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Abstract. We derive estimates for entropy solutions to degenerate elliptic equations
of the form

#

´divApx, upxq,∇upxqq “ fpxq, x P Ω,

upxq “ 0, x P BΩ,

where the Carathéodory function A : ΩˆRˆRn Ñ Rn satisfies degenerate coercivity
condition

Apx, s, ξq ¨ ξ ě α
|ξ|p

p1` |s|qθ

and controllable growth condition

|Apx, s, ξq| ď β|ξ|p´1

for 1 ă p ă n, 0 ď θ ă p´ 1 and 0 ă α ď β ă 8, and f lies in Marcinkiewicz spaces.
We derive a generalized Stampacchia Lemma in order to prove the main theorem.
Counterexample shows that some of the results in this paper are optimal. As an
application of our results, we use a bootstrap argument to show that the entropy
solutions of

$

&

%

´divApx, upxq,∇upxqq “ |1` upxq|a´1p1` upxqq, x P Ω,
upxq “ 0, P BΩ,
|upxq|a P L1pΩq

are bounded provided that 0 ď a ă npp´1´θq
n´p .
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§1 Introduction

Throughout this paper we let Ω stand for a bounded domain in Rn, n ě 2, 1 ă p ă n
and 0 ď θ ă p´ 1. We shall consider degenerate operators

´divApx, u,∇uq,
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where A : ΩˆRˆRn Ñ Rn is a Carathéodory mapping with the following assump-
tions: for a.e. x P R and all ps, ξq P Rˆ Rn,

Apx, s, ξq ¨ ξ ě α
|ξ|p

p1` |s|qθ
(1.1)

and
|Apx, s, ξq| ď β|ξ|p´1, (1.2)

where 0 ă α ď β ă 8 are constants.
Let f P L1pΩq. We consider the boundary value problem

#

´divApx, upxq,∇upxqq “ fpxq, x P Ω,

upxq “ 0, x P BΩ,
(1.3)

and our goal is to find estimates for u and ∇u in terms of the weak Lq norm of f .
Since f is only an L1 function, then we shall use the concept of an entropy solution
that was introduced by Bénilan et. al. in [2], where the existence and uniqueness of
such a solution was also established. A function u is called an entropy solution of
the problem (1.3) if the truncations Tkpuq belong to W 1,p

0 pΩq for each k ą 0, and
ż

Ω
Apx, u,∇uq∇Tkpu´ vqdx “

ż

Ω
fTkpu´ vqdx (1.4)

for each v P C80 pΩq. Here and in what follows Tk is the truncation operator at level
k, Tkpsq “ minp1, k

|s|qs. For some results related to entropy solutions, we refer the

reader to [3, 9, 10,25,28,40].

We note that, under (1.1), the coercivity can degenerate when |s| is too big
and θ ą 0. For some problems with degenerate coercivity, we refer the reader
to Chapter 14 in the monograph [7], where some results are obtained: existence,
uniqueness and regularity for the case 0 ă θ ă 1, and existence and nonexistence
for the case θ ą 1. For some other results related to degenerate coercivity, we refer
the reader to [1, 3, 5, 6, 8, 19,21,33].

We work in weak Lq spaces, known also as Marcinkiewicz spaces or Lorentz
spaces Lpq,8q: if q ą 1, then the space LqweakpΩq consists of measurable functions g
on Ω such that

sup
tą0

t|tx P Ω : |gpxq| ą tu|
1
q ă 8. (1.5)

This condition is equivalently stated as

~g~q “ sup
EĂΩ
|E|ą0

1

|E|
1
q1

ż

E
|g|dx ă 8, (1.6)

where q1 is the conjugated exponent of q, 1
q `

1
q1 “ 1. It is well-known that LqweakpΩq

is a Banach space under ~ ¨ ~q and, moreover, if the supremum in (1.5) is denoted
by A, then

A ď ~g~q ď q1A.
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A useful result is: if g P LqweakpΩq and 1 ď τ ă q, then |g|τ P L
q
τ
weakpΩq, and

~|g|τ~ q
τ
“ ~g~τq . (1.7)

For a detailed analysis of Lqweak spaces we refer to [15]. Note that both (1.5) and
(1.6) make sense also for q “ 1; however then the latter is strictly stronger condition
and coincides with the definition of L1.

The following is our main theorem:

Theorem 1.1. Let f P LqweakpΩq, and that u is the entropy solution of (1.3).
i) If 1 ď q ă n

p , then u P L
γ
weakpΩq with

γ “
nqpp´ 1´ θq

n´ pq
,

and

~u~γ ď c1~f~
1

p´1´θ
q ,

where c1 ą 0 is a constant depending only on α, n, p, q and θ.
ii) If q “ n

p , then there exists a positive constant λ, such that

eλ|u|
1´ θ

p´1
P L1pΩq.

iii) If 1 ď q ă np
np´pn´pqp1`θq , then ∇u P LsweakpΩq with

s “
nqpp´ 1´ θq

n´ qp1` θq
,

and

~∇u~s ď c2~f~
1

p´1´θ
q ,

where c2 ą 0 is a constant depending only on α, n, p, q and θ.
iv) If q ą np

np´pn´pqp1`θq , then u PW
1,p
0 pΩq and

}∇u}LppΩq ď c3p1` ~f~qq
qpp´θq´1
qpp´1´θq ,

where c3 ą 0 is a constant depending only on α, n, p, q, θ and |Ω|.

