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a b s t r a c t

We deal with variational integrals
Ω

f(x,Du(x))dx

and we consider a minimizer u : Ω ⊂ Rn → R among all functions that agree on the
boundary ∂Ω with some fixed boundary value u∗. We assume that the boundary
datum u∗ makes the density f(x,Du∗(x)) more integrable and we prove that the
minimizer u enjoy higher integrability.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the variational integral 
Ω

f(x,Du(x))dx (1.1)

where Ω is a bounded open subset of Rn with n ≥ 2, u : Ω → R and f : Ω × Rn → R is a Caratheodory
function, that is, x→ f(x, z) is measurable and z → f(x, z) is continuous. We assume p growth from below:
there exist constants p ∈ (1, n) and ν ∈ (0,+∞), there exists a function g1 : Ω → [0,+∞) such that

ν|z|p − g1(x) ≤ f(x, z) (1.2)
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for almost every x ∈ Ω and for all z ∈ Rn. We fix a boundary datum u∗ : Ω → R such that u∗ ∈ W 1,p(Ω)
and

x→ f(x,Du∗(x)) ∈ L1(Ω). (1.3)

The set of competing functions for the variational integral (1.1) is

C = {w ∈ u∗ +W 1,p
0 (Ω) such that x→ f(x,Dw(x)) ∈ L1(Ω)}. (1.4)

A function u : Ω → R is a minimizer for (1.1) if u ∈ C and it verifies
Ω

f(x,Du(x))dx ≤

Ω

f(x,Dw(x))dx (1.5)

for all w ∈ C. In this paper we deal with regularity of minimizers, [34,35]. Now we ask the following question:
if the boundary datum u∗ makes the density f(x,Du∗(x)) more integrable than (1.3) requires, does the
minimizer u enjoy higher integrability? The answer is positive and in this paper we prove the following.

Theorem 1.1. Assume that g1 ∈ Lσ(Ω) and x → f(x,Du∗(x)) ∈ Lσ(Ω) where σ ∈ (1,+∞). If u ∈ C
minimizes the variational integral (1.1) under (1.2), then

σ <
n

p
=⇒ u− u∗ ∈ L

npσ
n−pσ
weak (Ω), (1.6)

σ = n
p

=⇒ ∃α > 0 : eα|u−u∗| ∈ L1(Ω), (1.7)

σ >
n

p
=⇒ u− u∗ ∈ L∞(Ω). (1.8)

Note that npσ
n−pσ >

pn
n−p in (1.6).

Assume now that we have p growth from below and q growth from above: for some positive constants
p, q, ν,K with 1 < p < n, p ≤ q, for some functions g1, g2 : Ω → [0,+∞) we have

ν|z|p − g1(x) ≤ f(x, z) ≤ K|z|q + g2(x) (1.9)

for almost every x ∈ Ω , for every z ∈ Rn. Then

|f(x, z)| ≤ K|z|q + g2(x) + g1(x) (1.10)

and the σ-integrability of |f(x,Du∗(x))| is guaranteed by Du∗ ∈ Lqσ and g1, g2 ∈ Lσ: this gives the following

Corollary 1.2. Assume that g1, g2 ∈ Lσ(Ω) and Du∗ ∈ Lqσ(Ω) where σ ∈ (1,+∞). If u ∈ C minimizes the
variational integral (1.1) under (1.9), then (1.6)–(1.8) holds true.

When p < q in (1.9) we usually say that we have p, q-growth or nonstandard growth, [31,32]. The
previous corollary deals with global regularity; local regularity has been studied in [31,20,36,10,6,8] under
the additional assumption that p and q are close enough. When they are far apart, it is possible to build
counterexamples in which bad boundary data force minimizers to be bad as well, see [24,30,31,26]. Let us
recall that local regularity has been proved in [16] under the restriction

q < p
n+ 2
n
. (1.11)

The additional assumption that the minimizer is locally bounded allows [6] to get local regularity under
the less restrictive bound

q ≤ 2p+ 2, (1.12)
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see also [10,17,5,4]. Our Theorem and Corollary guarantee higher integrability for minimizers; this results
in the following question: is higher integrability enough to obtain local regularity under some bound

q < q0 (1.13)

for some q0 between pn+2
n and 2p + 2? Here we do not try to answer such a question. We now show some

examples for which (1.9) applies.

