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Chapter 0

Introduction

Functional analysis is an important tool in the investigation of all kind of
problems in pure mathematics, physics, biology, economics, etc.. In fact, it
is hard to find a branch in science where functional analysis is not used.

The main objects are (infinite dimensional) linear spaces with different
concepts of convergence. The classical theory focuses on linear operators
(i.e., functions) between these spaces but nonlinear operators are of course
equally important. However, since one of the most important tools in investi-
gating nonlinear mappings is linearization (differentiation), linear functional
analysis will be our first topic in any case.

0.1. Linear partial differential equations

Rather than overwhelming you with a vast number of classical examples
I want to focus on one: linear partial differential equations. We will use
this example as a guide throughout this first chapter and will develop all
necessary tools for a successful treatment of our particular problem.

In his investigation of heat conduction Fourier was lead to the (one
dimensional) heat or diffusion equation

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x). (0.1)

Here u(t, x) is the temperature distribution at time t at the point x. It
is usually assumed, that the temperature at x = 0 and x = 1 is fixed, say
u(t, 0) = a and u(t, 1) = b. By considering u(t, x)→ u(t, x)−a−(b−a)x it is
clearly no restriction to assume a = b = 0. Moreover, the initial temperature
distribution u(0, x) = u0(x) is assumed to be known as well.

1



2 0. Introduction

Since finding the solution seems at first sight not possible, we could try
to find at least some solutions of (0.1) first. We could for example make an
ansatz for u(t, x) as a product of two functions, each of which depends on
only one variable, that is,

u(t, x) = w(t)y(x). (0.2)

This ansatz is called separation of variables. Plugging everything into
the heat equation and bringing all t, x dependent terms to the left, right
side, respectively, we obtain

ẇ(t)

w(t)
=
y′′(x)

y(x)
. (0.3)

Here the dot refers to differentiation with respect to t and the prime to
differentiation with respect to x.

Now if this equation should hold for all t and x, the quotients must be
equal to a constant −λ (we choose −λ instead of λ for convenience later on).
That is, we are lead to the equations

− ẇ(t) = λw(t) (0.4)

and

− y′′(x) = λy(x), y(0) = y(1) = 0 (0.5)

which can easily be solved. The first one gives

w(t) = c1e−λt (0.6)

and the second one

y(x) = c2 cos(
√
λx) + c3 sin(

√
λx). (0.7)

However, y(x) must also satisfy the boundary conditions y(0) = y(1) = 0.
The first one y(0) = 0 is satisfied if c2 = 0 and the second one yields (c3 can
be absorbed by w(t))

sin(
√
λ) = 0, (0.8)

which holds if λ = (πn)2, n ∈ N. In summary, we obtain the solutions

un(t, x) = cne−(πn)2t sin(nπx), n ∈ N. (0.9)

So we have found a large number of solutions, but we still have not
dealt with our initial condition u(0, x) = u0(x). This can be done using
the superposition principle which holds since our equation is linear. Hence
any finite linear combination of the above solutions will be again a solution.
Moreover, under suitable conditions on the coefficients we can even consider
infinite linear combinations. In fact, choosing

u(t, x) =
∞∑
n=1

cne−(πn)2t sin(nπx), (0.10)
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where the coefficients cn decay sufficiently fast, we obtain further solutions
of our equation. Moreover, these solutions satisfy

u(0, x) =

∞∑
n=1

cn sin(nπx) (0.11)

and expanding the initial conditions into a Fourier series

u0(x) =
∞∑
n=1

u0,n sin(nπx), (0.12)

we see that the solution of our original problem is given by (0.10) if we
choose cn = u0,n.

Of course for this last statement to hold we need to ensure that the series
in (0.10) converges and that we can interchange summation and differenti-
ation. You are asked to do so in Problem 0.1.

In fact many equations in physics can be solved in a similar way:

• Reaction-Diffusion equation:

∂

∂t
u(t, x)− ∂2

∂x2
u(t, x) + q(x)u(t, x) = 0,

u(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0. (0.13)

Here u(t, x) could be the density of some gas in a pipe and q(x) > 0 describes
that a certain amount per time is removed (e.g., by a chemical reaction).

• Wave equation:

∂2

∂t2
u(t, x)− ∂2

∂x2
u(t, x) = 0,

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x)

u(t, 0) = u(t, 1) = 0. (0.14)

Here u(t, x) is the displacement of a vibrating string which is fixed at x = 0
and x = 1. Since the equation is of second order in time, both the initial
displacement u0(x) and the initial velocity v0(x) of the string need to be
known.

• Schrödinger equation:

i
∂

∂t
u(t, x) = − ∂2

∂x2
u(t, x) + q(x)u(t, x),

u(0, x) = u0(x),

u(t, 0) = u(t, 1) = 0. (0.15)
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Here |u(t, x)|2 is the probability distribution of a particle trapped in a box
x ∈ [0, 1] and q(x) is a given external potential which describes the forces
acting on the particle.

All these problems (and many others) lead to the investigation of the
following problem

Ly(x) = λy(x), L = − d2

dx2
+ q(x), (0.16)

subject to the boundary conditions

y(a) = y(b) = 0. (0.17)

Such a problem is called a Sturm–Liouville boundary value problem.
Our example shows that we should prove the following facts about our
Sturm–Liouville problems:

(i) The Sturm–Liouville problem has a countable number of eigen-
values En with corresponding eigenfunctions un(x), that is, un(x)
satisfies the boundary conditions and Lun(x) = Enun(x).

(ii) The eigenfunctions un are complete, that is, any nice function u(x)
can be expanded into a generalized Fourier series

u(x) =

∞∑
n=1

cnun(x).

This problem is very similar to the eigenvalue problem of a matrix and
we are looking for a generalization of the well-known fact that every sym-
metric matrix has an orthonormal basis of eigenvectors. However, our linear
operator L is now acting on some space of functions which is not finite
dimensional and it is not at all clear what even orthogonal should mean
for functions. Moreover, since we need to handle infinite series, we need
convergence and hence define the distance of two functions as well.

Hence our program looks as follows:

• What is the distance of two functions? This automatically leads
us to the problem of convergence and completeness.

• If we additionally require the concept of orthogonality, we are lead
to Hilbert spaces which are the proper setting for our eigenvalue
problem.

• Finally, the spectral theorem for compact symmetric operators will
be the solution of our above problem

Problem 0.1. Find conditions for the initial distribution u0(x) such that
(0.10) is indeed a solution (i.e., such that interchanging the order of sum-
mation and differentiation is admissible). (Hint: What is the connection
between smoothness of a function and decay of its Fourier coefficients?)



Chapter 1

A first look at Banach
and Hilbert spaces

1.1. Warm up: Metric and topological spaces

Before we begin, I want to recall some basic facts from metric and topological
spaces. I presume that you are familiar with these topics from your calculus
course. As a general reference I can warmly recommend Kelly’s classical
book [4].

A metric space is a space X together with a distance function d :
X ×X → R such that

(i) d(x, y) ≥ 0,

(ii) d(x, y) = 0 if and only if x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If (ii) does not hold, d is called a pseudo-metric. Moreover, it is
straightforward to see the inverse triangle inequality (Problem 1.1)

|d(x, y)− d(z, y)| ≤ d(x, z). (1.1)

Example. Euclidean space Rn together with d(x, y) = (
∑n

k=1(xk−yk)2)1/2

is a metric space and so is Cn together with d(x, y) = (
∑n

k=1 |xk−yk|2)1/2. �

The set

Br(x) = {y ∈ X|d(x, y) < r} (1.2)

is called an open ball around x with radius r > 0. A point x of some set
U is called an interior point of U if U contains some ball around x. If x

5



6 1. A first look at Banach and Hilbert spaces

is an interior point of U , then U is also called a neighborhood of x. A
point x is called a limit point of U (also accumulation or cluster point)
if (Br(x)\{x}) ∩ U 6= ∅ for every ball around x. Note that a limit point
x need not lie in U , but U must contain points arbitrarily close to x. A
point x is called an isolated point of U if there exists a neighborhood of x
not containing any other points of U . A set which consists only of isolated
points is called a discrete set.

Example. Consider R with the usual metric and let U = (−1, 1). Then
every point x ∈ U is an interior point of U . The points ±1 are limit points
of U . �

A set consisting only of interior points is called open. The family of
open sets O satisfies the properties

(i) ∅, X ∈ O,

(ii) O1, O2 ∈ O implies O1 ∩O2 ∈ O,

(iii) {Oα} ⊆ O implies
⋃
αOα ∈ O.

That is, O is closed under finite intersections and arbitrary unions.

In general, a space X together with a family of sets O, the open sets,
satisfying (i)–(iii) is called a topological space. The notions of interior
point, limit point, and neighborhood carry over to topological spaces if we
replace open ball by open set.

There are usually different choices for the topology. Two not too inter-
esting examples are the trivial topology O = {∅, X} and the discrete
topology O = P(X) (the powerset of X). Given two topologies O1 and O2

on X, O1 is called weaker (or coarser) than O2 if and only if O1 ⊆ O2.

Example. Note that different metrics can give rise to the same topology.
For example, we can equip Rn (or Cn) with the Euclidean distance d(x, y)
as before or we could also use

d̃(x, y) =
n∑
k=1

|xk − yk|. (1.3)

Then

1√
n

n∑
k=1

|xk| ≤

√√√√ n∑
k=1

|xk|2 ≤
n∑
k=1

|xk| (1.4)

shows Br/
√
n(x) ⊆ B̃r(x) ⊆ Br(x), where B, B̃ are balls computed using d,

d̃, respectively. �
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Example. We can always replace a metric d by the bounded metric

d̃(x, y) =
d(x, y)

1 + d(x, y)
(1.5)

without changing the topology (since the open balls do not change). �

Every subspace Y of a topological space X becomes a topological space
of its own if we call O ⊆ Y open if there is some open set Õ ⊆ X such that
O = Õ ∩ Y (relative or induced topology).

Example. The set (0, 1] ⊆ R is not open in the topology of X = R, but it is
open in the relative topology when considered as a subset of Y = [−1, 1]. �

A family of open sets B ⊆ O is called a base for the topology if for each
x and each neighborhood U(x), there is some set O ∈ B with x ∈ O ⊆ U(x).
Since an open set O is a neighborhood of every one of its points, it can be
written as O =

⋃
O⊇Õ∈B Õ and we have

Lemma 1.1. If B ⊆ O is a base for the topology, then every open set can
be written as a union of elements from B.

If there exists a countable base, then X is called second countable.

Example. By construction the open balls B1/n(x) are a base for the topol-
ogy in a metric space. In the case of Rn (or Cn) it even suffices to take balls
with rational center and hence Rn (and Cn) is second countable. �

A topological space is called a Hausdorff space if for two different
points there are always two disjoint neighborhoods.

Example. Any metric space is a Hausdorff space: Given two different
points x and y, the balls Bd/2(x) and Bd/2(y), where d = d(x, y) > 0, are
disjoint neighborhoods (a pseudo-metric space will not be Hausdorff). �

The complement of an open set is called a closed set. It follows from
de Morgan’s rules that the family of closed sets C satisfies

(i) ∅, X ∈ C,
(ii) C1, C2 ∈ C implies C1 ∪ C2 ∈ C,
(iii) {Cα} ⊆ C implies

⋂
αCα ∈ C.

That is, closed sets are closed under finite unions and arbitrary intersections.

The smallest closed set containing a given set U is called the closure

U =
⋂

C∈C,U⊆C
C, (1.6)
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and the largest open set contained in a given set U is called the interior

U◦ =
⋃

O∈O,O⊆U
O. (1.7)

It is not hard to see that the closure satisfies the following axioms (Kura-
towski closure axioms):

(i) ∅ = ∅,
(ii) U ⊂ U ,

(iii) U = U ,

(iv) U ∪ V = U ∪ V .

In fact, one can show that they can equivalently be used to define the topol-
ogy by observing that the closed sets are precisely those which satisfy A = A.

We can define interior and limit points as before by replacing the word
ball by open set. Then it is straightforward to check

Lemma 1.2. Let X be a topological space. Then the interior of U is the
set of all interior points of U and the closure of U is the union of U with
all limit points of U .

A sequence (xn)∞n=1 ⊆ X is said to converge to some point x ∈ X if
d(x, xn) → 0. We write limn→∞ xn = x as usual in this case. Clearly the
limit is unique if it exists (this is not true for a pseudo-metric).

Every convergent sequence is a Cauchy sequence; that is, for every
ε > 0 there is some N ∈ N such that

d(xn, xm) ≤ ε, n,m ≥ N. (1.8)

If the converse is also true, that is, if every Cauchy sequence has a limit,
then X is called complete.

Example. Both Rn and Cn are complete metric spaces. �

Note that in a metric space x is a limit point of U if and only if there
exists a sequence (xn)∞n=1 ⊆ U\{x} with limn→∞ xn = x. Hence U is closed
if and only if for every convergent sequence the limit is in U . In particular,

Lemma 1.3. A closed subset of a complete metric space is again a complete
metric space.

Note that convergence can also be equivalently formulated in terms of
topological terms: A sequence xn converges to x if and only if for every
neighborhood U of x there is some N ∈ N such that xn ∈ U for n ≥ N . In
a Hausdorff space the limit is unique.

A set U is called dense if its closure is all of X, that is, if U = X. A
metric space is called separable if it contains a countable dense set. Note
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that X is separable if and only if it is second countable as a topological
space.

Lemma 1.4. Let X be a separable metric space. Every subset of X is again
separable.

Proof. Let A = {xn}n∈N be a dense set in X. The only problem is that
A∩ Y might contain no elements at all. However, some elements of A must
be at least arbitrarily close: Let J ⊆ N2 be the set of all pairs (n,m) for
which B1/m(xn) ∩ Y 6= ∅ and choose some yn,m ∈ B1/m(xn) ∩ Y for all
(n,m) ∈ J . Then B = {yn,m}(n,m)∈J ⊆ Y is countable. To see that B is
dense, choose y ∈ Y . Then there is some sequence xnk

with d(xnk
, y) < 1/k.

Hence (nk, k) ∈ J and d(ynk,k, y) ≤ d(ynk,k, xnk
) + d(xnk

, y) ≤ 2/k → 0. �

Next we come to functions f : X → Y , x 7→ f(x). We use the usual
conventions f(U) = {f(x)|x ∈ U} for U ⊆ X and f−1(V ) = {x|f(x) ∈ V }
for V ⊆ Y . The set Ran(f) = f(X) is called the range of f and X is called
the domain of f . A function f is called injective if for each y ∈ Y there
is at most one x ∈ X with f(x) = y (i.e., f−1({y}) contains at most one
point) and surjective or onto if Ran(f) = Y . A function f which is both
injective and surjective is called bijective.

A function f between metric spaces X and Y is called continuous at a
point x ∈ X if for every ε > 0 we can find a δ > 0 such that

dY (f(x), f(y)) ≤ ε if dX(x, y) < δ. (1.9)

If f is continuous at every point, it is called continuous.

Lemma 1.5. Let X be a metric space. The following are equivalent:

(i) f is continuous at x (i.e, (1.9) holds).

(ii) f(xn)→ f(x) whenever xn → x.

(iii) For every neighborhood V of f(x), f−1(V ) is a neighborhood of x.

Proof. (i) ⇒ (ii) is obvious. (ii) ⇒ (iii): If (iii) does not hold, there is
a neighborhood V of f(x) such that Bδ(x) 6⊆ f−1(V ) for every δ. Hence
we can choose a sequence xn ∈ B1/n(x) such that f(xn) 6∈ f−1(V ). Thus
xn → x but f(xn) 6→ f(x). (iii) ⇒ (i): Choose V = Bε(f(x)) and observe
that by (iii), Bδ(x) ⊆ f−1(V ) for some δ. �

The last item implies that f is continuous if and only if the inverse
image of every open set is again open (equivalently, the inverse image of
every closed set is closed). If the image of every open set is open, then f
is called open. A bijection f is called a homeomorphism if both f and
its inverse f−1 are continuous. Note that if f is a bijection, then f−1 is
continuous if and only if f is open.
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In a topological space, (iii) is used as the definition for continuity. How-
ever, in general (ii) and (iii) will no longer be equivalent unless one uses
generalized sequences, so-called nets, where the index set N is replaced by
arbitrary directed sets.

The support of a function f : X → Cn is the closure of all points x for
which f(x) does not vanish; that is,

supp(f) = {x ∈ X|f(x) 6= 0}. (1.10)

If X and Y are metric spaces, then X × Y together with

d((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) (1.11)

is a metric space. A sequence (xn, yn) converges to (x, y) if and only if
xn → x and yn → y. In particular, the projections onto the first (x, y) 7→ x,
respectively, onto the second (x, y) 7→ y, coordinate are continuous. More-
over, if X and Y are complete, so is X × Y .

In particular, by the inverse triangle inequality (1.1),

|d(xn, yn)− d(x, y)| ≤ d(xn, x) + d(yn, y), (1.12)

we see that d : X ×X → R is continuous.

Example. If we consider R × R, we do not get the Euclidean distance of
R2 unless we modify (1.11) as follows:

d̃((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2. (1.13)

As noted in our previous example, the topology (and thus also conver-
gence/continuity) is independent of this choice. �

If X and Y are just topological spaces, the product topology is defined
by calling O ⊆ X × Y open if for every point (x, y) ∈ O there are open
neighborhoods U of x and V of y such that U × V ⊆ O. In the case of
metric spaces this clearly agrees with the topology defined via the product
metric (1.11).

A cover of a set Y ⊆ X is a family of sets {Uα} such that Y ⊆
⋃
α Uα.

A cover is called open if all Uα are open. Any subset of {Uα} which still
covers Y is called a subcover.

Lemma 1.6 (Lindelöf). If X is second countable, then every open cover
has a countable subcover.

Proof. Let {Uα} be an open cover for Y and let B be a countable base.
Since every Uα can be written as a union of elements from B, the set of all
B ∈ B which satisfy B ⊆ Uα for some α form a countable open cover for Y .
Moreover, for every Bn in this set we can find an αn such that Bn ⊆ Uαn .
By construction {Uαn} is a countable subcover. �
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A subset K ⊂ X is called compact if every open cover has a finite
subcover.

Lemma 1.7. A topological space is compact if and only if it has the finite
intersection property: The intersection of a family of closed sets is empty
if and only if the intersection of some finite subfamily is empty.

Proof. By taking complements, to every family of open sets there is a cor-
responding family of closed sets and vice versa. Moreover, the open sets
are a cover if and only if the corresponding closed sets have empty intersec-
tion. �

Lemma 1.8. Let X be a topological space.

(i) The continuous image of a compact set is compact.

(ii) Every closed subset of a compact set is compact.

(iii) If X is Hausdorff, every compact set is closed.

(iv) The product of finitely many compact sets is compact.

Proof. (i) Observe that if {Oα} is an open cover for f(Y ), then {f−1(Oα)}
is one for Y .

(ii) Let {Oα} be an open cover for the closed subset Y (in the induced

topology). Then there are open sets Õα withOα = Õα∩Y and {Õα}∪{X\Y }
is an open cover for X which has a finite subcover. This subcover induces a
finite subcover for Y .

(iii) Let Y ⊆ X be compact. We show that X\Y is open. Fix x ∈ X\Y
(if Y = X, there is nothing to do). By the definition of Hausdorff, for
every y ∈ Y there are disjoint neighborhoods V (y) of y and Uy(x) of x. By
compactness of Y , there are y1, . . . , yn such that the V (yj) cover Y . But
then U(x) =

⋂n
j=1 Uyj (x) is a neighborhood of x which does not intersect

Y .

(iv) Let {Oα} be an open cover for X × Y . For every (x, y) ∈ X × Y
there is some α(x, y) such that (x, y) ∈ Oα(x,y). By definition of the product
topology there is some open rectangle U(x, y)×V (x, y) ⊆ Oα(x,y). Hence for
fixed x, {V (x, y)}y∈Y is an open cover of Y . Hence there are finitely many
points yk(x) such that the V (x, yk(x)) cover Y . Set U(x) =

⋂
k U(x, yk(x)).

Since finite intersections of open sets are open, {U(x)}x∈X is an open cover
and there are finitely many points xj such that the U(xj) cover X. By
construction, the U(xj)× V (xj , yk(xj)) ⊆ Oα(xj ,yk(xj)) cover X × Y . �

As a consequence we obtain a simple criterion when a continuous func-
tion is a homeomorphism.
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Corollary 1.9. Let X and Y be topological spaces with X compact and Y
Hausdorff. Then every continuous bijection f : X → Y is a homeomor-
phism.

Proof. It suffices to show that f maps closed sets to closed sets. By (ii)
every closed set is compact, by (i) its image is also compact, and by (iii)
also closed. �

A subset K ⊂ X is called sequentially compact if every sequence
has a convergent subsequence. In a metric space compact and sequentially
compact are equivalent.

