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Abstract. We derive estimates for entropy solutions to degenerate elliptic equations
of the form

{—div.A(:v,u(m),Vu(x)) = f(z), zeQ,
u(z) =0, x € 09,

where the Carathéodory function A : Q x R x R™ — R" satisfies degenerate coercivity
condition
9

A(w,s7§)-£>a(l+ B

and controllable growth condition

Az, s,6) < BlefP~

forl<p<n, 0<f<p—1land0<a<f <o, and f lies in Marcinkiewicz spaces.
We derive a generalized Stampacchia Lemma in order to prove the main theorem.
Counterexample shows that some of the results in this paper are optimal. As an
application of our results, we use a bootstrap argument to show that the entropy
solutions of

—divA(z, u(z), Vu(z)) = |1 + w(@)|* 11+ u(z)), zeQ,
u(x) =0, € 09,
u(z)|* € L1(Q)

n(p—1—0)
n—p :
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are bounded provided that 0 < a <

Keywords: Regularity, entropy solution, degenerate elliptic equation, Stam-
pacchia Lemma.

81 Introduction

Throughout this paper we let 2 stand for a bounded domain in R" n>2, 1 <p<n
and 0 < 0 < p— 1. We shall consider degenerate operators

—divA(z, u, Vu),
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where A : Q x R x R™ — R" is a Carathéodory mapping with the following assump-
tions: for a.e. x € R and all (s,£) € R x R™,

1P

A(.’E, 875) 5 a(l n |S|)9 (1 1)
and
Az, 5,6) < BIEP, (1.2)
where 0 < a < 3 < o0 are constants.
Let f e LY(Q)). We consider the boundary value problem
—divA(z,u(x), Vu(z)) = f(z), xe€q, (1.3)
u(z) =0, x € 01, ‘

and our goal is to find estimates for v and Vu in terms of the weak L? norm of f.
Since f is only an L' function, then we shall use the concept of an entropy solution
that was introduced by Bénilan et. al. in [2], where the existence and uniqueness of
such a solution was also established. A function u is called an entropy solution of
the problem (1.3) if the truncations Tj(u) belong to ng’p(Q) for each k > 0, and

f Az, u, Vu)VTi(u —v)dr = f fTi(u—v)dz (1.4)
Q Q

for each v € C§°(£2). Here and in what follows T}, is the truncation operator at level
k, Tk(s) = min(1, |?’k')s For some results related to entropy solutions, we refer the

reader to [3,9,10,25,28,40].

We note that, under (1.1), the coercivity can degenerate when |s| is too big
and # > 0. For some problems with degenerate coercivity, we refer the reader
to Chapter 14 in the monograph [7], where some results are obtained: existence,
uniqueness and regularity for the case 0 < 6 < 1, and existence and nonexistence
for the case # > 1. For some other results related to degenerate coercivity, we refer
the reader to [1,3,5,6,8,19,21,33].

We work in weak L? spaces, known also as Marcinkiewicz spaces or Lorentz
spaces L(@®): if ¢ > 1, then the space L?Ueak(Q) consists of measurable functions g
on €2 such that )

suptl{z € Q: |g(x)| > t}|s < o0. (1.5)
t>0

This condition is equivalently stated as

1
gl = sup o | lgide <o (1.6
EcQ 7 JE
|E|>0 ’
where ¢ is the conjugated exponent of ¢, % + % = 1. It is well-known that LI ()
is a Banach space under || - ||, and, moreover, if the supremum in (1.5) is denoted

by A, then
A<|gll, < A



A useful result is: if g€ LY () and 1 < 7 < g, then |g|" € L:

weak

Mgl e = llgllg- (1.7)

(Q), and

For a detailed analysis of LI . spaces we refer to [15]. Note that both (1.5) and
(1.6) make sense also for ¢ = 1; however then the latter is strictly stronger condition

and coincides with the definition of L.
The following is our main theorem:

Theorem 1.1. Let f e LY . (Q), and that u is the entropy solution of (1.3).
i) Ifl<q<?3, thenue L} .. (8) with

_ng(p—1-190)
) —
n —pq
and
lull., < el fllg™ 9,

where ¢ > 0 is a constant depending only on a,n,p,q and 6.

ii) If ¢ = %, then there exists a positive constant \, such that

NP 1
e e L ().

