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a b s t r a c t

We consider the boundary value problem
n

i=1

Di(ai(x,Du(x))) = 0, x ∈ Ω;

u(x) = u∗(x), x ∈ ∂Ω.

We show that higher integrability of the boundary datum u∗ forces solutions u to have
higher integrability as well. Assumptions on ai(x, z) are suggested by Euler equation of the
anisotropic functional

Ω

n
i=1


2|Diu|2 + |Diu| sin(|Diu|)

 pi
2 .

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider integral functionals

I(u) =


Ω

f (x,Du(x))dx (1.1)

where u : Ω → R,Ω is a bounded open subset of Rn and f : Ω ×Rn
→ [0, +∞); about f (x, z)we assume that x → f (x, z)

is measurable and z → f (x, z) is continuous; u is taken from Sobolev space W 1,1(Ω). We are interested in functions u
solving the Euler equation

n
i=1

Di


∂ f
∂zi

(x,Du(x))


= 0 (1.2)

in weak form, or more generally
n

i=1

Di(ai(x,Du(x))) = 0, (1.3)
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where ai : Ω × Rn
→ R with x → ai(x, z) measurable and z → ai(x, z) continuous. In past years great attention has been

paid to anisotropic functionals whose model is
Ω

(|D1u|p1 + |D2u|p2 + · · · + |Dnu|pn)dx (1.4)

where the derivative Diu =
∂u
∂xi

has the exponent pi that might be different from the exponent pj of the derivative Dju =
∂u
∂xj

,
when j ≠ i. Such a model suggests to consider energies f (x, z) where

|f (x, z)| ≤ c


1 +

n
i=1

|zi|pi


(1.5)

or Eq. (1.3) with coefficients ai(x, z) satisfying

|ai(x, z)| ≤ c(1 + |zi|)pi−1. (1.6)

This anisotropic framework looks useful when dealingwith some reinforcedmaterials, see [15]; about theoretical viewpoint
see [10], example 1.7.1, page 169. In the present paper we are interested in the integrability of solutions u to (1.3): does high
integrability of boundary datum u∗ improve the integrability of the solution u? A positive answer has been given in [8,4,2]
when the operator is monotone:

ν

n
i=1

|z − z̃|pi ≤

n
i=1

(ai(x, z) − ai(x, z̃))(zi − z̃i) (1.7)

for some positive constant ν. Please, note that monotonicity forces f to be convex, when ai(z) =
∂ f
∂zi

(z). Recently, [9] shows
that convexity of f is not necessary; only coercivity of f is required:

ν∗

n
i=1

|z|pi ≤ f (x, z), (1.8)

for some positive constant ν∗. The result contained in [9] is valid for minimizers of (1.1). When f is no longer convex,
stationary maps u need not to minimize I, so we cannot use such a result. In the present paper we deal with stationary
maps u and we show higher integrability, provided coercivity for ∂ f

∂z is assumed:

ν̃

n
i=1

|z|pi ≤

n
i=1

∂ f
∂zi

(x, z)zi, (1.9)

for some positive constant ν̃. More generally, higher integrability holds true for weak solutions u to (1.3) under coercivity
for a:

ν

n
i=1

|z|pi ≤

n
i=1

ai(x, z)zi, (1.10)

for some positive constant ν. In order to state our theorem, let us assume that p1, . . . , pn ∈ (1, +∞) with p < n, where p
is the harmonic mean, that is

1
p

n
i=1

1
pi

; (1.11)

condition p < n allows us to consider the Sobolev exponent p∗
=

np
n−p . As far as the boundary datum u∗ is concerned, we

assume that

u∗ ∈ W 1,1(Ω) with Diu∗ ∈ Lqi(Ω), qi ∈ (pi, +∞) (1.12)

for every i = 1, . . . , n. Let us introduce the Sobolev space

W 1,(pi)
0 (Ω) =


v ∈ W 1,1

0 (Ω) : Div ∈ Lpi(Ω) ∀i = 1, . . . , n


. (1.13)

In this paper we will prove the following
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Theorem 1.1. Let u ∈ u∗ + W 1,(pi)
0 (Ω) verify

