implies

2
3

jmﬁﬂ* ﬂﬂjuwu+rmﬂ%””“, (94.9)
] )

where C denotes a positive constant depending on S, Ay, ot. Define, for nin E,

1
y(n) = A(n) 2% = E(}E, - 1)2% + 2% (9.4.10)
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By the definition of Ag (Ag — 1)2 + 1 = :Li, by using Holder's inequality on (9.4.9),
we have

2 - L 5

2% m’

[|u|}’““” < C LIl + [ fllmo [mw"
0 0

e

Let 0 = %, and observe that 0 < € < 1 since m < % We then have

01

.ll* .IIH

(o) . oz TS L
[ o < e iy + 1l | [ 1l
£} £l

e

(9.4.11)

Setn, = y(ne); weremark that ng < n; < m**, Thus, we deduce from (9.4.11) that u
belongs to LM ((2).

Step III: Since iy > no, we have A(ny) > 1; arguing as in Step I we can say
that (9.4.8) holds true with A; = A(n). Thus, it is possible to pass to the limit in (9.4.7)
as M tends to infinity obtaining (9.4.9) with A = A, that is,

2

2F
J Iulr"q'é' Ecj|f'|{2+|u|}{ﬂ.|—l}2+l.
£} )]

The same passages as above yield the following inequality, by definition of y(n)
(see (9.4.10)):

.
Jlul}””'] < CiIF A ) + 1oy J M| G
0 0
By induction we get, setting ni.1 = y(nk),
&)
J-Iulf“-' =C+C {Iul”‘t‘ . (9.4.12)
) 0

The positive constant C above depends on ny, |l.flli1 ), & S and meas({2). Since
Nk < m**,asm > 1, we can assume that C does not depend on k.

Step IV: We first observe that n, is an increasing sequence. Using Holder’s in-
equality with exponent ﬁf-ﬂ—_'-, we have

i
jlul’“ < J-Iul’“'l meas{ﬂ}l_'?_ns—:_l. (9.4.13)
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By Holder’s inequality, (9.4.12) and (9.4.13) give:

H[l—ﬂ—

J. u|"™ = C + Cmeas(Q) Mk 1 J |4 | e
0 o

- -0k

<C+C 1+J‘|H|nk+|

: £2 _

- 16

<=C+C 1+J|u|“‘~'+'
0

- &
<C+C j || Tk~
0

The last inequality implies that

J lu |1 < C, (9.4.14)
0

as 0 < 1. Since {ny} is an increasing and bounded sequence, it converges to some
p > 0. By (9.4.10), the limit p > 0, as k tends to infinity, is such that

Lip
= —|— —1)2% +2*
P 2 (m’ ) ’
that is, p = m™**. Letting k tend to infinity in (9.4.14) we obtain that u belongs to
L™ (Q). ]

9.5 The Ekeland variational principle

In the previous section, we have seen the importance of the minimizing sequences of
a functional. In this section, we explain the Ekeland variational principle, which is
a useful tool in studying their behavior (see [28]). Indeed it allows us in some sense
to have a “good” minimizing sequence, whose elements have some minimizing prop-
erties.

Theorem 9.18 (Ekeland principle). Let (X, d) be a complete metric space. Let | : X —
R U {+oco} be a lower semicontinuous functional which is bounded from below. Let
u € X be such that

e L
Ju) = 11‘:11:|:1t“t,ir + ot (9.5.1)
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Then there exists v € X such that

Jv) = J(u) (9.5.2)

div,u) =1 (9.5.3)

J(v) fij{ﬂ!]ﬂ-%d{’ﬂ,lﬂ}, YV weX, w=v. (9.5.4)

Proof. Let us define by induction a sequence ur € X. We set 11 = u. Assume we

have defined uq,u>,... 1. Let
Sk = {w eX:J(w) < J(ug) — %d[uk,w}} .

Sk 1s not empty, since 1 € Sy. By definition of infimum, there exists 1.1 € Sk such
that

J(ugs1) = é {J{uk} + iﬂ”} : (9.5.5)
Let us prove that uy is a Cauchy sequence. Since w1 = Si then
L (ur, uker) < J (i) — J (Uisr) (9.5.6)
By the triangle inequality

1 1 TF
(e Uiem) = D d(Ugsj, Uksj-1) < J(ur) = J(Ugem) . (9.5.7)

=

Now, from (9.5.6) it follows that J(u}) is decreasing; since J is bounded from below
in X, one has that
lim J(u) = «

—+ 00

for some o« € R. Inequality (9.5.7) proves that 1ty is a Cauchy sequence. Consequently
there exists v € X such that v = limy .. u;. On the other hand, since J is lower
semicontinuous,
J(v) < liminf J(ugom) = .
Il —= 0

This inequality and the limit for m — + o0 in (9.5.7) imply that
1
;d(uk,v} < Jlug) — J(v). (9.5.8)
For k = 1 we have
1 ., _ _ . 1
Hd{u,v} =Jw) - Jv) = J(u) - lg_fj <

by hypothesis (9.5.1). Hence d(u,v) < 1 and J(v) < J(u), thatis, (9.5.2) and (9.5.3)
hold.
To prove (9.5.4), assume by contradiction that there exists w € X such that

Jw) < Jv) - id(’w, v). (9.5.9)
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Using (9.5.8) one has

J(w) < J(ug) - %dtuk,m _ %a{w,u} < Jug) - id(uk,w},

-

that is, w € Sy, for every k. Therefore

int ] = J(w).
Sk
By (9.5.5) and (9.5.9) we obtain
: 1
2J(ugs1) — J(ug) = J(w) < J(v) - Ed{w, V).
Passing to the limit for k — o we get
Jv) = J(w) < J(v) - %d{v,w}

which is a contradiction. []

Remark 9.19. Let us introduce in X the distance d; = \u."lﬂd* Then (X, d,) is a com-
plete metric space. From Theorem 9.18 it follows that if 1, is a minimizing sequence,
there exists v, € X such that

(1) J(vn) < j(Hn?_

1
(3) J(wn) = J(w) +45d(vy,w), YweX.
Hence vy, is a minimizing sequence and its elements have some minimizing propetr-
ties.
We now apply Ekeland’s principle to study some regular functionals (see the ap-

pendix for the definitions).

Theorem 9.20. Let (X, || - ||) be a Banach space and let | : X — R be a semicontinuous
functional that is bounded from below. Let | be Gateaux differentiable in every direction
w € X. Then for every n > 0 there exists u,, € X such that

J(uy) = lllff + l
X n

, 1
17 )l =

Proof. The first inequality follows from the definition of infimum. Let us prove the
second one. Theorem 9.18 implies that there exists u,, € X such that

Jluy) = J(v) + %IIU - Uyll, forallv e X.
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Let w € X and t > 0O be fixed. Choosing v = u, + tw in the previous inequality, we

et
J(uy) — Juy + tw)

t

1
= —llwll.
[y

Passing to the limitas ¢t — 0 in the previous inequality, one has (/' (uy,), w) < ; Jw ||
for every w € X. Since this equality is valid for w and —w we get

] 1
[(J {un},w}lzﬁllwll, Ywe X.
Therefore ). ) ]
i uﬂ 11”
WJ (uplllyxy = su < —, u
oA wEX.Pu;H’] |w || n

Definition 9.21. Let (X, || -||) beaBanachspaceand J : X — R bea C! functional. We
say that [ satisfies the Palais—Smale condition if every sequence 1, in X such that the
sequence | J(uy )| is bounded and J'(u,) — 0in X' has a converging subseqguence.

We are going to prove the following theorem (see [41]):

Theorem 9.22 (Minimization with the Palais-Smale condition). Let (X, | - ||) be a Ba-
nach space and J : X — R a C! functional satisfying the Palais—-Smale condition.
Assume that J is bounded from below. Then J attains its minimum at ug € X and ug is
a critical point for J, that is, ] (ugp) = 0

Proof. By Theorem 9.20 for every n there exists u, € X such that

, 1 . 1
Juy) = lgl_f.f"' E! |U {uﬂ}”}[’ = E

The Palais—Smale condition implies the existence of a subsequence 1y, and 1y € X
such that 1y, — u¢. From the continuity of J and J’, passing to the limitas n — oo
we get

J(HU]=iI§fj, J (ug) = 0. (]

We are going to give an application of the previous theorem to the study of the
critical points of a functional.

Theorem 9.23. Let A be the first eigenvalue of L(v) = —Av. Let f € LV (Q)) with
2 <p<2*% Then

J(v) = Il'fvl‘E I1J~+—J-|u|ﬁ’—fjv

defined on H} (Q)), attains its minimum at u which satisfies

ue H Hy Q) —Au+ |[ulP Pu=Au+f.
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Proof. We will prove the existence of a minimizer using Theorem 9.22. J isa C' func-
tional. Moreover it is bounded from below, because

%J’|TU|2—%JUEEU
0 0

as we have seen in Theorem 8.4. On the other hand, using Holder’s inequality we have
that

] : 1 ~
p _[ v |P - J‘f“ = p J 1P = 1L f @ 1V e )
0 0 (0

which is bounded from below. Let us prove that J satisfies the Palais—-Smale condi-
tion. Let 1, be a sequence such that

J(un)l =R (9.5.10)

for some R > 0 and
J (uy) — 0. (9.5.11)

We want to prove that u,, converges in H; (Q), up to subsequence. Inequality (9.5.10)
is equivalent to

Since

one has, using Young’s inequality,

1 1 ;
EJ|'u.ﬂ|p'=_:R+J‘fun£R+EJ.|HH|P+L‘{;T} [|f|F .
() L2 (

02 ()

Consequently the sequence u, is bounded in L7 (Q2) and so, up to a subsequence,
Uy — u weakly in L7 (£2). On the other hand (9.5.11) gives us

— AUy + [Uupl? Euﬂ —MUp — f =n, (9.5.12)

with v, € H '(Q) converging to 0 in H ' (Q). Considering u,, as a test function,
one has

jmunﬁ < Ilvunﬁ 4 jlunw’ Y j u? [fu” + (Vs )
0 0 0 0 0

The right-hand side is uniformly bounded and so 1, — u weaklyin H}(Q) and u, —
uinL? (Q), since p < 2*. We claim that ,, — u in H}(Q). Choosing u,, — u as a test
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function, (9.5.12) implies

i

J.?{u,ﬂ —u)-Viu, —u) = - Iuﬂlp'zun(uﬂ —Uu) + Aq J.u,ﬂt'un —Uu)
0 0 0

+ fmﬂ—uymymuw~M—jvm.vmﬂ—uL
Q 0

[t is easily seen that the right-hand side goes to zero, by the fact that u,, — 1 weakly
in H,(Q) and strongly in L¥ (Q)); therefore u, — u in H}(Q). Due to the previous
theorem, J attains its minimum at u € H{ (Q). The Euler equation is

wue  HHQ) . —Au+|ulPPu=2u+f. n

For functionals that are unbounded from below, the mountain pass theorem by
Ambrosetti and Rabinowitz [1]) can be useful:

Theorem 9.24 (Mountain Pass theorem). Let H be a Hilbert space. Let | be a C' func-
tional defined on H satisfying the Palais—Smale condition and J(0) = 0. Assume that

there exist positive constants v and a such that J(u) = a if |[u| = v, and there exists
v € H with ||v|| > v such that J(v) < 0. Let

I'=1{ge C(0,1I;H)|g(0) =0,g(1) = v}

Then

c = ég;ﬂ}ﬁf[g{tﬁl,

is a critical value of J.

Theorem 9.25. The functional

JW}=ijva—ijnmt 2 < p<2*,
2 p
() (9]

defined on H|, (), has a critical point at u which satisfies
ue HVWQ): —Au=|ul? *u.

Remark 9.26. We have already seen in Example 9.11 that J is unbounded from below.

Proof. We are going to prove that J satisfies the hypotheses of Theorem 9.24. This will
imply the existence of a function u # 0in H;(Q) such that —Au = |u|?2u. It is
not difficult to prove that J satisfies the Palais—Smale condition. Indeed let 1, be
a sequence such that

|J(un)| =R (9.5.13)

for some R > 0 and
J (uy) — 0. (9.5.14)
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We want to prove that u,, converges in H} (}), up to subsequence. Choosing 1, as
a test function in (9.5.14) we get

. I 2
[l“nl = unllpgy o) + Tunllp g -
0

On the other hand, (9.5.13) gives

1 1
EHHHHHEIJ{Q:' £H+_.[|lin|ﬁ.
pﬂ

The last two estimates give that [[u || ;1 ) is uniformly bounded, since p > 2. There-
fore there exists u € H{(Q) such that, up to a subsequence, 1, — u weakly in
Hj(Q) and u,, — u in LP(Q), as p < 2*. We claim that u,, — u in Hj(Q). In-
deed, (9.5.14) gives, for v,, € H 1 () converging to 0 in H 1 (Q)

(‘F[uﬂ —u) - ViU, —u) = J U |? P U Uy — )
0 0
+ (Vn,Un — U) — J Vu - Viuy —u).
0

It is easily seen that the right-hand side goes to zero, by the fact that u,, — u weakly
in H& (€2) and strongly in LP (Q); hence uy, — u in H& (Q)). Therefore J satisfies the
Palais—Smale condition. ]

Now, let u € H}(Q), with [l 1) = r.Then J(u) = ’? - %jﬂ |1 |P. By the
Holder and the Sobolev inequalities one has

xr

B

) 1--E 1- &

[ - > meas(€2) 2 p meas(£2) "
u|¥ < meas())" =7 u < u L= ¥
[ 1 @ | | ol o, "
) )
¥<  meas({}) 9% T -

and then J(u) = 5 — P = a > 0ifr is sufficiently small, as p > 2. Now,

7
let u € H}(Q) be fixed and let v = tu, t > 0. Then

2 or P
J(v) = %J IVul? — %JI'HIP <0
B 0

if t is sufficiently large, as p > 2. [l

Remark 9.27. For the regularity of minimizing sequences for integral functionals of
the Calculus of Variations via the Ekeland’s principle see [11].



102 =— Calculus of variations and Euler’s equation

9.6 Appendix

Let X be a Banach space and || x || denote the norm of x € X.

Definition 9.28. Let J : X — R be a functional.

(1) J is weakly lower semicontinuous if liminf,,.. J(x,) = J(x) for every se-
quence x, weakly converging to x.

(2) Jiscoercive if lim|y|— 0 J(X) = +o00.

Let us recall the Gateaux differentiability of a functional J : X — R (see [2] for
more details).

Definition 9.29. J is Gateaux differentiable at x & X in the direction h € X if there
exists a linear continuous functional J'(x) : X — R such that

. Jx+th) - J(x)
lim
t—0 t

={J'(x),h)}.

Let us recall the Fréchet differentiability.
Definition 9.30. J is Fréchet differentiable at x € X if there exists A, € X' such that

IJ(x +h) —J(x) - Ax ()| _

lim 0.
[h]—0 ]
[f the map
X - X
.:’i' — 14._1*'

is continuous, we will say that J is C!.

We note that if J is Fréchet differentiable, then it is Gateaux differentiable. Con-
versely, if the map x — J'(x) is defined in a neighborhood of x and is continuous
at xp, then [ is Fréchet differentiable at xq and J' (xq) = Ax,.
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10 Natural growth problems

10.1 Introduction

In Chapter 9, we have seen that a minimizer of

F(v) = '[a.{u}l‘?f’vlz - J,fv
0

Q
satisfies the Euler equation

—divia(u)Vu) + a’ (w)|vul? =

in which there appears the natural growth term |Vu|°. In this chapter we are going
to study the boundary value problem (not necessarily variational)

{_dmeXJnvul+Hu=4ﬂxﬂh?“}+f“”'i“ @, (10.1.1)

=20, on &€,

under the following assumptions. The set () is an open bounded subset of RV, with
N = 3. Moreover b : 2 x R x RN — R is a Carathéodory function such that, for some
y >0

Ib(x,s,8)| < ylEl*; (10.1.2)

M = M(x, s) is a symmetric matrix with Carathéodory entries satisfying
M(x,$)E-E=«lE*, [M(x,s)| <B. (10.1.3)

Finally y > 0. Observe that, due to the quadratic growth of b with respect to the
gradient, Leray-Lions theorem cannot be applied, since the composition operator
v — b(x,v(x), Vv(x)) does not map H}(Q) to its dual, but only to L' (Q). We
refer to [20] for more details and for further references.

As well, a natural growth term appears in the case where one considers the mini-
mization of integral functionals as

I(v) = Hu + 0" V)2 - j Fu,veHNQ).
0 Q
Indeed, the Euler equation for I is (at least formally)

—div((1 + [u|DVu) + 2ulul" 2|Vule = f, in Q,
[ : / (10.1.4)

u=>0, on ofl.

Note that the lower order term depends quadratically on the gradient and satisfies
vglix,v,Vv) = 0. In the second part of this chapter we will study the boundary
value problem

(10.1.5)

—div([a(x) + [ul9]Vu) + b(x)ululP\Vul* = f, in Q,
u==0, on 00,
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under the following assumptions. The functions a and b are measurable and

O<u=alx) =g, (10.1.6)
0<pu=hix) =v, (10.1.7)

where «, 3, u, v are fixed real numbers, and p, q are positive,
The case p = g — 1 is related with the minimization problems. We refer to [6] for
more details and further references.

10.2 A problem with bounded solutions

We will present the following existence and regularity result.

Theorem 10.1. Let ) be an open bounded subset of RN, with N = 3. Let u > 0. Assume
(10.1.2) and (10.1.3). Let f be in L™ (£}), m > N Then there exists a solution u €

Hg () n L™= (€)) to problem (10.1.1) in the following weak sense:

J-M{:f,u}‘\?u-?quJum = Ib{x, u.,"Fu}qHJ.fm, Ve H\(Q)NLY(Q).
0 0 0 0

We will work by approximation on the following problems:

~div(M (X, W) VU) + pu = by (x,u, V) + fu(x), in Q, (10.2.1)
u=0, on o€, -
where b £)
X, 5
bn(x,s, &) = —
on{X, 5, & 1+ 5 |b(x,s,8)
and f(x)
X
fﬂ{x] o - .
1+ 2| f(x)]

Corollary 5.10 of the Leray—Lions theorem and Stampacchia’s theorem (Theorem 6.7)
imply that for every n € N there exists a weak solution u, in H;(Q) n L*=(Q),
since |b,| = n. The first step of the proof consists in getting uniform estimates of
the H} (©2) and L™ (€2) norms of the solutions; we therefore may pass to the limit and
prove the existence of a solution to problem (10.1.1). The following lemmata will be
useful for us.

Lemma 10.2. Let u, be the sequence of solutions to problems (10.2.1). Then the se-
quence Uy, is bounded in H; (Q).
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Proof. Let us consider @y, = (e*}n| — 1)sgn(u,), A > 55, as a test function in the

weak formulation of problems (10.2.1): this is possible since u, € L™ (Q).
Step I: As for the left-hand side, using the ellipticity of M, one has

JM{x. Un) VU -V@u+p J UnPn = 200A J Vg |2e*Munl 4y J [Up|(e*Munl 1)

) ) O
(10.2.2)

Regarding the right-hand side, the growth hypothesis on b allows us to say that

Jb(x, U, Vin )@y + _[fnq?n < J y | Vi, |2e*Minl 4 I | fl(eMunl — 1)
0 £l )

It is easy to prove that

J’ |v1£” |2€2:‘L|Hn| _
()

Therefore, by (10.2.2), we obtain

N j 9 (Nl — 1)2

200A — y

G 11||Lm}+uj|uﬂ|te2f"“'='—1J5j|f|(e“'“ﬂ'—1}.

Step II: Let us now estimate the last term of the above inequality. Let R > 1. Using
that et — 1 < R (et — 1)% + 51, t € R* and Hblder’s inequality we have

I Ul (EEMHM ~-1) <

0

= [ L1+ R lem N = 11 g -
£}

E"'ur

We note that 2 < 2m’ < N

j £ (e2Munl

= 27, The interpolation inequality gives

-2
Ay EE' Aluy 2018
ﬂ

0, 1-0
i 3

where 0 satisfies ﬁ

J- |f| (EEAIHHI ~1)
£}

Ay Ay
_1f|f|+sm||f||mm}e|| unl 112,y 4 Celledn! = 112,

ﬂ * * L]
where C: = £1-7, Summarizing we have obtained

206A — y

LIV = 1)z g, + b | @ - 1)

0

= ——— J'fl + & R”f”l."'{ﬂ}}ﬁ” Alunl _ I-"hr* + CE”EMHM 1”L ()
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Step III: Let us use Sobolev’s inequality on the right-hand side and afterward choose &
in such a way that

2A — 1 :
o\ Y _ Efiﬂll.fllwun}?lf -
This implies that
200N — y AMunl 13012 2A |ty |
2?‘;2 ”?[E " _l]”;ﬁtﬂ}"'“‘l"unHE " _]-}
0
< ﬁjlfl + C, .[{e‘]"“"' —1)%. (10.2.3)
0 0

Since (eM — 1)? < e — 1, for t = 0, we have

20X\ — o
ST - Dy b [ el 1)
1Ce=p |ty |}
< ﬁ [ |f| + CE -[ (EEMHM —1) + CE j (Eif’kluﬂl ~1).
£ 1Ce=punl} {Ce=punl}
Consequently
200\ — NSl

YIv (eAunl — 1y

2A2 L) < R_1 Ce(e® 5~ 1) meas(Q) .

The last inequality tells us that the sequence |, e°'*n![|Vu,,|? is bounded. As A > 0,

the sequence [, |Vu,|? is bounded. (]

Lemma 10.3. Let 1, be the sequence of solutions to problems (10.2.1). Then the se-
quence Uy 1s hounded in L7 (£2).

Proof. Let us consider v,, = (e Cxtunll _ 1)son(u,,) as a test functions in problems
(10.2.1). Since Gk (uyn) = 0in {|un| = k}, we have

[M(x,uﬂ]?un-?vmru _[ UpUpy = J b(x, Uy, VUuy)vy+ J faln.
£ {tn =k} Hn|=k} Hn|=k}

Using exactly the same arguments used in the previous lemma to get (10.2.3) we have

2A — y

%2 ”?[EAIGHHH} _ 1}"%2[!1]' + U J |uﬂ|{€}!hlﬁk{u"}| -1

{lura|2k}

J- | f| + Cs J‘ (E-‘Llﬂk[unll_]}z_

Hinlzk} Hnlzk}

R-1
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By Sobolev’s inequality on the left-hand side we deduce that

(2Aex — y) §? |G ltn)]

2 NGy (1

Hunlzk}
1
< J U“| + C; J’ {Eﬁlﬂkl{un}l _ 1}2 ]

R-1
Hnl=k] HEELS

The inequality (e — 1)2 < e2M — 1, for t = 0 on the second term of the left-hand
side gives

1 (20— y)§* M G (1t

12 ) + 1 J k(eMGkaul _ 12

2 Al
g =k}
1 - AlGy(un)| 132
7= | e | e 1)2.
Hun =k} TEL S
Choosing k = If we get
2R " NG _ 2, co <oy | M

Hupl=k}

On the left-hand side we use that ¢! — 1 > t for every t = 0 and Holder’s inequality
with exponent 2*, This gives

N2
;"J |Gr(uy)| < J eMCkttnll — 1| < meas({|un| > k}) = [|eMCkMT — 100 g

() (1

N+

< Cy meas({|unl > k}) % J f]
{lunlzkl

Pl

where (; denotes a constant depending on A, &, § and R From Holder’s inequality

with exponent m on the right-hand side we get, for k = .u

N+2 |

hj G )| = C1 Lf1 ) meas({[un] > k}) 2 *aw

Remark 6.3 and Lemma 6.2 imply that ||uy, || ;=0 is bounded. ]
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We can now prove the existence theorem of this section.