As to related results, Kilpeläinen and Li proved in [26] some regularity results
for non-degenerate case, that is, problem (1.3) for the operator A satisfies (1.1)
with θ “ 0. We note that, for the case θ “ 0, our results i), iii) and iv) are
just the same as Theorem 1.7 in [26]. The borderline case ii), q “ n

p , was not

appeared in [26]. Stampacchia Lemma (see [36]) is an important tool in dealing with
regularity issues for solutions to elliptic partial differential equations and systems,
see [16, 18, 19, 23, 24, 29, 30, 32]. We should mention that, in the degenerate case, it
seems that one can not use the classical Stampacchia Lemma, because some power
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of k naturally appears in the right hand side. To overcome this difficulty, we shall
prove a generalized Stampacchia Lemma in the Appendix.

At the end of Section 2, we give an example showing that the results i) and iii)
in Theorem 1.1 are optimal.

We apply Theorem 1.1 to investigate the regularity of solutions to the problem

$

’

&

’

%

´divApx, upxq,∇upxqq “ |1` upxq|a´1p1` upxqq, x P Ω,

upxq “ 0, x P BΩ,

|upxq|a P L1pΩq.

(1.8)

We show:

Theorem 1.2. If u is the entropy solution of (1.8) and 0 ď a ă npp´1´θq
n´p , then u is

bounded in Ω.

We give an example at the end of Section 3 to show that: if a ą ac “
npp´1´θq
n´p

in Theorem 1.2, then one can not expect that u is bounded.

The plan of the paper is as follows: in the next section we will prove the main
theorem, we will also provide an example to show that some of the results in the main
theorem are optimal. In Section 3, we will give an application of the main results
by using a bootstrap argument. In the Appendix, we will provide a generalized
Stampacchia lemma which will be used in the proof of the main theorem.

§2 Proof of Theorem 1.1

This section is dedicated to derive estimates that yield Theorem 1.1. Throughout
the section we let u be an entropy solution of (1.3), 1 ă p ă n and 0 ď θ ă p´ 1.

In order to prove Theorem 1.1 part i), we need a preliminary lemma, see Propo-
sition 3 in [19].

Lemma 2.1. Let u : Ω Ñ R be a measurable function, let c4, α, k0 be positive
constants and 0 ă β ă 1. If, for every k ě k0, we have

kα|t|u| ą 2ku| ď c4|t|u| ą ku|β,

then u P L
α

1´β

weakpΩq.

In fact, this lemma is a direct consequence of the classical Stampacchia Lemma
(see Lemma 1 in the Appendix) and Remark 1 in [19].

Proof of Theorem 1.1.

i) We use v “ Tkpuq, k ě k0 “ 1, as a test function in (1.4). Note that

∇Tkpu´ Tkpuqq “

$

&

%

0, |u| ď k,
∇u, k ă |u| ă 2k,
0, |u| ě 2k,
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then
α

p3kqθ

ż

Ω
|∇Tkpu´ Tkpuqq|pdx

“
α

p3kqθ

ż

tkă|u|ă2ku
|∇u|pdx

ď α

ż

tkă|u|ă2ku

|∇u|p

p1` |u|qθ
dx

ď

ż

tkă|u|ă2ku
Apx, u,∇uq∇udx

“

ż

Ω
Apx, u,∇uq∇Tkpu´ Tkpuqqdx

“

ż

Ω
fTkpu´ Tkpuqqdx

“

ż

t|u|ąku
fTkpu´ Tkpuqqdx

ď k

ż

t|u|ąku
|f |dx

ď k~f~q|t|u| ą ku|
1
q1 ,

(2.1)

here we have used (1.1), (1.6) and the fact

k ě k0 “ 1 ñ 1` |u| ď 1` 2k ď 3k on tk ă |u| ă 2ku.

Hence by the Sobolev inequality

ˆ
ż

Ω
|w|p

˚

dx

˙
1
p˚

ď c˚

ˆ
ż

Ω
|∇w|pdx

˙
1
p

, @w PW 1,p
0 pΩq, (2.2)

where p˚ “ np
n´p , c˚ depends only on n and p, we have that

k|t|u| ą 2ku|
1
p˚

“

˜

ż

t|u|ą2ku
|Tkpu´ Tkpuqq|

p˚dx

¸
1
p˚

ď

ˆ
ż

Ω
|Tkpu´ Tkpuqq|

p˚dx

˙
1
p˚

ď c˚

ˆ
ż

Ω
|∇pTkpu´ Tkpuqqq|pdx

˙
1
p

ď c˚

ˆ

3θk1`θ

α

˙

1
p

~f~
1
p
q |t|u| ą ku|

1
pq1 ,

which easily implies

k
p˚pp´1´θq

p |t|u| ą 2ku| ď cp
˚

˚

ˆ

3θ

α

˙

p˚

p

~f~
p˚

p
q |t|u| ą ku|

p˚

pq1 .
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The assumption of Lemma 2.1 holds with

α “
p˚pp´ 1´ θq

p
,

c4 “ cp
˚

˚

ˆ

3θ

α

˙

p˚

p

~f~
p˚

p
q ,

β “
p˚

pq1

and
k0 “ 1,

here α ą 0 since θ ă p ´ 1 and β ă 1 since q ă n
p . Lemma 2.1 yields the desired

result
u P LγweakpΩq,

where

γ “
α

1´ β
“

p˚pp´1´θq
p

1´ p˚

pq1

“
nqpp´ 1´ θq

n´ pq
.

ii) Let h ą k ą 0. (1.4) can be rewritten as

ż

Ω
Apx, u,∇uq∇Th´kpu´ vqdx “

ż

Ω
fTh´kpu´ vqdx, @h ą k ą 0. (2.3)

We use v “ Tkpuq, k ě k0 “ 1, as a test function in (2.3) and we have

ż

Ω
Apx, u,∇uq∇Th´kpu´ Tkpuqqdx “

ż

Ω
fTh´kpu´ Tkpuqqdx.