Example 1.3. For 1 < p < q, let us set

fp,q(x, z) = |z|p + a(x)|z|q (1.14)

where

0 ≤ a(x) ≤ A < +∞, (1.15)

see [41,42,18,19,12,11,14,1]. Then (1.9) holds true with ν = 1, g1(x) = 0, K = A+ 1 and g2(x) = 1.

Example 1.4. For 1 < p, let us set

fp,log(x, z) = |z|p + a(x)|z|p ln(e+ |z|) (1.16)

where a(x) satisfies (1.15), see [2,3,9]. Then (1.9) holds true with q = p+ϵ, ν = 1, g1(x) = 0, K = A+1+ Aϵ
and g2(x) = 0, for every ϵ ∈ (0, 1).

Example 1.5. Let us set

fdeg(x, z) = a(x)|z|2 (1.17)

where

a(x) > 0 for almost every x ∈ Ω , (1.18)
a ∈ Lr(Ω), r ∈ (1,+∞), (1.19)
1
a
∈ Lt(Ω), t ∈ (1,+∞), (1.20)

see [41]. We use Young’s inequality with exponents r and r
r−1 and we get

a(x)|z|2 ≤ [a(x)]r + |z|
2r
r−1 . (1.21)

Now we use Young’s inequality with exponents t+1
t and t+ 1 as follows:

|z|
2t
t+1 = |z|

2t
t+1 [a(x)]

t
t+1

1
[a(x)]

t
t+1
≤ |z|2a(x) + 1

[a(x)]t , (1.22)

then

|z|
2t
t+1 − 1

[a(x)]t ≤ |z|
2a(x). (1.23)

This shows that (1.9) holds true with p = 2t
t+1 , q = 2r

r−1 , ν = 1, g1(x) = 1
[a(x)]t , K = 1 and g2(x) = [a(x)]r.

In order to apply our Corollary 1.2, we need a ∈ Lrσ(Ω) and 1
a ∈ L

tσ(Ω), where σ > 1.

Example 1.6. Let us set

fvar(x, z) = |z|p(x), (1.24)

where 1 < p ≤ p(x) ≤ q, see [41,13], Chapter 2 in [37], [7]. Then (1.9) holds true with ν = 1, g1(x) = 1, K = 1
and g2(x) = 1.
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Example 1.7. For a, b ∈ (0,+∞) with 1 < a− b, we set

fsin(z) = |z|a+b sin |z|, (1.25)

see [20,39,28,15,33]. Then (1.9) holds true with p = a−b, q = a+b, ν = 1, g1(x) = 1, K = 1 and g2(x) = 1.

Example 1.8. When 2 < q and z = (z1, . . . , zn), we set

fre−ma(z) = |z|2 + |max{zn; 0}|q; (1.26)

see [40]: this example looks useful when dealing with some reinforced materials. Note that

fre−ma(z) ≤ 1 + |z1|2 + · · ·+ |zn−1|2 + 2|zn|q (1.27)

but it is false that

c1(|z1|2 + · · ·+ |zn−1|2 + |zn|q)− c2 ≤ fre−ma(z) (1.28)

for some positive constants c1 and c2: take z = (0, . . . , 0, t) and let t go to −∞. Then we cannot use [21,25,
29,22,23,27]. On the other hand, (1.9) holds true with p = 2, ν = 1, g1(x) = 0, K = 2, g2(x) = 1.

2. Proof of Theorem 1.1

For L ∈ (0,+∞), we consider the set

{|v| > L} = {x ∈ Ω : |v(x)| > L}.

Integrability of v can be obtained by estimates on the measure of {|v| > L}; these estimates are guaranteed
by the inequality 

{|v|>L}
|Dv|p ≤M |{|v| > L}|s

as the following lemma states.