_ng(p—1-190)
n—q(l+6)’

and

IVully < el £ll5 =,

where cg > 0 is a constant depending only on a,n,p,q and 6.

iv) If ¢ > sy, then u e W, P(Q) and

[Vullzo o) < (1+HUW)“P1”
where c3 > 0 is a constant depending only on a,n,p,q,0 and |$|.

As to related results, Kilpeldinen and Li proved in [26] some regularity results
for non-degenerate case, that is, problem (1.3) for the operator A satisfies (1.1)
with § = 0. We note that, for the case § = 0, our results i), iii) and iv) are

just the same as Theorem 1.7 in [26]. The borderline case ii), ¢ = 7, was not

appeared in [26]. Stampacchia Lemma (see [36]) is an important tool in dealing with
regularity issues for solutions to elliptic partial differential equations and systems,
see [16,18,19,23,24,29,30,32]. We should mention that, in the degenerate case, it
seems that one can not use the classical Stampacchia Lemma, because some power
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of k naturally appears in the right hand side. To overcome this difficulty, we shall
prove a generalized Stampacchia Lemma in the Appendix.

At the end of Section 2, we give an example showing that the results i) and iii)
in Theorem 1.1 are optimal.

We apply Theorem 1.1 to investigate the regularity of solutions to the problem
—divA(z,u(z), Vu(z)) = |1 + u(@)|* (1 + u(z)), ze€Q,

u(z) =0, x € 01, (1.8)
lu(z)|* e L1 ().

We show:
‘ ‘ n(p=1-0) ;
Theorem 1.2. Ifu is the entropy solution of (1.8) and 0 < a < RTE— then u is
bounded in €.
We give an example at the end of Section 3 to show that: if a > a. = n(pn_ijp_g)

in Theorem 1.2, then one can not expect that u is bounded.

The plan of the paper is as follows: in the next section we will prove the main
theorem, we will also provide an example to show that some of the results in the main
theorem are optimal. In Section 3, we will give an application of the main results
by using a bootstrap argument. In the Appendix, we will provide a generalized
Stampacchia lemma which will be used in the proof of the main theorem.

82 Proof of Theorem 1.1

This section is dedicated to derive estimates that yield Theorem 1.1. Throughout
the section we let u be an entropy solution of (1.3), 1 <p<nand 0 <6 <p—1.

In order to prove Theorem 1.1 part i), we need a preliminary lemma, see Propo-
sition 3 in [19].

Lemma 2.1. Let u : © — R be a measurable function, let c4,a,ky be positive
constants and 0 < 8 < 1. If, for every k = ko, we have

K Wlul > 2k} < eal{lul > k}I7,

then u € Lﬁk(ﬁ)
In fact, this lemma is a direct consequence of the classical Stampacchia Lemma
(see Lemma 1 in the Appendix) and Remark 1 in [19].
Proof of Theorem 1.1.
i) We use v = Ti(u), k = ko = 1, as a test function in (1.4). Note that
0, lu| <k,
VTi(u—Tg(u)) =< Vu, k<|u| <2k,
0, |ul =2k,



then
a5 L VT(u — Ti(w))Pde

«

= — VulPdz
(3K)? Jik<iul<2n} Vel
< o Md{l}
< 7
(h<lul<2ky (1 + |ul)
< A(z,u, Vu)Vudx

{k<\u|<2k}
= Az, u, Vu)VTi(u — Ty (u))dz

= ka u — Ty (u))dx
= f" Tk (u — Ty (u))dx
{lul>k}
< k | f|dz
{ul>k}

1
< Kl fllgH{Tul > K},
here we have used (1.1), (1.6) and the fact

k=ko=1=1+4|ul <1+2k<3k on {k< |u|] <2k}

Hence by the Sobolev inequality

L 1
(J \w|p*dx> "< <J |Vw|pdx> ’ , Ywe Wol’p(Q),
Q Q

P

5 Cx depends only on n and p, we have that

where p* =

k|{ul > 2k}

( | - Tk<u>>rp*dx> ’
{Jul>2k) R

(] mtu -y

o ([ W= par)”