Let ϕ “ Th´kpu´ Tkpuqq. Note that ϕ “ 0 on t|u| ď ku and

∇ϕ “

$

&

%

0, |u| ď k,
∇u, k ă |u| ă h,
0, |u| ě h.

Condition (1.1) yields

α

ż

tkă|u|ăhu

|∇u|p

p1` |u|qθ
dx ď

ż

tkă|u|ăhu
Apx, u,∇uq∇udx

“

ż

Ω
Apx, u,∇uq∇ϕdx “

ż

Ω
fϕdx ď

ż

t|u|ąku
|f ||ϕ|dx.

(2.4)

Let t “ npp´θq
n´θ , then

t ă pô p ă n,

t˚ “
nt

n´ t
“

tθ

p´ t
“
npp´ θq

n´ p
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and

θ ă p´ 1 ñ pt˚q1 ă
n

p
“ q.

Hölder’s inequality with exponents p
t and p

p´t implies

ż

tkă|u|ăhu
|∇u|tdx

“

ż

tkă|u|ăhu

|∇u|t

p1` |u|q
tθ
p

p1` |u|q
tθ
p dx

ď

˜

ż

tkă|u|ăhu

|∇u|p

p1` |u|qθ
dx

¸
t
p
˜

ż

tkă|u|ăhu
p1` |u|q

tθ
p´tdx

¸1´ t
p

ď 2
tθ
p

˜

ż

tkă|u|ăhu

|∇u|p

p1` |u|qθ
dx

¸
t
p
˜

ż

tkă|u|ăhu
pk ` |u´ Tkpuq|q

tθ
p´t dx

¸1´ t
p

ď 2
tθ
p

˜

1

α

ż

t|u|ąku
|f ||ϕ|dx

¸
t
p
˜

ż

tkă|u|ăhu
pk ` |u´ Tkpuq|q

tθ
p´t dx

¸1´ t
p

,

(2.5)
here we have used the facts k ě k0 “ 1 and

1` |u| ď 2|u| ď 2pk ` |u´ Tkpuq|q on t|u| ą ku.

We use Hölder’s inequality with exponents t˚ and pt˚q1 and Sobolev inequality (2.2)
again in order to get

ż

t|u|ąku
|f ||ϕ|dx

ď

˜

ż

t|u|ąku
|f |pt

˚q1dx

¸
1

pt˚q1
˜

ż

t|u|ąku
|ϕ|t

˚

dx

¸
1
t˚

ď

˜

ż

t|u|ąku
|f |pt

˚q1dx

¸
1

pt˚q1
ˆ
ż

Ω
|ϕ|t

˚

dx

˙
1
t˚

ď c˚

˜

ż

t|u|ąku
|f |pt

˚q1dx

¸
1

pt˚q1
ˆ
ż

Ω
|∇ϕ|tdx

˙
1
t

“ c˚

˜

ż

t|u|ąku
|f |pt

˚q1dx

¸
1

pt˚q1
˜

ż

tkă|u|ăhu
|∇u|tdx

¸
1
t

.

(2.6)

Since pt˚q1 ă n
p “ q and f P LqweakpΩq, then |f |pt

˚q1 P L
q

pt˚q1

weakpΩq and

ż

t|u|ąku
|f |pt

˚q1dx ď ~|f |pt
˚q1~ q

pt˚q1
|t|u| ą ku|

1

pq{pt˚q1q
1

“ ~f~pt
˚q1

q |t|u| ą ku|
pn´pqpp´1´θq
npp´θq´n`p .

(2.7)
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Combining (2.6) with (2.7) we have
ż

t|u|ąku
|f ||ϕ|dx

ď c˚~f~q|t|u| ą ku|
pn´pqpp´1´θq

npp´θq

˜

ż

tkă|u|ăhu
|∇u|tdx

¸
1
t

.

(2.8)

Substituting (2.8) into (2.5) one has
ż

tkă|u|ăhu
|∇u|tdx

ď 2
tθ
p´1

ˆ

c˚~f~q
α

˙
t

p´1

|t|u| ą ku|
pn´pqpp´1´θq
pp´1qpn´θq

ˆ

˜

ż

tkă|u|ăhu
pk ` |u´ Tkpuq|q

tθ
p´t dx

¸

p´t
p´1

.

(2.9)

We use the following inequalities, satisfied by every a, b ě 0:

pa` bqm ď 2m´1pam ` bmq if m ě 1 (2.10)

and
pa` bqm ď am ` bm if 0 ă m ď 1, (2.11)

in order to derive that
ż

tkă|u|ăhu
pk ` |u´ Tkpuq|q

tθ
p´t dx

ď 2
tθ
p´t

´1

˜

ż

t|u|ąku
k

tθ
p´tdx`

ż

tkă|u|ăhu
|u´ Tkpuq|

tθ
p´tdx

¸

ď 2
tθ
p´t

´1

ˆ

k
tθ
p´t |t|u| ą ku| `

ż

Ω
|ϕ|

tθ
p´tdx

˙

,

(2.12)

where we recall that ϕ “ Th´kpu´ Tkpuqq. By Sobolev inequality (2.2) again
ż

Ω
|ϕ|

tθ
p´tdx “

ż

Ω
|ϕ|t

˚

dx

ď ct
˚

˚

ˆ
ż

Ω
|∇ϕ|tdx

˙
t˚

t

“ ct
˚

˚

˜

ż

tkă|u|ăhu
|∇u|tdx

¸
t˚

t

.