Proof. We divide the proof into two steps.

Step I: Let u,, be the solutions to problems (10.2.1). The previous lemmata imply
the existence of a function u € Hj(Q) such that Vi, — Vu weakly in L?(Q), up
to a subsequence. We are going to prove that u,, — wu in H}(Q). To this end, let
us consider as a test function in problems (10.2.1) v, = Yi{u, — ), where ((t) =
(eMtl — 1)sgn(t). We can write

J.M(x,uﬂ](?uﬁ —Vu) - (Vuy —Vu)p' (uy — u)
0

= —H (HH'UH + J‘bn{una Vi) vy
() Q

— | M(x,un)Vu - (Vuy — Vuly' (U, — u) + jfnv;-f
0 0

— | M(x,u)Vu-Viuy -y (uy — u)

()

—,ujunvn +yJ IVtn 2 |vnl + j Fllvnl .
0} Ly )

WA

Using the ellipticity of M, one gets

E’:J |FHH - ?HFI_."!I{'HH T ’H}
0
< —JM{I,HH)‘FH Viun —uw)P (uy —u)
0

;
_P’Juﬂl’ﬂ + }’J. VUl |vnl + J- fllvnl.
() ) 0

Now, |Vunl® = [(Vuy — Vu) + Vul® < 2|Vu, — Vul® + 2| Vu|?: this implies that

[mun CVul[e (U — ) — 2y @i, — W]
£

< Eyj |V u Izvn—J M(x,up)Vu-(Vu,—Vu)y' (uy—u)—p j Un Uy +J | fllvnl.
) £} L) )

Observe that if A > %— then oy’ (uy — u) — 2y | (uy, — w)| = 1. With this choice,
setting C = sup,, [l (uyn — u)||r~(q), one has

IV, — ‘Fullfgm} < £‘J Mix,up)Vu - (Vuy, —Vu) —u '[ Unln
0 ()

| (10.2.4)
+ Eyj VU2 v + [ Fllvnl .
L

0
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We now want to prove that the right-hand side of the previous inequality goes to 0. [t
is clear that v,, — 0 a.e. in Q2 and that |v,| < C since y is continuous and u,, U
are bounded in L”(Q); Lebesgue’s theorem implies then [, |Vul|*|v,| — 0 and
o | fllvn] — 0. Holder’s inequality with exponent 2 implies that [, u, v, — 0. Let
us now study the first term. One has that M (x, 1, )Vu — M(x,u)Vu a.e. and con-
sequently in L°(Q) for Lebesgue’s theorem. Since Vit,, — Vu weakly in L<(Q), the
first term goes to 0. Therefore (10.2.4) implies that | Vu, — Vuljziq, — 0.

Step II: We now prove that u is a solution. For every ¢ € H{(Q) n L™ (Q) one
has

th(x,*un}?uﬂ -V + [unq:l = Ibn{x, Uy, VU, )@ + J-f},q:-.
() 0 0 0

The first term tends to
JM{x, u)Vu -V,
0

as Uy — u in Hj(Q) and M(x,un)Vv — M(x,u)Vv in L?(Q) for every
v € H)(Q). Clearly [, fu® — [of® and [qun@ — [,u@. We claim that
lo bn(x,upn, Viy)p — [ob(x,u,Vu)e. The sequences 1, and Vu, converge
a.e. in ) to u and Vu respectively, and so b, (x,un, Vuy) — b(x,u,Vu) a.e..
Moreover | by, (x, Uy, Vin)| < y|Vuy|?: this last sequence converges in L' (©). Due
to Lebesgue’s theorem

by (x,Un, VUuy)@ — b(x,u,Vu)p

in L' ()), up to a subsequence. We can therefore pass to the limit and get

IM{:&:,H]?H -V + uJuq:- = Jhlx,u, Vu)p + J fo
0 0 0 0

for every @ € H)(Q) n L™ (Q). ]

Remark 10.4. The pu term, with g4 > 0, has an important role for the existence of
solutions. Indeed, let us consider

~Au = |Vul*+ f, in Q,

u=>0, on 00,
where f is bounded and strictly positive. By contradiction, let u € Hy (Q) n L™ (Q)
be a solution to the previous problem. By the Maximum Principle (Theorem 4.12) u is
positive. Let us set z = e* — 1. Then z belongs to H, () n L* () and is positive in
(). Consequently

Vz=(z+1)Vu, -Az=—(z+D[Au+|Vul’l=f(z+1)
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in the distributional sense. Choosing ¢, the first eigenfunction of L{v) = —Av (see
Chapter 8), as a test function, one gets

{-}ﬂ.:‘-.ljt}'?l.?: (Tf'q:ll -Vz=- [f[z+1}q:}1 < —J‘fzq':;-l = (),
0 0 0 0

that is, a contradiction.

10.3 A problem with unbounded solutions

In this section we study problem (10.1.5), proving the existence of weak Hj (Q) solu-
tions. In the first result, we will study the case where the source f belongs to L™ (),
with m > %

Theorem 10.5. Let O be a bounded open subset of RN, N = 3. Assume (10.1.6)
and (10.1.7). Let f be a positive function belonging to L™ (Q), m > 5. Then there

exists a positive solution u € Hl% ()N L™(0Q)) to ]

{_div{[a{x} +ul]Vu) + b(x)uP |Vul® = f, in Q, (10.3.1)

u=>0, onoQ).

Proof. Step I: Let u,, € H}(€2) N L™ (Q) be a solution of the Dirichlet problem

(—div([a(x) + | Tn(un) ] Vuy,)

1 - 1nf),
; +E:-[x]Tn{uH}ITH{un}IP‘]IT’HHI*+ﬁun = f, (10.3.2)
Un =0, on dfl.

The existence of such a solution is assured by Theorem 10.1, since a is bounded by
assumption (10.1.6), | T (uy)| < n and the second term is bounded by vn? | Vi, |2,
due to (10.1.7). Choosing u,, as a test function, it is easy to see that u, is positive,
since f = 0. Now we use u, as a test function. By (10.1.6) and (10.1.7), dropping
positive terms, we have

..} l. al
HJ VuUnl® < J Jnlin.
1§ £

It is easy to deduce that the sequence u,, is bounded in H g] (€2). Moreover, the use of
Gy (uy ) as test function yields, dropping again positive terms,

ﬂII?Gk{un}IE < ffckiun}.

() £

By Remark 6.8 we infer that the sequence 1, is bounded in L™ (2},
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Step II: With the same technique as in the previous section, one can prove that
U, converges in H} (Q) to some function u € Hj (Q) n L™ (Q). Indeed, up to a sub-
sequence, there exists u H[-ll{ﬂ} such that Vu,, — Vu weakly in L<(Q). Let us
consider as a test function v,, = @ (u, — 1), where @(t) = (eM't! - 1)sgn(t). We can
write

[ra{x:: 1T )1 (Vitn — Vi) + (Vi — V)@’ (thn — 1)
()
+ jb{x]n (W) | T (1) [P~ Ve |20
)

_ _Hunun - [[a(x:r 1T () [11VU - (Vi — YUY (U — 1) + [fvn

By assumptions (10.1.6) and (10.1.7), one gets

HJ VU, — Vul“gw (U, —u)
0}
< - J[am T () 9]V - V (1 — WY (U — 1)

£2

F‘l’t UpUp +VC J|?tﬂn|£U,] _I‘fvn-

0

as ||y llr=(0) isbounded. Now, |Vin|® = [(Vup — Vu) + Vul? < 2|V, - Vul? +
2| Vu|?; this implies that

JV‘?H-H ~ Vul? e (up —u) = 2vC @ luy — u)l]

< 2v( II?HIEUH - J[a(x} + | T4V U - (VUun — VO (U, — u)
0

1
_HJHIIUH van
() {1

Observe that, if A = :ﬂl, then ot (g, — u) — 2y |y (U, — u)| = 1. With this choice,

using that ||/ (1 — )|z~ and || un ||~ (q) are bounded, one has

1
|V, — Vu ”; oy =C I Vu-(Vu, - vu) - " Juﬂ’un
0

(10.3.3)
+2vC J IVulv, + J’f'u” .
0 0



114 —— Natural growth problems

We now want to prove that the right-hand side of the previous inequality goes to 0. It is
clear that v, — 0 a.e.in (2 and that the sequence v, is bounded since y is continuous
and U, u are bounded in L™ (Q2). Lebesgue’s theorem implies that [, |[Vu|°vy, — 0
and | fvy — 0. Using Hilder’s inequality with exponent 2, one can prove that
[q unvn — 0.Since Vu, — Vu weakly in L°(Q), the first term goes to 0. There-
fore (10.3.3) implies that || Vu,, — Vullpziq) — 0.

Step III: 1t is now easy to pass to the limit in (10.3.2) to get a H} (Q) n L™ (Q)
solution to

{—div([a{x} +ul|Vu) + b(x)u?|Vul* = f, in Q, -

u=~0, on oQ.

In the following result we will get weak positive H, () solutions to prob-
lem (10.1.5), in the sense thatb(x)u? |[Vul|? € L'(Q), and

I[u{x}+uﬂ‘?u Ve + (b{xmf-’l‘?‘ulzq:- J.jf.p, (10.3.4)

L]
forevery @ € H}(Q) N L™ (Q). (10.3.5)

Theorem 10.6. Let Q) be a bounded open subset of RN, N = 3. Assume (10.1.6)
and (10.1.7). Let f be a positive function belonging to L™ (Q), m = % Then there
Estts a solution u in the sense of (10.3.5) such that

) ifm=1,p = 2q, then u befung:s to LP+2 7 (Q);

(2] if w+h;{v?f~lu'”::+4q m = '?, 2q = p = q — 1, then u belongs to L'P+2)m"" (());

B) ifgos =m=<3,q=1,2p =q— 1= p,thenu belongs to L'4"V™"" (Q),

In the case where the summability of f is lower, we will show the existence of
aweak positive H} (Q) solution u to (10.1.5) in the sense that b (x)u? |Vu|? € L1(Q),
and

J[a{x]l +ut]Vu - Vo + Jb{x}u”l‘?ulztp = J-fcp,
0 0 0 (10.3.6)

forevery @ € W, (Q).

Theorem 10.7. Let QO be a bounded open subset of RN, N = 3. Assume (10.1.6)
and (10.1.7), 2q = p. Let f be a positive function belonging to L™ (Q), with m < %
Then there exists a weak solution in the sense of (10.3.6) such that

(1) ifl <m < sybsias P =4 - 1, thenu e LP+2m" (Q);

: 2 N 2N - o
) if max|1, g[gql_;ef]ﬁ{q_l_”n‘. J=m< Naod — 1 =p, thenu € L'atbim (€2).
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For the sake of simplicity we will present the above results in the caseg = p — 1:

Theorem 10.8. Let QO be a bounded open subset of RN, N = 3. Assume (10.1.6) and
(10.1.7). Let f be a positive function belonging to L™ (Q), with m < ‘"" . Then there
exists 0 = u € H)(Q), weak solution of (10.1. 5 ) in the sense of (10.3.5) such that

1) ifm=1,p <2, thenu bet‘ﬂngs to L7252 (Q);

(2) if lﬁ_r+ﬁ'[j‘§‘f2}+4q <m < 3, p = 2, then u belongs to L'P*2)""" (),

Theorem 10.9. Let () be a bounded open subset of RN, N = 3. Assume (10.1.6), (10.1.7)

and p = 2. Let | be a positive function belonging to L" (), withm = i Ifl =m <

2pN - (p+2)m**
EN+F[N—F;]*=HI?—1‘J‘ then there exists 0 = u € H}(Q) n L'PT2m™ () weak solution

of (10.1.5) in the sense of (10.3.6).

We will work by approximation on the following sequence of problems:

div([a(x) + u Vin) + b(xX)un|Vupl® = fn, in Q,
| ([a(x) + ub ' ]Vuy) + b(xX)un|Vunl? = fr 1037)

Uy =0, on o},

where f,, = Tn(f). These problems are well posed due to Theorem 10.5. In the fol-
lowing lemma we prove that the sequence ¢, is bounded in Hjj(Q).

Lemma 10.10. Let f = L' (Q).
(1) There exists R > 0 such that

||Hr1||;1. oy = RIFLva s (10.3.8)

(2) ifAr = {uy, = ki, then

Ib{x}uﬂmuﬂﬁ < Jf* (10.3.9)

Moreover, there exists U € H{%, (Q) such that 1, — U in H{%, (Q2) up to a subsequence.

Proof. The use of T;(u4,) as a test function in (10.3.7) implies

J[ﬂ{x) +ul vy, - VTi(un) + J‘b{x}uﬂl‘ﬁunlzl}-{un] < JﬁiTj{un}.

By assumptions (10.1.6) and (10.1.7) one has

HJI?TJ{HH}|E +p Pt J 1Vun? ijff-

() fj<unl

We deduce that, for every j € N,

' 5 1
JI‘FHHIE= J IViuy|® + J Vuyl® < [i :|||f||fl{£1}
J «  pjgr

W=n<jl i=un!
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which gives (10.3.8). Therefore there exist u € H ,% (Q)) and a subsequence (still denot-
ed by u,,) such that we have that u,, converges weakly to u in H} (Q).

The use of T} (1, — Ty (uy)) as a test function in (10.3.7) gives, dropping positive
terms,

J b(xX)Uh|Vunl® < j [f.
[ten — T (un) | =5} N AR A
The limit as j — co implies (10.3.9). ]

Lemma 10.11. The sequence Vu,(x) converges a.e. in () to Vu(x), where u is the
function found in Lemma 10.10.

Proof. We use Ty (1, — Ti(u)) as a test function in (10.3.7): then

j[mx} +uh IV - VTh(un — Te(w) = 2R1F o) -
0

This gives, by (10.3.9),

J Hax) +uh [V, - [alx) + uh VT |- 9Th (un - Ti(w))
{1

< 2h| fllpia) — J la(x) + uﬁ_l]‘ff’l’k{u} NTh (U — Ti(uw)).
0
Now, VTh(u, — Te(u))isnotzeroon {—h + Tp(u) = 1y = h + Ti(u)}. Therefore
[ [a(x) +uh ']?Tk{u} NV Th(wy — Ti(u)) — 0,since Ty (uy, — Ti(w)) — Ty (u -
Ti(u)) weakly in (L°(Q))" and the sequence u, is bounded on this set. Thus it
follows from (10.1.6) that

[ Rl

ﬂ.’limsupj IV Th(Un = Te(u)) 2 < 2R S0 @) - (10.3.10)
£

Let now r besuch that 1 <+ < 2 and R as in Lemma 10.10. It is clear that

[lvmn—w=j|vrh+:u}-,—n+:un|"+ j IV (- )"
( 0

0 Hup—ul=h,u=k}

+ J V(uy —u)l".

n—ul=h}

By Holder’s inequality with exponent f on the last two terms and estimate (10.3.8) we
deduce that

[mun —w)|” < j IV Th (i — Te(u))|”
£ )

+ 27 IR 11}y meas({u > k})'

+ 27 IR FII) o meas({|uy — ul > R} 7
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Thus, for every h > 0 and k > 0, we deduce from (10.3.10) and the L2 (Q) convergence
of u, to u, that

3|

limsup | |[V(u, -—uw)|" = |h i (f meas(Q)!" 2 + 2" 'R "meas({u > k})1 7.
H— 0 .

L} ()

The limitas h — 0 and then k — + o gives

J.I?[u.”—u}l”’—-ﬂ. Vir<?2. (10.3.11)
0

Then (up to subsequences) Vu, (x) converges a.e.in Q to Vu(x). ]
Fatou’s lemma implies the following corollary.

Corollary 10.12. Let u be the function found in Lemma 10.10. Then

0 < [mmwm? < jf.
£y £y

Proof. It is sufficient to pass to the limit in (10.3.9) written for k = 0 using the previous
lemma. []

Remark 10.13. We point out that in Lemma 10.10 and in Lemma 10.11 we only re-
quire f to belong to L' (Q).

Lemma 10.14. Under the assumptions of Theorem 10.8, [a(x) + ub™ | Vuy converges
weakly in (L% (Q))N to [a(x) + uP~1]Vu and a.e. in Q.

Proof. By the previous lemmata it is sufficient to prove that the sequence [a(x) +
ub 1V u, is bounded in L2(Q).
Step I: Assume m1 = 1 and p < 2. Estimate (10.3.9) and assumption (10.1.7) imply
that ,
ujuiiwuﬁﬁ < j f. (10.3.12)
0 0
Since p = 2, by (10.1.6), (10.3.8) and (10.3.12) we get

J-[a.[x]+uﬂ_l]2|‘?u.”|3£ J 2[B% + uh || Vu,|® + J 2[B% + 1]V uy,l?

0 (1=t} {in <1}
<2(B*+1) _[ (Vg |? + 2 (NATATEY
u
0
< 287 + DR fllp g + 201100

The a.e. convergence of 1, and of Vu, imply the result.
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StepII: Assume p = 2and 1 = m = Ef'h"+;?{;"~."2—.tf_;?r+'—lfp—ﬂ' . We first prove that u, is

bounded in L7 *2'm"" (Q)). Let

B {.E' + Ejm**

¥ -
2 ®

We use (& + uy)?" 2P —g272°P () < € < 1, as a test function in (10.3.7). Dropping
positive terms and using (10.1.7) we get

H J Hiir-_luvunlz = CJ I)rl (& + HH]EF_E_p
€1 L2
%r (10.3.13)

o
< Cllfll@ + ClLFllmo) J'“‘”'U 2 pim
Ly

By Sobolev inequality on the left-hand side, we deduce that the sequence u, is

bounded in LP*2m™" (), as ¥2* = 2r -2 — p)m’ = (p + 2)ym** = 0 and

2 1 2(r—1 2 .
5+ > 5-. As a consequence of (10.3.13), also the sequence [ wy V| Vuy,l? is

bounded. Since p < v this implies that

2

J[a(x} +ul I Vual? < 2p° J V2 + 2Jui”"“|vu”|~
0 0 1
< 2B°RI fllr1a) + C. O]

Proof of Theorem 10.8. We will first prove that

J‘[a(x] +uP lvu - Vo + Jb{x}-uPIF'HIEQ? = Jf‘:ﬂ
0 0 ()

for every 0 = @ € H(Q) n L™ (). Then we will treat the general case.
Step I: We have

'[ [a(x) + -u.ﬁ_']‘ﬁun -V + J b(x)uh|Vunl*@ = _[fn{p,
0 ) 0

forevery 0 < @ € H)(Q) n L™ (Q). Lemma 10.14 and Fatou’s lemma yield

J [a(x) +uP 'IVu - Vo + Jb{x}uplﬁuqu:- < [ft;u. (10.3.14)
0 0 0

Step II: Let 0 < @ € H}(Q). We define y(s) = s¥, H(t) = IJ y(s) ds and use

~ZH(un) , =H(Ty (1))

e Ea

i’
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as a test function. We obtain

J[ﬂ(x} +ul VU, - Ve wlln) o g H(Ti(u)
£}

+ EJ [a(x) +uh | Vin - VT () y (Ti(u))e™ wHn) e aHT0) g
£

— Jfﬂe—‘—;mun}eﬁmﬁm})q}
2

Vv _ v
+ J- [a(x) + ul Vg - Viny (uy)e wHn

{2

- J-b(x}ufilvun 2o wHlun) g gH(Tu) g5 >
0

) e XH(TiW) g,

The limit n — oo, Fatou’s lemma and Lemma 10.14 yield

J‘ la(x) + u*‘-"“]vu -V o~ wllu) o G H(Ti(u))
£}

e I [a(x) + ul]Vu - VT () y (Te(u)) e~ 5HW o H T g,
)

v v v _ _ X L
= JIE—HJI{H)EﬁIIka{H]]q}EJ[ﬂ[x] + uPf 1]?1{ -Vuylue AR -:'-:H[Tk{u”q_]
() 2
_ Ib(x]uﬁ|TH|EE—%H{HJE§HHHH]}{F_
0

This implies that

J.la,{x} +uP ' IVu - v o~ wHW) G H(T(u))
0
> J-fe_ﬁH[u]EﬁH{TkEuH(p _ J-b{x}u.ﬂ|?H|EE—§H[1¢]£§H{H[“}}$ _
£ 0

In order to use Lebesgue’s theorem (as k — + o) in the previous inequality, note that

wH{TE )

FT.EW < 1. Then
J-[a{x] +uP lVu - vo = J.fq:: —~ [b{x}uiﬂl‘ﬁulqu (10.3.15)
0 0 0

Lemma 10.14 implies that u?~'|Vu| € L?(Q); inequalities (10.3.14) and (10.3.15) im-
ply, forevery 0 = @ € H}(Q) n L™ (Q),

J-[a(x} +uP '\Vu - Vo + J‘b[x}uf’lvulzq.) = qu;:r.
£} £l L2
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Step III: Every positive @ € H}(Q) n L™ (Q) can be writtenas ¢ = @ — @ .
Therefore we can prove the existence of a solution u of the Dirichlet problem (10.3.4).
]

Proof of Theorem 10.9. We point out only the differences with respect to the proof
of Theorem 10.8. First of all we observe that, since p = 2, by Corollary 10.12 and
Sobolev’s inequality, 1, is bounded in LP“((Q). We are going to prove that the se-
quence Uu ﬂ_l |V Uy | iscompactin L' (Q). By (10.3.9) and Hélder’s inequality we have

| —
Pl it
=

-1, 1—2 - . .
Juﬂ VU, < J‘ui, JH.%“?HRH = Jf

Apg Al A A

Then, for every measurable subset E, the inequalities

Juﬁ Ny < _[ ub Vgl + kP 1JI‘FMnI
E

E (k=1ty)
1

. C[ [f] + k1R? meas(E)? | £l 1 g,

A
imply |
lim sup J.uﬂ_llvu,.l < C[J}"]E .

meas(E)1—(0
AL

Thus Vitali’'s theorem yields that uﬁ_ll'ﬁunl strongly converges in L'(Q) to
u? - 1|Vul. To pass to the limit in (10.3.7), we repeat the proof of Theorem 10.8,
obtaining two inequalities; the first one can be obtained exactly as before, while for
the second one we have to modify the proof, since we no longer have (10.14). For
j = 0, define

(1 if s<j,

Ri(s)=qj+1—-5s if j=ss<j+1,

10 if s>7+1,

and choose e« () e uH T R (11,)) @ as a test function in (10.3.7). We conclude
the proof, as in the Theorem 10.8 (proof of (10.3.15)), letting first k tend to infinity, and
then j tend to infinity, observing that R;(s) tends to 1. ]



11 Problems with low summable sources

11.1 Introduction

In Chapters 5 and 6, we focused our attention on the existence of solutions to the
Leray-Lions problem

(11.1.1)

~divia(x,u,Vu))=f, in Q
u=>0, on &,

assuming that the source f belongs to L' (Q)) with m = ,.frz and under the following

assumptions on a Carathéodorymap a : Q x R x RN — RV:

(1) there exists B > 0 such that la(x, s, )| < BlIs| + |€|1;

(2) there exists &« > O suchthata(x,s, &) -& = «x|&|°, V &€ RN,
3) lalx,s,&) —alx,s,n)]-1&—-nl>0if& +n.