39k1+9 P 1 1
N TR

N

N

-

N

which easily implies

p*

p*(p—1-9) * 36 B 2 L*/
E > 20 < ()7 1A 1 > w15

(2.1)

(2.2)
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The assumption of Lemma 2.1 holds with

*p—1—10
S )7
p
Y
AN
a-a ()" unr.
p*
B N
pq’
and
kO = 17

here o > 0 since § < p—1 and § < 1 since ¢ < %. Lemma 2.1 yields the desired

result

ueLleak(Q),
where " (p—1—0)
pT\p—1—
o 7 nglp—1-10)
11— q_p — :
B o n —pq

ii) Let h > k£ > 0. (1.4) can be rewritten as
JQ Az, u, Vu)VTh_(u —v)de = JQ fTh—k(u—v)dz, Yh>k>0. (2.3)
We use v = T (u),k = ko = 1, as a test function in (2.3) and we have
L Al 1, V)T (1 — Th(u))dar — L FTo( — Ty (u))da.

Let ¢ = Tp_p(u — Ti(u)). Note that ¢ = 0 on {|u| < k} and

0, |ul <k,
Vo =X Vu, k<|u|<h,
0, J|ul=h.

Condition (1.1) yields

f [VulP
a 0
(h<lul<ny (1 +[ul)

= J A(z,u, Vu)Vedr = f fedr < f |f]]eldx.
Q Q (Jul>k}

dx < f A(x,u, Vu)Vudz
{k<\u|<h} (24)

—0
Let t = M20 then
t<p<ep<n,
nt t n(p—0)

t* = =
n—t p—t n—op




and n
0<p—1:>(t*)’<5=q.

Holder’s inequality with exponents £ and [% implies

J |Vul'dz
{k<|u|<h}

¢
— J %(1+|u|)%dx
{k<lul<h} (1 + |ul) »

1—t
|Vu\p J to P
(1 + |u|)r—tdx
(J{k<u|<h} (1 + |ul)? {k<\u\<h} ful

1—t
p P
< 2% f [Vl g (k + |u — Ti(w)]) 7 dz
(h<lul<hy (1 + [ul]) {k<|u\<h}

1—t
0 (1 Kl > (J (k+|u—Tk(u)\)p% dm) ,
{lul>k} {k<|u|<h}

here we have used the facts k > kg = 1 and

N

&

VAN
(\]
SIS

(2.5)

1+ |ul <2ul <2(k+ |u—Tk(u)]) on {|u] > k}.

We use Holder’s inequality with exponents t* and (¢*)" and Sobolev inequality (2.2)
again in order to get

f Fliglda
{lu|>k}

£y (ti)’ e %
< ([ e ([ gl
{Jul>F} - \Jtul=n
¥y Y t* tL*
< ([ aneras) ([ ) 26)
{lul>k} (ti), )
< o (J 71 (J |v¢|td$)t
{lu|>k} Q

Cx (J | 7|5 da:) <J ]Vu|tda;> .
(Ju|>k) (k<|u|<h}

Since (t*)' <2 =qand f€ L . (£), then Fales L“*) () and

weak

1
{|u| > k}| (/@)

A1 da < 1A g,
J{|u> <9j‘> (2.7)

* 7
I ] > k| T2
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Combining (2.6) with (2.7) we have

f Fligld
{|u|>k}

1-6)
< @fHWJ>kH”@9><f |Vumn)
{k<|u|<h}

Substituting (2.8) into (2.5) one has

0 (2.8)

|Vul'dz
(k<|u|<h}

t
< o (2) ™ g iy T (29

p—t

p—1
x (j (k+ |u—Tg(u Ptdac>
{k<|u|<h}

We use the following inequalities, satisfied by every a,b = 0:
(a+b)™ < 2™ ™ +b™) if m>1 (2.10)

and
(a+b)m<a™+b" if 0<m<1, (2.11)

in order to derive that

f (k + [u — T (w)])7 da
{k<|u|<h}

f K da + f i — Tk(u)]thdx> (2.12)
{|lu|>k} {k<|u|<h}

6 q _t0_ _t0_
< 2 mﬁMu>kH+Jlﬁ%%x,
(9]

t0
< 25t !