(2.13)

Substituting (2.13) into (2.12) we arrive at
ż

tkă|u|ăhu
pk ` |u´ Tkpuq|q

tθ
p´t dx

ď 2
tθ
p´t

´1

»

—

–

k
tθ
p´t |t|u| ą ku| ` ct

˚

˚

˜

ż

tkă|u|ăhu
|∇u|tdx

¸
t˚

t

fi

ffi

fl

.
(2.14)
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A direct calculation shows

t˚

t

p´ t

p´ 1
“

θ

p´ 1
,
pn´ pqpp´ 1´ θq

pp´ 1qpn´ θq
`
p´ t

p´ 1
“
n´ p

n´ θ
. (2.15)

Substituting (2.14) into (2.9), using (2.15), (2.11) and Young inequality, we obtain
ż

tkă|u|ăhu
|∇u|tdx

ď 2
tθ
p´1

ˆ

c˚~f~q
α

˙
t

p´1

|t|u| ą ku|
pn´pqpp´1´θq
pp´1qpn´θq

ˆ2
tp1`θq´p
p´1

»

—

–

k
tθ
p´1 |t|u| ą ku|

p´t
p´1 ` c

t˚pp´tq
p´1

˚

˜

ż

tkă|u|ăhu
|∇u|tdx

¸
t˚

t
p´t
p´1

fi

ffi

fl

“ 2
tp1`2θq´p

p´1

ˆ

c˚~f~q
α

˙
t

p´1 ”

k
tθ
p´1 |t|u| ą ku|

n´p
n´θ

` c
t˚pp´tq
p´1

˚ |t|u| ą ku|
pn´pqpp´1´θq
pp´1qpn´θq

˜

ż

tkă|u|ăhu
|∇u|tdx

¸
θ
p´1

fi

fl

ď 2
tp1`2θq´p

p´1

ˆ

c˚~f~q
α

˙
t

p´1 ”

k
tθ
p´1 |t|u| ą ku|

n´p
n´θ

`cpεq c
t˚pp´tq
p´1´θ
˚ |t|u| ą ku|

n´p
n´θ ` ε

ż

tkă|u|ăhu
|∇u|tdx

ff

.

Take ε small enough such that

2
tp1`2θq´p

p´1

ˆ

c˚~f~q
α

˙
t

p´1

ε ă 1,

then the last term in the right-hand side of the above inequality is absorbed by the
left-hand side. Thus

ż

tkă|u|ăhu
|∇u|tdx ď c5

”

k
tθ
p´1 |t|u| ą ku|

n´p
n´θ ` |t|u| ą ku|

n´p
n´θ

ı

ď 2c5k
tθ
p´1 |t|u| ą ku|

n´p
n´θ ,

(2.16)

where c5 is a constant depending only on n, p, θ, α and ~f~q, and we have used again
the fact k ě k0 “ 1.

We use Sobolev inequality (2.2) again in order to derive

ż

tkă|u|ăhu
|∇u|tdx “

ż

Ω
|∇ϕ|tdx ě c´t˚

ˆ
ż

Ω
|ϕ|t

˚

dx

˙
t
t˚

ě c´t˚

˜

ż

t|u|ąhu
|ϕ|t

˚

dx

¸
t
t˚

ě c´t˚ ph´ kq
t|t|u| ą hu|

t
t˚

“ c´t˚ ph´ kq
t|t|u| ą hu|

n´p
n´θ .

(2.17)
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Estimates (2.16) and (2.17) merge into

|t|u| ą hu| ď
p2c5c˚q

n´θ
n´p

ph´ kq
npp´θq
n´p

k
nθpp´θq

pn´pqpp´1q |t|u| ą ku|. (2.18)

Thus condition (3) in the Appendix holds with

c̃ “ p2c5c˚q
n´θ
n´p ,

α “
npp´ θq

n´ p
,

β “ 1

and
k0 “ 1,

here we note that

θ ă p´ 1 ñ
nθpp´ θq

pn´ pqpp´ 1q
“ θ̃

npp´ θq

n´ p
, with θ̃ “

θ

p´ 1
ă 1,

thus one can use the result of Lemma 3 part (ii) in the Appendix to derive that, for
every k ě k0 “ 1,

|t|u| ą ku| ď |t|u| ą 1u|e1´p k´1
τ q

1´θ̃

ď |Ω|e1`2λe´2λk1´θ̃
, (2.19)

with τ be as in (4) and 2λ “ τ θ̃´1. (2.19) implies

|t|u| ą ku| ď c6e
´2λk1´θ̃

, (2.20)

where c6 is a constant depending only on n, p, α, θ and |Ω|. Hence

|teλ|u|
1´θ̃

ą eλk
1´θ̃
u| “ |t|u| ą ku| ď c6e

´2λk1´θ̃
.

We let k̃ “ eλk
1´θ̃

and we have

|teλ|u|
1´θ̃

ą k̃u| “
c6

k̃2
.

We now use Lemma 3.11 in [7] which states that the sufficient and necessary condi-
tion for f P LrpΩq, r ě 1, is

8
ÿ

k“0

kr´1|t|f | ą ku| ă `8.

We use the above lemma for f “ eλ|u|
1´θ̃

and r “ 1, since

8
ÿ

k“0

|teλ|u|
1´θ̃

ą k̃u| ď c6

8
ÿ

k“0

1

k̃2
ă `8,
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then eλ|u|
1´θ̃

“ eλ|u|
1´ θ

p´1
P L1pΩq, as desired.

iii) We first prove

np

np´ pn´ pqp1` θq
ď
n

p
, for 1` θ ă p ă n, (2.21)

which is equivalent to prove that

p2 ď np´ pn´ pqp1` θq, for 1` θ ă p ă n. (2.22)

To this end, we need only to prove

p2 ´ pn` 1` θqp` np1` θq ď 0.

