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Preface
For more than one century complex analysis has fascinated mathematicians since
Cauchy, WeierstraO and Rieniann had built up the field from their different points
of view. Richness, beauty and fascination originate from the coincidence of analytic,
algebraic and geometric methods. While the theory of meromorphic functions cul-
minated in value distribution theory, for several decades geometrical function theory
flourhished, and complex approximation theory was developed. For recent books in
these topics see [Gaie80], [Laga86], [Pomm92] and also the survey article [Gaie90].
An excellent presentation of classical complex analysis including many historical facts
and remarks are the two volumes [Remrn92]. 't'here are many other facets of complex
analysis e.g. analytic number theory and complex ordinary differential equations.
And there is the wide field of complex analysis of several variables.
But complex analysis is not any more in the center of mathematical interest neither
in one nor in several variables. Nevertheless there is a branch which just recently
became quite active: complex analysis in partial differential equations. In the last
ten years more than 20 monographs appeared in this area as well as several collec-
tions of articles, see the list of references, part a. Although already classical via
the theory of harmonic functions this area became very lifely through the investiga-
tions of I.N. VEKUA, N.I. MUSKHELISHVILi, L. BERS, F.D. GAKHOV, W. HAACK,
R.P. GILBERT and others. While some of these considerations develop the theory of
boundary value problems for analytic functions others are concerned with building up
some theories for classes of complex partial differential equations and systems.
The present book gives some introduction in complex methods for partial differential
equations and systems mainly of first and second order. Classical natural bound-
ary value problems are considered, which in general are reduced to singular integral
equations by utilizing proper integral representation formulas. The basic boundary
conditions are of RIEMANN and RIEMANN-HILBERT type. Several generalizations
and extensions are presented as e.g the POINCARE problem and discontinuous bound-
ary value problems. But in general we stay with stronger assumptions in order to
keep the introductory character of the book. After the reader has become acquainted
with the material he can pass to other secondary literature or even to original research
papers.
On the basis of a first course in complex analysis chapter 1 introduces the neces-
sary background of function and potential theory. Properties of CAUCHY integrals,
GREEN and NEUMANN functions and SCHWARZ operators, fundamental boundary
value problems for analytic functions are extensively discussed. The RIEMANN map-
ping theorem often used to reduce boundary value problems for simply connected
domains to the case of the unit disc is presented with proof. It also serves to moti-
vate the introduction of the GREEN function. For multiply connected domains the
BERGMAN kernel serves to find operators of SCHWARZ type. These representation
formulas were recently developed by A. DZHURAEV. In chapter 2 beyond analytic
functions solutions to nonlinear CAUCHY RIEMANN systems and later on in chap-
ter 3 to generalized BELTRAMI equations are studied. The classical GAUSS theorem
leads to a generalization of the CAUCHY representation for analytic functions, the
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so-called CAUCHY-POMPEIU formula. The area integral added here is the celebrated
T-operator in the VEKUA theory of generalized analytic functions. Its z-derivative is
a singular integral operator of CALDERON-ZYGMUND type which serves to transform
boundary value problems for the functions just mentioned to singular integral equa-
tions. They can be solved and lead to a priori estimates of the solutions as well. This
T-operator and its first order z-derivative are just two particular operators of a whole
bunch of integral operators useful for first and higher order complex partial differential
equations. They were only recently systematically worked out by G.N. HILE and the
author after one and the other have occasionally been used before. The section on dis-
contiunuous boundary value problems is technically involved and might be skipped at
a first reading of the chapter. For nonlinear BELTRAMI equations the related integral
equations become nonlinear. In chapter 4 as an example entire solutions are studied.
In principle this leads to the solution of the RIEMANN boundary value problem for
these nonlinear equations. Here as well pseudoparabolic equations as first order com-
posite type systems are considered, where the methods developed before turn out to
be useful, too. In the final chapter 5 some special boundary value problems for elliptic
second and higher order equations are discussed in multiply connected domains and
the unit disc, respectively. The singular integral operators involved are expressed by
the BERGMAN and related kernel functions. They transform the problem to a singular
integral equation to which the FREDHOLM alternative applies.
Boundary value problems in the theory of analytic functions of several variables are
difficult in principle because of the complicated structure of the integral representation
formulas. In case when analytic functions satisfy some partial differential equations
it is possible to solve boundary value problems. Some results of A. DZHURAEV and
the author on first order systems in two complex variables with analytic coefficients
are presented. Here the DOUGLIS algebra of hypercomplex variables proves to be use-
ful. The SCHWARZ-POISSON formula which turns out as essential for the DIRICHLET
problem for analytic functions in chapter 1 can be extended to several variables. This
formula was just recently published by A. KUMAR and the author. Its deduction is
included here, too.
The main parts of the first three chapters were distributed as Lecture Notes at the
University of Assiut, Egypt in 1991 during a short time visitorship granted by the
German Academic Exchange Service (DAAD Kurzzeitdozentur). Moreover, the ma-
terial was presented in special courses at the Freie Universitat Berlin. I appreciated
the support through DAAD and the scientific discussions with the colleagues and stu-
dents in Assuit, in Qena and in Berlin very much.
I am much indebted to my secretary Barbara M. Wengel for her careful preparation
of the camera-ready copy of the manuscript. The figures were prepared by Ute
Fuchs. Thanks to her as well as to the staff of World Scientific for their patience
and cooperation.

Berlin, May 1994 Heinrich Begehr
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1. Function theoretical tools

1.1 CAUCHY integrals

In this section the behaviour of CAUCHY integrals along smooth curves or systems of
curves in the complex plane d' will be reported on.
A smooth curve r is a closed or open JORDAN arc with continuously varying tangent.
It thus may be represented as

r= {z:z=z(r),0<r<1)
by a continuously differentiable function z mapping the segment [0, 11 of the real line
IR injectively into iT and satisfying z'(r) # 0 on [0, 11 . This kind of curves has some
properties which will be important in the future (see [Musk53], Chapter 1).

Lemma 1. Let r be a smooth curve. Then for any ao < 2 there exists a positive
Ro = Ro(ao) depending only on ao such that for any t E r

i. r n {( : I( - tI < R, R < Ro} consists of a single open are ab,

ii. the non-obtuse angle a between the tangents of r at two points from the arc ab
is less than or equal to ao.

Remark. Ro is called the standard radius of r.

Proof. Let for (1, (2 E r the length of the arc on [ between (I and (2 be denoted
by a = a((1i (2). if r is a closed curve a is understood to be the shorter of the two
arc lengths. The distance between (1 and (2 is

r = r((1, (2) = ICl - (21-

L is the total length of r, s the arc length parameter , (k = ((sk), k = 1, 2.
For any ao, 0 < 2ao < L the subset

M := {((1,(2) E r x I' : ao < a((1i(2)}

of r x r is compact. On this set the continuous function r((1, (2) attains its minimum,
i.e. there exists a pair ((°, /(2) E M such that

P=p(ao): (,,mGn I(1-(2I=I(10 -(2I.
)EM

This minimum is positive; for if p were 0 then (i = (s while ao < a(Cl,(2). Hence
(° = ( is a double point of r. But r is a JORDAN curve, i.e. without multiple points.
For any p' with 0<p'<Lo and CoEFthen

{(:I(-(oj<p'}n {(:(Er,ao<a((o,())=0.

1



2 Complex Analytic Methods for Partial Differential Equations

(1) Proof of ii. There exists a vo = oo(ao) > 0 such that the angle a between the
tangents at (1, (2 E I with v((,,(2) < Qo satisfies

Jai < ao.

This follows from the smoothness of r by a continuity argument. We may assume
2QO < L.

Remark. Let (1i (2 E F satisfy a((1, (2) < ao and t1, t2 E I' be two points between
(I and (2 (on the shorter arc). Then the absolute value of the non-obtuse angle
between the straight line through tl and t2 and the tangent of r at (1 (and at (2) is
less than or equal to Qo. This is true because there is always a tangent of I' parallel
to the line through tl and t2 touching r at a point lying between tl and t2.

(2) Proof of i. Consider for fixed Co E F the subarc

ro:={(.(EF,o((,(o)<ao}.
We at first assume that none of the end points of r belongs to r'o if r is an open
curve. Then (o splits Fo into two parts corresponding to s < so and so < s, where
(o = ((so). Introducing polar coordinates in Co we have

(= (o+re"°, ds = Jd(I = Idr + irdyoj.

Hence, dr = fds cos a where at < ao according to the preceding remark where the
+ sign holds for s > so and the - sign for s < so.

s<so

Figure 1.



Function theoretical tools 3

Because 1 _> cos a > cos ao =: ko > 0 this means that r is monotone increasing as
well on the right as on the left-hand side of Co on Fo, when moving away from Co on
I'. Moreover,

kols - soI < IC - COI: Is - sot

holds for S = ((s) E I'o. Let

RD := min{e(ao), koao}.

Then r intersects the circle IC - Cot = R for 0 < R < Ro in exactly two points, one
on the right and one on the left of (o on ro. This is true because when s monotoni-
cally varies from so to so ± ao then IC - Col monotonically increases from 0 to some
r,>kooo>I >R.
If an end point on r belongs to ro there might be only one intersection point of I'
with the circle IC - Cot = R which e.g. will happen if Co coincides with this end point.

Definition 1. A function f of a real or complex variable z is said to satisfy a
HOLDER condition or to be HOLDER continuous on a set D if there exists 0 < H and
0 < a < 1 such that

If(Z1).-f(Z2)1:5 HIz1 -5210

for all z1, z2 E D. H = H«(f) = H(f ; D, a) is called the HOLDER constant, a the
HOLDER exponent. In case a = I the condition is called LIPSCHITZ condition. The
set of HOLDER continuous functions on D is denoted by CO(D). C°(D; C) means the
complex valued HOLDER continuous functions in D,C°(D;IR) the real valued ones.

Obviously, if D is bounded set then a HOLDER condition with exponent a implies
HOLDER continuity with any 8 < a.
Let r be a rectifiable curve in the complex plane and <p be integrable along r. Then

O(z) tai J z (1.1.1)

r

is an analytic function in t \r - where (t denotes the RIEMANN sphere IT U {oo}
- vanishing at oo. In general 0 does not exist for points of r. Consider e.g. a real
segment [a, b] and let a < c < b. Then the improper integral

6

f
dx

J x - c
a

does not exist because
e-q b

lim -
J

dx + dx
C,-0.C2.0

c - x x - C
a C+C2

lim I log b_- c + log f'
J-o.C2-o l c - a e2



4 Complex Analytic Methods for Partial Differential Equations

in general does not exist. But if the limits are taken symmetrically, i.e. CI = 62 --+ 0
then

c-c 8

lim
dx + / dx _ to b - c

c--.o x - c f x-c gc-a'
a c+c

This value is called the CAUCHY principal value of the singular integral (1.1.2).

Definition 2. Let r be a smooth curve in 0 . For a fixed c E r let y'(.; c) be an
integrable function on r\{c} having a singularity at C = c. Denote for 0 < e

re:=r\{(:K-cl <e}.

If
limo J gyp((; c)d(

r.
exists this value is denoted as the CAUCHY principal value of the singular integral,
written as

or shortly as

C. P. Jwc;cdc
r

fo((;c)dC.
r

Similarly, if D C 0 is a domain, say and c) a function in D\{c} for some point
c E D such that

fw(z;cdxdv , := D\{z : (z - ci < e} ,
D.

exists for any small enough e > 0 then

f W(z; c)dxdy :_ Iiym f p(z; c)dxdy
D D.

is called CAUCHY principal value of the singular integral if the limit exists.

Theorem 1. Let r be a simply closed (piecewise) smooth curve in D and V E
('°(r), then 0 given by (1.1.1) exists as CAUCHY principle integral on r.

Proof. r E f', O < e, rc = r\{(: IC - rl < e}.

f <P(C) dC
V(C) - iP(T)d( + ,(T) f dC

r C-r C-r'r. r. r.
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From Ilk( - TI° we have with ( = ((s), r = ((so)

I 0(0 - w(T)d(
1 < (- T

L

< H r IC(s) - ((so)Itr-1
ds

J s -SO Is - soil-°
0

0-1 \o-1

< 2H I min 1('(s)I I J ds = 2HL' min 1('(s) 1
/ \

(o<S:5Ls1-a a
0

Moreover, if I has a tangent in z then

lim d( = lira log (2(E) - T = t1r ,
c-.0f (- T c-.0 (1(e) - T

r,

where (1(e) is the first intersection point of f with 1( - Tj = e starting from T in the
positive direction of I' and (2(e) is the second. Here we may take any branch of the
log-function. In case of a piecewise smooth [ there might be a corner in r with inner
angle pir, 0 < p < 2.
Then

d(
= pai .

J - 7-
r

Hence, we have for the CAUCHY principle integral (p = 1)

1
J

d( = 1 JccJ((_(P(T)dC+!,,(F)
T

r r

where the integral on the right-hand side exists as an improper integral.

Remark. (1.1.1) can be considered for open curves I', too when z is different from
the end points of r.

Theorem 2. Take F and V as before. Then

OW := f'P(Oz(T)d(' rEI,r

satisfies

(1.1.4)

ali(t) ,

if the limit is taken non-tangentially from any of the two sides of F.

(1.1.5)

L
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Proof. Decompose the integral

O(z) - ,(r) = r (z - r)('P(S) - y(T))d(
f r)r

into the sum of two integrals along the curves rC and r\r, where

r,:=r\{(: I(-rl<e}.
According to

ds

dr ko

(see the proof of Lemma 1) and taking a non-tangential limit so that 0 < wo < w,

zT _ sn'O < 1 =:K
(- z sinw - sinwo

we have

I (z-r)('P(()-fi(r))d(
((- z)((- r)r\r.

< HK Id(II I(- i1'-°

r\r.

C

< 2HK dr 2HK£°
ko j r'-° ako

0

Figure 2.

Because on r. we have I( - rI > e for the second integral taking Iz - rI < 2c then

I (z - r)('P(() - Ar)) d( < 2H °L Iz - TI .
r. ((-z)((-T) e
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Remark. The above estimations do not depend on r E I'. Hence, tp(z) tends uni-
formly with respect to the position of r on I' to i(r) if z tends to r non-tangentially.
Thus, 0 - and hence (k - is continuous on r, too: for r1, r2 E I' close to one another
choose z r close to r1 and r2. Then

IY'(Tj) - 0(-2)1 :5 I0(T1) - W(z)I + kb(z) - Y'(T2)I

shows the smallness of V)(r1) - Vi(r2).

With this in mind one can show that (1.1.5) also holds for taking the limit tangentially.
Because if z tends tangentially to r E r choose some r1 E I' arbitrarily close to r and
a non-tangential curve through z and r1. As ?k(z) - i(i(r1) and rb(r) - y,(rl) are small
this is true also for '(z) - 0(r) (see IMusk531,§14 and §16).

Theorem 3. (PLEMELJ -SOKHOTZKI). Under the above conditions the CAUCHY
integral (1.1.1) has boundary values

'0+(r) := Jim ¢(z), 4-(r) := urn Oz) ,
.ED+ rD-

where D+ is the bounded domain with OD+ = r and D- = tV \(D+ U r). Moreover,
for rEr

+(T) =
2 ,(T) + O(r), (T) _ -2y(T)+ #(T) ,

where ¢(r) is understood as CAUCHY principal value.

Remark. Formulae (1.1.6) are called the PLEMELJ-SOKHOTZKI formulae. They
equivalently can be written as

+(T) - (T) _ P(T )> W+(T) + (T) T E r .

Proof. Rewriting for z r

27ri¢(z) = O(z) +,p(r) d(

f (-z
r

and observing (r is assumed to be smooth)

d(
2,ri,

i

z E D+

r
r

-z
7r ,

0,

z E

z E D-
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we get

0+(r) O(T) + 1W(T)

(T) = _-g(r) + 0 = ON - 2'P(-)2ri

Theorem 4. (PLEMELJ-PRIVALOV ). 0+, 4- E C0(1).

Proof. It is enough to show the function O(r) from Theorem 2 to belong to C-(I ).
For rl, r2 E r we have

1
{ (C) -

(TZ) - 0(71)
W(7-2) AT1) l= l dCT2 ,rl f .

r
In order to decompose this integral let Ire - rl I < b where b > 0 is so small that

Fn{C:I( -rll=b}={d,b'}
which is possible for F is smooth. Let k > 1 be defined by b = klr2 - r1 I. As before
o(r1, r2) denotes the length of the shorter of the two subarcs of I' between rl and r2.
We have

a(Tl, T2) L ITl -T21

(see proof of Lemma 1). Let y be that arc on f' consisting of two subarcs intersecting
at the point rl and each having the total arc length 2a(Tl, r2). Let the end points of y
be denoted by a and 6. r1 is the midpoint of y and r2 lies on y between but different
from a and b. The two points a' and 6' are lying on y and are different from a and b.
We now write 0(r2) - O(r1) as the sum of the following four integrals

I1
! W(C) _ W(72)d(, I2 :_ - f 'P(C) _'P(rl)d(,

7 / rr7

I3 / 'P(Tl) - W(72) d(, I4
V(r2))(T2 - TI)d(!J S-Tl J (1-7-I)(C-T2)

r\7 r\7

30(TI.TZ)

1111
< Hfr IdCI

<
2H

J
f ds-

31=a
0

V a 173 -' t

< r I dCl 2H f ds
- sl-07

0
1121- H

K -,rill-* Fl--

1131!5 Hlrl-r210

kITa-T21
2H r ds 2 3-yF sl-a = aHL Ir1 -T21 ,

^^00 0 ^O

21+0
k0 11 IT1 - T21a,

D

=Hlrl-r2l-Ilogb-T1J<2H(' +,)1,,-,21-.a -r
r\7
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For the last estimation we may assume without loss of generality la - rl I > I b - ri I.
Then

so that

Iloga-7-'I
Ti

Q - rl Q - rl Q - b o,(a, b) 4o,(ri, r2)
log b-T'I<Ib-r'I-1<-Ib-ril-koa(rt,b)

2koo,(TI,r2)

Ilogb-r'I<?z +2a

1141 HIr, - T21 r Id(I
_Q = HIT, - T2I f I(- z,I°-2

T2
I
- 2Id(I

T2r\7
1(--111(-T2I

r\7
(-

To estimate the integrand we observe for ( E I'\y

I(-Ti I-IT,-T21sl(-T2I, kIT,-r21=6<I(-T,I,
so that

Hence,

I(-T'I< I
< k k

l(-T2 l - I 2I--
,-a

1141sH(ktl) fIT, - 7-21 1(- r,lc-2Id(I ,

r\,
(r

/L`

J 1(-
7]Ia-21d(I

5 k0a-2
J

s°-gds

r\ti 2o(>, ,72 )

y,
2°-' 2°-'k°-2

o'(Tz, T2),-, l - a IT, -T2I°-1

114,

-ako IT,-r2IH I(2ko(ki))k a

These estimates give
,/
I*(r2) - 0(7-1)l CHI r2 - T,

where C is a constant depending on a, ko and k.

Theorem 4 ensures the HOLDER continuity of the boundary values of the analytic
function 0 from inside and outside r. In the next theorem 0 extended by ¢+ and ¢-,
respectively to the closure D+ and D- of D+ and D-, respectively will be shown to
be HOLDER continuous, too. For the proof we need the following lemmas.
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Lemma 2. Let RD = Re(ao) be the standard radius of I' and 0 < p < R0,
r E 17, z r, Iz - 7-1 < p. The non-obtuse angle between the straight line rz from r
to z and the tangent of I' at r is assumed to be not less than f o > ao > 0. Then there
exists a positive constant M = M(a, p, 1') such that for any yo E ca(r)

I0'(z)I < MIz - rla-1I Eax IV(z)I + H(,pi 1', a))

Proof. Consider the subarc

7:={(:(Er,I(-rI<Ra}
having endpoints a and b. In order to estimate

'(z) =tai /9(a(C z)2

we decompose the integral in a sum of 01 and 02 corresponding to y and r \-y, respec-
tively. We have

01(z) = 1 /''P(C) W(T)d( +'0(T)
1z

I - 11
21ri (C-z)2 2iri -b z - a '

7

1 1 _ Ib - aI < 2R0 < 2R9-° b _
z-b z-a 1z-bllz-a1 (Ro-p)2 (Ro-p)2

IC-z12=IC-T+T-z12=IC-r12+2Re((-r)(r-z)+Ir-zI2

=r2+2rbcosw+S2, CE -y,
with r := I( - 71, b:= Jr - r I, w : = I arg(C - r) - arg(r - z) I. Because the angle between
the line from r to z and the tangent at r is greater than or equal to go and the angle
between this tangent and the secant from r to ( is less than or equal to ao we can
estimate

w>Oo-ao=:w0>0.
Thus, for ( E y

I( -z12> r2-2rbcoswo+b2=(r-bcosw0)2+b2sin2w0,

r'p(C) - ___ < 2H r r°dr
(rRD = bt)J ((- z) !co f (r - S cos wo)2 +

62

sin 2 w0
ry 0

12 00
t°dt + / t°dt

+p sin2w0 (t - cosw0)2
0 2

2H-1 21+a 21+a

k0S (l+a)sin2wo+1-aI
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where for 2 < t we used t < 2(t - 1). Hence,

2
-ax Iv(()I +

21+°H 1

2

+ 1

)

b°-
I0i(z)I < 4-0

r(Ro - p) (Er rko (1 + a)sin wo 1 -

I02(z)I < 1 max WO L <
LRo-°

max IW(C)Ib°-'
2x CEr (Ro - p)2 27r(Ro - p)2 CE-7

Altogether we have
I0'(z)I < Cb°-' ,

where the constant C depends on p, o, p , R4)7 ib and

C < M(c, P, r) [
CEO

H(9; r,

Lemma 3. For any non-negative x and y and 0 < a < 1

Ix° - y°I < Ix - yI°, x° + y° < 2'-°(x + y)°

hold.

Proof. We only prove the first inequality leaving the second as an exercise. As-
suming without restrictions x < y and setting t =

x
the first inequality is seen to be

equivalent to
1-t°<(1-t)°, 0<t<1

Because the derivative of

is

g(t)

the function g is monotone non-increasing, i.e.

1-t°
(1

=g(t)<g(0)=1
- t)°

Theorem 5. ¢ E C'(D+), 0 E C°(i ).

Proof. We only prove the first part, the second can be shown in a similar way.
This will be done in three steps. At first the HOLDER condition is verified when one
point lies on I', secondly when one point is in a neighborhood of r and lastly for both
points outside this neighborhood. The case when both points are on I' was considered
in the preceding theorem already.
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1. TEI,zED+.
For 0 < fi < o we consider a branch t of the multi-valued function

%P (z) 4(z) - 0+(r)(z -T)#

This branch is single-valued analytic in D+. Its boundary values

'k +(C) _
0+(C) - +(r)

(C-011

are continuous on r because 0+ E C°(F). Moreover,

HIC - T1°-p .

From the CAUCHY representation formula we have for z E D+ with 0 < e <
Iz - rI

(z)
2ai f D+(()(- Z

where

a(D+\K. (r))

KK(T):= {z: Iz - TI < e}

and

'k(z), z E D+

W+(z), Z E F = BD+

In order to show that the limit of the right-hand side of this representation
formula exists when e tends to zero we observe

ILI+(z)I < Iz CTIp f o r z E D+, Iz - TI :52c

with a proper positive constant C. This holds because O(z) tends to ¢+ (T) when
z E D+ tends to r (see Theorem 3.). Hence, for Iz - TI > £

Jr 'f'+(()CdCz
8(K.(:)nD+)

Therefore, in D+

t(z) _

2w

< C EI 2ACE' O
1IEeiV+T-Zj IT-zI-£

0

2_Iri C

dC

z ,

8D+
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where the improper integral exists in the ordinary sense. Thus from Theorems
2 and 3 we see that 'I++ E C(D+).

From the maximum principle for analytic functions, see [Burc79], p. 128 or
[Tsuj59], p. 2 then

O( () -O)pT)I < rnaxjW+(()I < H(O+;I,a)m rxfC-TI°-F < H(/+;r,a)d(I'),z -r

where H(¢+; r, a) is the HOLDER constant (see Definition 1) of ,+ and

d(I') := maxi 1,diam r} , diam l := max IG - (21 .
G,CsEr

Setting Hl := H(¢+; r, a)d(I) which is independent of Q we get from the last
estimate

IO(z) - s+(T)I < Hl Iz - Tlo
by letting (j tend to a.

2. z, zo E D+, dist (zo,1) < p < Ro.

Here Ro = Ro(ao) is the standard radius of I'. Let T E r be such that

Izo-rj = dist (zo, r) := (I

Consider the function

%Po(z) :_ O(z) - ci(zo)
(z - zo)°

which we want to show to be bounded in D+. In order to obtain a single-valued

branch of To we consider a branch of 'Po in D+\ T a , where zT o is the
straight line from r to zo. In order to estimate $o on (both sides of) the line

zr o Lemma 2 is applied. For z E zr u we have

O(z) - '(zo) = f cb'(()d(
ZO

Because the line r a is perpendicular to the tangent of I' at r Lemma 2 may
be applied giving

= 1=-*1

IO(z} - O(zo)I < C f I( - 7-I°-'Id(I = C Jt01dt
SO IIZD--l

L Ilz - rI°- Izo - T!°' < L )z - zo)o.
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Here for the last estimate Lemma 3 is used. Thus, 'o is bounded on the line

zT as it is on r via part 1 of this proof.

Again applying the maximum principle to %Po in D+\ Tz together with the

estimate of 'Yo on zo we have

Iq(z) - O(zo)I < max {Hi, }Iz -zo1°

for z, zo E D+, dist (zo, r) < p < Ro.

3. z, zo E D+, p < dist (z, r), p < dist (zo, r), 0 < p < Ro.

If Iz - zoI < 2 p then {: I(- zoI < p} C D+. Integrating along the line -,r-z-04

we have

2

From

then

-O(z) - c(zo) = f (()d(, (() = 7 . I d(
r

sQ

27ri (C - ()2

kv(C)I < 2x cEr I 0+(C)I PL, C E D+, 2 p < dist(C, r) ,

IO(z) - O(zo) I < AP mErx
I¢+(C)IIz - zoI

If Iz - zoI > 2p then

Therefore

I0(z) - ¢(zo)I < 2 max I0+(()I 5 4 max I0+(C)I
Iz - zoI

tar car p

IO(z) - O(zo)I 5 - max {, 2}SEarx
I0+(()Id(r)Iz - zoIa .

P

In connection with the HOLDER continuity of CAUCHY integrals we mention a result
from PRIVALOV, see [Cohi53/62), p. 380, 401-403.

Theorem 6. (PRIVALOV). Let w = u + iv be analytic in the unit disc D, where v
is continuous in the closure D and HOLDER continuous on the boundary 8D satisfying

Iv(()-v(T)I<HI(-TI°, (,TEED.
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Then w is HOLDER continuous in D with the same exponent and the constant kH
where k only depends on a, i.e.

jw(z) - w(zo)I < kHI z - zoI°, z, zo E D .

Proof. For Irl = 1 the function (1 - zr)° is multi-valued analytic in z E D.
Choosing the branch which at the origin z = 0 is equal to 1 leads to a single-valued
analytic function in D the real part of which

f(z) := Re(1 - zY)°, f(0) = 1

is harmonic in D. Obviously,

f(z) = IT - zle cos(alarg(r - z) - arg rI)

and

arg(r - z) - arg rl < 2

because r is perpendicular to 8D . Therefore

IT - zl' <
f(z)

cos 2
so that for IzI = I

Iv(z) - v(r)I < Hlz - rl' < H f(z)
cos z

Applying the maximum principle for harmonic functions, see [Bur(-79), p. 128,
[Tsuj59), p. 2, to

±(V(z) - V(r)) - H ,f(z)2cos

leads to

Iv(z) - v(T)l < H f (a) , IzI < 1, JrI = 1
Cos 2

In order to estimate the first order derivatives of v we observe that with 0 < r < 1

11 - rlaIV(z) - v(T )[
:5

ax lT - zla ON (lT - rTI + IrT - zl)° < 20H
COS 2 COS 2 COs 2

for Irr - zI < 1 - r. The POISSON formula, see p. 31, or e.g. (Burc79), p. 134, applied
to the disc l z - rrl < 1 - r for the function v(z) - v(r) gives for I z - rrl < 1 - r

v(z) -- v(r) = 2- J (v(() - v(T))ReS
+z z2rTdarg(( - rr) .
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Differentiating with respect to a, interchanging the order of differentiation and inte-
gration gives

v=(z) 2r (v(() - v.(r))Re - (2(( - r7-) - 1) darg( - rr)
IC-*r1=1-*

2w

1 2((- rr)
- ! (v(() - v(r))Re z darg(( - rr) ,

IC-rrl=l -r
(S - z)

especially for z = rr

v=(rr) = 2a J (v(()) - v(r))Re 2rrdarg((- rr) .

IC-'' 1=1-r

Thus,

Similarly,

From

we find

21+°H

cos!

2'+° H

Iv,(rr)I < 11 - rl°-'
cos °xz

w'(z) = (u= + iv:)(z) = (vv + iv=)(z)

W(z)I 5
2

H (1 - Izl)° IzI < 1COs °2
Let now z, zo, z # zo, be two points on D. Integrating w' along the straight line form
zo to z gives

z /I

w(z) - w(zo) = I w'(()d( = J u (zo + t(z - zo))(z - zo)dt ,
w 0

2"!+°H Iz - zo)dt
w() z - wzoI ()I <

- cos °-x
o

z 1(1 - Izo + t(z - zo)I) '-°

For zo = 0 the integral becomes

Iz

Izlt)'-° «(1- (1 - IzI)°)
«Izl°

0
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The last inequality is an application of Lemma 3.
Let therefore zo # 0. Then putting zo and without loss of generality assuming

I(I < 1
zo + t(z - zo) = zo(1 + t(( - 1)) ,

11+t((-1)12 = 1+21R.e((-1)+t21(-112

= 1-2tI(-1IcosW +t21(-112,

where p = 7r - arg(( - 1). As I(I < 1 we know for (# 1

2
<arg((-1)<23 7r

i.e. Jc1 < Moreover, for 1, we have I,pI < wo, where I( 2 ll

Figure 3.

So

Il+t((-1)12<1-t1(-112+121(-112=1-t(1-t)I(-112

=l- 11(-112+1(-112(2-t)e ,

Il+t((-1)I< 1-41(-112+I(-IIIZ-t .
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Therefore

1 z

1(1
dt < 2 r dt

-- IzoIII + t(( - I)I)1-°
°

0 0 (1 - Izol 1 - t(1 - t)I(-
112i

i
$2f dt

0 (1-Izpl(

)-11( -I( - 112+ t I(
1-Iz0I 1 -

a Izoll(- 11 ` 4 (
)1

2 - / I J

2
I I

[(1_Z0I/1_lc_1l2)°
a Ix-z0

-Cl-1201(SI' -tic- 1I2+Jc_1f))]

2 1 Izol°I(- 11° = 2'0 1X - XOI°-' ,a Iz-z0I 20 a
where again Lemma 3 was used. Thus

1

and

for any z, z0 E D.

f 1z - zoldt

/ (1 - Izo + t(z - zo)I)1
0

21'°< -Iz - zoI°
Of

Iw(z)-w(zo)I < 2Hxlz-zol°acos
2

0

1.2 GREEN functions and SCHWARZ operators

Theorem 7. (RIEMANN mapping theorem). Any simply connected domain D
of the complex RIEMANN sphere Q' having at least two boundary points is conform
equivalent to the unit disc D.

Remark. Two domains are called conform equivalent if there is a bijective mapping
from one onto the other domain being analytic. Functions of this kind are called
schlicht or univalent. The mapping function in the RIEMANN mapping theorem is
uniquely given if for some z0 E D f (zo) = 0 and f'(zo) > 0 is prescribed.
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Proof. Let a, b be two points of 8D distinct from one another and

S := {w : w : D --4 D schlicht}

be the class of schlicht mappings from D into D.

1. S # 0 : Consider the multi-valued function w1(() 1 - b(
in the neighbor-

hood 11(0) of the origin and choose that branch satisfying

1-a(-
lim - 1
t-.o 1 - b<

which is single-valued and analytic in U(0). We will show

_ z-a
w(z)wl (10 z - b

being single-valued and analytic in the neighborhood of infinity to be single-
valued and schlicht in D. That w is single-va)ued follows from a, b E OD, that
w is analytic is obvious . In order to prove schlichtness let for z1, z2 E D

w(z2), i.e.
z, - a - z2 - a

z2-b

Because a # b from here zl = z2 follows.
Let now w(zo) = wo for some zo E D. Then

w(z) -wo = Iwol exp(i(argwo + pr)) .

This holds because w is one of the branches of the square root. Hence, there
exists a c E (V satisfying w(z) # c in D. Moreover, because we may assume
c E -w[D] and because -w[D] is an open set there exists an rr > 0 such that

0 < n < I w(z) - cI in D.

't'hen we may choose A, B such that

w1(z1) = 0, Iwi(z)I < I for some fixed z, E D and all z E D. It is easy to see
that w1ES.
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2. In order to show the existence of a schlicht function mapping D onto D choose
zo E D arbitrarily and consider the class

So :=Sf:f(z)=

1
(z)(z)((z),WES1

Any f E So satisfies f (zo) = 0 and I f(z) I < 1. The function f E So is holomor-
phic in

Ko{z:Iz-zol <ro(zo)}CD,
where ro(zo) is the holomorphy radius of zo, i.e. maximal such that Ko C D.
Because in KO we have If(z)I < 1 and f(zo) = 0 the SCHWARZ Lemma (see
[Burc79],p. 191) implies

-l
If(z)1

5Izro(zo)
, Iz - zoI < ro(zo) ,

and

Hence,

1

' (zo)I 5If
ro(zo)

C := s
fESO
up If'(zo)I :

ro(zo)
< +00.

Let be a sequence in So satisfying

nlimo If0(x0)I = C,

where because of the schlichtness of f and the fact that So 54 0 we have 0 <
C. Because l f (z)I < 1 in D by the Theorem of ARZELA-ASCOLJ-MONTEL
(see e.g. [Burc79], p. 254) there exists a subsequence (f,,,,) of (f,) converging
uniformly on any compact subset of D. The limit f either being constant or a
schlicht function (see [Ding6l], p. 256) satisfies I f'(zo)I = C > 0. Hence, f is
schlicht in D.
It remains to show f [D] = D. Assume this is not true. Then there exists a
d E D\ f [D] # 0 satisfying d 54 0 because f(zo) = 0. Then any branch of the
function

fi(z) f(z) d , fI(zo) =

V 1 - df(z)

is single-valued and schlicht in D different from 0 and oo. Choosing one of the
branches we consider

fo(z) :_ .fe(z) - fi(zo)
1 - fi(zo)fi(z)'

z E D ,
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which is in So as f1 E S. Now

fi(zo) fi(zo) 1- 2f'(zo)
,

fo(zo) =
I - Ifi(zo)I2

- I - Idl ,
2V---d

so that
fo(zo) =

1 + Idlf,(zo),
lfo(zo)I =

1 + IdlC > C .
i7-=d 2 IdI

21

But I fo(zo)I > C is a contradiction to fo E So and the definition of C.
Hence, f (D] = D.

3. To show the mapping function f being uniquely given by f(zo) = 0,
f'(zo) > 0 let f and o be two schlicht mappings from D onto D with
f (zo) = p(zo) = 0, f'(zo) = cp'(zo) > 0. Let z(V) be the inverse mapping of
yo = ep(z) mapping D schlicht onto D. Then w = f o z is a schlicht mapping
from D onto D satisfying w(0) = 0 and

w'(0) = d f(z(p)) If'(zo)z'(O)_ = fv'(zo) - ]

Applying the SCHwARZ Lemma gives

w(,P) = 4' (SP E D), i.e.f(z) ='p(z) (z E D) .

Theorem 8. Let w(z, zo) be the RIEMANN mapping function from the domain D
onto the unit disc D for fixed zo E D, satisfying

w(zo, zo) = 0, (zo, zo) > 0 .

Then

9(z,zo):=-loglw(z,zo)I, ZED,
has the following properties.

i. 9(z,zo) is harmonic in z E D\{zo},

ii. log Iz - zol + g(z, zo) is harmonic in the neighborhood of zo,

iii. lim g(z, zo) = 0.
zBD

Remark. This result can be reverted. If g(z, zo) is the GREEN function of a sim-
ply connected domain D, see Definition 3, and h(z,zo) its harmonic conjugate, see
p. 32, then w(z, zo) := exp[-(g + ih)(z, zo)) is the RIEMANN mapping function for D,
satisfying lim Iw(z, zo) I = I for (E c9D and w(zo, zo) = 0, w'(zo, zo) # 0.
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Proof.

i. Applying the LAPLACE operator

82 a8y2 822

8t 2 + 8 2 =
4

49Z4917

where

gives in D\{zo}

8 1 8 8 8 1 8 .8
az 2U-Zay ' F. 2 a=+ay

82 1

L g(z, zo) _ -48z8z
2 log Hz, Z.)

I'

z

-2
8z

(log w(z, zo) + log w(z, z

ii.

0 =0.

log Iz - zoI + 9(z, zo) = log I
w(z, zo) I

Re log
w(z, zo)

Because
w(z, zo)

is analytic and non-vanishing in the neighborhood of zo the
z - zo

function log
z - zo is harmonic there.g

w(z,zo)

iii. Let be a sequence in D with all its accumulation points on the boundary OD.
Then all accumulation points of the image sequence (wn), wn = w(zn, zo) E D,
are lying on 8D. For if otherwise w, Ii < I would be an accumulation point of
(wn) there would exist a subsequence (w,,,) of (wn) with limit w E D. Let z E D
be the preimage of iii, w = w(z, zo) and znk those of wnk, wnk = w(znk, zo). The
inverse mapping of w = w(z, zo) which will shortly be denoted by z = z(w) is
analytic in the neighborhood of z, too. By continuity we have

z(w) = lirn z(wnk) = lim znk E F .
k-.+oo k-»+00

This contradicts z E D. Therefore all accumulation points of (wn) are on 8D.
This proves property iii.

Definition 3. A real-valued function in a domain D of tt having properties i.
to iii. of Theorem 8 is called the GREEN function of D, more exactly the GREEN
function of D for the LAPLACE operator.
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Theorem 9. The GREEN function of D has the additional properties

1. 0 < g(z,zo),

2. 9(z, zo) = g(zo, z),

3. It is uniquely given by properties i. to iii.

4. If 0 is any schlicht mapping from D onto D, then the GREEN function is

g(z, zo) log O(Z) - O(zo)
1 - O(ZO)O(z)

Proof.

1. This property of g follows from the maximum principle for harmonic functions
applied to zo) in the domain D\(z : Iz - zol < e) for small enough positive
E.

2. We prove the symmetry only in the case when g(z, zo) log Iw(z, zo)I as in
Theorem 8. The function

f (()
w((, Zo) - w(Z, z(,)
1 - w(z, zo)w((, zo)

maps D onto D for any fixed z, zo E D with z # zo. Moreover, f (z) = 0 and

the function has a removable singularity at (= z with

where for z # zo we have a strong inequality. Applying the maximum principle
by observing

we find

especially for ( = zo

lira I

(( ) ) I = 1(8D

Iw((, Z) 1 S If (()I, ( E D ,

Iw(zo,z)I <- Iw(Z,zo)I
By interchanging the roles of z and zo the inverse inequality can be proved in
the same way. Hence, equality holds in the last relation giving

g(z,zo) = g(zo,z)-

For a proof in the general case see e.g. [Tsuj59J, p. 17, [Ding6l), p. 267, [Cour50],
p. 250.
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3. Let 91,92 be two functions with properties i. to iii., then g, - g2 is a harmonic
function in the entire domain D with vanishing boundary values of 8D. Thus
91 - 92 = 0 in D by the maximum principle.

4. Together with ¢ the linear transformation 0 - O(zp) maps D onto D. Obvi-
1 - Ozo)4S

ously,

- log 14 - 4(zo)[

11- Ozo)4S[
has the properties i. to iii., so it is the GREEN function of D.

Remark. The existence of the GREEN function for a given domain D can be proved
if the DIRICHLET problem for harmonic functions can be solved for D. The DIRICHLET
problem demands us to find a harmonic function in I) attaining prescribed boundary
values on the boundary 8D. In case of continuous boundary values this problem can
be shown to be (uniquely) solvable for a wide class of domains by the method of
PERRON-RADO-RIESZ. If then u(z, zo) is the harmonic function in D satisfying

lim u(z, zo) = log ]r; - zoj, (E 8D ,
=-C

for zo E D fixed then

g(z,zo) log I + u(z,zo)
Iz - zo[

is the GREEN function for D. See [Tsuj59], p. 4, [Ding6l], p. 263.
There are domains without a GREEN function. If e.g. D has an isolated boundary
point a GREEN function should vanish at this point but would be positive in a neigh-
borhood which is impossible because of the minimum principle, see [Tsuj59], p. 2.
Another class of domains having no GREEN function are domains whose boundary
has vanishing capacity, see [Ding6l], p. 281, [Tsuj59], p. 54.

Definition 4. A real-valued function N in D is called NEUMANN function (for the
LAPLACE operator) if it satisfies

i. N(z, zo) is harmonic in z E D\{zo), zo E D,

ii. N(z, zo) + log Iz - zol is harmonic in the neighborhood of zo,

iii. TN(z, zo) L on 8D, where L is the total length of OD and n is the outer
normal direction.
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Remark. From iii.
1 d

N(z zo)ds: = 1
'2r ,f On,,

aD

follows. N is not uniquely defined by i. to iii., it is only given up to an arbitrary
additive constant. This constant can be fixed by asking

iv. / N(z, zo)ds, = 0 for all zo E D,
aD

so that with iv. N is uniquely given, see [Cour50], p. 261.
If 0 is a conformal mapping from D onto D then

N(z, zo) = - log I(c(z) - O(zo))(1 - O(zo)o(z)) I

We only verify i. to iii. in the special case where D = D, i.e.

N(z, zo) _ - log J(z - zo)(1 - zz)j .

Because i. and ii. are obvious we only consider iii. On the boundary 8D the outward
normal direction coincides with the radial direction, so that

49
nN(z, zo) _ -8r log j(z - zo)(1 - zz)j for ]zl= 1 .

In general

8 8x 8 8y 8 _x 0 y 8 _z 8 z 8
8r

_
8r Ox+OrOy rOx+rOy-r0z+r0z'

rOr = xOx + yOy = zOz + zO = 2RezO ,

where the last equality holds for real-valued functions only. Thus, on (zj = 1

49
N(z' zo) _ -Rezzlog(jz - z01211 - zoz12)

-Re
C

z - zoz
z - zo 1 -z`oz

_ -Re
z - zo To(Z
2r

2r
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We also can verify iv.,

flogIl_zI2dargz=_2 J log 11 - (Idarg (= 0 .
am jZ1=1 10=1201

The last equality holds because of the mean value property, see [Ding61], p. 202,
[Tsuj59], p. 1 ,

2r

u(zo) = 2x
Ju(zo + re"°)d'o

0

for harmonic functions. Obviously log 11 - CI is harmonic for
Condition iii. of Definition 4 may be replaced by

iii'. .N(z,z0) _ _a(Es) z = z(s) E 8D, zo E D,

ICI < Izol < I.

where s is the arc length parameter of z E 8D, 0 < s < L, and a is a positive
normalizing function with

L

E := I o(s)ds > 0.
0

In order to get N uniquely defined instead of iv. now

L

iv'. r N(z(s), zo)a(s)ds = 0, zo E D,
0

is demanded, see [Hawe72], p. 113, [Wend79], p. 5.
The NEUMANN function is sometimes called the second GREEN function, g(z, zo) the
first GREEN function and Gf (z, zo) := g(z, z0), G"(z, zo) := N(z, zo) used.

Remark. A regular curve is an open or closed continuously differentiable curve

r:= {z :z=z(t),o<t<1}
given by a continuously differentiable parameter representation z = z(t) with z'(t) j4
0. Let

s=s(t)=J!z'(r)Idr,0<s<L:= Jiz'(r)Idr
0 0

be the arc length parameter, where L is the total length of r. Then the tangent of r'
at the point z(s) is represented by

dz _ dx dy

ds Ts +zds
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which is a unimodular number for any s, i.e.

dx dy x'(t) y'(t)
ds +lds + Iz'(t)I +ilz'(t)I

- 1

This complex number represents a unit vector pointing into the direction of IF at the
point z = z(s). We here consider z as a function of the arc length parameter rather
than of the originally given parameter t.
The normal vector to the curve r at z(s) is a vector perpendicular to the tangent
vector. There are two possibilities. The inner normal v is a unit vector originating
from the tangent unit vector by a rotation about 90° or 2 counterclockwise while the
opposite direction is called the outer normal direction n. Hence, if

dz _ dx dy

ds ds +
z
ds

then the inner normal vector is

cos (a +
211

which means

or

=cosa+isina

+isin ta+ 2) _ -sina+icosa =ads

Oz ex Oy 8z ay 8x

av-av+i a,.=iOs = - as+iOs
ex 8y 8x 8y
TV = - as' 8s = F.

We here prefer to use partial derivative symbols because now directional derivatives
are involved with respect to normal and tangential directions, respectively. This
system reminds us of the CAUCHY-RIEMANN system. In fact this system not only
holds for the x and y axes directions but also for any other two directions originated
by a rotation of this axes system.
Let w = u + iv be an analytic function, so that the CAUCHY-RIEMANN system

holds. Then

8u u Ox

Ou ev
Yx- ay'

8u 8y

Ou ev

ay F.

Ov 8y v 8x
Ts - ax as + ay as - ay at, + ax av 8v '
N __ eu Ox

+
8u 8y 8v 8y 8v 8x 8v

8v T. 8v 8y 8v
_

8y as 8x 8s -8s
Both the GREEN and NEUMANN functions are so-called fundamental solutions (to
the LAPLACEian) used for solving boundary value problems via integral representa-
tion formulas for solutions. These integral formulas originate from GREEN integral
formulas.
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Theorem 10. (GAUSS) Let f E Cl(D;IR2) be a continuously differentiable vector-
valued function front D into IR 2, where D C B?' is a bounded domain with smooth
boundary, then

JV.fdxdy=Jf.nds.
D OD

This theorem holds in IRtm too with in _> 2 for proper domains. Here dxdy is to be
replaced by dx = dxldx2...dx,,,. The nabla operator V (sometimes called gradient
operator) is

(0 9 al
ax °ax ,...,01 2 m

n is the outward normal unit vector given by

n = (XI,..., Xn) ,

X/,_ xm)+ 1 < It < In- ,

ds = Jdtldt2...dtm_1 ,

J:=
m (8(xl,...,xy-1,xµ+l,...,xm))212

8(tl,. . .,tm-1)

M 9f, m

V.f =divf =E 8x' f'n=EfvXµ
µ=1 µ µ:1

The variable I = (Il, ... , tm_1) is a parametrization of the (m - 1)-dimensional mani-
fold OD and

a(yl,...,Ym) -
8(xl,...,xm)

a0yv

CVxµ 1<v,µ<m

is the determinant of the functional matrix called JACOBIan functional determinant.
In order to handle these integrals it is convenient to use the calculus of alternating
differential forms given by E. CARTAN, see e.g. [Spiv65], p. 89.
The proof of this so-called divergence theorem is based on the exhaustion of D by
sets of axes parallel net cubes

Q:={x=(xl,...,xm):am <xz,<bµ,I<p<m)CD.

The projection of Q in the x,-direction (1 < p < m) is

Q(µ):={(x1, ,xµ-1,xµ+1, ,xm):av <xv 5 bv, 1<v<m,v#µ)CIRm-1
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If g E C' (Q; IR) is a real continuously differentiable function in Q then

f asx) dx, A ... A dxm

Q

b

f(_1)P_1f)dXAdZlA...AdXp_lAdX,.+IA...AdXm=
Y

Q(,) a

= f (-1)µ-'(9(x)9(x)dx,A
q(,zl

= f
aq

Replacing g by f,,, 1 < p < m, and adding we get

JVfdXiA...t\dXmJffldS,
Q eq

i.e. the GAUSS theorem for cubes Q.

Theorem 11. (GREEN) For u E C'(D; lR), v E CZ(T; IR)

J(u1v + Vu Vv)dz = f uands .

D an

This formula is called the first GREEN formula.

Proof. Apply the GAUSS formula to f = uVv and observe

and

Theorem 12. (GREEN) For u, v E C'(-D; Ill)

f (uov - viu)dz = u an - vaa-n J ds .
D ao JJJ

This is the second GREEN formula.

Proof. Substract the first GREEN formula for v and u from that for u and v.
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Remark. It is enough to assume it, v E C2(D; IR) n C' (D;IR) for the second Green
formula.

In the sequal we return to the two-dimensional case although the next theorem holds
in higher dimensions, too and again use complex variables.

Theorem 13. (GREEN). Let D C t be a bounded domain with (piecewise) smooth
boundary and having a GREEN function g(z, zo) Then for any harmonic function u
which on aD is still continuous

r
u(z) = -2x fu(()aanz)dst (z E D)

t
aD

This is the GREEN representation formula for harmonic functions.

Proof. AppJyin the second GREEN formula to u(() and g((, z) for z E D fixed in
the domain D\K=(z) where again K,(z) is the open disc with small enough radius e
and center z gives

f 9((, z)!1u(()dl:dn =
J

u(C)2 an{z)ds<

D\K,(z) aD

! a9(C, ) au(s)
ant ant dst, (= e + in .