Moreover Q) is an open bounded subset of RN, N = 3.

In this chapter we study the existence and the summability of the solutions in the
case where f belongs to L™ (Q) with 1 < m < nfrz Note that we cannot use the
Leray-Lions theorem (Theorem 5.1), since the source does not belong to H 1 (Q2). We
will prove the existence of distributional solutions u, that is u will be a function in

W{::'l (€2), at least, such that

Ja{x,u,'\?‘u} -V = Jﬁp, Ve Cy(Q).
0 0

Although u does not belong to Hj (©2), we will show that, for every k > 0,

II‘FTktu}IE < Cok,
0

which is fundamental for the uniqueness of solutions, as we will see in Chapter 12.
For the reader’s convenience we summarize here the main results of existence of
solutions 1 in function of the summability of the source f:

f e L'(Q) or fisabounded measure = u € M~ (Q), Vu| € M~ () ;

2N 1,.m*

feL™@),l<ms == sueWy™ (Q).

The last result can be seen as a nonlinear Calderon-Zygmund theory for elliptic prob-
lems with infinite energy solutions.

We will follow the proofs of |12, 13]. The reader can find further references there;
for recent developments see [38].
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In the linear case, the existence results (if f is a bounded measure or if f belongs
toL™(Q), 1 =m < %] are due to G. Stampacchia. They can be seen as a Calderon-
Zygmund theory for linear operators with discontinuous coefficients.

We observe that general results can be proved in the case where a satisfies the

coercivity assumption
a(x,s, &) -&= «l€”, VEeRN

(see Remark 11.18).
Moreover, we will study the regularizing effects of a lower order term. More pre-
cisely, we will consider the problem

—divia(x,u,Vu)) + [lu|P'u=f, in Q,
u=20, on o2,

for a source f € L™ ((2). It is not difficult to prove that ||V € L™ (). We will prove
that

fel™Q),m>1,pz= > u e H)(Q);
: | 2pm
eL™Q), m>1 Wol(Q),V g < ———;
f [}Tm} ,p{m_I;“-HE If]{}’ q{]__'_r__.m’
2p

fel' Q) =>uew,Q), Vagc<

1

1 +p

following the proofs in [16]. Note that the study by Brezis and Strauss of semilinear
equations like

—diviM(x)Vu)) + lulP lu=f, in Q,
u==0, on dQ,

was the bridge between the linear case and the nonlinear case.
In the last section we will study the regularity of minimizers for integral function-
als of the form

J(v) = J-j(x, Vv) — va
£1 (2

where j : Q x RY — R is a Carathéodory function, convex in the last variable, such
that
J(x, &) = «|€|°

for some positive ot and f belongs L' (Q). Due to the summability of f, the nonexis-
tence of minima led to the definition of T-minima, in analogy with the definition of
entropy solutions to elliptic problems (see [5] and [33]).
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11.2 A priori estimates

We will work by approximation to prove the existence of distributional solutions and
entropy solutions to problem (11.1.1). We consider

—divia(x, Uy, VUun)) = fn, in Q,
[ (af )) = f L2

Uy =0, on d{2,

where f, is a sequence of functions in H ' (Q) n L™ (Q) such that f,, — fin L™(Q),
[fullemiy = [[flemiqy and | fru(x)| = [f(x)] a.e. in Q (for example [, = Ty, (f)).
The existence of solutions u,,, for every n, follows from Theorem 5.1; moreover iy
belongs to H.j (€2) N L™ (£2) due to Theorem 6.6. Our strategy is as follows. We get the
following estimates: the sequence 1, is bounded in E'l-'};{'m* (€2) when m > 1 and in
W{} Q) q < %, when m = 1. This allows us to get a subsequence converging to
some function u. We prove that Vu, — Vu a.e. in (2. In this way we can pass to the
limit in (11.2.1) and prove that u is a solution to problem (11.1.1).

Lemma 11.1. Let [ € LY(Q). Then the sequence of solutions u,, to problems (11.2.1) is

bounded in W' (Q2) with q < e

Proof. We consider vy, = [(1 4 |un|)?* ! = 1]sgn(u,) as a test function in (11.2.1).
Let A < 1/2:in this way |v,| = 1. As for the right-hand side we have

[ uvw < 1l < 1 11.22)
0 0

Using the ellipticity of a in the left-hand side we have

1Al ) = Jﬂ{x,urx,?un) -V, = n:J IVun (1 = 22)(1 + |up )™ °
£} 0
v 12
VI + |unl)t]
A

= (1 - 2?\){1!

The above estimates imply

Vunl? :
I | 'H| - ”.yf ||L1{ﬂ} (11.2.3)

(1 + [un|)?0-Y 7 &(1 - 2A)

On the other hand

. I?H |I;'|' _ gy d
[ 192017 = | P (14 )20 VY,
J D ) 2008

[
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Using Sobolev’s inequality on the left-hand side and Hélder’s inequality with expo-
nent é in the right one, we obtain

i
54 J |M-1*1|q\F < | [Vu,l1
0 0
q 1-4
|V Uy |° J‘ | (1-A)2g
1+ u 2-q
( (1 + |up))20-N et
{1 £}
[nequality (11.2.3) implies
" (1-Xi2g
sS4 J Uy |9 < [WHHI‘* <C+C J. Uy | Za (11.2.4)
0) 0 Q
where C denotes a constant depending on q, A, «, || f|l11(q), independent on n. Let
T=X12 . . I . . .
us choose A such that “%L’;’i = g*, thatis, A = g::_;; Since A < %, this implies
q < %,In this way
stf [ lunl” | <coc| [
Q 0

and so the sequence [, |u,|4" is bounded. Hence the right-hand side of (11.2.4) is
uniformly bounded and |, |[Vu, |4 too. ]

Lemma 11.2. Let [ € L™ (), m > 1. Then the sequence of the solutions u, to prob-
lems (11.2.1) is bounded in Wa™ (Q).

Proof. We divide the proof into two steps.

Step I: We prove that the sequence u,, is bounded in L™ " (Q)). Let us consider
Un = [(1+ [un))®*! = 1]sgn(uy) as a test function in (11.2.1); A > 5 will be defined
later. For the right-hand side we have,

jﬁwnﬂjMM1+maﬁ*t4]zjum1+mmﬁ*PHL
[y [y

{2

By Holder’s inequality with exponent m we get

_I‘f”'”” < 1 f My + 1Fem ) [{l + U, ) EA-Lm
“ 0
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For the left-hand side of (11.2.1), using the ellipticity of a and Sobolev’s inequality, we
have

Ja{x,un, Viup) - Vuy = o [ (Vun|? (20 = 1)(1 + |uy))?' 2

£ 0
A1 12
={2a—1mj VLA + [un))
A
Q
Zh—l «S
> 2 [m + L)
Summarizing
1
."| m'
ISy + IS lemiq) j[l + |1y, |) 22 1m
/
C [ Vuyl®
= (2A l]th STy
2 (11.25)
2A — 1)x§? -
y

Now, let us fix A such that A2* = (2A — 1)m’, that is, A = ”;—T(} 1/2). With this
choice, we deduce from the previous estimate that

k

a

(2A — 1) «xS?
22

o
(1 + |unl) = ¥
0

&
< 1f e + I Fllom j 1+ 1™
[
Since 3% > mL this implies

j|un|m** gj|1+uﬂ|*"*"‘ < C, (11.2.6)
0 0
where C denotes a constant depending on S, m, &, || fll 11 (q), ||f||;_n_| (1)«
Step II: Let us prove that the sequence u, is bounded in W{} " (Q2). We observe
that estimates (11.2.5) and (11.2.6) imply that the sequence [, “f Uy |” — is bounded.

|12y )21
Assume that A < 1, thatis, 1 <m < 5. Let 1 < g < 2 and write [, |Vuy|9 as

Vg1 3 (1—A14
J‘I‘Fuﬁl‘f=j(1+|u IT]l:‘{l a}i“ +lun )0V
) "
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By Holder’s inequality with exponent ﬁ we get

1 1-4
|1"FH.I=1'|;3 I (1-A) =4
Vu q = . .|:]_ + |u } -4
'[| " (14 |unl)2tt-d Un
{2 0 0
et g = m*; in this way =24 — m**_ From (11.2.6) it follows that the sequence
Let g *; in this way 452 ]
.[51 |""r_1i FI|H1E. is bounded. ]

The following lemma will be useful for us:

Lemma11.3. (1) Let f € LY(Q). Then, if u, are the Hﬁ{ﬁ} solutions to (11.2.1), there
exists u € I-‘r"&‘q{ﬂ}. q < %, such that Vu,, — Vu a.e.in (), up to a subse-
quence.

@ Iffel™Q),m>1,uecW ™ Q).

Proof. The estimates of the previous lemmata allow us to get a subsequence, still de-

noted by u,, weakly converging to some u < E'lr-"{; Q) g < J.\,-Pfl . We note that if

f € L™(Q), m > 1, then u belongs to W™ (Q).
To prove the result, we will prove that for & € ( 0, %}) one has

im | {[a(x, Uy, Vi) —alx,u,Vu)] - Viu, —u)}? =0 (11.2.7)

Fl— oo

£

and then we will use Lemma 5.8. In the proof C denotes a constant independent of n
(depending on S8, @, meas(Q)).
We write Q as the union of A, and Ci, where

Ak = {lunl =k}, Ck:={lunl = k}.

Step I: Let us estimate

fmx,umvw —alx,u, V) - Vg - u)? .

-"h;.

By the growth assumption on a we get

J [a(x, un, Vitn) — alx,u, Vi)l - V(up — u)l?

.-'"||||,;-
< J‘ la(x, Uy, Vily) - Vi, —u)|? + _[ la(x, u,Vu) - V(u, —u)|?
Ap Ay
<2 [ 1unl®IVaen| + 28 | [ual®1Vul® + 28 [ 1ul® |V
Ay Ay Ay

+ 28 [ [ul® 19wl + 28 | 192+ 28 | [Vul + 28 | 19219 Vay |,
A Ap A A
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The Cauchy-Schwarz inequality and the estimate on ||ii,|| of the above lem-

mata give

W, (0)

J [a(x, un, Viy) — alx, un, V)l - V(up —u)|® = Cmeas(Ag)'/>.
Ap

Step II: Let us now estimate

J {[a(x, Un, Viy) —a(x,u,Vu)] - V(uy —u)?.

Ch
We observe that || = k on Cy (since 1, — 1 a.e.in Q) and |uy,| = k on C). There-
fore one has

j{[ﬂ{x:un: Vi) —alx,un, Vu)l - Viu, - “}}H
C

= j{[a{x,un,?un} —a(x,u, VT (u))] - V(un — Ti(u))}®
Ch
< J{[ﬂ{x,un_?un} —a(x,u, VTi(u)] - V(up — Ti(u)}?.
0
The last integral can be estimated as follows, if we set

V;:={|Hn—Tk{H}|5j}f V

{ = {lun — Tew)| > j} -

I{[a(x,uﬂ,ﬁuﬁl —alx,u,Vu)] - V(u, —u)}?
Oy
< J{[a{x,un,?un} —a(x,u, VTi(u))] - VTj(un — Tr(u))}?
0
+ J‘{[ﬂ{xs Un, VUuy) —alx,u, VTi(u))] - Viu, - Tk{u}]}ﬂ.
Vi
Let us now estimate the first term of the right-hand side of the previous inequality
using Holder’s inequality with exponent 1/€: in this way

J{[a(ﬂf,un, Viy) = alx,u, VIg(u))] - VTj(un — Te(u))}?

0}
&

< J{[ﬂfx.uﬁ,?un}—a{x,u.?mu}}]-?T_;{uﬂ ~ Ti(u))} | meas(Q)!Y.
)

On the other hand, we can estimate the second term of the right-hand side using the
same argument used for

_[ [a(x, un, Vi) —alx,u, Vu)l - Viu, —u)|’:
Ap
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we get

[ 11ate,wn, 1) = alx, 1, 9T @) ¥ (1t - Tew) 1€ < Cmeas(v))

Vj

Summarizing we have

[{[a(x,un, Vi) —alx,u,Vu)l - Viu, —u)}?
f:';;

< Cmeas{V}}%

0
+ (J{[H{I, Up, VUp) —alx,u, VTi(u))] - VTj(uy - Tk{H}}}) meas(Q)! 9.
).

(11.2.8)
The use of T;(u,, — Ty (1)) as a test function in (11.2.1) yields
Ju{x, Un, Vi) - VTi(uy — Ti(u)) = J-j}tle[un — Tp(u)).
0) Q
Estimate (11.2.8) thus implies
[{[a(x,um Vi) —alx,u,Vu)l - Viup - u)}’
Ct
0
=C (J{f,iTj{u.ﬂ — Ti(u)) —alx,u, VT(u)) - VTi(un — T;,_-(u.}}}) (11.2.9)
0 -

+ Cmeas{lr"}ﬁ .
Lebesgue’s theorem gives

A%Jfrirf'{un ~ Tk(u)) = IIT;{H — Ti(u)).
£l £l

On the other hand, since u,, converges to « in measure, one has

lim meas(V}) = meas({|u — T (u)| = j}).

M — 00 .

We claim that, as n — oo,

Jca.{x, u, VIp(u)) - VTj(uy — Te(u)) — J alx,u, VIig(u)) - VITj(u — Tr(u)).
0 0
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It suffices to prove that Tj(uy, — Ti(u)) — Tj(u — Ti(u)) weakly in H,}}{ﬂ]. To this
end we observe that

J (Vuy — VT (u)|® <2 J V| +2 [ VT (u)|?.

{ttn - Tr(u) <} {unl<j+k} [t =Ty ()<}
(11.2.10)

Now, considering T k(1) as a test function in (11.2.1), one has

-:IJ- VT (un)® < J-a(x.un, Vup) VTjk(un) = jﬁmTﬁk{un] < J-Ifl (J+k);
) 0l £}

()
(11.2.11)

consequently

[ vl < 116G+ 0.
[y

{lupl<j+ki

By (11.2.10), this yields that the sequence ||V T (14 + Ti (1)) ”EE () is bounded; since
Titup-Te(u)) = Tj(u—-Ti(u))a.e.ind, Ti(uy —Tp(u)) — T;(u—Ti(u)) weakly
in H&, (€2). We can therefore write, by using (11.2.9)

rllulgé._[ fa(x, un, Vi) —alx,u,Vu)] - Viu, —u)l?
C

< Cmeas({|u — Te(w)| = j1)]?
&
+C U LT, (u — Te(w) — alx,u, VTx(w) - VT; (u - Tk::un) .
)

Step III: We have

lim I [[a(x, Uy, Viy) —alx,u, Vu)] - Viu, - M)I':j

— o2
()

< A]‘];Ié j [a(x, Un, Vi) —alx,u,Vu)l - Viu, —u)l?

Al

+ lim J a(x,un, Vuy) —alx,u,Vu)] - Viuy — u)|?
Ci

1
Z

< C|meas({|lu— Ti(u)| = j}l]lj'lE + C | meas({|lu| = k)]
tt
+C U I[fTj(u— Te(w) —alx,u, VTi(u)) - VTi(u — Tk{u}ll) .
0

The last three terms go to 0, as k — + oo and so the previous inequality proves (11.2.7).
Lemma 5.8 implies that Vi, (x) — Vu(x) a.e. in (2. [
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11.3 Distributional solutions

In this section, we study the existence of distributional solutions to problem (11.1.1).

Theorem 11.4. Let f € L™ (Q),withl < m < % Then there exists a distributional

solutionu € W™ (Q) to problem (1L1.1). If f € L1(Q), u € Wo'(Q), for every
N
q < NoT1-
Proof. We distinguish the cases m > 1 and m = 1. We pass to the limit in prob-
lems (11.2.1). In the whole proof C denotes a constant independent on n.
Step I: Let m > 1. Let u be the solution found in Lemma 11.3. Holder’s inequality

with exponent ”;',—*, for ¥ < m*, and Lemma 11.2 imply that

¥
Jrr'

II‘E’HHI*’ < J.I‘Fu,ﬁl"”* meas(E)!m* < Cmeas(E)! m* |
E E

where E is any measurable subset of (2. By Vitali's theorem (Theorem 3.2) Vu,, — Vu
in L" (Q)) for every v < m™. Moreover, from the fact that Vu,(x) — Vu(x) a.e.in (2,
it follows that

alx, up(x), Vup(x)) —alx,ulx), Vu(x)) a.e.in .

The growth assumption on a and Lemma 11.2 imply that the sequence |a(x, u,,
Vun)llpm= o, is bounded. By Theorem 3.1 a(x, un, Vu,) — al(x,u, Vu) weakly
in (L"(Q))V, It is now sufficient to pass to the limit in (11.2.1) to prove the result.
Step II: Let m = 1. Let u be the function found in Lemma 11.3. Using the same
arguments asin Step I, Vi, — Vu in L9(Q)) for every g < % This implies that

alx, Un(x), Vip(x)) — alx,u(x), Vu(x)) a.e.in Q.

The growth assumption on a and Lemma 11.1 give that the sequence ||a(x, u,,
VUun)llLaiq) is bounded. By Theorem 3.1 a(x, uy, Vi) — alx,u, Vu) weakly in
(L9(Q))N, It is now sufficient to pass to the limit in (11.2.1). ]

11.4 The linear case: a different proof

In this section, we present a different proof of Theorem 11.4 for linear problems. We
prove the following result (see [49]):

Proposition 11.5. Let M be a N x N symmetric matrix with bounded coefficients; as-
sume that there exists «« > 0 such that

M(x)E-&=x|E|°, VEeRN.
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Let f € L1(Q). Then there exists a distributional solution u € Wﬁ'f’i(ﬂ} to problem

—diviM(x)Vu) =f, in Q,
v(M(x) )=7, i (11.4.1)
u =20, on dQ,
satisfying for every q < ~ the following estimate:
ullyra gy = ClHLF I @) (11.4.2)
forsome C = C(N,q, o) > 0.
Proof. Let f, = Ty, (f) and u,, € Hj () be the weak solution to problem
—diviM(x)Vu,) = fn,, in Q,
(MEO V) = fr (11.4.3)
uy =0, on 0.

Theorem 6.6 guarantees that u, € L= (L)), for every n € N.
Define the following “dual” problem: for every n, let w,, be the solution to

jM(x}‘FwH Vv = j}{k Vun T Vu, Vv, (11.4.4)
{1 £l

forevery v ¢ H{l, (€2), where x|, stands for the characteristic functionof { | Vu, | < k}.
We observe that x|V, |1 ¢Vu, € L™ (Q), for every n. Therefore problem (11.4.4)
has a solution by Leray—Lions theorem (Theorem 5.1). Moreover we can use Theo-
rem 6.14 to say that w,, € L™ (£)). Let us now consider ¢ = w,, as a test function in
problem (11.4.3) and v = u, in ((11.4.4)). In this way

[M'(I]THH ' "'h_""wH = J’Lfnw?i
0 0

Jmcx}vwﬂ VUun = JX" IVun|T° Vg - V.
£

The symmetry of M gives

[Xk |1'F1*i'f1r1l|i]| = J fﬂwn = ||fn||f.':_f1}||'wn||I.'°[£';!J .
) 01

By Theorem 6.14 applied with m = ﬁ—l > N, we get

g-1
i

[xk|vuﬂ|ﬂ£c*||f;i||m} jxumw |
£ ()
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where C depends on N, g and «. Therefore
1/qg

[ xcivunit] < Clifulln. (11.4.5)
0

Passing to the limit as k — +o0 in (11.4.5), Fatou’s lemma implies

Vuunllra) < C||.f||Ll[m ;

forevery q € [1, ,hi_]] Therefore, uy, is bounded in lﬂ.;-_.-{jl-‘ii (€2) and there exists a sub-

sequence weakly converging to some u In I-‘r"[}‘q (€2). It easily seen that u is a weak
solution to problem (11.4.1). Moreover estimate (11.4.2) follows from the weak lower
semicontinuity of the L9 norm. ]

11.5 Entropy solutions

In this section, we introduce a new notion of solution to problem (11.1.1): the entropy
solution, which is a particular distributional solution. We give the definition, some
properties and then we prove the existence. We will understand the importance of
entropy solutions in Chapter 12 where we will study the uniqueness of solutions.

Definition 11.6. We set

T(Q) ={u:Q - R measurable and finite a.e. such that
Ty(u) € Hy(Q), Vk=>O0}.

Let us study the gradient of a 7 (Q2) function.

Lemma 11.7. For every u € T (Q)) there exists a unique measurable map v : @ — RV
such that
VTi(uw) = v Xiju<k ae.in £,

Moreover, if u € H[I, (€2), v coincides with the usual distributional gradient V u.

Proof. Let k, £ = 0; then
T (Tse(u)) = Ti(u);

since T (1) belongs H{ (Q) for every j, one has
VI (Tkee(u)) = VT (u).

In Qr = {lul < k} the previous equality is equivalent to VT, (1) = VT (u) for
every € > 0. Since [ J.o Qr = Q, setting

Vulx) = VIi(u(x)) ae.in Q,

the lemma is proved. ]



Entropy solutions = 133

We are now in position to give the definition of entropy solution to prob-
lem (11.1.1).

Definition 11.8. Let f be an L' () function. A T (Q)) function u is an entropy solu-
tion to problem (11.1.1) if

Ja{x,u, Vu) -Vip(u - @) = [ka[u — @)
0 0 (11.5.1)

Vk>0 and V@ € Hy(Q)nL¥(Q).

Remark 11.9. The entropy inequality (11.5.1) is well defined. Indeed, the right-hand
side is finite, since Ty (1 — @) is bounded. As for the left one, we observe that T3 (1 —
@) belongs to H; () and

VIru—@) = V(U — @) X{ju—gp|=k -

Therefore
.[a.{x, w, Vu) VT (u — @) = .[ alx,u,Vu) - Viu— ).
= {u—gl=kj

In the set {|u — @| < k}, Vu belongs to L*(€2) and consequently a(x, u, Vu) be-
longs to L2 (Q) too. The left-hand side is thus well defined.