Since the two roots for the equation

p2 ´ pn` 1` θqp` np1` θq “ 0

are p1 “ 1 ` θ and p2 “ n, then the condition 1 ` θ ă p ă n implies (2.22), and
(2.21) is proved. Thus, in the case 1 ď q ă np

np´pn´pqp1`θq , the result of i) holds true,

i.e.,

u P LγweakpΩq, γ “
nqpp´ 1´ θq

n´ pq
. (2.23)

We next prove that, for all k ě k0 “ 1,
ż

t|u|ăku
|∇u|pdx ď c7~u~

γ
q1

γ k
1`θ´ γ

q1 ~f~q, (2.24)

where c7 “
3θ

α

ˆ

2
1`θ´

γ
q1 ´1

˙ . We use (2.1) in order to derive that: for all k ě 1,

α

ż

tkă|u|ă2ku
|∇u|pdx ď 3θk1`θ|t|u| ą ku|

1
q1 ~f~q, (2.25)

whence

α

ż

t|u|ăku
|∇u|pdx

“ α
8
ÿ

j“0

ż

t2´j´1kă|u|ă2´jku
|∇u|pdx

ď

8
ÿ

j“0

3θp2´j´1kq1`θ|t|u| ą 2´j´1ku|
1
q1 ~f~q

ď

8
ÿ

j“0

3θ~u~
γ
q1

γ p2
´j´1kq

1`θ´ γ
q1 ~f~q

ď
3θ~u~

γ
q1

γ

2
1`θ´ γ

q1 ´ 1
k

1`θ´ γ
q1 ~f~q,
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here we notice that q ă np
np´pn´pqp1`θq ô 1` θ ´ γ

q1 ą 0. (2.24) is proved.

Let t0 be such that

γtp0~u~
γ
q
γ

c7~f~qp1` θ ´
γ
q q
“ 1. (2.26)

We obtain from (2.24) that, for t ą t0,

|t|∇u| ą tu| “ |t|∇u| ą tu X t|u| ą ku| ` |t|∇u| ą tu X t|u| ă ku|

ď |t|u| ą ku| ` t´p
ż

t|u|ăku
|∇u|pdx

ď |t|u| ą ku| ` c7t
´p~u~

γ
q1

γ k
1`θ´ γ

q1 ~f~q

ď ~u~γγ

ˆ

k´γ ` c7t
´p~u~

´
γ
q

γ ~f~qk
1`θ´ γ

q1

˙

.

(2.27)

Next we minimize this in k, i.e. choose

k “

¨

˝

γtp~u~
γ
q
γ

c7~f~qp1` θ ´
γ
q1 q

˛

‚

q
q`γ`θq

.

Condition (2.26) and t ą t0 ensure k ą 1. (2.27) with k as above yields

|t|∇u| ą tu| ď c8~u~
γ
´

1´ γ
q`γ`qθ

¯

γ t
´

pqγ
q`γ`qθ~f~

qγ
q`γ`qθ
q ,

where c8 is a constant depending on n, p, α and θ. Now we observe

pqγ

q ` γ ` qθ
“
nqpp´ 1´ θq

n´ qp1` θq
“ s,

and by i), ~u~γ ď c1~f~
1

p´1´θ
q , hence for t ą t0,

|t|∇u| ą tu| ď c8t
´s~u~

sp1`θq
p

γ ~f~
s
p
q ď c9t

´s~f~
s

p´1´θ
q , (2.28)

where c9 “ c8c
sp1`θq
p

1 . We let c10 be such that

|Ω| ď c10t
´s
0 ~f~

s
p´1´θ
q ,

then for 0 ă t ď t0,

|t|∇u| ą tu| ď |Ω| ď c10t
´s
0 ~f~

s
p´1´θ
q ď c10t

´s~f~
s

p´1´θ
q . (2.29)

(2.28) and (2.29) merge into

|t|∇u| ą tu| ď maxtc9, c10ut
´s~f~

s
p´1´θ
q , @t ą 0,
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from which the result follows.

iv) We take k “ 1 and v “ 0 in (1.4). Then

α

2θ

ż

t|u|ď1u
|∇u|pdx ď α

ż

t|u|ď1u

|∇u|p

p1` |u|qθ
dx

ď

ż

Ω
Apx, u,∇uq∇T1puqdx “

ż

Ω
fT1puqdx ď |Ω|

1
q1 ~f~q.

(2.30)

We use (2.25) again and we have

α

ż

t|u|ą1u
|∇u|pdx

“ α
8
ÿ

j“0

ż

t2jă|u|ă2j`1u

|∇u|pdx

ď 3θ
8
ÿ

j“0

2jp1`θq|t|u| ą 2ju|
1
q1 ~f~q

ď 3θ
8
ÿ

j“0

2
j
´

1`θ´ γ
q1

¯

~u~
γ
q1

γ ~f~q

ď 3θ
8
ÿ

j“0

2
jp1`θ´ γ

q1
q
~f~

1` 1
q1pp´1´θq

q ,

In the case q ą np
np´pn´pqp1`θq , one has 1` θ ´ γ

q1 ă 0. Thus

ż

t|u|ą1u
|∇u|pdx ď c11~f~

1` 1
q1pp´1´θq

q “ c11~f~
qpp´θq´1
qpp´1´θq
q , (2.31)

here c11 is a constant depending only on n, p, α, θ and |Ω|. (2.30) and (2.31) yield
the desired result.

The proof of Theorem 1.1 has been completed.

We next show that parts i) and iii) in Theorem 1.1 are sharp.