Lemma 1.10. Let X be a metric space. Then a subset is compact if and
only if it is sequentially compact.

Proof. Suppose X is compact and let xn be a sequence which has no conver-
gent subsequence. Then K = {xn} has no limit points and is hence compact
by Lemma 1.8 (ii). For every n there is a ball Bεn(xn) which contains only
finitely many elements of K. However, finitely many suffice to cover K, a
contradiction.

Conversely, suppose X is sequentially compact. First of all note that
every cover of open balls with fixed radius ε > 0 has a finite subcover since
if this were false we could construct a sequence xn ∈ X\

⋃n−1
m=1Bε(xm) such

that d(xn, xm) > ε for m < n.

In particular, we are done if we can show that for every open cover
{Oα} there is some ε > 0 such that for every x we have Bε(x) ⊆ Oα for
some α = α(x). Indeed, choosing {xk}nk=1 such that Bε(xk) is a cover, we
have that Oα(xk) is a cover as well.

So it remains to show that there is such an ε. If there were none, for
every ε > 0 there must be an x such that Bε(x) 6⊆ Oα for every α. Choose
ε = 1

n and pick a corresponding xn. Since X is sequentially compact, it is no
restriction to assume xn converges (after maybe passing to a subsequence).
Let x = limxn. Then x lies in some Oα and hence Bε(x) ⊆ Oα. But choosing
n so large that 1

n <
ε
2 and d(xn, x) < ε

2 , we have B1/n(xn) ⊆ Bε(x) ⊆ Oα,
contradicting our assumption. �

In a metric space, a set is called bounded if it is contained inside some
ball. Note that compact sets are always bounded (show this!). In Rn (or
Cn) the converse also holds.

Theorem 1.11 (Heine–Borel). In Rn (or Cn) a set is compact if and only
if it is bounded and closed.
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Proof. By Lemma 1.8 (ii) and (iii) it suffices to show that a closed interval
in I ⊆ R is compact. Moreover, by Lemma 1.10 it suffices to show that
every sequence in I = [a, b] has a convergent subsequence. Let xn be our
sequence and divide I = [a, a+b

2 ] ∪ [a+b
2 , b]. Then at least one of these two

intervals, call it I1, contains infinitely many elements of our sequence. Let
y1 = xn1 be the first one. Subdivide I1 and pick y2 = xn2 , with n2 > n1 as
before. Proceeding like this, we obtain a Cauchy sequence yn (note that by
construction In+1 ⊆ In and hence |yn − ym| ≤ b−a

n for m ≥ n). �

By Lemma 1.10 this is equivalent to

Theorem 1.12 (Bolzano–Weierstraß). Every bounded infinite subset of Rn
(or Cn) has at least one limit point.

Combining Theorem 1.11 with Lemma 1.8 (i) we also obtain the ex-
treme value theorem.

Theorem 1.13 (Weierstraß). Let K be compact. Every continuous function
f : K → R attains its maximum and minimum.

A topological space is called locally compact if every point has a com-
pact neighborhood.

Example. Rn is locally compact. �

The distance between a point x ∈ X and a subset Y ⊆ X is

dist(x, Y ) = inf
y∈Y

d(x, y). (1.14)

Note that x is a limit point of Y if and only if dist(x, Y ) = 0.

Lemma 1.14. Let X be a metric space. Then

| dist(x, Y )− dist(z, Y )| ≤ d(x, z). (1.15)

In particular, x 7→ dist(x, Y ) is continuous.

Proof. Taking the infimum in the triangle inequality d(x, y) ≤ d(x, z) +
d(z, y) shows dist(x, Y ) ≤ d(x, z)+dist(z, Y ). Hence dist(x, Y )−dist(z, Y ) ≤
d(x, z). Interchanging x and z shows dist(z, Y )− dist(x, Y ) ≤ d(x, z). �

Lemma 1.15 (Urysohn). Suppose C1 and C2 are disjoint closed subsets of
a metric space X. Then there is a continuous function f : X → [0, 1] such
that f is zero on C1 and one on C2.

If X is locally compact and C1 is compact, one can choose f with compact
support.
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Proof. To prove the first claim, set f(x) = dist(x,C2)
dist(x,C1)+dist(x,C2) . For the

second claim, observe that there is an open set O such that O is compact
and C1 ⊂ O ⊂ O ⊂ X\C2. In fact, for every x, there is a ball Bε(x) such

that Bε(x) is compact and Bε(x) ⊂ X\C2. Since C1 is compact, finitely
many of them cover C1 and we can choose the union of those balls to be O.
Now replace C2 by X\O. �

Note that Urysohn’s lemma implies that a metric space is normal; that
is, for any two disjoint closed sets C1 and C2, there are disjoint open sets
O1 and O2 such that Cj ⊆ Oj , j = 1, 2. In fact, choose f as in Urysohn’s
lemma and set O1 = f−1([0, 1/2)), respectively, O2 = f−1((1/2, 1]).

Lemma 1.16. Let X be a locally compact metric space. Suppose K is
a compact set and {Oj}nj=1 an open cover. Then there is a partition of
unity for K subordinate to this cover; that is, there are continuous functions
hj : X → [0, 1] such that hj has compact support contained in Oj and

n∑
j=1

hj(x) ≤ 1 (1.16)

with equality for x ∈ K.

Proof. For every x ∈ K there is some ε and some j such that Bε(x) ⊆ Oj .
By compactness of K, finitely many of these balls cover K. Let Kj be the
union of those balls which lie inside Oj . By Urysohn’s lemma there are
functions gj : X → [0, 1] such that gj = 1 on Kj and gj = 0 on X\Oj . Now
set

hj = gj

j−1∏
k=1

(1− gk).

Then hj : X → [0, 1] has compact support contained in Oj and
n∑
j=1

hj(x) = 1−
n∏
j=1

(1− gj(x))

shows that the sum is one for x ∈ K, since x ∈ Kj for some j implies
gj(x) = 1 and causes the product to vanish. �

Problem 1.1. Show that |d(x, y)− d(z, y)| ≤ d(x, z).

Problem 1.2. Show the quadrangle inequality |d(x, y) − d(x′, y′)| ≤
d(x, x′) + d(y, y′).

Problem 1.3. Let X be some space together with a sequence of distance
functions dn, n ∈ N. Show that

d(x, y) =
∞∑
n=1

1

2n
dn(x, y)

1 + dn(x, y)
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is again a distance function. (Hint: Note that f(x) = x/(1 + x) is mono-
tone.)

Problem 1.4. Show that the closure satisfies the Kuratowski closure axioms.

Problem 1.5. Show that the closure and interior operators are dual in the
sense that

X\A = (X\A)◦ and X\A◦ = (X\A).

(Hint: De Morgan’s laws.)

Problem 1.6. Let U ⊆ V be subsets of a metric space X. Show that if U
is dense in V and V is dense in X, then U is dense in X.

Problem 1.7. Show that every open set O ⊆ R can be written as a count-
able union of disjoint intervals. (Hint: Let {Iα} be the set of all maximal
subintervals of O; that is, Iα ⊆ O and there is no other subinterval of O
which contains Iα. Then this is a cover of disjoint intervals which has a
countable subcover.)

1.2. The Banach space of continuous functions

Now let us have a first look at Banach spaces by investigating the set of
continuous functions C(I) on a compact interval I = [a, b] ⊂ R. Since we
want to handle complex models, we will always consider complex-valued
functions!

One way of declaring a distance, well-known from calculus, is the max-
imum norm:

‖f(x)− g(x)‖∞ = max
x∈I
|f(x)− g(x)|. (1.17)

It is not hard to see that with this definition C(I) becomes a normed linear
space:

A normed linear space X is a vector space X over C (or R) with a
nonnegative function (the norm) ‖.‖ such that

• ‖f‖ > 0 for f 6= 0 (positive definiteness),

• ‖α f‖ = |α| ‖f‖ for all α ∈ C, f ∈ X (positive homogeneity),
and

• ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ X (triangle inequality).

If positive definiteness is dropped from the requirements one calles ‖.‖
a seminorm.

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem 1.8)

|‖f‖ − ‖g‖| ≤ ‖f − g‖. (1.18)
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Once we have a norm, we have a distance d(f, g) = ‖f−g‖ and hence we
know when a sequence of vectors fn converges to a vector f . We will write
fn → f or limn→∞ fn = f , as usual, in this case. Moreover, a mapping
F : X → Y between two normed spaces is called continuous if fn → f
implies F (fn) → F (f). In fact, it is not hard to see that the norm, vector
addition, and multiplication by scalars are continuous (Problem 1.9).

In addition to the concept of convergence we have also the concept of
a Cauchy sequence and hence the concept of completeness: A normed
space is called complete if every Cauchy sequence has a limit. A complete
normed space is called a Banach space.

Example. The space `1(N) of all complex-valued sequences a = (aj)
∞
j=1 for

which the norm

‖a‖1 =

∞∑
j=1

|aj | (1.19)

is finite is a Banach space.

To show this, we need to verify three things: (i) `1(N) is a vector space
that is closed under addition and scalar multiplication, (ii) ‖.‖1 satisfies the
three requirements for a norm, and (iii) `1(N) is complete.

First of all observe

k∑
j=1

|aj + bj | ≤
k∑
j=1

|aj |+
k∑
j=1

|bj | ≤ ‖a‖1 + ‖b‖1 (1.20)

for every finite k. Letting k → ∞, we conclude that `1(N) is closed under
addition and that the triangle inequality holds. That `1(N) is closed under
scalar multiplication and the two other properties of a norm are straight-
forward. It remains to show that `1(N) is complete. Let an = (anj )∞j=1 be
a Cauchy sequence; that is, for given ε > 0 we can find an Nε such that
‖am − an‖1 ≤ ε for m,n ≥ Nε. This implies in particular |amj − anj | ≤ ε for
every fixed j. Thus anj is a Cauchy sequence for fixed j and by completeness
of C has a limit: limn→∞ a

n
j = aj . Now consider

k∑
j=1

|amj − anj | ≤ ε (1.21)

and take m→∞:
k∑
j=1

|aj − anj | ≤ ε. (1.22)

Since this holds for all finite k, we even have ‖a−an‖1 ≤ ε. Hence (a−an) ∈
`1(N) and since an ∈ `1(N), we finally conclude a = an+(a−an) ∈ `1(N). �
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Example. The space `∞(N) of all complex-valued bounded sequences a =
(aj)

∞
j=1 together with the norm

‖a‖∞ = sup
j∈N
|aj | (1.23)

is a Banach space (Problem 1.13). �

Now what about convergence in the space C(I)? A sequence of functions
fn(x) converges to f if and only if

lim
n→∞

‖f − fn‖∞ = lim
n→∞

sup
x∈I
|fn(x)− f(x)| = 0. (1.24)

That is, in the language of real analysis, fn converges uniformly to f . Now
let us look at the case where fn is only a Cauchy sequence. Then fn(x)
is clearly a Cauchy sequence of real numbers for every fixed x ∈ I. In
particular, by completeness of C, there is a limit f(x) for each x. Thus we
get a limiting function f(x). Moreover, letting m→∞ in

|fm(x)− fn(x)| ≤ ε ∀m,n > Nε, x ∈ I, (1.25)

we see

|f(x)− fn(x)| ≤ ε ∀n > Nε, x ∈ I; (1.26)

that is, fn(x) converges uniformly to f(x). However, up to this point we
do not know whether it is in our vector space C(I) or not, that is, whether
it is continuous or not. Fortunately, there is a well-known result from real
analysis which tells us that the uniform limit of continuous functions is again
continuous: Fix x ∈ I and ε > 0. To show that f is continuous we need
to find a δ such that |x − y| < δ implies |f(x) − f(y)| < ε. Pick n so that
‖fn − f‖∞ < ε/3 and δ so that |x − y| < δ implies |fn(x) − fn(y)| < ε/3.
Then |x− y| < δ implies

|f(x)−f(y)| ≤ |f(x)−fn(x)|+|fn(x)−fn(y)|+|fn(y)−f(y)| < ε

3
+
ε

3
+
ε

3
= ε

as required. Hence f(x) ∈ C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words

Theorem 1.17. C(I) with the maximum norm is a Banach space.

Next we want to look at countable bases. To this end we introduce a few
definitions first.

The set of all finite linear combinations of a set of vectors {un} ⊂ X is
called the span of {un} and denoted by span{un}. A set of vectors {un} ⊂ X
is called linearly independent if every finite subset is. If {un}Nn=1 ⊂ X,
N ∈ N ∪ {∞}, is countable, we can throw away all elements which can be
expressed as linear combinations of the previous ones to obtain a subset of
linearly independent vectors which have the same span.
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We will call a countable set of linearly independent vectors {un}Nn=1 ⊂ X
a Schauder basis if every element f ∈ X can be uniquely written as a
countable linear combination of the basis elements:

f =

N∑
n=1

cnun, cn = cn(f) ∈ C, (1.27)

where the sum has to be understood as a limit if N = ∞ (the sum is not
required to converge unconditionally). Since we have assumed the set to be
linearly independent, the coefficients cn(f) are uniquely determined.

Example. The set of vectors δn, with δnn = 1 and δnm = 0, n 6= m, is a
Schauder Basis for the Banach space `1(N).

Let a = (aj)
∞
j=1 ∈ `1(N) be given and set an =

∑n
j=1 ajδ

j . Then

‖a− an‖1 =
∞∑

j=n+1

|aj | → 0

since anj = aj for 1 ≤ j ≤ n and anj = 0 for j > n. Hence

a =

∞∑
j=1

ajδ
j

and {δn}∞n=1 is a Schauder basis (linear independence is left as an exer-
cise). �

A set whose span is dense is called total and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coefficients — show this). A normed linear space containing a
countable dense set is called separable.

Example. Every Schauder basis is total and thus every Banach space with
a Schauder basis is separable (the converse is not true). In particular, the
Banach space `1(N) is separable. �

While we will not give a Schauder basis for C(I), we will at least show
that it is separable. In order to prove this we need a lemma first.

Lemma 1.18 (Smoothing). Let un(x) be a sequence of nonnegative contin-
uous functions on [−1, 1] such that∫

|x|≤1
un(x)dx = 1 and

∫
δ≤|x|≤1

un(x)dx→ 0, δ > 0. (1.28)

(In other words, un has mass one and concentrates near x = 0 as n→∞.)
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Then for every f ∈ C[−1
2 ,

1
2 ] which vanishes at the endpoints, f(−1

2) =

f(1
2) = 0, we have that

fn(x) =

∫ 1/2

−1/2
un(x− y)f(y)dy (1.29)

converges uniformly to f(x).

Proof. Since f is uniformly continuous, for given ε we can find a δ <
1/2 (independent of x) such that |f(x) − f(y)| ≤ ε whenever |x − y| ≤ δ.
Moreover, we can choose n such that

∫
δ≤|y|≤1 un(y)dy ≤ ε. Now abbreviate

M = maxx∈[−1/2,1/2]{1, |f(x)|} and note

|f(x)−
∫ 1/2

−1/2
un(x− y)f(x)dy| = |f(x)| |1−

∫ 1/2

−1/2
un(x− y)dy| ≤Mε.

In fact, either the distance of x to one of the boundary points ±1
2 is smaller

than δ and hence |f(x)| ≤ ε or otherwise [−δ, δ] ⊂ [x− 1/2, x+ 1/2] and the
difference between one and the integral is smaller than ε.

Using this, we have

|fn(x)− f(x)| ≤
∫ 1/2

−1/2
un(x− y)|f(y)− f(x)|dy +Mε

=

∫
|y|≤1/2,|x−y|≤δ

un(x− y)|f(y)− f(x)|dy

+

∫
|y|≤1/2,|x−y|≥δ

un(x− y)|f(y)− f(x)|dy +Mε

≤ε+ 2Mε+Mε = (1 + 3M)ε, (1.30)

which proves the claim. �

Note that fn will be as smooth as un, hence the title smoothing lemma.
Moreover, fn will be a polynomial if un is. The same idea is used to approx-
imate noncontinuous functions by smooth ones (of course the convergence
will no longer be uniform in this case).

Now we are ready to show:

Theorem 1.19 (Weierstraß). Let I be a compact interval. Then the set of
polynomials is dense in C(I).

Proof. Let f(x) ∈ C(I) be given. By considering f(x)−f(a)− f(b)−f(a)
b−a (x−

a) it is no loss to assume that f vanishes at the boundary points. Moreover,
without restriction we only consider I = [−1

2 ,
1
2 ] (why?).
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Now the claim follows from Lemma 1.18 using

un(x) =
1

In
(1− x2)n,

where

In =

∫ 1

−1
(1− x2)ndx =

n

n+ 1

∫ 1

−1
(1− x)n−1(1 + x)n+1dx

= · · · = n!

(n+ 1) · · · (2n+ 1)
22n+1 =

(n!)222n+1

(2n+ 1)!
=

n!
1
2(1

2 + 1) · · · (1
2 + n)

.

Indeed, the first part of (1.28) holds by construction and the second part
follows from the elementary estimate

2

2n+ 1
≤ In < 2.

�

Corollary 1.20. C(I) is separable.

However, `∞(N) is not separable (Problem 1.14)!

Problem 1.8. Show that |‖f‖ − ‖g‖| ≤ ‖f − g‖.

Problem 1.9. Let X be a Banach space. Show that the norm, vector ad-
dition, and multiplication by scalars are continuous. That is, if fn → f ,
gn → g, and αn → α, then ‖fn‖ → ‖f‖, fn + gn → f + g, and αngn → αg.

Problem 1.10. Let X be a Banach space. Show that
∑∞

j=1 ‖fj‖ < ∞
implies that

∞∑
j=1

fj = lim
n→∞

n∑
j=1

fj

exists. The series is called absolutely convergent in this case.

Problem 1.11. While `1(N) is separable, it still has room for an uncount-
able set of linearly independent vectors. Show this by considering vectors of
the form

fa = (1, a, a2, . . . ), a ∈ (0, 1).

(Hint: Take n such vectors and cut them off after n + 1 terms. If the cut
off vectors are linearly independent, so are the original ones. Recall the
Vandermonde determinant.)

Problem 1.12. Show that `p(N), the space of all complex-valued sequences
a = (aj)

∞
j=1 for which the norm

‖a‖p =

 ∞∑
j=1

|aj |p
1/p

, p ∈ [1,∞), (1.31)



1.3. The geometry of Hilbert spaces 21

is finite, is a separable Banach space.

Problem 1.13. Show that `∞(N) is a Banach space.

Problem 1.14. Show that `∞(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

Problem 1.15. Show that if a ∈ `p0(N) for some p0 ∈ [1,∞), then a ∈ `p(N)
for p ≥ p0 and

lim
p→∞

‖a‖p = ‖a‖∞.

1.3. The geometry of Hilbert spaces

So it looks like C(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C(I)? In
Euclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:

Suppose H is a vector space. A map 〈., ..〉 : H × H → C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

〈α1f1 + α2f2, g〉 = α∗1〈f1, g〉+ α∗2〈f2, g〉,
〈f, α1g1 + α2g2〉 = α1〈f, g1〉+ α2〈f, g2〉,

α1, α2 ∈ C, (1.32)

where ‘∗’ denotes complex conjugation. A sesquilinear form satisfying the
requirements

(i) 〈f, f〉 > 0 for f 6= 0 (positive definite),

(ii) 〈f, g〉 = 〈g, f〉∗ (symmetry)

is called an inner product or scalar product. Associated with every
scalar product is a norm

‖f‖ =
√
〈f, f〉. (1.33)

Only the triangle inequality is nontrivial. It will follow from the Cauchy–
Schwarz inequality below. Until then, just regard (1.33) as a convenient
short hand notation.

The pair (H, 〈., ..〉) is called an inner product space. If H is complete
(with respect to the norm (1.33)), it is called a Hilbert space.

Example. Clearly Cn with the usual scalar product

〈a, b〉 =
n∑
j=1

a∗jbj (1.34)

is a (finite dimensional) Hilbert space. �
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Example. A somewhat more interesting example is the Hilbert space `2(N),
that is, the set of all complex-valued sequences{

(aj)
∞
j=1

∣∣∣ ∞∑
j=1

|aj |2 <∞
}

(1.35)

with scalar product

〈a, b〉 =

∞∑
j=1

a∗jbj . (1.36)

(Show that this is in fact a separable Hilbert space — Problem 1.12.) �

A vector f ∈ H is called normalized or a unit vector if ‖f‖ = 1.
Two vectors f, g ∈ H are called orthogonal or perpendicular (f ⊥ g) if
〈f, g〉 = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theorem:

‖f + g‖2 = ‖f‖2 + ‖g‖2, f ⊥ g, (1.37)

which is one line of computation (do it!).