Ω

n
i=1

ai(x,Du(x))Diϕ(x)dx = 0 ∀ϕ ∈ W 1,(pi)
0 (Ω) (1.14)

under growth condition (1.6) and coercivity (1.10). Then

u ∈ u∗ + Ltweak(Ω) (1.15)

where

t =
p p∗

p − bp∗
(1.16)

with

0 < b ≤ min
i=1,...,n


1
pi

−
1
qi


and b <

p
p∗

. (1.17)

Remark 1.2. When pi ≥ 2 for every i = 1, . . . , n we consider

f (z) =

n
i=1


2|zi|2 + |zi| sin(|zi|)

 pi
2 . (1.18)

Then f ∈ C2(Rn). Set ai(z) =
∂ f
∂zi

(z) and p̃ = maxi=1,...,n pi. Since f is not convex, then (1.7) cannot hold true. On the other
hand, (1.6) is satisfied with c = 3p̃p̃, (1.10) holds true provided ν = 2. Thus we can apply our Theorem 1.1 to this example.
Please, note also that (1.5) is satisfied with c = n6p̃ and (1.8) holds true provided ν∗ = 1.

The previous Theorem 1.1 deals with global integrability; in the anisotropic setting, local integrability has been studied
in [5] and [3] under the additional assumption pi < p∗ for every i. Such an inequality forces exponents p1, . . . , pn to be close
enough; when they are spread out, it is possible to get counterexamples in which bad boundary data forces solutions to
be bad as well, see [6,11,12,7] and sections 5,6 in [13]. We end this introduction by remarking that this paper is concerned
with higher integrability of u; as far as higher integrability of Du is concerned, a delicate interplay between the regularity of
x → f (x, z) and the growth of z → f (x, z) appears: see [1].

2. Proof of Theorem 1.1

Let us consider L ∈ (0, +∞) and

ϕ =

u − u∗ + L if u − u∗ < −L,
0 if − L ≤ u − u∗ ≤ L,
u − u∗ − L if u − u∗ > L;

(2.1)

so that

ϕ ∈ W 1,(pi)
0 (Ω) (2.2)

and

Dϕ = (Du − Du∗)1{|u−u∗|>L}, (2.3)

where 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ∉ A. Now
n

i=1


{|u−u∗|>L}

|Diu − Diu∗|
pi ≤

n
i=1

c1


{|u−u∗|>L}

|Diu|pi +


{|u−u∗|>L}
|Diu∗|

pi


= (I) + (II);

coercivity (1.10) allows us to handle (I) so that

(I) + (II) ≤
c1
ν


{|u−u∗|>L}

n
i=1

ai(Du)Diu + c1
n

i=1


{|u−u∗|>L}

|Diu∗|
pi

=
c1
ν


{|u−u∗|>L}

n
i=1

ai(Du)(Diu − Diu∗) +
c1
ν


{|u−u∗|>L}

n
i=1

ai(Du)Diu∗ + c1
n

i=1


{|u−u∗|>L}

|Diu∗|
pi

= (IV ) + (V ) + (VI).
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We keep in mind that u verifies Eq. (1.14); when ϕ is taken as in (2.1), Dϕ is given by (2.3), then we have (IV ) = 0. Growth
condition (1.6) allows us to control (V ), thus we have

(IV ) + (V ) + (VI) ≤
c2
ν

n
i=1


{|u−u∗|>L}

(1 + |Diu|)pi−1
|Diu∗| + c1

n
i=1


{|u−u∗|>L}

|Diu∗|
pi = (VII) + (VIII).

In (VII) we use Hölder inequality with exponents pi
pi−1 , pi and we get

(VII) + (VIII) ≤ c3
n

i=1


Ω

(1 + |Diu|)pi
 pi−1

pi


{|u−u∗|>L}
|Diu∗|

pi

 1
pi

+ c1
n

i=1


{|u−u∗|>L}

|Diu∗|
pi = (IX) + (X).

Let us set

c4 = max
i=1,...,n


Ω

(1 + |Diu|)pi
 pi−1

pi
;

then

(IX) ≤ c5
n

i=1


{|u−u∗|>L}

|Diu∗|
pi

 1
pi

.