Example 3.1. We denote by B “ B1p0q the unit ball of Rn and we consider

the function upxq “ |x|´a´ 1, a ą 0. The truncations Tkpuq of u belong to W 1,p
0 pBq

for each k ą 0. A direct computation shows that

∇u “ ´ ax

|x|a`2
(2.32)

and

´div

ˆ

|∇u|p´2∇u
p1` |u|qθ

˙

“ ap´1pn´ p´ app´ 1´ θqq|x|´p´app´1´θq

if x ‰ 0. Now we observe that

f “ ap´1pn´ p´ app´ 1´ θqq|x|´p´app´1´θq P L1pBq
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if and only if
ap1´ p` θq ´ p ą ´n,

that is,

a ă
n´ p

p´ 1´ θ
.

Then u is an entropy solution of

#

´div
´

|∇u|p´2∇u
p1`|u|qθ

¯

“ f, x P B,

u “ 0, x P BB.

Note that the operator Apx, u,∇uq “ |∇u|p´2∇u
p1`|u|qθ

satisfies (1.1) and (1.2) with α “

β “ 1. Moreover, it follows that if

a “
n´ pq

qpp´ 1´ θq
,

then f P LqweakpBq and u P LγweakpBq if and only if

γ ď
nqpp´ 1´ θq

n´ pq
.

Furthermore, by (2.32), ∇u P LspBq if and only if

s ď
nqpp´ 1´ θq

n´ qp1` θq
.

This shows that parts i) and iii) of Theorem 1.1 are sharp.

§3 Proof of Theorem 1.2.

In this section, we apply Theorem 1.1 to investigate the regularity of solutions
to the problem (1.8) and prove Theorem 1.2.

We divide the proof into two steps: Step 1, f “ |1`u|a´1p1`uq P LqweakpΩq, for

some q ą n
p ; Step 2, any weak solution u PW 1,p

0 pΩq to the boundary value problem

"

´divApx, upxq,∇upxqq “ fpxq, x P Ω,
upxq “ 0, x P BΩ,

(3.1)

where f P LqweakpΩq, q ą
n
p , is bounded.

Step 1. We use a bootstrap argument. Since f P L1pΩq we have by Theorem
1.1 part i) that

u P Lγ1

weakpΩq, γ1 “
npp´ 1´ θq

n´ p
.

Therefore
f P Lq1weakpΩq, q1 “

γ1

a
.
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Now we repeatedly use Theorem 1.1 part i). At the jth step we obtain

u P L
γj
weakpΩq, where γj “

nqj´1pp´ 1´ θq

n´ pqj´1

and
f P L

qj
weakpΩq, qj “

γj
a
,

here we put q0 “ 1. By recursion

qj “
n

n
´

a
p´1´θ

¯j
´ p

řj
k“1

´

a
p´1´θ

¯k
,

provided that qj´1 ă
n
p . Since 0 ď a ă npp´1´θq

n´p , it is immediate that qj is an

increasing sequence and moreover, there is an δ ą 0 such that

j
ÿ

k“0

ˆ

a

p´ 1´ θ

˙k´j

“

j
ÿ

k“0

ˆ

a

p´ 1´ θ

˙´k

ě δ `

j
ÿ

k“0

´

1´
p

n

¯k

“ δ `
n

p
´
n

p

ˆ

1´
n

p

˙j`1

ą
n

p
,

if j is large enough. One easily checks that for such a j it holds that qj ą
n
p . There-

fore we conclude that f P LqweakpΩq for some q ą n
p . Since q ą n

p ą
np

np´pn´pqp1`θq ,

then Theorem 1.1 part iv) tells us that an entropy solution is an ordinary W 1,p
0 pΩq

solution.
Step 2. To prove any weak solution u PW 1,p

0 pΩq of (3.1) is bounded, we define,
for s P R,

Hpsq “

ż s

0

1

p1` |t|q
θ
p´1

dt.

For k ą 0, we take
GkpHpuqq “ Hpuq ´ TkpHpuqq

as a test function in the weak formulation of (3.1) and use assumption (1.1) we
obtain

α

ż

Ω
|∇GkpHpuqq|pdx ď

ż

Ãk

fGkpHpuqqdx, (3.2)

where
Ãk “ tx P Ω : |Hpuqpxq| ą ku.
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We use Sobolev inequality (2.2) and we have

ż

Ω
|∇GkpHpuqq|pdx ě cp˚

ˆ
ż

Ω
|GkpHpuqq|

p˚dx

˙

p
p˚

. (3.3)

We note that
1 ď p ă nñ q ą

n

p
ą pp˚q1.

Hölder’s inequality with exponents p˚ and pp˚q1 yields

ż

Ãk

fGkpHpuqqdx ď

ˆ
ż

Ãk

|f |pp
˚q1

˙
1

pp˚q1
ˆ
ż

Ω
|GkpHpuqq|

p˚
˙

1
p˚

ď ~f~q|Ãk|

1
ˆ

q
pp˚q1

˙1
1

pp˚q1
ˆ
ż

Ω
|GkpHpuqq|

p˚
˙

1
p˚

.

(3.4)

Substituting (3.3) and (3.4) into (3.2) we arrive at

αcp˚

ˆ
ż

Ω
|GkpHpuqq|

p˚dx

˙

p´1
p˚

ď ~f~q|Ãk|

1
ˆ

q
pp˚q1

˙1
1

pp˚q1

. (3.5)

For h ą k, we have
ż

Ω
|GkpHpuqq|

p˚dx ě

ż

Ãh

|GkpHpuqq|
p˚dx ě ph´ kqp

˚

|Ãh|,

which together with (3.5) yields

|Ãh| ď

ˆ

~f~q
αcp˚

˙

p˚

p´1 1

ph´ kqp˚
|Ãk|

1
ˆ

q
pp˚q1

˙1
1

pp˚q1
p˚

p´1

.