where we recall that ¢ = Tj,_x(u — T(u)). By Sobolev inequality (2.2) again
| 1ol = | Jolda
Q Q %
: (2.13)

t* =
< & (J Vg0|tdx> Lo A (f \Vu|tdx> .
Q {k<|u|<h}

Substituting (2.13) into (2.12) we arrive at

j (k + Ju — Th(u))2% da
{k<|u|<h}

& (2.14)
0 _q 6 ¥ t
< 2L e ffu] > kY| + o J Vultdz
{k<|u|<h}



A direct calculation shows

tp—t 0  (n—pp—1-6) p-t n-—p
tp—1 p—1 (p—1)(n—10) p—1 n—6

(2.15)

Substituting (2.14) into (2.9), using (2.15), (2.11) and Young inequality, we obtain

J |Vul|'dz
{k<|u|<h} t

0)
< 2%_91 (C*H|f|”(I> |{| |> k‘}| (p 1)(n 9)
t* p—t
{(146)—p *(p—t) ¢t
X2 p-1 =S 1|{|u| >k}|1’ i +cy P J |Vu|'dx
{k<|u|<h}
o
g ()
@
6
D) p) (p—1-0) Pt
o {lul > kT ( Vultde
{k<|u|<h}
t(1+26)—
P (c*meq> [kp {|u| > k:}|

t*(p—t)

re(e) e |{Ju] > B} ”J Vul'dz
(k<|ul<h}

Take € small enough such that

t(1426)—
27 <C*fq> £ <1,
«

then the last term in the right-hand side of the above inequality is absorbed by the
left-hand side. Thus

| Vul'ds < 5 [k [{ul > K} + [{Ju] > K}
{k<|u|<h}

< 2eski 1 |{u| > k} |7,

(2.16)

where ¢5 is a constant depending only on n,p, 0, a and || f||4, and we have used again
the fact k = kg = 1.
We use Sobolev inequality (2.2) again in order to derive

*
J |Vul'de = J |Vol|ldr > (J |<p|t*dx> t
{k<|u|<h} ,

¥ 2.17
> ¢! f ol dz | = et (h— B)[{lu] > h}|i 217
{lul>h}

_ n—-p
= c.'(h = k)'[{[ul > h}[==0.
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Estimates (2.16) and (2.17) merge into

n—6
(2c5cq) P
n(p—0)

— )n—p

né(p—0)
{lul > h}| < ko@D [{lul > kY.
Thus condition (3) in the Appendix holds with

n—=6

¢ = (2c5¢4) 77,
)
n—p
=1

)

and
ko=1,

here we note that

bl =) _gnle=9 5= 2 <y,

O<p—1=
b n-pp—1)  n—p p—1

(2.18)

thus one can use the result of Lemma 3 part (ii) in the Appendix to derive that, for

every k = kg = 1,

[l > k) < [{Jul > 1[5 < ajers2e2w
with 7 be as in (4) and 2\ = -1, (2.19) implies
{lu] > k}| < cge™2
where cg is a constant depending only on n,p, «, 8 and |€)|. Hence
e’““'l_g~ > e)‘kl_é = |{|lu]| >k} <c 672/\]61_5.
6
We let & = e*' ™ and we have

wul1—0 ~ Cg
{7 > kY = 72

(2.19)

(2.20)

We now use Lemma 3.11 in [7] which states that the sufficient and necessary condi-

tion for fe L"(Q), r > 1, is
e}
DTETHIf] > K} < oo,
k=0

Mu‘lfé

We use the above lemma for f =e and r = 1, since

> 1-6 & 1

NI
DM >k}|<062?<+oo,
k=0 k=0



6 -9
then eMul'™ = Al 7 ¢ L1(Q), as desired.
iii) We first prove

np n
< —, forl+6<p<n,
np—(n—p)1+6) " p

which is equivalent to prove that
pPP<np—(n—p)(1+80), for 1+0<p<n.
To this end, we need only to prove
P —(n+1+0)p+n(l+6)<O0.