Remark 11.10. A H; (Q) function u satisfying
J-a{x,u,?u] Vv = [fv, Vv e H(Q)
9! 0

is clearly an entropy solution to problem (11.1.1). This implies that the Hﬁ,{ﬂ} distri-
butional solutions found in Chapter 5 (when the source f € L™(Q), m = %), are
entropy solutions to problem (11.1.1).

Let us study the main properties of the entropy solutions.

Proposition 11 11. Let u € T () be an entropy solution to problem (11.1.1). Then u
belongs to M7 (€2).

Proof. In the whole proof C will denote a constant independent of u and k. Consider
@ = 0in (11.5.1): the ellipticity of @ implies

&l VT ()22 g jm w,Vu) - VTiw) <kl flpq, Vk>O0.
)

Let 0 < h < k. By Sobolev’s inequality on the left-hand side, the above estimate gives

h? meas({|u| > h}) < j u|? < Ck? /2.
Hul=k!
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Pt | 7

Now, let h = . We deduce that

il

meas({|u| > h}) = Ch %7,

meaning, u € M52 (Q). ]

Remark 11.12. The same technique can be used to prove the following statement. As-
sume that 1, is a sequence of functions such that for a positive constant C it holds

VT ()2 < Ck,  Vk>0.

Then there exists a positive constant ¢ (independent on n and k) such that

meas({|un| > k}) < c.a,-

kw—z

Proposition 11.13. Let 1 be an entropy solution to problem (11.1.1). Then |Vu| <
M
M =1 (Q)).

Proof. In the proof C will denote a constant independent of 1 and k. As in the previ-

ous proposition, consider ¢¢ = 0 in (11.5.1). We get

J-ITT;;;{HHE <Ck.
0
Therefore
t“meas({|u|l < k,|Vul| > t}) < J Vul|® = Ck.

flul=k,|Vul=t}

The last estimate and Proposition 11.11 give

k C
meas({|u| < k,|Vul| > t}) + meas({|u| > k}) =C 2 + -
N-2
Consequently
Lk C
meas({|Vu| >t}) = C —= + ——;
L= kﬁ
minimizing with respect to k the function
k — E}, — ].\. :
b= kw-z
one has c
meas({|Vu| > t}) = ——. []

FN-T
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Remark 11.14. With the same technique one can prove the following result. Assume
that u,, is a sequence of functions such that for a positive constant C it holds

IVTi(un)llfzq) = Ck,  Vk>0.

Then there exists a positive constant ¢ such that

meas({|Viun| > k}) < —5

N-1

Corollary 11.15. Let u € T (Q) be an entropy solution to problem (11.1.1). Then
la(x,u,Vu)l € L1(Q).

Proof. The growth assumption on a implies
meas({|a(x,u,Vu)| > k}) < meas({|u| + |Vu| > k}). (11.5.2)
The above results give |u| + |Vu| € M7 (€©2). We deduce from (11.5.2) that
la(x,u,Vu)| € M¥1(Q) € L1(Q). 0
We now prove that the entropy solutions are distributional solutions.

Proposition 11.16. Let u € T (L)) be an entropy solution to problem (11.1.1). Then u is
a distributional solution, that is,

[a{x,u,‘?u}-?wzj‘fw, Ve Cyl(Q).
0 0

Proof. Let ¢ € Cy (£2); consider @ = Th(u) — @ € Hé{ﬂ} N L*¥(Q) in (11.5.1). Then

I alx,u,Vu) - (Vu xqu=n + Vi) = Jfﬂ:(u — Th(u) + ).
Hu—Thuw)+yr| <k} 2

The ellipticity of a gives
I alx,u,Vu) -V < [f Titu —Th(u) + ).
Hlu—Thluw)+y|<k] £}

If we consider k > ||| L= q) we have

Xllu—Tyluw)+yl<ky — X0, 4as h — +o0,

Sincea(x,u,Vu) - Vy € L' (Q) we can use Lebesgue’s theorem and prove, passing
to the limit as h — + oo, that

Jﬂ.{x, u, Vu) - Vi < J*’F Y, YyeliQ).
0

£

The choice of — instead of ( gives the opposite inequality. Therefore u is a distri-
butional solution. []
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We can now prove the existence of entropy solutions to problem (11.1.1):

Theorem 11,.17. Let f € L™ (Q), m = 1. Then there exists an entropy solution u €
T (Q) to problem (11.1.1).

(1) Iff e L1(Q), u befﬂﬂgﬁtDM% 2 (L)), |‘Fu| E Mﬂ- ().

(2) Iff € L™(Q), m > 1 then u belongs to HU Q).

Proof. Let u,, be the solutions to problems (11.2.1). Let us cnnsider Ty (uy—q) asatest
function. By Lemma 11.1, u, converges weakly to some u in W, L) with q < l,
up to a subsequence. By Lemma 11.3 Vu,, — Vu a.e.in Q and so a(x, uy, Vit,) —
a(x,u,Vu) a.e. in Q. On the other hand, for every k and @ € H}(Q) n L™ (Q),

VTi(up — @) = VT (u — @) a.e. in Q. Fatou’s Lemma implies that

liminf | a(x,uy,, Vuy) - VTi(u, — @) = Iﬂ{x,*u,?u] - VTiiu—@).

— oo
() £l

Lebesgue’s theorem yields

Hm [ fo Titun - @) = [ f Tt - @),

We have thus proved that u satisfies (11.5.1). To prove that T (1) belongs to H} ()
for every k > (), one can choose Ty (1, ) in (11.2.1), as a test function. By the ellipticity
of a, it is easy to see that

&IV T (un) 1520y < KILFIL1 ) -
Since Vu, — Vu a.e. in €, passing to the limit as n — oo we have that

|| V Ty I{“H}IIL,_,{ﬂJ < kil fllpq) -

Thus Ty (1) belongs to H, (Q) for every k > 0.
As for the summability of u:
(1) if f belongs to L' (), it is sufficient to use Propositions 11.11 and 11.13;
(2) if f belongs to L'(Q2), m > 1, one can use Lemma 11.2. ]

Remark 11.18. We observe that similar results can be proved (see [12, 13]) in the case
where a satisfies the coercivity assumption

alx,s,&)-E=w|EIP, VEeRVN.

Indeed, if the source f € L'(Q), 1 < p < N, then there exists an entropy solution

u € MP1(Q) with |Vu| € MP2(Q), where p; = —‘F%,p; =Nl fp>2- 1

then there exists a distributional solution u 1-1-’D 1), q < po.
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11.6 A comparison between entropy solutions and
distributional solutions

In the previous sections we have proved the existence of entropy solutions and dis-
tributional solutions to problem (11.1.1). We now want to compare these two notions,
showing that they are not equivalent.

Proposition 11.16 establishes that an entropy solution to problem (11.1.1) is a dis-
tributional solution. We now present a linear problem having a distributional solu-
tion which is not an entropy solution (according to an idea given originally by Serrin
in [47] and presented differently in [44]).

Let M = (m u}?‘:} e RN*N be the following matrix: if x = (x1, .., Xy)

. L. o— & ]'_EE hﬂl:.: ] =
Mij = 0ij + 2 xfl}i%’ Ly=12 (11.6.1)
mi; = Sij, i,]+1,2.

M is elliptic and bounded. We claim that

X1 1
E <

—1 (11.6.2)
(x? +x3)7 N—1

Up(x) =

satisfies —div(M (x)Vug) = 0in RV, Let @ be a C™ function with compact support
in RV, Integrating by parts yields

I M(x)Vug -V = };.i_m{;. M(x)Vuy - Vo
RN {x[=p]
= — lim 4‘: @ M(x)Vug - X ds
o0 |I|
Hxl=p}
] 1
= _E}qj_rﬂ — @ x1ds

{x[=p}
=0

since the last integral is 0 (p?) as p — 0. Moreover, setting Q = {|x| < 1}, one has
that up € WH1(Q), g < 57 and Ti(uo) ¢ H' (Q). Consequently, if

Floy = =X (11.6.3)

the function
vix) =x1 — Up(x) (11.6.4)

is a distributional solution to problem

—~diviM(x)Vv)=f, in Q,
v =10, on df),

but it is not an entropy solution, since it does not belong to T (£2).
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11.7 Measure sources

In this section, we study the existence of distributional solutions to

(11.7.1)

—divia(x,u,Vu)) =u, in £,
u=10, on 40,

where u is a measure, that is, y € M(2) (see the appendix for the definition and
some properties). We will prove the existence of a W& 1 (Q) function such that

Ja{x,u.?u}-?q)=J¢Jd,u, V@ e CyQ).
0

We will use the approximating problems (11.2.1) where f,, is a sequence of Cy (£2)
functions such that || full;1 ) = Mmoo and f, — p *-weakly in 2M(€Q) (Theo-
rem 11.39 guarantees the existence of such a sequence).

Theurem 11.19. Let p € M(Q). Then there exists a distributional solution u €
Q) q < N ],mpmbiem (11.7.1).

As in the case where the source isin L' (), we need the following two lemmata:

Lemma 11.20. Let u = ‘M(Q)). Then the sequence of solutions u,, to (11.2.1) is bounded
inW,(Q), g < 3.

Proof. The proof is similar to that nne of Lemma 11.1. Indeed, considering v,, = [(1 +
[y )21 — 1]sgn(uy), A = ‘_f::: —) as test functions, one has the following estimate
for the right-hand side

anun < Ilfnl .

Q Q

in the same spirit as (11.2.2). We can then use the same arguments as in Lemma 11.1 to

prove that the solutions 1, to problems (11.2.1) are bounded in i-'l-'}i'q (2), g < _,.h.‘”f] :

]
Lemma11.21, Letpu € M(L2). Then if u, are the Hﬂ, (Q2) solutions to problems (11.2.1),
there exists a function u < W, 0 1), q < l such that Vu, — Vu a.e.in ), up to

a subsequence.
Proof. The proof is not very different from that one of Lemma 11.3. C will denote a con-

stant independent on n. Step [ follows in the same way:

J [[a(x, un, Vun) — alx,u, Vu)] - Viu, —u)|? = Cmeas(Ax)"/?,
Ay
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where Ay = {|uy| = k}. As for Step II one can follow the same arguments, except
for (11.2.9):

j [a(x, tn, Vin) — a(x,u, V)] - V (tn — u)|°
e

0
=C (J‘{fﬂﬂ{un = Ti(u)) —alx,u, VT(u)) - VTi(uy - Tk{u]]})
Q)

+ Cmeas{v;-}% ,

with ‘L; = {|uy — Tip(u)| > jland Cy = {|un| = k}. Regarding the first term of the
right-hand side we observe that

(&
(I{fn Ti(up — Ti(uw)) —alx,u, VT (u)) - VTi(uy, - Tk{ll”})
{2

g &

=C +C Ja{x,u,‘?]‘k{u}}+‘E’I;{HH—T;¢{HH

0

anT_;-{uﬁ — T (u))
)

a
<C (J j|f,,,|) L C
2

< Ci%llpl Sy + C

&

J alx,u, VIy(u)) - VIjluy — Tp(u))
0

0

Ja{x,u.?ﬂ{u]] - VTi(uy — Ti(u))
0

Therefore

( [alx, un, Viy) —alx,u, V)] - Viu, — u)|®
{f'r._-
o

. rry L
< Cjolullsq + C + Cmeas(V))?.

ja{x,u.mtun VT (i — Ti(w))
[

One can then use the same arguments as in Lemma 11.3 for the second and the third
term of the last estimate. In conclusion

rlli!l}@_l-{[a{x,un.?uﬂ] —alx,u,Vu)] - Viup, —u)}?
0}
< Cj®+ Clmeas({|u — Tu(w)| = j})]1% + C[meas({|u] > k})]?

a
+C ([ ILfTi(u—Ti(u)) —alx,u, VTi(u)) - VT;(u - THH}H) .
£}
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As k — oo, the last three terms tend to 0. As j — (, one has

lim | {[a(x, un, V) —alx,u,Vu)l - Viuy —u)t? =0:

L— oo

0
this implies that, up to a subsequence, Vi, — Vu a.e. in ). ]

Using the previous lemmata one can prove Theorem 11.19 in the same way as
Theorem 11.4.

11.8 The regularizing effects of a lower order term

In this section, we are going to study the following problem for p = 1:

(11.8.1)

—div(a(x,u,Vu)) + [ulPlu=f, in Q,
u =10, on 4,

proving that the lower order term has some regularizing effect on the solutions and
on their gradient. This phenomenon was already observed in [23] and [24] for the
solutions of

{—&u+ luP'u=f, in Q,

u =0, on dQ :

indeed if u is a solution, then |u|¥ belongs to L™ ({2) under the assumption [ €
L), m= 1.

We will prove the following result (see |16]) on the existence of distributional so-
lutions to problem (11.8.1).

Theorem 11.22, lef f = L™M(Q), m = 1.

(1) Ifm > 1andp > -, there exists a distributional solution u € HJ (Q).

2 Ifm>1landp < -

2pm m-1?
every dq < l+pm*

there exists a distributional solution u € H—-’&"’I{HJ, for

(3) Ifm = 1, there exists a distributional solution u & H-"&‘q{ﬂ}, forevery q < ﬁ%

As for problem (11.1.1) we will work by approximation, considering the following
family of approximating problems:

{‘div{ﬂ{x: Up, VUy)) + |Tﬂ{uﬂ]|p_lTn{un} = Tﬂ{f}: in (2,
(11.8.2)

uy, =0, on dQ).

The existence of solutions u,, H{'] (Q2), for every n, follows from Theorem 5.1, since
| Ty (s)|P = nP. In the following lemmata we prove some uniform estimates on the
solutions 1, to problems (11.8.2).
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Lemma 11.23. Let u, € H}(Q) be the solutions to problems (11.8.2). The following
estimate holds for every n € N:

m

j o) P | < 1l - (11.8.3)
B

Proof. In the case m > 1 we choose |T, (u,)|?'"™ VYsgn(u,) as a test function
in (11.8.2). Dropping the operator term of the left-hand side, and using Hélder’s
inequality on the right one, we obtain

1- L

jur”(unnpm < J 1T o) 1P < F L j|rﬂmﬁa|ﬁ”’”
0 ) 0

This implies (11.8.3). In the case m = 1 we choose Iﬁ%‘—j as a test function in (11.8.2).
Again, dropping the operator term from the left-hand side, one has

j|Tn+:uH}|F-'TH(uﬂ}%W < j 1.
(8] )

It is now sufficient to pass to the limit as k — 0 and use Fatou’s lemma, ]

Lemma 11.24. Let m > 1. Let 1, be the solutions to problems (11.8.2).
(1) Ifp = ﬁ, then the sequence Ty, (1, ) is bounded in H} (Q).

(2) Ifp < ml_] , then the sequence Ty, (iiy,) is bounded in W, (Q0), with q < 1—'1%

Proof. If p = ﬁ we consider T, (1) as a test function in (11.8.2). Then by the

ellipticity of a and Hélder’s inequality on the right-hand side we get

|
prim [pam)’

i}-'.'J‘ |an{'Hn}|3 = ITH{f}TFI{urtJ = J'Tﬂ{uﬂ}wm J-Ifl{i”"f
£

(2 Y £2

The last term is finite, due to Lemma 11.23.

In the case p < - we consider vy, = [ (1+|Ty (un) ) ' —1]sgn(un), A < 3,
as a test function in (11.8.2). Then, dropping the lower order term, one can prove the
following estimate, using the same arguments as in Lemma 11.1:

. < i 11.8.
T () D20D = x(1 = 22) (11.8.4)

I |V Ty (U |2 1l
(1
L]

On the other hand, let g < 2. We can write

|V Ty (un) 2(1-A) 4

‘-|TTH{H_H}|H= [ . {]_|_|Tn{un}”£{1 NS
2(1-A) 4

0 O (1 4+ | Tlun)l) 2
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Using the Holder inequality with exponent 2 /g on the right-hand side, we get

3 1-4

- VT (un)l? _ - (1-Ai2g )
[ 19 ()12 < TS RS

{1 (1 Q

By (11.8.4) the last term is bounded if %‘{ < pm, thatis, A = 1 — ;:?m%;{. This

2—q
2i

,since g < 2B (< 2). ]

choice of A is possible: indeed % >1-pm 1+pm

Lemma 11.25. Let f € LY(Q). Let uy be the solutions to problems (11.8.2). Then the

sequence T, (Uy ) is bounded in W{i (), withq < ffp.

Proof. Consider vy, = [(14+| Ty (uyn)])?M 1 =1]sgn(uy), with A < %, as a test function
in (11.8.2). With the same technique as in the previous lemma, one has

% 1-3
VT (un)?
5 (1 + |Tﬂ{uri”}2“_‘“

i1-Adg

[{1+|Tn(u.ﬂ:r|:r
0

(19T )1 <
0
The last term is bounded if %1 = p,thatis,A = 1- ,1:?33;&;1 . This choice is possible:

2—4q

2q ?

since g < L (< 2). []

indeed 5 > 1 - p e

We can now prove Theorem 11.22:

Proof of Theorem 11.22. Assume for instance, thatm > l and p = ﬁ ; the other cas-
es are similar. Let u, € H,;]} (€2) be the solutions to problems (11.8.2). By Lemma 11.24,
there exists a function u € H}(Q) such that T, (1) — u weakly in Hj (), up to
a subsequence. Remark that u,, € Hj(Q) satisfies

—divia(x, Uy, Vuy)) = gn,

where gy = fn — | Tn ()P ' T (uy). Since g, € L' (Q) for every fixed n, we can
apply Lemma 11.3 to get that Vu,, — Vu a.e. in €2, up to a subsequence. This allows
us to pass to the limit in the first term of (11.8.2) as in the proof of Theorem 11.4. The
limit of the right-hand side of (11.8.2) is easy.

For the limit of the lower order term it is useful to prove that

[ imaors [ s (11.8.5)

{llel:uH]l.-.""'[-} { TH'[“?I:' T'h'”'

Let y/; be a sequence of increasing, positive, uniformly bounded C* (£2) functions,
such that

-

1, s=1,

Wils) — 40, sl <t,

-1, s=-—1.

.



T-minima =— 143

Choosing (i (Ty (144, )) in (11.8.2), we get

jm () 1P 1Ty (1) Wi (T (1)) < j T (F) wi(To(tn)) -
) £

The limit on i implies (11.8.5). We are now going to prove that if E is any measurable
subset of €2, then

lim I Tu(uy)|? =0 uniformly with respect to n.

meas(E)—0

By (11.8.5), for any t > 0 we have
J [Ty (up)|?
E

= t¥ meas(E) + ( | Ty (Uy) | F < tF meas(E) + J- |f].

Er{|Tyltin)|>t] T (1) >t}

By Lemma 11.23 the sequence T;, (114, ) is bounded in M7 (). This and the fact that
f € LY(Q) allow us to say that for any given £ > 0, there exists t, such that

| se

T (U ) =]

In this way ‘
J T, (1) |P < tF meas(E) + ¢
E
and so
lim [|Tn[un]lp <&, Ve 0.
meas(E}—0,
v
We thus proved that limpeasie)—0 ¢ | Tn(un)|? = 0 uniformly with respect

to n. Vitali’s theorem (Theorem 3.2) implies that | Ty (un )P ' Th(un) — |lul?Ptu
in L'(Q). Therefore we can pass to the limit in (11.8.2) to get a solution to prob-
lem (11.8.1). n

11.9 T-minima

The last paragraph of this chapter is devoted to the study of integral functionals un-
bounded from below. More precisely we will be interested to functionals of the form

J(v) = Jj{x.?v} - j.fv
£}

(1
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where j : QO x RN — R is a Carathéodory function, convex in the last variable, such
that
«|E|° < j(x,8) < BIEI° (11.9.1)

for some positive ot and f belongs L' (Q2). Due to the summability of f, J is not bound-
ed from below in H‘\-lj (€2). For example, in 2 = B(0, 1), for § < N, consider

t__l
|x|B

.Hu}=j|vu|'f—

0 £

Then the sequence v, = T, (%), & > N — B, is such that J(v,) — —oo. The nonex-
istence of minima led to the definition of T-minima, in analogy with the definition of
entropy solutions to elliptic problems (see [5] and [33]).

Definition 11.26. Let f  L1(Q). A function u € T (Q) is a T-minimum for the
functional

Jw) = | jx, V) - qu
()

3

[,

if, for every ¢ in H{ﬂ{ﬂ} N L () and every k > 0, we have

j J, V(@ + Ti(u — @)) = [j{x,"?q:?} + [f T (u — ). (11.9.2)
) 0 Q

Observe that if J has a minimum u € H{l, (€2) (see Chapter 9, in the case where
e L3 (€))), then u satisfies (11.9.2).

Lemma 11.27. Let u, € T (Q) be a sequence of functions such that for a positive
constant C the following estimate holds:

jwmunnz - Ck.
0

Then there exists w € T (€}) such that, up to a subsequence, Ty (1y) — Ty (1) weakly
in Hy (Q).

Proof. Since the sequence Ty (1) is bounded in H}, (), there exists vy in L? () such
that, up to a subsequence Ty (1y) — vk weakly in H}(€2) and strongly in L?(€). By
Remark 11.12, there exists a positive constant ¢ such that

C

N
| ]

meas({|un| > k}) <

for every n € N. Now, fix £ > 0. The above estimate allows us to choose k such that

., meas({|um| > k}) < E (11.9.3)

meas({|uy| > k}) < i

Lo |
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for every n, m € N and for every k > k. Moreover, since Ty (i) is a Cauchy sequence
in measure (recall that Ty (u,) — v, in measure, as n — co), there exists 1, such that
for every n,m > n;

meas({|Tx(uy) = Telum)| > o}) < % (11.9.4)

for every o > (0. We remark that for every k, o > 0 and for every n, m N, one has

Hun = uml > o} < H{lunl >k}t 0 {lun —um| > o}
Ul{lunl = k0 {lum| = k0 {lup —uml > ot
Ul{lunl =k 0 {luml = kP n{lup —uml > ot
< {lupl =kt v {luml >k} U {|Te(uy) — Te(lum)| > o} .

By estimates (11.9.3) and (11.9.4) we deduce that, for k > k and for every n, m > n,
Uy —Um| >0} < €.

This implies that 1, is a Cauchy sequence in measure. Therefore there exists a func-
tion u such that u, converges to u in measure and consequently, for every k >

0, Te(uy) — Ti(u) in measure. By uniqueness of the limit Ty(1) = . Since
Ti(un) — vi weakly in H}(Q) we deduce that Ty (u) belongs to H‘;,{ﬂ} for ev-
ery k. ]

Theorem 11.28. Let f € L'(Q). Then there exists a T-minimum u of J such that, for
everyk,h = 0,

me )2 ”f”““”k (11.9.5)
0}
f, k
[ |?u|“d.x_a [ (11.9.6)
th=|ul=h+k} |=h

Proof. Let f, = T, (f). Then the functions

v — Ij'ix‘.v] — J fnv

) Q

have minimizers u,, € HE, (€2) n L™ () by Theorem 9.15. Then u,, satisfies

J.I{x ?HH}_[fHH}! —JI{I Viung — Trlun))) — Jfﬂ Uy — Ti(Un))
£} )

for every k > 0. By (11.9.1), we have

aj VT (u)? < anﬂ.:n;-unm < 1f k.
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For any fixed k > 0, the sequence Tj (1) is bounded in H{% (€Q2). Therefore, by Lem-
ma 11.27 there exist a subsequence (not relabeled) and a function u € 7T ({}) such
that 1, converges to u a.e. in Q and, for every k > 0, Ty (u,) converges to Ti (1)
weakly in H} (Q).