The assumption of Lemma 1 in the Appendix holds with

ϕpkq “ |Ãk|,

c̃1 “

ˆ

~f~q
αcp˚

˙

p˚

p´1

,

α “ p˚,

k0 “ 0

and

β “
1

´

q
pp˚q1

¯1

1

pp˚q1
p˚

p´ 1
,

here β ą 1 since q ą n
p . Lemma 1 in the Appendix implies that there exists d ą 0

such that |Ãd| “ |tx P Ω : |Hpuqpxq| ą du| “ ϕpdq “ 0, which yields Hpuqpxq ď d,
a.e. Ω. The desired result follows.
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Example 3.2. Suppose that

a ą ac “
npp´ 1´ θq

n´ p
.

Let
b “

p

a´ pp´ 1´ θq
.

It is easy to see from a ą ac that

b “
p

a´ pp´ 1´ θq
ă

p
npp´1´θq
n´p ´ pp´ 1´ θq

“
n´ p

p´ 1´ θ
. (3.6)

Let us consider the function
u “ λ|x|´b ´ 1 (3.7)

in the ball Bλbp0q, where λ is a positive constant to be determined later. Direct
calculations show that

´div

ˆ

|∇u|p´2∇u
p1` |u|qθ

˙

“ f,

where
f “ λp´1´θbp´1pn´ p´ bpp´ 1´ θqq|x|´p´bpp´1´θq

“ λp´1´θbp´1pn´ p´ bpp´ 1´ θqq|x|´ab,

and
|1` u|a´1p1` uq “ λa|x|´ab.

If we let λ to be a number satisfying

λp´1´θbp´1pn´ p´ bpp´ 1´ θqq “ λa,

then the function u in (3.7) satisfies the equation in (1.8) in the ball Bλbp0q. It is
easy to see that u “ 0 on BBλbp0q and ua P L1pBλbp0qq since by (3.6) that

p` bpp´ 1´ θq ă p`
n´ p

p´ 1´ θ
pp´ 1´ θq “ n,

but u is not bounded.



Appendix

The well-known Stampacchia Lemma (see Lemma 4.1 in [36]) reads as follows:

Lemma 1. Let c̃1, α, β be positive constants. Let ϕ : rk0,`8q Ñ r0,`8q be

decreasing and such that

ϕphq ď
c̃1

ph´ kqα
rϕpkqsβ (1)

for every h, k with h ą k ě k0. It results that:

(i) if β ą 1 then we have

ϕpk0 ` dq “ 0,

where

dα “ c̃1rϕpk0qs
β´12

αβ
β´1 .

(ii) if β “ 1 then for any k ě k0 we have

ϕpkq ď ϕpk0qe
1´pc̃1eq

´ 1
α pk´k0q.

(iii) if β ă 1 and k0 ą 0 then for any k ě k0 we have

ϕpkq ď 2
α

p1´βq2

"

c̃
1

1´β

1 ` p2k0q
α

1´βϕpk0q

*ˆ

1

k

˙
α

1´β

.

Mammoliti proved a lemma in [6] in order to deal with regularity for solutions to

some elliptic equations with degenerate coercivity, see Lemma A.1 in the Appendix

in [6]:

Lemma 2. Let ϕ : R` Ñ R` be a non-increasing function such that

ϕphq ď
c̃2

ph´ kqα
kθ̃αrϕpkqsβ, @h ą k ą 0, (2)

for some positive constant c̃2, with α ą 0, 0 ď θ̃ ă 1 and β ą 1. Then there exists

k˚ ą 0 such that ϕpk˚q “ 0.

After carefully reading the proof of Lemma A.1 in the Appendix in [6], we find

that the above lemma can be stated as follows:

Lemma 21. Let ϕ : R` Ñ R` be a non-increasing function such that

ϕphq ď
c̃2

ph´ kqα
kθ̃αrϕpkqsβ, @h ą k ě k0 ą 0, (21)

for some positive constant c̃2, with α ą 0, 0 ď θ̃ ă 1 and β ą 1. Then there exists

k˚ ą 0 such that ϕpk˚q “ 0.
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We remark that the difference between Lemma 2 and Lemma 21 is that, in the

condition (21) we need only to assume the inequality holds true for all h ą k ě k0 ą 0.

We now compare Lemma 21 with Lemma 1 part (i). The difference between

the assumptions (1) and (21) is that a factor kθ̃α appears in the right-hand side of

(21). When θ̃ “ 0, they are the same. Thus Lemma 21 has slightly more general

hypotheses.

We now prove a generalized Stampacchia Lemma in order to deal with regularity

for entropy solutions to elliptic equations with degenerate coercivity.

Lemma 3. Let c̃, α, β, k0 be positive constants and 0 ď θ̃ ă 1. Let ϕ : rk0,`8q

Ñ r0,`8q be decreasing and such that

ϕphq ď
c̃

ph´ kqα
kθ̃αrϕpkqsβ (3)

for every h, k with h ą k ě k0 ą 0. It results that:

(i) if β ą 1 then there exists k˚ ą 0 such that ϕpk˚q “ 0.

(ii) if β “ 1 then for any k ě k0 we have

ϕpkq ď ϕpk0qe
1´

´

k´k0
τ

¯1´θ̃

,

where

τ “ max

"

k0, pc̃e2
θ̃αp1´ θ̃qαq

1
p1´θ̃qα

*

. (4)

(iii) if β ă 1 then for any k ě k0 we have

ϕpkq ď 2
αp1´θ̃q

p1´βq2

"

c̃
1

1´β ` p2k0q
αp1´θ̃q

1´β ϕpk0q

*ˆ

1

k

˙

αp1´θ̃q
1´β

.