Since the two roots for the equation

PP—n+1+0p+n(1+6)=0

11

(2.21)

(2.22)

are py = 1 + 60 and ps = n, then the condition 1 + 6 < p < n implies (2.22), and
(2.21) is proved. Thus, in the case 1 < ¢ < #, the result of i) holds true,

n—p)(1+6
ie.,
ng(p—1-10)
UELleak(Q)’ Y= n——pq

We next prove that, for all k > kg = 1,

p % 1+6—2
- (VulPde < er|ully &= [ £l
u|<<

where ¢7 = <1+§‘97/> We use (2.1) in order to derive that: for all k& >
af 2

7 -1

1
af VulPde < 3%k {Jul > K} || fllq,
{k<|u|<2k}

whence

af |VulPdx
{Jul <k}

0
a J |VulPdx
j=0 {279 k<|u|<2- 9k}

o0
S8 k) O Jul > 27 kT £,

<
j=0
- 0 T ro—ie1 i\ 1+0—2

< 23l @R,
Jj=0 .

= 21+0—%71 q

(2.23)

(2.24)

(2.25)
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here we notice that ¢ <

W’M = 140-— % > 0. (2.24) is proved.
Let t¢ be such that

ok
veollull
= 1. (2.26)
crll flll(t+6—7)

We obtain from (2.24) that, for ¢ > to,

{IVul >8] = [{[Vul >t} o {Ju] > K} + {[Vu] > 1} o {Ju] < K}

< [{lu] > k}H + t_pf |VulPdx
{|lu|<k
—p P B/ (2.27)
< [{lul > B} + crt™[ully & (£,
_ _ -2 1+6—2
< [y <k' Tt ertTPlufly Sl )
Next we minimize this in k, i.e. choose
q
X q+v+6q
(s
_
Al fl, (1 +0—2)
Condition (2.26) and ¢ > to ensure k > 1. (2.27) with k as above yields
1——1 _av
(190l > 8 < callull} ) gy
where cg is a constant depending on n,p, « and 6. Now we observe
Py _malp—1-6)
g+y+q¢0 n—q(l+0) ’
and by 1), [[ufl, < eif[fll¢” = , hence for t > ty,
s(1+6) s
{IVul >t} < est ™ lully * 1fllg < eot™ I £l1g aad (2.28)
s(1+6)
where cg = cge; ¥ . We let 9 be such that
12 < ewtg *IFING
then for 0 < ¢ < t,
{IVul > t}] < Q] < erotg *[Ifllg™ " < eaot™ [ fllg™"" (2:29)

(2.28) and (2.29) merge into

S

{IVul > )] < max{eg, o}t fl§ 7, Ve >0,
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from which the result follows.

iv) We take k =1 and v = 0 in (1.4). Then

P
O;f |VulPde < af Wiuud$
2% Jiui<1y (luj<1y (1 + |ul) 1 (2.30)
< f Az, u, Vu)VT (u)dr = J fTi(u)de < [Q ]I F]],-
Q Q
We use (2.25) again and we have
af |VulPdx
{[ul>1}
0
= |VulPdz

a \f
j=0 V{27 <|u|<27*1}
0

. . 1
< 3 Y PO || > 27| £,
=0
o .
1+0—-2 o
< D s,
] 0
<zﬁzpf”**mqu@19,
7=0

In the case ¢ > m, one has 1 + 6 — % < 0. Thus

a(p—0)—1

[, s < entsly T~ @a
u|>

here c¢;; is a constant depending only on n,p,a, 6 and |Q2|. (2.30) and (2.31) yield
the desired result.
The proof of Theorem 1.1 has been completed.

We next show that parts i) and iii) in Theorem 1.1 are sharp.