Let @ € H}(Q) n L™ (€); again the minimality of u,, yields:

J Jlx,Vuy) = jj(x,‘*?{uﬂ — Ti(un —@))) + Jfﬁﬂ,{uﬂ — Q).
£l 0 O

This is equivalent to

I Jx, V(@ + Ti(up — @) + J jlx, Vuy)

{lun—pl=kl g —@ =k}
= J Jlx, V) + J j{x,?un:r+[f}-fn{un—m}
Hun—@l=k} {upy—p|=k} £
which finally implies
[j{x,‘?[m + T (Up — @))) = [j{x.‘?q::-} + Ij;lTk{uH — Q). (11.9.7)

£ g 0}
The weak H) (Q) lower semicontinuity of v — [, j(x, Vv) (assured by Theorem 9.2)
and the weak H;(Q) convergence of Ty (1, — @) to Ty(u — @) allow us to pass
to the limit in (11.9.7) and to obtain the existence of a T-minimum u, according to
Definition 11.26.
Assumption (11.9.1) and the choice of ¢ = 0in (11.9.7) give (11.9.5). As well, using
@ = Tp(u)in (11.9.7), we easily get (11.9.6). ]

We assume in the sequel that j(x, &) is differentiable with respect to & and
alx,&) = Vgj(x, &) satisfies
(1) there exists B > O such that |a(x, &)| = BIE|;
(2) there exists « > Osuchthata(x,&) - & = «|E|*, V &€ RN;
Q) [a(x,&) —alx,n)]-[E-n]>0if& + n.

We show the strict relationship between T-minima and entropy solutions to the
boundary value problem

(11.9.8)

—divia(x,Vu)) =f, in Q,
u =0, on df{}.

Proposition 11.29. Let f L' (Q). Under the above assumptions, let u be an entropy
solution to (11.9.8), that is,

J‘Fg(x,‘?ul‘?ﬂ(u - @) = J‘fﬂ:(“ - @),
2 0

¥ @ € H Q) n L™ (Q). Then u is a T-minimum of J.
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Proof. The convexity of j{x, &) with respect to & implies that
J, V) =z jlx,Vu) + Vejlx,Vu) - (Ve = Vu).

The integration of the previous inequality on the set {|u — | = k} vields the conclu-
sion. ]

Theorem 11.30. Let f < L'(Q). Under the previous assumptions, let u be a T-
minimum of J. Then u is an entropy solution to the boundary value problem (11.9.8).

Proof. It is clear that

[ Jx,Vu) = J Jx, Vu) + [ Jjlx,Vu) = J Jlx, Vu).
iLull—:rr <k lu-ol=k 1=k} Hu-@| <k}

In the definition of T-minimum, we consider ¢ = Tp(u) + tTi(v — Ti(u)), with
0<t<landv € H}(Q)n L*(Q). We thus have

j Jix,Vu) = I Jlx, Vu +tV(v —u))
[lu—g|=k} ilu—mll_:_-m;'-{ilflrr]—|-|-_ck:
+ J Jlx,Vu)
flu=gpl=kin{k<|te=1]]
i [tel =)
+ _[ Jix, tVuv)
:Iu—q..lls.kl".:lt-'—?'h[Lﬂl;‘.f-;l

T TN

-+ jkal[’H — Tp(u) —tT (v — Tp(uw))).
{1

We can estimate the difference between the first and the third integral in this way:

[ Jlx,Vu) = J Jlx,Vu +tViv —u))
{|H—L-'|£f|::}'“|{|1£|£h} Hu-v|=kln{|lul=h!
+ [ Jlx,tVuv)
flu-gl=klni<|v Thlu) =k]
i}

; j.fmu () — tTe (v — Ta(w))),
)

where we have used that {|u| = h} c {|lu — @| =< k}. Since Tj(u) € Hj(Q), for
any j > 0,and v = H{f]{fl}, we can pass to the limit as h — oo, by Lebesgue theorem.
Moreover, since O <t < 1, Tp (tTp (v — u)) = tTe(v — u). Thus

B J' Jx,Vu +tvv —u)) — jix,Vu)
L

< Jka{u - V).
0

Hu—-vl=k]

The conclusion follows passing to the limitast — 07. [l
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11.10 Appendix

The aim of this section is to recall the definition of M(Q2) that we have used in Sec-
tion 11.7 (see [29] for further details).
We denote by P(€2) the set of subsets of Q2 such that P(€)) = {E: E < Q}.

Definition 11.31. A o -algebra of sets over (2 is a family of sets £ C P(2) such that
1) ez

(2) if E € Xthen CE € X, where CE is Q\E;

(3) for every sequence {Ex} < =, ;2 Ex € .

(€, X) is called measurable space.

Definition 11.32. The o -algebra of the Borel subsets of ), B(£2), is the smallest o -
algebra which contains the open subsets of ().

Definition 11.33. Let (2, ¥) be a measurable space. A signed measure g over ¥ is
a map from X to [ — o, + o0 | such that

(1) p@) =0;

(2) u (Uj{f’] Ek) = > ¢, U(Ey) for every sequence {Er} < X of disjoint sets;

(3) it does not take the values — o and + eo both.

Definition 11.34. Let ((2,X) be a measurable space. A measure p over X is called
a Borel measure on Q if B(Q) < X,

Definition 11.35. Let (€2, ¥) be a measurable space. A Borel measure u is called reg-
ular if, for every & > 0 and for every E € X, there exist a compact set K5 < E and
anopen set As = E, such that y(E \ Ks) < dand u(As \ E) = 4.

Definition 11.36. Let (2, ¥) be a measurable space. Let u be a signed measure over X,

(1) The positive variation of pis p" (E) = sup{u(F) : F € X, F < E}, for every set
E € X.

(2) The negative variation of pis yu (E) = (—u) " (E), forevery set E € X,

(3) The total variation of p is the measure |u| = u™ + u—.

Definition 11.37. M (L)) is the set of regular signed measures with finite total variation
on the o -algebra of the Borel sets of Q. On M(Q), |||l my = | () is a norm.

Definition 11.38. If 1, is a sequence of measures in ‘M(Q)), u,, converges *-weakly
to p if

lim [q}dﬂn = [t}?dn,
0 (

for every continuous function ¢ on Cq(Q2).
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Theorem 11.39. Ifu € M(Q), then there exists a sequence [y of Cy (£2) functions such
that

(1) lfullrrg = lullme) , VR e N;
(2) fn — u *x-weakly in Mi(L2).

Definition 11.40. Let f;, be a sequence functions and y € M(Q). We say that fy
converges to u in the tight convergence of measures, if

lim jfnm = [mdu, Ve Q).
0 0



12 Uniqueness

12.1 Introduction
In Chapters 5 and 11, we have seen a result of existence of solutions to problem

—divia(x,u,Vu)) = f, in Q,
u=0, on 0,

with f € L™(Q), for m = 1. In this chapter we give some uniqueness results. We

have to say that, in contrast with the existence problem, for the uniqueness ques-

tion, unfortunately, there are only some partial results, and this is independent from

the summability of the source f. The uniqueness of solutions is more related to the

monotonicity of A(v) = —div(a(x, v, Vv)) than to the summability of the source.
In the first section of this chapter, we give a general result for the problem

—divia(x,Vu)) = f, in Q,
u=20, on 04,

that is, for a problem defined through a monotone operator. We will not present the
original proofin [4], but that one in [43], which is a slightly simpler. In the second part
we present a uniqueness result for a particular nonmonotone operator (following [3]
and [15]). Finally, we will treat the case of measure sources for linear problems.

In the whole chapter Q denotes an open bounded subset of RV, N = 3.

12.2 Monotone elliptic operators

In this section, we study the uniqueness of solutions to

(12.2.1)

—div(a(x,Vu)) = f, in Q,
u =20, on dQ,

under the following assumptions: a : Q x RN — RV is a Carathéodory map, such that
(1) there exists B > 0 suchthat |a(x, &)| = B|E|;

(2) there exists & > O suchthata(x, &) - & = «|E|?;

(3) la(x,&) —alx,n)]-[E-n]>0if&#n.

Definition 12.1. Let VV be a Banach reflexive space. An operator A : V. — V' is mono-
toneif (A(u) - A(v),u—v)=0forallu,v e V.

Observe that assumption 3 on a implies that —div(a(x, Vu)) is a monotone op-
erator.
We will prove the uniqueness of solutions among the entropy solutions.
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Theorem 12.2. Let f in L' (Q). Then there exists a unique entropy solution to prob-
lem (12.2.1).

Proof. Let u be a solution obtained by approximation as in Theorem 11.4. It is suffi-
cient to prove that any other entropy solution is equal to 1. We briefly recall how we
obtained u. Let u,, € H; () be the solutions to

—divia(x,Vuy)) = fn in Q, (12.2.2)

where [, = Tu(f); uy € L¥(Q) for every n from Theorem 6.6. Moreover, i, (x)
and Vu, (x) converge, respectively, to u(x) and Vu(x), a.e. in ) (see Lemmata 11.1
and 11.3). We recall that u is an entropy solution. Let z be another entropy solution,
that is, T (z) € H}(Q) for every k and z satisfies

Ja(x, Vz) - VIplz - @) =< .[f’Tk{z — @), (12.2.3)
) 0

for every @ € H,(Q) n L™ (). Let us choose ¢ = 1, in (12.2.3). We get

Ja{x, Vz) - VTi(z —uy) = Jfﬂ{z — Up) . (12.2.4)
0 O

On the other hand, using Ty (z — 1, ) as a test function in (12.2.2), one has

= J alx,Vuy) -VTilz —uy) = — .[j‘nTk{z — Un). (12.2.5)
0 0

Adding up (12.2.4) and (12.2.5) gives

j[ﬂ,[x,?z) —a(x,Vuy)] - VTi(z —uy) < j(f — ) Te(z — uy).
0 0

The integrand of the left-hand side of the previous inequality is positive from the
monotonicity of a. Moreover [a(x,Vz) —a(x,Vuy)] - VIi(z — uy) converges a.e.
inQtolalx,Vz)—alx,Vu)| - VIy(z — u). The right-hand side goes to 0, for ev-
ery fixed k, by Lebesgue’s theorem. Using Fatou’s lemma, we can pass to the limit for
n — +co getting

J.[a{;*f, Vz)—alx,Vu)] -VTi(lz —u) =0.
0

The monotonicity of a implies T (z — u) = 0 a.e. in Q for every k > 0. Therefore,
Z = U a.e.inf), []

In the case where f € L Nz (€2}, from Chapters 5 and 11 we know that there exists

a H) (Q) solution, which is also an entropy solution. One can prove the uniqueness
of solutions in a more simple way as the following theorem shows.
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Theorem 12.3, Let [ ¢ L%{ﬂ}. Then problem

—divia(x,Vu)) = f, in Q,
u=>0, on d0),

has a unique solution u € Hj (Q).

Proof. Let u; and u» € H;(£)) be two solutions. Let us use 1 — u> as a test function:

-

a(x,Vup) - (Vu, —Vuz) = f{H.l — Uup)
0
alx,Vuz) - (Vuy —Vuz) = | fluy —uz).

[ N
[

o~

Subtracting side by side and using assumption 3 on a we get u; = u» a.e.in ). [

The following example shows that even a linear problem may have more than one
distributional solution.

Remark 12.4. Let M, v and f be defined by (11.6.1), (11.6.4), and (11.6.3) respectively.
The Dirichlet problem

—diviM(x)Vv) = f, inQ,
v =0, on d(2,

where Q = {x € RN : |x| < 1} has two distributional solutions. Indeed v is a so-
lution, as seen in Section 11.6; moreover there exists a solution v, in H; (), since
feL®(Q).

By linearity one can give the following striking example. Let w = v — v;: note

thatw W,:l‘“{ﬂ}, q < NL_I By linearity, w solves

—diviM(x)Vw) =0, in),
w =0, on ¢l

It is clear that O is a solution to this problem. Therefore, the previous problem has
two solutions: the zero solution (entropy solution) and the distributional solution w
(which is not an entropy solution).

12.3 A nonmonotone elliptic operator

In this section, we will give a uniqueness result for

|—d1v{M(x,H}?H}=fs in Q, (12.3.1)

u=>0, on dQ).
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We observe that A(v) = —div(M(x, v) Vv) is not monotone (see [9] for more de-
tails). We will prove the following theorem:

Theorem 12.5. Let M(x,s) be a N x N matrix composed by Carathéodory, bounded
and Lipschitz continuous functions in the second variable. We assume that there exists

o« > 0 such that
Mix,s)E-E= «|E|°.

Then for every [ ¢ L%{ﬂ} there exists a weak solution u € Hj(Q) to prob-
lem (12.3.1).

Proof. The existence of solutions follows from Leray-Lions theorem (Theorem 5.1).
Now, let 11, and u» be two solutions, that is, 1| and u; satisfy

J M(x,u;)Vu, - Vv = Jf v
1 {1
and

JM{x,ug}‘Fug Vv = [f v,
() 0

for every v € H} (Q). We then get

[M[x, UV, —uz) - Vo = J[M{x.ug} —M(x,u1)]Vu - Vv. (12.3.2)
0) 0
Letus fix b and B such that 0 < b < B. Since m;; is Lipschitz continuous, there exists
L > 0 such that
(M (x,uy) — M(x,uz)| < L|uy — uz|.

Ly — 1
b+|u)—us|

The use of v = as a test function in (12.3.2) implies

1
(b + luy —uzl)?

—[M{x,ul]l?[m - Uuz) - VI{uyp = uz)
Q
1

(b + |uy —uzl)®

= jr[M{x,u-;_:] — Mi(x,u)]Vu - VIiu, — 1)
0

Consequently, the ellipticity of M and the fact that m;; is Lipschitz continuous give

J IV (uy — uz)|? JLWHEHT{M — Uz)|
o [ .

- <
b+ |u, —u2ll? b+ lu — u-|
0

0

Holder’s inequality on the right-hand side implies

1/2

2
U — U
< L ”.ME”H[HQ:. .

b4 J“‘Flcng(“ 2
Q
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By using Poincaré’s inequality on the left-hand side we get
1/2

2
Uy —uzl\ |°
X C .chug(1+ , ) < Lluzllgq -

()

Therefore

B
oxcmeas({|u; — uz| > B}}% lng(l -+ E) ‘ =L ||u2||H[.:I|:ﬂ}.

Ifb — 07, necessarily meas({|tu;—uz| > B}) = Oforevery B > (. Therefore 1, = u>
a.e. in L2, []

12.4 A uniqueness result for measure sources

In this section, we study the elliptic problem

{—div(ﬁf{x}'ﬁu}=ﬂ1 in Q, (12.4.1)

u =20, on af},

where p € M(Q) and M € RV*VN is a symmetric matrix with L™ (Q) entries, such
that M(x)E - € = «|&|°. We assume that 0Q & C!. Theorem 11.4 guarantees the
existence of a solution. We recall that we obtained this solution by approximation in
Theorem 11.19. In this section we give a uniqueness result of solutions as limit of the
solutions to

{_div[m{x}?uﬂ}=ﬁu in €, (12.4.2)

Uy =0, on 40},

where [}, is any sequence of regular functions that converges weakly (in the sense of
measures) to ¢ and which is bounded in L1 (Q).

Theorem 12.6. Under the above hypotheses, let u and v be two solutions to (12.4.1)
obtained by approximation from problems (12.4.2). Then u = v a.e. in ).

The following lemma will be useful to us:

gl

Lemma 12.7. Let f, : Q@ — R be a sequence of functions such that |, l—j“f—l — (. Then

Proof. We have

2 2

.fﬂ 2 J fﬂ = % J |fﬂ|
1+ | ful _ 1+ | ful .

0 [ fnl=1} {[fnl=1}

For every fixed t > 0 one has
fa I fa L

L+ [ ful _ 1+ | fnl = 1+t
£ =l fnl<1}

meas({t < [ful <11}).
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Consequently
T VAR VAR A
£} U fnl=1] (E<|fnl=1] [ fnl=t]
- 2
< 2 j—”+meas{{t<_:I,fﬁlil}}ﬂmeas[fl]
J 1+ | ful
0
N 1+t fa
< 2 — + ——— + [ meas({}).
hl+|fﬂl te ﬂ:l+|fﬂ|

Passing to the limit as n — oo, the previous inequality gives

A%['ﬁ” < tmeas(Q), Vit=>0.
0

Since t is arbitrary, f,, — 0in L1 (Q). O

The following theorem will be useful too (for the proof use Theorem 8.29 in [30],
due to De Giorgi, Theorems 6.6 and 6.14):

Theorem 12.8. Under the previous hypotheses on M and Q, let F € (L9(Q))Y,q > N,
and f € (L*(Q))N,s > % Then the solution u € H} () to

—diviM(x)Vu) =divF + f, in £,
u =20, on 02,

is Holder continuous in Q and satisfies

Uu(x) —u(y)|
x — y|P

sup < CLIIFlzay + IF lLs e ]

x, Vel
where C = C(Q, e, N,q,s)and B = B(Q, o, N, g, 5).
We can now prove Theorem 12.6.

Proof. Let u and v be two solutions obtained by approximation from problems (12.4.2).
Then there exist two sequences of regular functions, f, and g,, converging weakly
in the sense of measures to i and f,, and g, are bounded in L' (Q). Moreover, if 1,
and v, are the Hé{ﬂ] solutions to the approximating problems (12.4.2), u, and v,

converge weakly to 1 and v, respectively, in Wf: 1Q), Vg < h;“irl , by Lemma 11.1. By
linearity we have that
| MOV =) Yo = [(fu-gw, VeeHl@. (243
0 0

On the other hand, let z,, € H{g (€2) be a solution to

Viuy — vy )
1+ Vup —vp)l/ -

—diviM(x)Vzy) = —div( (12.4.4)
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Fn = ]jé'f;;f:,:l}l belongs to (L*(Q))N and divF,, € L?(Q). The existence of z,, €
Hﬁl (€2) is guaranteed for every n by Theorem 5.1. We observe that z,, are uniformly
Holder and uniformly bounded in £ by Theorem 12.8. The Arzela—Ascoli theorem im-
plies that, up to subsequence, z, — z uniformly in Q for some continuous function z

in Q0. We have, choosing 1, — v, as a test function in (12.4.4)

j' IV (U — V)2

L e iM(x}vzn Y (U — V)

[y
= (M{X}T{Hn —Up) - VzZu = I(fﬂ = gn) Zn

() 0

by (12.4.3). Writing (fy, — gn)zn as (fu — gGn)(zn — 2) + (fn — gn) 2, it is easy to
prove that the last integral goes to 0, since z,;, — z uniformly in Q, f,, — g, goesto 0
in the sense of measures and is bounded in L' (Q2). Therefore

J |v':un—'”n}|2 0
-0, n—co.
0
By Lemma 12.7, this implies that V (uy —vy) — 0in L' (Q). Since u,, and v, converge
weakly to 1 and v in H-"&'q{ﬂ}, for every q < %1 one has V(u — v) = 0 and so
u = v a.e. in ). []

Remark 12.9. We are going to prove that it is not possible to find a solution to the
Dirichlet problem u € Wy"" (Q): —div(M (x)Vu) = —divF for every F € (L7 (Q))V,
p > N, where M is defined by (11.6.1). Assume, by contradiction that there exists
a solution u, that is,

JM(I}"‘FH Vv = '[F Vv, Vve H-"’.;}'PJ (Q2).
0 0

In particular one can choose, as a test function, the not null function w < Hf}} 1),
q < NL_’I, defined in Remark 12.4, and F = |Vw|9-?Vw, so that

JM{x}‘Fu Vw = _[I‘le”.
O 0

On the other hand, one can choose u as a test function in the weak formulation of the
problem solved by w, that is,

“M{x}\?w -YVu=0.
0

By the symmetry of M, the last two equalities give w = 0, which is a contradiction.
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13.1 Introduction

In this chapter, we will study a polynomial growth elliptic equation. More precisely,
we will prove existence and regularity results for the solutions to

{-divrja{x.u,?uﬂ=f= in Q, (13.1.1)

u=0, on o0,

under the following assumptions. The set () is an open bounded subset of RV, N > 2,
anda: QxR x RN — RN isa Carathéodory map, with the following properties:

(1) there exists B > 0 such that |a(x,s, &) < Bb(|s])|&;

2) a(x,s, & -&=b(sDHIE*, VEeRV;

3) lalx,s,&) —alx,s,n)]-[&§-n]l>0if&§ #n

where b : [0, + ) — (0, +0) is a continuous function such that
b(ls|) zyls!", Vls|=z=sg, (13.1.2)
y > 0,r = 0 and so > 0. Moreover, there exists o« > 0 such that for every s € R
b(ls]) = «. (13.1.3)

The polynomial growth of a will give us more regular solutions than the solutions
found in Chapters 6 and 11 for the Leray—Lions problem. We will prove the existence
of distributional solutions u, that is,

Ja{x,u,?u} V@ = Jf:;u, Ve CyQ).
0 0

We describe in a schematic way the existence results of distributional solutions u that
we are going to prove (following [42]).

(1) Letf e L'(Q).
(@) Ifr > 1, then u belongs to H} (Q) n L5 (Q), s < MU,
(b) If0 = ¥ = 1, then u belongs to Wn 1Q), g < M=l

N-1+r"
(2) LethL"”{ﬂ} 1 <m < =

N+2°

(@) Ifr = 1 — =, then u belongs to H} (Q) n T (Q).
"-..n||1+||

(b) f0<¥ <1 - F! then u belongs to W[: i),

(3) Letf e L™(Q), m= 5.
(@) Ifm > %, then u belongs to H} (Q) N L™ ().

(b) If -EJ:.:_: < m < %, then u belongs to H} (Q) N L35 (Q).
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13.2 Existence results

We define the following approximating problems:

{—di?(ﬂ[iﬁ', Tﬂ[u}l)! ?un” - fn ’ in ﬂ, (132'1)

Uun =0, on df2,

where f,, = Tn(f). The existence of a bounded H}(Q) is assured by Theorems 5.1
and 6.6.

Lemma13.1. Let u, bea H} (Q) n L™ (Q) solution to problem (13.2.1). Then

- , LA g1 q
(1) foreveryk >0, || Ty (u }-,}Ilfjr.]{m < k %

(2) |VB(uy)|is bounded in M%{ﬂ}, where B(t) = [{‘; b(|s]);
(3) alx, Th(uy), Vuy) is bounded in L9()) for every q < %

Proof. (1) Taking Ty (1, ) as a test function in (13.2.1) and using (13.1.3) we get that

> -1 (NALFRRTSY
”Tk{””}”Hrhm < k ” .