Observing that n is the outer normal and that

w((, z) = g((, z) + log )S - z

is harmonic in D we get

2,

Ju(z+ee')89Ju) nt dst - ae EdV

I(-_j U

2a 2a

J u(z+ee' u(z+ee"°)aw(z +

ae
eet0, z)

dp.I
0 0

Letting e tend to zero the first integral tends to 2?ru(z) while the second term tends to
zero by a continuity argument. Moreover, for a harmonic function u the first integral
equals 27ru(z) for small enough e by the mean value property of harmonic functions.
Because

2a

fan()+ ee"°,z)-loge) u(z+aee 'z)dp
J(..,(z

On(
IC-=I== 0
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also tend to zero together with e and because

lim J g((, z)Du(C)di;dn = f g((, z)Du(()dddrj
D\K,(z) D

for any u E C2(D) we arrive at

u(z)
2r J

u(()aan°z)dsc - 21 f9((,z)Du(C)4d9,
8D D

zED.
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If in particular u is harmonic the last term vanishes. Introducing polar coordinates
about the point z it is not difficult to show that the singularity of g(C, z) is weak with
respect to area integrals. Therefore

19((, z)Au(()dCdr7
D

exists as a proper integral.

This representation formula for harmonic functions gives the unique solution to the
DIRICHLET problem for harmonic functions. Let a E C(OD;1R) be given. Then

u(z) -2 J z E D ,
aD

is a harmonic function with boundary values o on 8D, see [Tsuj59], p. 22.
Let us consider the special case D = D. Then

9(C, z) log l l- z( l

Applying on { ICI = p = 1)

87- 8p=pa_=CaC+a-=2Re(y(

we get

area
9((, z) = 2Re C C (log 11 - z(1 - log IC - zI)

z( C a C
1 _

-Re (z( +C- z
)7=-Re\C-i+

Iz12

1 -
C-z}- IC-z12

Therefore in D any harmonic function being continuous in D may be represented by
_ 2

U(Z) = 2n 1 u(()-( zl2darg( .

1(1='
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This is the POISSON formula with the POISSON kernel

S + z 1 - Iz12 _ 1 - r2 _ iB
( - z IC-z12 1-2rcos(19-V)+r2' z=re ,rp-e

which for an arbitrary circle IC - al < p is
_ 2 _ r2

Red
(z

z2a=p2-2rpcos(99-gyp)+r2' z=a+re"°,,=a+pe'
Solving the CAUCHY-RIEMANN equations with a given harmonic function the conju-
gate harmonic function can locally be calculated. This conjugate harmonic function
in general is not a single-valued function. But it is when the domain D under con-
sideration is simply connected.
The conjugate harmonic function to the GREEN function locally, say in the neighbor-
hood of a point a E D is given by

h(z, zo) (- ag((, zo)4+ ag(c, zo) dnl + const.
0971 a

J
ag(()zo)ds(+ const.

On(
a

because for g = g(z, zo) on some smooth curve -y in D we have

ag
dx

agd
y (-L_ ax ag

ay) _ ( 8g sy ag ax) ds =
8y

.- ay +
Ox ay as + ax as ds `\ ay an + Ox an__ On

Observe that n is the outer normal while above, p. 27, the CAUCHY-RIEMANN system
for the function (x, y) was written with respect to s and the inner normal P. The

CAUCHY-RIEMANN system for the function (g, h) leads to
On , as an

The integral in the above representation of h can be taken along the straight line
from a to z. h is determined up to an arbitrary additive constant. It is a multi-valued
function. The so-called complex GREEN function [Mikh35], see [Gakh66], p. 209,

M(z, zo) = g(z, zo) + ih(z, zo)

in the neighborhood of zo behaves like - log(z - zo)+ analytic function.

Remark. For simply connected domains the function f(z, zo) := exp(-M(z, zo))
is a single-valued analytic function mapping D conformally onto D with f(zo, zo) = 0.
For more details see [Gakh66], pp. 209, 332.

Lemma 4. The conjugate harmonic function to a function u which is harmonic in
D and continuous in D is

v(z) 2ir

f u(()aan'z)dst,
z E D,

t
&D
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and

W(z) :_ (u + iv)(z) _
-217r

f
u(()& a(('

z)ds(, z E D ,
aD

is analytic in D.

Proof. As above for h(z, zo) we have for v the representation

z z

..v(z) = f (-un(()df + ut(()dr!) + c =
f8uT)ds,

+ c , c E M
<

a a

Using Theorem 13 and interchanging the orders of integrations and differentiations
gives

z

v(z)=_ 1 ru(t) a f +c=- J u(C)al(ds+c,

J an( 2Ir and
8D a 8D

where the symmetry g(z, zo) = g(zo, z) of the GREEN function D was applied.

Remark. If in these integrals u(() is replaced by a continuous function o(() on
al) then w is an analytic function in D satisfying

Rew(()=a(C), SEaD.

See also Lemma 8, p. 51, where the DIRICHLET problem is handled as a special
RIEMANN-HILBERT problem for simply connected domains. If D is multiply con-
nected to in general is multi-valued and the DIRICHLET problem for single-valued
functions is not always solvable, see 1.4.

Defintion 5. An operator

S : C(OD; IR) -. A(D) n C(D; (V )

from the space of real-valued continuous functions on OD into the space of analytic
functions in D being continuous on the closure D of D satisfying

Re So=o on OD

is called SCHWARZ operator.

Remark. If D has a GREEN function then S is given by

(SQ)(z) 2a f a(()a
aD
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Moreover, it is clear that S is given only up to an imaginary additive constant. This
constant can be fixed by demanding

lm(SQ)(a) = 0

for some fixed a E D.
In case of D = D the SCHWARZ operator with the SCHWARZ-POISSON kernel is

(Sc)(z) I °(S)
(+

z

d(
+ ic, z E D , (1.2.2)

ICI=1

where c E IR is arbitrary and

Im(Sa)(0) = C.

The SCHWARZ operator can be given another form, see (Dzhu92a). If C(s) = e(s) +
in(s) is the parameter representation of OD then the outer normal derivative is

an( = 'As)- - (s)an = -i y (s)a - (,(s)a()
-

Thus the GREEN representation formula (Theorem 13) becomes

Iu(z ) u(() [o9(Cz)dC - a9( , z)d( z E D .= - ' -
eD

Differentiating with respect to z gives by the symmetry of g(z, C)

u=(z) = 4i I u(z) [L(z,C)d( - K(z,C)dC]
8D

where
_ 2 a29(z, () .- - 2 a29(z, ()

L(z, () := aza( '
K(z, C)

,r azas

Definition 6. For a domain D C ( with GREEN function g(z, () the function

2 a29(z,()
7r OAC-

is called the BERGMAN kernel function of D.

It was introduced by St. BERGMAN, see [Berg50,Besc53,Cour50J.
Because g(z, () vanishes for C E aD identically in z E D

a9(z,C) = °,
029(z,CC,(s) + a29(z,C('(s)

= 0, C = C(s) E aD ,
Oz aza( ata(
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so that for z E D, ( E 8D

Hence,

L(z, ()('(s) + K(z,C)t'(s) = 0 .

35

u=(z) =
2i
Ju()L(z,c)d(.

8D

As u is harmonic u= is analytic. Realizing that u is real so that us = uz this leads to

Ju(c)dcu(z) - u(a) = + -C(C)d-} = 2 f Re uc(t; )dr;
a a

Introducing

to u(() / L(t, ()did(
aaD

Jt(z,() f L(t,()dt , JK(z,() JK(t,)dt
a a

this becomes

u(z) = Re
7

f Jt(z, ()u(()d( + u(a) .
8D

Here a is an arbitrarily chosen fixed point in D. It also can be chosen on the boundary
8D if u is continuous in D. Integration is taken along an arc connecting a with z.
Thus the functions being analytic in D\{(} are multi--valued.
Let v be the harmonic conjugate to u. Then by the CAUCHY-RIEMANN system

ur=Vs, uy= -us

we have

{-un(()d(+ uE(()d*1} + v(a)

{Ju(c)dc}21m + v(a)
a

Im 1 f u(()Jt(z, ()d( + v(a).
8D
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Hence, the analytic function w =u + iv is representable as

w(z) = 1 J w(a) (1.2.3)

aD

In general v and w, too are multi-valued functions.

Remarks.

1. If the solution to the DIRICHLET problem

Rew(z) = a(z), z E 8D ,

exists it is given by

1 JJL(zo)d(_ 1 ! ra9((,a)
a 21ri f

a(S)l a d - aS is

aD aD

with an arbitrary real c and a E D fixed.
For aEBD

w(z) JJL(z,c)cT)dc+i(a)+ic.

aD

2. For the unit disc D =

9(z, () = log I z _ I , L(z, () =
1 z)2

1 1 JL
z,

1( 1 - 1 1
K(z, r C z a

To verify the two preceding representation formulas observe for a E D

) a(S) ,
a

f J[,(z, ()a(()d(=
2zri .! \(+ z +

aa

am a®

tai f a(C)
[O(Ca)d( - a9(C, a)d(1 = -Im-- J ,, (C) S _+ a d'

am
C

am
C

so that

with

w(z)
2Iri f (()(+ z d(+ is

C-x
aD

c=c-Im2zriJc+ad((-
aD
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If a E 8® then the same formula holds, since

i f JL(z, ()a(()d(= z
2r f a(()I m

+a d(
a

OD aD am

3. For a general domain D

L(z, () = 1 I - t(z, (), Q(z,
2 82w(z, ()

T ((- z)2 - 8z8S

Obviously a is an analytic function of both variables z and (in D. Integrating
gives

JL(z, () =' ( I z - I a) - Jt(z, ()

where

Jr(z,O:= Ji(t,di

is multi-valued in general. While L(z, () has a second order pole in z = S the
BERGMAN kernel K(z, () is analytic in z and ( for z and Sin D,

K(z, () :_ _ 2 82g(z, () _ _ 2 82w(z, ()
a 0z8 n dz8( *

having a singularity for z = ( E OD. Here, as before

w(z,() g(z,()+logfz-(I
is harmonic for z and for Sin D.

Lemma 5. As a function of ( the kernel L(z, ()
analytic functions f in D for any fixed z E D, i.e.

is orthogonal

f f(()L(z,()d(dn = 0 .

D

Proof. Let f be bounded and analytic in D. Then

ff)dd?i f f(()t(z,()d(drt
D )2

D

to all bounded

Applying the GREEN formula for the domain

D, := D\((: I(- zJ < e)
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to the integral f (()L(z, () gives

f f(()L(z,C)dfdn = -ir Jf(c;)O9(ZC)ddq
D. D,

f 2f(()M ()d(- xi f f(()a9(z,()d(

2xi GIZ-

OD. It-=I=E11

[2'(z") d(.
21ri OT

1(-=I

Letting e tend to zero this last integral tends to

2x

f (z) f e2"°d(p = 0 .
2w

Thus (f, L(z, )) = 0. Observing £(z, () = 1((, z) which follows from the symmetry of
the GREEN function then

I I f(() (( d°)2 = Jf(c)t(cz)dcdii, z E D,
7r

D

fol lows.
Repeating the preceding proof with K(z, C) instead of L(z, () the respective limit by
letting e tend to zero instead of becoming zero is f (z). This result is called the repro-
ducing property of the BERGMAN kernel in the space of bounded analytic functions
in D.

Lemma 6. For any bounded analytic function f in D

f (Z) = J f (()K(z, )df dq, z E D.
D

From the symmetry of the GREEN function

K(--,?) = K((, z)

follows immediately.

1.3 RIEMANN boundary value problem

Let F be a smooth simple closed curve (or a set of finitely many such curves) in
the complex plane C. In the following for simplicity we mainly will consider simply
closed curves. In that case D+ denotes the bounded domain with boundary r and
D- :_ & \D+.
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Definition 7. Let G E C(r; if) and G(C) # 0 on r. Then the index K of G with
respect to r is the mean variation of arg G(() while ( varies on r in the positive
direction passing any point once,

tc := indG = 2s J d argG(() = 2-'
J

dlog G(C) .

r r

Because r is closed and G is continuous K is an entire number. The index has the
following properties.

1. ind (G1G2) = ind G1 + ind Gs, ind(1/G) = -ind G = ind G .

2. If D is a domain with smooth boundary and G is an analytic function in D up
to isolated poles with continuous non-vanishing boundary values on 8D then

indG = n(0) - n(oo) ,

where n(0) is the number of zeroes and n(oo) the number of poles of G each
counted with respect to its multiplicity. This follows from the argument prin-
ciple, in the case of an unbounded domain D applied to D n {jzI < R} for
sufficiently large R and then passing with R to infinity.

Riemann problem. Let r be a smooth simply closed curve and G, g E
C°(r; 0), 0 < a < 1, with G(() # 0 on r. Find analytic functions 0+ in D+ and
in D' such that

0+(() = G(()O (() + g((), (E r .

Remark. This problem is sometimes called the problem of linear conjugacy.

Theorem 14. For 0 < rc the homogeneous RIEMANN boundary value problem
(g = 0) has K + 1 linearly independent solutions

00 (z) = zke'+(s), z E D+ ,

0<k<rc,
K (z) = zk'"e7 (z), z E D',

Y(z) 2 i f log{(--G(())(d(z, z or.
r

The general solution contains rc+1 arbitrary complex constants. The space of solutions
vanishing at infinity contains rc linearly independent solutions, namely the preceding
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ones for 0 < k < k - 1. To fix a solution s + 1 side conditions are necessary.
For K < 0 the homogeneous problem (g = 0) is unsolvable.

Proof.

i. 0 _< k.
Let 0+, ¢- be a solution and Nf the number of zeroes of 0} in D±. Then

N+ = indO+ = ind(GO-) = ind G + ind - = ec - N- ,

0 then N+ = N- = 0 and log ¢t is a single-valued analytic function in
D. The function log G(() is single-valued too because

fdlogG= 0.
r

From the PLEMELJ-SOKHOTZKI formulae (1.1.7) we see that the solution to
the problem

log o+ = log G + log ¢- on I'

is given by the Cauchy integral

logO(z) = tai f logG(C)(-z - Y(z), z F. (1.3.1)

r

Hence O(z) = el(2), i.e. 0* (z) = e'*lal, z E D±, satisfies

0+ = G¢- on r, (oo)=I,

and 4 (z) = ae"1(z) satisfies

+=G¢- on r, c-(oo)=a.

For a = 0 there is only the trivial solution.
If 0 < x then ("`G(() is a function continuous on OD, because 0 E D+ i.e.
0 l r, with vanishing index

ind(( "G(()) = ind( + indG(() = -x + indG(() = 0 .

Rewriting the boundary condition as

0+(() = (R((-KG(C))` (S) on F
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and using

satisfying

with

we find

7(() fIog{cG(c)}_(d(z
r

S on 1

X+(z) := e"+(z) (z E D+), X-(z) := z-"e' (z) (z E D-)

41

0+(_) _ 0 (C) on r
X+(() X+(()

While X+(z) is analytic in D+, X (z) is analytic in D- up to a pole at infinity.

Because both functions coincide on r they are analytic continuations from one
another forming together an entire analytic function with pole at infinity of
order at most x. From the general LIOUVILLE theorem this function is seen to
be a polynomical P. of degree at most x. Thus,

0+(z) = P"(z)e"+(z), z E D+ ,

(z) = z-"P"(z)e" (z), z E D- .

ii. x<O.
There is no solution in this case because of the relation x = N+ + N-. But the
functions Xt in Df satisfy on I' the RIEMANN condition

X+(() = G(()X (()

in this case too. It does not form a solution because X- fails to be analytic at
infinity where it rather has a pole of order -x.

Defintion 8. The function

X+(z), z E D+
X(z) _

D-

is called canonical function of the RIEMANN problem.

The canonical solution will be important for solving the inhomogeneous problem.
Dividing 0 by X gives

on i'++=X_+X+ .
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As g E C°(r) and X+ E C°(r) by Theorem 4, we have X+ E C°(r). The solution
to this jump problem is

2ai X+(() ((z, z or,
r

namely ?k satisfies

+ X+(() on r

Hence
X

- t0 i is continuous on r

- - on r .
X+

Again X - 0 is an analytic function having a pole of order < K if 0 < K but a zero if
K < 0 at infinity.
In order that 40 = X+,b for K < 0 is a solution i.e. behaves regular at infinity it is
necessary and sufficient that :b has a zero of order K. From its series representation
near no

O(Z) = 2i f
g(()

d(z = uckz_k ck' f X(() (k-,d( (1 < k)

I.
+(() k_I r +(()

these solvability conditions are seen to be

f X+(()
(k-'d(= 0, 1 < k < -K - 1 .

r

In case when solutions vanishing at no are looked for moreover c_,c has to vanish.
Thus we have the following result.

Theorem 15. For 0 < K the general solution to the inhomogeneous RIEMANN
boundary value problem is

m(z) = X(z)fb(z) + P, (z)] ,

where P,, is a polynomial of order at most x with arbitrary coefficients.
For K < 0 it is solvable if and only if the above solvability conditions are satisfied.
Then

q(z) = X(z)%b(z)

is the solution.
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Remark. HASEMAN, a Ph.D. student from HILBERT in Gottingen, solved the
following problem.

Haseman problem. Let I' be a smooth simply closed curve, G, g, E Ca(r), 0 <
Q < 1,g(() # 0 on r, a E C' (r; r) a bijective mapping from r onto itself, preserving
the orientation and satisfying a'(() # 0 on r. Find an analytic function in d' \r
satisfying

G(C)S 9(S) on r.
't'his problem is called RIEMANN problem with shift or delay, too. For a solution

see [Gakh66], p. 121. It is solved by reducing the problem to the RIEMANN problem.
There is still a lot of new research done on RIEMANN and related boundary value
problems.

Next we will consider the RIEMANN problem for a multiply connected domain. Let
r,,, 0 < µ < m, be m + 1 mutually disjoint smooth simply closed curves such that
ro positively oriented surrounds the other rµ(1 < p < m) being negatively oriented.
Denote by D+ the bounded domain with r as its boundary and assume without loss
of generality 0 E D+,

D :=t\D+.
The solution of the simple jump condition, G = 1,

0+(() _ (() + g(C) on r,
is again given by the CAUCHY integral

O(z) = -' I g(c)z z r2vi
r

which is true just because of the local behaviour. For arbitrary G the index rc with
respect to r, obviously, is the sum of the indices K of G with respect to r,,,

m

K = E PCV .
µ-0

1.

Then for an a EC

O(z) = ae''Izl, 7(z) tai f logG(o
r

is a solution to the homogeneous problem.
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2. ic arbitrary.
This case again is reduced to case 1. Denote by D; the bounded domain with
boundary 8Dµ = -F, and let z E Dµ be an arbitrary point, I < p < m. Then

1

tai f d log(' - -bµ :=
P

-1, for p = v

0, for vp

1
m

2xi f dlog S G(S)'J((- z,.)', = 0, 1<v<m,
r l N=1

m m

tai f d log IG(C) H(C - zn)K" = .0 + Exµ = /
ro =1 a=1

1 1, for p=0

tai J d log( = b%, =
r

V

0, for p96 0

1

tai f d log o.
r l

Proceeding as in the case of a simply connected domain the homogeneous jump
condition is written as

l / 1 j
Y=1 I /t=11 J

Using

on F.

l
7(z) af log C-K 11(C - z)KG(C)z I',

r "=1

and m

X+(z) = JJ(z - z,)-""e1'1z1, z E D+
µ=1

X-(z) = z-"e"lzl, z E D-

we see X+ = GX- on r. X again is called canonical function. In the case k < 0
it has a pole of order -se at oo. From the condition

0+
0-

X+ 7- on I

the analytic function

X

is seen to be a polynomial P. as before if 0 < x. The
general solution is given by ¢ = XP,,. For is < 0 the homogeneous problem is
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unsolvable corresponding to the fact that then L would vanish at oo so that 0
X_

only could be identically zero, i.e. being the trivial solution to the homogeneous
problem. By the canonical function the inhomogeneous condition is reduced to

X+(() X_(() + X+(()
on 1'.

Hence Theorem 15 holds for multiply connected domains of the above type too
if the canonical function is changed as above.

Remark. The same is true if D+ is an unbounded domain. Let in the above
notation 1'o = 0 so that oo Ell+. Then the index of

m

0+(() (() 9(()

E r,
µc1

with respect to any r,(I < u < m) is zero. Therefore if in the above considerations
the factor (-K is cancelled everything holds again.

1.4 RIEMANN-HILBERT boundary value problem

Let D be a simply connected bounded domain with (piecewise) smooth boundary.
Contrary to the RIEMANN problem here the simple connectivity of D is important.
Although the RIEMANN-HILBERT problem may be solved even for multiply con-
nected domains as for simply connected ones, the solution in general is a multi-valued
function and further considerations are necessary to find single-valued solutions, see
[Gakh66], p. 326. Because this problem does not occur for simply connected domains,
here we stay with these.

Riemann-Hilbert problem. Forgiven A, (P E C°(8D; ll" ), 0 < a < 1, with A(() # 0
on OD find an analytic function w in D such that

Re{a(()w(())= ,p((), (E 8D .

Remark. With A = p + iv, w = u + iv we have

Re{aw} = leu + vv = cp on 8D .

While the DIRICHLET problem, coinciding with the RIEMANN-HILBEItT problem if
A = 1 just prescribes the real part of the analytic function on the boundary in the
RIEMANN-HILBERT boundary condition a linear combination of the real and imagi-
nary parts of the function looked for is given. Although this problem is more general
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the solution will be found by reducing it to the DIRICHLET problem. This latter
problem is solvable via the SCHWARZ operator, see Definition 5 in 1.2. Principally,
the domain D can be mapped conformally onto the unit disc mapping OD onto 8D,
see [Golu69], p. 44, so that it is enough to study the case D = D. The solution then
is found by combining the solution of the transformed problem with the inverse con-
formal mapping.
In the sequel we always will assume J. (()I = 1 on 8D which is no loss of generality as
can be seen by dividing the boundary condition by JA(C)J. At first we prove a connec-
tion of the RIEMANN problem with the RIEMANN-HILBERT problem, see [Gakh66],
p. 228.

Theorem 16. The solution of the RIEMANN problem

c+(() = G(C)S-(() + g((), 1(1=1 ,

with

is a solution of the RIEMANN-HILBERT problem

Re{a(()O+(()) = P((), I(I = 1 , (1.4.2)

if the free complex parameters of this solution are chosen properly.

Proof. Let x := inda, then ind G = 21c.

1.a=0.
The solution to (1.4.1) is

O(z) = X(z)
2__ f X+(() ( +c

ICI=1

where

cc Q,

X+(z) = exp 21 J log gG(()(dz = exp - I "g A(c) "I
16=1 ICI=1

exp
2a arg A(() (± z + 21r f "g A(()

ICI=1 ICI=1
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= eice"(=) , Y(z) = 2ri f "g A(() ±
z

ICI=1

.C := tai f arg A(() E N

ICI=1

We remark that ry = S arg A, where S is the SCHwARZ operator (1.2.2) for D
satisfying Re S arg A = arg A on 8D and Im (S arg A)(0) = 0. Thus

O+(z) = e'7(=) 1 f 9(() d( + c jzj < I
2ri e'7(C) z

ICI=1

where c E V is arbitrary

9(() d( _ 2iP(() d( _ ''(C) (+ z + 1
d(f z= f

A(C)e`7(C) C- z= f A(()e'l(C) C( - z C
IC I=1 ICI =1 10=1

A(C)e"(C) = A(C)e`n`"(C)-lmti(U = A(()e'°*0(0 = e-imy(C) Kj = 1 .

I g(C) (d(z = f G(()el
(C) + z

+ f P(()el'm!Qi'r(C)

I0=1 KI=1 ICI='

Thus

+(z) = 1 f 1P(C)el"`r(gC + z dS + a
2ri (-z

ICI=1

where c E C is imaginary if and only if c is chosen such that

Rec+ 2ri f 'P(()e Y(c = 0 .

ICI=1

That this ¢+(z) is a solution to (1.4.2) follows by direct calculation. We have
forjCI=1

so that

Re e-hw'(C)Re {(Svebh1)(() + a) = P(()
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2.0<K.
We proceed as in 1. The solution to (1.4.1) is

2ai J
g(()

O(z) = X(z)
1

X+() C - z
ICI=1

where for IzI < 1

X+(z) = exp 2I / log -xKA(()
d(W) ( z

with

ICI=1

exp
2x f {arg )i(() - K arg () W z + 1 y eicei7(=)

J
ICI=1

7(z) 2ai f {arg A(() - K arg (} L+- zz
d(

c = S(arg A(() - K arg ()(z)

ICI=

C:= 2fii
J {arg.\(() - Karg E Ilk .

kI=1

On I(I = 1

(()ei'(Q = (()eiRer(C)-Imr(q = e-7(<)

Thus for IzI < 1

0+(z) tai f P2,(z)

ICI=1

ei,(z) 1

J
(P(()ehu""(C)(, (+ z d(

(2iri (-Z
ICI='

J 0(0e r(C)(K ( + P2.(z)
ICI=1
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with an arbitrary polynomial P2, of degree at most 21c. Because

+ z !K - Z.

-z )
R-]

r /
C1

+ z SR-1-kzkS k-0
Kr-1 R-

(9-1-kzk
+ 2-kzk+1

k=0 kk=O

is a polynomial in z of degree is we can write

= PR(z, S)

0+(z) = ei7(z)

l

1 v(C)e'°"(QzR
+ z dC

+ zKQR(z)

J
21ri C-z

1(1=1

Here QR has the form

QK(z)
ckzk

k=-K

with coefficients depending among others on those of P2_ If

Re QK(() = 0 on 16=1

then 0+ is a solution to (1.4.2) as is seen immediately. For I we have

Re{X(()SRe'7(1)} = -bn-f(()

and hence

v(() + e-'(')Re QK(()

The condition ReQR(() = 0 on ISI = I imposes conditions on P2R(().

3. rc < 0.

Problem (1.4.1) is solvable if

r 9(C) Ck-1dC=0, 1 <k<-2K-1,
J X+(C)

1(1=1

49

i.e.

I 'v(()e1i°r(1)CK+k-'d( = 0, 1 < k < -2Kc - 1

I(1=1
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or equivalently

r 'P(C)e 0, K + 1 < k < -K - 1 .

ICI=1

The solution then especially for Iz) < 1, similarly as before is

+(Z) = X+(z) / 9(C) d( -err(=) r 1)
21ri J X+(C) f S - z J

IC=1 ICI=1

As
C + z CK-ZK + z < - i (<)

K
-

(2)-K

C-z ( ( (-z -_

and

z

-X--1

( )
k

( l
--1-k

((z k=o z/ \z/
1 -K-1

(c-kZK+k + `-k-1zK+k+1)

k=0 S

(K - 2,K = r - ` (<) K - j) -X = 1(C_k-lZ.c+k+1 - -kzs+k)
z i i

C k=o

we find because of the solvability conditions

J
((}e1"rr(q(K C + z dC

C-z
ICI=1

= zK J P(C)e'°`'(Cl
(+ z d(-

zK+1 1
P(C)e1,.Yr(gC-1 d(

,(-z (
ICI=1 ICI=1

I P(C)e''"''(C)CK

I<1=1

= zK 1 P(()e1"k7(() + zK+l r W(()ej'm(UC-1 d

I<I=1 ICIf=1

Here in both formulas the last integral vanishes if 1c < -1, for K = -1 it might
not. But adding both formulas we get

e$Y(z)zK C + z d(
(z) 2ai f `P(()eLm(C)C -z

ICI=1
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which as before can be shown to solve (1.4.2).

Because the SCHWARZ integral is an analytic function especially in z = 0, from
the above solvability conditions only those for 0 < k < -K -1 are important for
0+ to be regular in z = 0. But because V is a real function taking the complex
conjugate of

1
J

'P(C)eI'°r(U k = 0, 0 < k < -K - 1 ,
ICI=t

this leads to the same conditions for x + 1 < k < 0.

The RIEMANN-HILBERT problem will now be studied using the SCHWARZ operator
directly. At first we modify the DIRICHLET problem by allowing the solution to have
an isolated pole of order not greater than a given natural number n > 0 at the origin.

Lemma 7. The general solution to the DIRICHLET problem

Rew(S) _ W(C) on 1(1=1

in the space of functions analytic in D\{0} having a pole at most of order n E IN at
z = 0 is

w(z)
2tri f

W(C) L+
+ ico + >(Ckzk - Ckz-k)

ICI=1
k=1

with arbitrary coefficients co E 1R, ck E 0 (1 < k < n).

Proof. We only need to consider the homogeneous problem. If it is solvable the
solution has the form

P(z) Ckzk (IzI < 1), ck = ak + ibk E IV (-n < k)
k=-n

and satisfying at z = e"t

+00 +00

ReP(eid)=Re k ckeike= E{akcoskt9-bksinkt9}

k=-n k=-n

n +M
=ao+>{(ak+a_k)coskt9+(b_k-bk)sink6}+ {akcoskt9-bksin kt9} =0.

k=1 k=n+1

Thus

ao=0 ak+a_k=0, b_k-bk=0 (1 <k<n), ak=bk=O (n +1 <k),
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i.e.
c_k=- ck (0<k<n), CaO =(n+1<k)

and

P(z) = ibo + >{Ckzk - Ckz-k)
k=1

This function, obviously, has a pole at most of order n at z = 0 and its real part
vanishes at IzI = 1. A special solution to the inhomogeneous problem is given by
(1.2.2) with c = 0.

Remark. P(z) is a solution to the homogeneous DIRICHLET problem for tD \D,
too. In that case oo is a pole at most of order n. The homogeneous DIRICHLET
problem in the class of analytic functions which vanish at the origin (infinity) only is
trivially solvable. Moreover, this result is true for any point of D (of V \D) replacing
z = 0. Let w(z) be a conformal mapping from D onto itself mapping zo onto 0. Then

P(z) := ico + >{ckwk(z) - Ckw-k(z)}, co E JR, ck E 0 , I < k < n ,
k=1

is a solution of the homogeneous DIRICHLET problem with a pole at zo, and zo cannot
be a zero of P if P is not identically zero. This even holds when w is the conformal
mapping from some domain onto D.

Corollary 1. The general solution to the DIRICHLET problem for analytic functions
in the unit disc D is

w(z)
2fii

+ ico, co E 1R .-z S
ICI=1

Lemma 8. Let D be a simply connected domain in C with GREEN function g(z, zo).
Then the solution of the DIRICHLET problem for analytic functions is

w(z) 27r
f co E IR ,

aD

where M(z, zo) = g(z, zo) + ih(z, zo) is the complex GREEN function.

Proof. From the DIRICHLET condition

u = Re w = <p on OD

the function u is known as

U(Z) = - 2_ f v(s)O9(( Z)dsc, z D .
t

8D
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The conjugate harmonic function v related to u by the CAUCHY-RIEMANN system

8u 8v 8u 8v .

87, 8y' 8y 8x
in

is locally given by

D,

z l z l
V(Z) = J (9V dx + Ovdy1 + I-

5Y_
udx +'udy } + co,

l y 1JJ

a a

coEIR.

If D is simply connected then the integral on the right-hand side is path-independent
because the integrability condition

0 2 za=0;Du=axz+y

is satisfied. Introducing the integral representation for u into this integral and inter-
changing differentiation and integration with one another leads to

v(Z) )- - I f
C

with, see p. 32,

aD

C

h((,z)= f
a

CE IR.

Thus w = u + iv is representable as claimed in the lemma.

Theorem 17. The general RIEMANN-HILBERT problem for a simply connected
domain D, 0 E D with SCHWARZ operator S is solvable for non-negative index rc > 0.
The general solution then is

where

zED,
k=1

7(z) (Sarg(S ".(()))(z), ZED,

'p(0 := etm-r() 16"<p(C), C E OD,

and w is a conformal mapping from D onto D, w(0) = 0, co E IR, ck E IT, 1 < k _< rc,
are arbitrary constants.
For negative index it < 0 the problem is solvable if and only if the analytic function
Sip has a zero of order -x at z = 0. If these -,c conditions are satisfied then

w(z) = z"e'(')(Stio)(z), S E D ,

w(z) = z"e1'"(C) [(Sxz) + ica + >(CkWk(z) - F- -k(z)) I ,

is the solution.
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Remark. When the SCHWARZ operator is explicitly known then the conditions for
the problem to be solvable in the negative index case can be written down explicitly.
For the unit disc for example, they are

I w(C)(k+r+ _ 01 0<k<-x-I.

Proof. Because 0 i OD and Jdlog{(A(O} = 0 then log{(-"A(()) is a single-
8D

valued continuous function on OD and

7(z) := (Sarg((-KA(()))(z)

is an analytic function in D satisfying

Re -t(() = arg{(-"A(()) = argA(() - rcargt; on 8D .

Thus on OD
e-i'1(O = eIm7(0-i-gA(()+i.-g(=

and for a solution w

Re {t;-"e-r"(()w(()) = e -r(()I(I "Re {A(()w(())

= elmr()10-MO =:'P(O
.

As z-"e-'"(Z)w(z) will be an analytic function in D with the possible exception of
z = 0, where eventually in the case rc > 0 there will be a pole of order not greater
than K. Using Lemma 7 for rc > 0 we get the above form of the solution. If K < 0 we
have to find the solution within the class of analytic functions having a zero of order
-rc in z = 0. But the solution of the DIRICHLET problem

Re e-`"(()w(C)} = (E OD ,

then is uniquely given by S'p. This leads to the solvability conditions. If they are
satisfied then, obviously,

w(z) = zKeh"(Z)(S'P)(z)

is an analytic function in all of D satisfying

Re{A(()w(()) = yp((), C E 019 .

In order to get a uniquely given solution in case rc 0 we impose some side conditions
on the solution.
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Corollary 2. For nonnegative index the RIEMANN-HILBERT problem together with
the side conditions

Im{A(ak)w(ak)} = bk, 0 < k < 2rc ,

is uniquely solvable. Here ak E at (k # 1), are given points and bk E IR are
prescribed, 0 < k < 2K.

Proof. It has to be shown that the free coefficients co E IR, ck E C , I < k < ic, are
uniquely given by the side conditions. We have

/ /bk = Im{\(ak)w(ak)) = lnl{akeiY(ak),X(ak)[// Q, (ak))}

e ImY(ak)IaklK [ImS(ak) + Co + >2 Im{cµwv(ak) - cµw-µ(ak))
µ=1 J

where

Thus

CO -

QK(Z) := icO + Elckwk(z) - eklJ k1z)
k=1

{CµWµ(ak) - Z;W-µ(ak)} = bkeimY(ak)Iakl K - ImSc(ak) =: bk
µ=1

or with zk := w(ak) E aD, zk 34 z1i k # 1, d := -ic,,, 1 < l< < K,

K

co } {d, zk + dunk "} = bk, 0 < k < 2K .
µ=1

The determinant of this linear system is

zo ... zo Z' ... zo x

I
1 z2K ...

7K .z-
2K

. . . z-K
2K 2K

2.
1

1

z02K

2Kz2K ... z2K

2.

=(-1)3 fi
O<i<k<2K =0

and hence the system is uniquely solvable. From the fact Izkl = 1 and bk E IR by
using the CRAMER rule the solution c can be shown to be the complex conjugate of
Cl'.

In order to handle the solvability conditions for K < 0 the boundary condition is
modified.
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Definition 9. The RIEMANN-HILBERT problem

Re sv(S) + h(S}, (E 8D ,

where h is identically zero if ic > 0 and for c < 0

h(z) _ hkwk(z), ZED,
k=K+)

is called the modified RIEMANN-HILBERT boundary value problem. The coefficients
hk are restricted to

h-k = hk, IkI 5 -u - 1 , (1.4.3)

and have to be determined properly so that the solvability conditions are satisfied.

Theorem 18. The modified RIEMANN-HILBERT problem is uniquely solvable for
Ic<0.

Remark. Together with to the hk have to be determined. Because for z E 8D we
have w(z) E 811, so that for z E 8D

-K-I -K-1

h(z) = h0+ >2 {hkwk(z) + h-kw-k(z)) = Reho+2Re hkwk(z)
k=1 k=1

is real. Observe ho = To = Re ho.
If the hk are found then the solution to to the RIEMANN--HILBERT problem

Re {A(S)w(()) =''(() + h(() on 8D ,

is uniquely given by

w(z) = zKei7(z)S(einn(C)ISI-K('P(() + h(()))(z), ZED.

Proof. The solvability conditions for the modified problem in the case D = D are

r h(())S-'-'dC = 0, 0 < I < -K - 1 .

ICI=1

We will only consider this case. It has to be shown that the hk are uniquely determined
by these equations. Taking the complex conjugate of

-K-1
hk

f
r Sk-r-1e1nrY(C)dS = - f P(S)etmr(c)S-i-IdS 0 < l < -w - 1 ,

I0=1 I0=1
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and replacing k by -k gives

-K-1

hk r Sk+i-Ie y(Od(= - J (S)ein+r(C)S'-'d(, 0 < l <
k==. +1

ICIf=1 ICI=1

Hence, we have to solve the linear system

-K-1

[-` hk j J 'P(S)e1.,.y(C)5-+-'d(, l -1c - 1 .

k_K+1
ICIf=1 ICI=1

The determinant of this system is the GRAM determinant of the system

IvI < -2,c - 2) .

Because this system is linearly independent its GRAM determinant does not vanish,
see (Cohi53), p. 62. We will give another function theoretic proof for this system to
be uniquely solvable. Consider the homogeneous system

-K-1

hk r elim(pSk-'-'d(=0, 0<1<
k=K+1

ICIf=1

and assume it is not trivially solvable. Then

-K-1

h(z) E hkzk 4 0 in D, Im h(() = 0 on OD ,
k=K+1

r 0, 0 < 1 < -,c - I ,

ICIf=1

such that

JH(z) etnrr(C)h(S)(±
z

( Ri
J ei<"r(C)h(S)SK(d(z

ICI=1 ICI=1 '

is an analytic function in D having a zero at the origin at least of order -,c. Hence,
ReH(z) = 0 describes near the origin -rc level lines. To see this rewrite

H(z) = z-KH(z), H(z) analytic, z = re"* ,

and note

Re H(z) = r_K cos(-1up)Re H(re"°) - r'K sin(-aW)Im H(re" °) = 0,
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from which
)

cot(-rup) =
Im H(z

Re H(z)

Letting r tend to 0 and assuming that the right-hand side tends to some finite limit
we get

(Po+kr 1 <k<-2K.P = -K
The assumption on the existence of the limit is no restriction of generality because
H(0) # 0 may be assumed or we may factor out another power of z from H(z). If then
Re H(0) = 0 we know Izn H(0) # 0 and instead of cot(-K9p) we pass to tan(-Kap)
leading to the same result.
Consider now these at least -2K level lines. They cannot intersect themselves in
D, because otherwise H(z) - 0 would follow by the maximum principle and the
CAUCHY-RIEMANN equations. Thus the level lines meet OD in points different from
one another. As on OD

Re H (() = e1"'11)h((), Im h(() = 0

in these at last -2K points we have h(() = 0. But z-"-' h(z) is a polynomial of degree
at most -2K - 2. Having at least -2K zeroes this forces h to vanish identically. Thus
the homogeneous linear system is only trivially solvable, hk = 0, Ik[ < -K - 1. This
also shows the inhomogeneous system to be uniquely solvable.

Remark. If OD is HOLDER continuous, i.e. consists of finitely many HOLDER
continuous simple closed JORDAN curves, and if A and ep are HOLDER continuous
functions then the solution to the RIEMANN HILBERT problem is HOLDER continuous
too when it exists. This can immediately be seen for the unit disc, see Theorem 5. If
D is simply connected and w is the conformal map from D into D and w the solution
to the RIEMANN-HILBERT problem then w ow-' satisfies

cp(w-'(z)), z E 8D .

From Kellogg's result, see [Golu691, chap. X, §1, which asserts the continuity of
d/dzw-'(z) in D and of d/d(w(() in D, the coefficients of this boundary condi-
tion are seen to be HOLDER continuous. Therefore w o w-' is HOLDER continuous
and thus w is too by the boundedness of d/d( w(() in D.
If D is multiply connected w can be represented by the/CAUCHY integral

w(z)= , J
aD

w(() d( rm w z w z 1 Jw ds= u "( )' "() - 2ri r(()(- z2r: (- z
a=0

M

While wo is analytic in the bounded domain Do with ODo = r o, w,,,1 < p < m, is
analytic in the unbounded domain D, containing zo. with 8D = F,,. Because these
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domains are simply connected and contain the curves r for 0 < v < m, v 54 µ, w, is
HOLDER continuous not only on l' but also in the other r., i.e. on all of I. Thus w
is HOLDER continuous on I' and hence on D.

For multiply connected bounded domains only two simple RIEMANN-HILBERT prob-
lems will be considered, the DIRICHLET problem and a problem which turns out to
be "adjoint" to the DIRICHLET problem, see [Veku62], p. 228.

Definition 10. The adjoint RIEMANN-HILBERT boundary condition to

Re{1(()w(()}=<p(r;), (EBD,

is the homogeneous RIEMANN-HILBERT boundary condition

Re {a(()('(s)w(())= 0, (_ ((s) E 8D ,

where s is the arc length parameter of 8D.

In order to motivate this definition let w and w be solutions to the respective
RIEMANN-HILBERT problems, i.e. w and w are analytic functions satisfying the
above conditions, respectively. From the CAUCHY theorem then especially

Re
tai

j w(()w(()d( = 0.

eD

Observing
IA(C)1=1, a(()w(() ='P(() iµ((), (E 8D ,

with a proper real function p we get

Re j(,4(() - up(())A(()w(()('(s)ds
OD

= J µ(()Re {a(()w(()('(s))ds + j V(C)lm {A(()w(()('(s)}ds
8D 8D

8D

This partly gives the following result.

Theorem 19. A necessary and sufficient condition for the inhomogeneous
RIEMANN-HILBERT problem for analytic functions to be solvable is that

J (OA(C)w(C)dC = 0 (1.4.4)

8D

for any solution w to the adjoint problem.
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Proof. The consideration from before shows that (1.4.4) is a necessary condition.
In order to show this condition to be sufficient the theory of singular integral equations
is needed, see [Veku62], pp. 230-236, where generalized analytic rather than just
analytic functions are treated. Here these considerations are exploited for the case of
analytic functions.
From Re {Aw} = gyp, Re {)C'w} = 0 on 8D it follows .1w = V + ip and A('w = iX, i.e.
w = AV + iap and w = i)C'X on OD with real functions p and X. From the CAUCHY
formula

w(z)
2-ii f A(()V(()(- z + 2Ir f wl(z) + w2(z),z E D ,

aD aD

`''(z) = )C'(s)X(S)CdC,ZED,
27r

z

aD

and by the PLEMELJ-SOKHOTZKI formula

w+(() = 2 a(()(2(() + iu(()) + wi(C) + W2(0, z E OD ,

w+(S) = 2a(C)C'(s)X(C) + 2r J X (t)t'(a)X(t)..
dtC

aD

= X(C)C'(s)X(C)+
21r

(t)X(t)tdaC

, C = ((s) E OD,t = t(a)
OD

Here the respective integrals are CAUCHY principal value integrals. From the bound-
ary conditions then

ip = Re{aw+}=ReI('p+ip)+Re{a(w1+w2)}

= 2'p+Re{Awl) +Re{aw2},

0 = Re {a('w+} = Re 2X + J Re S 2u X(C)i X(t)do, .
J l C
aD

Setting

Kl((,t) := Re-- A(C i (o)A(t)
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then

K1((, t)p(t)da = -'V(C) - Re {11(C)w1(C)}

ao
(

l2`P(() - Re { a(() [wt(() -
Re 04-04 (())

-Re {A(()w1 (C)} _: `Po

61

This is a singular integral equation for p

-1 K1((,t)l1(t)do=co. (1.4.5)

8D

The preceding equation for X is of the same kind, namely

f K1(t,C)X(t)do = 0 . (1.4.6)

OD

For treating these equations the following excerpt from the theory of singular integral
equations is given, see [Veku621, p. 230-236, [Mipr861, chapter 3, [Musk531, chapter 2.
For given a, f E C°(8D; C), K E C°(8D x 8D; C), 0 < a< 1,

Ky, a(C)w(() + I. f h ((, t)W(t)t
dtC

= f(C), C E 8D ,
Irt

aD

is called a singular integral equation.

WO := a(()(() - 1ri
I K(t,()b(t)t

dt(=
0, C E 8D ,

aD

is called adjoint to Kc, = f. If

a(() + K(C, C) 0, a(() - K(C, C) 0 on 8D

then

r a(() - K((, C)K := 2'r f d arg a(()
+ K((,C)

aD

is an entire number which is called the index of K. If K p = 0 has k and K'10 = 0
has k' linearly independent solutions then both k and k' are finite numbers related by
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k - k' = e with one another. The inhomogeneous equation Kip = f is solvable if and
only if f satisfies

J f(b(()d( =0,1 j k',
8D

for any basis {r(i, := 1 < j < k'} for the solution space to the adjoint equation
K'z/i = 0.
Applying this result for the above equations (1.4.5), (1.4.6), observing 1,\(()I _
1('(s)l = 1, and is = 0 we see that (1.4.5) is solvable if and only if

1 Vo(()Xi(()ds = 0 , 1 < j < k , (1.4.7)

8D

for a basis {Xj : 1 < j < k} for the solution space to (1.4.6). If it can be shown that
these conditions are equivalent to the conditions (1.4.4) then it is evident that (1.4.5)
has a solution p determining the solution w via w = \W+iAµ on OD. From here w is
uniquely given in D by the CAUCHY formula, see the remark below.
We consider some X/j, and observe

wj(z) =_ J
2 A(O(,(s)Xj(O- d( = 2a ,l

A(()Xi(C)dsz I < j < k .

8D 8D

Let us assume there is a function fpµ analytic in the bounded domain Dµ with OD', =
I'µ,1 < µ < m, and qo analytic in the unbounded domain Do with 0Do = I'o vanishing
at infinity, 4o(oo) = 0, such that (aµ(() = A(()('(s)X,(() on I', for 0 < It < m. 't'hen
by the CAUCHY formula

wj(z)27rf (()d(_2x (µ(CzdS=O

ro
µ=I r

in D, so that w, is the trivial solution to the homogeneous adjoint boundary value
problem. Let X1, . . . , X, , 0 < Q < k, be those elements of the above basis correspond-
ing to linearly independent solutions For the remaining Xj the related w, is
identically zero and hence by the PLEMELJ-SOKHOTZKI formula we have an analytic
function Oj in ' \D satisfying O,(oo) = 0 and 0, (() = -iA(()('(s)X,(() on OD, i.e.
X,(() = iA(()('(s)4., (() on 8D. Thus 0, is a solution to the so-called concomitant
problem

Re {A(()('(s)oj (()) = 0 on 8D

in the class of analytic functions in 2' \D vanishing at infinity. It has k - P linearly
independent solutions because the Xi are linearly independent.
Let us now consider the conditions (1.4.7). Inserting

Xj(() =
zA(S)('(s)wj(() , 1 < j < Q,

on 01)
iA(()('(s) (() , e+ 1 < j < k ,
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leads for 1 <j <.1 to

1 ypo(()Xi(()ds = -i f V(()A(()S'(s)wi(()ds

OD !D

i f Re (A(().+(()) A(()('(s)-i (C)ds
OD

_ -i J Re i J wi
OD aD

Because wi wi is analytic in D the last integral vanishes so that (1.4.4) for w = wi
implies

fc)idc=o, 1 <j: 51 .

aD

Similarly, for I + I < j < k we get

{a(s)wi (c)dsJcoo)xi()ds = -iJ Re
aD aD

r

= -Re i
J

w, (()Oj (()d( = 0
OD

again by the CAUCHY theorem, this time applied to the function wi ¢c analytic in
d' \D and vanishing at infinity.
Thus (1.4.4) together with these last k - l conditions imply (1.4.7) and hence (1.4.5)
is solvable for µ.

Remark. Having determined µ as a solution to (1.4.5) it has to be verified that

w(z) 2ai a(()m() + iµ(()) (dsz = W1 (Z) + W2(z) , z E D ,
aD

indeed solves the RIEMANN-HILBERT problem. (1.4.5) can be written as

Rea(C)(wi (() + W2(C)) = BP(S)

This and the formula

show

w2 (C) = 2 A(C)II(C) + W2(()

Re {A(()w+(C)} =p(C)
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The index of the/adjoint problem to the R/I'EMANN-HILBERT problem is

_.L
J dlogA(c)c'(s) = -2!i f dlog.(() - 2xi f dlogC'(s) .

aD OD aD

Here the first term on the right-hand side is the negative index of the original problem,
-#c, while the second term is m - 1 where m + 1 is the connectivity of the multiply
connected bounded domain D. S'(s) is the tangent unit vector on 8D. When ( varies
along 1'o in the positive direction the argument of ('(s) increases from a starting angle
'o to goo + 2a. Because of the negative orientation of the l'µ,1 < p < m, similarly
on I')A the tangent vector starting with some angle epµ ends up with pµ - 27r after a
revolution of ( around r,
Later on we will be interested in the adjoint problem to the DIRICHLET problem i.e.
where A(() = 1. Then the index of the adjoint problem is m - 1 and the solution
space to this special RIEMANN-HILBERT problem has dimension m, see [Veku62[, p.
259. To show this m over IR linearly independent solutions are constructed which
span the solution space.
Let uµ,1 _< u < m, be the so-called harmonic measure of the boundary curve r
with respect to the domain D, i.e. the uniquely given harmonic function satisfying
the boundary condition

-f 0, yR
1, u=p

Obviously,

ua(z) = 2A J <z)dsc .

r,

On any level set {z : uµ(z) = const.), especially on OD we have

du
dsz) = uµs(z)z'(s) + us(z)z'(s) = 2Re {z'(s)u0Z(z)) = 0

when s denotes the arc length parameter. Thus the function (see section 1.2)

mµ(z):= 2uµ:(z) = f L(z,C)d
ru

which because of uµ being harmonic is analytic, is a solution for the problem adjoint
to the DIRICHLET problem.
Let aµ E IR be such that FN I a,O,(z) = 0 in D. From a/8z F,', csµu,,(z) _
0 it follows that the real function aµu, (z) must be antiholomorphic i.e. a
holomorphic function of z and hence constant. But this constant has to be equal to
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any of the aµ and at the same time equal to zero as can be seen by restricting z to
r., 0 < v < m. It can be shown that the number of linearly independent solutions is
at most m, [Veku62), p. 259. Thus any solution to the adjoint problem is a real linear
combination of the c,,,1 < p < m. This can be shown directly. Let w be a solution
to the adjoint problem Re {z'(s)w(z)} = 0 to the DIRICHLET problem. Let u be a
harmonic function in D such that 2us = to. For some fixed point a E D we have

u(z) = J{u(C)dC+u?(C)d}+u(a)

2 J
{w(C)d( + w(C)d() + u(a) = Re J w(()d( + u(a) .

u a

This functions single-valued. To see this let F, be some simply closed curve in D
homological to r,. From the CAUCHY theorem

Jw(c)dc =
J

w(()dC
r,.

we have

{uc(()dC + uT(C)d(} = / {uc(()d(+ uZ(()d(} =
r du((s))ds = 0

because

2du(d(s)) = w(()('(.9) + w(C)C'(s) = Me {('(s)w(()} = 0 on I',. .