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by

f‖ = 〈u, f〉u (1.38)

and f⊥ defined via

f⊥ = f − 〈u, f〉u (1.39)

is perpendicular to u since 〈u, f⊥〉 = 〈u, f−〈u, f〉u〉 = 〈u, f〉−〈u, f〉〈u, u〉 =
0.

f

f‖

f⊥

u��
�1

��
��

��
��
�1B
B
B
BBM
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�
�
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�
���

Taking any other vector parallel to u, we obtain from (1.37)

‖f − αu‖2 = ‖f⊥ + (f‖ − αu)‖2 = ‖f⊥‖2 + |〈u, f〉 − α|2 (1.40)

and hence f‖ = 〈u, f〉u is the unique vector parallel to u which is closest to
f .

As a first consequence we obtain the Cauchy–Schwarz–Bunjakowski
inequality:
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Theorem 1.21 (Cauchy–Schwarz–Bunjakowski). Let H0 be an inner prod-
uct space. Then for every f, g ∈ H0 we have

|〈f, g〉| ≤ ‖f‖ ‖g‖ (1.41)

with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ‖g‖ = 1. But then the claim follows
from ‖f‖2 = |〈g, f〉|2 + ‖f⊥‖2. �

Note that the Cauchy–Schwarz inequality entails that the scalar product
is continuous in both variables; that is, if fn → f and gn → g, we have
〈fn, gn〉 → 〈f, g〉.

As another consequence we infer that the map ‖.‖ is indeed a norm. In
fact,

‖f + g‖2 = ‖f‖2 + 〈f, g〉+ 〈g, f〉+ ‖g‖2 ≤ (‖f‖+ ‖g‖)2. (1.42)

But let us return to C(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law
(Problem 1.18).

Theorem 1.22 (Jordan–von Neumann). A norm is associated with a scalar
product if and only if the parallelogram law

‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2 (1.43)

holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2

)
. (1.44)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem 1.20).

To show the converse, we define

s(f, g) =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2

)
.

Then s(f, f) = ‖f‖2 and s(f, g) = s(g, f)∗ are straightforward to check.
Moreover, another straightforward computation using the parallelogram law
shows

s(f, g) + s(f, h) = 2s(f,
g + h

2
).

Now choosing h = 0 (and using s(f, 0) = 0) shows s(f, g) = 2s(f, g2) and
thus s(f, g) + s(f, h) = s(f, g + h). Furthermore, by induction we infer
m
2n s(f, g) = s(f, m2n g); that is, α s(f, g) = s(f, αg) for every positive rational
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α. By continuity (which follows from continuity of ‖.‖) this holds for all
α > 0 and s(f,−g) = −s(f, g), respectively, s(f, ig) = i s(f, g), finishes the
proof. �

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem 1.20).

But how do we define a scalar product on C(I)? One possibility is

〈f, g〉 =

∫ b

a
f∗(x)g(x)dx. (1.45)

The corresponding inner product space is denoted by L2
cont(I). Note that

we have

‖f‖ ≤
√
|b− a|‖f‖∞ (1.46)

and hence the maximum norm is stronger than the L2
cont norm.

Suppose we have two norms ‖.‖1 and ‖.‖2 on a vector space X. Then
‖.‖2 is said to be stronger than ‖.‖1 if there is a constant m > 0 such that

‖f‖1 ≤ m‖f‖2. (1.47)

It is straightforward to check the following.

Lemma 1.23. If ‖.‖2 is stronger than ‖.‖1, then every ‖.‖2 Cauchy sequence
is also a ‖.‖1 Cauchy sequence.

Hence if a function F : X → Y is continuous in (X, ‖.‖1), it is also
continuous in (X, ‖.‖2) and if a set is dense in (X, ‖.‖2), it is also dense in
(X, ‖.‖1).

In particular, L2
cont is separable. But is it also complete? Unfortunately

the answer is no:

Example. Take I = [0, 2] and define

fn(x) =


0, 0 ≤ x ≤ 1− 1

n ,

1 + n(x− 1), 1− 1
n ≤ x ≤ 1,

1, 1 ≤ x ≤ 2.

(1.48)

Then fn(x) is a Cauchy sequence in L2
cont, but there is no limit in L2

cont!
Clearly the limit should be the step function which is 0 for 0 ≤ x < 1 and 1
for 1 ≤ x ≤ 2, but this step function is discontinuous (Problem 1.23)! �

This shows that in infinite dimensional vector spaces different norms
will give rise to different convergent sequences! In fact, the key to solving
problems in infinite dimensional spaces is often finding the right norm! This
is something which cannot happen in the finite dimensional case.
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Theorem 1.24. If X is a finite dimensional vector space, then all norms
are equivalent. That is, for any two given norms ‖.‖1 and ‖.‖2, there are
positive constants m1 and m2 such that

1

m2
‖f‖1 ≤ ‖f‖2 ≤ m1‖f‖1. (1.49)

Proof. Since equivalence of norms is an equivalence relation (check this!) we
can assume that ‖.‖2 is the usual Euclidean norm. Moreover, we can choose
an orthogonal basis uj , 1 ≤ j ≤ n, such that ‖

∑
j αjuj‖22 =

∑
j |αj |2. Let

f =
∑

j αjuj . Then by the triangle and Cauchy–Schwartz inequalities

‖f‖1 ≤
∑
j

|αj |‖uj‖1 ≤
√∑

j

‖uj‖21 ‖f‖2

and we can choose m2 =
√∑

j ‖uj‖1.

In particular, if fn is convergent with respect to ‖.‖2, it is also convergent
with respect to ‖.‖1. Thus ‖.‖1 is continuous with respect to ‖.‖2 and attains
its minimum m > 0 on the unit sphere (which is compact by the Heine-Borel
theorem, Theorem 1.11). Now choose m1 = 1/m. �

Problem 1.16. Show that the norm in a Hilbert space satisfies ‖f + g‖ =
‖f‖+ ‖g‖ if and only if f = αg, α ≥ 0, or g = 0.

Problem 1.17 (Generalized parallelogram law). Show that in a Hilbert
space ∑

1≤j<k≤n
‖xj − xk‖2 + ‖

∑
1≤j≤n

xj‖2 = n
∑

1≤j≤n
‖xj‖2.

The case n = 2 is (1.43).

Problem 1.18. Show that the maximum norm on C[0, 1] does not satisfy
the parallelogram law.

Problem 1.19. In a Banach space the unit ball is convex by the triangle
inequality. A Banach space X is called uniformly convex if for every
ε > 0 there is some δ such that ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x+y

2 ‖ ≥ 1− δ imply
‖x− y‖ ≤ ε.

Geometrically this implies that if the average of two vectors inside the
closed unit ball is close to the boundary, then they must be close to each
other.

Show that a Hilbert space is uniformly convex and that one can choose

δ(ε) = 1 −
√

1− ε2

4 . Draw the unit ball for R2 for the norms ‖x‖1 =

|x1| + |x2|, ‖x‖2 =
√
|x1|2 + |x2|2, and ‖x‖∞ = max(|x1|, |x2|). Which of

these norms makes R2 uniformly convex?
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(Hint: For the first part use the parallelogram law.)

Problem 1.20. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Prove the
parallelogram law

q(f + g) + q(f − g) = 2q(f) + 2q(g) (1.50)

and the polarization identity

s(f, g) =
1

4
(q(f + g)− q(f − g) + i q(f − ig)− i q(f + ig)) . (1.51)

Conversely, show that every quadratic form q(f) : Q → R satisfying
q(αf) = |α|2q(f) and the parallelogram law gives rise to a sesquilinear form
via the polarization identity.

Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Problem 1.21. A sesquilinear form is called bounded if

‖s‖ = sup
‖f‖=‖g‖=1

|s(f, g)|

is finite. Similarly, the associated quadratic form q is bounded if

‖q‖ = sup
‖f‖=1

|q(f)|

is finite. Show

‖q‖ ≤ ‖s‖ ≤ 2‖q‖.

(Hint: Use the parallelogram law and the polarization identity from the pre-
vious problem.)

Problem 1.22. Suppose Q is a vector space. Let s(f, g) be a sesquilinear
form on Q and q(f) = s(f, f) the associated quadratic form. Show that the
Cauchy–Schwarz inequality

|s(f, g)| ≤ q(f)1/2q(g)1/2 (1.52)

holds if q(f) ≥ 0.

(Hint: Consider 0 ≤ q(f + αg) = q(f) + 2Re(α s(f, g)) + |α|2q(g) and
choose α = t s(f, g)∗/|s(f, g)| with t ∈ R.)

Problem 1.23. Prove the claims made about fn, defined in (1.48), in the
last example.
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1.4. Completeness

Since L2
cont is not complete, how can we obtain a Hilbert space from it?

Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy

sequences X̃. Call two Cauchy sequences equivalent if their difference con-
verges to zero and denote by X̄ the set of all equivalence classes. It is easy
to see that X̄ (and X̃) inherit the vector space structure from X. Moreover,

Lemma 1.25. If xn is a Cauchy sequence, then ‖xn‖ converges.

Consequently the norm of a Cauchy sequence (xn)∞n=1 can be defined by
‖(xn)∞n=1‖ = limn→∞ ‖xn‖ and is independent of the equivalence class (show

this!). Thus X̄ is a normed space (X̃ is not! Why?).

Theorem 1.26. X̄ is a Banach space containing X as a dense subspace if
we identify x ∈ X with the equivalence class of all sequences converging to
x.

Proof. (Outline) It remains to show that X̄ is complete. Let ξn = [(xn,j)
∞
j=1]

be a Cauchy sequence in X̄. Then it is not hard to see that ξ = [(xj,j)
∞
j=1]

is its limit. �

Let me remark that the completion X̄ is unique. More precisely every
other complete space which contains X as a dense subset is isomorphic to
X̄. This can for example be seen by showing that the identity map on X
has a unique extension to X̄ (compare Theorem 1.28 below).

In particular it is no restriction to assume that a normed linear space
or an inner product space is complete. However, in the important case
of L2

cont it is somewhat inconvenient to work with equivalence classes of
Cauchy sequences and hence we will give a different characterization using
the Lebesgue integral later.

1.5. Bounded operators

A linear map A between two normed spaces X and Y will be called a (lin-
ear) operator

A : D(A) ⊆ X → Y. (1.53)

The linear subspace D(A) on which A is defined is called the domain of A
and is usually required to be dense. The kernel (also null space)

Ker(A) = {f ∈ D(A)|Af = 0} ⊆ X (1.54)

and range

Ran(A) = {Af |f ∈ D(A)} = AD(A) ⊆ Y (1.55)
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are defined as usual. The operator A is called bounded if the operator
norm

‖A‖ = sup
f∈D(A),‖f‖X=1

‖Af‖Y (1.56)

is finite.

By construction, a bounded operator is Lipschitz continuous,

‖Af‖Y ≤ ‖A‖‖f‖X , f ∈ D(A), (1.57)

and hence continuous. The converse is also true

Theorem 1.27. An operator A is bounded if and only if it is continuous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence
of unit vectors un such that ‖Aun‖ ≥ n. Then fn = 1

nun converges to 0 but
‖Afn‖ ≥ 1 does not converge to 0. �

In particular, if X is finite dimensional, then every operator is bounded.
Note that in general one and the same operation might be bounded (i.e.
continuous) or unbounded, depending on the norm chosen.

Example. Consider the vector space of differentiable functions X = C1[0, 1]
and equip it with the norm (cf. Problem 1.26)

‖f‖∞,1 = max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|f ′(x)|

Let Y = C[0, 1] and observe that the differential operator A = d
dx : X → Y

is bounded since

‖Af‖∞ = max
x∈[0,1]

|f ′(x)| ≤ max
x∈[0,1]

|f(x)|+ max
x∈[0,1]

|f ′(x)| = ‖f‖∞,1.

However, if we consider A = d
dx : D(A) ⊆ Y → Y defined on D(A) =

C1[0, 1], then we have an unbounded operator. Indeed, choose

un(x) = sin(nπx)

which is normalized, ‖un‖∞ = 1, and observe that

Aun(x) = u′n(x) = nπ cos(nπx)

is unbounded, ‖Aun‖∞ = nπ. Note that D(A) contains the set of polyno-
mials and thus is dense by the Weierstraß approximation theorem (Theo-
rem 1.19). �

If A is bounded and densely defined, it is no restriction to assume that
it is defined on all of X.

Theorem 1.28 (B.L.T. theorem). Let A : D(A) ⊆ X → Y be an bounded
linear operator and let Y be a Banach space. If D(A) is dense, there is a
unique (continuous) extension of A to X which has the same operator norm.
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Proof. Since a bounded operator maps Cauchy sequences to Cauchy se-
quences, this extension can only be given by

Af = lim
n→∞

Afn, fn ∈ D(A), f ∈ X.

To show that this definition is independent of the sequence fn → f , let
gn → f be a second sequence and observe

‖Afn −Agn‖ = ‖A(fn − gn)‖ ≤ ‖A‖‖fn − gn‖ → 0.

Since for f ∈ D(A) we can choose fn = f , we see that Af = Af in this case,
that is, A is indeed an extension. From continuity of vector addition and
scalar multiplication it follows that A is linear. Finally, from continuity of
the norm we conclude that the operator norm does not increase. �

The set of all bounded linear operators from X to Y is denoted by
L(X,Y ). If X = Y , we write L(X,X) = L(X). An operator in L(X,C) is
called a bounded linear functional and the space X∗ = L(X,C) is called
the dual space of X.

Theorem 1.29. The space L(X,Y ) together with the operator norm (1.56)
is a normed space. It is a Banach space if Y is.

Proof. That (1.56) is indeed a norm is straightforward. If Y is complete and
An is a Cauchy sequence of operators, then Anf converges to an element
g for every f . Define a new operator A via Af = g. By continuity of
the vector operations, A is linear and by continuity of the norm ‖Af‖ =
limn→∞ ‖Anf‖ ≤ (limn→∞ ‖An‖)‖f‖, it is bounded. Furthermore, given
ε > 0 there is some N such that ‖An − Am‖ ≤ ε for n,m ≥ N and thus
‖Anf−Amf‖ ≤ ε‖f‖. Taking the limit m→∞, we see ‖Anf−Af‖ ≤ ε‖f‖;
that is, An → A. �

The Banach space of bounded linear operators L(X) even has a multi-
plication given by composition. Clearly this multiplication satisfies

(A+B)C = AC +BC, A(B+C) = AB+BC, A,B,C ∈ L(X) (1.58)

and

(AB)C = A(BC), α (AB) = (αA)B = A (αB), α ∈ C. (1.59)

Moreover, it is easy to see that we have

‖AB‖ ≤ ‖A‖‖B‖. (1.60)

In other words, L(X) is a so-called Banach algebra. However, note that
our multiplication is not commutative (unless X is one-dimensional). We
even have an identity, the identity operator I satisfying ‖I‖ = 1.
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Problem 1.24. Consider X = Cn and let A : X → X be a matrix. Equip
X with the norm (show that this is a norm)

‖x‖∞ = max
1≤j≤n

|xj |

and compute the operator norm ‖A‖ with respect to this matrix in terms of
the matrix entries. Do the same with respect to the norm

‖x‖1 =
∑

1≤j≤n
|xj |.

Problem 1.25. Show that the integral operator

(Kf)(x) =

∫ 1

0
K(x, y)f(y)dy,

where K(x, y) ∈ C([0, 1] × [0, 1]), defined on D(K) = C[0, 1] is a bounded
operator both in X = C[0, 1] (max norm) and X = L2

cont(0, 1).

Problem 1.26. Show that the set of differentiable functions C1(I) becomes
a Banach space if we set ‖f‖∞,1 = maxx∈I |f(x)|+ maxx∈I |f ′(x)|.

Problem 1.27. Show that ‖AB‖ ≤ ‖A‖‖B‖ for every A,B ∈ L(X). Con-
clude that the multiplication is continuous: An → A and Bn → B imply
AnBn → AB.

Problem 1.28. Let A ∈ L(X) be a bijection. Show

‖A−1‖−1 = inf
f∈X,‖f‖=1

‖Af‖.

Problem 1.29. Let

f(z) =
∞∑
j=0

fjz
j , |z| < R,

be a convergent power series with convergence radius R > 0. Suppose A is
a bounded operator with ‖A‖ < R. Show that

f(A) =
∞∑
j=0

fjA
j

exists and defines a bounded linear operator (cf. Problem 1.10).

1.6. Sums and quotients of Banach spaces

Given two Banach spaces X1 and X2 we can define their (direct) sum
X = X1 ⊕ X2 as the cartesian product X1 × X2 together with the norm
‖(x1, x2)‖ = ‖x1‖ + ‖x2‖. In fact, since all norms on R2 are equivalent

(Theorem 1.24), we could as well take ‖(x1, x2)‖ = (‖x1‖p + ‖x2‖p)1/p or
‖(x1, x2)‖ = max(‖x1‖, ‖x2‖). In particular, in the case of Hilbert spaces
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the choice p = 2 will ensure that X is again a Hilbert space. Note that X1

and X2 can be regarded as subspaces of X1 ×X2 by virtue of the obvious
embeddings x1 ↪→ (x1, 0) and x2 ↪→ (0, x2). It is straightforward to show
that X is again a Banach space and to generalize this concept to finitely
many spaces (Problem 1.30).

Moreover, given a closed subspace M of a Banach space X we can define
the quotient space X/M as the set of all equivalence classes [x] = x +
M with respect to the equivalence relation x ≡ y if x − y ∈ M . It is
straightforward to see that X/M is a vector space when defining [x] + [y] =
[x+ y] and α[x] = [αx] (show that these definitions are independent of the
representative of the equivalence class).

Lemma 1.30. Let M be a closed subspace of a Banach space X. Then
X/M together with the norm

‖[x]‖ = inf
y∈M
‖x+ y‖. (1.61)

is a Banach space.

Proof. First of all we need to show that (1.61) is indeed a norm. If ‖[x]‖ = 0
we must have a sequence xj ∈ M with xj → x and since M is closed we
conclude x ∈ M , that is [x] = [0] as required. To see ‖α[x]‖ = |α|‖[x]‖ we
use again the definition

‖α[x]‖ = ‖[αx]‖ = inf
y∈M
‖αx+ y‖ = inf

y∈M
‖αx+ αy‖

= |α| inf
y∈M
‖x+ y‖ = |α|‖[x]‖.

The triangle inequality follows with a similar argument and is left as an
exercise.

Thus (1.61) is a norm and it remains to show that X/M is complete. To
this end let [xn] be a Cauchy sequence. Since it suffices to show that some
subsequence has a limit, we can assume ‖[xn+1]−[xn]‖ < 2−n without loss of
generality. Moroever, by definition of (1.61) we can chose the representatives
xn such that ‖xn+1−xn‖ < 2−n (start with x1 and then chose the remaining
ones inductively). By construction xn is a Cauchy sequence which has a limit
x ∈ X since X is complete. Moreover, it is straightforward to check that [x]
is the limit of [xn]. �

Problem 1.30. Let Xj, j = 1, . . . , n be Banach spaces. Let X be the
cartesian product X1 × · · · ×Xn together with the norm

‖(x1, . . . , xn)‖p =


(∑n

j=1 ‖xj‖p
)1/p

, 1 ≤ p <∞,
maxj=1,...,n ‖xj‖, p =∞.

Show that X is a Banach space. Show that all norms are equivalent.
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Problem 1.31. Suppose A ∈ L(X,Y ). Show that Ker(A) is closed. Show
that A is well defined on X/Ker(A) and that this new operator is again
bounded (with the same norm) and injective.



Chapter 2

Hilbert spaces

2.1. Orthonormal bases

In this section we will investigate orthonormal series and you will notice
hardly any difference between the finite and infinite dimensional cases. Through-
out this chapter H will be a Hilbert space.

As our first task, let us generalize the projection into the direction of
one vector:

A set of vectors {uj} is called an orthonormal set if 〈uj , uk〉 = 0
for j 6= k and 〈uj , uj〉 = 1. Note that every orthonormal set is linearly
independent (show this).

Lemma 2.1. Suppose {uj}nj=1 is an orthonormal set. Then every f ∈ H
can be written as

f = f‖ + f⊥, f‖ =

n∑
j=1

〈uj , f〉uj , (2.1)

where f‖ and f⊥ are orthogonal. Moreover, 〈uj , f⊥〉 = 0 for all 1 ≤ j ≤ n.
In particular,

‖f‖2 =
n∑
j=1

|〈uj , f〉|2 + ‖f⊥‖2. (2.2)

Moreover, every f̂ in the span of {uj}nj=1 satisfies

‖f − f̂‖ ≥ ‖f⊥‖ (2.3)

with equality holding if and only if f̂ = f‖. In other words, f‖ is uniquely
characterized as the vector in the span of {uj}nj=1 closest to f .