Example 3.1. We denote by B = B;(0) the unit ball of R™ and we consider

the function u(x) = |x|~*—1, a > 0. The truncations Tj(u) of u belong to Wol’p(B)
for each £ > 0. A direct computation shows that

Vo = — (2.32)

‘x|a+2

and
. <\Vu]p_2Vu
—div | ———
(1 + Ju])?

if z # 0. Now we observe that

> = ap_l(n —p—alp—1-— 9))|x|—p—a(p—1—9)

f =@ n—p—alp—1=0)la| 7010 e L(B)
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if and only if

that is,

Then w« is an entropy solution of

. ulP~2Vu
u =0, T € 0B.

Note that the operator A(z,u,Vu) = % satisfies (1.1) and (1.2) with o =
B = 1. Moreover, it follows that if

n —pq
qlp—1-10)

(B) if and only if

a =

then feL! . (B)anduelL] .
L nalp—1-0)
n—pq

Furthermore, by (2.32), Vu € L*(B) if and only if

ng(p—1-90)
T n—q(l+0)°

This shows that parts i) and iii) of Theorem 1.1 are sharp.

83 Proof of Theorem 1.2.

In this section, we apply Theorem 1.1 to investigate the regularity of solutions
to the problem (1.8) and prove Theorem 1.2.
We divide the proof into two steps: Step 1, f = [1 +u|*" (1 +u) e LY

weak

(Q), for
some q > %; Step 2, any weak solution u € VVO1 P(Q) to the boundary value problem
—divA(z, u(x), Vu(z)) = f(x), e, (3.1)
u(z) =0, x € 01, ’

where fe LT . (Q), ¢ > 2, is bounded.

weak
Step 1. We use a bootstrap argument. Since f € L'(2) we have by Theorem
1.1 part i) that
n(p—1-0)

U € Llleak(Q% v = n—p

Therefore

71
f € L(i)leak(Q>7 n = ;
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Now we repeatedly use Theorem 1.1 part i). At the jth step we obtain

ngj—1(p—1—10)

we L7 (), where ~; =
weak:( ) J n— pgj_1
and i
here we put go = 1. By recursion
n
q; = j p k>
a a
n <m) - ka=1 (m)
n(p—1-0)

provided that ¢;_1 < %. Since 0 < a < , it is immediate that ¢; is an

n—p
increasing sequence and moreover, there is an § > 0 such that

)
B ,;)(p—l—9>
(-1

n (1 _ n)"“
b p

if j is large enough. One easily checks that for such a j it holds that ¢; > %. There-
fore we conclude that f € LY

WV
>
+

+

|3

>

®IS >

n i n [ [ —
pe SINCe 4> 5 > S )

then Theorem 1.1 part iv) tells us that an entropy solution is an ordinary VVO1 P(Q)
solution.
Step 2. To prove any weak solution u € Wol’p(Q) of (3.1) is bounded, we define,

for s e R,
s 1
H(s) = J ——dt.
0 (L+[t])r—T

Gr(H(u)) = H(u) — Tp(H(u))

as a test function in the weak formulation of (3.1) and use assumption (1.1) we
obtain

(Q) for some g >

weak

For k£ > 0, we take

J|VG;€ )Pdz < ; fGr(H (u))dz, (3.2)

where
A ={zeQ:|H®)(z)| > k}.
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We use Sobolev inequality (2.2) and we have

f VC(H(w))Pda > (j G (H ()P da:) (3.3)

We note that n
I<p<n=gq>—>(p*).
p

Holder’s inequality with exponents p* and (p*)’ yields

IGu(Hw)s <(L 710" )“’ ’ (f Gy(H )

(3.4)
7*
< 1Al &) ([ o)
Substituting (3.3) and (3.4) into (3.2) we arrive at
p—1 1 %%
act ([ toutrtpran) " < 17k (o) (35)
For h > k, we have
| i as > [ 6@ de > (= " |
h
which together with (3.5) yields
£\ T
_ f . Py 1 B p 7 pF) p—
Apl < | AR |\ @Y
A< (W)™ ol o
The assumption of Lemma 1 in the Appendix holds with
¥
A
1 acp; )
a=p",
ko=20
and ) ) .
p
8=

(ﬁ)%ﬁ*)’p—l’

here 8 > 1 since ¢ > %. Lemma 1 in the Appendix implies that there exists d > 0

such that [A4| = [{z € Q : |H(u)(x)| > d}| = ¢(d) = 0, which yields H(u)(z) < d,
a.e. (2. The desired result follows.
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Example 3.2. Suppose that