This last equation also shows u(C) to be constant on any r,,. Let u(C) = a EIR for 0 <
p < m. Then uo := u - ao is a harmonic function in D satisfying uo = (a - ao)u on
IF, for 0 < p < m and hence, obviously, uo = E', (a - ao)u,, in D as a consequence
of the maximum-minimum principle. Thus to = 2us = 2uo, = Eµ 1(a - ao)¢,.. The
harmonic functions u give some insight into the nature of the multi-valuedness of
the harmonic conjugate h(z, () to the GREEN function g(z, () of D. This multi-valued
function defined as

h(z, zo) =
r ag(C, zo)dst

+ const.
J i9n(

acquires an increment equal to 27ruµ(zo) as z describes a closed curve r, homological
to r,, which does not contain the point zo. To see this apply the first GREEN formula,
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Theorem 11, to_u = 1 and the harmonic function v = g(-, zo) in the ring domain
D, C D with 8D = I' U r giving

0 = 1 Acg((
JO(zo)d! agoC

sC - f
8seds .

c c

If on the other hand z describes a simply closed curve rµ bounding a subset of D to
which zo belongs then h(z, zo) acquires an increment equal to 27r. This can be seen by
observing that g((, zo) + log C - zoI is harmonic in the subset of D bounded by I',,,
see the proof of Theorem 13.

Corollary 3. 1. The DIRICHLET problem for analytic functions to in D

Rew(z) = ho(z) on .9D

is solvable if and only if with the basis elements q5,,,1 < u < m, of the solution space
to the adjoint problem

Re {z'(s)O(z)} = 0

the conditions
Jho(z)(z)dz=o, 1< p< m,

aD

are satisfied.
2. The RIEMANN-HILBERT problem for analytic functions 0 in D

Re {z'(s)cb(z)} = h°(z) on 8D
is solvable if and only if

r h°(z)dst = 0.

Remark. The solution to the DIRICHLET problem is given in connection with
(1.2.3). The homogeneous DIRICHLET problem has the solution ic, c E fl? . If the
RIEMANN-HILBERT problem

Re{z'(s)O(z)} = h°(z) on OD

is solvable the general solution has the form
m

ry5 E IR, 1 < u < m ,

µ=1

with the particular solution

CC

4o(z) i J (e (z, 0 + ( z) h°(()dsC, a lr J 1(z, t)dt .
8D a
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Compare p. 37 for the definition of e(z, (). To verify this representation formula the
form of the particular solution has to be deduced. Let a E 1'0 be that boundary point
corresponding to s = 0, a = z(0). Define the multi-valued analytic function

40 (z):= Jocdc
a

for a particular solution ¢o. On OD it satisfies

ds,to(z) = z'(s)go(z)

Defining H(z(s)) such that H(ao) = 0 and

ds
H(z(s)) = h°(z(s))

then 4o satisfies the DIRICHLET problem

H(z),z E OD .

Applying the representation formula for the solution to this DIRICHLET problem gives

to(z) = t J JL(z, ()H(()d( + is .

Differentiating this and using

aD

L(z,() = 1 - e(z,C)
7r(z - ()2

shows

i f L(z, ()H(()d(_ a f (H(z))dC - Z fe(z()H(C)d(
aD aD aD
I

Sri f (Lzc_ 1 z H(()d(
aD

;ra f (t(z,o + C z) OH( ()d(
aD

which is the above formula.





2. Inhomogeneous CAUCHY--RIEMANN systems

2.1 Integral representations

If w = u + iv is analytic then u, v satisfy the CAUCHY-RIEMANN System. If u, v E
C'(D) satisfy this system, then w is analytic in D. Let

U. = Vy, uy= -Vr.

Introducing the partial complex derivatives

then

2wr=ur+iv=-iuy+vv=2(u=+iv,,)=w',2ws=u=+iv=+iuy-vx=0.

Thus the complex form of the CAUCHY-RUEMANN system is

uI=0.

Lemma 9. Let u, v E 077; ; IR ), w = u + iv. Then

Jw(z)dz+fw1dzdz = 0,
8D D

J
w(z)dz -

J
w=(z)dzdz = 0.

8D D

a 1 a a a I a a
az-2 ax - tay)' az-2(ax+aay

Proof. From the GAUSS Theorem (Theorem 10) we have

f (uz + vy)dxdy = J (u dy - v dx) .

D 8D

From
w dz = (u+iv)(dx+idy)=udx-vdy+i(udy+vdx),

and

wdz = (u+iv)(dx-idy)=udx+vdy-i(udy-vdx)

dzdz = dfr' y) dxdy = I
Y

' i I dxdy = -2idxdy

both formulas follow.

69
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Remark. If w is analytic then from the first formula of Lemma 7 the CAUCHY
integral theorem

Jw(z)dz = 0

OD

follows.

Theorem 20. w E C'(D; IT ). Then

_ 1 / dS - 1 r
w(z)

2ari f v'(() S - z a f z, S = + in, z E D. (2.1.1)

aD D

Proof. For zo E D let

K1(zo) :_ {z : Iz - zol < e} C D, D, := D\KK(zo).

Applying Lemma 7,

f
aD,

follows. From

w(C)
S

dSzo
- 2i J w (() C -d o= 0

D.

J w(C)
d(zp

= J
dSzo - i JW(zO + ee"°)d<p

aD, OD o

letting e tend to zero (2.1.1) is obtained because the area integral exists as can be

seen by introducing polar coordinates about z0,

1 C - zo
K.(zo)

c 2x

= //w(zo +

Remark. (2.1.1) is called CAUCHY-POMPEIU formula, see [Pomp13]. Similarly,
from the second formula of Lemma 7

w(z) _ - 1. f w(C)-d - 1 f wt(C)
dldrl

tar:aD t;-z arD -z zED, (2.1.1)

follows. (2.1.1') can be deduced from (2.1.1) by applying (2.1.1) to ii and taking
complex conjugation. In a similarly way the SCHWARZ-POISSON formula can be
extended.
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Theorem 21. w E C'(1; IV). Then

w(z) = tai I R.ew(O x

ICI=1

+1 J Imw(o) - - 1if I-<(() +
2a C a-z 1-xs

ICI=1 ICI<1

71

JzJ< 1 . (2.1.2)

Proof. Adding formula (2.1.1) for D = D and the complex conjugate of

0 = 1
,/ w(()

zd' - 1

z
dddn, IzI < I ,tat 1 - a C 1 - z

ICI=1 ICI<1

which follows directly from Lemma 7 for D = D we get

_ I f 1 wc() zwcC)

1
W(z) ' tai C - z + C(C - z) J d(

ICI

-- {w(C) + i_ } dd% Iz< 1 ,

ICI<

-fl
when using C d( = -C dt; on ICI = 1. From

1 1 z 1 (+z
( - z

then

C C(C-z) 2C`(-z-1)

r j - + ( d( = f {Rew(__ + z + i Imw(C)I
C

ICI ICI

Remark.
.

2a I Imw(C) ico, co E 'W

ICI=1

If w is analytic in D then (2.1.2) is the SCHWARZ-POISSON formula. (2.1.2) may
be called SCHWARZ-POISSON-POMPEIU formula. It may be given a more symmetric
form by subtracting i Im w(O) from both sides giving, see [Behi93],
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w(z) - i Irnw(0)

= 1 JRew(()(+z
d( -

2iri - z
aD

1 jj "(S) c -f z '+w(c) 1+ zc l
21r ( S-z+ S

(2.1.2')

In order to show that this formula will give a solution to the DIRICHLET problem for
the equation t v,- = f for some given f in D we have to consider the area integral in
(2.1.2). Generally we will study

Tf(z).
21r 1f(()Scz

D

Before doing this we will generalize the representation formula (2.1.2) to any simply
connected smoothly bounded finite domain D, 0 E D. Let w be the conformal mapping
from D onto D with w(0) = 0,w'(0) > 0. We will transform formula (2.1.2) for
functions in D. In order to do so we use the first and second GREEN function of D,
see section 1.2,

r
w(() - w(z)

G (z,() = log
2A I - w(()w(z)

G"(z, () = - 2a log (w(() - u'(z))(1 - w(()w(z))))

where here we add the factor 2A. We have

G, (Z' () + G", (Z' () = - l o g Iw(() - w(z)12 ,2x

log I I - ,(()w(z)12,
2w

() + G"((G(z ()) _
1 w'(()

, z, 2A w(() - w(z)

r " 1 w'(()w(z)
(G (z () - G ()) _(z, ,

2u 1 - w(()w(z)
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dG"(z,() = G<"(z,()d(+ Gtt(z,()dd = 2Re[Gc"(z,()d(I

__ _ 1 1

2a
Re

1W(O - w(z) 1 - w(()w(z) J

d,G"(z, C) _ -i [GPI (z, ()d( - G"(z, C)d]] = 21m [Gc"(z, ()d(]

1 w'(C)d( _ w(z)w'(()d(
2a Im [w(() - w(z) 1 -

-i [Gcl(z,C)d( - G,'(z,()d(] = 2Im[G,(z,C)d(1

I r (()dC w(z)w (()d( 1
27r

Im
w(() - w(z) + 1- -(()-(z) l

i dG"(z, () = i w'(C)d( _ w(z)w'(() d(
2a w(() - w(z) 1 - w(C)w(z)

(z, () - i dG"(z, () = - tai [w( -1 w(z) + (w(()
w(()

)Mw
d w (()d(

1 w(() +w(z) dw(()
C E 8D ,

2ir w(() - w(z) w(()

d G1 (z, () =
1 w'(()d( w(z)w'(() d( __ 1 w'(()d(

2a
Im

w(() - w(z) + 1 - w(()w(z) -2a Iln
w(()

1 dw(C) C E 8D .
2ai w(C) '

Theorem 22. Let D be a simply connected bounded domain with smooth boundary,
OED, andwEC'(D;V). Then for zED

w(z) = - / idG"(z,C)} - i f
aD aD

(2.1.3)

+2J{w,(()[G'(z,C)+Gchf(z,()]
D

Proof. Applying (2.1.2) to w(w-1(i)) in D and transforming the integrals by
(= w(C) we arrive at (2.1.3).
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Remark. Let co E C(8D; fl?), co E IR, and f be integrable over D then

w(z) _ - Jce(() (dnG' - i dG'I) (Z, () - ico
aD

+2J zED,
aD

on 8D satisfies Rein = cp because on 8D

f {f (C) (G(I +
GC1') (z, C) + f(C) (G - GG') (z, C)}

D

_ - 1 f {f(C)

"(C) +f(C) WV) 1dfd0
27r w(C) - w(z) w(z) - w(C)

1 f (C)w'(C)Im f -(0 - w(z)dt
dp .

in
aD

Later we will show toy = f so that the above formula gives a solution to the DIRICHLET
problem for the inhomogeneous CAUCHY-RIEMANN system.

2.2 Properties of integral operators

Definition 11. For f E L1(D) T f is given by

(Tf)(z) = (TDf)(z) -! f f(() dz, z E I

Theorem 23. (I.N. VEKUA). Let D be a bounded domain, f E Ln(D),2 <
Then

ITf(z)I 5 M(P, D)Ilflln, z E d'; ITf(z)I 5 M(P,D)Ilfllnlzl-',0 < 2R < Izl ;

ITf(zi)-Tf(z2)I <M(P)Ilfll9Izi-z2I 0,
ao=p-2,zi,z2E

T
P

Here llflla is the Ln-norm

P

IIfIIP f I f(z)I°dxdy , I <P.

P.

M(...) always denotes a nonnegative constant, depending on the quantities in the
parentheses.
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Proof. Applying the HOLDER inequality

IIflf2IIp <- IIf1IIp,IIf2IIp2 ,

1 1 1-+-<1, v=1,2,
P P1 P2

gives
,

v

1 1

ITf(z)I s Allfpll
(I

IC

df d
I° ,

p + q = 1 .

Let d = diam D := sup IC - zl denote the diameter of D, then from
C,-ED

P-2
4

=aoqP
1
<2, 2-q=

1
=P- p-

we see

Thus

M(P, D) :_ 1 ( ) 1a d°° .it oq

ITf(zi) -Tf(z2)I = z1 - z2 dddq

it J (C - zl)(( - z2)

< Iz1 - z21IIflIp (J(iC
- z1II( - Z21)-9dCdqa

D

Consider more generally for a < 2,8 < 2, z1, z2 E C, z1 # z2

J(a, $) = f I C - z11-'j( - z2I -'QdCdq .

Let po > 0 be so large that

Then

J1 =

d

J IC - zl-'Ad,? < J IC - zl-'4d,7 = 2- rtl-adt =
2x

d2f
2

D IC-z15d 0

21zj -z2I5IC-z, I<2Po

D

DC{z:lz-z1I<2po}.

,
9

20°

IC - z11-alC - z2I-pdCdq < 21+ait /' tl-a-vdt
21z1--z21

75
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because for these C in question

21r;---z21 >21C-zlI-21st-z2I>21C-zil-IC-z1I=IC-ztl

Thus the HADAMARD estimate is shown, see [Veku62], p. 39:

Jt < _ POlog
izl - Z21

22-a-A 2-a-Q
2-a-f3°0 7

if a+/3=2,

if a+/3<2.

J2 := J IC - zt I -al s - z21-adCd 1 = Izt - 2212-a-a J ICI-al( + l l-adddri

I(-z,l<21z,-z21 ICI 2

because for those C in question

IC-z21 C- z, zt-z2 C-zt+ _ +
Izl - z21 ZI - z2 ZI - z2 ZI - z2

Hence, for 2 < a + ,0

J(-, 0) 5 Jt + J2 < M(a,/3)Izt - 2212-a-a

where
z-a-R

22

a + ap - 2 + J ICI-aiC + 11-pddd l .M(a,19) :=
Icl<2

From this estimate applied for a = /3 = q, l < q < 2 (2 < 2q)

I ZI z21I[fIII(M(q,q)Izt - x212-2q)9ITf(zt) -Tf(z2)I < a

= M(p)Il fllplxt - z21a° ,

where

22-a-a
Izl - z2I2-«-P, if 2<a+#,a+/3-2

p-2 2p-2 2

p p q

For 0 < 2R < Izl the estimates is obvious.
Theorem 23 shows that T is a completely continuous linear operator from Lp(D) into

Cao(tT) if 2 < p and a° = p 2. Moreover, the HOLDER norm of T f
p

Cao(Tf; Q) = sup (Tf(z)I + sup ]Tf(zt) - T'f(z2)1 < M(p, D)Ilfllp . (2.2.1)
sec z,.-2E4; Izt - x21ao
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Definition 12. A complex function

(i).
f is said to belong to LP,,,(d') if f E L,(-P) and

ff E L,(D), where f,(z) := IzI-'f Here I < p and v E IR . The norm for

f E L(C) is defined as

P

Remark. Integrability of I fIP means that 1Z -1f (!) near 0 does not increase
x

too much, namely weaker than IzI-2, i.e.

/< (2 - vp)
This

P
From

If M I near 0 behaves as IzI-" where

means If (z)I near infinity increases not more than IzIa-°.

J If(()IPdfdn = J 1(1-4 If I'dCd,? = J (ict- ° I
Q )

I d edi,
1510 I051 1051

we see Lp(C) = Lp.
a

(C ).

Theorem 24. (I.N. VEKUA). f E LP,2(C),2 < p,oo

satisfies

Proof.

-2
. Then

P

(Tf)(z) = (Taf)(z) :_ - f(() dldz,
a

ITf(z)I <- M(P)IIfJIp,2,

ITf(zl) - T(z2)I < M(P)II fIIr,21z1 - z21a0,

ITf(z)I <- M(P,R)IIfIIp,21z1-°0,

zE0,

Tf(z) _ -1 J f(C)
d 1d"

- I J I(I-'f l()
d1d"

II51 Itla
Rewriting

1 _ z 1 1 1

(1-z()C 1-z(+( C+(
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the second integral can bewritten as

92(0) -92 1 z 92(z)
J2j(l'deth7

C /J (-z
ICI51

Setting

we have

a
Izl - zzlp

1Z21

Therefore from Theorem 23 we have for z E (V

l
ITf(z)I S M(P) {i?fII+ -z.f l\ /

\
J IIp1

191(zi) - 91(z2) < M(P) II f II p,D I z1 - zz 1°° :5 M(P) II f II p,z I z1 - z21°0

92 \ i / - 9z ( z) l < 1zj 'r z21 J I -zf \S/ I I1 - z1 11 - z20
IC I51

To estimate the last integral we distinguish three cases.

i. Iz11, Iz21 < Z For ICI < 1 then

1 <1-I(IIzkI5 I1-(zkI,

so that because of Izl - z21 < 1

I92 i) 92 l
<M(P)

ii. Iz,l <- < Iz21. Then

so that

91(z) -I
J

f(()(dz =TDf(z)
ICI<1

(1
Tf(z) = 91(z) +9z(0) - gz { i

< 2Q

92 92zl (2

(-zf \!1)If Izl-zz1 <- M(P)IIfIlp,2lzl-Z21°0
S p,D

ZI - ZZIp
< 2°0

(IziI
I +1) lp <2,

Z2 Z2

< 2 111 - z21 f -z 1 d1d>7

Izz1 J f\ I - (I
KI<1

22

< M(P)IIfIIp.2IZI - z21--
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iii. 2 < Iz1I, Iz2l. Then from step i.

92 92

M(P)Ilfllp,2

J (-2f
(1)

ICI<1

1 1 "°

z.l - z2I = M(P)II fllp,21zi - Z21°p

In order to prove the last estimation of the theorem consider 1 < IzI. Then

I9i(z)15
r(IzI1-

1) J
If(()ldfdn 5 M(p) Ilf lip

10<1

Applying the second estimate of Theorem 23 gives

92(0)-92(')l < M(p) IIrr2f(1 !)M`v.D I z

I°°

< M(P)IIfIIv.2IzI`-°°

Thus

ITf(z)I S M(P)Ilfllp.2 llzll 1 + IzI-°°) 5 M(P,R)IIfIIp.2IzI-°° ,

because for 1 < R < IzI
IzI°° < IzI < R

IzI-1 - IzI-1 - R-1

79

Remark. For f E Lp,2(tV) the function T f E C°°(2' ), T f (z) vanishes at infinity as
IzI-Op. T again is a completely continuous operator on Lp,2((V) into C°p(V ). More-
over,

C°o(Tf, (V) <- M(P)II f IIp.2

We are now interested in differentiability properties of T f. For that reason we need
the concept of weak derivatives, that are in other word generalized derivatives in the
distributional or SOBOLEV sense.

Lemma 10. f E Lp(D), 2 < p, D a bounded domain, f = 0 in .t \D. Then for
A<2<p(2-A)

9(z) :=
Jf(()dedTlla

= / f( + z)1(1
n

D T

is continuous in D .
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Proof. Let z, E 0 be arbitrarily fixed and Iz2 - z1I < 1. Let R > 0 be such that

the supports of
1 1

f (( + z,) and of f (( + z2) are in {z :IzI < R}. Then with + - = 1
P q

I9(zl) - 9(z2)I f [f((+zi)-f(C+z2)] ikdIn
q<R

L
P

< f If((+zi)-f((+z2)Pdedn f I(I-A9dddr7
ICI<R

S

ICI<R

/R

f ICI-a°dt;d,7 = 27r J t'-a°dt =
27r

Al- 'X92-.4
ICI<R o

__ Ap

<
A 2

2q p-1 2-(2-.1) -.
We have to show

I If((+zI)-f((+z2)I'd(dn
Iq<R

f If(() - f(( + z2 - zj)IpdCdn
Iq<R+Izi I

becomes small if z, - z2 does, i.e. that

f If(() - f(( + z)Ipd{dq, R, := R + Iz,I ,

I(I<R,

becomes small if z does, see [Sobo63], p. 12.
If f would be uniformly continuous the assertion would hold. Because f is integrable
in the LEBESCUE sense there exists for any b > 0 a closed set F in the open disc
K := {z : IzI < R, } such that f is continuous on F and hence uniformly continuous

there and m(K\F) < 2 b where m is the LEBESGUE measure. Because F C K is
compact 0 < dist (F, 8K) =: d. For I z I < d the set

F-z:={C-z:CEF}C K.
Let

F':=Ffl{F-z},
then ( E F' means ( E F and (+ z E F. Let now IzI < b(e) such that for all C E F.

If(() - f(( + z)I < e(2irRi) .
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Moreover, from
K\F' = {K\F} U {K\{F - z}}

we see

m(K\F') < m(K\F) + m(K\{F - z}) = 2(mK - mF) = 2m(K\F) <

Hence, from the property of the LEBESGUE integral

llf If(()IPdCdq < 2 \2/P
K\F

follows if 5 is small enough, 8 = b(e). Thus,

I If(C) - f(C + z)I'dCdq 5 I If(() - f(C + z)IPdCdn
K F

P

r
If(C)IPdddrl + J If(( +z)IPdddn < EP mF`+E-<EP.

2
K\FP

Theorem 25. Let D be a bounded domain, f E L1(D). Then T f E L,(Do) for any
bounded domain Do and 1 < p < 2.

Proof. The function

J
19(()I

dfdn
IC - zI

Do

is continuous according to the preceding lemma if g E LP(7o) for some p > 2. There-
fore fg1 E L1(D) for f E L,(-D). Applying the FUBINI theorem, see [Rogo52], p. 121

f If(z)I9i(z)dxdy = J If(z)I J I9(C)I11' 1dxdy
D D Do

= 119(C),
J

If(z)I
dxdy dCdrt = r 19(C)If, (C)dxdy
IC - zI J

Do D Do

where

fi(x)
J If(C)IIdZI
D

From Iglfi E Li(Do) and g E LP(Do) it follows f, E

1 < q <2. From ITf I < f, then T f E Lq(Do).

i P

L9(To-) for 1 + 1 = 1 i.e.
p q
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Definition 13. A function V is said to have a compact support if there exists a
compact set such that cp vanishes outside this set. The closure of {z : W(z) 0}

then is called the support of cp denoted by supp W. The set of functions in C"(D) with
compact support in D are denoted by Co (D).

Theorem 26. If f E L,(D) then for all W E Col (D)

fTf(z)px(z)dxd y + f f(z)V(z)dxdy = 0. (2.2.2)

D D

Proof. From the CAUCHY-POMPEIU formula (Theorem 20)

'P(z) - 2xi f 'P(()(d(z fV,(()ddz
= (T )(z)

8D D

follows, so that

f Tf(z)'P=(z)dxdy = --' f f(() f (z)dxdyzd(dn = - f f(()V(()dtdrl . (2.2.3)

D D D D

Definition 14. (SOBOLEV). f,g E L1(D). Then f is called generalized derivative
of g with respect to z (z) if for all p E CC(D)

f g(z)c(z)dxdy + Jf(z)(z)dxdY = 0
D D

11

(J(z)oz(z)dxdY + ff(z)co(z)dxdY = o)

This derivative is denoted by f = ga = L9 (f = g., = ag `

Remark. For g E C'(D) and f = g= we have for <p E CC(D) by the GAUSS
Theorem in complex form (see Lemma 7)

J(g(z)x(z) + f(z)co(z))dxdy = J(9(z)so(z))idxdy = -2i f 9(z)cp(z)dz = 0 .
D D 8D

This means that if g is differentiable in the classical sense it is differentiable in the
SOBOLEV sense and its generalized derivative is the classical one.

Definition 15. Ds(D) is the set of functions having generalized derivatives with
respect to '7 in D. Similarly, D.. (D) is defined. Moreover, D1(D) := D7(D) f1Dz(D).
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Obviously, g E Dz(D) implies g E Dz(D) and vice versa. Theorem 26 shows
Tf E Dz(D) for f E L1(D) and

8Tf
=f

Theorem 27. If g E D- (D) and 9,7 = 0 in D then g is analytic in D.

Proof. It is enough to prove g to be analytic in the neighborhood of some arbitrary
zo E D. Without loss of generality we assume zo = 0 and for proper R

K:= {z:Izl <R}CD.

Let for Z, ( E K

Z(z, C) := 21z - log
JR+z -(II - (R2 - IzI2) I 1 - -RZZ)

which is the GREEN function for K with respect to 02, i.e. as a function of z is a
biharmonic function,

A'Z(z, () = 0 in K\{().
Z E C'(K) as can be seen by direct calculations, and

Z(z, () = Z=(z, C) = Zv(z, () = 0, IzI = R, ICI < R .

Hence,
(

W(Z)
Z(z, (), z E K

(E K fixed,
l 0, z K

belongs to CC(D). From f := g= = 0 we have

J g(z) (z)dxdy = f g(z) aZ
,()dzdy = -J f(z)Z(z,()dady = 0.

D K K

This result holds for any C E K.

aca(
Ig(z)

az(Z' ()dzdy
=

Jg(z)2(dxdy=0,

when we used that Z E C°°(D) is at least three times continuously differentiable.
Because

60Z(z,C) - 1 R2z-2R2C+TC2 Z2

80-ca-z- C - z+ (R2-z0)2 +R2(R2-z()
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we find

with

(T)(() _ -
Jg(z)dxdy

_ 0()+M() ,
K

(() -1
J

2 R 2 ( - i ( 2
+ z(Zdxdy

,it (R2 - z()'
K

R2 ir

J
(()R2 (z(dxdy

K

Obviously, 0 and ¢1 are analytic functions in K. Thus, differentiating the last equation
in the weak sense with respect to ( gives

(() = (T9)(() = _(7_9)(()=9(()=9((), (E K .
T(

(

Hence, g is analytic in K.

Theorem 28. If g E DA(D) and f = gz E L1(D) then

9(z) = q5(z) + (TDf)(z) _ O(z) - a f f(()-(z, z E D ,
D

where qS is an analytic function in D. The reverse of this statement is true, too: If ¢
is analytic and f E L1(D) then g = 0+TDf E Dz(D) and g= = f.

Proof.

1.

2.

jj(9-TDf)=9='-f = 0,

so that by Theorem 27 the function g - TDf is analytic in D.

9='=b(qS+TDf)= r+f=f
because 0 is analytic.

Theorem 29. Let D be a C'+° domain, 0 < a < 1, and f E C°(D). Then
Tf E C'+°(D),T is a completely continuous operator from C°(D) into C'+°(D).
Moreover,

axT'f=f+Hf, a Tf= -if+iif
y
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with

(11 f)(z) := --, If(o - z)Z

II f is singular integral to be taken in the CAUCHY principal sense, fIf E CO(D) for
f E C'(D), II is a bounded linear operator from C°(D) into itself.

Corollary 4. Under the conditions of Theorem 29

az) = f(=), a ai(z) = nf(z)

These equations hold for z E tV if for z D the function value f (z) is replaced by 0.

Corollary 5. If f(zo) = 0, f E C°(D) then Tf is complex differentiable and

d zff (zo) = (Hf)(zo)

where the integral [If exists in the ordinary sense as an improper integral.

Remark. D E C'+a or D a C'+° domain means D is bounded and the boundary
is a finite set of smooth curves with HOLDER continuous tangent with exponent a.

Proof.

1. At first the 11-operator is studied,

Hf(z) ff(c;)dd?1 = - I l,m If(() (ddr
D D.

= lim 1 r f(z) - li-0
K z)2(C- J d

D, D,

DE = D\/4(z), Ke(z) (C : IC - z1 < e}

Since f E C°(D)

f f (CO-
z)(z)d6dr!

= Lmf f (C - )(z)dedr!

exists.

D D.

1 dCdq _ 1 d 1

AJ (C-z)2 Td-(C-zdfdrl

D. D.

1 ! d( = 1 [ d( I ( dC

27ri C C-z 21ri f C-z
OD, aD I(-s)=e
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By integration by parts

where

1 dC _ 1 (d( _ (z)
2ni f f - z 21ri f (f - z)2

aD aD

(d(
27ri z

OD

is seen to be an analytic function in D and in T \D.

Especially, when D = K,,,(R) for Iz - zol < R

O(Z)
1 f - zod

+
To

d(,'

( = 27ri (-z2iri J -z
IC-zol=R IC-zol=R

R2 f d(
tai (f - z)(( - zo) + TO

K-=ol=R

R2 r 1 1 - 1 1

2ai J
IC-zol=R

so that O'(z) 0 in Iz - zoo < R in that special case. Moreover,

I r d( 1 d(

f f =0.
27ri f - z 2ai (f - z)3

IC-zl=e I(-zl=e

Thus, in general for any 0 < e

1 f dfd,? -(S-z)2
W

D.

so that
lI f(z) = - I f f(f) - f(Z)dfdq - f(z)O'(z)(f - z)2

D

This proves that rl f (z) exists as a CAUCHY principal value integral in D. For
z V D the integral, obviously, exists as an ordinary integral. In fact as was
mentioned earlier it is analytic as T f .

2. Next we will prove H f E C& (D) if f E C* (D). Let z1i z2 E D, z1 z2. Then

nf(z2) - llf(zl)
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1_ f_) + f(C) _ 1
II_'l ((- 22)2 ((- Z1)(C - z2) (C - .zl)(C - Z2) ((- Z1)2 1

D
Z2 - Z1 r f (C) - f (Z2) _ Z2 - Z1 J f (O - f (zl )

dfdnJ ((- z2)2((- ZI)d(dn ((- zl)2((- z2)
D D

z2 - ZI ( f(z2) d

-

z2 - z1 r f(z1)
d dr!

n J ((- z2)2((- z1) ir J ((- z1)2((- z2)
D D

(z1 - z2)d(di? _ 1 1 1 _ 1 dCdrI _Jf
( -z1 )2 zt-z2 (-zl (-z2

D D

Applying the CAUCHY-POMPEIU formula (2.1.1) (Theorem 20) to i gives

_ _ 1 / d( _ 1 / d(d1? I ! d(dr?
T 2ari f (-z 7r f (-z I f (_z

aD D D

Moreover, observing

we see

4/(z) =
Ir
f (d dz)2

D

(Zi Z2)

J ((- Z I
dCdq

((- z2) = Ozl) + zj ZZ ITI - IO(ZI) - 22 'I -O(Z2))

D

In order to see ¢' E C*(D) rewrite

_ I d( 1 ('(s) d( 1 2 d(
4/(z) tai I (- z 2iri J ('(s) (- z 21ri ((s) (- z

aD aD aD

Here s is the arc length parameter on OD. As ('(s) E Ca(8D) we have, see proof
of Lemma 1, with (k = ((sk), k = 1, 2,

I('(31) - ('(32)1 :5 HIS, - s21a :5 HI(, - (2Ia

Hence, 0 E C1}0(D) (and 0 E C1+a((f \D)) follows from Theorem 5.

1 f(() - f(z) d('drlI ((- z)2(( - zo)
D

HH(f) dgdn

in Df I(-212 °I(-ZOI

< IIa(f)M(a)I z - zola-I
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(see Proof of Theorem 23). Hence,

Inf(Z2) - nf(Z1)I < M(a)H,(f)IZ2 - Z1Ia

+ I f (Z2) [0'(Z2) +
z2

I zl (72 - 4(Z2) - TI + q5(ZI))]-

-f (Z3) [W'(Zl) + I (Zl -
zl z2

0(Zl) - Z2 + O(Z2))]-
< M(a)Ha(f)Ix2 - Zlla + If(x2)II0'(x2) - O'(zl)I

+If(Z2) - f(Zj)I
I'O(Z2)

Z2 - zl -
O(Zl)

+ O'(Zl)

< [(M(a)+ C1(q5; D))HH(f)+ Co(f; D)Ha(cb')]IZ2 - Z11a

M(a, D)C0(f; D) 1-22 - zlla .

In other words fl f E Ca(D) and

Ca(Hf;D) <M(a,D)C0(f;D).

3. For differentiating T f we consider

Tf(zo) - Tf(z) - 111(z)
zo - z

(2.2.4)

7 /zoI- z) . f C 1 zo 1 z Z)z } f (()d6d7l1r(

zo - z f(()

a ((- zo)( - z)Zdfdr!
D--zo-x ! X)-f(z)

it J ((- zo)((-

z z -
O(ZO)i

so that
T f(zo)

f (z) - nf(Z) - zf(z)- z ZI
o-x

< M(a)Ha(f)Izo - zIa + If(z)I I O(zo) - O(x)
zo - z
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Taking the directional limit from this equation

lim { Tf(zo) - Tf(z) _ If (Z) - Zo - Zf(Z)1 = 0zo - z Zo - Z

follows for any direction ep, i.e.

lim
T f (zo) - T f (z)

= of (z) +
f(z)e-,,,

.

1-0 1-0 ZO - Z

For ce = 0 and cp = 2 we get

aTf(z)
49--

= 11f(z)+f(z),
x

OTf(z)
= ifIf(z) - if (z) ,

ay

respectively, or

d
azz) 2

(ax+i
_)Tf(z) = f(z),

aT f(z) _ 1 a a
Oz 2 ax - z

dy Tf(z) = nf(z)

Remark. From Theorems 23 and 29 we have

Cl+a(Tf; D) Co(Tf; D) + Ca((Tf)z; D) + C0((Tf)z; D)

< M(a, D)C,(f; D) .

Hence T is a completely continuous operator from Ca(D) into C'+a(D).

Theorem 30. Let D be a C'+m+a domain, f E Cm+a(D), m E IN o, 0 < a < 1.
Then T f E C'+m+a(D) and

Cm+a(nf; D) S Cm+1+a(Tf; D) < M(m, a, D)Cm+a(f; D)

Remark. The norm of f E C"'+a(D) is defined by

G (f. D) E maxI
aµf(z) I

C

amf(z)
m+a , M_0

v_O
ZED axN-vayv v-o

a

Here, obviously, the derivatives with respect to x and y may be replaced by those
with respect to z and z.
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Proof. We only consider m = 1. Similarly, by induction we can proceed to the
general case. As

CI+.(Tf,D) < M(a,D)CC.(f;D)

T f = f it is enough to estimate 3T f = [If. For this aim wejust was shown and
rewrite

IIf(z) = - 1 limJ f(C)( dp)2 = liom I f(()a 1 ddd,7
lr e-o

D. D.

1 J at(e) 1 f f(() do- 7rl-o f 49C (-z+ 2i.-o C_z
In. aD.

Now

2x 2x

1

J f(C)CCZ = -2,z f(f(z +ee`1°) -
f(z))e-21

'd<p - 2(v) !e-2.dw

IC-=I o of

tends to zero when a does. Thus,

Ilf(z) (T) (z) 2Ai Jf(C)-.
SD

Because of the line integral being an analytic function

a a (rL' f a
= o= Oz' az of = n 5( - 2ui 1 f(C) z)2

8D

From here because of f E C1}a(D) and thus

2'i
j f(C) (C -Cz)2 tai f(C)aC 1 zdC
aD an

1 r a(f(C)C7(s)2] dC

2'ri J aC C - z
aD

which is HOLDER continuous in D with exponent a because f E C1}"(D) and OD E
C'+°, we see Il f E C'+"(D).
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Moreover,

< Ca (II ; D) + M(a, D)H0 t &z )

< M(a,D)1Ca(8z'0)+Ha(az)}

< M(a, D)C,+a(f; D) ,

Co(IIf; D) < C0(IIf; D) < M(a, D)Ca(f; D)

< M(a, D)C,+a(f; D) .

This, obviously, proves the assertion of Theorem 30 in the case in = I.

Remark. While T f is continuous in the whole plane (C (Theorem 23) even if
f E L,(D), 2 < p, this is not true for r If in general. As was just shown r If is
continuous in D under proper assumptions on f and D. It is analytic and hence
continuous in & \D. But it is discontinuous in general by passing through points of
OD. Let f E C'+a(D) and let OD be C2+a. For z E D

IIf(z) = (T) (z) - ui Ji(C)z
aD

If z 0 D then the same relation holds where r If is a proper integral. This can be
shown as for the domain D. Hence, for C E OD, ( = C(s), s arc length parameter,

(IIf)+(C) - (IIfY(C) = -PONS)- .

Next we study differentiability properties of the T operator when D = T.

Theorem 31. If f E L,(C) 0 C°((V) then

Tf ELa(C)nCl+a(T), IIf EC0(t).

Proof.

(2.2.5)

(z) ' =
1 r dC Rz /

G
1 _ 11

2i J C-z27riz _z Jd(=O, 0<1-fl<R,
ICI=R ICI=R
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(0) = 2ri f (2 =
0 .

kl=R

(IIRf)(z) -!
J f(C)dfd7i , Hf = ,iimlRf .

I'I<R

As in the proof of Theorem 29, step 2, IHRf(z2)-HRf(zi)I can be estimated. Because
0 = 0 in IzI < R the essential difference here is that the constant M is independent
of the domain i.e. of R. We have

IHRf(z2) - HRf(zl )I < M(a)Ca(f; (V)I z2 - zlla, IZh, Iz2I < R ,

Letting R tend to infinity yields

IIIf(z2) - flf(zi)I 5 M(a)Ca(f;(V)Iz2 -zila, zi,z2 E (V .

1~ rom

flRf(z) = -1 r f(C) -
f(z)c'(z) IzI < Rn J

,
z)2

,

where ¢'(z) _- 0 it follows
I(l<R

! r f(C + z) - f(z) r f(( + z)Hf(z) - -- f (2 dgdn - f (2 dl;drl

kI<' 1<_kl

because

f
15k1

00 2,

d,dl = r r
f f

e_2ivd 'dr
0.

C2 r _
1 0

Hence,

I11f(z)I 5 2Ha(f) + IIIfIII,
1

I I(I-2gdfd+I

<Itl

11= aH.(f)+- (q r) IIfII, < M(a,p)(IffIIP+Hf(f))

Together with the above estimate of Ha(H f) this gives

C0(IIf; C) < M(a,P)(Ilflln + Ha(f)) <- M(a,p)(Ilf11, +C0(f; (1)'))

From (see proof of Theorem 29, step 3)

o) - TRAZ) - HRf(z) - z0 - zf(z)I
M(a)Ha(f)lzo - zj-z° - z zo-z
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where 0 = 0 is again observed, letting R tend to infinity we see for z E C

Tf(z) = f(z), a_Tf(z) = 11f(z)

At last we will extend the operator II to a linear mapping from LP(D) into itself.

Lemma 11. For f,9 E Ca (tl") we have

(nf, g) _ (f, ng)

Remark. The 11-operator is defined by

(nf)(z) := -! f f(C)(d
dr

a,

and (f, g) denotes the inner product

(f,g):= ff(z)(dxd.
a,

11 and II are adjoint operators in Ca ((C ). This is what Lemma 11 says.

Proof. For f E C000(0) and 0 < R big enough

aTf raf anf of
>l f

Oz
7'

C az az '

nRf -
aTRf _ Cafl

TRf(z)
I f

!(S)
ddr

19Z - TR dC C - z
ICI<R

The first of these formulae follows from (see Proof of Theorem 30)

fRf(z) =TR CaC/ (z) _
2iri f(C)Cd

ICI=R

because f vanishes on ICI = R for big enough R. For the same reason for those R by
interchanging the order of integrations

f gIIfdxdy
I=I<R

f Oz ydxdy = f T fa dxdy
IzI<R I=I<R

f f7R (a) dxdy = f flIRggdxdy = (f,Tf g)
x ¢,
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Letting R tend to infinity then (R f, g) = (f, IIg) follows.

Lemma 12. For f E C,00(0) we have IIIIf = f.

Proof. Again we choose R so large that

suppf C (z: IzI < R}

and observe

IIrif=aT(I_TI) . (2.2.6)

From the CAUCHY--POMPEIU formula (2.1.1') applied to T f,

Tf(z) = -y . f aTf(C) dnnz-z a J CSC {-z
l(I=R ICI<R

by letting R tend to infinity we get

1

J
OTf() -(BTf

I'f(z) - ---Tx
a( _ (\ 8z

T(r1 f) .
z

This holds because for R < IzI

ITf(z) _ I J f(()dld1

ICI<R

RZ
max If(CIzI- R Ee

so that zT f (z) is bounded at infinity and hence

lim J 0 .
R-too

ICI=R

From

by differentiating we get

dTflTf T
8

(z
l

f=I_Tf= T(dL =IIrlf.

Remark. 11 1-1 is the identity operator on In other words the adjoint
operator 11 is the inverse operator of n and hence II is a unitary operator in this
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space endowed with the L2-norm.

Lemma 13. For f, h E Co (2') we have (II f, IIh) = (f, h).

Proof. If we could apply Lemma 11 to f and IIh then we would have

(II f, Tlh) = (f, II IIh) .

But in general IIh 0 C,-(T). On the other hand for h E C, -(C) we have (observe
supph C KRa(0))

1IIh(z)I <_

ITh(z)l <

MRo
(IzI - Ro)2, Ro < Ixl,

< MRo
Ro<IzI,

IzI - Ro

A I Ih(C)I l,"dn12

ICI<Ro

I I Ih(C)IIC =1
ICI<Ro

with Ih(z)I < M. This is enough to show

Rl-. o 21ri f IIh(S}(- Z

IzI=R

and

= 0 for IzI < R

Rlim o J z (T f IIh)dxdy = - Rlim o 2i f T f IIhdz = 0.
IzI<R IzI=R

Hence, similarly as in the proof of Lemma 11 we have II(IIh) = T(T IIh) as well as

(II f, IIh) _ - J T f _ IIhdxdy =
J fT (-iii) dedr7= J f H(IIi)dddr7_ (f, IIIIh).

Applying then Lemma 12 to h proves Lemma 13.

Corollary 6. For f E Co (C) we have 11nf112 = IIf112

Proof. For f = h Lemma 13 reads

(11f, [if) = (f,f,)

which is the assertion.

Remark. The L2-norm of the linear operator n is defined by

lIII112 = Sup
IlIfl12 = 1 .

/#o IIf112
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Because Co ((C) is a subset of L2(T) which is dense there, H as well as II are uniquely
continuable onto all of L2(0Y) (see any book from functional analysis e.g. [Tayl58] or
IDusc66]).

Theorem 32. For f E L,,(1') we have [If E Lp(V) and

IIIIfiIp < Ap1IfJlp (I <p)

.1p being the smallest such constant has the following property. AP is a logarithmically
convex function of p for 1 < p satisfying A2 = 1.

Nor the proof we refer to [Veku62], p. 66-72.

Corollary 7. For any e > 0 there exists a 6 = 6(e) > 0 such that

IA,, - 11 < e for Ip - 2I < b(e).

Remark. Ap = 1111IIp is the Lp norm of the II-operator. f (x) is called logarithmi-
cally convex if log f (x) is convex, i.e.

log f(x) <
x - xi

log f(xz) +
x2

-
x

log f(xi)
X2 - x1 x2 - x1

logf(xi)+logf(xz)-]ogf(XI)(x-xl), xl<x<x2.
X2 - xl

In Corollary 3 we have seen a T f = IIf holds for f E C°(D). Now this result is
extended to L,(D).

Theorem 33. For f E Lp(V ),1 < p, then T f has a generalized derivative with
respect to z being equal to IIf.

Remark. 7'f = f for f E L1(D) is shown in Theorem 26.

Proof. It has to be proved that for all V E Co (d' )

((Tf)yz-,p + Olf) dxdy = 0.

Let fn E Co (d' )(n E IN) such that lim IIf - fnIIp = 0. Because with D := suppV
+00

J(TfI_, +Wr If. dxdy=0
JJ



Inhomogeneous CAUCIIY RIEMANN systems 97

and with
1

+
I

= 1
P q

f ['i -fn)vv+Wf(f -fn), dxdyl

s IIT(f - fn)IIp.D Ila VII + II11(f - fn)IIp.DII'PII,
n

<- M(P, D)Ilf - fnllp l

which becomes small for fixed p when n is large, the assertion holds.

Theorem 34. For f E L,(( r), I < p,

rf(C) dgdj
J ( - z)s
x

exists in the CAUCHY principal value sense almost everywhere in 0 and

nf(z) _ - J f(C)(C Cdz)z

ApIlf - fnllplIVII,
9

(2.2.7)

The proof is based on involved results of CALDERON-ZYGMUND (Cazy52,56], see
(Veku621, p. 72.





3. Boundary value problems for generalized BELTRAMI equa-
tions

3.1 Generalized BELTRAMI equation

The CAUCHY-RIEMANN system, in complex form written as wx = 0 is a special form
of an elliptic system of two real first order partial differential equations. The BEL-
TRAMI system is a more general system of the same type and has in complex notation
the form

+w=pwx

where p is a measurable function satisfying

1A(Z)1 5 qo<1.

This condition guaranteeing strong ellipticity of the system is called ellipticity con-
dition. Solutions to the BELTRAMI equation are quasiconformal mappings, a central
subject in geometrical function theory. The main part of a general first order elliptic
system is in complex form

with

w:+p1wx+µzwx

J, i(z)I + 1p2(z)I <_ qo < 1

Admitting lower order terms we get the equation

ws+plwx+pswx+aw+bw+c=0 (3.1.1)

which is the general form of the generalized BELTRAMI equation. For equations

ws+aw+bw=0

the theory of pseudoanalytic and of generalized analytic functions is developed. If
a, b E C°(D) then w is pseudo-analytic, see [Bers53]. For a, b E L5(D) the solutions
are generalized analytic, see [Veku62]. Basic research of this equation is done by
HAACK, too, see [Hawe72].
In this chapter results on RIEMANN, on RIEMANN-HILBERT and on related bound-
ary value problems will be discussed. Before doing this some results on generalized
BELTRAMI equations are reported on but not all of them will be proved here.

Theorem 35. Let p be a measurable function on C, p E L,(tV ), 2 < p, satisfying
Ip(z)I < qo < 1,goAn < 1. Then there exists a homeomorphism of ((z) of (V onto itself
being a solution of the BELTRAMI equation

C=+iCx=0

and being HOLDER continuous in C.

99
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Remark. A homeomorphism of 0 onto itself is called a complete homeomorphism.

The proof of this theorem can be found in [Veku67), Chapter II, 5.

Proof. The existence of a solution w(z) for y E Lp(C) for p close enough to 2 can
easily be shown. One is looking for a solution (in the form

((z) = z +Tp(z)

with an unknown function W E Lp(tV) to be determined. Using the differentiability
properties of T gives the integral equation for <p

'0(z) + li(z)fl '(z) = -µ(z)

If p is so close to 2 that

qAp < 1, AP := IIIIIIp ,

then µll is a contractive mapping on f p(ti" ). Hence, this equation is uniquely solvable.
The solution p may be found as a NEUMANN series

+o

and satisfies

n=0

JIVIlp < 4oApll vllp + IlplIp

lkollp <
II/=Il,

1 - goAp

Obviously, ((oo) = oo and lim z-t((z) = 1, which follows from (see Theorem 23)zoo

ITy,(z) - T'(0)I < M(p)IIwIIplzl'? .

These conditions determine the homeomorphism up to an arbitrary additive constant
uniquely. That ( takes every value of the complex plane exactly once follows from the
argument principle. In order to prove this the following result is needed.

Lemma 14. If w is a solution to the BELTRAMI equation

w=+µwx=0

for p E L5(D) in a domain D and r; a homeomorphism of it then w(z) = W(((z))
with an analytic function W.

Proof.

w r + j a W. = W C

= W<((z+/'Cs)+Wz((.+pz)=W(1-I/IZ)Cs=0,
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compare [Mona83], p. 268. Because (z 54 0 (the JACOBian of S is K(,12(1 - 1pl2) 0 0)
and 1pl<1weseeWt=O.

Remark. What is said about the solvability of the BELTRAMI equation and the
representation of the solutions holds for the generalized equation

tw+plwz+p2w==0,

too, if p1, P2 E Lp(r) and

Ip&)J + Ip2(z)I < qo < 1 .

We immediately see that
FIV:=p1IIV+p2II'P

is a contraction on Lp(C) for p close to 2. If w is a solution, then it satisfies

+w+pwz = 0,

p(z)
PI(Z) + p2(z)wz(z}

, w=(z) 0

Al (z) + p2(z) , wz(z) = 0 ,

where again p is measurable and 11A(z)l < go < 1 but now depends on the solution w.
But still w(z) = W(r((z)) where ( is a complete homeomorphism of S- + pCz = 0 and
W is analytic. The homeomorphism now depends on the solution w.