33
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Proof. A straightforward calculation shows 〈uj , f − f‖〉 = 0 and hence f‖
and f⊥ = f − f‖ are orthogonal. The formula for the norm follows by
applying (1.37) iteratively.

Now, fix a vector

f̂ =

n∑
j=1

αjuj

in the span of {uj}nj=1. Then one computes

‖f − f̂‖2 = ‖f‖ + f⊥ − f̂‖2 = ‖f⊥‖2 + ‖f‖ − f̂‖2

= ‖f⊥‖2 +

n∑
j=1

|αj − 〈uj , f〉|2

from which the last claim follows. �

From (2.2) we obtain Bessel’s inequality
n∑
j=1

|〈uj , f〉|2 ≤ ‖f‖2 (2.4)

with equality holding if and only if f lies in the span of {uj}nj=1.

Of course, since we cannot assume H to be a finite dimensional vec-
tor space, we need to generalize Lemma 2.1 to arbitrary orthonormal sets
{uj}j∈J . We start by assuming that J is countable. Then Bessel’s inequality
(2.4) shows that ∑

j∈J
|〈uj , f〉|2 (2.5)

converges absolutely. Moreover, for any finite subset K ⊂ J we have

‖
∑
j∈K
〈uj , f〉uj‖2 =

∑
j∈K
|〈uj , f〉|2 (2.6)

by the Pythagorean theorem and thus
∑

j∈J〈uj , f〉uj is a Cauchy sequence

if and only if
∑

j∈J |〈uj , f〉|2 is. Now let J be arbitrary. Again, Bessel’s
inequality shows that for any given ε > 0 there are at most finitely many
j for which |〈uj , f〉| ≥ ε (namely at most ‖f‖/ε). Hence there are at most
countably many j for which |〈uj , f〉| > 0. Thus it follows that∑

j∈J
|〈uj , f〉|2 (2.7)

is well-defined and (by completeness) so is∑
j∈J
〈uj , f〉uj . (2.8)

Furthermore, it is also independent of the order of summation.
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In particular, by continuity of the scalar product we see that Lemma 2.1
can be generalized to arbitrary orthonormal sets.

Theorem 2.2. Suppose {uj}j∈J is an orthonormal set in a Hilbert space
H. Then every f ∈ H can be written as

f = f‖ + f⊥, f‖ =
∑
j∈J
〈uj , f〉uj , (2.9)

where f‖ and f⊥ are orthogonal. Moreover, 〈uj , f⊥〉 = 0 for all j ∈ J . In
particular,

‖f‖2 =
∑
j∈J
|〈uj , f〉|2 + ‖f⊥‖2. (2.10)

Furthermore, every f̂ ∈ span{uj}j∈J satisfies

‖f − f̂‖ ≥ ‖f⊥‖ (2.11)

with equality holding if and only if f̂ = f‖. In other words, f‖ is uniquely

characterized as the vector in span{uj}j∈J closest to f .

Proof. The first part follows as in Lemma 2.1 using continuity of the scalar
product. The same is true for the last part except for the fact that every
f ∈ span{uj}j∈J can be written as f =

∑
j∈J αjuj (i.e., f = f‖). To see this

let fn ∈ span{uj}j∈J converge to f . Then ‖f−fn‖2 = ‖f‖−fn‖2+‖f⊥‖2 → 0
implies fn → f‖ and f⊥ = 0. �

Note that from Bessel’s inequality (which of course still holds) it follows
that the map f → f‖ is continuous.

Of course we are particularly interested in the case where every f ∈ H
can be written as

∑
j∈J〈uj , f〉uj . In this case we will call the orthonormal

set {uj}j∈J an orthonormal basis (ONB).

If H is separable it is easy to construct an orthonormal basis. In fact,
if H is separable, then there exists a countable total set {fj}Nj=1. Here
N ∈ N if H is finite dimensional and N = ∞ otherwise. After throwing
away some vectors, we can assume that fn+1 cannot be expressed as a linear
combination of the vectors f1, . . . , fn. Now we can construct an orthonormal
set as follows: We begin by normalizing f1:

u1 =
f1

‖f1‖
. (2.12)

Next we take f2 and remove the component parallel to u1 and normalize
again:

u2 =
f2 − 〈u1, f2〉u1

‖f2 − 〈u1, f2〉u1‖
. (2.13)



36 2. Hilbert spaces

Proceeding like this, we define recursively

un =
fn −

∑n−1
j=1 〈uj , fn〉uj

‖fn −
∑n−1

j=1 〈uj , fn〉uj‖
. (2.14)

This procedure is known as Gram–Schmidt orthogonalization. Hence
we obtain an orthonormal set {uj}Nj=1 such that span{uj}nj=1 = span{fj}nj=1

for any finite n and thus also for n = N (if N =∞). Since {fj}Nj=1 is total,

so is {uj}Nj=1. Now suppose there is some f = f‖+f⊥ ∈ H for which f⊥ 6= 0.

Since {uj}Nj=1 is total, we can find a f̂ in its span, such that ‖f − f̂‖ < ‖f⊥‖
contradicting (2.11). Hence we infer that {uj}Nj=1 is an orthonormal basis.

Theorem 2.3. Every separable Hilbert space has a countable orthonormal
basis.

Example. In L2
cont(−1, 1) we can orthogonalize the polynomial fn(x) = xn

(which are total by the Weierstraß approximation theorem — Theorem 1.19)
The resulting polynomials are up to a normalization equal to the Legendre
polynomials

P0(x) = 1, P1(x) = x, P2(x) =
3x2 − 1

2
, . . . (2.15)

(which are normalized such that Pn(1) = 1). �

Example. The set of functions

un(x) =
1√
2π

einx, n ∈ Z, (2.16)

forms an orthonormal basis for H = L2
cont(0, 2π). The corresponding orthog-

onal expansion is just the ordinary Fourier series. (That these functions are
total will follow from the Stone–Weierstraß theorem — Problem 8.8) �

The following equivalent properties also characterize a basis.

Theorem 2.4. For an orthonormal set {uj}j∈J in a Hilbert space H the
following conditions are equivalent:

(i) {uj}j∈J is a maximal orthogonal set.

(ii) For every vector f ∈ H we have

f =
∑
j∈J
〈uj , f〉uj . (2.17)

(iii) For every vector f ∈ H we have

‖f‖2 =
∑
j∈J
|〈uj , f〉|2. (2.18)

(iv) 〈uj , f〉 = 0 for all j ∈ J implies f = 0.
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Proof. We will use the notation from Theorem 2.2.
(i) ⇒ (ii): If f⊥ 6= 0, then we can normalize f⊥ to obtain a unit vector f̃⊥
which is orthogonal to all vectors uj . But then {uj}j∈J ∪ {f̃⊥} would be a
larger orthonormal set, contradicting the maximality of {uj}j∈J .
(ii) ⇒ (iii): This follows since (ii) implies f⊥ = 0.
(iii) ⇒ (iv): If 〈f, uj〉 = 0 for all j ∈ J , we conclude ‖f‖2 = 0 and hence
f = 0.
(iv)⇒ (i): If {uj}j∈J were not maximal, there would be a unit vector g such
that {uj}j∈J ∪ {g} is a larger orthonormal set. But 〈uj , g〉 = 0 for all j ∈ J
implies g = 0 by (iv), a contradiction. �

By continuity of the norm it suffices to check (iii), and hence also (ii),
for f in a dense set.

It is not surprising that if there is one countable basis, then it follows
that every other basis is countable as well.

Theorem 2.5. In a Hilbert space H every orthonormal basis has the same
cardinality.

Proof. Without loss of generality we assume that H is infinite dimensional.
Let {uj}j∈J and {vk}k∈K be two orthonormal bases. Set Kj = {k ∈
K|〈vk, uj〉 6= 0}. Since these are the expansion coefficients of uj with re-

spect to {vk}k∈K , this set is countable. Hence the set K̃ =
⋃
j∈J Kj has the

same cardinality as J . But k ∈ K\K̃ implies vk = 0 and hence K̃ = K. �

The cardinality of an orthonormal basis is also called the Hilbert space
dimension of H.

It even turns out that, up to unitary equivalence, there is only one
separable infinite dimensional Hilbert space:

A bijective linear operator U ∈ L(H1,H2) is called unitary if U preserves
scalar products:

〈Ug,Uf〉2 = 〈g, f〉1, g, f ∈ H1. (2.19)

By the polarization identity (1.44) this is the case if and only if U preserves
norms: ‖Uf‖2 = ‖f‖1 for all f ∈ H1 (note the a norm preserving linear
operator is automatically injective). The two Hilbert space H1 and H2 are
called unitarily equivalent in this case.

Let H be an infinite dimensional Hilbert space and let {uj}j∈N be any
orthogonal basis. Then the map U : H → `2(N), f 7→ (〈uj , f〉)j∈N is uni-
tary (by Theorem 2.4 (ii) it is onto and by (iii) it is norm preserving). In
particular,

Theorem 2.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to `2(N).
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Finally we briefly turn to the case where H is not separable.

Theorem 2.7. Every Hilbert space has an orthonormal basis.

Proof. To prove this we need to resort to Zorn’s lemma (see Appendix A):
The collection of all orthonormal sets in H can be partially ordered by inclu-
sion. Moreover, every linearly ordered chain has an upper bound (the union
of all sets in the chain). Hence a fundamental result from axiomatic set
theory, Zorn’s lemma, implies the existence of a maximal element, that is,
an orthonormal set which is not a proper subset of every other orthonormal
set. �

Hence, if {uj}j∈J is an orthogonal basis, we can show that H is unitarily
equivalent to `2(J) and, by prescribing J , we can find an Hilbert space of
any given dimension.

Problem 2.1. Let {uj} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matrix elements Ajk =
〈uj , Auk〉 with respect to this basis.

2.2. The projection theorem and the Riesz lemma

Let M ⊆ H be a subset. Then M⊥ = {f |〈g, f〉 = 0, ∀g ∈ M} is called
the orthogonal complement of M . By continuity of the scalar prod-
uct it follows that M⊥ is a closed linear subspace and by linearity that
(span(M))⊥ = M⊥. For example we have H⊥ = {0} since any vector in H⊥

must be in particular orthogonal to all vectors in some orthonormal basis.

Theorem 2.8 (Projection theorem). Let M be a closed linear subspace of
a Hilbert space H. Then every f ∈ H can be uniquely written as f = f‖+ f⊥
with f‖ ∈M and f⊥ ∈M⊥. One writes

M ⊕M⊥ = H (2.20)

in this situation.

Proof. Since M is closed, it is a Hilbert space and has an orthonormal
basis {uj}j∈J . Hence the existence part follows from Theorem 2.2. To see

uniqueness suppose there is another decomposition f = f̃‖ + f̃⊥. Then

f‖ − f̃‖ = f̃⊥ − f⊥ ∈M ∩M⊥ = {0}. �

Corollary 2.9. Every orthogonal set {uj}j∈J can be extended to an orthog-
onal basis.

Proof. Just add an orthogonal basis for ({uj}j∈J)⊥. �
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Moreover, Theorem 2.8 implies that to every f ∈ H we can assign a
unique vector f‖ which is the vector in M closest to f . The rest, f − f‖,
lies in M⊥. The operator PMf = f‖ is called the orthogonal projection
corresponding to M . Note that we have

P 2
M = PM and 〈PMg, f〉 = 〈g, PMf〉 (2.21)

since 〈PMg, f〉 = 〈g‖, f‖〉 = 〈g, PMf〉. Clearly we have PM⊥f = f −
PMf = f⊥. Furthermore, (2.21) uniquely characterizes orthogonal pro-
jections (Problem 2.4).

Moreover, if M is a closed subspace we have PM⊥⊥ = I − PM⊥ = I −
(I − PM ) = PM , that is, M⊥⊥ = M . If M is an arbitrary subset, we have
at least

M⊥⊥ = span(M). (2.22)

Note that by H⊥ = {0} we see that M⊥ = {0} if and only if M is total.

Finally we turn to linear functionals, that is, to operators ` : H→ C.
By the Cauchy–Schwarz inequality we know that `g : f 7→ 〈g, f〉 is a bounded
linear functional (with norm ‖g‖). In turns out that in a Hilbert space every
bounded linear functional can be written in this way.

Theorem 2.10 (Riesz lemma). Suppose ` is a bounded linear functional on
a Hilbert space H. Then there is a unique vector g ∈ H such that `(f) = 〈g, f〉
for all f ∈ H.

In other words, a Hilbert space is equivalent to its own dual space H∗ ∼= H
via the map f 7→ 〈f, .〉 which is a conjugate linear isometric bijection between
H and H∗.

Proof. If ` ≡ 0, we can choose g = 0. Otherwise Ker(`) = {f |`(f) = 0}
is a proper subspace and we can find a unit vector g̃ ∈ Ker(`)⊥. For every
f ∈ H we have `(f)g̃ − `(g̃)f ∈ Ker(`) and hence

0 = 〈g̃, `(f)g̃ − `(g̃)f〉 = `(f)− `(g̃)〈g̃, f〉.

In other words, we can choose g = `(g̃)∗g̃. To see uniqueness, let g1, g2 be
two such vectors. Then 〈g1 − g2, f〉 = 〈g1, f〉 − 〈g2, f〉 = `(f)− `(f) = 0 for
every f ∈ H, which shows g1 − g2 ∈ H⊥ = {0}. �

Problem 2.2. Suppose U : H → H is unitary and M ⊆ H. Show that
UM⊥ = (UM)⊥.

Problem 2.3. Show that an orthogonal projection PM 6= 0 has norm one.

Problem 2.4. Suppose P ∈ L(H) satisfies

P 2 = P and 〈Pf, g〉 = 〈f, Pg〉

and set M = Ran(P ). Show
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• Pf = f for f ∈M and M is closed,

• g ∈M⊥ implies Pg ∈M⊥ and thus Pg = 0,

and conclude P = PM .

2.3. Operators defined via forms

In many situations operators are not given explicitly, but implicitly via their
associated sesquilinear forms 〈f,Ag〉. As an easy consequence of the Riesz
lemma, Theorem 2.10, we obtain that there is a one to one correspondence
between bounded operators and bounded sesquilinear forms:

Lemma 2.11. Suppose s is a bounded sesquilinear form; that is,

|s(f, g)| ≤ C‖f‖ ‖g‖. (2.23)

Then there is a unique bounded operator A such that

s(f, g) = 〈f,Ag〉. (2.24)

Moreover, the norm of A is given by

‖A‖ = sup
‖f‖=‖g‖=1

|s(f, g)|. (2.25)

Proof. For every g ∈ H we have an associated bounded linear functional
`g(f) = s(f, g)∗. By Theorem 2.10 there is a corresponding h ∈ H (depend-
ing on g) such that `g(f) = 〈h, f〉, that is s(f, g) = 〈f, h〉 and we can define
A via Ag = h. It is not hard to check that A is linear and from

‖Af‖2 = 〈Af,Af〉 = s(Af, f) ≤ C‖Af‖‖f‖
we infer ‖Af‖ ≤ C‖f‖, which shows that A is bounded with ‖A‖ ≤ C.
Equation (2.25) is left as an exercise (Problem 2.6). �

Note that by the polarization identity (Problem 1.20), A is already
uniquely determined by its quadratic form qA(f) = 〈f,Af〉.

As a first application we introduce the adjoint operator via Lemma 2.11
as the operator associated with the sesquilinear form s(f, g) = 〈Af, g〉.

Theorem 2.12. For every bounded operator A there is a unique bounded
operator A∗ defined via

〈f,A∗g〉 = 〈Af, g〉. (2.26)

Example. If H = Cn and A = (ajk)1≤j,k≤n, then A∗ = (a∗kj)1≤j,k≤n. �

A few simple properties of taking adjoints are listed below.

Lemma 2.13. Let A,B ∈ L(H) and α ∈ C. Then

(i) (A+B)∗ = A∗ +B∗, (αA)∗ = α∗A∗,



2.3. Operators defined via forms 41

(ii) A∗∗ = A,

(iii) (AB)∗ = B∗A∗,

(iv) ‖A∗‖ = ‖A‖ and ‖A‖2 = ‖A∗A‖ = ‖AA∗‖.

Proof. (i) is obvious. (ii) follows from 〈f,A∗∗g〉 = 〈A∗f, g〉 = 〈f,Ag〉. (iii)
follows from 〈f, (AB)g〉 = 〈A∗f,Bg〉 = 〈B∗A∗f, g〉. (iv) follows using (2.25)
from

‖A∗‖ = sup
‖f‖=‖g‖=1

|〈f,A∗g〉| = sup
‖f‖=‖g‖=1

|〈Af, g〉|

= sup
‖f‖=‖g‖=1

|〈g,Af〉| = ‖A‖

and

‖A∗A‖ = sup
‖f‖=‖g‖=1

|〈f,A∗Ag〉| = sup
‖f‖=‖g‖=1

|〈Af,Ag〉|

= sup
‖f‖=1

‖Af‖2 = ‖A‖2,

where we have used that |〈Af,Ag〉| attains its maximum when Af and Ag
are parallell (compare Theorem 1.21). �

Note that ‖A‖ = ‖A∗‖ implies that taking adjoints is a continuous op-
eration. For later use also note that (Problem 2.8)

Ker(A∗) = Ran(A)⊥. (2.27)

A sesquilinear form is called nonnegative if s(f, f) ≥ 0 and we will call
A nonnegative, A ≥ 0, if its associated sesquilinear form is. We will write
A ≥ B if A−B ≥ 0.

Lemma 2.14. Suppose A ≥ εI for some ε > 0. Then A is a bijection with
bounded inverse, ‖A−1‖ ≤ 1

ε .

Proof. By definition ε‖f‖2 ≤ 〈f,Af〉 ≤ ‖f‖‖Af‖ and thus ε‖f‖ ≤ ‖Af‖.
In particular, Af = 0 implies f = 0 and thus for every g ∈ Ran(A) there is
a unique f = A−1g. Moreover, by ‖A−1g‖ = ‖f‖ ≤ ε−1‖Af‖ = ε−1‖g‖ the
operator A−1 is bounded. So if gn ∈ Ran(A) converges to some g ∈ H, then
fn = A−1gn converges to some f . Taking limits in gn = Afn shows that
g = Af is in the range of A, that is, the range of A is closed. To show that
Ran(A) = H we pick h ∈ Ran(A)⊥. Then 0 = 〈h,Ah〉 ≥ ε‖h‖2 shows h = 0
and thus Ran(A)⊥ = {0}. �

Combining the last two results we obtain the famous Lax–Milgram the-
orem which plays an important role in theory of elliptic partial differential
equations.
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Theorem 2.15 (Lax–Milgram). Let s be a sesquilinear form which is

• bounded, |s(f, g)| ≤ C‖f‖ ‖g‖, and

• coercive, s(f, f) ≥ ε‖f‖2.

Then for every g ∈ H there is a unique f ∈ H such that

s(h, f) = 〈h, g〉, ∀h ∈ H. (2.28)

Proof. Let A be the operator associated with s. Then A ≥ ε and f =
A−1g. �

Problem 2.5. Let H a Hilbert space and let u, v ∈ H. Show that the operator

Af = 〈u, f〉v

is bounded and compute its norm. Compute the adjoint of A.

Problem 2.6. Prove (2.25). (Hint: Use ‖f‖ = sup‖g‖=1 |〈g, f〉| — compare

Theorem 1.21.)

Problem 2.7. Suppose A has a bounded inverse A−1. Show (A−1)∗ =
(A∗)−1.

Problem 2.8. Show (2.27).

2.4. Orthogonal sums and tensor products

Given two Hilbert spaces H1 and H2, we define their orthogonal sum
H1⊕H2 to be the set of all pairs (f1, f2) ∈ H1×H2 together with the scalar
product

〈(g1, g2), (f1, f2)〉 = 〈g1, f1〉1 + 〈g2, f2〉2. (2.29)

It is left as an exercise to verify that H1 ⊕ H2 is again a Hilbert space.
Moreover, H1 can be identified with {(f1, 0)|f1 ∈ H1} and we can regard H1

as a subspace of H1⊕H2, and similarly for H2. It is also customary to write
f1 + f2 instead of (f1, f2).