Lemma 2.1. Assume that v ∈W 1,p
0 (Ω) with 1 < p < n. Let M,γ, L0 be positive constants such that

{|v|>L}
|Dv|p ≤M |{|v| > L}|

γp
p∗ (2.1)

for every L > L0, where p∗ = np
n−p . Then

γ < 1 =⇒ v ∈ L
p∗

1−γ
weak(Ω), (2.2)

γ = 1 =⇒ ∃α > 0 : eα|v| ∈ L1(Ω), (2.3)
γ > 1 =⇒ v ∈ L∞(Ω). (2.4)

Such a lemma is Proposition 2.2 in [27] and its proof is based on Sobolev’s inequality and Stampacchia’s
Lemma 4.1 in [38]. We want to use Lemma 2.1 with v = u− u∗. Then we apply the p growth from below in
(1.2) and we get

{|u−u∗|>L}
|Du(x)−Du∗(x)|p ≤ 2p


{|u−u∗|>L}

|Du(x)|p + 2p

{|u−u∗|>L}

|Du∗(x)|p

≤ 2p

ν


{|u−u∗|>L}

f(x,Du(x)) + 2p

ν


{|u−u∗|>L}

g1(x)

+ 2p

{|u−u∗|>L}

|Du∗(x)|p. (2.5)
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In order to control

f(x,Du(x)) we need the minimality of u. First of all, we define the variation v as

follows:

v =


u− u∗ + L if u− u∗ < −L,
0 if − L ≤ u− u∗ ≤ L,
u− u∗ − L if u− u∗ > L;

(2.6)

it turns out that

v ∈W 1,p
0 (Ω) (2.7)

and

Dv = (Du−Du∗)1{|u−u∗|>L}, (2.8)

where 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ̸∈ A. Now we consider

w = u− v (2.9)

and we have

w ∈ u∗ +W 1,p
0 (Ω) (2.10)

with

Dw = (Du)1{|u−u∗|≤L} + (Du∗)1{|u−u∗|>L}; (2.11)

since u and u∗ have finite energy, then (2.11) tells us that w has finite energy too:

x→ f(x,Dw(x)) ∈ L1(Ω). (2.12)

Thus w ∈ C and we can use minimality (1.5):
{|u−u∗|≤L}

f(x,Du(x)) +

{|u−u∗|>L}

f(x,Du(x)) =

Ω

f(x,Du(x)) ≤

Ω

f(x,Dw(x))

=

{|u−u∗|≤L}

f(x,Du(x)) +

{|u−u∗|>L}

f(x,Du∗(x)). (2.13)

Since u and u∗ have finite energy, all the integrals are finite; then we can drop

{|u−u∗|≤L} f(x,Du(x))

from both sides and we get
{|u−u∗|>L}

f(x,Du(x)) ≤

{|u−u∗|>L}

f(x,Du∗(x)). (2.14)

This inequality can be used in (2.5) and we get
{|u−u∗|>L}

|Du(x)−Du∗(x)|p ≤
2p

ν


{|u−u∗|>L}

f(x,Du∗(x))

+2p

ν


{|u−u∗|>L}

g1(x) + 2p

{|u−u∗|>L}

|Du∗(x)|p =

{|u−u∗|>L}

h(x) (2.15)

where

h(x) = 2p

ν
f(x,Du∗(x)) + 2p

ν
g1(x) + 2p|Du∗(x)|p. (2.16)

The assumptions on Du∗, g1 and f guarantee that

h ∈ Lσ(Ω); (2.17)

then, using Hölder inequality, we get
{|u−u∗|>L}

h ≤


Ω

hσ
 1
σ

|{|u− u∗| > L}|
σ−1
σ ; (2.18)
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we insert this inequality into (2.15) and we obtain
{|u−u∗|>L}

|Du−Du∗|p ≤ ∥h∥Lσ(Ω)|{|u− u∗| > L}|
σ−1
σ . (2.19)

Now

σ − 1
σ

=
1− 1

σ

1− pn
p

p∗
(2.20)

and we can apply Lemma 2.1 with γ = 1− 1
σ

1− pn
. This ends the proof of Theorem 1.1. �
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