Continuation of Proof of Theorem 35. The proof is completed in the following
three steps.

i. At first the argument principle is shown to hold for solutions to the BELTRAMI
equation when p E Lp(V) is HOLDER-continuous. Applying this result ( can
be shown to take every value of 0 just once.

ii. Assuming A E Lp(C) having compact support and approximating p by
HOLDER-continuous functions the existence of a complete homeomorphisr be-
ing HOLDER-continuous itself is shown.

iii. The general case p E Lp(!C) finally is treated by reduction to case ii.

Step i. In order to prove the argument principle the zeroes of solutions to the BEL-
TRAMI equation have to be shown to be isolated. For this purpose we first prove
the existence of a local homeomorphism ( E C'+°(U) for the BELTRAMI equation
ur = pwz where p E C°(Uo),0 < a < 1. Here Uo is a given neighborhood of some
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point zo E IV and U C Uo is a proper neighborhood of zo. This is done as follows.
Denote po = p(zo) and

t:=z-zo+po(z-zo).
Then W(t) := w(z(t)), z(t) := zo + (t - pot)/(1- Ipo12), satisfies

w=-pw:=Wt(t=-pt.:)+Wi(tz-WO 0-hop) Wi- - p°W) =0,
1 - hop

i.e.

W1 - qW, = 0, q(t) = p(z(t)) - po
1 - µop(z(t))

From Ip(z)I < qo < 1 it follows

p - po _
1 -trop

P - /to
g0 - hop

qo - pop < 1 q02 - Flop
1-70pI goll-µop

Let a := µ02p and observe Ial < q0, then

1g02 - ale - Igo(I - a)I2 = (1 - g02)(ja12 - q1) 5 -q0(1 - q02)2'

Hence,

so that

Ig(t)I S
2qo

1+q0 o<I
Moreover, from

11) - 4(12)1 =
(pt - p2)(1 - IpoI2) < 1pt - p21(1 - Ipof2) Ipt - P21

14( (1 - popt)(1 - F4op2)I (1 - IpoIgo)2 I - q0

where pk := p(z(ik)), k = 1, 2, it follows q E C°(Uo), Uo := t[Uo). Because q(0) = 0
thus Iq(t)I MItI° as well as Iq(tl) - q(t2)15 MIt, - t2I° for ItI,1t11,1121 < b < 1 and
0 < M with b and M properly chosen. Then defining q'6(t) by q(t) for 2ItI < b, by 0
for b < ItI and by 2q(t)(1 - 111/b) for b < 2111 < 2b this function belongs to C°(t)
satisfying

146(1)15 M111 1g6(tt) - 96(12)15 3Mft1 - t21° .

196(t1) - i6(t2)1 5 Iq(t1) - q(12)1 +
b

Iq(t2)IIt2 - t11 < 3MIt2 - t1I°

for 8/2 < It11, It2f 5 b

leb(t1) - g6(t2)I 519(t1) - q(t2)1 + Iq(t2)1(2It21/b - 1) < 3MIt2 - t1I

for Itll<b/2<It21<b,
Ig`6(tt) - 96(t2)I = Iq(t1)I < MIt11° < M(b/2)° < Mit2 -1110 for 2It11 < b < It21

I46(tt) - 96(t2)l = 21q(tt)I(1- 1t 1) < 2MIt1I°(It2I - Ittl)°/b° < 2MIIt2 - ttI°
for b/2<1t,) <b<It21.

190 - a12 < 1 _ g02(1 - g02)2 < 1 -
(1 -q 2 2 4q0

9011 - 212 90211 - 212 (1 + g02)2 (1 + q0)2



Boundary value problems for generalized BELTRAMI equations 103

Denoting the set of HOLDER-continuous functions in with compact support in
K6 :_ {Its < S) by Co (Ks) the operator Its defined by

IIsf(t) := ga(t)IIf(t), f E CC(K5) ,

neaps Cg(K6) linearly into itself. Moreover, 1I6 is a bounded operator there because
for f E COO(Ks)

II
f() 1 f(C) - f(z)dedrlf(t) J (C - A J (C - t)s

Ks

implies

Inf(t)!: 1H.(f)J
<2(2b)°Ha(f) < 4b°Ha(f)

I( -t12-a - a7
K,

JIIf(t1) - IIf(t2)I <- M(a)HQ(f)Itl - t2I°'
see p. 88. Let now b > 0 be chosen so small that

C0(gsllf; Ks) < M(b, a)Ca(f; Ks)

with M(b, a) < 1.
We are now looking for a solution W = W (t) to the BELTRAMI equation W,-qaW, = 0
in the form

W(t) = t - a I f(tdddrt=t+Tf, f EC°(K5).
K4

Then f satisfies the singular integral equation

f - ganf=qs
As Its is a contractive mapping on Ca (Ka) this equation is uniquely solvable. As
ggs(0) = q(O) = 0 also f (0) = 0. Moreover, the solution satisfies the estimate

Ca(f; Ka)

1
a(A(a a) < 4 (26)a

where the last inequality can be achieved by choosing b > 0 small enough. Therefore
W(t) = t + T f belongs to C'+a(K6) For the JACOBian

I WWI2 - lw112 = (1 - IgsI2)l1 + 11112

a

> (1 - qo)(1 - 2
2a

CC(f; Ka))2 > 0
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the function W(t) is one-to-one in some neighborhood Kao of the origin, 0 < b0 < b.
Hence, because i = t(z) is an affine transformation

((z) := W(z - zo + µ(zo)(z - zo))

is a bijective mapping in some neighborhood U C Uo of zo, mapping U onto ([U] and
satisfying (y = µ(z.
On the basis of this result the zeroes of a non-constant solution to the BELTRAMI
equation tai -µwz = 0 in a domain D can be shown to be isolated when JA E CO(D).
Moreover, if w(zo) = 0 for some zo E D then locally - in the neighborhood of zo - w
can be represented as

w(z) = [z - zo + p(z0)(z - z0)J' (z), w(zo) # 0 ,

where n E IN is uniquely given and w is some proper HOLDER-continuous function.
To show this we utilize a local homeomorphism ( in the neighborhood of zo and apply
Lemma 14. This guarantees the representation w(z) = q5(((z)) in the neighborhood
of zo where 0 is some analytic function. Hence, to has isolated zeroes. Denoting the
order of the zero of 0 in ((zo) by n((-0))'00(((z))'we have

w(z) = (((z) - bo(((zo)) j4 0,

with some proper analytic function q4o in the neighborhood of ((zo). Using the above
notations

((z) - ((zo) = W(z - zo + µ(zo)(z - zo)) - W(0) = W(t(z)) - W(0)

t(z) +Tf(t(z)) -Tf(0) = t(z) 1 - Jf(C)(
K6

( t( z))

t(z)W(t(z)) .

From the HOLDER condition 1f (t)[ < H°(f) It[° - observe f (O) = 0 - we have t-1 f (t) E

Lp(C) for l < p < 2 (1 - a)-1, so that W(t) E C°11(V) with ao := p - 2
for 2 < p.

Because p

1W(0)I >
1 d{dil

> C°(f; K6) d(dil1-
A f [C[2

1-
x f

1 - (2b)°C.(fi
K6) > 1/2

for small enough b > 0 it follows W(0) # 0. On the basis of this local behaviour the
argument principle can be proved.
Argument Principle. Any non-constant solution w to wz + µwz = 0 in D, y E
C°(D), being continuous on D and non-vanishing on 8D has only finitely many zeroes
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in D. Counting with respect to multiplicities their total number in D is

N = 2a J darg w(z) .
aD

Because the zeroes are isolated there are only finitely many. Let 0,1 < v < N,
where any zero is listed with respect to its multiplicity. The local behaviour of w near
z shows

N

w(z) = wo(z) fJ[z - z + µ(z")(z _-Z')]

with some continuous function wo not vanishing in D. Therefore

r
N

r
2 f d arg w(z) = 2 J d ,,g wo(z) + 2A / d arg[z - z + _-Z')] = N .

aD aD aD

We are now in the position where we are able to prove that the non-constant solution
((z) = z + T,p(z) to the BELTRAMI equation with HOLDER-continuous coefficient p
takes any complex value once. Obviously, from the properties of the 7'-operator, see
Theorem 23, ((z) = z(1 +O(Izl-2/p)) as z tends to infinity. This estimation holds too
for ((z) - Co for any finite complex (o, this function being a solution to wf - pw1 = 0
as is ((z) . For sufficiently large R > 0 we have

r
2a

f darg(((z) - (o) = 2- J dargz = l .

IzI=R I=I=R

By the argument principle thus C is seen to have just one Co-point in IzI < R for
sufficiently large R i.e. for any R > Ro with a proper Ro > 0. From the asymptotic
behaviour at infinity we also see C(oo) = oo and lim z-'C(z) = 1.

Step ii. Let us assume p E Lp(V) satisfies p(z) = 0 in IzI > R but is not necessarily
HOLDER-continuous in KR :_ {IzI < R). From

1 i/p' / I/p

f Ip(z)Ipdxdy ! < (,rR2)(p-p')/PP'r r [p(z)[pdxdy) ,p < p,
IzI<R /

1`I=If<R

it follows p E L,,(t) for 1 < p' < p, which only holds because of p having compact
support in 0. As Co (KR) is a dense subset in Lp,(KR), see [Adam75], p. 31, there
is a sequence E C°(KR) such that lim p = p in Lp'(KR) for any 1 < p'.
Although (p,,) may depend on the space Lp,(KR) considered, from00

llpn - pllp' < M(P , p, R)Ilpn - pllp, M(P , p, R) := (rR2)(p-p')lpp'
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it follows that it converges to p in any if it does in Lp(KR),1 < p' < p. Let
us now assume (pn) converges to p in L-(KR) where 2 < p < p,q and 1/p = 1/p -F
1/q, goA4 < 1. Denote (n (z) := z+Ttpn(z) where rpn is the solution to Spn -pnllrpn = Pn
i.e. (n is a homeomorphism to the BELTRAMI equation Sri-. = µn(n-., see step i. Then

II(pnlip =

Wn -fpm

IIpnIIp go(xR2)'/p
I - goAp < 1 -goAp +goAp<I

,"nn(Vn - rpm) + (/An - /Pm)IHWm + /in - /Im +

Own - Wmllp 1
1

- goAp fll(/Rn - /+m)1I'pmllp + II/Ln - /jmllp)

1

1 _ gOApEIIPn - Pmllp`IIII'pmII4 + M(R, R)11µ. - pmIIy)

< 1 - goAp 1 - goAQ
M(P,PR) I Ilµn - µmllp'

1

I

1

Hence, (pn) is a CAUCHY-sequence in Lp(KR) which because of the completeness of
this space converges to cp E Lp(KR), say. This limit function turns out to satisfy
W - µffW = p. Setting ((z) := z +TV(z), then C - C. = T(,p -'n) and

C..(( - C.; C) : M(p, go)IIp - Tnllp, ao
j::_2

P

Therefore ((n) converges uniformly on KR to C E Ca°(C ). It remains to show that (
is a homeomorphism from C onto C. We know already that C. is such a homeomor-
phism. Let zn(() denote its inverse mapping. From zn((n(z)) - z we see

zncSn'-. + zri-. = 0, z.C(nz + znZSnY = zn-. = I ,

so that

_
` l(nzl2 - l(n=I2ZnC
IS

, Jn

n.I2 - I(n.l2 ' zn` l(rifl2 - I(ri:12

zn-C + µn(zn(0)znC = 0 .

This is a quasilinear special generalized BELTRAMI equation for zn((). But when zn(()
is known it satisfies a linear BELTRAMI equation

zn(+IZnznc = 0, {fin(() Ii (()I <_ qo < 1 .

znC(()
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Next (zn) will be shown to be compact. From

I(n(z) - zl = ITVn(z)I < M(p, R)IIwnlln <_ M(p,go, R) for IzI < R

we have with (= (,,(z), z = zn(() for those ( for which Izn(()I < R the estimate

I( - zn(C)I <- M(p,go,R)

For these ( then

1(1 <- Izn(C)I + I(- zn(() I < R + M(p, go, R) =: R, .

If now R, < 1(I then R < Izn(()I But there z,Z = 0 because pn vanishes outside KR.
so that zn is analytic outside KR. Denote zn? by i, . Then qn(() := zn(() - ( - T'vn
is analytic in the complex plane. Moreover, from the boundedness of zn(() - ( in
I(I < R, and that of T,pn in (V and

lim Izn(() - C] = lim Iz - (n(z)] = 0, urn 0

it follows 0,, = 0. Hence zn(() = C + Tivn(() where rpn(() = 0 outside KR,.
Inserting z,, = Vin, z,,< = 1 in the differential equation for zn we get the singular
integral equation

n = -14n(zn(())n'vn - pn(Zn(())
With Iisn(zn(C))I 5 qo < 1 and qoA, < 1 this equation shows

qo(,rR1)'/p
I- goAp

Because T is a compact operator on Lp(KR, ), 2 < p, zn(() _ (+ Tiv,,(() is compact.
Let (zn,,) be a convergent subsequence with limit z(() E C°Q(tV ), ao := 1 - 2/p.
From (nk(z,,,(()) (z) = ((z),klim znk(() = z(() it followsk- -oo
((z(()) (, z(((z)) z. Hence, is invertible with inverse z(() and thus a homeo-
morphism from C onto C with infinity as fixed point as is its inverse z((), too. As
((z) = lim (n(z) the entire sequence (zn(()) converges to z(().

n-oo

Step iii. Let now p E Lp(C) be arbitrary, Iµ(z)I < qo < 1. Define

p(z) , IzI < R

0 , R<IzI

and let wit be the complete homeomorphismof the BELTRAMI equation wRa+URwR: =
O,wR E C°0(t'), see step ii. Then ((z) :_ [wR(z) - wR(0)]_1,((0) = oo,((oo) = 0
is a homeomorphism of the same BELTRAMI equation too, mapping the complex
sphere onto itself. Let z(() be its inverse. Then the transformation w(() := w(z(())
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converts a solution w to the BELTRAMI equation w= + µw= = 0 into a solution w to

i < - µi@( = 0,µi := µ - AR where Iµi _< qo < 1 with qo := 290 2 < 1, see step
1-µRµCz +%2

i. This can be seen from

uz=W(( +iCTz,wz=wccz+w z

which implies

we

ar

_ u s S's - wz Zz (!1 - P-/In

K. I2 - IC=12 ICz!Z - IC=I
CiwZ

_ _w2C'z-w µµR
Id=I2 - 1(1 .12 ICZI2 - IC=I2 (sw

As
0 IzI < R

µ1(z) _

y(z) , R < IzI
the function ul(z(()) vanishes in the neighborhood R1 < ICI of infinity because the
inverse mapping z(() to C(z) maps neighborhoods of infinity onto vicinities of zero
and vice versa as t; (z) does, too. Again the result from step ii guarantees the existence
of a complete homeomorphism w1 = iii(() of the BELTRAMI equation w-1Z = µlwlc.
Then w(z) := wl(((z)) is a homeomorphism too, satisfying u = µw= as follows from

w= = w1CCz + iv-,?S ° , @IC(17 + wi?Cz

Namely, for R < IzI where µR, = 0 we have Cz = 0 so that

10:=w>!eS:,166.=wets::6r=µ1 w:=µw:

and for IzI < R where µl = 0 we have w1S = 0 so that

w==wlc(=, 64=laic(=-:ur=IRmz =µw=

But as w(oo) = w1(0),w(0) = w1(oo) = oo we again take the reciprocal

w(z) Iwl(C(z)) - w1(0)1-'

This function is a complete homeomorphism of the BELTRAMI equation wZ = µw=,
leaving infinity fixed and being HOLDER-continuous.

Remark. Let ((z) be a particular homeomorphism of the BELTRAMI equation
w= = uwz mapping d' onto itself then any homeomorphism C of the same kind is a
linear transformation of ((z)

C(z) =
ac(z) + 0.
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This follows from the representation formula C = 0 o C with an analytic function ¢
which has to be a schlicht mapping of the RJEMANN sphere onto itself i.e. a linear
transformation. If both C and C leaving infinity fixed then C(z) = aC(z) + Q. The
condition lim z-1C(z) = lim z-1C(z) = 1 forces a to be 1. Finally if, moreover, C

z-.ao z-oo
coincides with C in some finite point e.g. C(0) = C(0) then /3 = 0. These two conditions
lim z-'C(z) = 1, C(0) = 0 prescribe the homeomorphism of the BELTRAMI equation

Z-.00
uniquely.

Lemma 15. For f E L(pp,){D) := Lp(D)f1Lp,(D) where D is an unbounded domain
and] <p<2<p we have

IT.f(z)I 5 M(p,p') (IIfIIP + IIfIIP') , z E I

ITf(zi) - Tf(zz)I S M(p,p') (IIfIIP + IIfIIP') Iz1- z2I°° ,

ao _ p-2, z,,z2Et.
p

Definition 16. For f E L(p,p,)(D) we understand

IlfII(P.P') Of 11P + ill 11.'

Proof. Let f = 0 outside D. Then with
1

+ 1 = 1 + 1 = l, q < 2 < q',
p q p' q'

Tf(z) _ - r f(C+ r f(( + z)dgdrl
,

ICI<1 1<IIC'

1/P

ITf(z)I

1/p

z)Ipdedn f ICI-'dCdq+ f If(C+ q

1<ICI

ICI<1

1/q'

1 2ir 1/q
1 2ir 1/q'

5
A 2 - q) IIfIIP +

7r
(q, - 2) Ill lips <_ M(p,p')IIfllP,P' .

The second inequality of the lemma follows from that one in Theorem 23.

Theorem 36. Suppose p1,02 are satisfying

I/11(z)I+I112(z)ISgo<1, zEC

if(( + z)IPdCdrl) f ICI-gdddn
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1 <p' <2<psuch that
go max{Ay, Ap.} < 1 ,

and a, b E Lip p (tL) . Then any solution w to the homogeneous generalized BELTRAMI
equation (S.1.1) with c = 0 is representable in the form

w(z) = W(((z))esol=1, z E C

Here S is a complete homeomorphism of a BELTRAMI equation, W is analytic and co
is a HOLDER-continuous function.

Proof. Let w be a solution to (3.1.1) with c = 0.
Define

µ(z)
µa (z) + {1z(z)w:(z)

p (2) + µ2 (z) ,

and

if w=(z)54 0,

if w=(z) = 0 ,

h(z)
a(z) + b(z)w(z) , if w(z) # 0

a(z) + b(z) , if w(z) = 0 .

Then obviously Ip(z)I < q < 1 and h E and

ws+µwz+hw=0.

Consider the integral equation

w+p&'+h=0.

It is uniquely solvable in because p11 is a contraction in this space. The
function

W := wexp(-Tw)

then is a solution to a BELTRAMI equation,

W; + µW= = exp(-Tw)lw= + µw= - (w + µllw)wl

= exp(-Tw)lws + pwZ + aw + bw] = 0 .

Using Lemma 14 this proves the assertion.

Lemma 16. 1. If f is bounded and measurable on ff' and

f (z) = O(lzI-1-°) as z 00

for some c, O < e < 1, then
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(i) f E L,2(0) forl <p< 1
2

(ii) fELP((V)for12e<P

2. If u is measurable on (V satisfying

1,(z)1 < qo < 1 on S, p(z) = O(Izl-`) as z o0

and g E Lp(O) for some p, l < p <
2

4
e

then pg E Lp((V) n L,.2(C)-

Proof. 1. There exist constants K and R, 0 < K, 1 < R such that

I=I'+`If(z)I < K for R < IzI or IzI-'-'If( I )15 K for IzI < R < 1

Hence,

(Z)
J

[lzl-2

Izl<1
f (z}

P
1

dxdy < KP J I zl (-' )'dxdy + Rep / If (! ) Ip dxdy ,

=1<_ R R

where the last integral is bounded, because f is bounded, while the first is less than
or equal to

(ii

it

2irKP
J

t'-('-`)Pdt = 2,rKP
2-(1 - e)p

0

f if(z)I Pdxdy = f If (z) IPdxdy + KP f IzI-('+e)Pdxdy

IzI<R R<Iz1

where the first integral is bounded, because f is bounded, while the last is less than
or equal to

+00

2,KP r tl-('+e)Pdt = 2irKP

J (l +e)p-2
2. There exist constants K and R, 0 < K,1 < R, such that

IzI`Iu(z)I<K fore <R<IzI.
Hence,

r
J

Iz-2p
(1)f(')IPdxdy

= f I=2u(z)f(z)lPlzl-'dxdy
Z z 1<I=I

I=L<I

< KP f IzI(2-E)p-4 If(z)IPdxdy < KPf If(z)IYdxdy .

1<1:I 1<I:(
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Remark. The integrals

f If(z)Ipdxdy, f lµ(z)g(z)Ipdxdy
IzJ<1 Iz1<1

not considered under 1 (i) and 2, respectively are obviously finite under the assump-
tions.

Theorem 37. Suppose 101,µ2 satisfy

IlzI(z)I + Iµ2(z)I 5 q o < I (z E tL') ,

Iµl(z)I + 1142(z)I = O(IzI `) (z on)

for some -,0 < e < 1 and a, b, c E L(p,p,)(U) n Lp,2((l") with

1+e <p'<2<p<
4

gomax(Ap,A,,,) <1.

Then there exists a unique solution of the generalized BELTRAMI equation (3.1.1)
vanishing at infinity. Moreover, for this solution wz, w= E L(p,p,)((), wr E Lp,2(tt, )
and

Co(w; C) + IIwzll(p,p') + IiwIII(p,p')

< M(p,p',go)exp {M(p,p',go) (IIaII(p,p') + Ilbll(p,p'))} IIcll(p,p')

Proof.

(3.1.2)

1. At first the case a = b = 0 is considered.

Uniqueness of the solution in this case is clear, since the difference of two solu-
tions would satisfy the homogeneous equation

w;+III wz+µ2Wz=0

and vanish at infinity and hence would vanish identically in (V by the remark
behind Lemma 14.
In order to prove existence we look for a solution of the form

w = Tw, w E

The differential equation then leads to the integral equation

w+llw+c= 0, IIw:=µIIIw+µ2i.
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Because II is a contraction in L(p,p)(C) under the above assumptions this in-
tegral equation is uniquely solvable in this space. The solution satisfies the
estimate

Ilwll(p.p') s (1- goMn.P'1)-`llell(p.p') ,

from which by estimating Tw and 11w

Co(w;C)+Ilw=II(p.p')+IIWrll(p.p') M(p,p,go)IIcII(p.p')

Since also c E Lp,2(0 ) and because of the growth condition on µi,µ2 and Hw E
L(p,p,)(C) we have µkHw E Lp,2((), k = 1,2 , see Lemma 16. Thus w E Lp,2(D )
follows from the integral equation. Therefore w = Tw vanishes at infinity.

2. Uniqueness of the solution for the general equation follows similarly as in step
1, this time from Theorem 36 rather than from Lemma 14.
In order to prove existence we again look for it in the form w = Tw leading to
the integral equation

w+p1llw+µ2IIw+aTw+bTw+c=0. (3.1.3)

To this equation the FREDHOLM alternative holds, see [Cohi53], p. 116. In fact
denoting the inverse operator to I + 11 by R we get

w + R(aTw) + R(bTw) + Re = 0

which we rewrite as
w+Rlw+Re=0.

Here I is the identity operator and

Rjw := R(aTw) + R(bTw) .

Because T is completely continuous R1 is too and hence the FREDHOLM theory
applies to our equation, see [Dusc67], p. 609.
We therefore have to show that the homogeneous equation, c = 0, only has the
trivial solution. Then the inhomogeneous equation is uniquely solvable. But
a solution w E L(p,p.)(2) of the homogeneous problem turns out to belong to
L,,2(C) too, because µkHw E Lp,2(V)(k = 1,2) by the conditions on the µk and
p and p' and aTw, bTw E Lp,2((V) because a and b are, and Tw is bounded for
w E L(p,p,) ((V ). Therefore w = Tw being a solution of the homogeneous equation
(3.1.3) vanishes at infinity. By the representation of w given in Theorem 36 then
it follows that w vanishes indentically.

3. What remains to be proved is the a priori estimates (3.1.2) for the solution.
Let w be the solution. Then we rewrite the equation as before as

ws+µwa+hw+c=0.
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The case h = 0 was considered in step 1 already. We now apply this result to
the equation

vz+pvz+h=0, v(oo)=0
giving the estimate

Co(v; C) + Ilvzll(P.P,) + 11-.11(p.,,) 5 M(P,P, go)llhll(P, .)

The function f := wexp(-v) turns out to be a solution to

fv + Pfz = [Wv + itwz - w(Vj + pvz)] exp(-v) = -cexp(-v)

satisfying f(oo) = 0.
Again applying the result of step 1 we receive

Co(f; t') + Ilfzll(P.p,) + IIfiHI(p.P,) 5 M(P,P',go)Ilcexp(-v)II(P.P,)

< M(P,P',go)e°o(v;¢)IIcII(P,")

Then (3.1.2) follows from w = f exp v,

w= = (f= + fvs)expv, wz = (f: + fvz)expv .

Remark. The uniqueness of the solution follows at once from the a priori estimate
(3.1.2). The difference of two solutions would solve the equation with c = 0 and hence
would be 0 by (3.1.2).
A more detailed consideration shows that (3.1.2) holds even if Co(w; V) is replaced

2Pby the HOLDER norm Ca,(w; U, ), ao :=
P

3.2 RIEMANN boundary value problem

We are interested in finding a solution to

w=+µiwz+µ2W+aw+bw+c=0 in\Iz:

w+=Gw-+g on 1, w(oo)=0,
where r is a smooth curve or a system of smooth curves in the complex plane without
multiple points. The coefficients are assumed to satisfy with 0 < c < 1

Iµi(Z)I + I112(z)I 5 go < 1 ,z E (V ,

IAI(Z)I + IP2(Z)I = O(IzI-°) as z -. oo ,

a,b,cE L(P.p')(C)nLp.2(0),2+E <p'<2<p< 24

G,gEC°(I'), 2+4 < a < 1 , G(S)34 0 , CE1 .
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Lemma 17. For 'P E C°(r), 2< a< 1 the CAUCHY integral

with the derivative
zgr,

satisfies ¢' E L, ((V ),1 < r < (1 - . Moreover,

S M(o,r,r)C0(w;r)

Remark. Obviously,

lc(z)l = 0(IzI-1
),

I01(z)I =
O(lzl-2) as z -> oo .

In more detail we have for R < Izi

Co(cp; r)L R2 Co(,p; r)L
(z)l 2,r(lzl - R + p)2 - p2 2,rizl2

where r c {lzI < R - p},0 < p < R, and L = L(I') is the total length of r.

Proof. In Lemma 2 it is shown that

l4'(z)1<- M(-,p, r)CQ(w; r)b°-i

where

115

b=b(z) =dist(z,I')=min lz - (I < p.
cer

Here Ra is the standard radius of r and 0 < p < RD. The set

S:= U {z : lz -0 < p}
cEr

is a strip around r. Assuming r to be closed we denote by S+ the part of S inside r
and by S- that outside r. In S+ as well as in S- we introduce a rectangular coordinate
system (s, b) where b = b(z) and s := mint o- : IC(a) - z) = d, 0 < v < L}. Then there
is a one-to-one relation between (s, b) and z = x + iy in s, U r. Moreover, with the
inner normal direction v on r

dxdy =

O(z) 2Iri
IV(()

d'z, z r ,
r

d
2ai

s;z)2'
(z) =

r

xs y,

xv yv

1

dsdb
x, y,

=
-Ya xs

dsdb = dsdb.
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Thus we have with M = M(a, r, r)

f I.k'(z)I'dxdy < 2(MCa(p; r))' J I br(°-r)dbds = I - r(1 - a)
S 0 0

Let now S C K0(R) := {z : IzI < R}. Because for z S we have p < b(z) then

J I¢'(z)I'dxdy
Ko(R)\S

I lo'(z)Irdxdy < 2a
RskI

(Co(;L)L)rR2
2ap2

Co(w; r)Ll t1 2rdt(
2ir

R

1 R2co(,p;r)L r

r - 1 2r J Pzr

Altogether this proves Lemma 17.

Let X be the analytic factorization of G i.e. X is analytic in C \r satisfying
X+ = GX- on r and eventually having a pole at infinity. Then w := X satisfies a
generalized BELTRAMI equation and a simple jump condition. We have

0=w=+III w.+µ2w.+aw11+bw+c

=X +aw+bwX +c+III X'w+µ2X'w

w=+µrw:+µ2Xw.+a+µrXX w+1bX+µ2XwX=O in V\r

and
w-+=w-+X on r.

But w does not necessarily vanish at infinity. It does for sure if the index rc < 0 while
for c > 0 w vanishes only if w has a zero at infinity at least of order x + 1.
The coefficients of the equation for w satisfy the same conditions as those of the
equation for w eventually up to the inhomogeneous term. This follows from

X' ry'(z), in D+

X rz-r, in D-

where

-Y(Z) 2ni f log[(--G(())S
r
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and from the properties of y, and p2. More precisely, we have

X`
P1 µ2 I = O(IzI-z -, 00 ,X I I

and, moreover, ry' E L 1 < r < 1 1 a, by Lemma 17, where 2 < 1 1 a, so that these

functions are in L9(tl') n Lp,2(2') for I < p <
4

2

The problem
w.-+piw,+p2w=+aw+bw+c=0 in C\I',

w+=w-+g on 1', w(oo)=0

can easily be reduced by the transformation

w=w - q, (z): 2;rilgz
r

to

uy+piwz+/e2w,+aw+bw+c+AIO'+µ2W+ao+6o-=0 in IT\l',

w`+ = w- on r, m(oo) = 0 .

Because of Lemma 16 the inhomogeneous coefficient again is in L(p,p,)(2) n Lp,2(C ).
The solution to this problem is continuous in r. Thus we have reduced the RIEMANN
problem for the generalized BELTRAMI equation to the case of finding the entire
solution to an equation of the same kind vanishing at infinity. In the case when the
coefficients vanish quickly enough when z tends to infinity then one can find solutions
behaving asymptotically as a given complex polynomial, see section 4.3 and [Behi83].

Applying the a priori estimate (3.1.2.) to w leads to an estimation of w. Analysing
the proofs of Theorems 4 and 5 we see

Ca(c; (V) := CC(O; D+) + Ca(O; D-) 5 M(r, a)C,(g; F).

From Lemma 17 and 2+4 <a<1 <p'<p<24c we finde

5 M(p,P,c,t,a)Ca(g;t)

Hence, with IIaII(p.p') + IIbII(p,p') 5 K

C'-(w; d') + IIW=II(p.p') + IIwrII(p.p') 5 M(p, p',go,e, I', K){C0(g; F) + IIcII(p.p')}, (3.2.1)

see section 4.3 and [Behi83].
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3.3 RIEMANN-HILBERT boundary value problem

In 2.1 for w E C'(D) the complex form of the GAUSS theorem

2i J w(z)dz = J w.(z)dady
8D D

was proved. In the same way as the CAUCHY formula for analytic functions from here

w(z) =
21ri

w(()
d

z
-

J
(3.3.1)-

8D D

can be deduced. In what follows (3.3.1) will be adjusted to the RIEMANN-HILBERT
boundary conditions. At first we are doing this with regard to the DIRICHLET condi-
tion in the same way as the PolssoN formula was deduced. Let us therefore consider
the case where the domain D is the unit disc D. Applying for z E D fixed the GAUSS

theorem to we get
1 - zt;

0
2i I w(')1

-id( - Jw(()
dCdr1

an n

Taking the complex conjugate and adding it to (3.3.1) gives for z E V

tar 1 r J L ((S) zt" {(S)w(z) f i,-z+S(1-zO d( -X z+ Z(

W(Z) 2iriIRew(c)(-z
C

an

1 r ( d 1 r J ze (() l+- J Imw o - f S( + (3.3.2)
21r

BAD

itD t;-z 1-z(

The operator

Tg(z) :_ - / J( (C) + ig(z(f

has similar properties as T, see [Veku62], p. 210. Especially

8Tg = 8Tg 1 f g(S) g(_
g ,

19Z
(z) = n9(z) -AID (C - z)2 + (1 - ZS), } dt;dqffz-
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where

Ap = IIIIIIp

has the same properties as Ap = IIH11p. This last fact follows directly from fig
with

g(z), IzI < I

9(z) _ /
zzg (=':) , 1 < IzI

To show fl is a unitary operator in L2(D) observe

r z9(_) d4d,l = fJ 1-zC
D d\D

so that

1l=1 do - I grl I-C29

C C-z \D 1l\C/ CC

Tg(z) =Tg(z)+ f 9(C)d",T9(z) 9(C)dd,a
\D a'

Differentiating with respect to z gives IIg = IIg and thus

Because

which follow from

x\D

I1nglI2,C =1111911=,, = II91I2,.V

11119II22,C = 2II11gIIz,D , II9II2,e = 21IgII',D

I i9(z) 12 dxdy

ffr'G)

z11

I zI

I /' ( 9(C) + 9(C) l dCdj
7r J l(I I - zC)Z (?---Z)2

JD M

f l119(z)Izdxdy ,

C\D

we have

f I72g

'2dCdg

D

fIg(C)l2ded,

1111glI2.D =119112,'

2

dxdy

= llg
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Formula (3.3.2) can be directly transformed to more general domains by utilizing the
GREEN functions G', G11, see 1.2. In the sequel a more general form is needed. To
get this formula let a E C(8D; IR) be a positive function with

E := Jo(()Id(I # 0

and

aD

a(z) 2Irz I(()C( C z)
am

which is analytic in d+ \8D. By

then

and

2z _ 2 2-('C+z-111
(((-z) (-z C (-z J C

2zo(z) =
2rri

I,((),+ z d, E
z 2a

am

2 Re {Ca(C)} = a(C) - 2 , KI = 1 +

where on 8D the function a is understood as o+.
Applying the GAUSS theorem to aw we find

2i w(()a(C)d(= J(C)d(C)dfdn
SD D

Hence

= 2i Im
2i J

w(()a(()dC = i Im J
aD am

=
z

J
Imw(() {a(C) - ) Id(I + i f Rew(C) 1 J (t)lm

t + (dtldC,
2 27r 2 27ri t- C t
aD am aD

- 1 f ue..,rt 1 f..,,,r..., t + C dt dC 1 1 t- '/rl _/\ d( E f ,,d(

or

am aD am - aD

2
{" c(C)o(() - (C) (()1 dfdrj

C
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_ f Reu;(() Im IC&(C)[ + f 2n
aD aD as

Remark. For a(() 1 we have &(z) _- 0 in D.

If we add this formula for general o to (3.3.2) then

w(z) TL z d,fRe,(()'
C ± z

OD

+ J Rew(()Im[(&(()] + I
f Imw(()o(() s

8D BID

-W f {w<(C)
CC

1 z + a(C)) + w<(C) C1
zC

- E (S)} } dgd,7 . (3.3.3)
z

D

This formula can be given a simplified form by introducing the first and the second
GREEN function. We saw in 1.2

G'(z,t)=--log +l-z(l' G"(z,2A log

are these functions for D . But here we want to apply G" related to the condition

49
---G"(z,C) _

-adz)

rather than to

- G"(z,C) _ -2a

Remark. For convenience we here incorporate the factor 2a into G' and G".

From the properties of G" one can find

-2- logI(C - z)(I - zS)I

V (Z, C) -E f a(t) log l(t - z)(t - ()II dtI
am

7r
JJc7(t)o.(r)loglt-rIIdtIId-I,

BID am



122 Complex Analytic Methods for Partial Differential Equations

see [Hawe72], p. 119. Instead of deducing this form for V we just verify the appropri-
ately modified properties i, ii, iii', iv' for G" , see Definition 4. Because V is harmonic
everywhere in z and (, we only have to look at the last two conditions. The outward
normal derivative on aD applied to real functions is just

= 2Re( .a = (as +
(a(-

49C

We here prefer to consider ( as variable and z as fixed. Obviously GII is symmetric
in z and (as defined above. Now

r 1

aG"(z, C) _ - 1 I - zS
J

+ 1 °(t)(I dtIa( 4r (-z 1-Z( 2AE 1 (-t
am

Again rewriting

we have

Hence for I(I = 1

2( (+t+
1t((-t) ((-t-t t

2 r°(t)(Idtt = _ °(t)t_( dt

an an
+iE.

2Re(a(GhI(z,() _

Property iv', i.e.

-Re 1 {--S - z] 1 J t+ (dt 1

27r z C - _ + 27riE °(t)t-( t 27r
an

I + °(()
[27r E 2a

f G"(z, ()°(()Id(I = 0 ,
aD

follows immediately by direct integration. In order to express the representation
formula (3.3.3) by the GREEN functions we calculate

a [G`(z,()+G"(z,()] _- I a(
log I(-z12+V(z,()

1 L+ I °(t) Idtl = - 1 I v(()2a(-z 2,rEt- 2'r(-z- E '
ant

[G'(z, () - G,'(z, ()] = 2a
log II - g12 - =V(z, ()
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z 1 () Idt _ 1 z v(C)

2A 1 - zC
f Q t - t 2x 1 - zC + E

aD

and for C E OD with CdC = -(d( and

/
d = &d(+&d,dfl= -i aCdC) ,

idG"(z,C)

- _i
{OGz,C)dC -

aGIaS,C)dC+ aclz,
-8C

-i (G'(=,C) +G"(z,C))dC - a((G'(z,C) - G"(z,C))dC,

i
(Cd(z

IzdzC] + E [a(C)d(+o(C)dC,

i d(
2w: C z + (z zJ C + E

[Ca(C) - Ca(C)]
C

1 (+ z dC _ 2i Im ((a(())(
2ai C - z C E :C ,

aGI1(z,C) aG"(z,C) aG"(z,C)
dnG"(z, C) _ -i

aC
d(-

07(
dC1 = 2Im d(

[

l _ ( {-Li}- -2VIm d - 2ImIm- E2 Im
27r

1 z N
l d( 2

{C (C))
d(

2AIm i 1+z - I
iC

- Re
1 dC _ (() _ I dC __ 1 a(C) dC

__ -!!(-C) I dCI2Ai C Ei 2-Iri C E iC E

Thus (3.3.3) can be rewritten as

w(z) f Re w(C) [d, G'(z, () - i dG"(z, ()J - i
J

Im w(()d.G"(z, ()
aD aD

+2f {(C) [GC(z,C)+G{'(z,C)) (3.3.4)
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The function

O(z) :_ -J Rew(() idGtr(z,C)] -i J
am am

is an analytic function in D satisfying
r

Re E) (C) = Re w(C), C E 8D , J Im 6(()a(()JdCj Im w(()v(()JdCj .

am am

This is immediately seen from (3.3.3) rather than from (3.3.4).
Moreover, for z E 8D

S (G'(z,()+G"(z,()) -ar(G'(z,C)-Gf'(z,())

so that the area integral in (3.3.4) on 8D equals

Jim {wt(() [G'(z,()+Gc'r(z,S)]}d(drt.
JD

Hence
w(z) := O(z)

+2 f {f(C) [G'(z, () + GC'(z, ()] +7-(() [GZ(z, () - GZ'(z, ()} } dtdrl (3.3.5)

m

where

O(z) = - f k(() [d.G'(z, C) - i dG"(z, ()] - ico
as

is a solution to the problem

w= = f in D, Rew =,O on 8D, f' flmw(C)cT(C)Jd(I=co.
am

Here ip is a real continuous function on 8D and f is a complex integrable function in
D. That wz = f follows again from (3.3.3) from where we see that w is equal to T f
up to an additive analytic function in D.

Remark. Formula (3.3.4) holds for any domain D which is conformally equivalent
to D. If w is a conformal map from D onto D then the GREEN functions of D, G'(z, C)
are given by those for D, G'(i, C), via

G'(z,() = G'(w(z),w(()), J = 1,11 .
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See in this regard [Hawe72], section 10.4 and [Wend79], section 1.1.

In order to get a representation formula of the above kind related to the RIEMANN-
HILBERT rather than to the DIRICHLET boundary condition we consider that condi-
tion in the case of non-negative index is > 0 together with some side conditions:

Re {A(C)w(()} = W(C) on 8D , (3.3.6a)

Jim {a(C)w(C)} a(()Id(I = Co , (3.3.6b)

8D

w(zk) = bk, 1 < k < a , (3.3.6c)

where IA(()I = 1, A E C°(8D; 0), cp E C°(OD; IR ), 0 < a < 1, a E C(8D; IR+) with

E a )IdCI>O,coEIR,zkED,zk#z1,fork#l,bkEt,1 <k,l<icwhere
8D _

K := ind A > 0, w E D=(D) fl C°(D; fl, to be determined in connection with a dif-
ferential equation.
At first we study homogeneous point conditions bk = 0,1 < k < K. These conditions
can be taken care of by the transformation

K

w(z) = JJ(z - zk)w(z).

k=1

But this would mean that also ur vanishes at the zk which by no means is justified
by (3.3.5). To correct this we define w by

K K

w(z) = fl(z - zk)w(z) + U =(zk)Pk(z) (3.3.7)
k=1 k=1

where Pk are polynomials of degree 2K uniquely defined by

Pk(z,)=0, Pk(zi)=bkt, 1

For w we find

Re on 8D, r f Im {a(C)w(C)} i(()Idii
8D

where

a(o A(C) II
C

- zk
k=1 IC - zkI

k=inda=indA->ind C-zk =0,
k=1 IC - zkI
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o(() := fl IC - zkl a(C), E := f a(()IdcI > 0 ,

k=1 as

a(() :='P(C) H IC - zkI i - Re { a(C) n IC - xkI-',
k=1 ll k=1 1v=1

co
c0 E J Im

EW1(zk)Pk(() j a(()Id(I
an k1 111

We thus arrive at a condition of vanishing index. In order to get rid of the factor A
we consider

z dl
w(z) := e-`"(z)w(z), 7(z) := 2ri f arg X(()(±

z
an

which satisfies

where on 8D

mow(() = eiu,"(C)am e!"'"(Q'P(() on 8D ,

E
f Imw(()a(()Id(I =

E := f &(()Id(l > 0 .
an

We now may apply the representation formula (3.3.4) where we have to adjust the
second GREEN function to the weight function R. This GREEN function will be
denoted by 5" (z, (). Applying (3.3.4) to

l K

w(z) = e ,'Y(=) {w(z) - E wT(Z.)Pv(z) f H(z - zk)-1
=1 J k=11

and multiplying this formula by ei"(z)flk=1 (z - Zk) yields

K K
E

W(Z) _
w=(zk)Pk(z)

+
ie`"(z) 11(z

- Zk)7ca
k=I k=I

K

- i'Y(z)e 11(Z - xk) i dG11(z, ()J
k=I ao

11
I {eiz)"(C)) - x- xk (+2 {w(cl- t ur(Zk)PY(() (-

Zk
Z,O + Gl!(Z, ),

k=] k-1
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+e'(7(=)+7(t)) w='(zk)Ps(C)
S

- zk
(z, C)] } dl dq

k=1 k=1

The analytic function on the right-hand side of this formula is

et-Y(Z) n(z - zk)0K(z)
k=1

with
OK(z) := O(z)

+ r eun,(Uge j (C) fi IC -
Z1,1_1

(z.)P, M) I [d.G'(z, () - i dG"(z,C)]
an l k=1

-? f Im {Ewr(zk)}d(C)IdCI
ao K_1

O(z) f elm1 )c,(C) C - zk [d,.G'(z, c) - i dG"(z, S)] + i co . (3.3.8)

aD k=1

Hence, we have the representation formula
K K

w(z) ws(zk)Pk(z) + 0(z)e1 fI(z - Zk)
k=1 k=1

+2 / S e'[y(=)-7(t)] f (C) - L, w:'(zk)Pk(C)] Z - Zk
!JJ tt l kol k=1 - zk

[GS (z, () + Gs' (z, C)]

x

+e'('(=)+7(t)1 1;wC(O) w;=R( zk)Pk(C)J nk=1 =LL [GL(z,0)-GZI1(z,0)]rdfdr) (3.3.9)
k=1

for z E D. At last we have to get rid of the restriction w(zk) = 0,1 < k < K. For
w(zk) = bk, l < k < ic, the function

11W(Z) - t bk
z zl

k=1 !#k
zk ZI

vanishes at the Zk's. Applying (3.3.9) to this function leads to a representation formula
for w(z).
We are interested in the properties of the area integral operator in (3.3.9). Using the
above expressions for the GREEN functions it can be written as

T.9(Z) - -' f 5lf {9(C)
z - zk [_.!_(k

K - E 1
JD

k=1
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+9(C)'l
x - Zk r x - 27r__l l
C - Zk 1 - x E jk=1

It, obviously, satisfies the boundary and side conditions

z-zk
,Re 8D{k=IIZ_ZkI7}=0 ,

JIm{f'k j Iz - zk1TK9(z) a(z)ldzl = 0
OR

as well as (T g)- = g and (TKg)= = fl,g, where

K TK9(z) I

IIKg(z) 9(Z) Z Zk
+

Z - Zk
dfdqF:_ --J 2 11!k_r Z - Zk 7r ® (S - Z) k_3 Zk (I - ZS), k=1 - Zk

This operator IIK is a linear operator from Lp(D) into itself but unfortunately the
L2-norrn A,,2 of 11K is greater than 1 for 1 < K. Only for rc = 0, where Ho = II,
we have 11110112 = 1, see [Veku62], p. 210. Again the RtESZ convexity theorem, see
[Dusc66], p. 525, assures the continuity of A,,,, by the logarithmic convexity of AK,p
for 1 < p.

Lemma 18. For 2 < p

ITK9(z)l < M(p,Q,zk,D)II9IIp, IIHK9lIp 5 M(p,v,zk,D)II91Ir

Proof. The first estimation follows from

Z - zk 1 _ 1 K z - z' 1

H ( S-Z Z Zk-Zv (-Zk

and

ZZk z K Z-zk z K Z4 Z - Zk S-Z Z

-k k±Z -Zk 1-z( k=1 zkZ. Z - Zk 1-z((-Zk

because of the boundedness of the coefficients of I and I on the right-hand
-Zk -Zk

sides and the boundedness of in D x D and because of the related estimation
1 - zS
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of the T-operator, see Theorem 23.
For the second inequality we observe

n

1

-
z - zp 1 1 - 1t( - )2 1: 11Z

k=1
zk - Zv (-Z Z.

K
1 K z - z z

1S-z 1-z(
k=1

Z-Zk _t

and

K_ z-z z-zp 1 z (-Z-t Z-' (-Z Ok pkZk-zp

K z - zk
II

1

k;(-zk(1-z()2

_ K Z - zk 1 K Z-z z - Zk ( z 1 1

Z-Zk(1z()
,

ZkZ
together with the appropriate property of the fl-operator, see Theorem 32, and the
boundedness of the coefficients in D.

Lemma 19. 1 < A$,2 = IIIIKII2. For 0 < ic, moreover, 1 < AK,2.

Proof. The proof only needs the following properties of H..

1. 11.9 = a TKg,
F-

= 9

2. Re {5TKg} = 0 on 8D, 0 < ind A = K, A(z) := nk=1
z - zk
IZ - zki
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From the GAUSS formula, Theorem 10, for g E CO '(D)

aD D

J9Td+J9dzdy+
am am D

J TR9dTK9+ (9, 9) + (9, 9)
2i

r 87 g g
dx I r 8 BT4g) 82Tag]

dxdy
/ 8z 8z

dy = / TK9 az
_T

9 8ztD/D

J4dxdy
2i Tx9 8zgdz -

am

Because on 8D

we have

0

I :=
2i

J TRgdT, g =
2i

JX79dTs9 = - 2i AZT, gdT,19 = - 4i
JX2d(T,g)2

am 8D am BID

= I J(TK9)2d)2 = -2i f AITKgI2dA = 2i
fXlTgI2dA 7.

am BAD aD

Hence, I is real. Moreover, because

adA = id arg A := i>2 d arg(z - zk)

k=1

we see that I is non-negative. In order to show A,,,2 = 1 we ought to have I vanishing
for arbitrary g E Co (D). But because IT1g1 > 0 in general not identically vanishing
I will not be zero for all g E C, '(D). Therefore 1 < A.,2 and 1 < A,1,2 for 0 < ic. In
case A = 1 i.e. x = 0 we have I = 0 and then A2 = Ao,2 = 1.
That the relation

(9,9) 5 (1189,11-9)

proved for g E CO -(D) holds in L2(D), too follows from the fact that Ca (D) is dense
in L2(D).
As 1 < A,,,2 for 0 < x we cannot treat the boundary value problem in the same way
as for x = 0. Demanding

qAx,p < 1

would put restrictions on the coefficients p1i p2 of the differential equation. But then
the proof from the case rc = 0 could be repeated here, see [Behs83].
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Theorem 38. Let 0 < qo < 1 < 2a < 2 < p < 1/(1- a), a1 :=min{a,1 - 2/p), 0 <
K, P1,102 be measurable functions in D, a, b, c c L,(-f),

Ipi(z)I + 1p2(z)I < qo < 1, h all9 + flbJi, <_ K, goA9 < I

A E C°(0D), o f rC(aD), co E 1R,

f

2a
/darg.l>0,E:=Jods>0,Ja(()l =1, (EBD,

aD

Zk E D, ak E IV (1 < k < rc). Then there exist constants P, 7i, 72i b depending on
a, P, qo, A, o', zk, K but not on pl, 102i a, b, c, rp, co, ak, w such that any solution of

wZ+plwz+p2wz+aw+bw+c=0 inD,

Re ,p on aD , E J Im { 1w}ods = co , w(zk) = ak, 1 < k < rc ,

satisfies the a priori estimate
8D

C°, (w; D) + IIwz Ilp + IIwsIIP <- ,8C4('o; aD) + 7i IcoI + 72 E Iaki + blIchlp . (3.3.10)
k=1

Proof. Before proving this estimate we reduce the problem to a special one.

i. Taking

(C) A(() f K - zk , 7(z) tai f arg a(()(± z ,

aD

6(C) = E := I v(()ds
am

as before we see that 6(z) := w(z)e`7(z) satisfies

+ puw: + (a + ip17 )w

+(b - ip27')eC'-i' = 0 in D ,

Re (- zkl 7,(() = on OD ,}I( k

E
IM Ift )C - zkf``'(() a(()ds co

8D k_t JJ
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4-0(zk) = ake-"(z*), 1 < k < /G .