More generally, let Hj , j ∈ N, be a countable collection of Hilbert spaces
and define

∞⊕
j=1

Hj = {
∞∑
j=1

fj | fj ∈ Hj ,

∞∑
j=1

‖fj‖2j <∞}, (2.30)

which becomes a Hilbert space with the scalar product

〈
∞∑
j=1

gj ,
∞∑
j=1

fj〉 =
∞∑
j=1

〈gj , fj〉j . (2.31)

Example.
⊕∞

j=1 C = `2(N). �
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Similarly, if H and H̃ are two Hilbert spaces, we define their tensor
product as follows: The elements should be products f⊗f̃ of elements f ∈ H
and f̃ ∈ H̃. Hence we start with the set of all finite linear combinations of
elements of H× H̃

F(H, H̃) = {
n∑
j=1

αj(fj , f̃j)|(fj , f̃j) ∈ H× H̃, αj ∈ C}. (2.32)

Since we want (f1 +f2)⊗ f̃ = f1⊗ f̃ +f2⊗ f̃ , f ⊗ (f̃1 + f̃2) = f ⊗ f̃1 +f ⊗ f̃2,

and (αf)⊗ f̃ = f ⊗ (αf̃) we consider F(H, H̃)/N (H, H̃), where

N (H, H̃) = span{
n∑

j,k=1

αjβk(fj , f̃k)− (

n∑
j=1

αjfj ,

n∑
k=1

βkf̃k)} (2.33)

and write f ⊗ f̃ for the equivalence class of (f, f̃).

Next we define

〈f ⊗ f̃ , g ⊗ g̃〉 = 〈f, g〉〈f̃ , g̃〉 (2.34)

which extends to a sesquilinear form on F(H, H̃)/N (H, H̃). To show that we

obtain a scalar product, we need to ensure positivity. Let f =
∑

i αifi⊗ f̃i 6=
0 and pick orthonormal bases uj , ũk for span{fi}, span{f̃i}, respectively.
Then

f =
∑
j,k

αjkuj ⊗ ũk, αjk =
∑
i

αi〈uj , fi〉〈ũk, f̃i〉 (2.35)

and we compute

〈f, f〉 =
∑
j,k

|αjk|2 > 0. (2.36)

The completion of F(H, H̃)/N (H, H̃) with respect to the induced norm is

called the tensor product H⊗ H̃ of H and H̃.

Lemma 2.16. If uj, ũk are orthonormal bases for H, H̃, respectively, then

uj ⊗ ũk is an orthonormal basis for H⊗ H̃.

Proof. That uj⊗ ũk is an orthonormal set is immediate from (2.34). More-

over, since span{uj}, span{ũk} are dense in H, H̃, respectively, it is easy to

see that uj ⊗ ũk is dense in F(H, H̃)/N (H, H̃). But the latter is dense in

H⊗ H̃. �

Example. We have H⊗ Cn = Hn. �

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

(

∞⊕
j=1

Hj)⊗ H =

∞⊕
j=1

(Hj ⊗ H), (2.37)
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where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

(

∞∑
j=1

fj)⊗ f =

∞∑
j=1

fj ⊗ f. (2.38)

Problem 2.9. Show that f ⊗ f̃ = 0 if and only if f = 0 or f̃ = 0.

Problem 2.10. We have f ⊗ f̃ = g ⊗ g̃ 6= 0 if and only if there is some
α ∈ C\{0} such that f = αg and f̃ = α−1g̃.

Problem 2.11. Show (2.37)



Chapter 3

Compact operators

3.1. Compact operators

A linear operator A defined on a normed space X is called compact if every
sequence Afn has a convergent subsequence whenever fn is bounded. The
set of all compact operators is denoted by C(X). It is not hard to see that
the set of compact operators is an ideal of the set of bounded operators
(Problem 3.1):

Theorem 3.1. Every compact linear operator is bounded. Linear combina-
tions of compact operators are compact and the product of a bounded and a
compact operator is again compact.

If X is a Banach space then this ideal is even closed:

Theorem 3.2. Let X be a Banach space, and let An be a convergent se-
quence of compact operators. Then the limit A is again compact.

Proof. Let f
(0)
j be a bounded sequence. Choose a subsequence f

(1)
j such

that A1f
(1)
j converges. From f

(1)
j choose another subsequence f

(2)
j such that

A2f
(2)
j converges and so on. Since f

(n)
j might disappear as n→∞, we con-

sider the diagonal sequence fj = f
(j)
j . By construction, fj is a subsequence

of f
(n)
j for j ≥ n and hence Anfj is Cauchy for every fixed n. Now

‖Afj −Afk‖ = ‖(A−An)(fj − fk) +An(fj − fk)‖
≤ ‖A−An‖‖fj − fk‖+ ‖Anfj −Anfk‖

shows that Afj is Cauchy since the first term can be made arbitrary small
by choosing n large and the second by the Cauchy property of Anfj . �

45
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Note that it suffices to verify compactness on a dense set.

Theorem 3.3. Let X be a normed space and A ∈ C(X). Let X be its
completion, then A ∈ C(X), where A is the unique extension of A.

Proof. Let fn ∈ X be a given bounded sequence. We need to show that

Afn has a convergent subsequence. Pick f jn ∈ X such that ‖f jn−fn‖ ≤ 1
j and

by compactness of A we can assume that Afnn → g. But then ‖Afn − g‖ ≤
‖A‖‖fn − fnn ‖+ ‖Afnn − g‖ shows that Afn → g. �

One of the most important examples of compact operators are integral
operators:

Lemma 3.4. The integral operator

(Kf)(x) =

∫ b

a
K(x, y)f(y)dy, (3.1)

where K(x, y) ∈ C([a, b]× [a, b]), defined on L2
cont(a, b) is compact.

Proof. First of all note that K(., ..) is continuous on [a, b]× [a, b] and hence
uniformly continuous. In particular, for every ε > 0 we can find a δ > 0
such that |K(y, t) −K(x, t)| ≤ ε whenever |y − x| ≤ δ. Let g(x) = Kf(x).
Then

|g(x)− g(y)| ≤
∫ b

a
|K(y, t)−K(x, t)| |f(t)|dt

≤ ε
∫ b

a
|f(t)|dt ≤ ε‖1‖ ‖f‖,

whenever |y − x| ≤ δ. Hence, if fn(x) is a bounded sequence in L2
cont(a, b),

then gn(x) = Kfn(x) is equicontinuous and has a uniformly convergent
subsequence by the Arzelà–Ascoli theorem (Theorem 3.5 below). But a
uniformly convergent sequence is also convergent in the norm induced by
the scalar product. Therefore K is compact. �

Note that (almost) the same proof shows thatK is compact when defined
on C[a, b].

Theorem 3.5 (Arzelà–Ascoli). Suppose the sequence of functions fn(x),
n ∈ N, on a compact interval is (uniformly) equicontinuous, that is, for
every ε > 0 there is a δ > 0 (independent of n) such that

|fn(x)− fn(y)| ≤ ε if |x− y| < δ. (3.2)

If the sequence fn is bounded, then there is a uniformly convergent subse-
quence.
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Proof. Let {xj}∞j=1 be a dense subset of our interval (e.g., all rational num-

bers in this set). Since fn(x1) is bounded, we can choose a subsequence

f
(1)
n (x) such that f

(1)
n (x1) converges (Bolzano–Weierstraß). Similarly we can

extract a subsequence f
(2)
n (x) from f

(1)
n (x) which converges at x2 (and hence

also at x1 since it is a subsequence of f
(1)
n (x)). By induction we get a se-

quence f
(j)
n (x) converging at x1, . . . , xj . The diagonal sequence f̃n = f

(n)
n (x)

will hence converge for all x = xj (why?). We will show that it converges
uniformly for all x:

Fix ε > 0 and chose δ such that |fn(x)− fn(y)| ≤ ε
3 for |x− y| < δ. The

balls Bδ(xj) cover our interval and by compactness even finitely many, say

1 ≤ j ≤ p suffice. Furthermore, choose Nε such that |f̃m(xj) − f̃n(xj)| ≤ ε
3

for n,m ≥ Nε and 1 ≤ j ≤ p.
Now pick x and note that x ∈ Bδ(xj) for some j. Thus

|f̃m(x)− f̃n(x)| ≤|f̃m(x)− f̃m(xj)|+ |f̃m(xj)− f̃n(xj)|

+ |f̃n(xj)− f̃n(x)| ≤ ε

for n,m ≥ Nε, which shows that f̃n is Cauchy with respect to the maximum
norm. �

Compact operators are very similar to (finite) matrices as we will see in
the next section.

Problem 3.1. Show that compact operators form an ideal.

Problem 3.2. Show that adjoint of the integral operator from Lemma 3.4
is the integral operator with kernel K(y, x)∗.

3.2. The spectral theorem for compact symmetric operators

Let H be a Hilbert space. A linear operator A is called symmetric if its
domain is dense and if

〈g,Af〉 = 〈Ag, f〉 f, g ∈ D(A). (3.3)

If A is bounded (with D(A) = H), then A is symmetric precisely if A = A∗,
that is, if A is self-adjoint. However, for unbounded operators there is a
subtle but important difference between symmetry and self-adjointness.

A number z ∈ C is called eigenvalue of A if there is a nonzero vector
u ∈ D(A) such that

Au = zu. (3.4)

The vector u is called a corresponding eigenvector in this case. The set of
all eigenvectors corresponding to z is called the eigenspace

Ker(A− z) (3.5)
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corresponding to z. Here we have used the shorthand notation A−z for A−
zI. An eigenvalue is called simple if there is only one linearly independent
eigenvector.

Theorem 3.6. Let A be symmetric. Then all eigenvalues are real and
eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose λ is an eigenvalue with corresponding normalized eigen-
vector u. Then λ = 〈u,Au〉 = 〈Au, u〉 = λ∗, which shows that λ is real.
Furthermore, if Auj = λjuj , j = 1, 2, we have

(λ1 − λ2)〈u1, u2〉 = 〈Au1, u2〉 − 〈u1, Au2〉 = 0

finishing the proof. �

Note that while eigenvectors corresponding to the same eigenvalue λ will
in general not automatically be orthogonal, we can of course replace each
set of eigenvectors corresponding to λ by an set of orthonormal eigenvectors
having the same linear span (e.g. using Gram–Schmidt orthogonalization).

Now we show that A has an eigenvalue at all (which is not clear in the
infinite dimensional case)!

Theorem 3.7. A symmetric compact operator A has an eigenvalue α1 which
satisfies |α1| = ‖A‖.

Proof. We set α = ‖A‖ and assume α 6= 0 (i.e, A 6= 0) without loss of
generality. Since

‖A‖2 = sup
f :‖f‖=1

‖Af‖2 = sup
f :‖f‖=1

〈Af,Af〉 = sup
f :‖f‖=1

〈f,A2f〉

there exists a normalized sequence un such that

lim
n→∞

〈un, A2un〉 = α2.

Since A is compact, it is no restriction to assume that A2un converges, say
limn→∞A

2un = α2u. Now

‖(A2 − α2)un‖2 = ‖A2un‖2 − 2α2〈un, A2un〉+ α4

≤ 2α2(α2 − 〈un, A2un〉)

(where we have used ‖A2un‖ ≤ ‖A‖‖Aun‖ ≤ ‖A‖2‖un‖ = α2) implies
limn→∞(A2un − α2un) = 0 and hence limn→∞ un = u. In addition, u is
a normalized eigenvector of A2 since (A2 − α2)u = 0. Factorizing this last
equation according to (A − α)u = v and (A + α)v = 0 show that either
v 6= 0 is an eigenvector corresponding to −α or v = 0 and hence u 6= 0 is an
eigenvector corresponding to α. �
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Note that for a bounded operator A, there cannot be an eigenvalue with
absolute value larger than ‖A‖, that is, the set of eigenvalues is bounded by
‖A‖ (Problem 3.3).

Now consider a symmetric compact operator A with eigenvalue α1 (as
above) and corresponding normalized eigenvector u1. Setting

H1 = {u1}⊥ = {f ∈ H|〈u1, f〉 = 0} (3.6)

we can restrict A to H1 since f ∈ H1 implies

〈u1, Af〉 = 〈Au1, f〉 = α1〈u1, f〉 = 0 (3.7)

and hence Af ∈ H1. Denoting this restriction by A1, it is not hard to see
that A1 is again a symmetric compact operator. Hence we can apply Theo-
rem 3.7 iteratively to obtain a sequence of eigenvalues αj with corresponding
normalized eigenvectors uj . Moreover, by construction, uj is orthogonal to
all uk with k < j and hence the eigenvectors {uj} form an orthonormal set.
This procedure will not stop unless H is finite dimensional. However, note
that αj = 0 for j ≥ n might happen if An = 0.

Theorem 3.8. Suppose H is an infinite dimensional Hilbert space and A :
H→ H is a compact symmetric operator. Then there exists a sequence of real
eigenvalues αj converging to 0. The corresponding normalized eigenvectors
uj form an orthonormal set and every f ∈ H can be written as

f =
∞∑
j=1

〈uj , f〉uj + h, (3.8)

where h is in the kernel of A, that is, Ah = 0.

In particular, if 0 is not an eigenvalue, then the eigenvectors form an
orthonormal basis (in addition, H need not be complete in this case).

Proof. Existence of the eigenvalues αj and the corresponding eigenvectors
uj has already been established. If the eigenvalues should not converge to

zero, there is a subsequence such that |αjk | ≥ ε. Hence vk = α−1
jk
ujk is a

bounded sequence (‖vk‖ ≤ 1
ε ) for which Avk has no convergent subsequence

since ‖Avk −Avl‖2 = ‖ujk − ujl‖2 = 2, a contradiction.

Next, setting

fn =

n∑
j=1

〈uj , f〉uj ,

we have

‖A(f − fn)‖ ≤ |αn|‖f − fn‖ ≤ |αn|‖f‖
since f − fn ∈ Hn and ‖An‖ = |αn|. Letting n → ∞ shows A(f∞ − f) = 0
proving (3.8). �



50 3. Compact operators

By applying A to (3.8) we obtain the following canonical form of compact
symmetric operators.

Corollary 3.9. Every compact symmetric operator A can be written as

Af =
∞∑
j=1

αj〈uj , f〉uj , (3.9)

where αj are the nonzero eigenvalues with corresponding eigenvectors uj
from the previous theorem.

Remark: There are two cases where our procedure might fail to con-
struct an orthonormal basis of eigenvectors. One case is where there is
an infinite number of nonzero eigenvalues. In this case αn never reaches 0
and all eigenvectors corresponding to 0 are missed. In the other case, 0 is
reached, but there might not be a countable basis and hence again some of
the eigenvectors corresponding to 0 are missed. In any case by adding vec-
tors from the kernel (which are automatically eigenvectors), one can always
extend the eigenvectors uj to an orthonormal basis of eigenvectors.

Corollary 3.10. Every compact symmetric operator has an associated or-
thonormal basis of eigenvectors.

This is all we need and it remains to apply these results to Sturm–
Liouville operators.

Problem 3.3. Show that if A is bounded, then every eigenvalue α satisfies
|α| ≤ ‖A‖.

Problem 3.4. Find the eigenvalues and eigenfunctions of the integral op-
erator

(Kf)(x) =

∫ 1

0
u(x)v(y)f(y)dy

in L2
cont(0, 1), where u(x) and v(x) are some given continuous functions.

Problem 3.5. Find the eigenvalues and eigenfunctions of the integral op-
erator

(Kf)(x) = 2

∫ 1

0
(2xy − x− y + 1)f(y)dy

in L2
cont(0, 1).

3.3. Applications to Sturm–Liouville operators

Now, after all this hard work, we can show that our Sturm–Liouville operator

L = − d2

dx2
+ q(x), (3.10)
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where q is continuous and real, defined on

D(L) = {f ∈ C2[0, 1]|f(0) = f(1) = 0} ⊂ L2
cont(0, 1), (3.11)

has an orthonormal basis of eigenfunctions.

The corresponding eigenvalue equation Lu = zu explicitly reads

− u′′(x) + q(x)u(x) = zu(x). (3.12)

It is a second order homogenous linear ordinary differential equations and
hence has two linearly independent solutions. In particular, specifying two
initial conditions, e.g. u(0) = 0, u′(0) = 1 determines the solution uniquely.
Hence, if we require u(0) = 0, the solution is determined up to a multiple
and consequently the additional requirement u(1) = 0 cannot be satisfied
by a nontrivial solution in general. However, there might be some z ∈ C for
which the solution corresponding to the initial conditions u(0) = 0, u′(0) = 1
happens to satisfy u(1) = 0 and these are precisely the eigenvalues we are
looking for.

Note that the fact that L2
cont(0, 1) is not complete causes no problems

since we can always replace it by its completion H = L2(0, 1). A thorough
investigation of this completion will be given later, at this point this is not
essential.

We first verify that L is symmetric:

〈f, Lg〉 =

∫ 1

0
f(x)∗(−g′′(x) + q(x)g(x))dx

=

∫ 1

0
f ′(x)∗g′(x)dx+

∫ 1

0
f(x)∗q(x)g(x)dx

=

∫ 1

0
−f ′′(x)∗g(x)dx+

∫ 1

0
f(x)∗q(x)g(x)dx (3.13)

= 〈Lf, g〉.

Here we have used integration by part twice (the boundary terms vanish
due to our boundary conditions f(0) = f(1) = 0 and g(0) = g(1) = 0).

Of course we want to apply Theorem 3.8 and for this we would need to
show that L is compact. But this task is bound to fail, since L is not even
bounded (see the example in Section 1.5)!

So here comes the trick: If L is unbounded its inverse L−1 might still
be bounded. Moreover, L−1 might even be compact and this is the case
here! Since L might not be injective (0 might be an eigenvalue), we consider
RL(z) = (L− z)−1, z ∈ C, which is also known as the resolvent of L.

In order to compute the resolvent, we need to solve the inhomogenous
equation (L − z)f = g. This can be done using the variation of constants
formula from ordinary differential equations which determines the solution
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up to an arbitrary solution of the homogenous equation. This homogenous
equation has to be chosen such that f ∈ D(L), that is, such that f(0) =
f(1) = 0.

Define

f(x) =
u+(z, x)

W (z)

(∫ x

0
u−(z, t)g(t)dt

)
+
u−(z, x)

W (z)

(∫ 1

x
u+(z, t)g(t)dt

)
, (3.14)

where u±(z, x) are the solutions of the homogenous differential equation
−u′′±(z, x)+(q(x)−z)u±(z, x) = 0 satisfying the initial conditions u−(z, 0) =
0, u′−(z, 0) = 1 respectively u+(z, 1) = 0, u′+(z, 1) = 1 and

W (z) = W (u+(z), u−(z)) = u′−(z, x)u+(z, x)− u−(z, x)u′+(z, x) (3.15)

is the Wronski determinant, which is independent of x (check this!).

Then clearly f(0) = 0 since u−(z, 0) = 0 and similarly f(1) = 0 since
u+(z, 1) = 0. Furthermore, f is differentiable and a straightforward compu-
tation verifies

f ′(x) =
u+(z, x)′

W (z)

(∫ x

0
u−(z, t)g(t)dt

)
+
u−(z, x)′

W (z)

(∫ 1

x
u+(z, t)g(t)dt

)
. (3.16)

Thus we can differentiate once more giving

f ′′(x) =
u+(z, x)′′

W (z)

(∫ x

0
u−(z, t)g(t)dt

)
+
u−(z, x)′′

W (z)

(∫ 1

x
u+(z, t)g(t)dt

)
− g(x)

= (q(x)− z)f(x)− g(x). (3.17)

In summary, f is in the domain of L and satisfies (L− z)f = g.

Note that z is an eigenvalue if and only if W (z) = 0. In fact, in this
case u+(z, x) and u−(z, x) are linearly dependent and hence u−(z, 1) =
c u+(z, 1) = 0 which shows that u−(z, x) satisfies both boundary conditions
and is thus an eigenfunction.

Introducing the Green function

G(z, x, t) =
1

W (u+(z), u−(z))

{
u+(z, x)u−(z, t), x ≥ t
u+(z, t)u−(z, x), x ≤ t (3.18)

we see that (L− z)−1 is given by

(L− z)−1g(x) =

∫ 1

0
G(z, x, t)g(t)dt. (3.19)



3.4. More on compact operators 53

Moreover, from G(z, x, t) = G(z, t, x) it follows that (L− z)−1 is symmetric
for z ∈ R (Problem 3.6) and from Lemma 3.4 it follows that it is compact.
Hence Theorem 3.8 applies to (L− z)−1 and we obtain:

Theorem 3.11. The Sturm–Liouville operator L has a countable number of
eigenvalues En. All eigenvalues are discrete and simple. The corresponding
normalized eigenfunctions un form an orthonormal basis for L2

cont(0, 1).

Proof. Pick a value λ ∈ R such that RL(λ) exists. By Lemma 3.4 RL(λ)
is compact and by Theorem 3.3 this remains true if we replace L2

cont(0, 1)
by its completion. By Theorem 3.8 there are eigenvalues αn of RL(λ) with
corresponding eigenfunctions un. Moreover, RL(λ)un = αnun is equivalent
to Lun = (λ + 1

αn
)un, which shows that En = λ + 1

αn
are eigenvalues

of L with corresponding eigenfunctions un. Now everything follows from
Theorem 3.8 except that the eigenvalues are simple. To show this, observe
that if un and vn are two different eigenfunctions corresponding to En, then
un(0) = vn(0) = 0 implies W (un, vn) = 0 and hence un and vn are linearly
dependent. �

Problem 3.6. Show that for our Sturm–Liouville operator u±(z, x)∗ =
u±(z∗, x). Conclude RL(z)∗ = RL(z∗). (Hint: Problem 3.2.)