(2) LetB(t) = j}f b(|s|); itis easy to see that Ty (B(u,)) belongs to H} (Q), so that it
can be taken as a test function in (13.2.1). The assumptions on a give

f b(jun )| Vi, |2
[|Blugn)| =k}

= J alx, Ty(uy), Vuy) - Vuyb(luyl) = k”f”Ll{ﬂ} ’
HE“"H}likl

and then the following estimate holds:

‘hvnwummfzmwmmﬂ. (13.2.2)
0

Proposition 11.13 implies that | VB (1) | is bounded in M -1 (Q), thatis, b(|un|)| Viin]|
I‘HI

is bounded in M ~-1 ().

(3) Since {|a(x, Tu(uy), Vuy)l > k! is contained in {fb(|un|)|Vunl > k}, we

conclude that a(x, Ty (Un), Vuy) is bounded in L9(€2) for every q < N'"f, : [

In the sequel C denotes a positive constant independent of n € K,
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Lemma13.2. Let f € L' (Q).
(1) Ifr > 1, then the sequence of the solutions 1, to problem (13.2.1) is bounded in

H{(Q) nL5(Q), s < MU
(2) IfO = » = 1, then the sequence of the solutions 1, to problem (13.2.1) is bounded

in W, (Q), g < YL

Proof. Let 1, be a solution to problem (13.2.1). We consider T} (1, — Ty (1)), with
k = sp, as a test function in (13.2.1). Since VT (uy, — Th(Un)) = VU X k=, | <k+1]
and T (uy, — Te(uy)) = 0if |luy, | = k, we can write

jaMﬁmth?uﬂ-?uHEIL&L vV k= 5o
By A
where A, = {k < |u,|t and By = {k < |u,| < k + 1}. Assumption (13.1.2) on a
implies
}’kr[|Tun|2iJﬂ{xiTn{Hn},?Hn}'?uﬂiJ|fn|, Vk=sp. (13.2.3)

By By Ak

Let+ > 1; from (13.2.3) we soon obtain the estimate

’ o Ifli) <
J‘|T“FI|££J|?IT[;.{HH}|£+ f ;{ﬂ} Z
ﬂ —

1
2 =1 K

This estimate and point 1 of the above lemma imply that u,, is bounded in H; (€2). On

N

the other hand, by Lemma 13.1, B(u ) belongs to L9(€2) for every q < 5—. Due to

the definition of B there exists a positive constant C such that [t|" ! = C(1 + B(t)).
Therefore, 1, belongs to L9(Q) for every g < '""'{”&“.
Let0 <v = 1.Foreveryl < g < 2and A > 1 — v, we can write, using Holder’s

inequality with exponent é and (13.2.3),

Vg, |1 A
[lwnw j T (1 fun) ?

o (L + [unl)>

0
_ , i-g 1_5}
|""'-_“f'1ﬂ!'i-r|E J. A
< (1 + |uyl)Za
J{] + Uy )N |
L) £
_ q 1-9
-
< C+Zk3\+r] I{1+|un|] 4
-3

< C I{1+|uﬂ|)%
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If weset A = hf;—”] the condition A > 1 — » implies that g < % The above
inequality then ylelds by Sobolev’s inequality,
7 -3
[unle” | < [19unit < | [+ e
0 0 0
Since ;- > 1 — 4, we deduce that u, is bounded in W, (Q) for every q < Sl
[]
Lemma 13.3. Let feLrm), e
1) Ifr=1- = _ then the sequence of the solutions u,, to problem (13.2.1) is bounded
in H () n Y “ﬁi"-’_L“ (Q).
(2) IfO = ¥ < 1 — = then the sequence of the solutions 1, to problem (13.2.1) is
"‘-.'I'I'el_'iI k1)
bounded in W, o Q).

Proof. By the same choice of test functions as in Lemma 13.2, we have

}’k"J‘ Vunl? < Ja(x,Tﬂ(uﬂ],Fuﬂ] VU, < J | ful, VYk=so. (13.2.4)
H.l,: H.l,: A*

Assume thatr = 1 — % Estimate (13.2.4) and point 1 of Lemma 13.1 give

[ 1722 < jwmunnh > | o

0} k]fh.

- < [ 1fal
m;;[ L 1329

Applying in (13.2.5) the inequality Zf:_{;. Toer = l_}J_H,1..ﬁrhi¢:h holds trueif 0 < s <
1, we get

=

[1vun < c {1+ [ 1ful@+ i
0
where C denotes a constant independent of n. By Holder’s and Sobolev’s inequali-
ties, it follows that

2 = | -
2¥ "

[Iuﬂlz* c_:J.|‘Fu.H|25:C 1+ I{2+|uﬂ|}2’"
9 9 0

m'

Since Ei > —, we deduce that u, is bounded in L' (Q) and in H ().
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We now consider as a test function Ty (|| "ty — Ti(|tn|"Uy)) in (13.2.1) in
order to have

J (U |"alx, Tn(uy), Viy) - Vi, < J | frl -
fk=|uy|"t <k+1) fk=|unlr*1}

Due to (13.1.2), setting k; = s, ", we have

j IV (ln | un)|? < C j ful,  Vk=k..  (13.26)

{k=|uy | tl<k+1} k=luy |t}

Let vy, = || " Uy. Then (13.2.6) is equivalent to

J Vol < C J'Lﬁu Vk=k. (13.2.7)

fk=lun "1 <k+1} {k=lvnll

We are going to prove that v,,, that is, |u,|" 1, is bounded in L o (€2); thus u,, is

bounded in [ ~-2m (Q2). By Holder’s inequality with exponent % we have
C [Vugl? Ag
| 19va1a = (1 o)
O e (1 + [vnl)
vl | .
Vg j Aa
< (1 + |vy])2a
1+ [vnD® vnl
: 0
Estimate (13.2.7) gives
- 171 11-%
[1vvae<c| s T S [e] | asvan®s
0 _ﬂ.={.:| +ﬂ k='ﬂHj: ) _ﬂ 1
_ - g. _ - ]_Ej
<C i[mi 1 ju+| )2
) , (1 +n)A o
_k:ﬂﬁk ﬂ=[.] | _L! N

Now, Zi’;_m HJT can be estimated by 2 + k'™, which gives
S - 4q 1—4
a* 2 2
. >~ Aq
stl[toal | < [1vont<c| S [1A@+ k] | [a+ivh
0 0 | k=0p, 0
- g 14

IJ

scl | [l |+ b
Ly iy

0
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By Holder’s inequality with exponent m we get

L
oF

kS
54 jwm
]

- 4
! 3 |
z 1 5

A
j{1+ U |) 74
()

m

: : 1-A)m’
< Cl 11+ 1 lmio | | Tunf@0m
oy ()

If ;"qu q*,and g = m™,then g* = (1 — A)m’. This implies that v, is bounded in

LT (Q),since ;b =1 -7 + 557
We are left with the case 0 < » < 1 — fﬂ—* By Holder’s inequality with exponent

% and (13.2.4), we can write, foreveryg < 2and A <1 -7,

Vil A
[19aalt = [ Bl ) ¥
& A (1 + lunl)z
4 1-4
[Vy|? A
I(1+|1: A J(“'“””:q
" | £}
o < M
<C|> > J';L{”l J(1+ Uy |) T4
k=1h=kj, IRE

By exchanging the summation order and using Hélder's inequality with exponent m

we have

rapEy

A

ju ¥ [un]) i
)
o 1

2m
A

Ay
ju ¥ |n]) T
()

jwumzc 1+I|fn|+:1 RN
() )

kS

< Cllfullimqay | | (1 + Tanl)0-rm
e L Lﬂ!(ﬂ} 148
(1

uﬁ?_q - with g = 32HELL we get, by Sobolev’s inequality

[fweset A =
i 1 _Lf"
FFe

q*

S Jlunl‘f* E[I‘Funl“ﬂc J-(1+|un|}‘?*
(1 ' 0

2
Nmir+1)

this implies that u,, is bounded in W, (Q) with g = S

]

. e I
Since > =< 1 -5,
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Lemma13.4. Let f € L™ (Q), m > .

(1) Ifm > %, then the sequence of the solutions u,, to (13.2.1) is bounded in H} (Q) n
L™ ().

(2) If =5 = m < 5, then the sequence of the solutions u, to (13.2.1) is bounded in

N+2 —
Nr{r+1)

HI(Q) 0 LA 50 (Q).

Proof. In the first case, one can choose as a test function G (14 ). One has by the
ellipticity of a

o [ 1VGLGun) P < [ fGiun) -
0 Q
By Remark 6.8 this estimate gives a uniform bound for the L™ (Q2) norm of u,,.
In the second case, we use the same technique as in Theorem 6.9. Consider as

a test function i
| Th (Un) |JL Ty (un)

2A +1 ’
with A > 0. We will study separately the two sides of the weak formulation. For the
left-hand side we have, for | T (u,)| = sg,

%+lw[ﬂlI.Th(Hn},EWin}'$W|Tk{HH}FAkau”]}
0

24

2%

- A+ L o
> «S° IIT}(HH}U‘+£+”
0

by assumption (13.1.3) on a and Sobolev’s inequality. For the right-hand side, we get

1
m

1 , .
J Te (1) 2N DM | [ i
£l

2A+1

1
2A+1

[f|T;.:{uH}|“muﬂw <
£

by using Holder’s inequality with exponent m. We have thus proved that

. 1
ey —
2® i

xSZ(2A + 1) Jlmtin}lf-“-:-ﬂr'z“ < Jlmun}l{f“”’“ 1 llm o) -
0 £}

Now it is sufficient to choose A such that (A + E + 1)2*% = m’(2A + 1), that is,

—mMIN+2+¥rN)+N(r+2)

A= 4m — 2N

Using that % — m]— > 0, one has
I Tk{“n]”Lm**u--ll{ﬂ} = ||f||Lm{ﬂ}.

Fatou’s Lemma, as k — oo, implies the result. ]



164 = A problem with polynomial growth

Theorem 13.5. Let f € L'(Q). There exists a function u such that Ty (u) € H} (L),
al(x,u,Vu) belongs to L1(Q}) for every g < % and u solves (13.1.1) in the sense of

distributions.
(1) Ifr > 1, then u belongs to H{(Q) n L5(Q), s < 351,

(2) If0 < v < 1, then u belongs to Wﬂ Q) q < :‘:“’1”:
Let f € L™(Q), 1 <m < 5.

() Ifr = 1 — = then u belongs to H} (Q) N LW o (Q).
(2) If0=r < LX) (Q).
Let f € L™(Q), m = .

(1) Ifm > "— , then uhe!nngs to Hj(Q) n L™ (Q).

(2 If 2% < m < ¥, thenu belongs to H} (Q) n L Zn (Q).

Proof. By Lemmata 13.1 and 11.27, there exists a function u such that T, (u) belongs

to Hg}{ﬂ} and, up to subsequences, u, converges to u a.e. in Q, Ty (u,) converges

to Ty (1) weakly in Hj (Q) and strongly in L2 (Q) and a.e. in Q. Again by Lemma 13.1,

always reasoning up to subsequences, a(x, Ty, (i, ), Vi, ) is weakly convergent in
L1(Q), q < ,L.

We are going to prove that Vu,, converges to Vut a.e. in ). This will allow us to
pass to the limit in (13.2.1) as n goes to infinity with test functions in Cy (£2) in order
to obtain a distributional solution to problem (13.1.1). We will use a technique similar
to that one used in Lemma 11.3. For & > 0, n =k > 0, we take T: (1, — Tr(u)) as
a test function in (13.2.1); we have

J a(x, Tn(Un), Vidn) - VTe(Un — Te(w)) < €| Fll11 @) - (13.2.8)
£l

Since VT:(uy — Tp(u)) = 0if luy,| >k +eandalx, s, &) - &€ = 0, we have

[mx.mun},vun} VT (un — Te(w))
)
> j a(x, Te(Un), VTk () - VTe(Ti(tn) — Te(0))

0

- J lalx, Tive(Un ), VIgae(Un) ) VT ()],
{1y | = k]

Now, |V Ty (1t)|X{ju, >k} strongly converges to 0 in L*(£2), so that last term in the
above inequality goes to 0 as n — oo for every fixed £ > (. We will denote by &%, any
quantity converging to 0 as n — oo, for every fixed £ > 0. Thus by (13.2.8) it follows
that

Ja{:f, Ti(un), VT (un)) - VT (T (un) — Ti(u)) = el fllpro) + 65. (13.2.9)
[y
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Now, let 0 < @ < 1l andset Ej, = { |Tx(un) — Tx(u)| > £}. We have

J-{{a{x, T (Un), VT (un)) = alx, Te(wn), VT(u))) - V(Tilun) = Ti(u)) 3’
0

= [{{H(X.Tt{un},?ﬂiun}} —alx, Ti(un), VTi(w))) - VTe(Tilun) = Tr(u))}?
0

+ J{{HEI, Ti(tn), VT (un)) = a(x, Te(un), VTi(u))) - VI(Ti(un) = Tr(u))}?.

E}
By Holder’s inequality with exponent 5 in the second integral we get, from (13.2.9),

f{(ﬂ{I:Tk{Hn}1 VTi(un)) — alx, Te(upn), VTi(u))) - V(Ti(up) - Te(u))}o
0

i
< meas(Q)' Y (Ellfllmm + 685 — J alx, Ti(un), VT (u)) - VITe(Ti(uy) — Tkiuh))
L
+J{{ﬂix,Tktun},?Tk{unﬂ —a(x, Ti(un), VTi(u))) - V(Ti(un) — Te(u))}.
E

(13.2.10)
We are going to study the right-hand side of (13.2.10). Since Ty (u,) is bounded in
H;(Q) and weakly converges to Ty (1), by the assumptions on a the first integral
goes to zero as n goes to infinity. Moreover the sequence { |a(x, Ti(uy,), VT (1y)) —
a(x, Tx(uy), VT (u))|} is bounded in L?(Q) for every fixed k > 0. Thus, using
Holder’s inequality on the last integral, we get

0

<meas(Q) (e £l + 265)7 + Cmeas({| Ti (1n) — Te(w)| > e})'?.

Since Ty (uy,) converges to Ty (1) in measure, letting first n go to infinity and then
letting £ go to zero, we find

lim | {(a(x, Ti(uy), VIg(uy))

MLt oo
0

—al(x, Te(un), VT (u)) - V(Te(un) = Te(u))}? =0 .

We deduce that VT, (uy) converges a.e. to VTi(u) for every k > 0. This implies
that Vu, converges to Vu a.e. in , so that a(x,T,(uy,), Vuy,) converges to
a(x,u, Vu) strongly in L9(€)) for every q < N‘Ffl.

The above argument implies the existence of a distributional solution u to prob-
lem (13.1.1). The regularity of u follows from the a.e. convergence of 1i,, to 1 and Lem-

mata 13.2, 13.3, and 13.4. ]



14 A problem with degenerate coercivity

14.1 Introduction

In this chapter we will treat some problems defined by an elliptic operator with de-
generate coercivity, that is, an elliptic operator which does not satisfy assumption 2 of
Leray-Lions theorem (Theorem 5.1). More precisely let (2 be a bounded, open subset
of RN, with N > 2. We assume that a(x,s) : Q X R — R is a Carathéodory function
satisfying the following conditions:

TESEIL <alx,s) =B, (14.1.1)
for almost every x € (, for every s € R, where o, 8, and € are positive con-
stants. Note that, because of assumption (14.1.1), the differential operator A(v) =
—div(a(x, v)Vv) is not coercive on H (Q2), even if it is well defined between H (Q)
and its dual. To see that it is sufficient to consider the sequence u,(x) = | x| 2ns1) —1
defined in (2 = B1(0). It satisfies |[u |l 1 (o) — e and, at the same time,

—

1 J |Vt

||HH||11L"[Q3 (1 + |unl)?

[

We will begin by studying the existence and regularity of solutions to

[—divm.{x, w)Vu) = f, in Q, (14.1.2)

u=20, on 02,

where the source f belongs to L' (€)), with m = 1.
In the case where @ < 1 we will prove the following results (following [10]):

(1) ifm > & there exists a solution u in H}(Q) N L™ (Q);
2 if v jg‘:h, 5> < m < 3 there exists a solution u in Hg (Q) n L™ (-9 (Q);
B) if 77w < M < voaw— there exists a solution u in Wy (Q), g =

Nmil—8)
N-m(ir0) <2

If we weaken the summability hypotheses on f, then the gradient of u (and even u
itself) may no longer be in L' (©). However, it is possible to give a meaning to solution
for problem (14.1.2), using the concept of entropy solutions (see [10] for further details
and references).

In the case where € > 1, some nonexistence phenomena appear. In Section 14.3
we will prove that for constant sources sufficiently large, there is no solution. Howewv-
er, we will prove an existence theorem for “small” sources in Theorem 14.10.

The existence of solutions to problem (14.1.2) can be recovered for every value
of € by adding a lower order term. More precisely we will study the existence and
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regularity of solutions to

—divia(x,u)Vu)+u=f, in 0,
[ (x,w) f (413

u =20, on o€},

proving the following results (see [8] and [19]):
(1) ifm = 0+ 2, 0 > 0, there exists a solution u in H}(Q) n L™ (Q);

21

(2) if %2 <m < 0 +2, 0 > 0, there exists a solution u in Hﬂ;'m (€2) N L™ (€Q);
(3) ifm > oY and 0 > 1, there exists a solution 1 in H: (Q) n L= (Q).
2 0

. . s 1,1
In the case where 0 = 2 = m, we will prove the existence of a unique W, ()
solution obtained by approximation and nonexistence in the case of a Dirac mass
source.

14.2 Thecase0 < 0 < 1

In this section, we are going to study problem (14.1.2) under the hypothesis that € < 1.
We will work by approximation. Let [, = T, (/). We define the following sequence
of problems:

(14.2.1)

—div(a(x, Tn(uy))Vuy) = fn, in Q,
Uy, =0, on o).

We remark that, due to the fact that we have truncated the second variable of a, prob-
lems (14.2.1) are coercive, so that the existence of weak solutions u, in H{} (£2) N
L™ (Q) to (14.2.1) is assured by Theorems 5.1 and 6.6.

Lemma 14.1. Let O > 0 and let f belongs to L™ (), m > % Assume that u is a so-

lution to problem (14.2.1) with f,, = f for every n € N. Then the norms of u,, in L™ ({})
and in H; () are bounded.

Proof. We define, for sin R and for k > 0

¥ 1
H(s) = J; A+ 11)° dt .
[

For k > 0, if we take Gr(H (1)) as a test function in (14.2.1) and use assump-
tion (14.1.1), we obtain

o j IV (H ()2 < j.fﬁk{munn. (14.2.2)
Ay Ay

where we have set
A =ix e Q: |[H(un(x)| > k}.
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By Remark (6.8), there exists a constant C > 0 (depending on @, m, N, «, meas({))
and on the norm of f in L™ (Q)) such that

WH (un) =) = C.
The limits lims_. ;. H(s) = +oo, lim;._ H(s) = —co yield a bound for u, in

L™(€)):
luplli=y) = C. (14.2.3)

The uniform estimate of 1, in H,}, (€2) is now very easy, Taking u, as test function
in (14.2.1), one obtains, by assumption (14.1.1) and (14.2.3)

X ,

() {l

Theorem 14.2. Let [ be a function in L™ (Q)), with m > } Then there exists a weak
solutionu € H () n L™ () to problem (14.1.2), that is,

J.a,[x,u.)?u -V = [fﬂﬂ- V@ EHL%{Q}.
0

Proof. In the above lemma we proved the existence of a positive constant C such that
lunllr=iy = C for every n € M. It is then sufficient to take v € N with v > C,
so that T, (u,) = u,. Then u, is a weak solution to problem (14.1.2) belonging to
HE(Q) n L= (Q). Ol

Remark 14.3. We observe that in Theorem 14.2 we do not assume that & < 1. This will
be useful to prove Theorem 14.10.

We now weaken the summabhility of the source f.

Lemma 14.4. Let 0 < 0 < 1 and NT2 ?;{rw 57 = M < 5. Let wy be the solutions

to (14.2.1). Then the norms of uy in L™~ =9 (Q)) and in H} (€)) are bounded.

Proof. We consider [(1 + |un|)? — 1]sgn(u,), with p = 4 i’if:: U as a test func-

tion in (14.2.1). We observe that p satisfiespm’ = (p+1-0)2* /2 = m**(1-0) > 1.
By assumption (14.1.1), we have

|"'T"r1«‘51rt|"E
(1 + |uy|)f Pl
()

I:.ﬁl_'_l_"&,’.]ﬁ_[l‘Fl[{]+|*.',a:ﬁ|} -1 =«

(14.2.4)

I

f:j Flltinl? .
)

Holder’s inequality on the right-hand side and Sobolev’s one on the left-hand side
imply

LT
-

2% m’

. —@)2% 2 . |v”*i’it| . pm’
Uy | P | =C = Cl[fllgm Uy |
J M E:]_ ‘|‘|H.n|}ﬁ f--""'l j L) Ly
£l (1 0
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Since ,;:, > m , the above estimate gives that the sequence u, is bounded in
L7100 ((y). From this uniform estimate we deduce that the sequence
Jo |V uyl?(1 + |ty )P~ 179 is bounded. As p — 1 — @ > 0, by the assumptions
on m, this implies a uniform bound for Vu,, in L?(Q). ]

Theorem 14.5. Let f be a function in L™ (Q), with i‘?}r” 57 <M < 5. Then there

exists a weak solution u € Hj(Q) n L™ "U=9)(Q) to problem (14.1.2), thaf is,

Jﬂ{x,u}?u V@ = J‘fﬁ'?, V@ EH{}{Q}.
0 0

Proof. The estimate for 1, in Hj (€2) implies that, up to a subsequence, u,, converges
to some function u € Hj(€)) weakly in Hj () and a.e. in Q. By Lebesgue’s theorem
the coefficient a(x, u,) converges to a(x,u) in L9(£2), for any g, due to assump-
tion (14.1.1). Thus it is possible to pass to the limit in (14.2.1) in order to obtain the
existence of a weak solution u of problem (14.1.2). ]

The last result gives the existence of distributional solutions in the case where

N 2N

Jf e L™(Q), with g—pr=37 <M < ya=g)r200=1-

Lemma 14.6. Assume that f € L™ (Q), with NH_‘E{N_“ <m < I,,m_{ffﬂm“i Then
the sequence of the solutions uy to (14.2.1) is bounded in W, (), with q = " El,"fg}.