The coefficients of this problem have the same properties as those of the original
problem. Obviously,

C«, (w; D) 5 M(A, Zk )CQ, ('Z'; D) ,

11-.11, :5 M(A,zk)(IIwzIIp+Co(w;D)), IIwrIIP 5

ii. Subtracting from w the analytic function 6 satisfying the same boundary and
side conditions we arrive at the homogeneous boundary problem. 6 is explicitly
given as

K K

O(z} := O(z)efJ(z - zk) + E bklll#kZk _
z11k=1 k=1

with 0 as given in (3.3.8). For C o:= w - 6 we get

in D,

flm{}crds
=0 on BD,

=co-J Im{a6}ods=0,w(zk)=0 ,1

Using PRIVALOV's theorem (Theorem 6) and Lemma 17 we see

K

C0(O; D) < M(a, A, zk)CQ(O; D) + M(a, zk) Ibkl ,
k=1

C0(O; D) < M(a, A, zk)CQ(W; 8D) + M(A, o, zk)Icol ,

K

IIO'IIp 5 M(A, zk)(II6'IIp + Co(6; D)) + M(zk) E IbkI
k=1

IIO'IIp 5 M(a,p,A,zk)C0(w;OD) .

iii. Let now w be a solution to the homogeneous boundary problem for the inho-
mogeneous equation where especially

A(c) S - zk
IC-z k

k=1

Then as before introducing

µ1(z) + 02 (Z)
w(z),

if wz(z) j4 0,µ(z) - w=(z)

µ1(z) + µ2(z), if wz(z) = 0 ,
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h(z) a(z) + if w(z) 54 0,

a(z) + b(z), if w(z) = 0,
the differential equation reads

w=+µwz+hw+c=0.

a. h=0
Let w be a solution of the equation

wr+µw=+c=0 in D
with wz,-. E Lp(D) where I,(z)I < go < 1,c E Lp(D) and let w satisfy
the above homogeneous boundary and side conditions. Then

w-TKw1

is an analytic function satisfying homogeneous boundary and side condi-
tions. Hence it vanishes identically, i.e.

w=T.w=, wz=IIKw=

From the properties of T. we get

C (w D) < M(a )C (w D) < M(a o z )IIw-II a _ p-2
, , - , p ao , - , p, , k p) 0 p ,

IIw=IIp < AK,pII IIp

If we have shown

IIw IIp <- MIIcIIp

for some proper constant M then in this special case we are done. The
existence of M is shown by reductio ad absurdum. Assuming such a con-
stant M does not exist. Then there exist sequences (µn), (wn) with
the same properties as u, c, w, especially

Iµn(z)I<-qo<1,

satisfying

k=1

wni+iZnwnz+cn = 0 in D,

Re II C - zk wn = 0 on OD,
lk=1K-zkll ' - zk wn(cl a(()ds = 0 ,

wn(zk) = 0, 1 < k < K,

k
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and

nllcn lip 5 IlwzllP-

Assuming 0 < 1Iw all9 and setting

such that

one has

wn cn
wn

IlwnzllP , En IlwnzllP

I1wnzllP=1, IIEnIIP< (nEI')

wns + Pnwnz + En = 0 in D ,

Re f S - zklwn(()l = 0 on aD
k_1 I( J

Icn
lkH IC

zklwn(C) i -(()ds =
L )

w(zk) =

0,

0, 1<k<ic.
Let ,fin = TXn be a special solution of this inhomogeneous problem. Using
the representation given in Theorem 36 then

-n(Z) = fln((n(z)) + t,bn(z)

where (n is a complete homeomorphism of

(n7 + /Ln(nz = 0

of the form

Sn(z) = z + TOn(z) , 0n + PnHOn + P. = 0

so that for any compact set K C (V

C P-2
P

The function Xn E LP(D) has to satisfy

Xn+PnHXn+En=0 in D.

Hence Xn is the unique solution to this equation satisfying

IIEnIIP 5 IIEnIIP

1-goAP
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From this estimate

I]0n-illp 5 1 - qoAp n' ll0nsllp 5 1 - gqoAp n

Cao D) 5 M(P) 1

1-goApn
Furthermore, On is analytic in (,[D] satisfying

t
Re

I k+ ; It - Zklfln((n(t))

-Re S 11 It - zkl'n(t)1 =: Wn(t) on 8D ,

do

- r Im Ift It - zkl+Gn(t)o(t)ds Pn

8D

k

nn(Cn(Zk)) = -4'n(Zk), I< k< K .
Using the inverse homeomorphism zn(() of Cn(z) , see [Veku62], p. 95, we
find

Re
zn(r)

- Zk nn(T) _ Pn(Zn(T )) On
lzn(T) - zklk=1

yn[aD] ,

Jim
{n lZ.(T)

- ZkI fl.(.r o(zn(T)) I ZnT(T)ds +
WT_

I ds = Pn,

(n(8D] 1lllll k=1
(

/ 1 < k < / .

We have for the right-hand sides

,,''5 M(a,p,Zk)Clo('Yn;D)

IPn l 5 M(o, Zk)Co( 1.; 8D), IV'n(Zk)l 5 Co(0n; D)

Hence, for the analytic function fln we have

CO(nn;Cn[D]) 5 M(a,P,go,0,zk)Cao(On;OD) < M.1

/ lm IftkIt - zklfln((C(t))} o(t)ds

The sequence ((n) satisfying

Cao((n;K) 5 M(K)
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for any compact K C (V may, by the ARZELA-ASCOLI -MONTEL theorem,
be assumed to converge uniformly on compact subsets of d' to, say Co. By
the argument principle, Co is a homeomorphism of IV, too. Because (fl.)
converges uniformly on compact subsets of to[D] to zero as for any compact
K C (o[D] there exists an n E IN such that K C S,[D], so does the sequence
(cl,) of the derivatives. Therefore, from

Wnz(Z) =
fln((n(Z))!!

Snz(Z) + Onz(Z)

we obtain for any compact set K C D

IlwnzlIp.K :5 Co(fn; (n[K])Ilenllp.K + IIXnD[p.K

1

< M(p,q)Co(fn;(n[K])+M(p,q)1-

As (,[K] converges to (o[K] and for compact K C D the set So[K] is com-
pact, (n [K] C Ko C Co[D} with compact KO for large enough n. Therefore

urn IIwn:IIp.K = 0+00

for any compact K C D. This contradicts

Ilwnz llp.o = 1

for all n. Hence, there exists a constant M such that for any solution of the
special inhomogeneous BELTRAMI equation with homogeneous boundary
and side conditions satisfies

Ilwiilp < MI[cllp

3. h 0 0
This last estimate shall now be generalized to the equation

ws+pwt+hw+c=0 in D

with again homogeneous conditions.
Let v be a solution of

v +pv,+h=0 in D, lmv=0 on OD, J Revcrds=0.
ao

Then from the above considerations

Coo(v; D) + llv=IIp + IIv'IIp s Mllhllp
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Let fo be a solution of

foz+pfo, `oo in D,
0

Re

with

fo(C)F 0 on 8D ,

Jim S n I( Zklfo(C)T °(C)ds = 0
am

fo(zk)=a, 1<k<ic,

'POW
k1 k=1=

ao retsev(<)Q(()ds [2MjeR)a(()ds
as

Again applying the above estimate we get

Cao(foi D) + IlfozIIP + IIfoZIIP < M .

Consider now

with

satisfying

f := we - A(aofo +'po)

8D

I

K Z_
A := Jim

I

kH
is -

aD

(fz + µf: + ce-° =ll 0 in D ,

Re j ll IC - zklf(C)1 0 on 8D ,

11m k1 IC - zklf(C)} a(C)ds = 0 ,
eD

f(zk)=0, 1<k<w.
Once more applying the estimate from before

Ca0(f i D) + III=IIP + IIffIP < MlIce °IIP < McMllhllrIjcjIp
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From the definition of f we find

Sf(S)J ert",(Uo(S)dsA= -B
J

Im S n
S - xk

ao k=i

B := ao fImt I - Z
kl fo(S)T j

J l z JJan k-' an

and

JAI < 2eCo(v;D) Im n S - zklf(() eRev(C)Q(()ds

< 2Ee2CO(v;m)Co(f; D)

Combining these estimates gives

Cao(w; D) + IIw=II, + IIw-II' 5 McMIIhIIPIIcNp <_ McM(Ilailn+Ilbllp)1Icl+p -

Theorem 39. The RIEMANN--HILBERT problem formulated in Theorem 38 is
uniquely solvable.

Proof. From the a priori estimate (3.3.10) at once the RIEMANN-HILBERT problem
of non-negative index for the generalized BELTRAMI equation is seen to be uniquely
solvable if any solution exists at all.
Finally we will prove the existence of a solution. As was mentioned before it is enough
to consider homogeneous boundary and side conditions. With these conditions in mind
we are looking for a solution to the equation

ur+plwz+µ2w=+aw+bw+c=0.

Introducing a real parameter t, 0 < t < 1, by

ws+t{plwz+p2i13 +aw+biu)+c=0 (3.3.11)

the solution then depends on this parameter too, to = w(z, t). For t = 1 the original
equation is attained. For t = 0 the equation is the inhomogeneous CAUCHY-RIEMANN
system, the solution of which is given by w(z, 0) = in the case of A being
specified as above. We may assume that for some to, 0 <_ to < 1 there exists a solution
w(z, to) to (3.3.11). Taking w(z, to) as a first approximation for a solution to (3.3.11)
for some t > to we can inductively construct a sequence of approximate solutions
wn(z, t) by asking wn+1(z, t) for wn(z, t) given to be a solution to

wn+1z + to[ptwn+l: + p2Wn+iz + awn+I + bwn+lr
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+(t - to)Iµ1wnz + µ2Wnz + awn + btvn] + c = 0 .

As wn E WD (D) where especially W. E C00 (D), wnz E LP(D), ao = 1 - 2/p, 2 < p,
the factor of (t - to) as well as c belong to LP(D). By assumption this equation
has a solution wn}1(z, t). In order to prove convergence consider wn+l := wn+1 - wn
satisfying for n E IN

Wn+15 + tO[PlWn+lz + µ2"n+lz + aWn+l + bWn+l]

+(t - tO)IfilWns + µ2Wnz + awn + bWn] = 0

Applying the a priori estimate (3.3.10) to this equation with homogeneous boundary
and side conditions gives

IIWn+1 II 5 (t - to)b [IIi11Wnz + µ2Wnz + awn + bwnllP]

< (t - to)b Iq + IIaIIP + IIbIIP] IIwnII ,

where

llwll := Ca,(w, D) + IlwzliP + IIw=lIP

Choosing now t - to > 0 so small that

(t - to)b Iq + IIaIIP + IIbIIP] < 1 (3.3.12)

this inequality guarantees convergence of (wn) in the norm II'II. Denoting the limit by
w(z, t) it is seen to be a solution to (3.3.11) fort > to satisfying (3.3.10). Because the
bound in (3.3.12) to the step-width t - to is independent of to repeating this procedure
finitely many times serves to find a solution to (3.3.11) for t = 1 giving a solution to
the original equation.

Remark. The restriction to homogeneous boundary and side conditions are un-
necessary for the above reasoning because in the convergence proof we would in any
case be involved with homogeneous data. Inhomogeneous data only change the upper
bound of the solutions.

One easily figures out

1I-11I 5 (t - to)bllwoll, Ilwoll <- bIIclip, b := b Iq + IIaIIP + IIbIIP]

where in the case of nonhomogeneous data the bound for Ilwoll has to be altered.
From

n

wn = WO + E Wk , IlWkll 5 (t - to)k-1 -11Iw1 li 5 (t - t0)k3kllwoll
k=1

for (t - to)S < 1 convergence follows.
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Theorem 40. The modified RIEMANN-HILBERT problem

Re (1w) = cp + h on OD

where

gyp,AEC°(8D),IA(OI=1 on 8D,K:=--J darga<0,
an

h(z) hkZk, h-k = hk, IkI < -K - 1 ,
k-K+1

with undetermined coefficients hk for the generalized BELTRAMI equation

wz+µ1w.+µ2W.+au;+bw+c=0 in D

satisfying

where

Il'1(z)I + 1112(z)1 5 90 < 1, Hall. + IIbIIco <_ K ,

0<go<1< 1 := loo <2a<2,4<po,0<K,
ao pa - 2

is uniquely solvable. The solution satisfies the a priori estimate

C.a;(w; D) + IIw-IIn + IIwrIl; S D) + 6IIcIIro

when Q and 6 are nonnegative constants depending on a, p,po,go,K,A,2
2

such that qoA, < 1, and p := p
2(p - 1)

2 < p < p.

Proof. Let ,, be the solution to

+µlO=+µ2V:+aO+b+ +c=0 in D,

Imti=0 onOD,J Retk(()ds=0.

(3.3.13)

<p:po

aD

Applying Theorems 38 and 39 to eb := itb shows that to is uniquely given and satisfies

C..(',D)+110.11p+ II IIp <bIIcIIvo,9oA, < 1,2p 5 po .

Let w be a solution to the problem formulated in the theorem for a proper function
h. Then v := to - 0 satisfies

yr+pIVs+p2v::+av+b`v=0 inD,

Re{Av}=rp+h-ReAb oniD.
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Rewriting this differential equation as

vs+pvz+av=0 in D

where
V.

pl+/12 , if vz0
p := vz

+

Al if vz = 0

a+bv , if v#0
a1 V

to , if v=0
and similarly as before utilising the solution X to

X-+pXz+a1=0 in D,

ImX = 0 on 8D, JRex(Ods=O

satisfying

aW

CQO(X; D) + flXsIIp + IiXzII S aIIaiIIvo < 6K ,

then f := ve-x is a solution to

with

fz+pf:=0 inD,

on8D

141

-K-1

Rea+/i}e-Rex, h(z) = hkzk, hk := hke-Rex(s)
k=K+1

By Lemma 14 f can be represented as f = 0 o ( where (is a homeomorphism of the
BELTRAMI equation (z + p(z = 0 and 0 is analytic in ([D].
We may assume ([D] = D. An arbitrary complete homeomorphism maps D onto a
simply connected domain ([D]. Let w be a conformal mapping from ([D] onto D, see
Theorem 7, then (1 := w o (is a homeomorphism from D onto D satisfying

(lz + u(lz = 0 .

The inverse mapping z = z(() of ( = ((z) is a solution to the BELTRAMI equation

z=z(q
z( = 0 .
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From the estimates in the proof of Theorem 35 and the respective property of the
T-operator, see Theorem 23,

Cao((;D)+11(=IIp+IICiIip<-M=M(p,po,go),ao
:=po-2,2 <p < po,goAp<1.
PO

Similarly,
Cao(z; D) + 11zclip + Tulip < M .

Thus, ¢ is an analytic function of C in D satisfying

Re {a(z(C))c6(()) = So(z(()) + h(z(()), C E 8D .

By Theorem 18 this problem is uniquely solvable when fixing the yet undetermined
coefficients hk, ikl < -x - 1, by the system

f i'P(z(t)) + h(z(t))]e=mY(t)t-r-ldt = 0, 0 < P < - 1 ,

an

where

7(() = 2xi f arg {t-KA(z(t))} t +
tt, C E D

aD

Then 0 is given by the SCHWARZ integral

f[(z(t))_
h(z(t))jeLnti(,)t

t -

+
C

dt
t

8D
etc)

J
tK(dt, (ED.

8D

For the last equality

K

(K±Cl = t +2t
V=t

is used. From the estimates in the proof of Theorem 5

C...(4'; D) < M(a, ao)Caao(eD)Caao(ISo(z(t)) + h(z(t)))elml(t)1 ; 8D)

follows so that
('...(4S; D) < M(a, po, K, .)Ca(W; 8D) .

Therefore f= 0 0( E C°QC(D) satisfies

C..02 (f; D) 5 M(a, po, K, 8,V) .
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Moreover, by Lemma 17

II4'IIp < M(A)C 0P(z(.)) + h(z(-)); D)

< M(a,po, K,.A) [Coap(W(z(.)); D) + IIcIIp)

< M(a,po, K, A) IC,,(V; D) + IIcII>,j

2

where 2 < p < 1 - '
qoA° < 1 . Hence, for p := p

1 , 2 < p < p, we have with
(p - )

p' = 2(p - 1)

aao 2

,4 =
2(p - 1)

p p-2

IIf=Ilp = II '(C(z))CZII p = f (Iz I2 - Iz<I2) dedl,
D

1 f Zdi dq1 - qs
D

1/p' l/q,

< 1 f fq2
I(=I(°-2)q d(dq

1 -
D D

where
zc(ICzl2-I(=12)_(z,

C(I(z12-I(=12)

is used. Because p`p' = p and

f I(=I(p-2)4'dfdq = f K(=I(v-2)9'(I((I2 -1(=12)dxdy

_ (1 - q2) f I(l(p-2)9'+2dxdy = (1 - q2) f 1(=I°dxdy
D D

we have
p-I

IIf=II; <_ II-0'IIpII(=II°°

By a similar procedure or from the differential equation for f we can estimate I1f=1In.
Thus

CO, (f; D) + IIf=Il;; + Ilffll; < M(«,p,po,go, K, A)[Ca(p; D) + IIdlpol

From w = f ex + 0 we find by the preceding estimates and from II 11; 11 ' 11p for
15p<p

Co(w; D) + Iiw=llp + IIw7IIa < M(a,p,po,go, K, aD) + flcIl>.1,
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where Co(w; D) can be replaced by D), too.

3.4 POINCARE boundary value problem

If in the RIEMANN-HILBERT boundary condition

Re {.1(()w(()) = <p(r(),C E OD ,

the function w is replaced by its z-derivative w= this problem is called the oblique
derivative or POINCARE problem. We will treat this problem for the linear generalized
BELTRAMI equation, i.e. the problem

w=+µ1w=+µ2wz=+aw+bw+c=0 inD,

Re{.\w,}=,'+h on OD,

w(1)=0,

where we assume 1 E D. For simplicity again D is assumed to be the unit disc. This
can always be achieved by a conformal mapping if D is a bounded simply connected
domain.
Introducing u:= w. and observing

ws = -[µ1u+µ2u+aw+bw+c)

we see

z

w(z)= f {u(t)dt-[µlu(t)+µ2u(1)+aw(t)+bw(t)+c}dt} . (3.4.1)

This integral is path-independent because

u= = us: = -[µ1u+µ2u+aw+bw+c]z .

Obviously, we have to assume that the coefficients of the differential equation are
(weakly) differentiable. Differentiating the generalized BELTRAMI equation leads to

u:-+µ1u.+µ2uF+au+bur+µl:u+µ2:u+a=w+bZw+c2=0

and its complex conjugate

u`--+7lus+µu-+au+bur+µlzu+µ2:u+az+b:w+c= =0.

Solving this system with the two unknowns uz and u= for us gives

uE+giuz+g2u.z+Au +BU +H(w)=0, (3.4.2)
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where
141 µ2p1

ql 1-lµ212, q2 Iµ212 Ig1I+Ig2I5go<I,

A:= a+plz-µ21!2z B µ2z-µ2a-µ2µ1z
1 - Iµ212 1 - Iµ212

H(w) := -p2bu = + bur + (az - p2bz)w + (bz - pzaz)w + C. - µ2c.]
1 - Iµ212

Together with the boundary condition

Re {Au} = co + h (3.4.3)

this is just a RIEMANN-HILBERT problem for u where in H the unknown function w
and its derivative w= is incorporated.
Introducing the side conditions

J
{Im A(()u(())a(()ds = co, u(zk) = ak, I < k < x , (3.4.4)

an

or alternatively, see Corollary 2,

Im {A(ak)u(ak)} = bk, 0 < k < 2K ,

in the case where the index is nonnegative (0 < K) and assuming there is a solution
(w,u) for problem (3.4.1) -- (3.4.4) the a priori estimate (3.3.10) from Theorem 38 for
the first set of side conditions in case 0 < K and (3.3.13) from Theorem 40 for K < 0
gives

C... (u; D) + Iluzily + Ilu'Ilp < f CC(cp; OD) + yllcol + yz lakl + bIIH(w)IIPO
k.1

where for 0 < K p = po and for K < 0 the constants 'yl and y2 formally are
replaced by 0. Here the constants f3, yl, y2i b depend among others especially on p, po
and the constant K1 satisfies

_ K,IIAII, + IIBIJ, 5 11- qo (11µl=IIPo + IIp2=IIPo +

As

IIH(w)flp 5 1 (Co(b; D)IIuWIIp + (Ilazllps + IIbzIIPO)Co(w; D) + Ilc=Iilol1-go
and from the integral equation for w

Co(w; D) < 2(1 + qo)Co(u; D) + 2(Co(a; D) + Co(b; D))Co(w; D) + 2Co(c; D)



146 Complex Analytic Methods for Partial Differential Equations

we have under the assumption

2 (Co(a; D) + Co(b; D)) <- n, 2(Ilasll, + ilb2II,) s n, n < 1 ,

the estimates

and

CO(-; D) <
2(1 + go)

Co(u; D) + 2 Co(c; D)1-n 1-n

IIHII. <
(I (1Q

)(i)17 n)Co(u; D) + 2(1 go)IIwrII, + (1 _ go71 - ,?)Co(c;D)

From the generalized BELTRAMI equation

Co(w=; D) < qoCo(u; D) +
1
2gCo(w; D) + Co(c; D)

1< 1Co(u; D) + (1 + 1 n n Co(c; D) ,(qo+11°'
so that because of Ilwslln S 2Co(w=; D) for 2 < p

NHIIm <
1

ngo(go+(1+qo)(1+n))Co(u;D)

+1 n (i + L+- ) Co(c; D) + 1 1 go llc=Ilro

n 2go+l+nCo(u;D)+ 2n
Co(c;D)+ I III=I1.1-qo 1-n (1-go)(1-n) 1-qo

Inserting this into the a priori estimate and neglecting IIu=II;; + Ilu;lln gives

(1rl _ - g+ l
+ 7)] Co(u; D) 5 a C.(W; iD) + i IcoI + /2 E IakI

LL (I o)(1 - ?)I
k=1

+(1 -qo)(1-n)Co(c;D)+ 1 bgollc:Ilp

Assuming
n6(2go+1+n)<(I-qo)(1-q)

which is satisfied for example for

n<
1 - qo

2b(1 + qo) + 1 - qo
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then

K

Co(u; D) < ,lCo.(cv; BD) + 711CO1 + 5z Iakl + b[Co(c; D) + 11C.11.]
k=1

Collecting the respective estimates leads to the a priori estimate

CO(-; D) + Co(wzj D) + Co(wi; D) < QC,.(W;OD) + yl Icol + 72 Iak1
k=1

+b[Co(c; D) + IIczllao] . (3.4.5)

Of course the maximum norms for the first order derivatives for w can be replaced by
the L9(D)-norms. Moreover, on the left-hand side Ilwz:Iln + IIwz=1ln may be added.
We even may add Ilw;slIn, too if

I1/A1=11, + II12=11PO 5 K1, IIas1I, + Il sIIIO <- KI

is assumed and on the right-hand side 5IICjIIp is added. This follows just from the
differential equation and the preceding estimates. Thus

Co(w; D) + Co(wg; D) + Co(-.) D) + 11w=11;; + IIw==Il;; + II--all;;

K

< QC0(,; OD) + 711coI + 72 E Iakl + b[Co(c; D) + [IczII. + IIcIIPo] .(3.4.6)
k=1

It remains to show that the POINCARE problem is solvable at all. From the a priori
estimates it then follows that the solution is unique.
Let wo E C°(D) satisfy Co(wo; D) < K where K is a constant not less then

2(1 + go)
l?Ca(so; 8D) + 71Ico1 + 72 t Iakl + b([Iczlipo + Co(c; D))1 - (1 + (1 + go)b)q k=1

and [1 + (1 + go)b]ri < 1 is assumed. Let u be a solution to

us + gluz + g2uz + Au + Bu + H(wo) = 0 in D (3.4.7)

satisfying the boundary condition

Re{.1u}=cp+h on OF

and in case of nonnegative index a the side conditions (3.4.4). Moreover, let w be
defined by

w(z) :=
J

{u(t)dt - [01(t)u(t) + A2(t)u(t) + a(t)wo(t) + b(t)wo(t) + c(t)]d1
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for z E D. Then from the above estimates

CO(-; D) < 1C0(<o; D) + 7i Icol + 72 : Iakl + 6IIczIlpu

k=1

+21 b17 [Co(wo; D) + Ilwo=llPO]

Co(w; D) < 2(1 + qo) 8D) + 71IcoI + 72 Iakl + bl[cII+ Co(c; D){13c0(co;
1k=1

+(1 + (1 + go)6)tgCo(wo; D) < K .

In this way a mapping L is defined from Co(D) into itself which, obviously, is linear
and will be shown to be a contraction. For this purpose let wo, wo E Co(D) be given
and w = Lwo, w' = Lw'o. Then the related functions u and u' as solutions to (3.4.7)
and the boundary (and side -) conditions lead to a solution u - u' of

(u-u')=+q1(u-u')z+q2(u - u')z+A(u-u')+B(u - u' +H(w)-H(u;) = 0 in D ,

Re {a(u-u')}=It on BD
and eventuelly homogeneous side conditions. Hence,

Co(u - U'; D) 5 47 [Co(wo - w,; D) + II(wo - wo)zIIpol

and

Co(w-w';D) < (1+(1+go)S)'iCo(wo-wo;D) .

Because the coefficient on the right-hand of the last inequality is less than 1, this
estimate shows L being a contraction. Hence, the BANACH fixed point theorem proves
the existence of a unique solution w E C°(D) to the equation w = Lw. From (3.4.1)
then w(1) = 0 and by the continuity of the integrand

w= = u,V +µ1u+µ2u+aw+bw+c,

follow in D. Because u satisfies the modified boundary and the side-conditions w is
a solution to the PO1NCARt problem.
Thus the following result is proved.

Theorem 41. The modified POINCAR$ boundary value problem for the generalized
BELTRAMI equation is uniquely solvable under the following assumptions.

µl,µ2, a, b, c E C°(D) n Dz(D), µI.-,µ2z E Lv0(D) ,

IIµlzllpo + 11µ2.11p. + Ilallm <- K1 , lµ1(z)I + iµ2(z)I 5 qo < 1, g0A>ro < I
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where
2<po = P=p for O<ic,

2

2<. P <p<po,4<po, for rc<O,
2(p - 1)

2(I1a=IJ>.+I1b=II>.) <-, , 2[Co(a; D) + Co(b; D)] <,
Here qo, q, Ki are nonnegative constants and n is so small that

I - qo + 2(1 + qo)S

where 6 is the constant appearing in the a priori estimate (3.3.10) and (3.3.13), re-
spectively, depending among others especially on po and Kr rather than on p and K.
The solution satisfies the a priori estimate (3.4.5) where , 7i, y2, b are nonnegative
constants depending on a, p, po, qo, A, rl, Ki, and also on a, zk(1 < k < ic) for nonneg-
ative index.
If, moreover, µi, p2i a, b, c E Ds(D), and

11, 01711,. + Ill 2=1IPo < Ki, Ila=lln + IIb=1IPo < Ki

the solution then satisfies (3.4.6). In case of negative index again formally
7i=72=0.
A basic paper for the POINCARE problem for generalized BELTRAMI systems espe-
cially for generalized analytic functions is [Dani 621.

3.5 Discontinuous boundary value problems

The conditions on the coefficients of the RIEMANN-HILBERT boundary conditions
can be weakened. They might have discontinuities of first kind (A) or even of se-
cond kind (p). For analytic functions this discontinuous RIEMANN-HILBERT problem
was investigated by MUSKHELISHVILI, see [Musk53]. The discontinuous POINCARE
problem for generalized BELTRAMI equations was studied in [Bewe88,89]. In this sec-
tion a priori estimates for solutions to these discontinuous problems for generalized
BELTRAMI equations are developed. Again we will deal with the unit disc D. The
coefficients of the boundary condition

Re {Xw} = o on OD

are assumed to satisfy the following conditions. There are finitely rriany consecutively
ordered points {c : 1 < i < m} on OD subdividing aD into m disjoint open arcs
{I' : 1 < µ < m} such that

I <p<m,O< f3<1,r

.1(c - 0) = eie".1(c + 0), 'Pµ :_ 0 - k, k := I0µ1 +1,,
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where

A(cµ ± 0) := lim A(cµe"), Iµ E {0,1) such that - 1 < <pµ < 1 ,tfo
m

V(z) W o(z) fl Iz - cµ0 < 6,, w,. + R < 1, 1 < p < m ,
µ=1

with 'o E I <p <m.
The index c of this discontinuous problem is defined by the equation

m

2zc:=Ekµ
µ=1

Later on the entire part [is] of Kc, i.e. the largest entire number less than or equal to
ti will be used. In case when no discontinuities at the points cµ(1 < it < m) occur we

m

have l9µ = 2eµa, Iµ = 0, pµ = 0 with rcµ E Z. Hence, x = ,cµ E Z coincides with
µ=1

I.Jdloga(C)
2az

8D

If A is discontinuous in cµ then I can be chosen in such a way that kµ is an even
number. But this will influence the behaviour of the solution near c,. We thus have
to consider the two cases when 2x is an even or an odd number. If k is even then
,\.(z) := A(z)(z - cµ)11,,Iz - c a function of z E 8D.
Here (z - cµ)11- on 8D is considered as the boundary values of an analytic branch of
this function for z E D. If kµ is odd then the function Aµ has different signs on the
two sides of cµ on 8D. This can be seen from

µ)11µlim A(z)
z - c

cu±o 1z - cµ111µ

1[,11

= lim A (cµetit
c

9-0
) °

IeT" IWO
1>0

= A(c ± 0)--11 (:Feiz )1111

from which

lim A,,(z) = A(cµ + 110 = A(-µ - 0X-'-e'21 "11µe'(*11µ-eµ)

(-1)kp lim A,(z)
=-cp_o

follows. We therefore distinguish two kinds of points of discontinuity,

C1:=(cµ:kµ+I E2Z), C2:={cµ:kE2Z} .
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In c E C2 the function \(z) := A(z)H t (z - cR is continuous while in c E Ct
I z - cµlvv

it undergoes a sign jump. In order to transform a into a continuous function on 8D
consider

Ct={c,,,,:1 <v<n} , <v<n<m).
It now is appropriate to distinguish two cases

i. nE2IN , so that ,EZ,
ii. n+1E21N, so that 2ic+1E2Z.

In case i. denote

and define

r, :_ {z : z E 8D, arg c,,,, < arg z < arg c,,,,+t } , 1 < v < n ,

I',,,, : _ { z : z E 8D, arg c,,,, < arg z < arg cµ, + 2zr }

c(z) := z E r,,,,, 1 < v < n .

In case ii. choose co E 8D\{c1,...,c,,,} and proceed as in case i. with Kt U {co}.
Then

c(z)A(z) , in case i.

L(Z) Iz -
co)

a(z) , in case ii.

is continuous on 8D where t is defined with respect to Ct and to C,U{co}, respectively.
The discontinuous boundary condition

Re {A(z)w(z)} = W(z) on OD

therefore can be transformed into the continuous one

Re {ao(z)wo(z)} = cpo(z) on OD

for

with

m
H(z - c,,)', , in case i.

WO .- Xt 1w , Xt 1

m

(z - co) [[(z - cp)wP , in case ii.
I

10:=cAl1-
,

'Po: a_
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the index of which in both cases is is - 2 n E 7L.
In the following r is assumed to be identically 1 and therefore n = 0 or n = 1 which
can be achieved just by relabeling A and W. Thus the two cases are

i. ?CEZ, ii. is-EZd.

The solution w to the discontinuous RIEMANN-HILBERT problem for generalized
BELTRAMI equations in both cases is looked for in the space C(D) fl DI(D).

Lemma 20. For A E Ca(C,.) the function Ao E C'(F ).

Proof. Any factor of XI IXII-I turns out to be LIPSCHiTZ-continuous. This shows
Ao E CO(I',.). To prove (z-c)wlz-cl-w for fixed c, Icl = 1, and <p real to be LIPSCHITZ-
continuous on 8D\ {c) let zI, z2 E 8D, zI # c, z2 0 c. Then

(zk - c)wlzk - cl-w = eiwarg(zk-c), k = 1, 2 ,

l(z2 - c)wIz2 - cl-w - (z1 - c)'Izl - CI-wI = Ieiwl-g(z2-c)--g(=,-c)] - 1

5 l'' I arg(z2 - c) - arg(zj -

c) - arg(zI - c)l .

From the triangle 0, 1, eiu we see arg(ei° - 1) = 2(a + N). Hence

arg(eia - et°0) = ao + (a - ao + 7r), arg(z2 - c) - arg(zI - c) = 2 (arg z2 - arg zI) -

Applying the cosine theorem for the triangle with corners 0, zI, z2i we see since
I arg z2 - arg zI I < r

2 1

a
iarg z2 - arg zI I < 2 sin

2
larg z2 - arg zI I < 2(1 - cos(arg z2 - arg zI )) = Izi -Z21-

Thus
l arg(z2 - c) - arg(zI - c)I < 4 lzI - z21 .

This estimate holds even if say zI tends to c when arg(zI - c) is replaced by its limit
arg c + 2 . Therefore zI and z2 may take the value c when arg(z2 - c) both for k = 1, 2
is replaced by the tangent direction or both by the opposite directions. Hence, AO
satisfies for any zi, z2 E rµ a HOLDER condition

IAo(zI) - Ao(z2)I 5 HIzj - 2210
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with a HOLDER constant H independent of the location of z1 and z2 with respect to
the end points of F. As Ao(z) is continuous, we may pass with z1 to any endpoint
c E {c,,, c,,,}1 = c1i getting

IAo(c) - Ao(z2)I < HIc - z21' .

Remark. Later we will see by Lemma 24 that Ao E CO(8D) because of its continu-
ity at the

Theorem 42. Let A and W satisfy the above conditions. Then the modified discon-
tinuous RIEMANN-HILBERT problem for analytic functions 0,

Re{a0)=p+h on BD,
Im {A(zk)¢(zk)} = ak , 1 < k < 2K + 1, if 0 < x ,

where
h=0

if x <
form

where

and

zkE8D\{c,,:1 <µ<m}, akEtV, I <k<2x+
if 0 < K and

solvable.

-K-]

K+1

hkzk, hk = W--k, IkI < -K - 1, if - KEIN,

h(z) :=
[=1

hkzk- hk = h1-k, IkI <I-KI, if 1 -KEIN,2
1z1+z

0 with undetermined coefficients hk, is uniquely

O(z) _

1, are given points and

The solution has the

iX (z) /' h(t)) t + z dt
+ iX (z)Q(z)2ai J ix(t) t - z t

8D

X(z) := iz1K1e" 1s1X1(z) ,

7-(Z).= - - J{azg Ao(t) _ IKI a g t} t
t + zz dt

8D

Ao(z) := A(z) X1 (Z)

IX1(z)I
,

1K1

Q(z) = E dkzk +

+-1K1 d' z if K - I E INo,

0, ifPC EINo,

(3.5.1)
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Q(z) =

with coefficients satisfying

co+z tcEIN,d' if 2co-z

d-k = -dk,

being uniquely defined by the side conditions for 0 < tc and d' being undetermined for
tc < 0 an odd multiple of (-1/2). (3.5.1) is the solution for -,c E IN if the hk are
determined by

-K-1 1 e1' 'M
Akµhµ = Bk, Akµ := 2-Ti

./ I Xt(t)I
t°-k-tdt,

1

1 /` elm'[t) dt
Hk

-27ri IX,(t)Iw(t)tktl , IµI < -tc - ], 0 < k <
am

and for 1/2 - tc E IN if the hk and d' are determined by

[-K] Im'[t)
k = Bk, Akµ

27x2 X
tAkµh"

+ co I (t)I}11 K an

_ _ 1 r
dttk

Bk 27r: / I=t(t)I (t)+l >
ICI < [-tc], 0 < k <

all

Proof. Because W, + Qµ < 1 the integral in (3.5.1) exists and 0 will be seen to
satisfy the boundary condition in 8D\{c, : I < p < m). Near the ca's 0 in general
will turn out to be unbounded. This last assertion will be proved in the following
lemmas. We first concentrate on proving formula (3.5.1).
For z E 8D we have

Re {A(z)X(z)) = Re {i.( z)Ao(z)e-It"'(s)Xj(z)} = 0 ,

so that X is a canonical solution to the homogeneous boundary problem. A solution
0 to the inhomogeneous boundary problem then would satisfy

Re 0 = AO
AV __ Amp

ix _e-tm'IXiI = -Ae-tm'IXII iX on 8D

0, if - rc E IN ,

µ-k-3/2 dt ,

because on 8D
X = iAe-I""TIX;I
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But iX-10 is analytic in D up to a pole of order at most [kc] at the origin if 0 < ic,
and a pole of order one in z = co if 21c is odd, and with a zero at z = 0 of order at
least l[,c]I if K < 0. Thus ¢ has the form (3.5.1) at least if W is continuous. This is
clear from section 1.4, proof of Lemma 7, for sc E INo. If re - 1/2 E INo then Q having
the same singularities as - iX-1W,5 has a pole of order at most [rc] at the origin and a
pole of order one at co on 8D. Moreover, Re Q vanishes on 8D. From

Q(z) z

dco + 2 dkzk
k=-[Kl

we find on 8D

o0

dcoz
= z - + E [dkzk + dkz-k]Q(z) + Q(z)

k=-[Kl

d - dcoz
[Kl oo -[Kl-1

_ + do + do + >2(dk + d_k)zk + dkzk + dkzk = 0 .

Z - CO k=1 k=[Kl+l k=-oo

Hence, dk = 0 for [ic] < k, dk + d_k = 0 for 1 < k < [IC], d = (do + )COdoso that
Kdo+do z+co do-d0 k k

Q(z) =
2 z - co

+ 2 + [dkz +dkz
k=1

which is of the above form. The coefficients are determined by the side conditions
which give

zk + co [K[

i d`+ izkd _
zk-CO vc-[Kl

akel'"T(:k) 1 r'P(t)elmT(t)Im

t + zk
dt

1 < k < 2r+1
IXI(zkl 21riJ IXI(t)I t - Zk t ,

an

where formally d' = 0 if Ic E No. The determinant of this system of linear equations
is

2K+1
+l

2c0
K1

(x - c0)-1z Knl<p<v<zK+1 (zp - 4)
v=1

If Ic E lNo the determinant of the system is

2K+1

flZy K II (ZM - Zy) .
V=1 1<p<V<2K+1

Thus the coefficients of Q and d' are uniquely given if rc > 0 and being the solutions
to the above system of linear equations can be estimated by

2K+1

Idyl, Id`I 5 M(zk,c ,A),1 Iapl +
p=1

1 ! t
Inl

+ zp dt
21rif IXI(t)I t - zp t
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For K < 0 coefficients of h and d" too, if 2K is odd, are determined by means of
the solvability conditions. They arise because the solution is demanded to behave
regular at the origin where X has a pole of order I[K]I. In order to show that the linear
systems

-K-1 l-Kl
Ak"h"=Bk, 0 <k<-K-1; 1: Akµhp+-=Bk,0<k<(-K],

are uniquely solvable the related homogeneous systems are shown to be only trivially
solvable. 7z-

Let b" satisfy b-, A= bµ, Ipl < -K-1, and b" and b satisfy b-" = b = b, Il<I < [-K],
and

-1 1-K]

0<k<-K-1; Lkµbµ+b- =0,O<k<(-K].
µ=K+1 µ_(KI+Z

Then

are satisfying

and

-K-1 (-Kl

g(z) - b"z"; g(z) E bµ Z" z
"=K+1 µ-(KI+Z

Img(z) = 0; Img(z) = 0 on 8D

1
tmT(qe

J 1X (t)Ig(t)t
0, 0 < k < -K - 1 ;

1

8D

1 e1' (`> dt b

2-riel IXI(t)Ig(t)tk+1 = --k, 0 < k

Using in the last case the first equality k = 0 to express b through g the other equations
of this system become

1 CIMT(9)

Gk

1 1 dt
D 1XI(t)9(t) 4 t

0' 1 < k < [-K] .

From the first system we see that

1 eI"'T(0) t + z dt _ z-K eI'nT(`) dt
G(z) g(t) = ` g(t)

aD
IXI(t)I t - z t Vi aD

IXI(t)It-K

t - Z

is an analytic function having a zero of order at least -K at z= 0. Hence, at least
-2K level curves Re G(z) = 0 of its real part which coincides with

eIinT(z)
Re G(z) =

IXI(z)I9(z)
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on 8D pass through z = 0, see the proof of Theorem 18. These level lines cannot
intersect one another within b\10} if G is not vanishing identically. They therefore
intersect 8D in different points. Thus d(z) and hence g(z) have at least -2K zeroes
on 8D. But z-1g(z) is a polynomial of degree at most -2r. - 2. Hence g(z) _- 0.
From the second of the above two systems we see that

e1i°'lt) It + z co + z dt
G(z)

1ri [X1(t)[g(t) Lt - z CO - z, t
an

Z[-R)+1 eh1 it) t-l-R) co
l-K) dti [X1(t)[g(z) t- z- co - z t

is an analytic function in D with a zero of order at least [-/6] + I at z = 0. Therefore
at least 2[-tc] + 2 level lines ReG(z) = 0 of its real part passing through the origin
intersect 8D in 2[-K) + 2 points if G does not vanish identically. But on 8D

ca + z elm:(1)
ReG(z) = [X1(z)[g(z) + Me

co - z IX1(z)[9(z)

so that g has 2[-l6] + 2 zeroes on 8D. This is only possible if g(z) - 0 because
z-K-1g(z) is a polynomial of degree at most -2tc - 2 = 2[-tcJ - 1. This proves that
the homogeneous systems are only trivially solvable. The unique solution to the
inhomogeneous systems can be estimated by

l-K- R )

Ih.[, Id'I < M(c,,, A) E
k=0

I r V(t)et-r(t) dt

2 Ti J 1X1(t)I tk+l
8D

(3.5.3)

We are now looking for an a priori estimate for the solution 0 in (3.5.1) which will
charaterize the behaviour near the too. In order to prove this a priori estimate
the behaviour of CAUCHY integrals with discontinuous density has to be studied. The
results are due to N.I. MUSKHELISHVILI, see [Musk53], p. 83 and [Mona83], p. 21. In
the following Cab denotes a smooth bounded curve in the complex plane 0 with end
points a and 6. The proofs of the next lemmas follow the argumentation in [Musk65],
§23 - §25.

Lemma2l. W'EC°(rab),0<a<h<b<1-a,a+p56or a<IL =6,

W(to) tai / (t - a) (t t to)
r,,

N(a) a neighborhood of a, r := rab n N(a). Then (to - a)dV(to) E c.(r) and

Ca((t - a)b(p(t); r) < M(-, 1,, b, rab, N(a))C0(w`; rab).
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Proof. Decompose v into the form

p(to) _ (cp'(a) + '(to))H(to) + 21ri f 1'(tt -
to(to dt

It - a)"
rob

where -O(to) _ V'(to) - cp'(a) and

(to - a) r 4G(t) - O(to) dt = *(to) + 1 f V'(t) - 1'(to) It - a)6-"dt
2iri J t - to (t-a)' 2rr: t - to

rob rob

The function
H(z)

1 f (t - a)-"dt

2ai t - z

rob

satisfies by the PLEMELJ-SOKHOTZKI formula

fl+(to) -11-(to) = (to - a)-", to E I'as\{a}

Choose the branch of (z - a)-" being single valued analytic in N\l' satisfying

((z - a)-")+ = (to - a)-" to E r \(a) .

Then

so that

satisfies

((z - a)-")- = e-2xt"(to - a)-" to E 1'\{a} ,

(z - a)-"
e.ro

w :_ - (z - a)-"T-- e-2it"
-

2i sin irµ

w+(to) - w (to) _ (to - a)", to =E r\ {a) .

Hence, 11 - w is continuous on I'\{a} and thus analytic there. In order to show a to
be a removable singularity let µ < v < 1. Then

Iz - al"Sl(z) =
1

f Iz - al" - It - al"dt
+

1 f It - al°-"e-'"0-0
dt2ri It -a)"(t-z) tai t-z

rab 1'.b

Because the numerator of the integrand in the second integral is H&DER-continuous,
see [Musk53], p. 18, this integral is bounded, see Theorem 5. The first integral is
bounded by

R
1 /' IdtI 1 f dr

J It - al"It - z1'-1 21rko r"Ir - roll-
r.6 0
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where ko is the constant from the proof of Lemma 1, r := It - al, ro := [z - al and
ir - rol < It - zl. Assuming ro < R one sees

ro/2

J
dr < 1 (ro "-v

rµlr - roll1-µ 2)
0
ro

l dr < 1

J
`ro )"-µ

rvlr - roll- Y 2
ro/2

R

l rµjr -
drrol'-" < 1 (R-ro)"

V ro
ro

so that the first integral is bounded, too. Using a weakened form of the RIEMANN
theorem for removable singularities, see [Ding6l], p. 45, [Ash7l], p. 78, h := 11- w is
analytic in N. Therefore

11(z) _ (z - a)-" + h(z), z E N ,
2i sin µ7r

where h(z) is some analytic function in N. Moreover, from

2f1(to) =11+(to) + fl-(to), to E r ,

it follows

1 (to)
2i

cot irp(to - a)-" + h(to), to E r\{a}

Therefore (to - a)611(to) is HOLDER-continuous on 1' with exponent a where a < p
if 6=por a<b-pif p<6,and in the latter case

Ca((t - a)'SI(t); r) < M(a, µ, b, rab)C6_µ((t - a)611(t); I')

5 M(a,µ,b,rab,N(a)),

while in the first case the r) norm has to be used leading to the same estimate.
The proof of the estimate

C. ('F; rab) <_ M(a, µ, b, rab)H.('P')

for

T (to) :=
I r b(t) - 0(to) (to - a)6 - (t - a)6dt

27riJ t - to (t-a)$,
rah
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technically involved and lengthy is given in [Musk65], p. 84-88. Finally

C. (Lj ; r < M(a, µ, b, rb)C(; rab)t - to (t - a)6-µ -
rob

follows from the proof of Theorem 4. In order to apply this result we supplement rab
with a curve rba such that rab U rba is a smooth simply closed curve and extend ?/i
on this curve such that it becomes a HOLDER-continuous function coinciding with 0
on rab and vanishing identically on F. This is possible because O(a) = 0 and N is
assumed to be a small neighborhood of a. These estimates give the estimate in Lemma
21.

Lemma= cpEC°(rab),0<a<p<b<1-a,a+,u<-b,

O(to) .- 1 V(t)dt
2w: It - al-(t - to)

rob

r := rab n N(a), N(a) the closure of N(a). Then (to - a)64i(to) E Ca(r) and

Ca ((t - a )64 (t ); r) < rab, N(a) )Co ('p; rab) .

Proof. Decompose 1 into

,Rri I - 1 f W*(t)dt . W(a) dt

r,,

where

f It - aI-(t - to)
r,b

'P (t) = ['p(t) -'p(a)]ei"Awt-a)

is a Ca(rab)-function, see [Musk65],§6. Moreover,

1 ( dt - 1 f v1(t) - `pi(a) at
2wirae (t - a)0(t - to) 2wiras (t - a)N+;a(t - to)

with
W1(t) eilarg(t-a)(t - a)o/2 ,

in C?a(rab). As in the preceding proof

i < M(a, p, b, r, N(a))H0(W*)
C.

((to_c)8
2w (t - a)((t t to) 9
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where HH(V?) < CC.(<p; rab) and

C. (to -

a)6

J
Pi(t) -,Pl (a) dt; r < M(a, p, 6, rab, N(a))

roe (t ) (t - to)

Remark. Both these results hold with respect to the end point b , too. The only
difference is that in this case Cl has to be replaced by

e`"x
(z - b)-" + h(z)

2i sin par

and the boundary values fl(to) by

- 1 cot pa(to - b)-'A+ h(to)
2i

Lemma 23. V E Ca(I'ab), 0 < a < 1, 0 < p < 1, v := min{a, p}. Then the
boundary values of

1(z)
21ri It - I ((t - z)dt, c E {a, 6} ,

rae

on

rs,:={C:CErab,bo51C-al,6o<I(-bI), 0<4bo<Ib-aI,
belong to C"(r6o) and

Cv(,Dt; r26a) 5 M(a, p, bo, rab)Ca(p;rab)

Proof. Decompose 4 by splitting rab into r6p and rab\r6,. Denote the integral over
rse by 41 and '2 := 0 - $1. Let a', 6' be the end points of rsa and

W(t) := It - cl-",p(t)

Then

$1(z) 1 J 'P'(t) - `p*(to)dt + to z - 6'
2iri t - z 27i gz-a'' to E

r,o

where we choose the branch of log
z

in V \rsa which vanishes at infinity. Lettingz - a'
z tend to to from each side of rs we see from Theorem 2 and

(log z - a' 1
= log I too - b' I + i[arg(b' - to) - arg(a' - to)]

Clog z - b;l = log Ito - 6/ I + i[arg(6' - to) - 2u - arg(a' - to))z-a J to - a
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that on rao

'(t) - (p (to) P`(to) to _'V 11 r
O(to) = f dt + log _ v"(to) + 01 (to),tai t - to 2iri to - a,

2
r,,/

(to) = 1 J V,(to)dt + `P'(to) log to -
b' -'p`(to)

27ri t - to 21ri to - a
r,c

- 2'p*(to) + 01(1o) .