Problem 3.7. Show that the resolvent RA(z) = (A−z)−1 (provided it exists
and is densely defined) of a symmetric operator A is again symmetric for
z ∈ R. (Hint: g ∈ D(RA(z)) if and only if g = (A−z)f for some f ∈ D(A)).

3.4. More on compact operators

Our first aim is to find a generalization of Corollary 3.9 for general compact
operators. The key observation is that ifK is compact, thenK∗K is compact
and symmetric and thus, by Corollary 3.9, there is a countable orthonormal
set {uj} and nonzero numbers sj 6= 0 such that

K∗Kf =

∞∑
j=1

s2
j 〈uj , f〉uj . (3.20)

Moreover, ‖Kuj‖2 = 〈uj ,K∗Kuj〉 = 〈uj , s2
juj〉 = s2

j implies

sj = ‖Kuj‖ > 0. (3.21)

The numbers sj = sj(K) are called singular values of K. There are either
finitely many singular values or they converge to zero.

Theorem 3.12 (Canonical form of compact operators). Let K be compact
and let sj be the singular values of K and {uj} corresponding orthonormal
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eigenvectors of K∗K. Then

K =
∑
j

sj〈uj , .〉vj , (3.22)

where vj = s−1
j Kuj. The norm of K is given by the largest singular value

‖K‖ = max
j
sj(K). (3.23)

Moreover, the vectors vj are again orthonormal and satisfy K∗vj = sjuj. In
particular, vj are eigenvectors of KK∗ corresponding to the eigenvalues s2

j .

Proof. For any f ∈ H we can write

f =
∑
j

〈uj , f〉uj + f⊥

with f⊥ ∈ Ker(K∗K) = Ker(K) (Problem 3.8). Then

Kf =
∑
j

〈uj , f〉Kuj =
∑
j

sj〈uj , f〉vj

as required. Furthermore,

〈vj , vk〉 = (sjsk)
−1〈Kuj ,Kuk〉 = (sjsk)

−1〈K∗Kuj , uk〉 = sjs
−1
k 〈uj , uk〉

shows that {vj} are orthonormal. Finally, (3.23) follows from

‖Kf‖2 = ‖
∑
j

sj〈uj , f〉vj‖2 =
∑
j

s2
j |〈uj , f〉|2 ≤

(
max
j
sj(K)2

)
‖f‖2,

where equality holds for f = uj0 if sj0 = maxj sj(K). �

If K is self-adjoint, then uj = σjvj , σ
2
j = 1, are the eigenvectors of K

and σjsj are the corresponding eigenvalues.

An operator K ∈ L(H) is called a finite rank operator if its range is
finite dimensional. The dimension

rank(K) = dim Ran(K)

is called the rank of K. Since for a compact operator

Ran(K) = span{vj} (3.24)

we see that a compact operator is finite rank if and only if the sum in (3.22)
is finite. Note that the finite rank operators form an ideal in L(H) just as
the compact operators do. Moreover, every finite rank operator is compact
by the Heine–Borel theorem (Theorem 1.11).

Lemma 3.13. The closure of the ideal of finite rank operators in L(H) is
the ideal of compact operators.
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Proof. Since the limit of compact operators is compact, it remains to show
that every compact operator K can be approximated by finite rank ones.
To this end assume that K is not finite rank and note that

Kn =
n∑
j=1

sj〈uj , .〉vj

converges to K as n→∞ since

‖K −Kn‖ = max
j≥0

sj(K)

by (3.23). �

Moreover, this also shows that the adjoint of a compact operator is again
compact.

Corollary 3.14. An operator K is compact (finite rank) if and only K∗ is.
In fact, sj(K) = sj(K

∗) and

K∗ =
∑
j

sj〈vj , .〉uj . (3.25)

Proof. First of all note that (3.25) follows from (3.22) since taking adjoints
is continuous and (〈uj , .〉vj)∗ = 〈vj , .〉uj . The rest is straightforward. �

Problem 3.8. Show that Ker(A∗A) = Ker(A) for any A ∈ L(H).

Problem 3.9. Show (3.23).

3.5. Fredholm theory for compact operators

In this section we want to investigate solvability of the equation

f = Kf + g (3.26)

for given g. Clearly there exists a solution if g ∈ Ran(1 − K) and this
solution is unique if Ker(1−K) = {0}. Hence these subspaces play a crucial
role. Moreover, if the underlying Hilbert space is finite dimensional it is
well-known that Ker(1 −K) = {0} automatically implies Ran(1 −K) = H
since

dim Ker(1−K) + dim Ran(1−K) = dimH. (3.27)

Unfortunately this formula is of no use if H is infinite dimensional, but if we
rewrite it as

dim Ker(1−K) = dimH− dim Ran(1−K) = dim Ran(1−K)⊥ (3.28)

there is some hope. In fact, we will show that this formula (makes sense
and) holds if K is a compact operator.
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Lemma 3.15. Let K ∈ C(H) be compact. Then Ker(1−K) is finite dimen-
sional and Ran(1−K) is closed.

Proof. We first show dim Ker(1−K) <∞. If not we could find an infinite
orthogonal system {uj}∞j=1 ⊂ Ker(1−K). By Kuj = uj compactness of K
implies that there is a convergent subsequence ujk . But this is impossible
by ‖uj − uk‖2 = 2 for j 6= k.

To see that Ran(1 − K) is closed we first claim that there is a γ > 0
such that

‖(1−K)f‖ ≥ γ‖f‖, ∀f ∈ Ker(1−K)⊥. (3.29)

In fact, if there were no such γ, we could find a normalized sequence fj ∈
Ker(1−K)⊥ with ‖fj−Kfj‖ < 1

j , that is, fj−Kfj → 0. After passing to a

subsequence we can assume Kfj → f by compactness of K. Combining this
with fj−Kfj → 0 implies fj → f and f −Kf = 0, that is, f ∈ Ker(1−K).

On the other hand, since Ker(1−K)⊥ is closed, we also have f ∈ Ker(1−K)⊥

which shows f = 0. This contradicts ‖f‖ = lim ‖fj‖ = 1 and thus (3.29)
holds.

Now choose a sequence gj ∈ Ran(1 − K) converging to some g. By
assumption there are fk such that (1−K)fk = gk and we can even assume
fk ∈ Ker(1−K)⊥ by removing the projection onto Ker(1−K). Hence (3.29)
shows

‖fj − fk‖ ≤ γ−1‖(1−K)(fj − fk)‖ = γ−1‖gj − gk‖
that fj converges to some f and (1−K)f = g implies g ∈ Ran(1−K). �

Since

Ran(1−K)⊥ = Ker(1−K∗) (3.30)

by (2.27) we see that the left and right hand side of (3.28) are at least finite
for compact K and we can try to verify equality.

Theorem 3.16. Suppose K is compact. Then

dim Ker(1−K) = dim Ran(1−K)⊥, (3.31)

where both quantities are finite.

Proof. It suffices to show

dim Ker(1−K) ≥ dim Ran(1−K)⊥, (3.32)

since replacing K by K∗ in this inequality and invoking (2.27) provides the
reversed inequality.

We begin by showing that dim Ker(1 − K) = 0 implies dim Ran(1 −
K)⊥ = 0, that is Ran(1−K) = H. To see this suppose H1 = Ran(1−K) =
(1 − K)H is not equal to H. Then H2 = (1 − K)H1 can also not be equal
to H1. Otherwise for any given element in H⊥1 there would be an element
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in H2 with the same image under 1−K contradicting our assumption that
1−K is injective. Proceeding inductively we obtain a sequence of subspaces
Hj = (1 − K)jH with Hj+1 ⊂ Hj . Now choose a normalized sequence

fj ∈ Hj ∩ H⊥j+1. Then for k > j we have

‖Kfj −Kfk‖2 = ‖fj − fk − (1−K)(fj − fk)‖2

= ‖fj‖2 + ‖fk + (1−K)(fj − fk)‖2 ≥ 1

since fj ∈ H⊥j+1 and fk + (1−K)(fj − fk) ∈ Hj+1. But this contradicts the
fact that Kfj must have a convergent subsequence.

To show (3.32) in the general case, suppose dim Ker(1−K) < dim Ran(1−
K)⊥ instead. Then we can find a bounded map A : Ker(1−K)→ Ran(1−
K)⊥ which is injective but not onto. Extend A to a map on H by setting

Af = 0 for f ∈ Ker(1−K)⊥. Since A is finite rank, the operator K̃ = K+A

is again compact. We claim Ker(1− K̃) = {0}. Indeed, if f ∈ Ker(1− K̃),
then f −Kf = Af ∈ Ran(1−K)⊥ implies f ∈ Ker(1−K) ∩Ker(A). But
A is injective on Ker(1 − K) and thus f = 0 as claimed. Thus the first

step applied to K̃ implies Ran(1− K̃) = H. But this is impossible since the
equation

f − K̃f = (1−K)f +Af = g

for g ∈ Ran(1 − K)⊥ reduces to (1 − K)f = 0 and Af = g which has no
solution if we choose g 6∈ Ran(A). �

As a special case we obtain the famous

Theorem 3.17 (Fredholm alternative). Suppose K ∈ C(H) is compact.
Then either the inhomogeneous equation

f = Kf + g (3.33)

has a unique solution for every g ∈ H or the corresponding homogenous
equation

f = Kf (3.34)

has a nontrivial solution.

Note that (3.30) implies that in any case the inhomogenous equation
f = Kf + g has a solution if and only if g ∈ Ker(1 − K∗)⊥. Moreover,
combining (3.31) with (3.30) also shows

dim Ker(1−K) = dim Ker(1−K∗) (3.35)

for compact K.

This theory can be generalized to the case of operators where both
Ker(1 − K) and Ran(1 − K)⊥ are finite dimensional. Such operators are
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called Fredholm operators (also Noether operators) and the number

ind(1−K) = dim Ker(1−K)− dim Ran(1−K)⊥ (3.36)

is the called the index of K. Theorem 3.16 now says that a compact oper-
ator is Fredholm of index zero.

Problem 3.10. Compute Ker(1 − K) and Ran(1 − K)⊥ for the operator
K = 〈v, .〉u, where u, v ∈ H satisfy 〈u, v〉 = 1.



Chapter 4

Almost everything
about Lebesgue
integration

4.1. Borel measures in a nut shell

The first step in defining the Lebesgue integral is extending the notion of
size from intervals to arbitrary sets. Unfortunately, this turns out to be too
much, since a classical paradox by Banach and Tarski shows that one can
break the unit ball in R3 into a finite number of (wild – choosing the pieces
uses the Axiom of Choice and cannot be done with a jigsaw;-) pieces, rotate
and translate them, and reassemble them to get two copies of the unit ball
(compare Problem 4.1). Hence any reasonable notion of size (i.e., one which
is translation and rotation invariant) cannot be defined for all sets!

A collection of subsets A of a given set X such that

• X ∈ A,

• A is closed under finite unions,

• A is closed under complements

is called an algebra. Note that ∅ ∈ A and that, by de Morgan, A is also
closed under finite intersections. If an algebra is closed under countable
unions (and hence also countable intersections), it is called a σ-algebra.

Moreover, the intersection of any family of (σ-)algebras {Aα} is again
a (σ-)algebra and for any collection S of subsets there is a unique smallest

59
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(σ-)algebra Σ(S) containing S (namely the intersection of all (σ-)algebras
containing S). It is called the (σ-)algebra generated by S.

If X is a topological space, the Borel σ-algebra of X is defined to be
the σ-algebra generated by all open (respectively, all closed) sets. Sets in
the Borel σ-algebra are called Borel sets.

Example. In the case X = Rn the Borel σ-algebra will be denoted by Bn

and we will abbreviate B = B1. �

Now let us turn to the definition of a measure: A set X together with
a σ-algebra Σ is called a measurable space. A measure µ is a map
µ : Σ→ [0,∞] on a σ-algebra Σ such that

• µ(∅) = 0,

• µ(
⋃∞
j=1Aj) =

∞∑
j=1

µ(Aj) if Aj ∩Ak = ∅ for all j 6= k (σ-additivity).

It is called σ-finite if there is a countable cover {Xj}∞j=1 of X with µ(Xj) <

∞ for all j. (Note that it is no restriction to assume Xj ⊆ Xj+1.) It is
called finite if µ(X) < ∞. The sets in Σ are called measurable sets and
the triple X, Σ, and µ is referred to as a measure space.

If we replace the σ-algebra by an algebra A, then µ is called a premea-
sure. In this case σ-additivity clearly only needs to hold for disjoint sets
An for which

⋃
nAn ∈ A.

We will write An ↗ A if An ⊆ An+1 (note A =
⋃
nAn) and An ↘ A if

An+1 ⊆ An (note A =
⋂
nAn).

Theorem 4.1. Any measure µ satisfies the following properties:

(i) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity).

(ii) µ(An)→ µ(A) if An ↗ A (continuity from below).

(iii) µ(An)→ µ(A) if An ↘ A and µ(A1) <∞ (continuity from above).

Proof. The first claim is obvious. The second follows using Ãn = An\An−1

and σ-additivity. The third follows from the second using Ãn = A1\An and

µ(Ãn) = µ(A1)− µ(An). �

Example. Let A ∈ P(M) and set µ(A) to be the number of elements of A
(respectively, ∞ if A is infinite). This is the so-called counting measure.

Note that if X = N and An = {j ∈ N|j ≥ n}, then µ(An) = ∞, but
µ(
⋂
nAn) = µ(∅) = 0 which shows that the requirement µ(A1) < ∞ in the

last claim of Theorem 4.1 is not superfluous. �
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A measure on the Borel σ-algebra is called a Borel measure if µ(C) <
∞ for every compact set C. A Borel measures is called outer regular if

µ(A) = inf
A⊆O,O open

µ(O) (4.1)

and inner regular if

µ(A) = sup
C⊆A,C compact

µ(C). (4.2)

It is called regular if it is both outer and inner regular.

But how can we obtain some more interesting Borel measures? We will
restrict ourselves to the case of X = R for simplicity. Then the strategy
is as follows: Start with the algebra of finite unions of disjoint intervals
and define µ for those sets (as the sum over the intervals). This yields a
premeasure. Extend this to an outer measure for all subsets of R. Show
that the restriction to the Borel sets is a measure.

Let us first show how we should define µ for intervals: To every Borel
measure on B we can assign its distribution function

µ(x) =


−µ((x, 0]), x < 0,
0, x = 0,
µ((0, x]), x > 0,

(4.3)

which is right continuous and nondecreasing. Conversely, given a right con-
tinuous nondecreasing function µ : R→ R, we can set

µ(A) =


µ(b)− µ(a), A = (a, b],
µ(b)− µ(a−), A = [a, b],
µ(b−)− µ(a), A = (a, b),
µ(b−)− µ(a−), A = [a, b),

(4.4)

where µ(a−) = limε↓0 µ(a−ε). In particular, this gives a premeasure on the
algebra of finite unions of intervals which can be extended to a measure:

Theorem 4.2. For every right continuous nondecreasing function µ : R→
R there exists a unique regular Borel measure µ which extends (4.4). Two
different functions generate the same measure if and only if they differ by a
constant.

Since the proof of this theorem is rather involved, we defer it to the next
section and look at some examples first.

Example. Suppose Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0. Then we
obtain the so-called Dirac measure at 0, which is given by Θ(A) = 1 if
0 ∈ A and Θ(A) = 0 if 0 6∈ A. �
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Example. Suppose λ(x) = x. Then the associated measure is the ordinary
Lebesgue measure on R. We will abbreviate the Lebesgue measure of a
Borel set A by λ(A) = |A|. �

It can be shown that Borel measures on a locally compact second count-
able space are always regular ([3, Thm. 29.12]).

A set A ∈ Σ is called a support for µ if µ(X\A) = 0. A property is
said to hold µ-almost everywhere (a.e.) if it holds on a support for µ or,
equivalently, if the set where it does not hold is contained in a set of measure
zero.

Example. The set of rational numbers has Lebesgue measure zero: λ(Q) =
0. In fact, every single point has Lebesgue measure zero, and so has every
countable union of points (by countable additivity). �

Example. The Cantor set is an example of a closed uncountable set of
Lebesgue measure zero. It is constructed as follows: Start with C0 = [0, 1]
and remove the middle third to obtain C1 = [0, 1

3 ]∪[2
3 , 1]. Next, again remove

the middle third’s of the remaining sets to obtain C2 = [0, 1
9 ]∪ [2

9 ,
1
3 ]∪ [2

3 ,
7
9 ]∪

[8
9 , 1]:

C0

C1

C2

C3...

Proceeding like this, we obtain a sequence of nesting sets Cn and the limit
C =

⋂
nCn is the Cantor set. Since Cn is compact, so is C. Moreover,

Cn consists of 2n intervals of length 3−n, and thus its Lebesgue measure
is λ(Cn) = (2/3)n. In particular, λ(C) = limn→∞ λ(Cn) = 0. Using the
ternary expansion, it is extremely simple to describe: C is the set of all
x ∈ [0, 1] whose ternary expansion contains no one’s, which shows that C is
uncountable (why?). It has some further interesting properties: it is totally
disconnected (i.e., it contains no subintervals) and perfect (it has no isolated
points). �

Problem 4.1 (Vitali set). Call two numbers x, y ∈ [0, 1) equivalent if x− y
is rational. Construct the set V by choosing one representative from each
equivalence class. Show that V cannot be measurable with respect to any
nontrivial finite translation invariant measure on [0, 1). (Hint: How can
you build up [0, 1) from translations of V ?)
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4.2. Extending a premeasure to a measure

The purpose of this section is to prove Theorem 4.2. It is rather technical and

should be skipped on first reading.

In order to prove Theorem 4.2, we need to show how a premeasure can
be extended to a measure. As a prerequisite we first establish that it suffices
to check increasing (or decreasing) sequences of sets when checking whether
a given algebra is in fact a σ-algebra:

A collection of sets M is called a monotone class if An ↗ A implies
A ∈M whenever An ∈M and An ↘ A implies A ∈M whenever An ∈M.
Every σ-algebra is a monotone class and the intersection of monotone classes
is a monotone class. Hence every collection of sets S generates a smallest
monotone class M(S).

Theorem 4.3. Let A be an algebra. Then M(A) = Σ(A).

Proof. We first show that M =M(A) is an algebra.

Put M(A) = {B ∈ M|A ∪ B ∈ M}. If Bn is an increasing sequence
of sets in M(A), then A ∪ Bn is an increasing sequence in M and hence⋃
n(A ∪Bn) ∈M. Now

A ∪
(⋃

n

Bn

)
=
⋃
n

(A ∪Bn)

shows that M(A) is closed under increasing sequences. Similarly, M(A) is
closed under decreasing sequences and hence it is a monotone class. But
does it contain any elements? Well, if A ∈ A, we have A ⊆M(A) implying
M(A) =M for A ∈ A. Hence A∪B ∈M if at least one of the sets is in A.
But this shows A ⊆M(A) and hence M(A) =M for every A ∈ M. So M
is closed under finite unions.

To show that we are closed under complements, consider M = {A ∈
M|X\A ∈M}. If An is an increasing sequence, then X\An is a decreasing
sequence and X\

⋃
nAn =

⋂
nX\An ∈ M if An ∈ M and similarly for

decreasing sequences. Hence M is a monotone class and must be equal to
M since it contains A.

So we know that M is an algebra. To show that it is a σ-algebra, let
An ∈ M be given and put Ãn =

⋃
k≤nAn ∈ M. Then Ãn is increasing and⋃

n Ãn =
⋃
nAn ∈M. �

The typical use of this theorem is as follows: First verify some property
for sets in an algebra A. In order to show that it holds for every set in Σ(A),
it suffices to show that the collection of sets for which it holds is closed under
countable increasing and decreasing sequences (i.e., is a monotone class).

Now we start by proving that (4.4) indeed gives rise to a premeasure.
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Lemma 4.4. The interval function µ defined in (4.4) gives rise to a unique
σ-finite regular premeasure on the algebra A of finite unions of disjoint in-
tervals.

Proof. First of all, (4.4) can be extended to finite unions of disjoint intervals
by summing over all intervals. It is straightforward to verify that µ is well-
defined (one set can be represented by different unions of intervals) and by
construction additive.