Proof. Choosing T7(Gi(uy)) as a test function in (14.2.1), we get, by assump-
tion (14.1.1)

JI?HM ﬁ{z+kﬂjﬂj| (14.2.5)

By,

where A = {|uy!| = kl and By = {k < |un| < k+1}.LetA = 2"""'_2””1}:92{”;“'*”{1 0
Then, by (14.2.5), we have

|Tun|3 ITHT‘E'E
[ (1 + |y Z J (1 + [uu A

0 k=0pg,
Viy|®
Z:: [+ k]*"‘ .[| d

|

(14.2.6)

|

——Z(z+m9u+k}‘[|ﬂ

k=0

;Z(z+k19 ‘ij

h= LEL

|J'"'.
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By changing the order of summation we obtain

[ Vinl? _ 1 gJ' ! 0-A
< — fl1 D> (2 +k)
<C> (3+h)'+oA J f

h=0 B,

<cy j 1 3+ [up )02

h=0j,
=r:[|.f| (3 + [up|) 0
1

where we have used that >}_, (2 + k)* < erjf” (2 + t)*dt = C(3 + h)**'. By

Holder’s inequality we deduce that

|
m’

[Vinl® . J' : (1+8-Aym’
= m 3+ (U m
: :
: @ N (14.2.7)
<C+(C J |Hﬂ |{1+ﬂ—h}m' 1
0

since 1 + @ — A > 0. By the Sobolev inequality and the Hélder one with exponent %,
we have

mia
5 [mnr” < [ 17unl®
0 0
[ | Vuyl4 Aq
= (1 + Junl)z
Aq 14.2.8
o (I+lunl)? ( )
S =4
Vg, |? J Aq
< J (1 + nl) 5
1+ |upl)?
ﬂ{ [ Unl) 2
Estimate (14.2.7) implies
i ANl =4 ]
* ] .]l.i
Jmﬂw <1C+C J|uﬂ|“+“-f”m 11 + J|uﬂ|z——‘a -
) I £ ) £}

L. o
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Since l:'\'_‘ii = g*and (1 + @ — A)m’ = g%, one obtains that the sequence u,, is

bounded in 19" (€2). From (14.2.8) and (14.2.7) we deduce that

-

“F

i 2
| 2|
SRR
(2

-

2m'

e

{1 £

that is, the sequence 1, is bounded in W&‘q{ﬂ}. ]

Passing to the limit in problems (14.2.1), as in Theorem 14.5, it is easy to prove the
following result. Observe that the choice of test functions is different from the above
theorems, due to the regularity of the solutions.

Theorem 14.7. Assume that f < L™(Q), with N_]_‘;'-{N_” < m < Nu—ﬂfmmn-

Let q = 7 2U—C0. Then there exists a distributional solution u € W, 4(Q) to prob-

lem (14.1.2), that is,

Ja{x,u]?u-?(p=‘|‘fq}, Ve CyQ).
0 Q

. Hiﬂ“—ﬂ]
Remark 14.8. We observe that g* = “N-2m ?

Theorem 14.5.

which is the summability found in

We end this section by studying under which conditions on the summability of
the source f the solution u can be chosen as a test function in problem (14.1.2).

Proposition 14.9. Assume that m > —-5—CL- et u be a solution to problem (14.1.2)

found by approximation. Then

Ja{x,u} V| =£J1f'u.

2

Proof. Step I: We are going to prove that

Ja,(x,u,} Vul® < Jf T (14.2.9)
0 0
Let 1, be asolution to (14.2.1). We have proved in Lemmata 14.1, 14.4 and 111.63 that the
sequence uy is bounded in L (Q), where » = MO0 = g with g = MU0
Moreover, choosing Tj (1, ) as a test function in (14.2.1), we obtain
J-H{Jif. TH {“ﬂ}} |TTR(HHHE = [ .fﬂ Tk{uﬂ} . {lﬁl.z.lﬂj

0 Q

By using (14.1.1) on the left-hand side and Hélder's inequality on the right one we have

n:J- |V Tk (1) |°
(1 + k)?
Ap

< kllfllgm) ,
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that is, for a fixed k > 0, the sequence Ty (114, ) is bounded in H& (€2). It is easy to see
that

. Imx.Tn{unn VTi (i) - V() - [a{x, T () |V T (1) |2
0 0

< [mx.n{unn IV Te () |2
£}

Since a is bounded by assumption (14.1.1), the left-hand side of the above inequality
converges to [ al(x,u) |V Ty (u) 2. Therefore, by (14.2.10), we have

J-a.{x,'u} |V Ti(u)|? < J‘fﬂ:(u}-
£

£

At the limit as k — oo, the right-hand side tends to |, fu, which is finite by Hélder's
inequality, since g* = v = wm’'. By Fatou’s Lemma on the left-hand side we ob-
tain (14.2.9).

Step II: Let @y, be a sequence of Cy (2) functions, converging to T (1) in Hé (£2)
and *-weakly in L™ (£2). Then

.I‘il(x:u} Vu - Vo = J‘f{pn-
(2 £}

The sequence a(x,u) Vu- Vg, converges to a(x, u)|VTi(u)|? a.e.in Q. Moreover,
if E is a measurable subset of ), we have, by Holder’s inequality and (14.1.1)

1 |
[a(x,u}?u-?q:*ni [a{x.unvuﬁ [m?mnﬁ

E E E

By Vitali's theorem (Theorem 3.2) the right-hand side converges to 0, as meas(E) — 0,
due to (14.2.9) and the hypotheses on ¢,. At the limit as n — o, Vitali’s theorem
implies that

J-a.{x,'u} VTi(u)|® = Jfﬂ:{u}-
0 £}

[t is now sufficient to pass to the limit as k — oo, ]

14.3 The case @ > 1: existence and nonexistence

If @ > 1, some nonexistence phenomena occur for problem (14.1.2), even for constant
sources. We observe that one would expect these kinds of sources to give bounded
solutions, if one thinks to Theorem 6.6.
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Assume that 1t is a solution to

v
—div( U )=A:::~D, in By (0)

(1 + |ul)?
u =20, on dB(0).

Then o

. 1=+ ul)

v(x) = 0-1
solves —Av = A, Observe that

1 :
vV = 01 in B;(0). (14.3.1)

Now, the H{ﬁ{ﬂ} solutionto —Av = Aisv = %{l — |x]%). If Ais sufficiently large,
there exists a subset Ej of B, (0), with meas(Ey) > 0, where v > E,'T]. This contra-
dicts (14.3.1).

However, if A is sufficiently small a solution exists, as stated in the following

existence result in the case where 0 > 1.

Theorem 14.10. Let Q be a bounded open subset of RN with 8 of class C!. Assume
that a satisfies (14.1.1) with @ > 1. Let f belong to L™ (L)), with m > % Then there
exists A > 0 such that, if |A| < A", problem

{_divm(x,u)?u}=ﬂf= in Q, (14.3.2)

u=_0, on dQ,

has a bounded H{ (€)) solution.

Proof. We will use Theorem 2.10 (Schauder’s fixed point Theorem) to prove the result.
We define § : L™(Q)) — L™(€}) as the operator which maps v into z, where z
H} (Q) is the weak solution to

—divia(x,v)Vz)=Af. (14.3.3)

5 is well defined, due to Theorem 14.2 and Remark 14.3.
Step I: We prove that S has an invariant convex, closed, bounded set. Let us con-
sider G (z) as a test function in (14.3.3). By assumption (14.1.1), one has

|V . 5
j lﬂik|{j|}}|ﬂ < [a(x,v)IVG@P <A | fGu(2).
0 (2

[

Since v is bounded, we deduce that

fﬁf_[ VGr(2)12 < A1+ [[vr=a))? ij:.:iE}.
L8 0
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By Remark (6.8), there exists a positive constant C such that

1zl ey < CIALILL Im) (1 + [[vllz=))?.
Wedefineh: R™ — R by
W(R) =R — C| fllzmq) |Al(1 + R)?.

We will prove that there exists Ry such that h(Ry) > 0. The maximum of h is attained

at
1

(CIALOI fllm(y) 7T
this value is well defined if

-1 =Ry;

1
(CIAIB fllm ) T

=

that is,
1
|:)‘t| = .
COllflLm
Now,
h(R,) = = L—l—Ch( L ﬂ)}n
(ALOILf Tpm gy ) &1 (CIAIO fllmiq)) ot
if and only if
g -1 .
—— > (CIAllfllzm ) 77 -
71
Therefore it is sufficient to choose A such that
: (0—1)91 1 } (0 -1)0-1
Al < min , = _
A {ga Cllfllpmiey Cllfllipma) O 09 || fllzme)C

In this way the closed L™ (£2) ball B of radius R; centered in 0 is invariant under S. It
is clear that B is bounded and convex.

Step II: We will show that § is completely continuous. We are going to prove that
if v, — vinL™(Q), then S(vy,) = z,, — S(v) = z in L= (£2). By subtracting side by
side of the equalities

[a[x,vn}?zn -Vw = J-hfw
0 0
and

J;a[x,u]?z - Vw =Jl.?«fw,

we obtain
Ja{x,vn}?zﬁ -Vw = Ia{x,u}?z - Vw. (14.3.4)
0 0
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The choice of z,, as a test function gives

J‘ |V znl?
1+ |1*’n,|]a
0

< jmx,vﬂnvzm? < BIVZlz IV Znllz @

by assumption (14.1.1) and Holder’s inequality on the right-hand side. Since v, be-
longs to B (see Step I), we obtain that ||z, p2 () i bounded, since

X _ 2
||?EH||LE ay = ||E||;_z{[1}||zn||1'.3[£'J.'] -
(1 + Ry)" )

Therefore there exist a subsequence and a function z; in H (]} (Q) such that z,;,, — zg
weakly in H} (Q) and a.e. in Q. Fixing w in H} (), we have that

Ja{x, Un ) VZp, - Vw — _[a.{x,v}?zu -Vw
0 0

for every w in Hé{ﬂ}, since a(x, vy)Vw — al(x,v)Vw in (L2 (Q))N by Lebesgue’s
theorem. On the other hand, we deduce from (14.3.4) that

J‘ﬂ{x,'uﬂk]?zﬂk -Vw = Ja{x,v}?z - Vw
0 0

for every w in H| (Q); therefore

Ja{x, viVizgp—z)-Vw =0
0

for every w in Hj) (). Choosing z; — z as a test function and using that a(x, s) > 0,
we deduce that zy = z. By Theorem 12.8, z,, are uniformly Hélder in Q, since they
are uniformly bounded and m < al(x,vy,) < P (thatis, a(x, vy) are uniform-
ly coercive and bounded). Arzela-Ascoli theorem applies and gives the existence of
a continuous function g in Q such that Zn, — g1in C(Q). Since Zn, — Z a.e.in ), we
infer that z;;, — zin L™ (). As the limit is independent of the subsequence, z,, — z
in L™ ().

Let us show that for every bounded C C L™ (), then S(C) is compact. Let v, be
a sequence contained in the invariant set B. Then ||z, ]| 1~(0) = R;. As above we can
say that z,, are uniformly Holder. Arzela-Ascoli theorem implies that § is completely

continuous. =

14.4 The regularizing effects of a lower order term

In this section we are going to study the Dirichlet problem

|_div{u.(x, wyVu) +u=f, in Q, (14.4.1)

u=20, on 2.
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We will show that the presence of the lower order term changes the nature of the
existence results. Let f,, = T, (f) and define the following sequence of problems:

{—dwunx;nﬂuﬂJ?unﬁ+Hn=fhfi“ 2, (14.4.2)

un =0, on dQ.

It is clear from Theorems 5.1 and 6.7 that there exists a Hy (Q2) n L™ (Q) solution to
problem (14.4.2).

Lemma 14.11. If u,, is a solution of (14.4.2), then |[uy||lpmy < || fnllpmiq)-

Proof. In the case where f belongs to L™ (Q) with m > 1, we choose |, |"™ “u,
as a test function in problems (14.4.2). By dropping the operator term and using the
Holder’s inequality on the right-hand side, one has

[ ent™ < [ fultan ™ 2 < L i ey
0
which gives the result.
In the case where f € L™({Q) with m = 1, we choose as a test function
in (14.4.2). Again, dropping the operator term of the left-hand side, one has

T (u
J.uﬂ Lkn}5j|f|-
Ly £

Th (1)
k

It is now sufficient to pass to the limit as k — 0 and use Fatou’s Lemma. ]

Now we assume that (14.1.1) holds with € > 1. Let f € L™ (£}, with m > ﬂ%;
we will prove the existence of bounded solutions.

Theorem 14.12. If f belongs to L™ (), with m > E% and 0 > 1, then there exists
a solution u Hé (Q2) N L™ (C)) of the boundary value problem (14.4.1).

v i - +
Proof. The use 'Df[ (Lt fuy ) }5._', (k)7 } sen(uy,), k > 0, as a test function in (14.4.2)
and Young’s inequality imply that

1+ lun = (1 4+ k)o1!

Ja(x,:rﬂ () | Vatn |2 (1 + |un)?2 + [ 1t

-1
Ay Ay
1
<57 | Il [Q+TunD® = (1 + 7]
—_ ]_ )
A
C [ £ @
:EafldUMQ+9_1JH1+HmH“'—H+kﬁ4P&-
Ag A
Using the inequality

cot® !, Vit>k=201 —1,c0=292if 0=2

[(1+0)7 1 (1 +Kk) 1] <
cot?1, Vit>k,co=1,if 1<0<?2
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on the last term and assumption (14.1.1) on the first one, we obtain

|V |? (1 + |9 = (1 + k)01
ﬂj ( + Jlun|

1+ lunl)? 0 -1
Ap

=

Jwﬂ Sl j[n1+|unnﬂ] (14K gl

A

0-1 . Then one obtains

g 2
[
A

(1 + |unl)?
Al

Mo —

We choose £ such that £(cp)

where C is a positive constant depending on ¢ and . By Holder’s inequality with
exponent -5, this implies that

1+ u 2 , : . e
J |08 1+|k”|” < C [ 1fal® < CILFIfm g (meas(an)]

Aj Al

Sobolev’s inequality on the left-hand side implies

2
'.II

=

J[lﬂg{l + unl) —log(l + k)1% < C||f||f,,1[m [meas(A;)]} m

k

Now we set log(1 + |uy|) = vy and log(1 + k) = h. Remark that A, = {|u,l| > k}
{vn = h}. Thus the last inequality gives

A

| on = RIZ | < LI gy meas(ivg > k]I
{vn>h)

Note that (1 — %] ‘ET > 1, since m = {?% Then Lemma 6.2 applies and gives that

the sequence |[vy =) = | log(1l + |unl)|i=(q) is bounded, that is, the sequence
lUnl =0 is bounded.
As in the proof of Theorem 14.2, u,, is a solution for n sufficiently large. [

Theorem 14.13. Let f € L™ (Q), withm > 1.

(1) Assume that m = @ + 2. Then there exists a distributional solution u € Hﬁ,{ﬂ} N
L™(Q) to problem (14.4.1).

(2) Assume that —= “’2 < m < 0+ 2. Then there exists a distributional solution u <

jlnr

L™(Q) n Wﬂ’ %2 (Q) to problem (14.4.1).
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Proof. Step I: Assume that m = 0 + 2. Weuse [(1 + |u,|)'*? — 1]sgn(uy,) as a test
function in (14.4.2). Holder’s inequality on the right-hand side and assumption (14.1.1)
on the left one imply

7
jl?unl“ = C{l + ||fn ||L’”{f1:n} ” |Tfh‘:r1||:]+ﬂ:I ||;_”1’{£1J‘
0

where (C is a positive constant depending on « and €. By Lemma 14.11, the last term
is bounded uniformly if (1 + @)m" < m, thatis, m = 2 + 0. Therefore, there exists
a function u € H;(Q) such that, up to a subsequence, u,, — u weakly in H, (),
strongly in L' (Q) and a.e. in Q.

It is easy to pass to the limit in problems (14.4.2) in order to prove that u is a solu-
tion to problem (14.4.1). For the first term of the left-hand side, it is sufficient to observe
that Vu, — Vu weakly in L2(0)) and by Lebesgue’s theorem a(x, Ty (uy)) V@ —
a(x,u)Vein (L™ (Q))N for every m, due to assumption (14.1.1).

Step II: Assume that % <m < 0+ 2. Ifwe choose @ = [(1 + |u,|)'™m ! —
1]sgn(u,) as a test function in (14.4.2), we get, by the assumptions on a

|1"'T'f|1ff1ri|2 —1
| G sz <€ 11,
() {1

Now, using Holder’s inequality on the right-hand side of the previous inequality and
Lemma 14.11, we get

1-L

m

|V Uy |2 m
J (1+ Ih‘,ﬂlﬂ}ﬁ—”‘f1+2 =C J Un|™ < Cllfllfm, VnelN, (144.3)
1 0

where C depends on m and 6. On the other hand, let o < 2. Writing [, [Vu, |7 as

?u e _ Tra_ 3
J|T'M-}]|U=j | n ]“+|Hn|}2[g m+2]

ir .
1+ |y |) 710 me2
) )+ ual)

and using Holder’s inequality with exponent %, we get

1
|
rfS

j|vuﬂ|“ <C [{1 b ) 2el0-me2|
0} £

where we have used (14.4.3). Due to Lemma 14.11, if 57~ [0 — m + 2] = m, thatis, o =

% , the right-hand side is uniformly bounded. Notice that o < 2, by the assumptions
on m and &. Since % > 1, the fact that the sequence |, |Vy| o2 is bounded,

2H

l, 4=
implies the existence of a function u € W, " () such that, up to a subsequence,

2m

Uy — u weakly in Wl-:'m{ﬂ} and a.e. in Q); moreover u € L™ (Q) by Lemma 14.11,
One can prove that u is a distributional solution to problem (14.4.1), asin Step I. [l
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We are now going to study the case where m = 2, for @ = 2 proving the existence
ofa W' (Q) solution to problem

(14.4.4)

—divia(x,u)Vu)+u=f, in Q,
u=>0, on 0o0.

We observe that the existence of a solution belonging to the nonreflexive space
1-1-"'{} 1(Q) is quite unusual for an elliptic problem. However, also the Dirichlet problem

—div(|Vu|?2Vu) = f, in Q,
u=0, on dQ,

r'ﬁ||l

TN has a distributional

withl <p <2 - hi,, and f belonging to L™ ()), m =
solution u € W&‘l (€2), as proved in |14].

Theorem 14.14. Let f be a L*(Q)) function. Then there exists a distributional solution
win Wyt (Q) n L2(Q) of (14.4.4), that is,

[a{x,u}‘?u - V@ + [u Q = J‘f{p, Ve I-t-'}}'m(ﬂ]. (14.4.5)
0

0 0

If f = Tu(f), by Theorem 14.12, there exists a bounded H{j (€2) solution to the
following problems:

—divia(x, Un)VUny) + Un = fn, In0,
l n n i fﬁ- (lﬂﬂ"-rl.ﬁ]

Uy, =0, on ¢{2.

We are going to use the previous approximating problems in order to prove Theo-
rem 14.14. In the following, C will denote a positive constant depending on meas((2).

Proof. Step I: We prove some a priori estimateson uy. Letk = 0,1 > 0, and let ¢/; ;- (5)
be the function defined by

0, if 0=s<k,

i(s — k), if k<s<k+1,
Vik(s) =1, if s>k+ L,

WYik(s) = —Pik(=s5), if s<0.

Note that _
1, if s>k,

if |s| =k,
—1, if s<-k.

=

lim @ik(s) =

Lo 0a
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We will choose |uy, | @) (1) as a test function in (14.4.6); such a test function is

admissible since u,, belongs to H}(Q) n L®(Q) and y;,(0) = 0. We obtain, by
assumption (14.1.1)

HJ‘ |?Hn|2 I _ {H }|+I
) W+ Tunl)? Wik(Un

£l

o [t | Wik (U) < [fﬂ|uﬂlw,-.ktun},
£}

since {p:-lk{sj = (). Using that | f,,| = | f], we have

VU@
“J| nl

{1 1 |HH|}:_: |U"I,k’[un}| +h[H}.r|HH|wi'k{H}.r} < .[ |.JF|IHP1'||WLE'['HHH +

{1 £l

Letting i tend to infinity, we thus get, by Fatou’s lemma on the left-hand side and by
Lebesgue’s theorem on the right-hand side,
|Vuy |E [ 2 ‘- .
=+ | |uyl® = Uy . 14.4.7
Tzt lunl® < | 111l (14.4.7)

A A

Dropping the nonnegative first term in (14.4.7), and using Holder's inequality on the
right-hand side we obtain

Ay

=

jmnrg jmﬂ me

Aje A Ak
Simplifying equal terms we thus have
[ unl? < J 1% (14.4.8)
:'31,!.; Ay
The previous inequality for k = 0 reads
[ [Up|* < J f1%, (14.4.9)
0 0

so that u,, is bounded in L= (Q). This fact implies in particular that

lim meas({|uy,| = k}) =0,

. uniformly with respect to n. (14.4.10)
From (14.4.7), written for k = 0, dropping the nonnegative second term, we have
Vg, J 1
o s = | 1 unl.
| s e = |
0 0

Holder’s inequality on the right-hand side then gives

| =
P =i

|1"FM-]F1|2 - J.I_f"j .[|H |:_"
(1+ |up? ~ : ! '
£} £

0
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so that, by (14.4.9) we infer that

aj IV EIIfIE. (14.4.11)
£

(1 + |unl)®
€1

Step II: We prove that, up to a subsequence, the sequence u, strongly converges
in L2(Q) to some function u belonging to W' (Q) n L2(€).

Starting from (14.4.11), we deduce that v,, = log(1 + |u,|)sgn(u, ) is bounded
in H;, (). Therefore, up to subsequences, it converges to some function v weakly in
H} (Q), strongly in L?((2), and a.e. in Q. If we define u = [e/V| — 1]sgn(v), then u,,
converges a.e, to 1 in (2. Let now E be a measurable subset of {2; then

[Iunlzﬂ [ U |® + J Iunl"3£[Ifl”kzmeas{El,
L Eniln '

N Uy lzk} Endlunyl<k} Ay

where we have used (14.4.8) in the last passage. Due to (14.4.10), we may choose k
large enough so that the first integral is small, uniformly with respect to n; once k is
chosen, we may choose the measure of E small enough such that the second term is
small. By Vitali’s theorem, u,, strongly converges to u in L?((2).

Step III: Let again E be a measurable subset of (2, and let i bein {1,..., N}.Then,
denoting by ¢;u,, the ith component of the distributional gradient of u,,, we have

|V iy
d;: U EJ-?’H =J.
th ol = [ 1Vual = [ {

E E
CVual? | I
< , 1+ |, )°
J{l+|un|}3 (1+ Tunl)
| E E
: ! ;
1 o | :
=% | f1° 2meas(E) + 2 | |uy! ,
0 E

where we have used (14.4.11) in the last inequality. Since the sequence u,, is compact
in L>(Q), we have that the sequence [ d;u, — 0, as meas(E) — 0, uniformly with
respect to n. Thus, by Dunford-Pettis theorem, and up to subsequences, there ex-
ists Y; in L' (Q) such that d;u, weakly converges to Y; in L!(Q). Since d;uy is the
distributional derivative of 11,,, we have, for every 1 in M,

|dine =~ [untip, voeci@.
{1 £}

We now pass to the limit in the above identities, using that d;u,, weakly converges
to Y; in L' (Q), and that u,, strongly converges to u in L (Q); we obtain

[vip=-[uoap, voecro,
£2 £2
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which implies that Y; = d;u, and this result is true for every i. Since Y; belongs to
L' (Q) for every i, u belongs to i-lr-'}}'l (Q2), as desired.