From ,p' E C°(rao) and the proof of Theorem 4

C(4; rao) < M(a, Fs, bo, rab)CC((; rao )

follows. But Theorem 4 applies to closed curves. We therefore again as in the pre-
ceding proof supplement rab by some rba, define <f by zero on rba and as a linear
function on rab\rao so that cp' extended in this way becomes HOLDER-continuous
with exponent v on the closed curve rab u rba.
For z, zo E 1'2so

1f2(z)1
Abo J 1

M(!2, bo, rab)Co(y; r.,) ,

rab\rra

1-02(z) -'62(zo)l =
1 ,p(t)(z - zo)dt

27ri It - c10(t - z)(t - zo)
rab\reo

< M(µ, bo, ras)Co((p; rab)lz - zol

C1 ('02; r2ao) 5 M(µ, 6o, rab)C'o((p; rab)

such that
Ca(42; r2ao) < M(a, p, bo, rab)Co((p; rab) .

Lemma 24. Let rac and rcb be two smooth curves with endpoints a and c and c
and b, respectively. Let rac n r0 = (c}, rab := Fac U rcb and the nonobtuse angle ao
between rac and rab at the point c satisfy 0 < ao < T. If w E C°(rac) and cp E C°(ras)
then cp E C°(rab).

Proof. It is enough to estimate the HOLDER coefficient of (p in the neighborhood of
c on rab. Let RD be the common standard radius for rac and rcb related to ao/4,
Ro = Ro(ao/4), see section 1.1. Let t E rac, t' E reb with it - cl, It'- cl < Ro. Then
the angle between the tangent of rac in c and the straight line through c and t is less
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than ao/4. The same statement holds for t' and rdb. Hence, the angle at the corner c
of the triangle t, c, t' is at least ao/2. The cosine theorem then gives

It-t'I2> It -c12+It'-c12-21t-clIt'-clcosao/2>2[It-c12+It'-c12]sineao/4.

Thus

lo(t) - p(t')I < Iv(t) -'p(C)I It - cI + IV(c) -V(t')I Ic - t'I°
it - t'l° It - cI° l t - t'I° IC - t'I° It - M.

it - cIa + 1C - t'I °
max{H(cp; r.c, a), H(cp; rcb, a)}

It - t'I°

Applying Lemma 3 and the above estimate to get

I t - el° + I c - t'l° < 21_0/2[It - cl2 + Ic - t,12]°/2 < 21-'It - t'I° sin` ao/4

shows that 'p is HOLDER-continuous on rab near c. Therefore do is HOLDER-continuous
on Cab.

Lemma 25. p E C°(rab), 0 < a < Ak < bk < 1 - a, a + pk < 6k, k = 1, 2. Then the
boundary values of

O(z) := I cp(t)dt

27ri f It - al", It - b1"=(t - z)
rab

on Cab are HOLDER-continuous with possible exceptions of the end points a and b and

C°((t - a)6'(t - b)824 *(t); Caa) 5 M(a, b1, b2, Cab)C°((P;1'ab)

Proof. Applying Lemma 23 for a fixed 6o > 0 small enough, e.g. 4bo = Ib - aI, one
finds

Ca(4*;r6,) <_ M(a,b1,62,bo,f'ab) C°(v;Fab)

and from Lemma 21 applied to V(t)It - bJ-"2 in N(a) and to p(t)It - al-l" in N(b)

CQ((t - a)6'(t - b)6'4i(t); f'ab\l'6a) M(a, 61,62, bo, l'ab) C°(cp; rab)

Using Lemma 23 then

C.((t - a)6' (t - b)6'F(t);1'ab) <- M(a, b1, b2, bo, f'ab) Ca(5o; Cab)

Lemma 26. Letc, EOV(1 <p<m),argc"<argc"+1(1 <p<m),
arg cm < arg c1 + 27r,

r":= {ICI= 1,argc" <argt; argcµ}1},1 <i <m,

rm :_ {I(I = 1, arg cm < arg C < arg c1 + 27r) ,
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PE Then

1 r M I- dt

2xi1 P(t)flht-cµ t-z
ao

satisfies

where

Co. (fi(t - cµ)'co+(t);O1) < M(a,1Pµ,Cµ,bµ) Ca(v)

Ca(P) := -- c. (p; r,.)

Proof. From Lemma 25 for (c,,,+l := cl,Vm+1 :_ W1 etc.!)

i /r P. (t) dt =(t) (t) 11 I-wkIt -'P,.(2) .
2At I

l
,p, : v

It-c.I1P-It-cµ+II'Pµ{1 t - Z
ck

rv
k#µ.µ+1

one gets

so that

C,((t - c,)1,(t - cµ+l )6µ+lvµ (t); rµ) 5 M(a, (Pa, ca, I',) C0(P;

C. (11(10 - ck)6k(to); rµ
1

In order to estimate vp on 8D\I' we proceed as in the proof of Lemma 23 considering

z,zoErµ6o:={CEBD\rµ,bo<-IC-cµl,bo5IC-ca<+1I}

where I'y denotes r without the end points and bo > 0 is small enough. We get

Ct (,Pµ; I',) 5 M(sPA, ca, bo) Co(P;

CO(w,,;rvoo) 5 M(a,'Pa,ca,bo)Co(P;r,,)

For z E OD\I µ with Iz - c4I < bo decompose r,, at its middle point into the two parts
rµ1 and r.2, let the middle point belong to both, and <p = W; ,l pµ2 with

'Pµ1(2) := .ltai It - c:I('(tt- z) , Pµl(t) := P(t) nk# It - ckI-wk

rµ1

1 pµ2(t)dt

-
rr wk

!Pµ2(2) 21rf ,/ It - cµ+11 M+l (t z) , Pµ2(1) - P(t) !lk#µ+1 It - ckI
rµ2
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Obviously,

C1('P"z;(OD\1µ)fl{(z-c, (so}) < M(cpa,ca,bo,F.)Ca(P;I'"),

Ca(9 2;(OD\lµ)fl{Iz-cµI <bo}) <
Arguing as in the proofs of Lemma 21 and Lemma 22 using

1 dt __ e'"*_ "
tai (t - z) 2i sin per

(z - h"(z)
r",

with h" analytic in N(c")\I'" one can find

Ca((t - c")a"'Pvl (t); ((9D\1'") fl { Iz - c"I < b0}) < M(a, b", bo,',O),, ca, l'") Ca(P; I',.)

The same argumentation for the other part in Iz - c,,+1I 5 bo finishes the estimation
of p,. From

C. (t - Ck)dkP"(t); (7DJ < M(a, Pa, ca, bo, ba, l'") Ca(P; r")
111

because ,p = cp" by summation

m

Corollary 8. Under the assumptions of the preceding lemma

Ca - cu)a"(P(z), M(a,'p", cµ, ba) Cc(P) 8,0)

This follows from the PRIVALOV theorem for analytic functions, see Theorem 5.

Lemma 27. Let cµ, F,. and p be as in Lemma 25 and IP 4 < 1. If then a and b" are
chosen according to

0 < 2a < min{ min IW I, min(1 - V")}
,,"#o o<w"

o+cp"<b"<1-a, if 0<<p",

a<b"<1-a, if gyp,=0,

Sµ=O or a<bµ, if ,p<0,
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then

Proof.

C. (H(z
m-

cu)6 co(z); J M(a, PY, cM, b) Ca(P)
1 /

1. Let some µ be zero. In the situations of Lemma 21 and 22 then instead of ft

_
ui I

t

z 27ri
log a- Z (log 1- _ 0.)

rab

occurs. This function is single-valued in (' \rab with boundary values
t

1 dt _ 1 101; b-to-1f1
to E r'a6\{ab}

2

a

a
a)logo-t ECa(r), a<6,

to

and

Ca ((b02_(
/

, I< M(a, b, 17.6, N(a))ri t t o
af

Again by the PLEMELJ-PRIVALOV theorem, Theorem 4, observing that the
numerator vanishes at t = a it follows

1 f *(t) - `o (a)di; I < M(a, ra6)Hc(P )C° 21ri J t - to
rae

Lemma 23 holds for u = 0 too if v is replaced by a. Namely, for u = 0 one has
gyp' E C°(1' ) so that

Ca(,Dl ; r4) M(a, bo, rab) Ca(,P; r6a) .

Moreover, for z, zo E r,,%

1

-bo Iw(t)I Idtl < M(bo, rab)Cc(w; rab) ,

rab\rj.
Iz - zol k"(t)I Idtl

2a J It - zI It - zol
rab\rba

M(bo, rab)Co(9 ; rab)IZ - zoI
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Obviously, Lemma 25 may be reformulated where in the case pa = P2 = 0 the
number a > 0 is less than 1/2 and 6k is chosen according to a < bk _< 1 - a for
k = 1, 2. If Al = 0, P2 # 0 then a has to be restricted by 0 < a < P2 and ba and
62 are chosen so that a < ba < 1- a and a+p2 < 62 < 1 - a. For pa # 0, 112 = 0
corresponding conditions hold.
These arguments allow the So,, in Lemma 26 to vanish. For a vanishing V,, the
conditions from Lemma 26 have to be changed to a < bµ < 1 - a. Moreover, a
is restricted by

0 < a < min Wµ, a < 1/2 .
I Gµ<m
«M

This condition is no restriction on the function p because if p E then
p E Ca(r,,) for any a, 0 < a < a', and

C0(P;rµ) 5 M(a,a,rµ) Ca'(P;r.)

2. Let a particular it be negative. For w E C'(r,b) and a < -p from the PLEMELJ-
PRIVALOV theorem

.D(to) tai jW(t)1t-aI-"dttcCab

is seen to be HOLDER-continuous on r = r,b n N(a) and

c.(, o; r) 5 M(a, p, r,b, N(a)) C0(T; r,b)

Moreover,

Ca.(,D;reo) 5 M(a,p,bo,r,b) C.(V;r,b) .

This estimation can also be achieved from

(t)dt10 -
1 a4 t (a) =-

2ariv

( o) (t - )aJ
11ab

by applying Lemma 20 to Lemma 21.
If in the situation of Lemma 24 one
0<a <-p,2a < v + a <6<1 - a

,(t)eiyarg(t-a) '

exponent, say p, is negative then with

0(t) := 1 v(t)dt
27ra It - all-It - bI"(t - z)

rab

satisfies

C,((t - b)'-O(t); r,b) 5 M(a,A, V, 6, r,b) CQ(so; F,b)
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If both p and v are negative then with 0 < a < min{-µ, -v}

ca(f; rab) < M(a, li, v, l'ab) Ca(5p; r .b)

But then for any bk > a(k = 1, 2)

Ca((t - a)'-(t - b)6'4(t); l'ab) :5 M(a, p, Y, bl, b2, rab) C0('P; rab) .

Remark. If in the case 0 < <p (1 < µ < m) instead of bµ > <pµ we would take
b = ,pµ and would not restrict a then we only would get an estimation of the form

cY-c (fl(t0 - (7D < M(a, r,'p,., ca) Ca(p) ,

1

where v := min{a, Cpl, ... , rpm } and 0 < e is arbitrarily small as follows from the
consideration in [Musk65], §25. But this estimation is not good enough for the kind
of problems we are involved with.
On the basis of Lemma 26 the solution (3.5.1) to the modified discontinuous
RIEMANN-HILBERT problem for analytic functions can be estimated.

Theorem 43. There exist constants Si and 62 independent of 'p, ak (1 < k < 2x+1)
if 0 < x, hk(IkI < -x - 1) if x < 0, and of 0 itself such that with 0 + 8v < y and
0 < 0 < pµ +'pv < 7µ +{pµ < 1- #(1 < µ < m) the analytic solution ¢ to the modified
discontinuous RIEMANN-HILBERT problem satisfies the a priori estimate

2,c+1

Co (fl(z - cµ)""m(z); n < biCp('o; OD) + b2 E Iakl ,
("M=1 k=1

where the second term does not occur for x < 0.

Proof. 1. Applying Lemma 26 to the representation (3.5.1) of 0, i.e. to

4'(z) =
zNNlei,(:)XI(z)21 f ,p(t) +h(t)eIMT(:)t +

z tt - z[K)eiT(:)Xi(z)Q(z)
11Oi

8D

with

m m

Xi(z)
= JJ(z

- c ),pµ if 2x is even, Xi(z) = (z - co) fl(z - cµ)'°" if 2x is odd
µ=1 A= I
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gives for 2rc even and nonnegative

CO

m

D)D < CO(11(Z - C0,00;

M-1

(t 2
z

_ t ` dt;DlxCp
\µ(z - 21ri

f Wo(t)+aY

8D J /f
µ=1

(fi(z+Cp(z1)e'); )Cp - c,)""+" Q(z);
µ-1

2'c+1

< b1 C,((po; 8D) + bs E Iakl
k=1

Here for the last estimate (3.5.2) is used and

1 j po(t)eI"`T(`) t + zk dt
2si / no o It - CYIR"+""

IM
t - zk t

< MCp(<po; OD)

169

which follows from Lemma 22 because zk # c, 1 < k < U + 1,1 < p < m. The same
estimate holds for 2x odd and nonnegative. The only difference is the additional
factor z - co in X1. In this case it is more convenient to rewrite the second term in
the sum on the right-hand side of (3.5.2) as

Im I
J

t + z, dt
tai 0"le'T(1)X1(t) t - z t

an

1

J
A(t)t-1" 1e 'T(t),PO(t) 2 1

R1,R1, It-CMI11{ zk - co (t - zk2A1
an

t
1CO)+Co(_L_)}t
t

Integrals appearing here are of the same kind as before and we just have to observe
zk96 C.for1 <k<2r. +1,0<p<m.
2. If r. < 0 the estimates (3.5.3) and the same argumentation as before show that

CO (i1(z - c)Q(z); f M(c, , A)CR('po; 8D)
pm_1

and h being a trigonometric polynomial satisfies especially

Cp(h; 8D) < M(,B, c,,, A)Cp(Wo; 8D).
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Therefore in this case

CIO (H(z - cv)'"O(z); D ! < b1C0(wo;OD) .
IA=m

1

Using the representation of solutions to generalized BELTRAMI equations by analytic
functions as given in the proof of Theorem 38 on the basis of Theorems 42 and
43 the discontinuous RIEMANN-HILBERT problem can be solved for the generalized
BELTRAMI equation. For the proof the following lemma is needed.

Lemma 28. Let D be a bounded domain and f E C°0(D) and 0 < a < ao < 2a.

Then for any fixed to E D the function p(t) := f
tf (

t0) belongs to C"0-"(D)
o

satisfying D) < (1 + 2°p-° + (diamD)"° ")Hoo(f)-

Proof. From

fi(t) = f (t) - f (to) It - tolIt - tai"°
it can be seen that cp(to) = 0, IIVIIo,o < H"(f)(diamD)°°-", and

Iy'(t) - V(to) I - If(t) - f(to)I < H"(f)
It - tol°o-b It - toloo

Let now tI and t2 be two different points from D. Then

IIP(tl) - W(t2)1 - I f(tI) - f(t2) + f(t2) - f(to) It2 - tol° - III - tol"
III - t21°0-° III - t21°°-°lt, - tol" III - t2l°o-° III - tol°lt2 - toI"

< H° (f) III - t2l° It2 - t0l°°-° III - t2I°
° III - tol° + III - t2l°0-" III - tol°]

We distinguish three cases.

(i) If it2 - lot < Iti - tee 5 lti - too, then

101) - 9y(t2)I < 2H°0(f)
III - t21°o-°

(ii) If Iti - t21 < Itl - toe, It2 - toe, then

so that

It2-tol 5It2-tIt+Iti-1oI 521tl-tol

I i(ItI
-
) -

tz
H"°(f) f l + 2°°-" ii

- tzj°0-2" < (1 + 2°0-tr)H00(f)
III -
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(iii) If It1 - tol, It2 - tol < Itl - t2l then

Io(tl) - _v(t2)I < If(t1) - f(to)I + If(t2) - f(to)I
It1 - t2I°o-° It1 - t2I°o-°it, - tol° It1 - t2l°o-°It2 - tol

lf(tl) - f(to)I + If(t2) - f(to)I < 2H°o(f)
It, - tol°p Iii - tol°o

Theorem 44. The discontinuous RIEMANN-HILBERT problem

Re {.1(z)w(z)} = W(z) + h(z) on 8D, Im {a(zk)w(zk)) = ak, 1 < k < 2/6 + 1 if 0 < K ,

for the generalized BELTRAMI equation

uz+µ1wz+142'm==+aw+bw+c=0 inD

is uniquely solvable. The solution satisfies the a priori estimate

zR+l

D < aD) + b2 Iakl + a3IIcIIpo (3.5.4)
y-1 k=1

where 61,52,63 are nonnegative constants not depending on w, pl, p2, a, b, c, cpo, ak, b2 =
0 formally if x < 0, 8o := min{ao, Q} and

2ap,8o < 4,8v + 2aoW,, < ao?'v + 2aoco < 2ao(1 - ao/3o), 2ao,8o + 4,8, < a0 .

Proof. Proceeding as in the proof for Theorem 38 w is represented as

w(z) = O(C(z))ex(=) + .i,j(z)

where

C°o(0, D) + II0Z6 + W -flip <- SIIcIIPO , oo := pogo 2,2 < p 5 po, goAp < 1,

C°o(x; D) + Ilx=Ilp + IIxziIp 5 b(Ilalloo + IIbIIpo) ,

is a homeomorphism of a BELTRAMI equation mapping D onto itself satisfying
together with its inverse mapping z

C°o(C; D) + 11C=II, + IIC-IIp < M(p,po, go),Cao(z; D) + Ilzcllp + lizsII,, 5 M(p,no,go)

and ¢ is analytic in D satisfying

Re {a(z(())¢(C)} _ h(() on OD
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with
;(() := {W(z(()) - R.e A(z(C))O(z(())}e-Rex(s(C)) ,

h(C) h(z(())e-Rex(z(C))

Im {.A(z((k))4'((k)} = {ak-IM (k =((zk), I < k < 2a+1, if 0 < e .
Let cµ :_ ((cµ) be the points corresponding to the points of discontinuity for .i(z(.))
and Obviously, A o z,Vo o z,rr o z E C°o13(rµ) where 1'µ := ([r"],1 < p < m,
and O o z,X o z E C°o(D). A o z has the same discontinuity at cµ as A has at c,
characterized by W,,. As /.lo := min{ao, #} then instead of C0013(Pµ), C°-2(D) we may
work with C-00 (Tµ) and C°0P0(1). Then cp E C°010°(1'µ) and e.g.

C°o13o (Wo o z; 8D) < M(ao, Qo, #)C°op (Wo o z; 8D) < M(ao, /jo, Q, p, po, 9o)C0('po; 0D) .

By Lemma 27, (E C°0(I'µ) implies ((z) - ((c") E C°0-°(I,) and
IZ - cµI°

((z) ((c") (- c" E C(°°-°)°°(I'")
Iz - cµI° WO:=Z(a - z(v)I°

and
13,E/°

Iz(() - z(µ)Ia
where 0 < a < ao < 2a. Choosing 2a = ao then (ao - a)#,,ao/a = aof". Then

m
( C 20 /°

'P(z((}) ='Po(C) IC - C;1-0-10 , svo(() = w0(z(C)) "" Iz(() - c'-I&'Kii 1

Assuming Qo < min {,Bµ : 0 < then ;o E C°o13(Iµ). Observing ;(cµ) = 0 even
1 <,,<m

;o E C°o13o(8D) is seen. Applying Theorem 43 then the a priori estimate

C°°QO (n(C - Cµ)ryµ Y(() DJ

< S1C 013 ({o(C) - µII=t I(- C.I2°i./°oReA(Z(())i(Z(())1 e-Rex(=K));8D J

_ 2 +1
+bz E {ak - Ima(zk),(zk)} eFtex(=.)

2R+1

<b1C13(wo;0D)+ds Iakl+b3IlcII0
k=1
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where bl, b2, b3 are nonnegative constants not depending on 0, cp, µ1,µ2, a, b, c, ak and
the 7µ satisfy

0 < aofio < 2/3µ + ao'pµ aojm + aow,, < ao(l - ao/3o), ap/3o + 2Qµ < aoi, -

Thus setting aoryµ = 2ryµ

C. 2,30 (H(z -

m try'/a0 mZ -c'
0 ( IS( ) µI«o/2}

-
A=1

Z C,
12T/a0 m 1<

- Cµlao/2/
1)

Ca0
(1Cz) /30

Because

Ca DOGCD,30D -DOG

these estimations and the representation

w(Z) = OMZ))ex(=) + '(z)

lead to the a priori estimate stated in the theorem.

Remark. These estimates are only of qualitative value because the bounds for the
ryµ seem not to be sharp. The function ;o is constructed in such a way that it vanishes
in the critical points c;,. This is much more than is needed to apply the estimate from
Theorem 43. In (3.5.4) just a weighted subnorm for the solution is estimated. This
estimate can be completed by adding weighted Ly-norms of the first derivatives of w.
Because this will again be involved we stay with (3.5.4).
Combining these results with the PoINCARt problem the discontinuous POINCAR9
problem can be studied. This is done in [Bewe89], see also [Bewe88] for the related
nonlinear problem.





4. Other equations and systems related to the BELTRAMI
equation

4.1 Initial boundary value problem for pseudoparabolic equations

If L is an elliptic differential operator with respect to the space variable x, M a dif-
ferential operator with respect to x of lower order than L, and t is a time variable

then Lat + M is called a pseudoparabolic operator. Besides pseudoparabolic also
metaparabolic operators are investigated. A metaparabolic operator has the form

L + In this section a pseudoparabolic equation will be studied which is related
to the generalized BF,LTRAMI equation,

wt:+ILIWt.+p2wtz+atwt+a2mt+b)tt:+b2iij+63w=+b4w=+ciw+c2w+d = 0.(4.1.1)

A related metaparabolic equation would be

wz+ptw:+p2wz+alwt+a2'Wt+clw+c2w+d=0.

There is not too much known about metaparabolic equations, see [Gisc78], [Obol85].
The coefficients in (4.1.1) as well as the unknown w are functions of z in some domain
D of the complex plane D and of t E I with a finite closed real intervall I = [0,T].
For simplicity we restrict ourselves to the special case of the unit disc D = D. The
BANACH space of the continuous and of the continously differentiable mappings of I
into a BANACH space V is denoted by C(I; V) and C'(I; V) respectively, their norms
are

IIfIIo;v = sup ]If(t)IIv, IIfIIi;v IIlllo;v + IIf'Ilo;v
tEl

respectively. Here II f (t)II v denotes the norm of f (t) in V. As vector spaces V there
will appear C°(8D), C'(I), LD(D), W, ,'(D) of complex valued functions. Wy (D) is the
space of functions in D with weak first order derivatives in Ly(D),

Ilfllw,(t>) Illllc(-m) + Ill:IILP(D) + IIfZIILpo)

These notations differ slightly from those used before.

1Lemma 29. Let the real numbers a and p satisfy 1 < 2a < 2 < p < I - a'
let A E C°(8D), A(z) 0 on 8D, x :=

2ni J
dlog A(z) E X, pl,p2 E

aD
C(1; L.(l1)), a,, a2i c E C(I; Lp(®)),

IIp2(t,')IIL0(Y) <_

II-.(t, )II,,(m) + Ila2(t,')IILp(-m) 5

q<I,

K,

175
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O E C(I, Ca(OD)), zk E OD, ak E C(I) for 1 < k < 2rc + 1 if 0 < rc .

Then the problem

w=(t, z) + pi(t, z)wz(t, z) + µ2(t, z)ws(t, z) + a1(t, z)w(t, z)

+a2(t, z)w(t, z) + c(t, z) = 0 in I x D ,

Re {A(z)w(t, z)) _ ,p(t, z) + h(t, z) in I x 8D (4.1.2)

Im {A(zk)w(t, zk)) = ak(t) , 1 < k < 21c + 1 , if 0 < rc , in I

is uniquely solvable. Here h(t, z) = 0 if 0 < K and for K < 0

-K-1

h(t, z) :_ E h,(t)z' , h-,,(t) = h,(t) , IvH < -K - 1 ,
V=K+1

with coefficients h E C(I) to be determined properly together with the unknown w.
The solution w E C(I; Wn (D)) satisfies the a priori estimate

2K+1

Ilw(t, )II w;(D) <_ PIIsv(t, )Ilc-(an) + 7 E Iak(t)I + bI1 c(t, )II La(®)
k=1

with nonnegative constants depending only on t, a, p, q, zk, A, K. The second term on
the right-hand side does not appear if x < 0.

Proof. The existence of the solution together with the a priori estimate follows
from Theorem 37 applied for fixed t E I. It remains to prove w E C(I;W,(D)). Let
w(z) := w(t, z) - w(to, z) for t, to E I. Then

w= + µ1(t, z)ws + 02(t, z)w`= + al (t, z)w + a2(t, z)w

+(pl(1, z) - p1(to, z))w=(to, z) + (p2(t, z) - p2(to, z))w2(to, z)

+(a1(t, z) - a1(to, z))w(to, z) + (a2(t, z) - a2(to,))w(to, z)

+c(t, z) - c(to, z) = 0 in 1 x D ,

Re {A(z)w(z)} _ ,p(i, z) - w(to, z) + h(t, z) in I x 0D

Im {A(zk)w(zk)} = Qk(t) - ak(to), 1 < k < 21c + 1, if 0:5 x, in 1.
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Applying the a priori estimate from Lemma 29 to this problem gives

2.+1
Ilwllwp(D) 5 13II (t,) - wo(t,')IIC.(D) +'y E Iak(t) - ak(to)I

k=1

+b{ (II1110,') -111(to,')IIL-(o)

+Ilaz(t,') -12(to,')II L-(D))IIw:(to, -)IILo(D)

+ (IIa1(t,.)-aI(to,')IIL,(D)

Ilw(to, )Ilc{D)

+IIc(t,') - c(to,')IILo(o)} .

From the continuity of the involved coefficients as functions oft in the respective spaces
and the boundedness of Ilw(to, )II w;(D) the continuity of the mapping w : I -+ Wp (D)
follows.

Lemma 30. There exists a constant M = M(p, T) such that

]w(r,.)dr
0 wv(D)

<M
I/vIt

I II w(r, )Iliv;(D)dr
0

for any w E C(I;WW(D)).

Proof.

I/rt

jIIW('r,-)IIC(-5)dr<T1-1/P ,-)II '(D)drl w(r, )dr 5
o C(Y) 0 0

t I /t+

< T1-I/n I IIw(r, )IIt'v;(D)dr
0

P I/a

jo

w,(7-, .)d7- i ws(r, z)dr dxdyLs(.0)

D
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0

The last inequality holds for wZ, too. Hence

I w(r, )dr
0

r 1/p

< T'-'/p

0

1/pIt

< T' '1 r Il w(r, -)II wo(D)dr

< r Tp-1
J

Iw=(r, z)Ipdr dxdy
J

0

WW(1)

S 3T'-'/p f II-(-,')IIW;(O)dr
0

Lemma 31. (GRONWALL Lemma). Let f be a continuous nonnegative function
on I = [0, TI satisfying the integral inequality

f(t)<c1 +c2J f(r)dr, tEI,
0

with nonnegative constants ck, k = 1, 2. Then

f(t)<cie°'', tEI.
Proof. Introducing

one sees

so that by integration

!1

F(t):=c1+c2J f(r)dr
0

F'(t) < c2F(t)

f(t) < F(t) = F(0)e`71 = cle"` .

Theorem 45. If the coefficients of equation (4.1.1) satisfy

flµl II0,L.(m) + II/12II0,L (B) < q < I , Ila1II0,Lp(D) + IIa2IIO,L,(n) < K

Complex Analytic Methods for Partial Differential Equations

4

E 5 K , IICIIIO,L,(r) + K
ks1
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and those from the boundary condition (4.1.2)

ppEC'(I;C°(8D)),akEC'(1),1 <k<21c+1, if0<tc,

if, moreover, with do E Wp (D) w satisfies the initial condition

w(0, z) = do(z) in D

and the compatibility conditions

Re {A(z)do(z)} = v(0, z) + h(0, z) on 8D ,

(4.1.3)

Im{a(zk)do(zk)} = ak(0), 1 <k<2tc+I, if0<tc,

are fulfilled then problem (4.1.1) - (4.1.3) is uniquely solvable. The solution belongs
to c'(I;WW(D)) and satisfies the a priori estimate

2K+1

IIuII1,w,,(,v) 5 (III'PII1.c-(a1') +7 (Iakllct(t) +b1IIdIIo,Lo(o) +b2Ildollwa(m) (4.1.4)
k=1

with coefficients independent of the solution w as well as of the coefficients of the
equation and the right-hand sides of the boundary, the side, and the initial condition.

Proof.

(1) A priori estimate. Let w E C'(I;WW(D)) be a solution to the initial boundary
problem (4.1.2) then applying Lemma 28 to wz we have

2c+1

Ilwt(t,')IIWP(D) <_ )Iloa(ao) +7 Iak(t)I
k=1

+Sllb,w + b2u + b3w, + b4 o + c1w + c20 + dIILo(®)

2K+1

<_ +7 lak(t)I
k=1

+SKII w(t,')Il wp(m) + 611d(t,')IIL,(o)

Taking (4.1.3) into account w can be represented as

tt

w(t, z) = do(z) + / w, (r, z)dr
0
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so that by Lemma 30

t 1/a

Ilw(t,')Ilw;(D) < Ildollwp(D) + M II*(T, )I1 tpvo(D)dr
0

(4.1.5)

Inserting this on the right-hand side of the preceding estimate taking the pth
power and observing, see Lemma 3,

(a, + a2)" < 2p-1(Q1 + Q2)

for 0 < at, O2i I < p, then

2R+1

2p-1
k_1

+61I d(t,')IILP(D) + 6KII doll w;(D)

t

+2p-1(6KM)p f IIw*(T, )Ilwa(D)dr
0

Applying now Lemma 31 thus

2,c+1

llwt(t,')IIw;(D) <_ 21-1/p E Iak(t)I
k=1

so that

I

2rc+1

21-11pe2D-'(6KM)pT pp

I'IIVII1.C.(8D)+7

E IIakIICl(I)
k=1

6IIdIIo.L,(j) + 6KII doll wt (D)
J

.

Using again (4.1.5) the a priori estimate (4.1.4) follows.
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(2) Existence. In order to prove existence of a solution successive approximation is
used. Let wo(t, z) = do(z) and (t, z) for n E No be a solution to

wn+tts + /11wn+itz + /12Wn+ tz

+ alwn+lt + a2wn+lt + blwns + b2wn: + b3wnz + b4wnz

+ clwn+c2wn+d=0 inlxD,
Re z)} = ip(t, z) + h(t, z) in I x 8D ,

Im {A(z)wn+1 (t, z)} = ak(t) , 1 < k < 2tc + 1, if 0 < ic, in I ,

wn+1(0,z) = do(z) in D .

Differentiating the boundary and side conditions with respect to t Lemma 29
shows that wn+It E Wp (D) exists and is uniquely given. Thus by the initial
condition wn+l E C'(I;WP(D)) is unique. By the a priori estimate in Lemma
29

2.+1

Ilwn+lt(t,')IIwp(D) < +7
k=1

+bll d(t, .)II L,(o) + bKllwn(t, )II w; (D)
where the constants are independent of n. As in step (1) using Lemma 3 form
here

1Jwn+1t(t, )IIWw(D)

2K+1

< 2a-1 {IIIli.ca)+7 E IIakllci(1)
k=1

+bJJdHJo,L,(-) + bKJJdoJJww(D)

+2n-'(bKM)°"
0

where within the brackets the supremum-norms have been introduced. By in-
duction

IIwn+11(t,')l1°w;(D)

2K+1

< 2° $II 7 Ilakllct(I) + bll dll o,L,(D)
k=1

n
2"(n-')(6KM)"l,t"

+bKll doll W;(D) lrt
"=0

+(n +
1)!2(n+1)(v-1)(bKM)(n+1)ptn+llldoII

W" (,F)
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or

2R+1

IIwn+1(t,-)IIo,w;(o)
2e2y-'o(6KM)oT

QII'PIII,c-(av) +)' F, IIa'kllc'(I)
k=1

+bII dIlo.LL(n) + SK lldallw; (D)}

By (4.1.5) we again deduce
2K+1

IIwn+1II1,Wp(D) QII'PII1,C°(aD) + _I E Ilakllc'(/)
k=1

+6I IIdIIo,L,(-y) + b2IIdoIIw; (D) . (4.1.6)

Hence, (wn) is a bounded sequence in C'(I;W,(D)). In order to prove its con-
vergence, wn wn - wn-1, n E IN, is considered. Besides the boundary, side,
and initial conditions

Re {A(z)wl (t, z)} _ o(t, z) - ,p(0, z) + h(t, z) in I x 8D ,

Im {A(zk)wl(tl, zk)} = ak(t) - ak(0) , 1 < k < 2tc + 1, if 0 < tc, in I ,

wl (0, z) = 0 in D ,

and forn>1

Re {A(z)wn(t, z)} = 0 in I x 8D ,

Im{A(zk)} = 0, 1 <k<2x+1, if0<a, inI,

wn(0,z)=0 in D,

the function wn for n E IN in I x D satisfies the linear equation

wit-z + It1witz + µ2witz + alwlt + a201t

+blwo1+b2woo:+b3woz+b4woz+clwo+c2TO +d=0

and for n > 1

vents + Itlwntz + It2wnt, + alwnt + a2wnt

+blwn-1s + b2wn-1s + b3wn-1z + b4'un-Iz + Clwn-1 + C2wn-1 = 0
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Again by the a priori estimate of Lemma 29

2,c+1

Ilwls(t, )IIw;(D) < )IIC°(aD) +7 lak(t)I+ 5lId(t,')IIL,(D)
k=1

+bKII doll w;(D)

2,ct1

< QII 7 > IIakIICi(I) + b11ldllo,L,(f)

+b2lld0llwl(D)

k=1

and for n > 1

Ilwn,(t, )II w, (D) <_ bKllwn-lIlwy(D)

or observing wn(0, z) = 0 and (4.1.5)

Ilwnl(t, )IiW (D) < (bKM)PJ Ilwn_Ir(T, )II
0

By iteration thus

2K+1

ilwnl(t,')Ilwo(D) {flhIIli.caa +7 IIakIIC.(n
k=1

+bl Ildllo.L,(b) + 621ldollw;(D)

Integrating and applying Lemma 30 gives

2R+1

(bKM)(n-1)Pen-1

(n - 1)!

Ilwn(t, )Ilw;(D) s M{ +7 IIakIIC1(I)
k=1

+b111d11o,L,(o) + b211do11wo(D)} C(bKM)nptn/
1/P

n!

These last two estimates give

Ilwnlll,W-D) C C
((bKM)(n_OPn-1)l(n

- I)!
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with

2n+1

C := M(1 + (bKM)PT)'ly Q[I'Ill.ca(aD) + 7 E Ilakllct(w)
k=1

+b11Id0IIO,Lp(D) + b21IdOII W, (D) } .

From here convergence of (wn) in C'(I; Wp (D)) follows. Passing to the limit in
the equation and the conditions for wn+1 shows that in = lim in,, is a solution

n-.+oo

(3)

to problem (4.1.1) - (4.1.3).

Uniqueness. Let w1iw2 E C'(1;W, (D)) be two solutions to (4.1.1) - (4.1.3)
then w := w, - w2 satisfies the homogeneous problem

,wt:+plwe:+A2Wt,+alwt+a2wt+b,w2+b2ur+b3w,+biws+clw+C2G7 = 0 in Ix D

Re {a(z)w(t, z)} = 0 in I x 8D ,

Im {A(zk)w(t, zk)} = 0, 1 < k < 2tc + 1, if 0 < tc, in I ,

w(0, z) = 0 in D ,

and hence by the a priori estimate from step (1) IILII1,ww(D) = 0. Hence, w, and
w2 are identical.

Remark The assumption p(1-a) < 1 is unnecessary. In case when I < 2a < 2 < p
are arbitrary the estimation (4.1.4) holds if the norm on the left--hand side is replaced
by IIwII1,ww,(D) with any po, 2 < po < min {p, l/(1- a)}. The considerations hold too
for any simply connected bounded smooth domain D. Quasilinear as well as nonlinear
pseudoparabolic equations were investigated in [Plus87], [Dai90] and [Beda92], see also
[Bege85a,b] and [Begi78] where the RIEMANN problem is solved, or [Bege93], chap.
VIII, §4.

4.2 Initial boundary value problem for a composite type system

Systems of first order partial differential equations in two real variables of composite
type were independently from one another at first introduced by A. DZHURAEV and
Ch. VIDIC, see [Dzhu72], [Vidi69]. A system

n

/E aµvuvs+boAvuvY - fv(xfyvulf... jun) i I <Et n
v-1
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of n first order partial differential equations with real coefficients, real variables and
real unknowns is called elliptic if

A(K) := det[a,,,,K + b,,,,] , L 0 ,

does not vanish for real K. It is called hyperbolic if A(K) has n real zeroes different
from each other and it is called of composite type if A(K) has real as well as non real
roots. Obviously, the system can be elliptic only if n is even. The simplest cases of
composite type systems occur if n = 3 and n = 4. They are extensively studied in
[Dzhu72]. [Vidi69], [Bege77,79] studied the case n = 3, [Gisc79] the case 2n+ I where
A(K) has one real and n complex roots, see also [Begi93] chap. VI, §3. For further
references see [Dzhu72].
A motivation for considering composite type systems is the fact that any elliptic
second order equation can at least be reduced to a first order system of composite
type of three equations. The second order equation

a,O::+2b#=y+cO,, +.f(x,y,0,0_,¢y) = 0

is called elliptic if 0 < ac - b2 where without loss of generality 0 < a. Introducing

u:= q,, v:=O:

the equation can be written as the first order system

O=-V=0,
us-Vy=0,
avs+2bvy+cuy+f(x,y,0) v,u)=0.

Here

A(K) :_
2

-aK RK- bl2+ac-b 1
a

a2 J0 -c aK-2b
which obviously only has the real zero K = 0. In case f is independent of 46 only the
last two equations of the first order system have to be solved. They form an elliptic
first order system. Having solved them for u and v then 0 is determined up to an
additive constant locally or in simply connected domains by

(x,y)

f {vdx+udy) .
(so.vo)

This curve integral is path-independent because the integrability condition is just
tly - Vy = 0.
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In this section only the case n = 3 will be investigated. The system

3

1: aµvuvs + fg(x, y, ul, u2, u3) , (4.2.1)
v=1

in matrix form written as Au= + Buy = f where

D(K) := det[a,,,,K + b,,,,]o<,.,v<3 = 0

has the only real root K3 and the pair of complex conjugate roots Ko := Kl + iKy, TO =
Kl - iKZ with real Kl, Ks and Ky # 0. The eigenvectors associated to K0, KO, K3 say
co, Co, c3 are linearly independent over JR. Writing them as row vectors the respective
column vectors form a regular matrix CT = [Cl, coT, C3 ] and satisfy

=0, µ=0,3.

Here the upper index T denotes transposition of matrices. The equation for coT is the
complex conjugate of that for 4. Hence,

Ko 0 0

or

ATCT 0 jo
0 0

0 +BTCT=0
K3

K0 0 0

0 9-0 0 CA+CB=0.
0 0 K3

We introduce the new unknown U := CAu the components of which are

U, =coAu, U3=?QAu, U3 = c3Au.

Obviously, U, = U, and U3 = V. Moreover, u = A-'C-'U. Multiplying the system
for u in matrix form from the left by C gives

CAu. + CBuy = C f

or in the new unknown U

U. + CBA-'C-'U3 = C f + [(CA). + CBA-'C-'(CA)y]A-'C-'U

th t ia s

K0 0 0
rr

'co

0 0
11

U. - 0 o- 0 Uy = Cf + [(CA). - 0 0 0 (CA)yJ A-'C-'U
0 0 K3 0 0 K3
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Because the second component of this system is the complex conjugate of the first the
system is reduced to a complex and a real scalar equation,

U1r - KoUly = 11 , U3r - K3U3y = 13

Introducing complex variables z := x + iy, z = x - iy the first equation can be written
as

Ulf+
1+iKo I+icofi

where µ := 1 - 2Ka 1. We have JµJ < 1 if K2 < 0 and 1 < JµJ if 0 < K2. This
1 + iK0

#

equation therefore is elliptic and in fact for K2 < 0 a BELTRAMI equation. For 0 < K2
it can be written as a BELTRAMI equation, too by introducing the complex variables
z := x - iy, 7 = x + iy, in other words just by reversing the roles of z and Y. In order
to rewrite the second equation in (4.2.2) as an equation for a directional derivative of
U3 the ordinary differential equation

dy
+ K3(x,y) =

0

is considered. Its solutions are the real characteristics of system (4.2.1). Because
the reduction of (4.2.1) to the normal form (4.2.2) is only possible if the coeffi-
cients are differentiable their differentiability is assumed. Thus K3 is differentiable
too and even continuous differentiability is assumed. Then K3 is LIPSCHITZ con-
tinuous at least on compact subsets so that initial value problems for this ordinary
differential equation are uniquely solvable. Consider a characteristic curve ry. If t is

some parameter for this curve the direction on it is given by (dt , dt ) . Fort = x
this vector is (1, -K3(x, y)). Rewriting this vector in complex form and normaliz-

ing it gi
1 - tK3

ves as the direction on y. If this direction is denoted by a then
1+K3

cos(a, x) =
1

cos(a, y) _ -K3 are the direction cosines and the direc-
I+K3 1+K9

tional derivative is

ao = cos(a, x) + cos(o, y) ay .

Therefore the second equation in (4.2.2) can be written as

aU3 -
I+K2l3

as
3

Under some geometrical assumptions on the domain in this normal form systems of
composite type of three equations are handled in [Vidi68],[Bege79J. There is another
transformation of (4.2.2) by a transformation of the independent variables which maps



188 Complex Analytic Methods for Partial Differential Equations

the real characteristics onto lines parallel to the imaginary axis. This can be achieved
at least locally i.e. in the neighborhood of any point in the domain under consider-
ation. The first equation remains of the same kind with the new variables and thus
again may be written as a BELTRAMI equation. To do this let i;(x, y) = const. be a
parameter-free representation of a real characteristic of (4.2.1), that is the solution
y = y(x) to this implicit equation satisfying !:y # 0 is a solution to our ordinary
differential equation and hence

Sx - K3S, = 0 .

Choose an arbitrary continuously differentiable function q(x, y) such that the
JACOBIan

J d(L11) = fxgY - SY1lx > 0 .
d(x,y)

Then (x, y) q) is a diffeomorphism such that

a t a a s `a a
ax

= yx0 +gxaq ,
ay

=SYT +1IYaq

a a a a a a
1 a = gYax -q x

ay
, J

a,7
= =- (I-

ax
K3

With this change of variables (4.2.2) becomes

(ttSz - KOfy)Ulf + (17. - Koi ,)Ul,, = 11 , (Sx - K3SY)U3( + (qz - K3171,)U3 = f3

or

qz - KOrIY f3U1f + U1n = /
fl U30 =

(K3 - K0)SY (K3 - Ko)tt SY 17x - K311Y
(4.2.3)

Note that
J = SY(K311Y - 9z) > 0 .

Treating the first equation as that from (4.2.2) by introducing the complex variables
S := l; + i'7,? = C - iq, again a BELTRAMI equation is attained. This in fact is the
case because the coefficient is not real. We have

-Ofty 77M -
IK3 - KOI2SY

/K3 - KO)YY =
K317z + IKOI271Y - KOK317V -

_KOgz

and therefore with KO = K111 + iK2i K2 54 0,

IK3 - KoI2lmgx - KogY
= K2(11z - K377Y) 0 0 .

K3 - KO

The reason that this transformation in general is possible only locally is that fY 96 0
may hold only in some neighborhood of a point (zo, yo) of the domain. The normal
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form (4.2.3) is due to DZHURAEV, see [Dzhu72), (Bege93). Methodically there is no
difference in treating initial boundary value problems for systems in form (4.2.2) or
(4.2.3). We will for simplicity deal with (4.2.3) in complex form and again will consider
the unit disc D, see [Bewz9la,b).

Lemma 32. Let c2i d2 E C0(K; IR {z = x + iy : I zI = 1, y < 0} and
0 E C°(I ; JR), 0 < a < 1. Then the solution to the initial value problem

inD,

w=ik onr

is uniquely given in Ca2(D; in) fl Cy(D; in) satisfying

C.(w; D){a}:= Ca2(w; D) + Co(w,,; D) < f2Ca(,; r) + b2C(d2; D) , (4.2.4)

where a2 := min 2, and Q2 and b2 are nonnegative constants depending on a and

some upper boundK for Ca(c2; K).

Proof. As is known from the theory of ordinary differential equations, see any text-
book, the solution to the initial value problem is

w(z) = [(x - i l _ x2)

- J d2(x + it) exp t J c2(x + ir)drr }dtj exp S - J c2(x + it)dl} .

This can be easily verified by direct calculations. From here we see

Co(w; K) < (Co* r) + 2Co(d2i D)) e2Co(c2;D)

Co(wy; D) < Co(c2; D)Co(w; D) + Co(d2; D)

< Co(c2; D)e2Co(c,;D)Co(t; r) + (1 + 2Co(c2; D)e2Cp(c2;8)) Co(d2; D)

To show w to be HOLDER-continuous we observe that with f E C"(D)the integral

F(z):= r f(x+it)dt, z=x+iyED,



190 Complex Analytic Methods for Partial Differential Equations

is HOLDER-continuous with exponent a2 := min {1/2,a} . We verify this by estimat-
ing

1-moo yr yr

F(z)-F(zo) = r f(x+it)dt+ J [f(x + it) - f(xo + it)]dt + l f(xo+it)dt.
_V1-2 w1_s

Assuming f is vanishing identical) outside D we do not have to distinguish different
cases assuring xo + iy, x - i 1 - xo E D.

IF(z) - F(zo)I < Co(f; D) [I 1 - x2 - 1 -xoI + Iy - yol]

+H°(f)Ix-xol°ly+ 1-xoI

< 2v'Co(f; D)Iz - zoI112 + 2H°(f)I z - zoJ°

Applying this estimate to each of the factors in the integral representation for w shows
w E C`012 (1j; IR) and

C.(w; D) := C°,(w; D) + Co(wv; D) < thC°(rb; l') + 6sC°(d2; D)

where /32 and 62 are constants depending on the upper bound K for C°(c2i D) and on
a.

Lemma 33. Let the coefficients of the generalized BELTRAMI equation

ws+µ1w.+µ2ws+alw+blw+dl=0 inD
and the boundary and side conditions

Re{Tw} = V + h on 8D,

Im{X(zk)w(zk)}=ak, 1<k<2x+1, if0<

satisfy µl,µ2 measurable in l, Iµl (z) + Iµ2(z)I < qo < 1 in D, a1 i bl, d1 E Lpo (D; C ),
Ilal lip, + (1b1 llpo < K, A E Co" (8D; 0), IA(z)l = 1 on 8D, w E C°' (8D; IR), zk E 8D,

-K-1
zk 0 zi fork # P, ak E IR,1 < k, I < 2rc + 1, rc := ind A, h(z) := E hkzk, h-k =
_ k-R+1

hk, IkI < -ic -1, if K < 0, h = 0, if 0 < rc. Then the solution w is uniquely given in
WA(D) satisfying

2K+1

C°(w;D)+IIw=IIp+IIwII;<- I31C°,(W;aD)+-'1 E fakl+billdillpo . (4.2.5)
k=1
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p2Here p:=p=po if 0<ic and2<p<pSpo,p:= 2(p - 1)
,4<po,goAy<1,1 <

2
2o1aoifK<0,where ao:=po ,and0<a1:=a<aoif0<s,O<a,:=aao2<

PO
81,1 if K < 0. The nonnegatvie constants ryl, 6i depend on all the constants especially

on an upper bound for Ila,11, + Ilb1Ilpo but not on the particular coefficients up to A

and not on the solution w; ryl = 0 formally if r. < 0.
This result is just a conclusion of Theorems 38 and 39, see also section 3.5.

Theorem 46. Let the coefficients of the composite system

wz+plw:+µ2U;;+alw+blw+clw+d1 =0,
in D (4.2.6)

wy+a2w+a2w+c2w+d2=0

and of the boundary, side, and initial conditions

Re{1w}=gyp+h on BD,

Im { A(zk)w(zk)} = ak , 1 < k < 2K + 1, if 0 < K , (4.2.7)

w=zb onr
besides the conditions in Lemma 32 and 33 satisfy

cl E Lvo(D; IR), a2 E C°(D; C), Ilclllm 5 li, CQ(a2; D) :!,1712

where nl, q2 are nonnegative constants satisfying with 61, 62 appearing in the a priori
estimates (4.2.4) and (4.2.5)

2b,b2rlerl2 < 1 .

Then this problem is uniquely solvable in WP (D; C) x C*(D;IR) satisfying the a priori
estimate

Ca(w;D)+Ca,(w;D)+Ilw=IID+IIwU +Co(wy;D)

2,c+1

PIC.,('v;0D)+Q2Ca(t;1')+7E Iakl+511ld1llm+62Ca(d2;D).
k_1

(4.2.8)

Here instead of Wa (D) the notation W9 (D; d') is used and C'(i;IR) is the set of real
functions in D' being continuously differentiable with respect to y and in C"2(D; fl?).