—1-4
a>a. = 771(]) )
n—p
Let
b — p
a—(p—1-0)
It is easy to see from a > a. that
p p n—p
b= < = . (3.6)
—h—_1_ (—1-0) 1
a—(p-1-0) 20 _(p_1-9) p-1-0
Let us consider the function
w= Nz =1 (3.7)

in the ball By:»(0), where A is a positive constant to be determined later. Direct

calculations show that
. [ |VulP=2Vu
—div| —F5 | =/,

(1 + [ul)?
where
o= (= p—b(p— 1 = 0))|x| PP
= N0 — p— b(p — 1 — 6)) ]2,
and

11+ (1 4 u) = Az| %,
If we let A to be a number satisfying
NPL=0pp=Ln —pp —b(p—1—0)) = \7,

then the function w in (3.7) satisfies the equation in (1.8) in the ball Bys(0). It is
easy to see that u = 0 on 0B,,(0) and u® € L'(B,+(0)) since by (3.6) that
n—p

but u is not bounded.



Appendix

The well-known Stampacchia Lemma (see Lemma 4.1 in [36]) reads as follows:

Lemma 1. Let ¢, a,f be positive constants. Let ¢ : [ko, +o0) — [0,+00) be
decreasing and such that

oh) < G ale )’ (1)
for every h,k with h > k > ko. It results that:
(i) if B > 1 then we have
p(ko +d) =0,

where s
d* = &fp(ko)]P~'27-1.

(i) if B =1 then for any k = ko we have

(k) < plho)el~E10) = ko),

(iii) if B < 1 and kg > 0 then for any k = ko we have
o a1 e 1\ =8
(k) <2075 {7 + k) et} (1)

Mammoliti proved a lemma in [6] in order to deal with regularity for solutions to
some elliptic equations with degenerate coercivity, see Lemma A.1 in the Appendix
in [6]:

Lemma 2. Let ¢ : R™ — R* be a non-increasing function such that

C2 fox B
h) < ———k k)7, Vh>k>0, 2
o) < Gt (b )
for some positive constant ¢, with a > 0, 0 < § < 1 and 8 > 1. Then there exists
k* > 0 such that ¢(k*) = 0.
After carefully reading the proof of Lemma A.1 in the Appendix in [6], we find

that the above lemma can be stated as follows:

Lemma 2. Let ¢ : R* — R* be a non-increasing function such that

C2

mkéa[¢(k)]ﬁ, Vh >k = ko > 0, (2)

p(h) <

for some positive constant ¢y, with a@ > 0, 0 < 6 <1 and B > 1. Then there exists
k* > 0 such that ¢(k*) = 0.
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We remark that the difference between Lemma 2 and Lemma 2 is that, in the
condition (2") we need only to assume the inequality holds true for all h > k > kg > 0.

We now compare Lemma 2’ with Lemma 1 part (i). The difference between
the assumptions (1) and (2') is that a factor k%* appears in the right-hand side of
(2'). When 6 = 0, they are the same. Thus Lemma 2’ has slightly more general
hypotheses.

We now prove a generalized Stampacchia Lemma in order to deal with regularity
for entropy solutions to elliptic equations with degenerate coercivity.

Lemma 3. Let ¢ a, 3, ko be positive constants and 0 < 6 < 1. Let ¢ : [ko, +00)
— [0, +00) be decreasing and such that

o) < Gk Lo’ 3)

for every h, k with h > k > ko > 0. It results that:
(i) if 8 > 1 then there exists k* > 0 such that p(k*) = 0.
(ii) if B = 1 then for any k > ko we have

k—kq ) 1-6

(k) < olko)e (7))

where
- 1
= max {ko, 260‘ —6)%) -0 } . (4)
>

(iii) if B < 1 then for any k > ko we have

a(1—0)

a(1-0) 1 a(1-60) 1—6) 1 1-p
p(k) < 20797 1677 + (2ko) 7 (ko) o {

Proof. (i) Let 8 > 1. We note that the result is nothing but Lemma 2.
(ii) Let 8 =1 and 7 be as in (4). For any s € N we let