Proof. (i) Let β ą 1. We note that the result is nothing but Lemma 21.

(ii) Let β “ 1 and τ be as in (4). For any s P N we let

ks “ k0 ` τs
1

1´θ̃ ,

then

ks`1 ´ ks “ τ
”

ps` 1q
1

1´θ̃ ´ s
1

1´θ̃

ı

.

We use Taylor’s formula in order to get

ks`1 ´ ks “ τ

«

1

1´ θ̃
s

θ̃
1´θ̃ `

θ̃

2p1´ θ̃q2
ξ

2θ̃´1

1´θ̃

ff

ě
τ

1´ θ̃
s

θ̃
1´θ̃ , (5)

where ξ lies in the interval between s and s` 1. (3) with β “ 1 and (5) merge into

ϕpks`1q ď

c
”

k0 ` τs
1

1´θ̃

ıθ̃α

´

τ
1´θ̃

¯α
s
θ̃α

1´θ̃

ϕpksq. (6)
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(4) implies k0 ď τ ď τs
1

1´θ̃ . From (6) and the definition of τ ,

ϕpks`1q ď
c
´

2τs
1

1´θ̃

¯θ̃α

´

τ
1´θ̃

¯α
s
θ̃α

1´θ̃

ϕpksq “
cp2τqθ̃α
´

τ
1´θ̃

¯αϕpksq ď
1

e
ϕpksq.

By recursion,

ϕpksq ď
1

es
ϕpk0q.

For any k ě k0, there exists s P N such that

k0 ` τps´ 1q
1

1´θ̃ ď k ă k0 ` τs
1

1´θ̃ ,

therefore,

ϕpkq ď ϕ
´

k0 ` τps´ 1q
1

1´θ̃

¯

“ ϕpks´1q ď e1´sϕpk0q ď ϕpk0qe
1´

´

k´k0
τ

¯1´θ̃

.

(iii) Let β ă 1. In (3) we let h “ 2k and we have

ϕp2kq ď
c̃

kp1´θ̃qα
rϕpkqsβ. (7)

We use Remark 1 in [19], which states that (1) (with αp1´ θ̃q in place of α) and (7)

are equivalent in the case 0 ă β ă 1. So that one can use Lemma 1 part (iii) and

the desired result follows.

Let us take a special case h “ 2k in (1), it becomes

ϕp2kq ď
c̃1

kα
rϕpkqsβ, @h ą k ě k0. (8)

In [19], the authors compared the two conditions (1) and (8), and obtained:

(i) for the case 0 ă β ă 1, (1) and (8) are equivalent;

(ii) for the case β “ 1, (1) is stronger than (8);

(iii) for the case β ą 1, (1) is stronger than (8).

Motivated by [19], we now compare the two conditions (3) and

ϕp2kq ď
c̃

kp1´θ̃qα
rϕpkqsβ, @k ě k0 ą 0. (9)

Surprisingly, for 0 ă θ̃ ă 1 and 0 ă β ă 1, (3) and (9) are not equivalent! In fact,

we have the following

Lemma 4. Let c̃, α, k0 be positive constants, 0 ă β ă 1 and 0 ă θ̃ ă 1. Let

ϕ : rk0,`8q Ñ r0,`8q be decreasing. Then

p3q ö p9q. (10)
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More precisely, the function

ϕpkq “ k´1

verifies (9) but it does not satisfy (3).

Proof. Let α, β, θ̃ and k0 be such that

α ą 1, (11)

1´ β ą p1´ θ̃qα, (12)

and

k0 “ p2c̃q
´ 1

1´β´p1´θ̃qα . (13)

(12) and (13) guarantee that

1

k1´β´p1´θ̃qα
ď 2c̃, @k ě k0. (14)

We consider the function ϕpkq “ k´1. (14) implies

ϕp2kq “
1

2k
ď

c̃

kp1´θ̃qα
1

kβ
“

c̃

kp1´θ̃qα
rϕpkqsβ, @k ě k0 ą 0.

This shows that, under the conditions (12)-(13), the function ϕpkq “ k´1 satisfies

(9). Now we are going to show that (3) does not hold true for ϕpkq “ k´1: by

contradiction, if (3) would hold true, then

1

h
ď

c̃

ph´ kqα
kθ̃α

1

kβ
, @h ą k ě k0 ą 0.

We take k “ k0 and we have

1

h
ď

c̃kθ̃α´β0

ph´ k0q
α
, @h ą k0 ą 0,

that is
ph´ k0q

α

h
ď c̃kθ̃α´β0 , @h ą k0 ą 0,

but this is false, since by (11), ph´k0q
α

h Ñ `8 as hÑ `8.

For the other two cases β “ 1 and β ą 1, we also have

p3q ö p9q.

In fact, the function

ϕpkq “ e´pln kq
2
, k P r1,`8q
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satisfies (9) with β “ 1, θ̃ “ 1
2 , α “ 4 ln 2 and c̃ “ 2´ ln 2, but is does not satisfy (3)

by Lemma 3 part (ii). The function

ϕpkq “ e´k
p
, p “ log2p2βq, k P r1,`8q

verifies (9) with some β ą 1, with c̃ “ 1, with any 0 ă θ̃ ă 1, with any α ą 0, and

with a suitable k0 “ k0pα, βq ě 1, but is does not satisfy (3) by Lemma 3 part (iii).

The detailed analysis can be found in [19].
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