Step IV: We are going to prove that u is a solution to problem (14.4.4). Since
alx,uy)Vo — alx,u)Ve a.e. in Q, by Egorov’s theorem, for every & > 0 there
exists a subset Es of (0, with meas(Fs) < o, such that

lim a(x,uy)Ve = alx,u)Ve uniformlyin Q\ Es. (14.4.12)

n— + oo

We now have

J‘ﬂ(x.un)?’un -V — j alx,u)Vu - Vg
£} £}

< { alx,Uny)Viy -V —alx,u)Vu -V | + B J- Vel|lVu,l.
O\ Eg Es

Using the equiintegrability of | Vi, | proved above, and the fact that | V1| belongs to
L'(£)), we can choose & such that the second term of the right-hand side is arbitrarily
small, uniformly with respect to n. We then use (14.4.12) to choose n large enough so
that the first term is arbitrarily small. ]

We are going to prove the uniqueness of the solution obtained by approximation.
Let f € L?(Q), let f,, be a sequence of L™ () functions converging to f in L% (),
with | f,| = |f], and let u,, be a solution of (14.4.6). We have just proved the exis-
tence of a distributional solution u in W[:" (Q) N L?(Q) to (14.4.4), such that, up to
a subsequence,
= 0. (14.4.13)

H‘i‘}"‘m [un = “”lﬂ!" ()AL (0)

Nr.;:w, let g € L?(Q), let g, be a sequence of L (Q) functions converging to g in
o+ 2
L7 (Q), with |g,| = |g|, and let z,, in H} (Q) n L*(Q) be a weak solution of

—divia(x, uy)Vuy) +zyp = gn, in2,
)V T En = Gn (14.4.14)
Zn =0, on d{l.
Then, up to a subsequence, we can assume that
Hlil’flm lzn - z”w[ﬁ" (AL 0, (14.4.15)
where z in W,;"' (Q) n L2(Q) is a distributional solution of
—div(ia(x,z)Vz)+z=f, inQ,
f (14.4.16)
z=0, on d{).

Our result, which will imply the uniqueness of the solution by approximation
of (14.1.2), is the following.
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Theorem 14.15. Assume that a = a(x,s) is differentiable with respect to the second
variable, and “H < C, for some positive constant C. Assume that u,, and z,, are
solutions of 14‘#.6) and (14.4.14), respectively, and that (14.4.13) and (14.4.15) hold true,
with u and z solutions of (14.1.2) and (14.4.16) respectively. Then

Jlu—zl EIII—HL (14.4.17)
0 ()
Moreover,
f=gaeinQ) implies u <_za.e.inf. (14.4.18)

Proof. Subtracting (14.4.14) from (14.4.6) we obtain
—divia(x,up)Vu, —alx,zy)Vazy) + Uy — Zn = fn — Gn -

Choosing Ty (1, — 2z, ) as a test function we have

J.[ﬂ(x, Up)VUp —alx,zp)VZu] - VTp(uy — zn) + .[{HH — Zp)Th(Un — 2n)
02 £}

[tfn Gn) Tty — 2n)

{2

This equality can be written in an equivalent way as

Jﬂ{x:“n)[vuﬂ —Vzul VT (upy —24) + J(“n — Zn) Th(uy — zyn)
) £

- J‘{fﬂ —Gn)Th(Uy — 2y) - J‘[ﬂ{x:uﬂj —alx,zy)|Vzy - VT (un — zn) .

The first term of the left-hand side is nonnegative, so that it can be dropped; using La-
grange’s theorem on the last term of the right-hand side, we therefore have, since the
absolute value of the derivative of a with respect to the second variable is bounded,

J{'Hi-r —Zp)Ip(Upy —2y) = J{fn _HH]TJ’T(HH —Zn) + Ch-J IVzulIVTh(un —zn)l.
)

Dividing by h we obtain

Th{“n_ J|f ITh “n EHH
n

J{un Z) +cj|vzﬂ||v:rh{uﬂ—z”}|i

Since, for every fixed n, u, and z, belong to H{ﬁ (€2), the limit as h tends to zero gives

1t = zal < [ 1fun ~ gl

0 0
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which then yields (14.4.17) passing to the limit.
The use of Ty, (u,, — z,;)" as a test function and the same technique as above

imply that

J[Hn —Zp) = J (,fﬂ —.;G'H]-

0 (Un=Zn]
Hence, passing to the limit as n tends to infinity, we obtain, if we suppose that f < g
a.e. in (2, ,

J(u—zlﬁ < j (f-g) =0,

0 fu=z]
so that (14.4.18) is proved. ]

Due to (14.4.17), we can prove that problem (14.1.2) has a unique solution obtained
by approximation.

Corollary 14.16. There exists a unique solution obtained by approximation of (14.1.2),
in the sense that the solution 1 in H-"&'l (Q)NL2(Q) obtained as limit of the sequence Uy,
of solutions of (14.4.6) does not depend on the sequence [, chosen to approximate the

datum [ in L2 (Q).

Our last result is a nonexistence result for solutions of (14.1.2) in the case where
the source is a Dirac mass.

Theorem 14.17. Let u denote a Dirac mass concentrated on a point of C). Then there is
no solution to

L VU .
—dw(“Hu”E)Jru—p, in Q,

u =20, on dfl.

More precisely, if [y is a sequence of nonnegative L™ ()) functions which converges
to U in the tight sense of measures, and if u, is the sequence of solutions to (14.4.6),
then u,, tends to zero a.e. in £ and

n—+oo
L8

lim [unq::'=J(pdp, Ve W&'m{ﬂ}.
()

Remark 14.18. More in general the previous result can be proved for bounded Radon
measures concentrated on a set of zero harmonic capacity (see [8]).

Proof. For every £ > 0 there exists a function (/¢ in Cy (£2) such that
O=w:=1, JI‘FQ}EIEEE, J{l—q;f}-:i,uﬂf.
£} £}

Note that, as a consequence of the estimate on (/- in Hﬁ{ﬂ}, and of the fact that
0= e <1, P: tends to zero in the weak™ topology of L™ (£2) as £ tends to zero.
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If f,, is a sequence of nonnegative functions which converges to u in the tight
convergence of measures, then

DEnl_i.IPmJ-fﬂ[l_wE}:J(I_wE]d'UEE* (14.4.19)
£ £l

Let u; be the nonnegative solution to the approximating problem (14.4.6). If we
choose 1 — (1 + u,) ! as a test function in (14.4.6), we have, dropping the nonnega-

tive lower order term,
. 3
(1+u,)2| —J7™
0

0

Therefore, up to a subsequence, there exist o in (L*(Q))" and p in L*(Q) such that

V
lim “"___ g, lim .

n—+ee (1 + H?‘T]E no+teo | (1 + Uy )2 = 2, (1*‘-’1#.2{})

weakly in (L (Q))"V and L°(Q) respectively.
The choiceof [1 — (1 4+ un) 1](1 — ;) as a test function in (14.4.6) gives
AT 1
J v +iuﬁ[1 — (1 + ) (- )

— _ -1 o v“’ﬂ 'Fwt' _ -1
—Ifn[l (L +uy) (1 —e) + (1 + un)2 [1 = (1 +uy) ']
(1 0
?Tain : !"b_wf _ 1
< _[fn(l We) +J‘ TERTRE [1 - (1 +uy) ']. (14.4.21)

We study the right-hand side. For the first term, (14.4.19) implies that

.F—"[,]+ ==

lll"[l llrpm [ lfﬂ {]. — U-"f] = Um
£}

while for the second one, we have, using (14.4.20), and the boundedness of [1 — (1 +
un) L],

. Vi - Ve B 1 _J By B ~]
Jﬂﬂmi el b A

Recalling that o belongs to (L% (Q))", that . tends to zero in H; (€2), and using the
boundedness [1 — (1 + u)~!], we have

lim lim Vin - Ve

e—~0" n—+oo ) (1 4+ Up)?
{2

[1-(1+uy) '1=0.

Therefore, since both terms of the left-hand side of (14.4.21) are nonnegative, we ob-

tain
THnlz

+ Uy )?

lim lim _I. _I
E—={* M—+o2 {l
)
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The functional
ve12(Q) - [|-u|2(1 — o)
0

is weakly lower semicontinuous on L?(()); this implies that

: . VU 2
r s 2 B . . " . _
£J}Iﬂl = 5111{1]15{ P17 (1 —e) = lim lim i ‘ d+ )2 ‘ (1 -ws) =0,

e+ N—+o0

that is, p = 0. Thus, since

V iy
(1 + 1Uy)?

=‘F(1—{l+un}‘l),

by (14.4.20) the sequence 1 — (1 + u,) ! weakly converges to zero in H}(Q), and
so, up to a subsequence, it strongly converges to zero in L°(Q). Therefore u,, tends
to zero a.e. in (). Since the limit does not depend on the subsequence, the whole
sequence U, tends to zero a.e. in ().

For @ in (L*(Q))V, by (14.4.20), one has

. Vin
ag-P| = lim J .-'I"ﬂJ. d| =0,
H. ‘ n— 400 (1 + |uyul)? p e
0 0 0

which implies that o = 0. Therefore, passing to the limit in (14.4.6), that is, in

Viu, -V

(l + ’Hn]z
2

1,
+ H-riqujfnqji *;UEWUN{Q}-
0
we get, since the first term tends to zero,

[ Al Sl

lll‘Il J HHQJ=J.Q?dH:
() 0]

for every @ € W, (), as desired. ]



Bibliography

[1]

2]

3]

4]

[5]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Ambrosetti and P. H. Rabinowitz. Dual variational methods in critical point theory and
applications. J. Functional Analysis 14: 349-381, 1973.

A. Ambrosetti and G. Prodi. A primer of nonlinear analysis, volume 34 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.

M. Artola. Sur une classe de problémes paraboliques quasi-linéaires. Boll. Unione Mat. Ital.
5-B: 51-70, 1986.

Ph. Bénilan, L. Boccardo, T. Gallouét, R, Gariepy, M. Pierre and J. L. Vazquez. An L'-theory
of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4), 22(2): 241-273, 1995.

L. Boccardo. T-minima: an approach to minimization problems in L. Ricerche Mat. 29:
135-154, 2000,

L. Boccardo. A contribution to the theory of quasilinear elliptic equations and application to
the minimization of integral functionals. Milan Journal of Mathematics 79: 193-206, 2011,

L. Boccardo and G. Croce. Esistenza e regolaritd di soluzioni per alcuni problemi ellittici,
Quaderni dell'Unione Matematica Italiana. Pitagora Editrice, Bologna, 2010.

L. Boccardo, G. Croce and L. Orsina. Nonlinear degenerate elliptic problems with I-i-"[}" (£2)
solutions, Manuscripta Math. 137: 419-439, 2012,

L. Boccardo and B. Dacorogna. Monotonicity of certain differential operators in divergence
form. Manuscripta Math. 64: 253-260, 1989,

L. Boccardo, A. Dall’Aglio and L. Orsina. Existence and regularity results for some elliptic
equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena 46: 51-81, 1998,

L. Boccardo, V. Ferone, N. Fusco and L. Orsina. Regularity of minimizing sequences for func-
tionals of the calculus of variations via the Ekeland principle. Differential Integral Equations
12: 119-135, 1999,

L. Boccardo and T. Gallouét. Nonlinear elliptic and parabolic equations involving measure
data. J. Funct. Anal. 87(1): 149-169, 1989.

L. Boccardo and T. Gallouét. Nonlinear elliptic equations with right hand side measures,
Comm. P.D.E. 17: 641-655, 1992,

L. Boccardo and T. Gallouét, Wd'liﬂ} solutions in some borderline cases of Calderon-
Zygmund theory. J. Differential Equations 253: 2698-2714, 2012.

L. Boccardo, T. Gallouét and F. Murat. Unicité de la solution pour des équations elliptiques
non linéaires. C. R. Acad. Sci. Paris 315(11): 1159-1164, 1992,

L. Boccardo, T. Gallouét and J. L. Vazquez. Nonlinear elliptic equations in R™ without growth
restrictions on the data. /. Differential Equations 105(2): 334-363, 1993.

L. Boccardo and D. Giachetti. Existence results via regularity for some nonlinear elliptic
problems. Comm. Partial Differential Equations 14: 663-680, 1989,

L. Boccardo and D. Giachetti. A nonlinear interpolation result with application to the summa-
bility of minima of some integral functionals. Discrete Cont. Dynam. Syst. 11: 31-42, 2009.

L. Boccardo and H. Brezis. Some remarks on a class of elliptic equations with degenerate
coercivity. Boll. Unione Mat. Ital. 6: 521-530, 2003,

L. Boccardo, F. Murat and . P. Puel. L™ -estimate for nonlinear elliptic partial differential
equations and application to an existence result. SIAM . Math.Anal. 23(2): 326-333, 1992.
H. Brezis. Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann.
Inst. Fourier (Grenoble) 18(1): 115-175, 1968.

H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext.
Springer, New York, 2011,



188 — Bibliography

23]
(24]
(25]

[26])

[27]
28]
[29]
[30]
[31]

32]

[33]
[34]
[35]
[36]
(37]
38]
39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

H. Brezis and W. Strauss. Semi-linear second-order elliptic equations in L'. J. Math. Soc.
Japan 25: 565-590, 1973.

H. Brezis and F. H. Browder. Strongly nonlinear elliptic boundary problems. Ann. Scuola Norm,
Sup. Pisa Cl. Sci (4) 5(3): 587-603, 1978,

F. H. Browder. Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69: 862-
874,1963.

E. De Giorgi. Teoremi di semicontinuita nel calcolo delle variazioni. Lezioni tenute all’lstituto
Nazionale di Alta Matematica, Roma, 1968-69, appunti redatti da U. Mosco, G. Troianiello,
G. Vergara.

B. Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical
Sciences. Springer-Verlag, Berlin, 1989,

|. Ekeland. Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.5.) 1(3): 443-474,
1979.

L. C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. Studies in
Advanced Mathematics. CRC Press, BOCA, 1992.

D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics
in Mathematics. Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.

S. Kakutani. Topological properties of the unit sphere of a Hilbert space. Proc. Imp. Acad.
Tokyo 19: 269-271, 1943,

P.D. Lax and A. N. Milgram. Parabolic equations. Contributions to the theory of partial
differential equations, Annals of Mathematics Studies 33: 167-190. Princeton University
Press, Princeton, N. )., 1954,

C.Leone. T-minima: some remarks about existence, unigueness and stability results. Asymp-
tot. Anal. 29: 273-282, 2002.

]. Leray and ).-L. Lions. Quelques résulatats de Visik sur les problémes elliptiques nonlinéaires
par les méthodes de Minty-Browder. Bull. Soc. Math. France 93: 97-107, 1965.

J. Milnor. Analytic proofs of the “hairy ball theorem™ and the Brouwer fixed-point theorem.,
Amer. Math. Monthly 85(7): 521-524, 1978.

C.L. Dolph. Nonlinear integral equations of the Hammerstein type. Trans. Amer. Math. Soc.
66: 289-307, 1949,

A. Manes and A. M. Micheletti. Un’estensione della teoria variazionale classica degli autoval-
ori per operatori ellittici del secondo ordine. Bollettino U.M.I. 4(7): 285-301, 1973.

G. Mingione. The Caldéron-Zygmund theory for elliptic problems with measure data. Ann. Sc.
Norm. Super. Pisa Cl. Sci. 6(5): 195-261, 2007.

G. ). Minty. On a “monotonicity” method for the solution of nonlinear equations in Banach
spaces. Proc. Nat. Acad. Sci. U.5.A. 50: 1038-1041, 1963.

L. Nirenberg. Remarks on strongly elliptic partial differential equations. Comm. Pure Appl.
Math. 8: 649-675, 1955,

R.S. Palais and S. Smale. A generalized Morse theory. Bull, Amer. Math. Soc. 70: 165-172,
1964,

A. Porretta. Some remarks on the regularity of solutions for a class of elliptic equations with
measure data. Houston J. Math. 26: 183-213, 2000.

M. M. Porzio. A uniqueness result for monotone elliptic problems. C. R. Acad. Sci. Paris Ser.1
337:313-316, 2003.

A. Prignet. Remarks on existence and uniqueness of solutions of elliptic problems with
right-hand side measures. Rend. Mat. Appl. (7) 15(3): 321-337, 1995,

D. H. Sattinger. Monotone methods in nonlinear elliptic and parabolic boundary value prob-
lems. Indiana Univ. Math. J. 21: 979-1000, 1971/72.

J. Schauder. Der fixpunktsatz in funktionalraumen. Studia Math. 2: 171-180, 1930.



Bibliography =—— 189

[47] ). Serrin. Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa
Cl. 5ci. 18: 385-387, 1964.

[48] G. Stampacchia. Formes bilinéaires coercitives sur les ensembles convexes. C. R. Acad. Sci.
Paris 258: 4413-4416, 1964,

[49] G. Stampacchia. Equations elliptiques du second ordre d coefficients discontinus. Séminaire
de Mathématigues Supérieures, No. 16 (Eté, 1965). Les Presses de |'Université de Montréal,
Montreal, Que., 1966.

[50] G. Stampacchia. Le probléme de Dirichlet pour les équations elliptiques du second ordre d
coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1): 189-257, 1965.

[51]  G. Stampacchia. Variational inequalities. Theory and Applications of Monotone Operators
(Proc. NATO Advanced Study Inst., Venice, 1968}, pp 101-192. Edizioni Oderisi, Gubbio, 1969.

[52] N.S. Trudinger. Linear elliptic operators with measurable coefficients. Ann. Scuola Norm.
Sup. Pisa 27(3): 265-308, 1973.






Index

A
approximation 29, 106, 115, 123, 140, 151, 154,
155,167,171, 182, 184

B

Banach-Caccioppoli theorem 5, 6
Beppo Levi's theorem 23
bootstrapping technique 73
Brouwer's theorem 5, 6, 10, 12, 38

C

Calculus of Variations 84
Carathéodory function 16
coercive form 34

coercive functional 102
coercive operator 38

compact operator 35, 82
completely continuous map 10
continuous form 34
contraction 5, 25, 26, 77,78

D

De Giorgi's theorem 84

degenerate coercivity 166

direct methods 84

distributional solution 121, 123, 130, 131,
135-138, 140, 152, 157, 169, 171, 177-179,
182

divergence type source 47,58

Dunford-Pettis theorem 23

E

Egorov's theorem 23

eigenfunction 68-71, 73-77,79, 88

eigenvalue 67-71, 74-79, 82, 83, 87

eigenvalue problem 67

Ekeland’s principle 95

elliptic 1, 24, 31, 37, 40, 61, 67, 121, 137, 144,
150, 152, 154, 157, 166, 179

ellipticity 30, 32, 33, 44, 52,53, 56, 58, 59, 64,
68, 70,72, 80, 81, 107, 110, 123, 125, 133,
135, 136, 141, 153, 163

entropy solution 122, 123, 132-137, 144, 146,
147, 150-152, 166

Euler equation 70, 84, 86, 87, 89, 91, 100, 105

l:
Fatou's theorem 23

first eigenvalue 69, 76,79, B8
fixed point 5, 6, 9, 10, 12
Fredholm alternative 75, 83

G
Gateaux differentiable 86, 97,102

H
H? regularity 61
Hilder's inequality 22

|

incremental rate 61

integral functional 84, 86, 90, 101, 122, 143
interpolation inequality 23

L

Laplacian 27, 88

Lax—Milgram theorem 24, 25, 27

Lebesgue space 22

Lebesgue’s theorem 23

Leray-Lions problem 1, 37, 47, 89, 91,121

Leray-Lions theorem 40, 42, 45, 58, 105, 106,
131, 153, 166

linear equation 27, 61, 130

lower order term 45, 53, 105, 122, 140, 166, 175,
176

M

Marcinkiewicz space 13, 18, 47, 56
maximum principle 32, 111
measure 148

measure source 138, 154
monotone operator 150, 152, 153
mountain pass theorem 100

N

natural growth 105
Nemitski's theorem 13, 17
nonlinear equation 37

P

Palais—Smale condition 98-101

Poincaré’s inequality 36, 69

polynomial growth 157

projection theorem 35

pseudomonotone operator 38, 40, 42, 44, 45



192 =— |ndex

R
Rellich—-Kondrachov theorem 35
Riesz theorem 35

S

Schauder’'s theorem 5, 10, 12, 89, 173
self-adjoint operator 82
semilinear equation 31, 67, 74, 122
semilinear monotone equation 28
Sobolev inequality 30, 35

Sobolev space 34, 35

spectral analysis 67

spectral theorem 68, 83

spectral theory 82

spectrum 82

Stampacchia’s theorem 24, 26
subsolution 31, 32, 34,76
supersolution 31,32, 34,76
surjectivity theorem 37, 38, 40

I

test function 29, 32, 52-54, 56-59, 71, 77, 89,
20, 99-101, 107, 108, 110, 112, 113, 115, 116,
118-120, 123, 124,128,129, 131, 136, 138,
141, 142, 151-153, 156, 158-161, 163, 164,
180, 183-185

T-minimum 91, 122, 143-147

truncated function 29

u
unique solution 27-29, 75, 151, 152, 167, 184
uniqueness 5,150-152, 154, 182

Vv
Vitali’'s theorem 14

w

weak solution 27, 167-169, 173, 182

weakly lower semicontinuous functional 102
Weierstrass theorem 84



De Gruyter Studies in Mathematics

Volume 55

Lucio Boccardo, Gisella Croce

Elliptic Partial Differential Equations, 2013

ISBN 978-3-11-031540-0, e-ISBN 978-3-11-031542-4, Set-ISBN 978-3-11-031543-1

Volume 54

Yasushi Ishikawa

Stochastic Calculus of Variations for Jump Processes, 2013

ISBN 978-3-11-028180-4, e-ISBN 978-3-11-028200-9, Set-ISBN 978-3-11-028201-6

Volume 53

Martin Schlichenmaier

Krichever—-Novikov Type Algebras: Theory and Applications, 2014

ISBN 978-3-11-026517-0, e-ISBN 978-3-11-027964-1, Set-ISBN 978-3-11-028025-8

Volume 52
Miroslav Pavlovic

Function Classes on the Unit Disc: An Introduction, 2014
ISBN 978-3-11-028123-1, e-ISBN 978-3-11-028190-3, Set-ISBN 978-3-11-028191-0

Volume 51

Daniel Groves

An Invitation to Hyperbolic Groups, 2014

ISBN 978-3-11-026277-3, e-ISBN 978-3-11-026280-3, Set-ISBN 978-3-11-916681-2

Volume 50
Zoltan Sasvari

Multivariate Characteristic and Correlation Functions, 2013
ISBN 978-3-11-022398-9, e-|SBN 978-3-11-022399-6, Set-ISBN 978-3-11-174044-7

Volume 49

Mikhail I. Ostrovskii

Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces, 2013
ISBN 978-3-11-026340-4, e-ISBN 978-3-11-026401-2, Set-ISBN 978-3-11-916622-5

www.degruyter.com