Moreover, there exists L0 = L0(u, u∗) > 0 such that, for every L ≥ L0 the measure of {|u − u∗| > L} is small enough to
ensure that

{|u−u∗|>L}
|Diu∗|

pi ≤ 1;

thus 
{|u−u∗|>L}

|Diu∗|
pi ≤


{|u−u∗|>L}

|Diu∗|
pi

 1
pi

and

(X) ≤ c1
n

i=1


{|u−u∗|>L}

|Diu∗|
pi

 1
pi

.

We collect all the previous inequalities and we get

n
i=1


{|u−u∗|>L}

|Diu − Diu∗|
pi ≤ c6

n
i=1


{|u−u∗|>L}

|Diu∗|
pi

 1
pi

.

Let us consider ti, to be chosen later, such that pi < ti ≤ qi for i = 1, . . . , n. We use Hölder inequality and we get
{|u−u∗|>L}

|Diu∗|
pi

 1
pi

≤


{|u−u∗|>L}

|Diu∗|
ti

 1
ti
|{|u − u∗| > L}|

ti−pi
tipi .

We would like that the exponent ti−pi
tipi

would be independent of i. To this aim, according to assumption (1.17), we take b

such that 0 < b ≤ mini=1,...,n


1
pi

−
1
qi


and we define

ti =
pi

1 − bpi
;

then pi < ti ≤ qi and
ti − pi
tipi

= b.

Let us set

c7 = max
i=1,...,n


Ω

|Diu∗|
ti

 1
ti
;

then
n

i=1


{|u−u∗|>L}

|Diu − Diu∗|
pi ≤ c8|{|u − u∗| > L}|b.
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Now we lower the left hand side by considering only the ith piece of the sum; then we take the 1
pi

power; eventually we
take the product over all i and we get

n
i=1


{|u−u∗|>L}

|Diu − Diu∗|
pi

 1
pi

≤

n
i=1


c8|{|u − u∗| > L}|b

 1
pi

=


c8|{|u − u∗| > L}|b

 n
i=1

1
pi

= c
n
p
8 |{|u − u∗| > L}|

nb
p̄ .

Let us come back to the test function (2.1): according to (2.2),ϕ is zero on the boundary ofΩ , thenwe can use the anisotropic
Sobolev embedding (see [16] and Theorem 3.1 in [9]), in order to get

Ω

|ϕ|
p∗

 1
p∗

≤ c9

 n
i=1


Ω

|Diϕ|
pi

 1
pi
 1

n

= c9

 n
i=1


{|u−u∗|>L}

|Diu − Diu∗|
pi

 1
pi
 1

n

≤ c9c
1
p
8 |{|u − u∗| > L}|

b
p̄ .

Since
|ϕ| = (|u − u∗| − L)1{|u−u∗|>L},

for L̃ > Lwe get

(L̃ − L)p̄
∗

|{|u − u∗| > L̃}| =


{|u−u∗|>L̃}

(L̃ − L)p̄
∗

≤


{|u−u∗|>L̃}

(|u − u∗| − L)p̄
∗

≤


{|u−u∗|>L}

(|u − u∗| − L)p̄
∗

=


Ω

|ϕ|
p̄∗

.

The previous inequalities merge into

|{|u − u∗| > L̃}| ≤
c10

(L̃ − L)p̄∗
|{|u − u∗| > L}|

bp̄∗
p̄ ,

for every L̃, L such that L̃ > L ≥ L0 > 0. Now we use Lemma 4.1 at page 93 of [14]; for the convenience of the reader,
such a Lemma has been explicitly written in [9] as Lemma 3.2; application of such a Lemma requires that b <

p
p∗ : such an

inequality has been assumed in (1.17). We use the aforementioned lemma and we get, for s ≥ L0,

|{|u − u∗| > s}| ≤ c11


1
s

 p p∗

p−bp∗

;

such an inequality guarantees that u − u∗ ∈ Ltweak(Ω) with t =
p p∗

p−bp∗ . This ends the proof of Theorem 1.1. �
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