_1
ks = ko + 1519,
then ) )
ksi1 —ks =T [(s +1)1-6 — sﬁ] .
We use Taylor’s formula in order to get

. y 1 0 0 20-1 0 (5)
S — S:T ~$179_|_7~ 1—6 > ~3179’
i 1-46 212 1-46

where ¢ lies in the interval between s and s + 1. (3) with 8 = 1 and (5) merge into

1 _10a
c [k‘o + 75 1*9]

r \¢ Lo
- 1—-6
(1—9) 5

p(ksr1) < p(ks)- (6)
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(rs7)" ~

C TS1- (2o

Plheer) < (o olke) = ‘E@f))aso(ks) < (k).
1—5) " 1-6

By recursion,

For any k > kg, there exists s € N such that
1 1
ko+71(s—1)1-0 <k <ky+ 7810,

therefore,

A =g (ko trls - 1)1%§> = p(ke1) < ' (ko) < SO(ko)el_(k_fko) N

(iii) Let f < 1. In (3) we let h = 2k and we have

[p(K)1°. (7)
We use Remark 1 in [19], which states that (1) (with (1 — ) in place of ) and (7)
are equivalent in the case 0 < § < 1. So that one can use Lemma 1 part (iii) and
the desired result follows. O

2%) < ——
p(2k) PYeRr

Let us take a special case h = 2k in (1), it becomes

C1

a [p(K)]?, Yh> k> k. (8)

©(2k) <
In [19], the authors compared the two conditions (1) and (8), and obtained:
(i) for the case 0 < § < 1, (1) and (8) are equivalent;
(ii) for the case § =1, (1) is stronger than (8);
(iii) for the case 8 > 1, (1) is stronger than (8).
Motivated by [19], we now compare the two conditions (3) and

©(2k) < [p(k)])?, VEk= ko> 0. (9)

k(l—é)a

Surprisingly, for 0 < 8 <1 and 0 < 8 < 1, (3) and (9) are not equivalent! In fact,
we have the following

Lemma 4. Let ¢ o, kg be positive constants, 0 < 8 < 1 and 0 < § < 1. Let
¢ : [ko, +0) — [0, +0) be decreasing. Then

(3) <= (9). (10)
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More precisely, the function
p(k) =k~

verifies (9) but it does not satisfy (3).

Proof. Let a, 3,0 and kg be such that

a>1, (11)
1-8>(1-0)a, (12)
and )
ko = (2¢) 1-F-(1=0)a, (13)
(12) and (13) guarantee that
L <2 VkEzEk 14
m X 46, = KO- ( )

We consider the function (k) = k=1, (14) implies

1 ¢ 1 ¢
2K) = Sk S L0 kP~ 00 b, Yk > .
SD( k) 2k k(l—@)cx kﬂ k(l—ﬁ)cx [SO(k’)] 5 Vk ]{,’0 > (

This shows that, under the conditions (12)-(13), the function ¢ (k) = k~! satisfies
(9). Now we are going to show that (3) does not hold true for p(k) = k~1: by
contradiction, if (3) would hold true, then

% < (h_ék)akéaklﬁ, Vh >k = ko > 0.
We take k = kg and we have
;Léﬁak(ja, Vh > kg > 0,
that is
(h_hk(’)a <&k P Vh> ko >0,
but this is false, since by (11), W — +00 as h — +o0. ]

For the other two cases f =1 and 8 > 1, we also have
(3) <= (9).

In fact, the function
o(k) = e R’ ke [1, +00)
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satisfies (9) with 3 =1, = %, o =4In2 and é = 272 but is does not satisfy (3)
by Lemma 3 part (ii). The function

p(k) = e, p=1logy(28), kel[l,+w)

verifies (9) with some 8 > 1, with ¢ = 1, with any 0 < 6 < 1, with any « > 0, and
with a suitable kg = ko(a, 5) = 1, but is does not satisfy (3) by Lemma 3 part (iii).
The detailed analysis can be found in [19].
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