To show regularity, we can assume any such union to consist of open
intervals and points only. To show outer regularity, replace each point {x}
by a small open interval (x+ε, x−ε) and use that µ({x}) = limε↓0 µ(x+ε)−
µ(x−ε). Similarly, to show inner regularity, replace each open interval (a, b)
by a compact one, [an, bn] ⊆ (a, b), and use µ((a, b)) = limn→∞ µ(bn)−µ(an)
if an ↓ a and bn ↑ b.

It remains to verify σ-additivity. We need to show

µ(
⋃
k

Ik) =
∑
k

µ(Ik)

whenever In ∈ A and I =
⋃
k Ik ∈ A. Since each In is a finite union of in-

tervals, we can as well assume each In is just one interval (just split In into
its subintervals and note that the sum does not change by additivity). Sim-
ilarly, we can assume that I is just one interval (just treat each subinterval
separately).

By additivity µ is monotone and hence

n∑
k=1

µ(Ik) = µ(

n⋃
k=1

Ik) ≤ µ(I)

which shows
∞∑
k=1

µ(Ik) ≤ µ(I).

To get the converse inequality, we need to work harder.

By outer regularity we can cover each Ik by some open interval Jk such
that µ(Jk) ≤ µ(Ik) + ε

2k
. First suppose I is compact. Then finitely many of

the Jk, say the first n, cover I and we have

µ(I) ≤ µ(

n⋃
k=1

Jk) ≤
n∑
k=1

µ(Jk) ≤
∞∑
k=1

µ(Ik) + ε.

Since ε > 0 is arbitrary, this shows σ-additivity for compact intervals. By
additivity we can always add/subtract the endpoints of I and hence σ-
additivity holds for any bounded interval. If I is unbounded, say I = [a,∞),
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then given x > 0, we can find an n such that Jn cover at least [0, x] and
hence

n∑
k=1

µ(Ik) ≥
n∑
k=1

µ(Jk)− ε ≥ µ([a, x])− ε.

Since x > a and ε > 0 are arbitrary, we are done. �

This premeasure determines the corresponding measure µ uniquely (if
there is one at all):

Theorem 4.5 (Uniqueness of measures). Let µ be a σ-finite premeasure on
an algebra A. Then there is at most one extension to Σ(A).

Proof. We first assume that µ(X) <∞. Suppose there is another extension
µ̃ and consider the set

S = {A ∈ Σ(A)|µ(A) = µ̃(A)}.

I claim S is a monotone class and hence S = Σ(A) since A ⊆ S by assump-
tion (Theorem 4.3).

Let An ↗ A. If An ∈ S, we have µ(An) = µ̃(An) and taking limits
(Theorem 4.1 (ii)), we conclude µ(A) = µ̃(A). Next let An ↘ A and take
limits again. This finishes the finite case. To extend our result to the σ-finite
case, let Xj ↗ X be an increasing sequence such that µ(Xj) < ∞. By the
finite case µ(A ∩Xj) = µ̃(A ∩Xj) (just restrict µ, µ̃ to Xj). Hence

µ(A) = lim
j→∞

µ(A ∩Xj) = lim
j→∞

µ̃(A ∩Xj) = µ̃(A)

and we are done. �

Note that if our premeasure is regular, so will the extension be:

Lemma 4.6. Suppose µ is a σ-finite measure on the Borel sets B. Then
outer (inner) regularity holds for all Borel sets if it holds for all sets in some
algebra A generating the Borel sets B.

Proof. We first assume that µ(X) <∞. Set

µ◦(A) = inf
A⊆O,O open

µ(O) ≥ µ(A)

and let M = {A ∈ B|µ◦(A) = µ(A)}. Since by assumption M contains
some algebra generating B, it suffices to prove that M is a monotone class.

Let An ∈M be a monotone sequence and let On ⊇ An be open sets such
that µ(On) ≤ µ(An) + ε

2n . Then

µ(An) ≤ µ(On) ≤ µ(An) +
ε

2n
.
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Now if An ↘ A, just take limits and use continuity from below of µ to see
that On ⊇ An ⊇ A is a sequence of open sets with µ(On)→ µ(A). Similarly
if An ↗ A, observe that O =

⋃
nOn satisfies O ⊇ A and

µ(O) ≤ µ(A) +
∑

µ(On\A) ≤ µ(A) + ε

since µ(On\A) ≤ µ(On\An) ≤ ε
2n .

Next let µ be arbitrary. Let Xj be a cover with µ(Xj) < ∞. Given
A, we can split it into disjoint sets Aj such that Aj ⊆ Xj (A1 = A ∩ X1,
A2 = (A\A1)∩X2, etc.). By regularity, we can assume Xj open. Thus there
are open (in X) sets Oj covering Aj such that µ(Oj) ≤ µ(Aj) + ε

2j
. Then

O =
⋃
j Oj is open, covers A, and satisfies

µ(A) ≤ µ(O) ≤
∑
j

µ(Oj) ≤ µ(A) + ε.

This settles outer regularity.

Next let us turn to inner regularity. If µ(X) < ∞, one can show as
before that M = {A ∈ B|µ◦(A) = µ(A)}, where

µ◦(A) = sup
C⊆A,C compact

µ(C) ≤ µ(A)

is a monotone class. This settles the finite case.

For the σ-finite case split A again as before. Since Xj has finite measure,
there are compact subsets Kj of Aj such that µ(Aj) ≤ µ(Kj) + ε

2j
. Now

we need to distinguish two cases: If µ(A) = ∞, the sum
∑

j µ(Aj) will

diverge and so will
∑

j µ(Kj). Hence K̃n =
⋃n
j=1 ⊆ A is compact with

µ(K̃n) → ∞ = µ(A). If µ(A) < ∞, the sum
∑

j µ(Aj) will converge and
choosing n sufficiently large, we will have

µ(K̃n) ≤ µ(A) ≤ µ(K̃n) + 2ε.

This finishes the proof. �

So it remains to ensure that there is an extension at all. For any pre-
measure µ we define

µ∗(A) = inf
{ ∞∑
n=1

µ(An)
∣∣∣A ⊆ ∞⋃

n=1

An, An ∈ A
}

(4.5)

where the infimum extends over all countable covers from A. Then the
function µ∗ : P(X) → [0,∞] is an outer measure; that is, it has the
properties (Problem 4.2)

• µ∗(∅) = 0,

• A1 ⊆ A2 ⇒ µ∗(A1) ≤ µ∗(A2), and

• µ∗(
⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An) (subadditivity).
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Note that µ∗(A) = µ(A) for A ∈ A (Problem 4.3).

Theorem 4.7 (Extensions via outer measures). Let µ∗ be an outer measure.
Then the set Σ of all sets A satisfying the Carathéodory condition

µ∗(E) = µ∗(A ∩ E) + µ∗(A′ ∩ E), ∀E ⊆ X (4.6)

(where A′ = X\A is the complement of A) forms a σ-algebra and µ∗ re-
stricted to this σ-algebra is a measure.

Proof. We first show that Σ is an algebra. It clearly containsX and is closed
under complements. Let A,B ∈ Σ. Applying Carathéodory’s condition
twice finally shows

µ∗(E) =µ∗(A ∩B ∩ E) + µ∗(A′∩B ∩ E) + µ∗(A ∩B′∩ E)

+ µ∗(A′∩B′∩ E)

≥µ∗((A ∪B) ∩ E) + µ∗((A ∪B)′∩ E),

where we have used de Morgan and

µ∗(A ∩B ∩ E) + µ∗(A′∩B ∩ E) + µ∗(A ∩B′∩ E) ≥ µ∗((A ∪B) ∩ E)

which follows from subadditivity and (A ∪ B) ∩ E = (A ∩ B ∩ E) ∪ (A′∩
B ∩E) ∪ (A ∩B′∩E). Since the reverse inequality is just subadditivity, we
conclude that Σ is an algebra.

Next, let An be a sequence of sets from Σ. Without restriction we
can assume that they are disjoint (compare the last argument in proof of

Theorem 4.3). Abbreviate Ãn =
⋃
k≤nAn, A =

⋃
nAn. Then for every set

E we have

µ∗(Ãn ∩ E) = µ∗(An ∩ Ãn ∩ E) + µ∗(A′n∩ Ãn ∩ E)

= µ∗(An ∩ E) + µ∗(Ãn−1 ∩ E)

= . . . =

n∑
k=1

µ∗(Ak ∩ E).

Using Ãn ∈ Σ and monotonicity of µ∗, we infer

µ∗(E) = µ∗(Ãn ∩ E) + µ∗(Ã′n∩ E)

≥
n∑
k=1

µ∗(Ak ∩ E) + µ∗(A′∩ E).

Letting n→∞ and using subadditivity finally gives

µ∗(E) ≥
∞∑
k=1

µ∗(Ak ∩ E) + µ∗(A′∩ E)

≥ µ∗(A ∩ E) + µ∗(B′∩ E) ≥ µ∗(E) (4.7)
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and we infer that Σ is a σ-algebra.

Finally, setting E = A in (4.7), we have

µ∗(A) =
∞∑
k=1

µ∗(Ak ∩A) + µ∗(A′∩A) =
∞∑
k=1

µ∗(Ak)

and we are done. �

Remark: The constructed measure µ is complete; that is, for every
measurable set A of measure zero, every subset of A is again measurable
(Problem 4.4).

The only remaining question is whether there are any nontrivial sets
satisfying the Carathéodory condition.

Lemma 4.8. Let µ be a premeasure on A and let µ∗ be the associated outer
measure. Then every set in A satisfies the Carathéodory condition.

Proof. Let An ∈ A be a countable cover for E. Then for every A ∈ A we
have
∞∑
n=1

µ(An) =
∞∑
n=1

µ(An ∩A) +
∞∑
n=1

µ(An ∩A′) ≥ µ∗(E ∩A) + µ∗(E ∩A′)

since An ∩A ∈ A is a cover for E ∩A and An ∩A′ ∈ A is a cover for E ∩A′.
Taking the infimum, we have µ∗(E) ≥ µ∗(E∩A)+µ∗(E∩A′), which finishes
the proof. �

Thus, as a consequence we obtain Theorem 4.2.

Problem 4.2. Show that µ∗ defined in (4.5) is an outer measure. (Hint
for the last property: Take a cover {Bnk}∞k=1 for An such that µ∗(An) =
ε

2n +
∑∞

k=1 µ(Bnk) and note that {Bnk}∞n,k=1 is a cover for
⋃
nAn.)

Problem 4.3. Show that µ∗ defined in (4.5) extends µ. (Hint: For the
cover An it is no restriction to assume An ∩Am = ∅ and An ⊆ A.)

Problem 4.4. Show that the measure constructed in Theorem 4.7 is com-
plete.

Problem 4.5. Let µ be a finite measure. Show that

d(A,B) = µ(A∆B), A∆B = (A ∪B)\(A ∩B) (4.8)

is a metric on Σ if we identify sets of measure zero. Show that if A is an
algebra, then it is dense in Σ(A). (Hint: Show that the sets which can be
approximated by sets in A form a monotone class.)
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4.3. Measurable functions

The Riemann integral works by splitting the x coordinate into small intervals
and approximating f(x) on each interval by its minimum and maximum.
The problem with this approach is that the difference between maximum
and minimum will only tend to zero (as the intervals get smaller) if f(x) is
sufficiently nice. To avoid this problem, we can force the difference to go to
zero by considering, instead of an interval, the set of x for which f(x) lies
between two given numbers a < b. Now we need the size of the set of these
x, that is, the size of the preimage f−1((a, b)). For this to work, preimages
of intervals must be measurable.

A function f : X → Rn is called measurable if f−1(A) ∈ Σ for every
A ∈ Bn. A complex-valued function is called measurable if both its real and
imaginary parts are. Clearly it suffices to check this condition for every set A
in a collection of sets which generate Bn, since the collection of sets for which
it holds forms a σ-algebra by f−1(Rn\A) = X\f−1(A) and f−1(

⋃
j Aj) =⋃

j f
−1(Aj).

Lemma 4.9. A function f : X → Rn is measurable if and only if

f−1(I) ∈ Σ ∀ I =
n∏
j=1

(aj ,∞). (4.9)

In particular, a function f : X → Rn is measurable if and only if every
component is measurable.

Proof. We need to show that B is generated by rectangles of the above
form. The σ-algebra generated by these rectangles also contains all open
rectangles of the form I =

∏n
j=1(aj , bj). Moreover, given any open set O,

we can cover it by such open rectangles satisfying I ⊆ O. By Lindelöf’s
theorem there is a countable subcover and hence every open set can be
written as a countable union of open rectangles. �

Clearly the intervals (aj ,∞) can also be replaced by [aj ,∞), (−∞, aj),
or (−∞, aj ].

If X is a topological space and Σ the corresponding Borel σ-algebra,
we will also call a measurable function Borel function. Note that, in
particular,

Lemma 4.10. Let X be a topological space and Σ its Borel σ-algebra. Any
continuous function is Borel. Moreover, if f : X → Rn and g : Y ⊆ Rn →
Rm are Borel functions, then the composition g ◦ f is again Borel.
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Sometimes it is also convenient to allow ±∞ as possible values for f ,
that is, functions f : X → R, R = R ∪ {−∞,∞}. In this case A ⊆ R is
called Borel if A ∩ R is.

The set of all measurable functions forms an algebra.

Lemma 4.11. Let X be a topological space and Σ its Borel σ-algebra. Sup-
pose f, g : X → R are measurable functions. Then the sum f + g and the
product fg are measurable.

Proof. Note that addition and multiplication are continuous functions from
R2 → R and hence the claim follows from the previous lemma. �

Moreover, the set of all measurable functions is closed under all impor-
tant limiting operations.

Lemma 4.12. Suppose fn : X → R is a sequence of measurable functions.
Then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn (4.10)

are measurable as well.

Proof. It suffices to prove that sup fn is measurable since the rest follows
from inf fn = − sup(−fn), lim inf fn = supk infn≥k fn, and lim sup fn =
infk supn≥k fn. But (sup fn)−1((a,∞)) =

⋃
n f
−1
n ((a,∞)) and we are done.

�

A few immediate consequences are worthwhile noting: It follows that
if f and g are measurable functions, so are min(f, g), max(f, g), |f | =
max(f,−f), and f± = max(±f, 0). Furthermore, the pointwise limit of
measurable functions is again measurable.

4.4. Integration — Sum me up, Henri

Now we can define the integral for measurable functions as follows. A mea-
surable function s : X → R is called simple if its range is finite; that is,
if

s =

p∑
j=1

αj χAj , Aj = s−1(αj) ∈ Σ. (4.11)

Here χA is the characteristic function of A; that is, χA(x) = 1 if x ∈ A
and χA(x) = 0 otherwise.

For a nonnegative simple function we define its integral as∫
A
s dµ =

p∑
j=1

αj µ(Aj ∩A). (4.12)
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Here we use the convention 0 · ∞ = 0.

Lemma 4.13. The integral has the following properties:

(i)
∫
A s dµ =

∫
X χA s dµ.

(ii)
∫⋃∞

j=1 Aj
s dµ =

∑∞
j=1

∫
Aj
s dµ, Aj ∩Ak = ∅ for j 6= k.

(iii)
∫
A α s dµ = α

∫
A s dµ, α ≥ 0.

(iv)
∫
A(s+ t)dµ =

∫
A s dµ+

∫
A t dµ.

(v) A ⊆ B ⇒
∫
A s dµ ≤

∫
B s dµ.

(vi) s ≤ t ⇒
∫
A s dµ ≤

∫
A t dµ.

Proof. (i) is clear from the definition. (ii) follows from σ-additivity of µ.
(iii) is obvious. (iv) Let s =

∑
j αj χAj , t =

∑
j βj χBj and abbreviate

Cjk = (Aj ∩Bk) ∩A. Then, by (ii),∫
A
(s+ t)dµ =

∑
j,k

∫
Cjk

(s+ t)dµ =
∑
j,k

(αj + βk)µ(Cjk)

=
∑
j,k

(∫
Cjk

s dµ+

∫
Cjk

t dµ

)
=

∫
A
s dµ+

∫
A
t dµ.

(v) follows from monotonicity of µ. (vi) follows since by (iv) we can write
s =

∑
j αj χCj , t =

∑
j βj χCj where, by assumption, αj ≤ βj . �

Our next task is to extend this definition to arbitrary positive functions
by ∫

A
f dµ = sup

s≤f

∫
A
s dµ, (4.13)

where the supremum is taken over all simple functions s ≤ f . Note that,
except for possibly (ii) and (iv), Lemma 4.13 still holds for this extension.

Theorem 4.14 (Monotone convergence). Let fn be a monotone nondecreas-
ing sequence of nonnegative measurable functions, fn ↗ f . Then∫

A
fn dµ→

∫
A
f dµ. (4.14)

Proof. By property (vi),
∫
A fn dµ is monotone and converges to some num-

ber α. By fn ≤ f and again (vi) we have

α ≤
∫
A
f dµ.

To show the converse, let s be simple such that s ≤ f and let θ ∈ (0, 1). Put
An = {x ∈ A|fn(x) ≥ θs(x)} and note An ↗ A (show this). Then∫

A
fn dµ ≥

∫
An

fn dµ ≥ θ
∫
An

s dµ.
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Letting n→∞, we see

α ≥ θ
∫
A
s dµ.

Since this is valid for every θ < 1, it still holds for θ = 1. Finally, since
s ≤ f is arbitrary, the claim follows. �

In particular ∫
A
f dµ = lim

n→∞

∫
A
sn dµ, (4.15)

for every monotone sequence sn ↗ f of simple functions. Note that there is
always such a sequence, for example,

sn(x) =
n2n∑
k=0

k

2n
χf−1(Ak)(x), Ak = [

k

2n
,
k + 1

2n
), An2n = [n,∞). (4.16)

By construction sn converges uniformly if f is bounded, since sn(x) = n if
f(x) ≥ n and f(x)− sn(x) < 1

2n if f(x) ≤ n.

Now what about the missing items (ii) and (iv) from Lemma 4.13? Since
limits can be spread over sums, the extension is linear (i.e., item (iv) holds)
and (ii) also follows directly from the monotone convergence theorem. We
even have the following result:

Lemma 4.15. If f ≥ 0 is measurable, then dν = f dµ defined via

ν(A) =

∫
A
f dµ (4.17)

is a measure such that ∫
g dν =

∫
gf dµ. (4.18)

Proof. As already mentioned, additivity of µ is equivalent to linearity of the
integral and σ-additivity follows from the monotone convergence theorem:

ν(
∞⋃
n=1

An) =

∫
(
∞∑
n=1

χAn)f dµ =
∞∑
n=1

∫
χAnf dµ =

∞∑
n=1

ν(An).

The second claim holds for simple functions and hence for all functions by
construction of the integral. �

If fn is not necessarily monotone, we have at least

Theorem 4.16 (Fatou’s lemma). If fn is a sequence of nonnegative mea-
surable function, then∫

A
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
A
fn dµ. (4.19)
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Proof. Set gn = infk≥n fk. Then gn ≤ fn implying∫
A
gn dµ ≤

∫
A
fn dµ.

Now take the lim inf on both sides and note that by the monotone conver-
gence theorem

lim inf
n→∞

∫
A
gn dµ = lim

n→∞

∫
A
gn dµ =

∫
A

lim
n→∞

gn dµ =

∫
A

lim inf
n→∞

fn dµ,

proving the claim. �

If the integral is finite for both the positive and negative part f± of an
arbitrary measurable function f , we call f integrable and set∫

A
f dµ =

∫
A
f+dµ−

∫
A
f−dµ. (4.20)

The set of all integrable functions is denoted by L1(X, dµ).

Lemma 4.17. Lemma 4.13 holds for integrable functions s, t.

Similarly, we handle the case where f is complex-valued by calling f
integrable if both the real and imaginary part are and setting∫

A
f dµ =

∫
A

Re(f)dµ+ i

∫
A

Im(f)dµ. (4.21)

Clearly f is integrable if and only if |f | is.

Lemma 4.18. For all integrable functions f , g we have

|
∫
A
f dµ| ≤

∫
A
|f | dµ (4.22)

and (triangle inequality)∫
A
|f + g| dµ ≤

∫
A
|f | dµ+

∫
A
|g| dµ. (4.23)

Proof. Put α = z∗

|z| , where z =
∫
A f dµ (without restriction z 6= 0). Then

|
∫
A
f dµ| = α

∫
A
f dµ =

∫
A
α f dµ =

∫
A

Re(α f) dµ ≤
∫
A
|f | dµ,

proving the first claim. The second follows from |f + g| ≤ |f |+ |g|. �

In addition, our integral is well behaved with respect to limiting opera-
tions.
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Theorem 4.19 (Dominated convergence). Let fn be a convergent sequence
of measurable functions and set f = limn→∞ fn. Suppose there is an inte-
grable function g such that |fn| ≤ g. Then f is integrable and

lim
n→∞

∫
fndµ =

∫
fdµ. (4.24)

Proof. The real and imaginary parts satisfy the same assumptions and so
do the positive and negative parts. Hence it suffices to prove the case where
fn and f are nonnegative.