Proof.

i. From (4.2.4) and (4.2.5) C.(w; D) and

Ilwll C,(w; D) + IIw=IIP + IIwsII,
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are seen to satisfy

2K+1

Ilwll. < Y1Ca, (W; 8D) +'Y1 lakl + bl lid, Ilro + b1I1c1 it.Co(w; D)

qq

k=1

Co(w; D) < D) < #2C.('-r) + b2Ca(d2; D) + 2b2Ca(a2; D)Ca(w; D) .

Inserting the last into the first inequality shows

2K+2I1w11.

< N1Ca,(W;8D)+71 E Iakl+81lid, 11,+binll32co(o;r)
k=1

+b1b2n1Ca(d2i D) + b1b2nin211wI1

and the first into the last

C.(w; D) < f2C,(i; r) + b2Ca(d2; D) + b2n2YiCa1 (c; 8D)

2K+1

+b2n2?'1 > lakl + blb2772I1d111, + b1b2n1712C.(w; D)
k=1

Because of b162n1n2 < 1 this gives

2K+1

Ilwll. < $1C., (w; 8D) + R,CC(+G; r) +'r lakl + b,Ildl ll,. + 6;Ca(d2; D)
k=l

and

D) <_ (v; 0D) + r)

2K+1

+7,r E lakl + llp. + b'',Ca(d2; D)
k=1

and hence (4.2.8).
From this estimate again the uniqueness of the solution follows at once.

ii. The existence of a solution is shown with the method used in the proof of
Theorem 39 already. Instead of (4.2.6) we consider the composite system

w=+µ1w.+{12w:+alw+blw+tclw+dl =0,

wy+ta2w+ta2w+c2w+d2 = 0 (4.2.9)

in D with a real parameter t, 0 < t < 1, together with the conditions (4.2.7).
For t = 0 the system is uncoupled and hence solvable in W(1); t) x C`(D; IR)
as follows by Lemmas 32 and 33.
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Let the problem be solvable for some to, 0 < to < 1, and (wo, wo) E WP (V; C) X
IR) be a solution. With this initial element a sequence of approximative

solutions (wn, wn) E Wp (D, 0) x C'(D; N), n E INo, to the problem for some
t, to < t < 1 is constructed as solutions to the systems

Wn+1z + /Al'Wn+lz + /t2Wn+1z + alwn+l + blwn+l + tOClwn+l + (t - to)Ciwn + d1 = 0

wn+ly + toa2wn+l + t0a2 wn+l + C2wn+1 + (t - to)a2wn + (t - to)a2 wn + d2 = 0 ,

in D satisfying (4.2.7). For (wn, wn) E Wn (D; C) x given this problem
is solvable for (wn+i,wn+i) by the Lemmas 32 and 33. Using the notation

II(w,w)II. IIwli. +C.(w;P) , (w,w) E Wn(D; V) x C'(-b;JR)

(wn+1, wn+1) can be shown to be bounded by some constant independent of n.
From (4.2.8) it follows

2,c+1

II(wn+l,wn+1)II. s lak1+bllldlll>
k_1

+62Ca(d2; D) + (t - t0)[blrll + 2b2g2111(wn,wn)II. -

Rewriting this inequality as

II(wn+1,wn+1)II. < M+6(t - to)II(wn,wn)II

one can show inductively
n

II(wn+l,wn+1 )II. < M > Sk(t - t0)k + bk+l(t - to)n+111{wo,wo)II.
k=0

M 1 - 6n+1(t - t0)n+1 + bn+1(t
- to)n}11I(wo,wo)11. .1 - b(t - to)

Let (t - to) be so small that b(t - to) < 1, then

II(wn+1,wn+1 )II. < M + II(wo,wo)II .1 - b(t - to)

In order to show (wn,wn) converges, we apply (4.2.8) to (un+l,vn+1)
(wn+l - wn, w,n+1 - wn), n E INo, getting

11(r'ln+i, vn+1)11. 5 5 1(t - to)r71 Co(vn; D) + 262(t - t0)r/2Co(un; D)

5 (blr)1 +2b2g2)(t - to)II(un,vn)II

Again choosing 0 < t - to < b'1 = (bir/i +2b2r12)-1 the sequence (un, vn) can be
seen to converge in Wp (D; I') x C'(-E;1R), the limit being a solution to system
(4.2.9) for to < t < 1. Hence, by the same reasoning as in the proof of Theorem
39 problem (4.2.6), (4.2.7) turns out to be solvable in IV,' (D; C) x C'(D, IR).
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4.3 Entire solution to nonlinear generalized BELTRAMI equations

In the preceding sections and chapters repeatedly a priori estimates were developed
for different kinds of equations and boundary conditions. They all serve to solve
related nonlinear equations under the same linear or even related nonlinear bound-
ary conditions. Side and initial conditions if appearing may be nonlinear, too, see
e.g. [Behi82,83], [Behs80,81,82,83,87], [Bewz9la,b], [Bewe88,89], [Beda92], [Dai90],
[Plus87], [Wend78], [Wen80a,b,85a], [Vino58a,b], [Webe90], [Tuts76,78], [Wols72],
[Waro70]. But the results concerning nonlinear boundary conditions are minor satis-
factory. The nonlinearity is always assumed to be LIPSCHITZ-continuous and - and
this is the point - its LIPSCHITZ constant has to be small enough.
The aim of this section is just to introduce the method, a combination of SCHAUDER's
imbedding method and the NEWTON approximation procedure providing a construc-
tive method for solving nonlinear problems (see [Wack70]). It can be applied to
nonlinear problems related to any of the problems studied in this book. In connec-
tion with RIEMANN- HILBERT problems it was at first used in [Wend74], see also
[Wend78,79]. In order to concentrate on the equation, we neglect any boundary con-
ditions and just study nonlinear equations in the entire plane. Solutions which exist
in the entire complex plane are called entire solutions which does not mean that they
are entire functions in the sense of complex function theory. In principal we are thus
treating the RIEMANN problem for the nonlinear equation because we have seen that
the RIEMANN condition can be always transformed using proper analytic functions
to entire solutions to a differential equation of the same kind of course under proper
assumptions. And even for entire solutions we have to observe a kind of boundary
behaviour namely the asymtotic behaviour at infinity. We thus have to prescribe some
growth condition the simplest of which would be to ask the solution to have a certain
limit or just be bounded at infinity. We also will allow polynomial growth asking the
solution to grow not faster than some fixed power of z. Other growth restrictions as
for example functions of finite order or of finite lower order etc. have not yet been
studied. The following results are given in [Behi83].

Theorem 47. Let H be a measurable complex valued function of three complex
variables (z, w, v) E d' 3 satisfying

IH(z, wi, v) - H(z, w2, v)I < K(z)Iw1 - w2l ,

IH(z,w,vil - H(z,w,v2)I q(Z) IV, - V21,

where K and q are nonnegative functions. Suppose

12 <p'<2<p<24E
0<q(z)<go<1, q(z)=0(lzl'°) asz --+oo,

with some 0 < e < I and qo max{ Ap, AP, } < 1. Then there is one and only one solution
to
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wr = H(ziw, wZ)

vanishing at infinity. It satisfies the a priori estimate

Co(-, (F) + IIwsll(RG') + $JwIJJ(p.p') : Ko

where

Ko M(p,P,qo)IIH(z,0,0)11(p.p')exp[M(p,p,go)IIKII(p.p')I

Proof.

(4.3.1)

i. In order to prove existence of a solution a real parameter t,0 < t < 1, is
introduced. With

R(z, w, v) := H(z, w, v) - H(z, 0, 0)

the equation

w= = tR(z, w, wz) + C (4.3.2)

is studied for any C E L((p,p,)(d') n L5,2(tD ). If C = H(z, 0, 0) and t = 1 this is
just the equation to be solved. We are looking for solutions vanishing at infinity.
Hence, we can do this in the form

w=TP, PE L(p,,,)(V)nLp.z(I'),

observing that by Theorem 23 this function vanishes at infinity. For t = 0 this
is easily done by taking p = C.
We assume that (4.3.2) is solvable for any t, 0 < t < to < 1, and any function
C E L(p,p,)(d') n L,,z(C ). Let po be a solution of (4.3.2) corresponding to t = to.
We construct a sequence of successive approximations according to the scheme

Pn+1 = toR(z, TPn+I, HPn+i) + (t - to)R(z, T pn, llpn) + C , n E ENo .

As

IR(z,Tpn,HPn)I < K(z)ITpnl +q(z)JHp,J

and since pn, IIpn E L(p,p,)(d) and Tpn is bounded by the assumptions on K and
q it follows via Lemma 16 that R(z,Tpn, IIpn) E L(p,p,)(C) n Lp,z(t ). Thus, by
the assumption that (4.3.2) is solvable for t = to and any C E )nL5,z(d' )
a solution pn+i exists. The difference rn+1 Pn+l - pn, rt E i1Vo, satisfies

rn+1 = toll(z,TP,, HPn+1, nP,)II rn+i + toA(z,TP,+,,TP,, nPn+1)7'rn+1

+(t - to)[R(z,TP,, Up.) - R(z, TPn_i, HPn-1)]
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4z, w, v1, v2) :_

R(z, w, vi) - R(z, w, v2)
V1 - V2

0

R(z, wl, v) - R(z, w2, v)

A(z, w1, w2, v) := wl - w2

, if v1 # V2,

ifv1=v2i

if w1 & w2 ,

0 , if w1 = w2 .

Applying the a priori estimate (3.1.2) to Trn+1 observing for w1 Tpn+l,
W2 := TPn,

IR(z, w2, w1:, w2=)I <_ q(z) < qo < 1 ,

IA(z,w1,w2,w1:)I S K(z)
we get

we see

Ilrn+lll(p.P'l 5 M(p,P ,go)exp[M(p,P,go)IIKII(P,P'))(t - to)II9nII(P,P')

with
gn := R(z,TPn, npn) - R(z,TPn-1, nPn-1)

From

I9n( 5 q(z)Inrnl+KITrnI , Co(Trn;(V) < M(p,P)Ilrnll(p,P')

II9nII(P,P') :5 goA(P,P')II'nII(HP') + II KII (P,p')M(p,P)IIrnDI(P,P')

Inserting this into the preceding inequality leads to

IIrn+1II(P,p') !5 6(t - to)IIrnII(RP')

with some positive constant 6 depending on p,p', qo, and IIKII(PP') If 6(t -to) < 1
the sequence (pn) converges in L(P,P.)((V) to a function p. In order to show p to
satisfy

p = t R(z,Tp,IIp)+C

we observe

Ip-tR(z,TP,lp)-CI <_ IP - pn+1l + tIR(z,Tpn, npn) - R(z,TP, np)I

+t0IR(z,Tpn+l,npn+1) - R(z,TPn,npn)I

S IP-Pn+1I+gIH(Pn-P)I+KIT(Pn-P)I

+g1n(Pn+1 - Pn)I + K(T(Pn+1 - Pn)I ,
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so that

IIP - t R(z, Tp, Hp) - CII(P.P')

< IIP - Pn+I II(P.P') + 9oA(P.p')[IIP,+1 - Pnll(P.P') + lip - PnII(P.P')1

+llKII(P.P')M(p,p')IIIP..+I - P..II(P.p') + IIP - Pnll(P.P')l

<- lIP - Pn+1II(P.P')

+[goA(P,P') + IIKII(P.P')M(p,p')J[llpn+I - Pnll(P.P') + lip - PnII(P.P')1

Since c E LP,2((V) and from

l R(z, Tp, IIP)I 5 gJIIPI + KITPI

in view of Lemma 16 we have R(z, T p, HP) E LP,2(C ), the function p belongs
to LP,2(C ), too. w = Tp satisfies (4.3.2) and vanishes at infinity. This holds for
any t such that 0 < t - to < b-1. Thus after finitely many steps from t = 0 one
will end up at a solution to (4.3.2) for t = 1 vanishing at infinity.

ii. For a uniqueness proof assume there are two solutions w1, w2 to (4.3.1) vanishing
at infinity. Then w := w1 - w2 would vanish at infinity and satisfy

w= = µ('z, W2, WIs, w2z)wz + A(z, WI) W2, Wls)w .

This is a linear equation to which Theorem 37 and hence (3.1.2) may be applied
showing w vanishing identically.

iii. The a priori estimate follows at once from (3.1.2) because the solution to (4.3.1)
satisfies the quasilinear equation

w= = µ(z,0,ws,0)ws +A(z,to,0,ws)w+H(z,0,0) .

Corollary 9. The difference between the exact solution to to (4.1.1) and the ap-
prozimative solution wn = T p, n E INo, for some t, 0 < to < t < 1 can be estimated
by

CO(W - wn; ') + Il(W - Wn)zIl(P,P') + ll(W -

rn/ n
<

ryKo 1 - -/(t -
too)

(1 - t) + (1 - to)7n(t -
to)nJ

,

with

7 := M(p, p', go)[go + IIKII(P.p')J exp[M(p,p', go)IIKII(p,p')1

for ry(t - to) < 1.
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Proof. Choosing C = 0, 0) in (4.3.2) we abreviate wn := w - wn, n E INo. It
satisfies

wn+1= _ (1 -t)R(z,w,wz)+to[R(z,w,w.)-R(z,wn+l,wn+lz)]

+(t - to) [R(z, w, wz) - R(z, wn, wnz)]

t0'A(z, wn+1, wz, wn+ls)wn+1z + toA(z, w, wn+1, wz)wn+1

+(1 - t)R(z, w, w.) + (t - to) [R(z, w, w.) - R(z, wn, wnz)]

and vanishes at infinity. Again using (3.1.2) we find

Ilwn+1 11. :5 7(1 - t)Ilwl[. + (t - to)[Iwnll.

where for f E W(p p,)(tf') = W,1(0) fl W,,(t' ), f (oo) = 0,

I1f11. Co(f; IT) + 11W-1 p,d) + II+ I[a.v'

By iteration one has

11-n+1 11- < (1-
t)711w11.1- (7(t - to))n+1 + II11.(7(t - to))n}11 --y(t - to)

For estimating wo we observe

(1 - to)R(z, w, w,) + to[R(z, w, wz) - R(z, wo, woz)]

= toI(z, wo, wz, woz)woz + toA(z, w, wo, wz)w0 + (1 - to)R(z, w, wz) ,

so that by 3.1.2 and the a priori estimate of Theorem 47

11woll. < (1 - to)711w11. 5 (1 - to)-yKo

Combining these last two estimates proves the inequality from the corollary.
Since t - to can be chosen so small that 7(t - to) < 1 the error wn becomes small for
big enough n and t close enough to 1.

On the basis of the result of Theorem 47 the general RIEMANN problem can be treated
for nonlinear BELTRAMI systems. The solutions are admitted to have polynomial
growth at infinity.

Theorem 48. Suppose H satisfies both HOLDER-conditions from Theorem .47 and

H(.,0,0) E IH(z,0,0)I = 0(Iz[-1-`-R) asz --ioo,

E K(z) = 0(1z[-1'c-'n) as z -+ oo ,

0<q(z)<go<1, q(z)=O(Iz1_`-'n) asz -goo,
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for some m E INo. Suppose further G, g E Ca(I'),1 < 2a < 2, G(z) jE 0 on r, where
r is a finite set of simply closed smooth bounded curves dividing the complex plane (C
in a bounded domain D+, 0 E D+ and 8D+ = r, and D- := C \D+, K := indG. Let
P be a complex polynomial of degree < m. Then there exists a unique solution w of
the problem

w==H(z,w,w,) ini\r,

w+=Gw-+g onr,

lim {X-1(z)w(z) - P(z)} = 0 .
X-W

Here X is the canonical function of the RIEMANN problem defined by G, see Definition
8.

Proof. If w is a solution then

W:= X-'w - P 1b(z) := 2If g((() (--z , z r
zi X+

r

has the following properties:

where

co = H(z,w,w=) inG'\r,

w+ = w` on r,

w(oo) = 0 ,

H(z,w, u) := X-1(z)H(z,w,u) ,

w := X(z)(w + P(z) ++b(z)) ,

u := X'(z)[w + P(z) + +G(z)1 + X(z)[u + Pa(z) + 0'(z)1.

It has to be shown that the nonlinear differential equation for w holds throughout d'
instead of just in d' \r. Since W. = X''wj and w£ E L(,,r,)(iT) C L,(C) - for this
argumentation w= E for some 2 < r would be sufficient, see [Behi831 - we
also have w= E Ln({Iz[ < R}) for any 0 < R. Choose R so large that r c {IzJ < R}
and define

F(z) =
fI(z,w,wz) ,forizl<R,

1 0 , forR<lzJ .

Then F E La((') and V:= w - TF satisfies

p =ws-F=0 in{JzJ<R}\r.
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But w as well as TF are continuous functions in Izl < R hence, continuous especially
across I'. Therefore cp is analytic in Izi < R and then we have

wi= 9py +(TF)s=F.
This proves that the differential equation for w holds in tl" , w being continuous across
I' and vanishing at infinity.
Conversely, from a function w having just these properties it can be shown that

w:=X(w+P+0)
is a solution to the above RIEMANN problem with polynomial growth at infinity. In
order to apply Theorem 47 to the problem for w the function H has to be shown to
satisfy the corresponding properties for H. We find

IH(z,wi,u) - H(z,w2,u)I S K(z)lwi -w21 ,

K(z) := K(z) + 9(z)
1X(z)1

Lemma 16 shows K E L(y,p,)(tV) n Lp,2(C) provided p and p' satisfy the appropriate
restrictions from Theorem 47.

IX'(z)I _ I7'(z)I , in D+

IX(z)1 I7'(z) - icz-'I , in D-

By Lemma 17 7' E L,((V) for 1 < r < (1 - a)-'. Because 1 < 2a < 2 we have
2 < (1 - a)-'. Again Lemma 16 serves to see K E L(p,p,)(O) n Lp,2(C) for p',< 2 < p
both, p and p' close enough to 2.
We also have

IH(z,w,ul) - H(z,w,u2)I S q(z)Iul - u21
Finally,

IH(z, 0, 0) 1 < F, (z) + F2(z) + F3(z) + F4(z) ,

with
F1(z) = IX(z)1-'IH(z,0,0)I,

F2(z) = K(z)[IP(z)I + Itb(z)U ,

F3(z) = q(z)1 X (21 [IP(z)I + It'(z)I1,

F4(z) = q(z)[I P'(z)I + I+G'(z)I)
All these functions can be seen to belong to L(p,p,)(C) n Lp,2(t) for p' < 2 < p, and
p, p' close enough to 2. This follows again via Lemma 16 and the observations

X(z) = O(IzI-" ), I+'(z)I = O(Izl-'), IP(z)I = O(Izlm) ,

0'(z) = O(IzI-2), P'(z) = O(Izlm-') as z oo
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and zb'EL,((V)for 1<r<(1-a)-'.

Remark. From the representation

w = X(w+ P++b)

and w(oo) = 0(oo) = 0, X(z) = O(Izl-") as z tends to oo, one can see when bounded
solutions may occur. For negative index r, < 0 one cannot conclude that bounded
solutions exist and we know from Theorems 14, 15 that they need not exist. For
nonnegative index 0 < #c one obtains a bounded solution for each polynomial the
degree of which is less than or equal to K.





5. Higher order complex differential equations and equations
in several complex variables

5.1 Elliptic second order equations

The theory of complex elliptic second order equations is not yet far developed. Of
course the LAPLACE equation

02
Aw = 4 azazw

0

is extensively studied in close connection to the theory of analytic functions but more
real methods are applied because they are available for higher dimensions than 2,
too. Harmonic functions, i.e. solutions to the LAPLACE equation, are known to be
uniquely defined by their boundary values. In other words the homogeneous DIRICH-
LET problem (with vanishing boundary data) for the LAPLACE equation is only triv-
ially solvable. BITSADZE [Bica48] pointed out that this is a particular property of the
LAPLACE equation and will not hold in general. His counterexample is the equation

a2
912w=0

in the unit disc D. There are countably many over d' linearly independent solutions
vanishing at 8D. They are

wk:=(1-zz)zk, kEINo,

as one can easily verify.
Some early papers where complex methods were applied to second order equations are
[Hou58], [Boja60]. Several members of a research group at the Fudan University e.g.
[Li78], [Xu81] draw their attention to this subject and in [Wen85], [Weta83] involved
boundary conditions in multiply connected domains are handled. In [Dzhu87] the
theory of the BERGMAN kernel function was applied to treat some natural boundary
value problems for complex second order equations in multiply connected domains.
This seems to be the adequate method for these kinds of problems and will be intro-
duced here.
An arbitrary complex second order equation is of the form

a-., + bws= + cw:s + aii + E + 1-w-.7 + f (z, w, wZ, w=) = 0 .

Since here only some special second order equations will be studied, we restrict our
attention at first to equations where a = 0 = y = 0.

Definition 17. A second order differential operator with main part of the form

a2 a2 a2

aaz2 + bazaz + ca 2

203
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is called elliptic if the symbol

ale+bCZ +c(2 # Of.,( 9t 0.

Lemma 34. The main part of any second order elliptic differential operator L can
z

be transformed to a multiple of the LAPLACE operator a multiple of

a2 a2 a2 a2+u or + ``aCaC 8(2 a(aC

where I°1 # 1.
z

Proof1. a=c=0,b54
0:L=b8

a-z-& .
2. a j 0. Consider the symbol of L

(

z

a ) + +c=a(P-Pl)(P-P2),P:=

The ellipticity condition shows 1P1 154 1, IP21 j4 1. Moreover,

L al a al s aP) at
l `az - °i az J R Ps az l + - Plaz az f

Let C = ((z) be a complete homeomorphism of

a(-P2az=0,

then if 1 - p172 # 0

2
2 z

L = a(1- IP212)(1 - p1Ps)
(
a) a 2 +q=z

aCdCJ

a )
+a (0P2 8P21 baC a _F

82- - °i Oz Oz aC + ° aZ

__ P2-P1 a:
q 1 - PIP2 C=' Iql I

If 1 - pIp2 = 0 then

L = a(Ps - FDIC=12(1 - IP212) 02 + a ( P- - PiaP2) \aC a + aC a )acac az az az as az as
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3. If c # 0 the operator

a2 a2
92

L :=Z 2+bazaz+aaz2

can be transformed as L was before.
Thus there are two main cases:

a2 a2
i. 0 ,Ial <I

a2 a2ii. L=sa(2+µa(a(,0<s<1 <IµI

205

As in the case of the generalized BELTRAMI equation where the solutions were ex-
pressed through Twx we are looking for an integral operator playing the same role
for second order equations as T does for first order. At once we realize that there
will be more than just one such operator. Already for first order equations there
are two operators; for the BELTRAMI operator w= + µw=, IµI < 1, the T-operator is
appropriate while if 1 < IµI the T-operator has to be used, see (2.1.1) and (2.1.1').
This symmetry does occur for second order operators, too, as is seen from the two
operators

02 a2 a2 a2

aZ2 + I aZaz , az2 + µazaz ,
IµI < 1 .

a2
But now there is a third case, namely of 1 < IµI where the leading term is

azax
The basic idea in finding these operators is iterating the T-operator. We start from
the CAUCHY-POMPEIU formula (2.1.1) in Theorem 20 applied to w as well as to wz
under proper assumption on w,

w(z) = r-.I w(() - + Two ,
aD

1 dS
f w,(()

C - z
+ Tu v? .wr(z) =

aD

Inserting the last in the former gives

w(x) = 2 . f Z
-

2A2i f wi(t) f (t - ded, - x)dt + TTur? .
aD aD D

Since
t- z1 dd'dq _ 1 1 1 dn

in f (t-()((-z) a(t - z) z
D D
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we get

w(z) 2si , [(
(() + FLw(o]_ d(+ zwC<(()d(d0

8D D

Here the boundary integral represents a polyanalytic function of the form >1(z)+zo(z)
with analytic functions 0 and 0 while the area integral

SP(z) To.2P(z) I J S - Zp(()dddq
D

represents the integral operator, we were looking for. Obviously, 0 + TO is the general
solution to the homogeneous equation w=; = 0, To,2p being a particular solution to
the inhomogeneous equation w=s = p in D.
In order to find the second integral operator we are iterating the T- with the T-
operator, i.e.

w(z) =

wr(z) =

leading to

1 Jf d(
w(() + Two ,

27ri (- z
8D

2xi J(()-d( + TvrC ,
OD

(-z

w(z) 2Iriz + 2a2i ! Wi(t) ! {-- ((- z)d!a a

Applying (2.1.1) to log Iz - tl2 in D\{Iz - tj < e} for 0 < e small enough, we see

- I J I t log f log j(-t12 d(z+lim f log I(-tl2 d(z
D 8D

As

I J togIS-tI2
d(

2loge
a fore<Iz - tjz - 1z-tj -e

IC-tI=L

the limit vanishes in the last equation and

=
I 1 1

w(z) 2Ai w(C) z + f U -N log I( - z12d - J log (- zl2 i -
8D 8D D

Rewriting the second boundary integral as the sum

log(( - z)d( - 2-i Jlog(( - z)d(
8D 8D
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the function w is represented as the sum

w = V, + 4 + Ti,,-(c

where ¢ and 0 are analytic functions in D, again forming the general solution to the
homogeneous - LAPLACE - equation, and

T1.1,P(z) 2 J log I(- zI P(()4drl
D

is a particular solution to the inhomogeneous - POISSON - equation w;E = p in D.
One can proceed in this manner to higher order equations, see the next section and
[Behi93J, compare [Dzhu87J, too. We get an equivalent operator to T1,1 by introducing
the GREEN function

9(z, C) _ - log IC - zI + w(z, C)

where w is harmonic in z and

T1.ip(z) 7
f 9(z, ()P(()dfdn + fw(zC)(Odedr)
D D

SiP(z) --'f 9(z,()P(C)dfdn
D

represents a particular solution to wss = p, the second integral is a harmonic function
in D and as such can be represented by an analytic function cp in the form <p+ip. We
collect these results in the next theorem.

Theorem 49. Any w E C2(D; tV) can be represented as

w(z)
2a: l(

(() + _ z(C)J dC +
J z' (C)dfdq E D ,

8D D

"dCdn, z E D.(5.1.1)W(Z)=-
-i ./ LC

(() d( +
w'(() log I(- z12dCJ-,2-z f log IC - zlw_

an D

Corollary 10. Any w E C2(D; 0 ) can be represented as

w(z) = 4'(z) + z4'(z) + (Su Z)(z) in D ,

w(z) = 4(z) + ¢(z) + (Sjw )(z) in D ,

where 0 and 0 are analytic functions in D.

We are going to determine these arbitrary analytic functions by some boundary con-
ditions on w. Only one particular set of two natural boundary conditions will be in-
vestigated which were in this combination introduced in [Dzhu87], see also [Bege93].
For more general conditions see (Dzhu92].
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Boundary value problem. Let D be a smooth multiply connected bounded
domain, 8D = UN o1'µ, m E INo, where the r,, are mutually disjoint smooth curves
and 1'o is surrounding to other f,,. Find w as a solution to a second order elliptic
equation in D satisfying

Re u z(z) = 0 , Re {z'(s)w(z)) = 0 on OD .

Before approaching this boundary value problem some lemmas preparing for later
calculations will be proved.

Lemma 35. Let D be a C' domain and w(z, () the regular part of the GREEN
function for D. Then for ep E C°(D)

-! fw==(z, ()'p(()dedq

D

belongs to C°(D) and satisfies

C.(cp; D) < M(o, D) .

Proof.

'p(z) = 1 f W(()dCdq
ir (1-z()2

D

r
r 2

J 1
zzdfdrl = 0 and J (1 0

(p(() -P(z))dtdqPz) = f (1 - z()2

and

'p(21) -'?(z) _ ! -'p(zl" _ -'P(zl))
- J (1 -

D
zl()2 (1 - zt()(1 - z()

+ (2(V(() -'P(z)) _ (2('P(() -'p(z)) l dfdq.
(1 - zi()(1 - z() (1 - zS)2 J

Using

1 - z l < 1
for IzI, l(I << 1
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and the estimate for J(cr, fi) from the proof to Theorem 23 thus

P(z2) -'P(z)I M(a)Ha(,P)Izl - zIa .

Therefore

Similarly,

Ha((P) :5 M(a)Ha(,P) .

Co('P; D) := max wzI C M(a)Ha(P)

follows. In the same way

can be proved.

C. ! r i dldq; D <
D!

ii. D simply connected. Let a be a conformal mapping from D onto D. Assuming
the domain being C', this means that the boundary OD is four times continu-
ously differentiable, then a together with its derivatives up to the fourth order
can be continuously extended on OD mapping 8D onto 8D, see [Golu69], p.
417. The GREEN function of D is

9(z, 0 log I (z) (z )) I = - log Iz - 0 + w(z, 0

with

We have

w(z, S) log I o(z) - a(() [1 -

2w=(z, () _

2w=Z (z, ()

1 o'(z) a'(z)a(()_
z - o(z) - a(()

(z - 02 [a(z) - 0101'

[Q'(z)a(b )]2 + o"(z)a(0[1 - a(z)a(01
[1 - a(`z)a(()]2

[Q'(z)v([;)]2 O"(z).y(t)
2 ,

[1 - o(z)o(012 1 - o(z)0(C)
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with a function

a(z) - a(() I2- a'(z)2 + Q'(z)[o (z) - a(())
h2(z, () :_ - z-( z a(2

z) - a(C)1

2

(( -
z)2

l
h2(z,z)

2 1 al"(z)
(z'z)

4 L al(z) J 6 °'(z)

analytic in z and ( from D, bounded in D x D together with its first derivatives.
Hence,

;I(z) := --' fhs(z,()'p(()d(dp
D

satisfies
D) < M(a; D)CQ(W; D) .

Since a' and a" both belong to Ca(D; Z) what follows from the boundedness
of a"' in D, it remains to estimate

T2(z)
1 (()2'P(() d('dq
A D [1 - a(z)a(())2

and

1 a(O'p(()
ps(z)

A

I
1 -

O(z)a7(C)

Let ((a) be the inverse mapping from a = a((). Then

As in step i. writing

p2(z) = a f a (Z)-e]2

shows

D

C, p2; D) 5 M(a)Ha((' o ()I('l2)Hi(a)' = M(a; D)H«((p)

Function (Q3 is treated in the same way.
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iii. D multiply connected. Let N C D be a neighborhood of I',, in D for any
µ#v, and Let D denote the

simply connected domain with boundary r, and containing D and hence Nµ.

The GREEN function of D is denoted by

gp(z, C) _ - log 1z - i,'I + wp(z, C)

Then
gp(z,() - g(z,C) = wp(z,C) - w(z,C)

is harmonic in D and vanishing at rp. From

wp(z, ) - w(z, ) _ -_ J (9p(t, ) - 9(t, )1 (t
Z)dst ,

aD\r,

see Theorem 13, we see

0z f
azz

]WI-(z, C) - w(z, C)) = -tar / On, g(t, C)]dse ,

aD\r,

w::(z,C) = wp::(z,() + J
agant,z)[g, (t,() - g(t,()]dst .tar

aD\r
Thus

'P(z) = - f
D

_ 1 r ! agt=(t, z)
[9p(t, ) - g(t,

>rz J J arse
D aD\r

The first form satisfies an estimate as is claimed in the lemma. This follows by
the estimations from step ii. applied to w, . We just have to realize D C D.
The last term, say J(z), being analytic in the closure of iVp since t E aD\I'
and n N, = 0 and gp(t, C) - g(t, () is bounded on (aD\1'p) x D, is
LIPSCHITZ continuous there. Hence, this integral is LIPSCHITZ continuous in
Np satisfying

C. (J; Np) < M(a, D, N,,)C..(v; D)

Np we haveSince D = UOA=0

CaP; D) < max Np) < M(a, D) .
0<p<m
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To verify this let z, z' E D with 21z - z'I < do := min(os,....<m) dist(Nt X). If
,.s.

z E N, then z, z' E N and hence

W(z) - AZA < M(a, N,.)CC('P; D) .
1z - z'la

If z 0 UI oN then z, z' E N for at least one p, 0 < u < m and the same
estimate hold.

Corollary 11. The statement of the lemma holds if in the definition of ip the
function w=, is replaced by either I, or by 2w - t..

Proof.

i. D= D. Then P (z, () = 0.

ii. D simply connected. Then

l(z,O 2
J

w,t(z,t)dt

ZO

_ 1 o'(z) 1 o'(z)2(
z ( a(z) - a(()) -2(

z - zo - o(z) - o(zo)

1

2
I :(z, ()

1 a'(z)2 a"(z)
(z - ()2 + (o(z) - a(())2 a(z) - o(()

1 o'(z) a"(z)
+(z - zo)2 (a(z) - a(zo))2 + o(z) - a(zo)

h2(z, () - h2(z, zo) , 2w,:(z, () - t' .(Z, O

2

-h2(z, () + 2h2(z , zo) -
(c'(z)a(() - a"(z)a(()
1 - a(z)a(() 1 - a(z)a(()

Following the proof for the lemma and observing the HOLDER continuity of
h2(z, zo) for z E D the integral 4 is seen to satisfy the desired estimation.

iii. D multiply connected. The proof based on the argumentation under step ii. can
be given as in the proof for the lemma.

In the same manner the next lemma is proved.
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Lemma 36. Let D be a bounded domain with C4 boundary. Then there exist positive
constants C and C, such that for (z, () E D x D

11(Z'01 <_ C, IC - zl Iw=(z, C)I 5 C, IC - zI2Iw==(z, ()I <- C

and if the path of integration has a winding number between -1 and 1 with respect to
any point in tT \D

I e(z,C)I 5 C1,I l=(z,C)I <C1

w==(z, C) = ,w:C(z,C)=e(z,C)= e(z,C)=0.

The functions w= and w== become singular for z = C E OD and in this case
2C=1andC1=0.

ii. D simply connected with C4 boundary. Let o be a conformal mapping from D
onto D as in the preceding proof.
From there we know

h2w=(z,C) = 1(z,C) -
I - o(z)a(C)

h1(z,C)
C - z o(() - o(z) - o'(z)(C - z)

a(C) - a(z) (C - z)2

2w=(z,z)
1 o"(z) o'(z)a(z)

2 o'(z) 1- Io(z)I2

2w=C(z,C) = 1 - o'(z)a'(C)
2 2

2w=( (z,z) =

(z - C) (a(z) - a(O)

(a() - o.(z)) 2 -C-z fJ
(g((())2

(C - z)2

1 o"(z) 2 1 o"'(z)
4 [o'(z) ] + 3 o'(z)
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and an expression for w,Z given in the last proof. Since OD is C3 the functions
hl, h2 and w=( are continuous on D x D while the remaining terms in 2wz and
2w=s are singular. For C E 8D

z)a'(z)o(C) - a'(z)(( - z)II
1 - o(z)a(C) a(C) - o(z)

(C - z)2[a'(z)a(())2 - 0"(z)o(0(1 - a(z)a(0)1
I2

[1 - a(z)o(O)2

z)2[(o'(z))2 - o"(z)(o(() - o(z)))

[a(C) - o(z)21

For C E D, moreover,

0'(0 - a(z) (( - z)o'(z)a(()II =
1 - o(z)a(() a(C) - a(z) '

I2 =
L1

(()
( )((C), 2

[a1(Z)a(()((a(a)

z)z), 21
(()

(Z)((C)

z)2

z -(z) I 010- a(z)
.

These expressions are bounded on D x D. From the boundedness of f(z,() that
of I (z, () follows with the restriction made on the path of integration. In order

to estimate a s(z, () consider

wz=c(z,() =
1 - 1 a"(z)a'(C) _

(C --z)3 2 (a(() - a(z))2 (a(() - a(z))3

f
C

-
z

3 (a(CC
- z

(z)13

- 2a (z)a(C)[a(() - a(z)] - (o (z))2o (()

La(C) - a(z)J
IL

J

(( - z)3

ww(z,z) = (a'(z))2a(4)(z) + 3(a"(z))3
24(o'(z))3

This is an analytic function in D x D, continuous on D x D.

iii. D multiply connected with C' boundary. With the notations from the last proof
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besides the formulas from there we have

azlw"(z ()-w(z,()1 = -2 f
aD\r

z t

az
k.(z,()-w(z,()1 = -2 JJ

a3

aD\r

()1 =
1

() - W(z[w (z , ,a
21r

faz2a(

ag
(z, t) [gv(t, () - g(t, ())ds, ,an,

ags(z, t) a 1g. (t, () - g(t, ())ds, ,an, a(

ag z(z, t) a [9,.(t, () - g(t, ()Ids,
asan,

aD\r
For z and ( near 1' or on r itself the integrands are continuous, even continu-
ously differentiable since t E aD\I',,. Thus the functions on the left-hand sides
are bounded for z and (on or near 1,,. Because w,, and its respective derivatives
satisfy the above inequalities in D x D as follows from the considerations un-
der ii. they hold for w and its derivatives, too. Since µ, 0 < µ < m, is arbitrary
the estimates hold on the entire boundary aD and hence on D.

Theorem 50. Let D be a bounded smooth multiply connected domain and p E
Lp(D),2 < p, satisfying

f (P(() + nP(()) V5µ(()d(drl = 0, 1 < P < m ,
D

where {+(i : 1 < p < m} is a basis for the solution space of the boundary value problem

Re {z'(s)v/)) = 0 on aD

for analytic functions, and

SP(z) - f zP(()dddq .
D

Then there exists a unique solution w to the boundary value problem

Re w= = Re {z'(s)w} = 0 on aD

within the set of functions representable in the form

w +z¢+Sp
with in D analytic functions ¢ and t/' being continuous in The solution w is given
by

m

w(z) = E 7N+Gv(z) + T (O + Tp)(z)
v=t

f {f(z, ()(m(() + TP(()) + (2w:(z, () - f (z, ())(O(() + Tp(())}d(dn
D
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where ryµ,1 < p m, are arbitrary real constants and

O(z) _ -Tp(z) - f {Ji,(z, ()P(() + JK(z, ()P(()} dgdq
Dr

+ f {JL(z,()P(()+JK(z,()P(()}dfdgdxdy.
DD

Proof. Differentiating w = 9' 1+ TO + Sp leads to

ws = +TP,TP 1I

I p(()d(dz

D

a f ( - z
wz = V + zo,

+ az SP,
dzSP = J P(() z 2 d(d*! ,

(C - )
D

= 0'+Hp,nP -1 f P(()
d(dg

/(_ z)2
D

l

W. = 011 + +
a
a2

z2
SP,

a2

z2
SP =

2

2r
f p(C)

( z
((_ z)s d(dn

D

s = P-
Inserting ur into the boundary condition Re wl = 0 gives

Re O = -ReT p =: ho on aD .

This problem for analytic 0 is solvable if and only if

Jho(c)(c)dc=o , 1< p< m,
aD

see Corollary 3.1. Applying GREEN'S theorem these conditions become

f (Tp + T P)V,,d( = 2i f as (T P + T p)O d(dq
aD D

2if(P+ Fp)+P,.4dn=0,1<p<m.
D

(5.1.2)

If they are satisfied the solution is by Remark 1 on p. 36 with some fixed zo E OD

0 = 00 + ico, Oo(z) - f JL(z, ()ReTP(C)d( - ReTp(zo). (5.1.3)

aD
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We have

1 JL(z,C) JK(z,() C'(S)
Oo(z) f f [ _ ( P(C) - - ( ((s) P(C) d(dCdij - ReTP(zO) ,

DSD

where the integral version

JL(z,()C'(S) + JK(z,()C'(S) = 0

of

is used. With
L(z, ()('(s) + K(z, C)C'(S) = 0

1 1 1 1

JL(z,C)=ir C-z x(-zo - Mz, () , JJ(z, () f Q(t, ()dt
30

and the CAUCHY formula then

Oo(z) = f {Ji(z, ()P(() - JK(z, (RC)} dCdp - ReTp(zo) ,
D

Oo(z) + Tp(z) f {JL(z,C)P(() + JK(z,C)P(()} dCdq + iImTp(zo) . (5.1.4)

D

This is just wr up to the additive constant ico.
Inserting the above representation for w into the second boundary condition
Re {z'(s)w} = 0 leads to

Re {z'(s)t/') = -Re {z'(s)(zo + Sp]} =: h° on 8D.

The solvability condition

J h°(()ds = 0 ,

SD

see Corollary 3.2, serves to determine co and hence to satisfy this condition just by
the proper choice for co. We have with IDI := measD the area of D

0 = Re f{70(z) + Sp(z)}dz = Re2i f 0{#(z) + Sp(z)}dxdy

8D D

= Re 2i f {O(z)+Tp(z)}dxdy
D

Re 2i f / JK(z,C)P(()) - ddrdxdy - 2IDIco ,

d 7r((- z) /
D D
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so that

co = -Im D jjjj {\JJ(z,C)- ((1
z) + A((1 zo)) P(()_JK(z,1)P(()1 ddtldxdy

Im I J J
{JL(z, ()p(() + JK(z, S)p(()}dCd7ldxdy - ImTp(zo) . (5.1.5)

D D

The solution to the boundary value problem then is

0 _ 00 + Oo(z) = tri J
((z,C)+-___)h0g)dsc,7UE

P
1 IR, 1 < p < m ,

N= aD

see Remark on p. 66 . Although

!C

I (z,() := rJ t(z,t)dt
ZD

is a multi- valued function for multiply connected domain D condition

1 h°(()ds = 0
8D

guarantees the single-valuedness of >(i°. Because if I (z, () for fixed z E D is replaced

by f (z, () plus a linear combination of the modules of periodicity this will result in

the same value for t/io(z).
Inserting h° in the integral representation for *Go gives

'to(z) = - 2 _ I( , z + I (z, ()) {(Co(() + SP(())d( + SP(())dS], (5.1.6)
8D

where 0 is given in (5.1.3). Applying the GREEN formula with respect to the domain
D. := D\{( : I( - zj < e} this function can be written as

Oo(z) = I + IirmJJ(e)

7r z

L \ S 1 + p (z, C)) (CS(C) + SP(()) dfd,?
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+ (( 1z)z - aP(z, ()) SP(())} d(dn

because

P(z,()
a(z

I

()2
- L(z,()

From the definition of L(z, () the last term on the right-hand side turns out as

+A
1

"g'--") (CS(C) + SP(())dCdn
OZOC

D

1 1 9=(z, ()((O(() + SP(())d(
Sri

8D

J { (
1

z + e (z, C)) wo + TP(() - (C) - Tp(C))
D

-"1(
1 z + I (z,())Im(c(c)+TP(c))Ied,,

D

-f SP(())dCdn

D

mJ2(e)
D

lf (2m=(=, () - z 1() (T(()) +TP(())dCdri ,
D

since

J2(E) e

lc-=I
7x

-2 f (2',,:(z, ()ee"0 + 1)((.O(C) +
SP(())eaivdP + eei, ,

0

tends to zero with e.

Jl(e) -2Ai f ((1
z

+ [ (z, () [((o(() + SP(())d(+ ((O(() + SP(())d(J
IC-=I=s

Similarly as J2(e) the second term here tends to zero with e, so that only J1(e) has
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to be considered where

j1(6)

lim J,(e)
=moo

Hence,

21 f C(
1 z

+ e (z,))c)+sP(odc
K-zl==
2w

-2x 1(1 + ee"° l (z, SP(())d'P , z + cc"' ,

0

-[z4(z) + SP(z)J

OO(z) = -
-1

J S C 1 z + P (z, )&)+TP(C))
D

+(=(z, () - e (z, Tv(()) }drdrl - zb(z) - SP(z) ,

>'o(z) + z4(z) + Sp(z) = T¢(z) + TTp(z)

-1 f { Y (z, ()(O(() + TP(()) + (2wz(z, () - t (z, +Tp(())}d(dn . (5.1.7)
a

D

This formula represents w up to the additive term For the derivatives of
w the derivatives of ¢ and 0 are needed.

4'(z) = f {l(z, ()P(() - K(z, ()P(())dCdrl ,
D

aSP(z) = n(4+Tp)(z)

-1 f { e:(z,()(4(()+TP(())+(2w==(z,())- .(5.1.8)

D

This last expression is wz up to the term For wr= we see it coincides with

S°P :_ O' + nP = f [t(zO - - (( z)2, P(() - K(z, ()P(() 7 d(drl
D

= - f {L(z, ()p(C) + K(z, C)P(()}d fdn (5.1.9)

D
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Because of Lemma 34 there is no need in finding w==. In fact up to the additive term
E'"1 the function w== is equal toµ=

o(z) + zo"(z) +
Z

_lria 22
SP(z) = 11(0'+ Tp)(z) - 2I Ito(o + TP(()] ((

a(z)z

8D

-1-z J
{ P ==(z, TP(()) + 2-===(z, () - e ==(z> TP(())I dgdri

D

The operator on the right-hand side acting on p is involved. Its L2-norm is not likely
to be 1. For this reason the term w== is excluded from the differential operator to
be considered later on. But S° can be shown to have L2-norm 1, see [Dzhu92]. We
reproduce the proof from [Bege93].

Lemma 37.
Its°IIL($) =1

Proof. Let P E C, -(D) and denote

T°P Oo+Tp = /{(J(zc) - . 1 z)P(C)-'JK(z,C)(C)J4dl

_ -! {JL(z,()P(C)+JK(z,C)P(C)}dCdrl+Tp(zo).

Then

since

D

J
S°pS°dxdy =

J
8zT°p T°pdxdy

D D

I f ' (_ I
Fzz

aBzpT'0pl azT0pp dxdy

D

2i J
a PT°pdz - J { (PT°P) - PP} dxdy

8D D l

2i
azPOPdz + 2i P°P + f PPdxdy = IIPIIi,

aD 8D D

T T°p=S°, T°p=P.

In order to verify the last equality we observe p = 0 on OD and show

1 18T°p T-°pdz
02i f az

= .

8D
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1 r 8T°-
7 OPdz2i f Or

8D

rr
= 2a J J {(Z,o - 1 z) Jx(x, Z)P(c)}

Xp() - K(z, ddddidz .
x)2)

I
8D D D

W 2 J t(z, ()Jt(z, ()dz = Jz(t(z3Je(z())dxdv = ft(z,)t'(z,()dxdy
8D D D

1 £(z,()
dxdy =

a I la 1 ,ji(z, )dxdY
1rD (z_()2 a(xJx_C

{ z 1 Jr(z,
()dz - liu z 1 (.h(x, ()dz}

8D lz-Cl=c

2Ai J 2
Jr(z, ()dz = 2ai J 1 2

Je(z, ()dz
8D x ()

8D (x - ()
To obtain here the

f
tequality

T -. - )

f (z)
dxdy , z E D,

D
AD ((-z)2

see proof of Lemma 5, is applied for f (z) = t(z, (). Hence,

aD

f e(z, () - 1
(C 1 z)2) Je(z, ()dz = 0 .

(ii) 2ui
(z, z)dz = 1 J z'idxdy = 1 f £(z,()2dxdy

8D D D )

which follows from applying the GREEN formula to D. On the other hand from the
definition of t(z,

1 ! t(z, S)
dz =

1 ! dz -
1 JL(z)d2i8D

JD (z - 2() 2:aD z

follows and by L(z, ()d( + K(z, S)d( = 0 for C E 8D , z E D , K(z, Z) = K((, z) and
the analyticity of K(., ()

_.L J
TLz)dz 2rJ ((z'z)dz = -K((,() _ -K((,()

8D



Higher order equations and equations in several variables

Hence,

1 r ( 1 1 dz

21ri J
{ e(z, S) -

8D
lr ((_ z)2 z

l

2i I (Jt(z, () + 1 () K(z, ()dz
z

8D

_ / i C1e(z,()+ A
z

1 () K(z,()dxdy
D

r 1 1.

(z ()2
K(z,()dxdy = 0 ,

D

where again Lemma 5 is applied.

(iv) i I
(1)2)

JK(z,()dz

a( 2x
I(IP

(z,() + l z) JK(z,()dzS
8D

Ir

P (z, () + 1 _ 1 ) JK(z, ()dxdy
ir(-_

+l-o (n (z,()+ - 1 z) Jtc'(z,()dz

= f ( z,() - - (;C 1 z)2) K(z,()dxdy - JK((,() = 0

223

once more by applying Lemma 5 in complex conjugate form and because of the ana-
lyticity of JK(z, ().

.. I r_.. _._.-.. aJ (K(z,()JK(z,())dxdy
D

J(K(z)K(z))dxdY
DD

1 K(z, ()K((, z)dxdy = K((, C)
D
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in view of the reproducing property of the BERGMAN kernel K.
These estimates (i) to (v) show

2i fa T °P7'OPdz = - f f [K((, ()P(()P(() - K((, ()P(()P(() J d(drld(dil = 0 .

8D D D

After these preparations we are leading our attention towards the differential equation

-.: +µ15z+µ2u5:+alw:+a2i+blwz+b2wz+clw+c2w+d=0in D(5.1.10)

and combine this with the boundary value problem

Rewz=Re{z'(s)w)=0 on OD.

Assuming this problem to have a solution w we set p := w,--j and notice by the
preceding considerations that thus w is representable by analytic functions yi and
0 in the form w = 0 + TO + Sp, where 46 and 0 are given as stated in Theorem
50. Inserting this representation into the differential equation gives us an integral
equation for the density p, namely

p + p1S°p + µ2S°p + K°p + do = 0. (5.1.11)

Here S° is the singular integral operator from (5.1.9) and

K°P = al(

+cl(I/io +4 + Sp) + c2(TO + 4 + SP) ,

d0 d + y:7M [blikµ + b21/iµ + cO,, + c2Wµ] .
µ=1

Here we have to apply some results from the theory of integral equations the proof
of which cannot be reproduced here. A classical reference for the FREDHOLM theory
is [Cohi53]. Singular - one-dimensional - integral equations are studied in [Musk53],
[Mipr8O], [Proe78]. For a reduction of a singular integral equation to some FREDHOLM
equation see [Musk53], p. 149. The operator in (5.1.11) turns out to be quasi-
FREDHOLM. The inverse to (I + S)p := I P + III SP + µ25°p, where I is the identity
operator, exists in L,(D) for 0 < p-2 small enough so that q°IIS°IILD(s) < 1. Applying
this inverse to (3.5.4) reduces this singular integral equation to an equivalent integral
equation

p + K'p + (I + S)''do = 0 (5.1.12)
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with a linear operator

Kl :_ (I + S)-1 Ko = D_1)kSkKo
k=0

which maps L,(D) into L,(D) where 2 < p satisfies goIJSoLJLp(n) < 1.

Definition 18. A linear operator K from a BANACN space A into a BANACN space
B is called compact or completely continuous if the image KAo of any bounded subset
Ao of A is a compact set in B.

Lemma 38. Let al, a2i bl, b2, cl, c2 E C°(D; C). Then if O < a < ao := L:1-2,2 <p

p, K° is a compact operator from L,(D) into C°'(D).

Proof. The compactness of the T-operator on L,,(D) follows from Theorem 23 by
the ARZELA-AscoLJ theorem, see [Tayl58J. From Sp = zTp -T((p) the S-operator
is compact, too. For showing 0 to represent a compact operator let z1, z2 E OD both
lie on one continuum of 8D. Then choosing the path of integration along OD from z,
to z2

Jt(z2, () - JI(zl, ()

JK(z2,C) JK(zl,C) =

Thus for zl, z2 E 8D

4'(z2) - O(zl)

22

f e(t, ()dt
Zl
Z2 Z2 22

I K(t,S)dt = -7r f at9-C (t,C)dt = f
91 Zl Z1

12 22

J a9t(t, ()dt = - f L(t, ()dt = JL(zl, () - JL(z2, ()
Z1 Z1

Ji(z2,() - JJ(z,,() + \ l zl ( l z2/

2iIm J(Je(z2() - Jr(zl,())P(()d. d17
D

x+J 1 - 1Jdfdrl
D (- 2

z

(- ,
922

2ilm fJi(t1()dtp(()dedii +Tp(z2) -Tp(z1) .

D z,
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From the boundedness of 1(z, () and well known properties of the T-operator, see
Theorem 23,

I4)(z2) - 4)(zl)I S M(p,D)IIPIIL,(D)Iz2 -z11a0,a0 =
p

p
2

follows. The PRIVALOV theorem, Theorem 6, then guarantees that 0 satisfies the last
inequality on D rather than just on 8D. It also ensures that for smooth boundary i9D
the boundary integral (5.1.6) defining 1b0 satisfies an estimate of this kind, too. Since
4) + Tp is HOLDER continuous and

C,(II f; D) < M(a, D)C, (f; D) for f E C°(D) ,

see proof of Theorem 29, the operator 11(4) + T p) is compact for p E L,(D), 2 < p.
For the other term in (5.1.8) this follows from Corollary 11. That the operator on the
right-hand side of (5.1.7) is compact in L,(D) follows besides from properties of the
T-operator from analyticity. Thus

Ca(K°P; D) 5 [C«(a1; D) + Ca(a2; D)1 Ca(4+ T p; D)

+[Ca(bl; D) + C.(b2; D)]Ca(WU + zcb' +
C7_

SP; D)

+[CC(cl; D) + Ca(c2i D)1C,(40 + TO + Sp;

< M(a, p, K1, K2, D) II PII L,(D) ,

where K1, K2 are nonnegative constants such that

Ca(al; D) + Ca(a2; D) < K1

Ca(bl; D) + Ca(b2; D) + Ca(cl; D) + Ca(c2; D) < K2

and a<ao:=p-2
p

Lemma 39. Let al, a2, b1, b2, c1, c2 E Lp(D), 2 < p. Then K° is a compact operator
from L,(D) into Lp(D).

Proof. For P E L,(D) we have

II K°PII L,(D) s [Ila111L,(D) + IIa2IIL,(D)] Ca() + Tp; D)

+ [IIb1IIL,(D) + II6211L,(D)] Ca(t,b + z¢' + aSP; D)

+ [IIci II L,(D) + IIc2IIL,(D)} Ca(40 +70 + Sp; D)

< MIIPIIL,(D)
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Let be a bounded sequence in L,(D) then (4in where 0. = 0(p.), is
bounded in C°(D) and hence by the ARZELA- ASCOLI theorem there is a convergent
subsequence (0,,,, + Tp,,j. Then (al(¢,,,, +Tp,,,,) + a2(4',,,, +Tp,,,,)) is a convergent
sequence in L,(D). The same argument holds for the other terms.

Lemma 40. The operator K' :_ (I + S)-1 K° is a compact operator from L,(D)
into itself if K° is.

Proof. Let A C L,(D) be a bounded subset i.e. IIfIIL,(n) 5 M for all f E A. Then
K°A C C°(D) is compact, since K° is compact, see Lemma 38. Hence there exists
a sequence (K°fk) in K°A, fk E A, k E IN, which is convergent on C°(D). Since
(1 + S)-' is a bounded linear operator mapping C°(D) continuously into L,(-D) the
sequence ((I + S)-1K°fk) is convergent in L9(D).

Hence equation (5.1.12) is a FREDHOLM equation, see [Cohi53], [Musk53], [Veku62],
(Mipr80] and the FREDHOLM alternative applies.

Fredholm alternative. Let Kp = f be a FREDHOLM equation and Ka = 0 its
adjoint. Then

i. The homogeneous equation Kp = 0 has only finitely many linearly independent
solutions. The adjoint equation Ka = 0 has exactly the same number of linearly
independent solutions.

ii. The inhomogeneous equation K1 = f is solvable for any right-hand side f, if
and only if the adjoint equation Ka = 0 is only trivially solvable. Otherwise the
inhomogeneous equation is solvable if and only if f is orthogonal to the solution
space to the adjoint problem Ka = 0. There are as many solvability conditions
as the homogeneous problem has linearly independent solutions.

Theorem 51. Let the coefficients of the second order equation (5.1.10) satisfy

(µl(z)I + 1p2(z)I 5 q0 < 1, Ila1IIL,(-n) + IIa2IIL,(-n) 5 K, ,

IIbIIIL,(D) + IIb2IIL,(D) + IICIIIL,(D) + HC2IIL,(D) 5 K2,2 < p, goAp < 1

Then the homogeneous boundary value probelm

Rear = Re{z'(s)w} = 0 on 8D

for equation (5.1.10) has the FREDHOLM property.

Proof. It was just explained that for the integral equation (5.1.12) the FREDHOLM
alternative does apply. Let p° E L,(D) be a solution to (5.1.12) in the homogeneous
case d0 = 0 and denote by ti[io, ¢° the related functions from (5.1.7) and (5.1.4),
respectively. Then

IV° :='Po + z4.° + Spo
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is a solution to the homogeneous problem d = 0. If the coefficients b1, b2, c1, c3, too
vanish identically (5.1.10) is just the generalized BELTRAMI equation for wa. Because
of the boundary condition Re w= = 0 by Theorem 38 it follows that w is the trivial
solution w = 0. In case when b1, bz, c1, c2 are small enough w can again be shown to
vanish identically. This can be done on the basis of the a priori estimate (3.3.10).
The same is true for the singular integral equation (5.1.12).
But in general the homogeneous problem (5.1.12), do = 0, has N > 0 nontrivial over
IR linearly independent solutions p,,, l < v < N, while the inhomogeneous problem is
solvable if and only if the right-hand side do satisfies N orthogonality conditions

Re I do(z)a (z)dxdy = 0, 1 < v < N.
D

Here a3, , aN are linearly independent solutions to the adjoint equation to 5.1.11.
These conditions lead to a linear algebraic system of N equations for the real coeffi-
cients y,,, l < µ < m, in the general solution 0.
Let the rank of the coefficients matrix of this linear system be r > 0. Then r of the ryµs
can be expressed by the remaining m - r ones leaving N - r equations as solvability
conditions on d and the remaining -Hs. Together with the m conditions for (5.1.2) to
be solvable where p has to be replaced by

N

Pp + E C.P.
V=1

there are N - r + m solvability conditions. Here p,, is a particular solution to the
inhomogeneous equation (5.1.11) expressed through do.
The number of linearly independent solutions to the homogeneous problem is N+m-r,
too. This can be seen by considering (5.1.11) for d = 0 and ryµ = b,,,, where v varies
over the indices of the remaining m - r coefficients

We are now turning to the second representation formula in Theorem 49 and Corollary
10.

Theorem 52. Under the same assumption as in Theorem 50 there exists a unique
solution to the boundary value problem

Rewr=Re{z'(s)w} =0onOD

within the set of functions representable in the form

w = 0 + + Sir, Sip(z) -- 9(z, ()P(()dddn ,
D
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with functions 0 and tb analytic in D and continuous in D. The solution is given by

w(z) _ ryµtkµ(z)+T(cb+Tp)(z)
µ=1

r e (z, ()(@(C) + Tp(()) + ( 2 - .( z ,( ) - t (_, ())(O(C) + TP(())} dddrl ,

where ^y,, E /R, 1 < m, cb is identical with 40 from Theorem 50 and

0'(z) = Rz) +

a

J w.(z,C)P(()ddrl
D

Proof. Differentiating the representation formula for w gives

tG' - J wa(z, ()P(()d(dn - A f P(() az = 0 + 7-p
D D

U'. = 0 + TP' - s I w= (z, ()P(()d(dtl - 1 P(()((dz

with

and

wss

w==

' - J w.(z,()P(()d(d,i ,
Dr

' - 2 J
w:(z,C)P(()d(dt? ,

D

J
w=:(z,()P(()d(dq - J P(()( dz)Z = 0' + lip ,

2 f 1 f - d(dtl
D U

ws: = p
The first boundary condition implies

(( -z)2 ='&' + np ,

Req=-ReTp=:h°onOD.
This is just (5.1.2) now for rather than ¢. Under the same conditions this problem
is solvable and ¢ is given by (5.1.3) again replacing 0 there. The constant co still has
to be determined.
The second boundary condition means

Re {z'(s)tb) = -Re {z'(s)(O + Sip)} = h° on 8D .
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This problem is solvable if and only if

J h°(()C'(3)d(= h.°(C)ds = 0,

8D 8D

_Re J Siv(())d(dn = 0
aD D

or

Im J{(c) +Tp(()}d(dn = 0 .
D

Because SIP is vanishing on OD the term Sip can be neglected in the boundary con-
dition. The advantage for keeping it is that then the solvability condition is expressed
through 0 rather than through ¢'. Plugging in 0 given as 0 in (5.1.3) and (5.1.4) leads
to the same equation for co which therefore turns out to be (5.1.5). As before then

m

v=j

00 + f (z, C)] L(4'(() + Slp(C)}dC + (0(() + Sip(C)} d(] .(5.1.13)
8D

Although 0 only given through its derivative via ¢ in the multliply connected- domain
D in general is multi-valued the sum 4'++bo is uniquely defined single-valued function.
This follows from

2 2 I
t (z,()dC = -A J 8 ' dCdrl = i J h.(z,()dC = -tai J (Cz

8D D aD 8D

and

Therefore for c E C

1 J Q (z, ()d(= 0 .2ri
a

2ari J ' z + e (z, C)J [cdC + cd(] = c .

Thus, if ¢ is replaced by 0 + c for constant c then 4'o switches to 4'o - Z. Again as
before by the GREEN formula applied for the domain D. = D\{(: I( - z) < e} the
functiono is rewritten as

+ko=J+li mJl(e).
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since

D
AJ faS z e(z,S))&(S)+siP(C))J

aC
[((

1 z + e (z, S)} Y,-p-(())] } d do

=
J{(t(zc)-

W(C
z)2) (4 ) + SiA(S))

D

+- (S 1
z

+ f (z, S)) TP(S) - O(S) - TP(S))} 4d,)

- f L(z,C)(,(S) + Sip(S))d{di1
D

r
+

Ai

J
(±-

z + e Im TP(())Adn
D

2- f L(z, ()(m(S) + Sip(())4dq = - f aaza )(4(C) + SiP(())dd?
D D

1 f

9:(z,()(O(S)

+ SiP(S))dS
ai

8D

-- f 9=(z, S)(4(S) + TP(())4dq + Jim J-2(e)
D

f (2w:(z,S) - z 1 S) (qS(S)+TP(S))d dt ,

D \

J2(e)
tar: ,/ (2``''(z, S) + 1 x) SiP(C))dC

IC-zI=s

tends to zero with e.

Ji(E) 21ri f LS 1 z + t
IC-21=ff

+(i(C) + S,P(())dC),

Hence

o(z) + O(z) + SiP(z) = a
J

{ (e (z,C) - ?w=(z, +TP(())
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+ TP(C)) } df d8- (S 1
z

+ e (z, C)) WO

= TO(z) + TT p(z) - J L (z, TP(())
D

ll

l
+(2w=(z, () - t (x, 7'p(t; }} } dCdrl. (5.1.14)

This formula gives a particular solution to the boundary value problem in the desired
form. It is quite similar to (5.1.7). Differentiation and applying the formula, see the
proof of Theorem 30,

nf=T(af) I rf(C)dd
8S 27ri J C - x

aD

gives

ofz) = A f w=(z,()P(()4do - 7-p(z) +T (aCTpl -
D aD

D

= a J w=(z,()P(()dCdrl - 2ui

f(O(C)
+TP(())z

D OD

- J l =(x, C) TP(C)) } dgdrl .

D
JJ

As_is shown in the Lemmas 35, 36 the integral operators in the representations of
i, +'o, +b( are compact operators in L,(-D) for 2 < p.
If we are involved with a differential equation analogous to (5.1.10) namely

w==+piws=+p2W5 +alwr+a2u`r+blw=+bzw=+clw+c2w+d =0 in D(5.1.15)

then we get a singular integral equation of the kind as (5.1.11) with the same singular
integral operator S° but for 'p instead of p. The compact operator K° is given by

K°P = I'd. (z, ()p(()4d17 + T-P
\ D

+b2 00, -
21

1 w=(z, ()P(()dfd+l + TP + 4 + S,-P)

D

+C2(l'O + + S1p)
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and

do = d+F, +c2 µ]
v=I

Hence, the boundary value problem for (5.1.15) has the FREDHOLM property, too.

In [Bege93] the case where D is the unit disc D is explicitly worked out.

5.2 Higher order equations

As in the preceding section where iteration of the T-operator with itself and the T-
operator, respectively led to the operators To,2 and T1,1 further iterations will produce
a hierarchy of integral operators, see [Behi93]. They are related to the differential
operators 8m+"/8ioz" in the same way as the T-operator is to 8/8z. While these
results for general domains just will be listed we will again concentrate on the unit
disc, see [Behi93]. For the disc D in (2.1.2') instead of the T-operator

SIP(z - I
z P(o + 1+ xC P(C) dn , z E D

27r x
C 1-zC C dC ,

D

appears which is the T-operator adjusted to the DtRICHLET boundary condition and
some normalization (side condition). For p E L,(D), I < p, we have

8SI p

and

,IP iPP, ,Re S ImS=0on 4D= to)=Q

BSIP(z) = - 1 r

f

P(C) + A-0 1 Adn
8z A (C - z)2 (1 - Z--C)2 1

Definition 19. LetJI2lte(Cp E Lp(D),1 < p, and k E IN. Then for z E D

- z)]k-1 C + z P(C) + 1 + g P(C) ldSkP(z)
2x(k _ 1)

JJ
D

C-z C 1-zC C

Theorem 53. Sk p = Sip, k E IN.

Proof. For k = I there is nothing to prove. Let 2 < k then

(5.2.1)

aSkp(z) = 2u(k )k 2)1 J[2Re(C - z)Jk-2

[C

+ z PAC) + 1 +
z

P( ))1

D J

= Sk-IP(z)-
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Moreover, since

SkP(0) = 2a(k
1)

1)! f(2aec)' I p )J dddq
D L

we have ImSkp(0) = 0, and since on OD

+ z z+ S
SkP(Z) = 2u(k

1 - k

1)! J[2Re((_z)11c_1 1 ( - z
D

p(o
J
] dr;drlJ[2Re((rrk

- 1)! - z)]k-lIm [is +- zz
C

thus Re Skp(z) = 0 for z E aD. Applying the modified CAUCHY-SCHWARZ-POMPEIU
formula to Skp gives

SkP(Z) = - 1

f
c + z S*-'p(() + I + z( Sk-1P(C

d9
2a

D
S - z 1-zs S }

.= S,(Sk-1P)(z), z ED

Hence, for 2 < k
Sk=S1Sk_i.

Theorem 54. For p E L,(1,1 < p, k E IN, Skp has the following properties:

iizq Skp = Sk-ep,1 < 1 < k, if Sop := P ,

Re-tSkp=0onOD, 0 <1 < k- 1 ,
024

ImSkp(0) =0, 0 <1 <k - 1 .

Moreover, a</az'Skp is a weakly singular integral if 0 < t:5 k - 1, while for 1= k it
is a singular integral,

Skp(z) _
(-1)kk

J {\` - Z)k-'
P(C)

az a S-z
(S-z)2

+ (
lk-1

l

1
+

Zz

4dq' z E D. (5.2.2)
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Proof. One can inductively show by the LEIBNIZ rule

-Skp(z)

V ()atrte f
-t-A-I-

( - z))
I (p(+ ddn

A=OD

2a l (k - e k 1)! [2R, (C {+Jththi 0:5 t < k - 1, z E D ,

k A

where aatk :_
(-1) (t - )) . Differentiating this formula for t = k - 1 once(k-A-1)!

more gives 8k/8ztSkp in the above form. Obviously, the integral for the deriva-
tive 8t/8z'Skp is weakly singular since k - A - 1 - (t - A + 1) = k - t - 2 > -1
for 0 < t < k - 1, while for t = k this expression becomes -2 so that 8k/BzkSp is a
singular integral.

In order to avoid running again into involved technical estimations, here only a simple
kth order equation will be considered, see [Behi93].

Theorem 55. The DIRICHLET problem

Re =0on 8D,0<t<k-1, Im 6KW (0)=0, 0<1<k-1,
for the differential equation

8kw
Ik = P

has the only solution w = Skp.

Proof. Similar to the first representation formula in Corollary 10 the general
solution to the differential equation is

k-I

w(z) = E Mz)zt + Skp(z)
t=o

Here the 4t are analytic functions. While Skp is a particular solution the other part
is the general solution to the homogeneous differential equation 8k/8zkw = 0. Such a
function is called polyanalytic see [Balk9l). From the boundary behaviour of Skp we
find

lRe ak-w = Re {(k - INk-I + SIP) _ (k - 1)!Re¢k-I = 0 on 8D

Thus 4'k-I(z) = ick_I with a real constant ck_I. This constant is zero since from the
side condition Img'k_I(0) = 0 follows. Proceeding in this manner 01(z) = 0 is shown
foranyt,0<I<k-1.
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The higher order operators for general domains are defined by means of some kernel
functions.

Definition 20. For m, n E Tl with 0 < m + n but (m, n) # (0, 0) the kernels
Km,n(z) are

(-1)m(-m)!zm-]zn 1 if m < 0
ir(n - 1)! '

Km,n(z) :=

0=1 I" .=I,,

(5.2.3)

Definition 21. Let D C T be a domain and to E L1(D). Then for m, n + T6 with
0<m+n

To,ow(z) := w(z) if (m, n) = (0, 0) ,

T,,,nw(z)
J

K.,. (z - C)w(()dt dp if (m, n) 0 (0, 0) . (5.2.4)

D

Sometimes Tm,n,D is used instead of just Tm,n.
Obviously, To,1 = T,T1,o = T, T_1,1 = II, T1,_1 = II in the notation of chapter 2.
Analogously to the POMPEIU formulas (2.1.1) and (2.1.1') higher order representation
formulas are available (Behi93].

Lemma 41. Let D be a bounded domain with smooth boundary and to E C'(D; C).
Then for 0 < m + n and z E (C \8D

Tm,nw(Z) = Tm,n+lur(z) -
2i J Km,n+1(z - ()w(()dC , (5.2.5)
8D

Tm,nw(z) = Tm+i,nwz(z) +
2i f Km+,,n(z - (5.2.5')

8D

(-1)n(-n)!zZ"-1 If n < 0,
7r(m - 1)!

-IZn-1zm
2 m-1 1

n-1
1

7r(m-1)!(n-1)t logIZI if 1 <m,n.

Proof. As in the proof of Theorem 20 for zo E D consider De := D\K,(zo) for small
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enough e > 0. Applying Lemma 9 gives

f Km,n(z - C)w(()Adq

18( (Km,n+1 (z ' i +

1 f K..n+1 (z - ()w(C)dS +2i
8D,

f Km.n+1(z - ()a W (()Adil
D.

(r tJKm,n+i(Z - C) w( )4dn
D.
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Passing with a to zero and observing 0 < m + n formula (5.2.5) is obtained. If zo # D
then instead of De we can just work with D in this argumentation.

Theorem 56. Let D be a bounded domain with smooth boundary and w E
Cm(D; d') for 1 < m. Moreover, let (µk, vk), 0 < k < m, be a set of double indices,
satisfying

140 = v 0 = 0, Irk-1 lLk, vk-1 :5 vk, µk-1 + Vk-1 + 1 = Ilk + Vk, 1 < k < m .

Then

So-+V-w(z)

m Ml+v! _
KYR{Irvk+1 (z - S) f(ic)v1+7-vkl!_i()ill+1-YR+ E 1

k=O
2

8D

(5.2.6)

Proof. Form = 1 there are two possibilities (pl, vl) = (0,1) or (µl, vl) = (1, 0). In
these cases (5.2.6) coincides with (2.1.1) and (2.1.1'), respectively.

Assuming (5.2.6) holds for m, we will show it holds for m+1, too. Let w E Cm+1(D; C )
and choose µm+1 = /gym and vm+l = v,,,+ 1. From (5.2.5) applied to 8µ'n+°mw/8µn'z8""`z
we see

iA.+vm 0l/m+1+vm+1

TOm.l'm 8zµ- Oavm = Tµm+l.vm+l azvm+l49Yl'm+7

+I Kllm+l .vm+l (z -C) d(i()
8D

V o

Inserting this formula into (5.2.6) shows that it holds for m + 1, too in this particular
case. When Pm+i = µm + 1 and vm+1 = Y. an analogue argument holds.

Corollary 12. In the particular case µk = 0, Vk = k, 0 < k < m, any w E



238 Complex Analytic Methods for Partial Differential Equations

Cm(D; 0) is representable as
m-1 r m_1

w(z) = k
Wk(z)Z'

+ (m 11)1>r J
(z

k-0 D

with analytic functions 4'k in D.

Proof. From (5.2.6) it is seen
m-1

r k

w(z) = i J
Ku.k+1 (x - S)a

k=o 8D

8mw(S)dfdq
(m-1)!u z - C 87

D
,,.

I 1 (z - ()k 8w(()dS
k!2ri J z - C
k=0 8D 8C

The boundary integrals are obviously of the form as stated in the corollary.

In connection with the RiEMANN jump problem we only mention that for a system
of smooth curves I' and fk E Cc, (r), 0 < k < m - 1, 0 < o < 1 the function

k

,O(z) E 2 ik! ,! ( z fk(C)d(

is a polyanalytic function, 88m¢/8z =10, in C \f' satisfying

LOW
k

(akW
k I =fk,0<k<m-1.I F

This follows from the fact /that, see [Beehi93],

f (z _ S)fk(S)d(
r

is continuous on IF for I < k while for k = 0 it is just a CAUCHY-type integral.
Moreover,

m-1 _ k L

8xr) - 2ai(k - P)!
(z

C

S) fk(()d(, 0 < t < m - 1 .
r

Properties of the integral operators T,,,,,, similarly as for T = T0,1 studied in section
2.2 are investigated in [Behi93] in detail. Besides continuity, differentiability, and be-
haviour at inifinity the norm of the singular operators T,,,,_m, m E Z, are considered.
They all turn out to be unitary operators in L3(C) as is the 11-operator, fI = T_1,1.
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5.3 First order systems in two complex variables with analytic coefficients

In this section simple well-posed boundary value problems for systems of first order
partial differential equations in two complex variables are considered. The result then
is applied to solve a higher order equation again of simple type. In several complex
variables there is almost no theory for boundary value problems. Here the solutions
are determined by RIEMANN-HILBERT conditions on some complex one-dimensional
subset of the boundary. The basic idea is due to A. DZHURAEV, see [Bedz93b). The
method is working only for equations and systems with analytic coefficients.
Let A be an N x N matrix function in a domain Do of C 2 with analytic entries. The
multiplicities nR of the eigenvalues A,,,1 < ,c < k, ER=, n = N, are assumed to be
constant on Do. Then there is a nonsingular matrix B with analytic entries such that
A := B-'AB has JORDAN normal form,

A=

r A,

0

0

Ak

1

0

0

,I <x <k.

The A. are n, x n matrices with analytic entries. Let f be a given vector-function
in Do x C '. Then w = Bw transforms the first order system

w=, + Aw=, = f (z,, z2, w) (5.3.1)

into the system

w, +Awz, = Bf +(Bs,+ABs,)Bw=: f(z,,z2,w).

Let us at first assume that this system decomposes into the k systems

wXz, + fR(Zi, Z2, W.) , 1 < x < k

Any system of the form

ws, + Awi, = f (z,,z2, w) ,

where
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A

1

A=

0

0

(5.3.2)

1 A

has the component form

Woz,+Awoz, =fo, =f,., 1 <v<n-1.
Here f and w are vectors in (C" and A is analytic in Do . In the following the
differential form dz1- adze is assumed to have an integrating factor µ(z1, z2) different
from zero and analytic in Do such that

d(1 := ,udzl - uAdz2

is a total differential i.e. an exact differential form. Such factor can be found by
finding a particular solution to the partial differential equation

(1,A)=, + µ.. = 0 .

Let tit be a function with this total differential d(1 such that (I., -pA
Choosing S2(z1,z2) _- z2 then the mapping C _ ((1,(2) maps Do one-to-one onto a
domain G C tZ' 2. The JACOBIan of this mapping is

(Is, SIz,

Sts, (2s,

in Do while the JACOBIan of its inverse is

ZIC, ZIC2

z2C1 z2C

I

-
3

1

0

A

1

=µ0o

-µ.

Transforming an analytic vector w by z = z(C) gives an analytic vector function w
of C,w(C) = w(z(C), satisfying

WC1 = ws,ZIC, + W 2ZCl
1

-wzj

1C2 = wz, z1C2 + ws2z2C2 = Aws, + w+2

Hence the above system is equivalent to

"*2 = fo, w,c2 + pwp-IC, = fs, 1 < v < n - 1 ,
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with f,.(C, w)
Let us consider a system in this reduced form

241

W0:2 = fo, wvz2 + {live-i:, = fv, I < v < n - 1 ,

in a domain Do of V. Assuming the hyperplane z2 = 0 intersects Do in the plane
domain Go of C, Go = Do n {(zl, z2) E 02 : z2 = 01, integration leads to

w0(z1, z2) =

:y

WO(zi)+I fo(zl,t,w)dt,
0:J{f(zitw)y

w(Z1, z2) = z1) + - (l(zl, t)wv-lz,(zl, t)}dt , I < v < n - 1 ,
0

where the cp,,, 0 < v < n - 1, are analytic functions in the domain Go of V . In vector
form the system becomes

0

µ

0

0

i 0

Introducing the nilpotent element, see ]Doug53],

0

1

e=

0

together with the hypercomplex quantities

0

1 0

wz, =f.

, en=0,

n-1 n-1

w = > w,.e", f = fvev
M=0 v=0

(5.3.3)

the system is
n-1 n-1 n-1

Ew,,2e°+peEw,,,e° _ Ef,.e"

V=o v=o V=o
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n-1 n-1 n-1

E eY =
Y=1 V=0

Defining the hypercomplex first order differential operator

a t9D :=
2iz2 + ueazl

the system can be written as

Dw = f. (5.3.4)

Let the hypercomplex function t = En=o be a solution of the homogeneous
equation, f = 0, satisfying to(z1, z2) = z1. Then

tY = t,(z1, z2) = I < v < n - I ,

where

.22

µ0(z1, z2) = z1, z2) = Jii(zit)i_ii(ziit)dt , I < v < n - I
0

Let us denote this function in the sequel as t1 rather than just t and denote by t2
the formally hypercomplex function t2(z1iz2) = z2. Introducing the hypercomplex
variables (t1, t2) instead of the complex variable (zi, z2) equation (5.3.4) can formally
be simplified. The JACOBIan of this transformation is

tlzl t1s2
J

:= t2z, t2z2

Moreover from,

we find

n-1

0
V=1

oz,
= t1z1 at, + t2=1

at2 =
Jot,

49

22

= ti=2
at, + t2=2

at2
= -ieJatl + ate

a a a 1a
ate az2

+ µeazl = D
, at1

=
J
T

Obviously, Dt2 = I , Dt1 = 0 which just is at2/at2 = 1 , dt1/at2 = 0. We also see

ate 1 at2 __ I az2 = 0
8t1 7 az1 J az1
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Thus, t1, t2 are independent hypercomplex variables. With these hypercomplex vari-
ables (5.3.4) becomes

09

8t 2w(zl(tl,t2),t2) = f(zl(tl,t2),t2)

where f is assumed independent of the unknown w. A particular solution to this
equation is

t2

f/(zi(tit),t)dt.wo(tl, t2)

The general solution to the homogeneous equation, f = 0, is given by an arbitrary
analytic hypercomplex function ,p as ,p(tl(zl, z2)). Hence, the general solution is

w(zl, z2) = wo(tl(zl, z2), z2) +'p(tl (z1, z2))

Thus the following result holds.

Theorem 57. Let y and f be analytic in Do. Then

22

w(z1, z2) = ip(tl (zi, z2)) + Jf(zz(tt(zizz)t)dt (5.3.5)
0

is the general solution to (5.9.9), where ,p is an arbitrary analytic hypercomplex func-
tion in Go.

Proof. In order to show (5.3.5) to be a solution we differentiate w with respect to
zl and z2, getting

ws, (zi, z2)

Wa,(z!, z2)

e [l(tl(zlz2))+ / f:,(zl(tl(z1,z2),t),t)dt J,
00
Z2

ff:1(zi(ti(ziJ , z2), t), t)d t [-p(zl, z2)eJ]
0

+&b z2) ,

and hence (5.3.3). That (5.3.5) is the general solution follows from the above consid-
erations. Any solution to the homogeneous problem Dw = 0 is an analytic function
in tl in particular independent of t2.

Remark. In order to fix w the RiEMANN-HILBERT boundary condition

Re{r(zl)w(zi,0)) =g(zl) on 0Go
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can be imposed where r,g E C°(000) and 17(zl)I = 1 on aGo. For z1 E Go, z2 = 0
then from (5.3.5)

w(ZI,O) = {P(t1(z1,0)) = SP(zl)

follows, so that
Re{r(z,),p(z,)} =g(z1) on aGo

fixes W eventually not uniquely or only under some solvability conditions, see section
1.4.

We are returning to our original problem which now will not be assumed to decompose
into subsystems independent from one another. The systems are now weakly coupled
and semilinear. According to the JORDAN normal form we get the system

WK., + A K w K2, = f., I< ]c < k,

where
T / T T T N T nKW = 1w1,w2,...,wk) E w9 = (Wx0iWK1) ...,wKnK-1) E C , I < K < k

and similarly for f. Here the upper index T denotes transposition of matrices. The
right-hand side f is assumed to be analytic in (zl, z2) E Do C C 2 for any w E C N
and analytic in w, too. If f would be independent of w using the transformations

(z1, z2) -+ (SKI, (K2) " (t.1, tK2)

as above for any of the subsystems and the respective inverse transformations the
general solution would have the form

w.(zl,z2) = W.(tKl((K1('z1,z2),z2))
Z2

-Ff fK(zI(SKI(tK1((KI(z],z2),z2),t),t),t)dt,I <ic <k, (5.3.6)

0

with arbitrary analytic hypercomplex or vectors ,p.. The changes of variables obey
the rules

tK2 = SK2=z2
a(K, azI 1 atK, 9SK, 1 atK, aSK,

/n
= J = e = -µaz2 K Kaz] = rR, aSK1 (KI K 54K1

=
T.' F12

with

d(K1 = p, dzi - rK "Kdz2

//

nK-l

t., = (K1 + E (K2) = (- Sn] ,

cl
22

//((A //((..(C.1,'z2) .- f rK(Z1(SKI, t), t), t)dt, I < v < n. - I .
0
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For checking that wK is a solution again by differentiation we see

Z2

-fl dt + µ.V KT K ,

0
Z2

to., = fK -("K+e)I
,

dt - (AK +e).,.J.7,c

which gives

0

WKZ2 + (^K + e)w,Z, = fK -

For the coupled system, f = f (zl, z2i w) equations (5.3.6) give a system of VOLTERRA
type integral equations

w.(zI, z2) - (tKl ((-I(ZI, Z2), Z2))

+
J

fK (zl((KI(tKl((kl(z],Z2),Z2),t),t),t, w(zl(SK1(tKl()KI(ZI,z2),Z2),t),t),t)) dt ,

0

1 <,c<k,(5.3.7)

which we shortly write in vector form as

w(zl,z2) = o(zl, Z2)+ f(Zl) 42, t, w(Zi, Z2, t))dt
0

T T
where = (f I,...,fk)>p T = ...,'0k), QT = (ivI ...,mk) and the fK,7K,w
depend on (zl, z2i t, w)(zl, z2) and (zl, z2, t) respectively as indicated in (5.3.7). In
order to solve this nonlinear integral equation some condition on the domain D0 is
imposed.

Definition 22. A plane domain G C Q' is called ko-quasi-starlike, 0 < k0i with
respect to z0 E G if for any z E G there exists a rectifiable arc y in G connecting zl
with z0 such that on ry

Idtl < koditj .

Obviously, any starlike domain is quasi-starlike with k = 1

Because f is analytic in all of its variables it satisfies a LIPSCHITZ condition especially
with respect to the variable w. In general the LIPSCHITZ constant depends on the
distance of w from the boundary of the domain of definition. It increases when w
gets closer to the boundary. If this domain is the entire space (' N then f is a linear
function of w, see [Scsc73].
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Theorem 58. Let Do C C 2 be a domain such that for any zo1 E projz, Do the
intersection of Do with the hyperplane zI = zo1 is ko-quasi-starlike with respect to the
point (zol, 0). Let wo and (p be analytic functions in Do and f (zI, z2i w) be analytic
in

fl := Do x {w : 1w - wo(zi, z2)I < Ce2ktl=21}

with some positive constants C < +oo, kI, satisfying the LIPSCHITZ condition

If(zl,z2,w)-f(zl,z2,w)I !5 L(zI,Z2)lw-wI
for any (zI, z2i w), (zI, z2, w) E fl and

;2

sup Isv(Zi, Z2) + I f (zI, Z2, t, wo(ZI, z2, t))dt - wo(zi, C . (5.3.8)
(z,,z2)EDo 0

Here the integral is taken along an are from (zi,O) to (zl,z2) in the hyperplane zI =
const. satisfying Idtl < kodItl. Moreover, if L is connected with L in the same manner
as f is with f,

Z22

sup 2ko J L(zl,z2,t)e2kiItIdItl < e2ktlzzl
z, Ep,oj,2 Do

0

is assumed. Then the operator
22

(Tw)(zi, z2) w(ZI, Z2) + J f(zt, Z2, t,'w(z1, Z2, t))dt
0

is bounded on

lic(Do) := {w : w analytic in Do, IIw - woll 5 C} ,

mapping this set into itself and providing a contraction, where

Ilwll sup Iw(zl,z2)Ie-2kh1z21.

(z,,z2)EDo

Proof. Direct computation shows

II (Tw)(zi, z2) - wo(zI, z2)II < C ,

and

L

32

I (Tw - Tw)(zi, z2)I 5 ko J L(zI, z2, t)I(z2, z2, t) - w(zI, z2, t)IdItI
0

L

S2

< IIw - wIIk J L(zI, z2, t)e2k,Itldltl < llw - Ile2k2I
0
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so that
IITw - Twll < 2IIw-wll .

Remark. If L is constant then (5.3.8) is satisfied and one may choose

kl = ko sup L(zl, zz) .
(zt.z2)EDo

On the basis of this result the integral equation can be solved by successive approx-
imation. The sequence of approximative solutions converges in the norm stated in
the theorem, leading to an analytic vector function satisfying the integral equation.
This limit vector function is a solution to the semilinear coupled system of partial
differential equations satisfying

w(zi,0) = iD(zl), zi E Go .

In order to explain the usefulness of this somewhat involved procedure a simple higher
order equation will be solved. The solution of course can be obtained in a different
way, too. Any higher order equation is reducible to some first order system. The
solution to this system leads to the solution of the original equation. We consider the
equation

amu On
= 0 in IZi I' + IZ21' < 1

aZ2 aZl

for 2 < in. Introducing

am-u-lu au
wµ .

a.Zm
1 , 0 < /t < in - 2, wm-l

az 'u 1

Z

and wT :_ (wo) ...,wm_i) equation (5.3.9) becomes

w==-Aws, - Bw = 0

with the m x m matrices

(5.3.9)

0 . 0 0 1

0 0 0 1 0 0 0

A= B
0 ... 1 0 0 ... 1 0 0

A has JORDAN form with the (m - 2) x (m - 2) and 2 x 2 block matrices, respectively,

0 0

( l
0 ... 0 ' L

1

0 J
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Decomposing this equation into the two systems

w,,,_ 1

wzz - em_2w1 = 0

0

0
W2

- e2w2 = [ wm-3

where wIT := (WO'.. -W--3 ), W2T :_ (W--2, Wm- 1), and

em-2 :=

0 ... 0 0

1 0 0

0 1 0

,

are nilpotent (m - 2) x (m - 2) and 2 x 2 matrices, respectively. For these systems
the systems of integral equations (5.3.7) become

JZ2 wm-1(21, t)

wl(zl,z2) = J jem_2'i,t)+ O dt+.O(zl)
0 0

w2(Z1,
z2) = J

0

wm-3
0

J (z1 +e2z2 - e2t,t)dt + Ip(z1 +e2z2) . (5.3.10)

Here 4 ) = ( 9 p ( ,'Qm-3), W T = ('pm-2, <pm-1) are analytic vectors.

Replacing the complex variables z1 in the power series expansion of /p and (wm-3

L 0
1

by the matrix variable z1 + e2z2 =
L

zl
0

J
we see

z2 Z1

x(21 + eZ2) (Pm-2(ZI )

'4-2(21)22+Vm-1(21) J ,

f
wm-3 _

0
(z1

+ ez2,t) -
wm-3(21, t)
wm-3zj (21i t)22

System (5.3.10) is solved by iteration starting with

wo(z1, z2) = O(zl), wo(z1, Z2) = c (z1 + e2z2)
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After µ steps one gets

wµ(Zle Z2)

z2 z"+l
WO(Z1) +W.-1(Z1)Z2 +w;n-"-1(z1)(µ

+ 1)!

"+1
V1(Z1) + <Po(z1)z2 + rpm-1(zl) 2 + ... + Pm-µ(z1)(µ

+ 1)1

W"-1(Z1) + "-2(Zl)Z2

"-1 "+1
+...+'Po(z1) z2

+Vm-1(Z1)zjj +'P'M-2(z1) z2+ 1).

0!
+'Po(z1)µf

zµ
S0m-3(Z1) + S'm-i (Z1)Z2 + . + Wm-"-3

1'

L2''Pm-2(Zl) + Wm-3(Z1)Z2 + + Vm-µ-2
2

p.

w"(z1, Z2) =
Z"+1

2'Pm-1 (Zl) +'Pm-2(z1)z2 + ....+ S0-"-2 ( + 1)1

This can be shown inductively for 0 < p < m - 3. Iterating two or three more times
suggests the vector w,wT = (w1T,w2T) to be of the form

w(zl,z2) (5.3.11)
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m+1 vm+2 vm+m-2
(v) (zl)z2

+
p(m+2)(zl) z2 + ... + W2 +1)(zj) z2

W'"-1 (v m + l)! (vm. + 2)! ((v + 1)m - 2)!
Z2m+m-1 z2m

(z1)((v + 1)m - 1)! + 'G

(v)(zt)(vm)1

um+2 vm+3 vm+m-1

Z2 Z2 +...+404`+1)(Z1) Z2

(vm + 2)! (vm + 3)! ((v + 1)m - 1)!
m +1

+Wlv)(zl)
z2

+IQQ`)(z1)
4

(vm)! (vm + 1)!

v=0

vm+m-2 m+m-1 vm
gy(m) (zl)

z2
+ (m+(z1)

Z2
+'P,n- 3(zl)

Z2

((v + 1)m - 2)! z ((v + 1)m - 1)! (vm)!

Zvm+µ-3 Zvm+m-3
+ ... + ,pm- µ(z1) (vm2+

µ - 3)!
+ ... + iPo°1(zl) ((v + 1)m - 3)!

vm+m-I vm vm+l

V(Z) Z2 +
(v) (Zl) Z2 + W(m 3(Z1) Z2(`)m-1 1 ((v + 1)m - 1)! Pm-z (vm)! (MM + 1)!

vm+µ-2 vm+m-2
+ ... +

Zz
Z2(z1) (vm+ µ - 2)!

+ ... + Ipp°)(zl) ((v + 1)m - 2)!

Vim,l(ZI)
z2"

+<Q(,,,+I)(Zi)
22

+IQ(,,,+3)(ZI)
Z2mt2

(vm)! (vm + 1)! (vm + 2)!

(v+1)
ZZm+µ-I

(v+1)
Z2m+m-1+ ... + (Zl) (vm + µ 1)! + ... + A (Z l) ((v + 1)m -1)!

Applying the integral operators from (5.3.9) to this series this vector is seen to solve
this system. If the p < m - 1, are analytic functions in the unit disc
Iz1I < 1 by the CAUCHY coefficient estimation the series is seen to converge for any
z2 E 0. The equations

use = Wm-2, us, _ Wm-1 ,

then give the solution to (5.3.9) in the form

u(ZI, Z2) =
00 m vm+µ-I[[ Z

0 A=2 '"- (zl)(vm2- + it - 1)tu.0 µ=2

00 Z(v+l)m

+VM 1(zl)((v2+ 1)ml +J ,pm-l(t)dt+Cm-1
0
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with an arbitrary Z;.-i E tV . Obviously, from here

21

8µ
u(z1i 0) = J po -1(t)dt + cm-1, az"

(zi, 0) = SOm-"-j (zl), I < p < m - 1, (5.3.12)
2

0

follow. In order to determine the analytic functions V", 0 < p < m - 1, the following
boundary conditions are prescribed.

Theorem 59. The solution to (5.3.9) satisfying

k
Reaz2 (z1,0) =hm-v-i(zi)on IziI= 1, 0 <p <m-1

is given by

m oo
V.

m+p-1

u(zl,z2)
d( Z2

= E E 71 zl)i}1 (vm+is - 1)]
"=1 v=0

ICI=1

I d z"-i z"-i

-2-ri
(ps

1!)
+(ps

1)!
(5.3.13)

ICI=1

with arbitrary constants c E 1R, 0 < p < m - 2, c,,,_1 E V.

Proof. The boundary conditions and the relations (5.3.12) imply DIRICHLET
boundary conditions on the analytic functions W",

Reap" (z1) =h.(zl)onIz1'=1, 0<p<m-2,

so that these functions are given up to some purely imaginary constants by the
SCHWARZ-POISSON integral

S(-Z]
ICI=1

7r: h.(()t; - z 21r: f h"(() + is", c" E 9?, Iz1I < I ,
1

IC1=1 ICI=1

from which for 0 < v

t

Ip.vl(z1) = 1ri f h"(()ct _Zj1v+1 , IziI < 1 ,
K1=1
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follows. For Pm_1 one observes that with z1 = e`t

Re tu(z1,0) = Re (iziaz (z1,0)) = Re{iz,<Pr-i(zi)} = dthm-1(zi)

Because
2x

1 dt
hm_ i (ett )dt = 0

0

this problem is solvable; izicpm_i again is given by the SCHWARZ-POISSON formula
giving (C = eit)

-? J dthm-i(C)(c zi)S
Xd f hm-1(() dZl)2, Izll <I,

1(1=1 ICI=1
\S

and for 0 < v

tl)I IZII < I .

1(1=1
lS

Inserting these representations in the formula for u gives (5.3.13), where

1(1=1

As was mentioned before there is another way to treat (5.3.8) which is more common
for this type of equation. It is reduced to the integro-differential equation

82

(z2 - t)m-1
m-1

R
u(Z1,z2) = J (m - 1)! ua,(zi,t)dt+ t'M(z1)Z2

0 1=0

where W, are arbitrary analytic functions. Solving this equation iteratively gives the
solution from Theorem 58 more easily.

5.4 The SCHWARZ-POISSON formula for polydiscs

The SCHWARZ-POISSON formula for analytic functions in the unit disc of the complex
plane was found in Chapter I - addressed as the SCHWARZ operator (1.2.2) for the unit
disc - by means of the complex GREEN function. A simple purely complex analytic
deduction only using the CAUCHY formula for analytic functions is contained in the
proof of formula (3.3.2) in the case where w is analytic.
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From this formula and the CAUCHY formula we can inductively get a SCHWARZ-
POISSON formula for analytic functions in the unit polydisc of C" for any n , see
[Beku93]. For w E C(D; C) analytic in D we have the CAUCHY formula

w(z) -- f w(()(a(z
an

which we rewrite as

2w(z)=tail w(()((+z+1)
ao

and the SCHWARZ--POISSON formula

w(z)- tai
Rew(()-+z +ilmw(0).

ao

We also have

1 f w(()
d(

_ - 1 J)===-L f w(() d( - (0)
2aiam - z 2a: am T_-_z 27rialp CO - z()

Theorem 60. Let w E C(l1 ; V) be analytic in the polydisc Dn = {(z1, ... , zn)
<v<n} ofQJn. Then

(5.4.1)2n-lw(z z) _ (_) n f ... f Rew(( () f (y + zV
d(,

n n
C. G

16 1=1
V=I

n n

+1:(-1)k2n-k E w(z,,...,Zn)I l[w(0,...,o)+(-1)nw(o,...,o)j.
k=2 v,.... vk_,xl =v1=...=z k-1 =0 2

.'. rA A

Proof. For n = 1 the formula (5.4.1) is the known SCHWARZ-POISSON formula in
C since the sum on the right-hand side does not occur. Assume (5.4.1) is valid for
some n > 1. Let w E C(.D n+1; tE) be analytic in Dn+I then by the above CAUCHY
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formula and by (5.4.1)

r n-1 w(Z1i zn,
(n+l)

O
n+1 + zn+l

+ 1) dSntl2nw(zl zn, zn+l) = J
1

2
27rl n-1 - zn+1 (n+1

n+1 n}1
r fl C + z d(v

J
2i ri ) f ... Re w((1,

_ C - Z. C
I<1I=1 tC.+11=1

v_1

r n G +
Z.

dCv d(n+1

I<11=1 <n+11=1
v=1 " v Cv Cn+l

n n

+ fk 2 n-k 1: w(z1 ,. . . , zn,
Cntl) I 2d(n+1(-1)

k=2 v, I....vk_,=1 k-1=Ocn+1 - zn+1

_ _ / n ) Cn+1

21ri J [W(01 ... 1 01 Cn+1)] +(-1) w(0,...,O,Cn+l
d

S.+1 - zn+1
I<.,+1=1

Here the second term on the right-hand side is

R.e(n,0)

(a:;) f ... f T C + zv dCv

v - Zv SvV=I
K11=1 ICnl=1

which by (5.4.1) can be replaced by

n n

2n-1w(Zl,...,zn, 0)+E(-1)k+12n-k > w(zl,...,zn,0)I

+2 [w(0,...,0) + (-1)nw(0,...,0)]

n+1 n
n-1 k +1-k=2 1/1(Z1i...,Zn,O) + (-1) 2 n w(Zl,...) zntl)

k=3 v1,..41-2=1

+2 [w(0, ... ,0) + (-1)nw(0, ... , 0)]

The last term in the above formula for w(zl,..., z.+,) is

n-+1
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Hence,

n+1 n+I +. z dS
2n (a;) J J

w1Sl,...,(n+1)11 Zv v

161=1 ](.+11=1
=1 w - w

n+I

+2'-!w(zl,..., Zn, 0)+E(-1)k2n+1-k w(ZI,..., Z,,, 0)I
k=3

n+l n

k n+l-k2 w(zl,.... zn+1)
zn =...=%-I =0k=2

-2 [w(0,...,0)+(-1)n+lw(0,...,0)}
-

Up to the first and last term this right-hand side is identical to

n+l n+1 n
12n- E 7L(zl,...,zn+1) +E(-1)k2 n+1-k E w(zl,...,

=o z,y =...=zyk_ -0V=1 k=3

+ [1(-1)k2 n+1-k w(
1

zl) ..., zn, zn+1)
k=3 u,,...,vk_p=1

n+l
2n-I E

zy=ov=l

n+1 n+l
(-1)k2 n+I-k+ 1 w(zl.... ,zn+1)
k=3 v1 ,..., vk _, cl Z%=...=zyk-1=0

n+I n+I
k 2"+'-k

k=Z vl ,...,vk _, =1 zv, =...=zvk-1 =0

This gives (5.4.1) for n + 1 rather than for n.
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