By Fatou’s lemma

lim inf
n→∞

∫
A
fndµ ≥

∫
A
f dµ

and

lim inf
n→∞

∫
A

(g − fn)dµ ≥
∫
A

(g − f)dµ.

Subtracting
∫
A g dµ on both sides of the last inequality finishes the proof

since lim inf(−fn) = − lim sup fn. �

Remark: Since sets of measure zero do not contribute to the value of the
integral, it clearly suffices if the requirements of the dominated convergence
theorem are satisfied almost everywhere (with respect to µ).

Note that the existence of g is crucial, as the example fn(x) = 1
nχ[−n,n](x)

on R with Lebesgue measure shows.

Example. If µ(x) =
∑

n αnΘ(x − xn) is a sum of Dirac measures, Θ(x)
centered at x = 0, then∫

f(x)dµ(x) =
∑
n

αnf(xn). (4.25)

Hence our integral contains sums as special cases. �

Problem 4.6. Show that the set B(X) of bounded measurable functions with
the sup norm is a Banach space. Show that the set S(X) of simple functions
is dense in B(X). Show that the integral is a bounded linear functional on
B(X) if µ(X) < ∞. (Hence Theorem 1.28 could be used to extend the
integral from simple to bounded measurable functions.)

Problem 4.7. Show that the dominated convergence theorem implies (under
the same assumptions)

lim
n→∞

∫
|fn − f |dµ = 0.
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Problem 4.8. Let X ⊆ R, Y be some measure space, and f : X × Y → R.
Suppose y 7→ f(x, y) is measurable for every x and x 7→ f(x, y) is continuous
for every y. Show that

F (x) =

∫
A
f(x, y) dµ(y) (4.26)

is continuous if there is an integrable function g(y) such that |f(x, y)| ≤ g(y).

Problem 4.9. Let X ⊆ R, Y be some measure space, and f : X × Y → R.
Suppose y 7→ f(x, y) is measurable for all x and x 7→ f(x, y) is differentiable
for a.e. y. Show that

F (x) =

∫
A
f(x, y) dµ(y) (4.27)

is differentiable if there is an integrable function g(y) such that | ∂∂xf(x, y)| ≤
g(y). Moreover, y 7→ ∂

∂xf(x, y) is measurable and

F ′(x) =

∫
A

∂

∂x
f(x, y) dµ(y) (4.28)

in this case.

4.5. Product measures

Let µ1 and µ2 be two measures on Σ1 and Σ2, respectively. Let Σ1 ⊗Σ2 be
the σ-algebra generated by rectangles of the form A1 ×A2.

Example. Let B be the Borel sets in R. Then B2 = B⊗B are the Borel
sets in R2 (since the rectangles are a basis for the product topology). �

Any set in Σ1 ⊗ Σ2 has the section property; that is,

Lemma 4.20. Suppose A ∈ Σ1 ⊗ Σ2. Then its sections

A1(x2) = {x1|(x1, x2) ∈ A} and A2(x1) = {x2|(x1, x2) ∈ A} (4.29)

are measurable.

Proof. Denote all sets A ∈ Σ1⊗Σ2 with the property that A1(x2) ∈ Σ1 by
S. Clearly all rectangles are in S and it suffices to show that S is a σ-algebra.
Now, if A ∈ S, then (A′)1(x2) = (A1(x2))′ ∈ Σ2 and thus S is closed under
complements. Similarly, if An ∈ S, then (

⋃
nAn)1(x2) =

⋃
n(An)1(x2) shows

that S is closed under countable unions. �

This implies that if f is a measurable function on X1×X2, then f(., x2) is
measurable on X1 for every x2 and f(x1, .) is measurable on X2 for every x1

(observe A1(x2) = {x1|f(x1, x2) ∈ B}, where A = {(x1, x2)|f(x1, x2) ∈ B}).
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Given two measures µ1 on Σ1 and µ2 on Σ2, we now want to construct
the product measure µ1 ⊗ µ2 on Σ1 ⊗ Σ2 such that

µ1 ⊗ µ2(A1 ×A2) = µ1(A1)µ2(A2), Aj ∈ Σj , j = 1, 2. (4.30)

Theorem 4.21. Let µ1 and µ2 be two σ-finite measures on Σ1 and Σ2,
respectively. Let A ∈ Σ1 ⊗ Σ2. Then µ2(A2(x1)) and µ1(A1(x2)) are mea-
surable and ∫

X1

µ2(A2(x1))dµ1(x1) =

∫
X2

µ1(A1(x2))dµ2(x2). (4.31)

Proof. Let S be the set of all subsets for which our claim holds. Note that S
contains at least all rectangles. It even contains the algebra of finite disjoint
unions of rectangles. Thus it suffices to show that S is a monotone class
by Theorem 4.3. If µ1 and µ2 are finite, measurability and equality of both
integrals follow from the monotone convergence theorem for increasing se-
quences of sets and from the dominated convergence theorem for decreasing
sequences of sets.

If µ1 and µ2 are σ-finite, let Xi,j ↗ Xi with µi(Xi,j) < ∞ for i = 1, 2.
Now µ2((A ∩X1,j ×X2,j)2(x1)) = µ2(A2(x1) ∩X2,j)χX1,j (x1) and similarly
with 1 and 2 exchanged. Hence by the finite case∫

X1

µ2(A2 ∩X2,j)χX1,jdµ1 =

∫
X2

µ1(A1 ∩X1,j)χX2,jdµ2 (4.32)

and the σ-finite case follows from the monotone convergence theorem. �

Hence we can define

µ1 ⊗ µ2(A) =

∫
X1

µ2(A2(x1))dµ1(x1) =

∫
X2

µ1(A1(x2))dµ2(x2) (4.33)

or equivalently, since χA1(x2)(x1) = χA2(x1)(x2) = χA(x1, x2),

µ1 ⊗ µ2(A) =

∫
X1

(∫
X2

χA(x1, x2)dµ2(x2)

)
dµ1(x1)

=

∫
X2

(∫
X1

χA(x1, x2)dµ1(x1)

)
dµ2(x2). (4.34)

Additivity of µ1 ⊗ µ2 follows from the monotone convergence theorem.

Note that (4.30) uniquely defines µ1 ⊗ µ2 as a σ-finite premeasure on
the algebra of finite disjoint unions of rectangles. Hence by Theorem 4.5 it
is the only measure on Σ1 ⊗ Σ2 satisfying (4.30).

Finally we have

Theorem 4.22 (Fubini). Let f be a measurable function on X1 ×X2 and
let µ1, µ2 be σ-finite measures on X1, X2, respectively.
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(i) If f ≥ 0, then
∫
f(., x2)dµ2(x2) and

∫
f(x1, .)dµ1(x1) are both

measurable and∫∫
f(x1, x2)dµ1 ⊗ µ2(x1, x2) =

∫ (∫
f(x1, x2)dµ1(x1)

)
dµ2(x2)

=

∫ (∫
f(x1, x2)dµ2(x2)

)
dµ1(x1). (4.35)

(ii) If f is complex, then∫
|f(x1, x2)|dµ1(x1) ∈ L1(X2, dµ2), (4.36)

respectively,∫
|f(x1, x2)|dµ2(x2) ∈ L1(X1, dµ1), (4.37)

if and only if f ∈ L1(X1 × X2, dµ1 ⊗ dµ2). In this case (4.35)
holds.

Proof. By Theorem 4.21 and linearity the claim holds for simple functions.
To see (i), let sn ↗ f be a sequence of nonnegative simple functions. Then it
follows by applying the monotone convergence theorem (twice for the double
integrals).

For (ii) we can assume that f is real-valued by considering its real and
imaginary parts separately. Moreover, splitting f = f+−f− into its positive
and negative parts, the claim reduces to (i). �

In particular, if f(x1, x2) is either nonnegative or integrable, then the
order of integration can be interchanged.

Lemma 4.23. If µ1 and µ2 are σ-finite regular Borel measures, then so is
µ1 ⊗ µ2.

Proof. Regularity holds for every rectangle and hence also for the algebra of
finite disjoint unions of rectangles. Thus the claim follows from Lemma 4.6.

�

Note that we can iterate this procedure.

Lemma 4.24. Suppose µj, j = 1, 2, 3, are σ-finite measures. Then

(µ1 ⊗ µ2)⊗ µ3 = µ1 ⊗ (µ2 ⊗ µ3). (4.38)

Proof. First of all note that (Σ1 ⊗Σ2)⊗Σ3 = Σ1 ⊗ (Σ2 ⊗Σ3) is the sigma
algebra generated by the rectangles A1×A2×A3 in X1×X2×X3. Moreover,
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since

((µ1 ⊗ µ2)⊗ µ3)(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

= (µ1 ⊗ (µ2 ⊗ µ3))(A1 ×A2 ×A3),

the two measures coincide on the algebra of finite disjoint unions of rectan-
gles. Hence they coincide everywhere by Theorem 4.5. �

Example. If λ is Lebesgue measure on R, then λn = λ⊗· · ·⊗λ is Lebesgue
measure on Rn. Since λ is regular, so is λn. �

Problem 4.10. Show that the set of all finite union of rectangles A1 × A2

forms an algebra.

Problem 4.11. Let U ⊆ C be a domain, Y be some measure space, and f :
U × Y → R. Suppose y 7→ f(z, y) is measurable for every z and z 7→ f(z, y)
is holomorphic for every y. Show that

F (z) =

∫
A
f(z, y) dµ(y) (4.39)

is holomorphic if for every compact subset V ⊂ U there is an integrable
function g(y) such that |f(z, y)| ≤ g(y), z ∈ V . (Hint: Use Fubini and
Morera.)



Chapter 5

The Lebesgue spaces
Lp

5.1. Functions almost everywhere

We fix some σ-finite measure space (X,Σ, µ) and define the Lp norm by

‖f‖p =

(∫
X
|f |p dµ

)1/p

, 1 ≤ p, (5.1)

and denote by Lp(X, dµ) the set of all complex-valued measurable functions
for which ‖f‖p is finite. First of all note that Lp(X, dµ) is a linear space,
since |f + g|p ≤ 2p max(|f |, |g|)p ≤ 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p). Of
course our hope is that Lp(X, dµ) is a Banach space. However, there is
a small technical problem (recall that a property is said to hold almost
everywhere if the set where it fails to hold is contained in a set of measure
zero):

Lemma 5.1. Let f be measurable. Then∫
X
|f |p dµ = 0 (5.2)

if and only if f(x) = 0 almost everywhere with respect to µ.

Proof. Observe that we have A = {x|f(x) 6= 0} =
⋃
nAn, where An =

{x| |f(x)| > 1
n}. If

∫
|f |pdµ = 0 we must have µ(An) = 0 for every n and

hence µ(A) = limn→∞ µ(An) = 0.

Conversely we have
∫
X |f |

p dµ =
∫
A |f |

p dµ = 0 since µ(A) = 0 implies∫
A s dµ = 0 for every simple function and thus for any integrable function

by definition of the integral. �

79
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Note that the proof also shows that if f is not 0 almost everywhere,
there is an ε > 0 such that µ({x| |f(x)| ≥ ε}) > 0.

Example. Let λ be the Lebesgue measure on R. Then the characteristic
function of the rationals χQ is zero a.e. (with respect to λ).

Let Θ be the Dirac measure centered at 0. Then f(x) = 0 a.e. (with
respect to Θ) if and only if f(0) = 0. �

Thus ‖f‖p = 0 only implies f(x) = 0 for almost every x, but not for all!
Hence ‖.‖p is not a norm on Lp(X, dµ). The way out of this misery is to
identify functions which are equal almost everywhere: Let

N (X, dµ) = {f |f(x) = 0 µ-almost everywhere}. (5.3)

Then N (X, dµ) is a linear subspace of Lp(X, dµ) and we can consider the
quotient space

Lp(X, dµ) = Lp(X, dµ)/N (X, dµ). (5.4)

If dµ is the Lebesgue measure on X ⊆ Rn, we simply write Lp(X). Observe
that ‖f‖p is well-defined on Lp(X, dµ).

Even though the elements of Lp(X, dµ) are, strictly speaking, equiva-
lence classes of functions, we will still call them functions for notational
convenience. However, note that for f ∈ Lp(X, dµ) the value f(x) is not
well-defined (unless there is a continuous representative and different con-
tinuous functions are in different equivalence classes, e.g., in the case of
Lebesgue measure).

With this modification we are back in business since Lp(X, dµ) turns
out to be a Banach space. We will show this in the following sections.

But before that let us also define L∞(X, dµ). It should be the set of
bounded measurable functions B(X) together with the sup norm. The only
problem is that if we want to identify functions equal almost everywhere, the
supremum is no longer independent of the representative in the equivalence
class. The solution is the essential supremum

‖f‖∞ = inf{C |µ({x| |f(x)| > C}) = 0}. (5.5)

That is, C is an essential bound if |f(x)| ≤ C almost everywhere and the
essential supremum is the infimum over all essential bounds.

Example. If λ is the Lebesgue measure, then the essential sup of χQ with
respect to λ is 0. If Θ is the Dirac measure centered at 0, then the essential
sup of χQ with respect to Θ is 1 (since χQ(0) = 1, and x = 0 is the only
point which counts for Θ). �

As before we set

L∞(X, dµ) = B(X)/N (X, dµ) (5.6)
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and observe that ‖f‖∞ is independent of the equivalence class.

If you wonder where the ∞ comes from, have a look at Problem 5.2.

Problem 5.1. Let ‖.‖ be a seminorm on a vector space X. Show that
N = {x ∈ X| ‖x‖ = 0} is a vector space. Show that the quotient space X/N
is a normed space with norm ‖x+N‖ = ‖x‖.

Problem 5.2. Suppose µ(X) <∞. Show that L∞(X, dµ) ⊆ Lp(X, dµ) and

lim
p→∞

‖f‖p = ‖f‖∞, f ∈ L∞(X, dµ).

Problem 5.3. Construct a function f ∈ Lp(0, 1) which has a singularity at
every rational number in [0, 1] (such that the essential supremum is infinite
on every open subinterval). (Hint: Start with the function f0(x) = |x|−α
which has a single singularity at 0, then fj(x) = f0(x−xj) has a singularity
at xj.)

5.2. Jensen ≤ Hölder ≤ Minkowski

As a preparation for proving that Lp is a Banach space, we will need Hölder’s
inequality, which plays a central role in the theory of Lp spaces. In particu-
lar, it will imply Minkowski’s inequality, which is just the triangle inequality
for Lp. Our proof is based on Jensen’s inequality and emphasizes the con-
nection with convexity. In fact, the triangle inequality just states that a
norm is convex:

‖λ f + (1− λ)g‖ ≤ λ‖f‖+ (1− λ)‖g‖, λ ∈ (0, 1). (5.7)

Recall that a real function ϕ defined on an open interval (a, b) is called
convex if

ϕ((1− λ)x+ λy) ≤ (1− λ)ϕ(x) + λϕ(y), λ ∈ (0, 1) (5.8)

that is, on (x, y) the graph of ϕ(x) lies below or on the line connecting
(x, ϕ(x)) and (y, ϕ(y)):

6

-
x y

ϕ

�
�
�
�
�
�
�

If the inequality is strict, then ϕ is called strictly convex. It is not hard
to see (use z = (1− λ)x+ λy) that the definition implies

ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(x)

y − x
≤ ϕ(y)− ϕ(z)

y − z
, x < z < y, (5.9)
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where the inequalities are strict if ϕ is strictly convex.

Lemma 5.2. Let ϕ : (a, b)→ R be convex. Then

(i) ϕ is continuous.

(ii) The left/right derivatives ϕ′±(x) = limε↓0
ϕ(x±ε)−ϕ(x)

±ε exist and are

monotone nondecreasing. Moreover, ϕ′ exists except at a countable
number of points.

(iii) ϕ(y) ≥ ϕ(x) +α(y−x) for every α with ϕ′−(x) ≤ α ≤ ϕ′+(x). The
inequality is strict for y 6= x if ϕ is strictly convex.

Proof. Abbreviate D(x, y) = ϕ(y)−ϕ(x)
y−x and observe that (5.9) implies

D(x, z) ≤ D(y, z) for x < y.

Hence ϕ′±(x) exist and we have ϕ′−(x) ≤ ϕ′+(x) ≤ ϕ′−(y) ≤ ϕ′+(y) for x < y.
So (ii) follows after observing that a monotone function can have at most a
countable number of jumps. Next

ϕ′+(x) ≤ D(y, x) ≤ ϕ′−(y)

shows ϕ(y) ≥ ϕ(x)+ϕ′±(x)(y−x) if ±(y−x) > 0 and proves (iii). Moreover,
|D(y, x)| ≤ ϕ′−(z) for x, y < z proves (i). �

Remark: It is not hard to see that ϕ ∈ C1 is convex if and only if ϕ′(x)
is monotone nondecreasing (e.g., ϕ′′ ≥ 0 if ϕ ∈ C2).

With these preparations out of the way we can show

Theorem 5.3 (Jensen’s inequality). Let ϕ : (a, b)→ R be convex (a = −∞
or b =∞ being allowed). Suppose µ is a finite measure satisfying µ(X) = 1
and f ∈ L1(X, dµ) with a < f(x) < b. Then the negative part of ϕ ◦ f is
integrable and

ϕ(

∫
X
f dµ) ≤

∫
X

(ϕ ◦ f) dµ. (5.10)

For ϕ ≥ 0 nondecreasing and f ≥ 0 the requirement that f is integrable can
be dropped if ϕ(b) is understood as limx→b ϕ(x).

Proof. By (iii) of the previous lemma we have

ϕ(f(x)) ≥ ϕ(I) + α(f(x)− I), I =

∫
X
f dµ ∈ (a, b).

This shows that the negative part of ϕ ◦ f is integrable and integrating
over X finishes the proof in the case f ∈ L1. If f ≥ 0 we note that for
Xn = {x ∈ X|f(x) ≤ n} the first part implies

ϕ(

∫
Xn

f dµ) ≤ 1

µ(Xn)

∫
Xn

(ϕ(µ(Xn)f)) dµ.
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Taking n→∞ we obtain

ϕ(

∫
X
f dµ) = lim

n→∞
ϕ(

∫
Xn

f dµ) ≤ lim
n→∞

∫
Xn

ϕ(µ(Xn)f) dµ =

∫
X
ϕ(f) dµ,

where we have used µ(Xn) ↗ 1 and the monotone convergence theorem in
the last step. �

Observe that if ϕ is strictly convex, then equality can only occur if f is
constant.

Now we are ready to prove

Theorem 5.4 (Hölder’s inequality). Let p and q be dual indices; that is,

1

p
+

1

q
= 1 (5.11)

with 1 ≤ p ≤ ∞. If f ∈ Lp(X, dµ) and g ∈ Lq(X, dµ), then fg ∈ L1(X, dµ)
and

‖f g‖1 ≤ ‖f‖p‖g‖q. (5.12)

Proof. The case p = 1, q =∞ (respectively p =∞, q = 1) follows directly
from the properties of the integral and hence it remains to consider 1 <
p, q <∞.

First of all it is no restriction to assume ‖g‖q = 1. Let A = {x| |g(x)| >
0}, then (note (1− q)p = −q)

‖f g‖p1 =
∣∣∣ ∫

A
|f | |g|1−q|g|qdµ

∣∣∣p ≤ ∫
A

(|f | |g|1−q)p|g|qdµ =

∫
A
|f |pdµ ≤ ‖f‖pp,

where we have used Jensen’s inequality with ϕ(x) = |x|p applied to the
function h = |f | |g|1−q and measure dν = |g|qdµ (note ν(X) =

∫
|g|qdµ =

‖g‖qq = 1). �

As a consequence we also get

Theorem 5.5 (Minkowski’s inequality). Let f, g ∈ Lp(X, dµ). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (5.13)

Proof. Since the cases p = 1,∞ are straightforward, we only consider 1 <
p < ∞. Using |f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1, we obtain from
Hölder’s inequality (note (p− 1)q = p)

‖f + g‖pp ≤ ‖f‖p‖(f + g)p−1‖q + ‖g‖p‖(f + g)p−1‖q
= (‖f‖p + ‖g‖p)‖(f + g)‖p−1

p . (5.14)

�

This shows that Lp(X, dµ) is a normed linear space.
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Problem 5.4. Prove
n∏
k=1

xαk
k ≤

n∑
k=1

αkxk, if
n∑
k=1

αk = 1, (5.15)

for αk > 0, xk > 0. (Hint: Take a sum of Dirac-measures and use that the
exponential function is convex.)

Problem 5.5. Show the following generalization of Hölder’s inequality:

‖f g‖r ≤ ‖f‖p‖g‖q,
1

p
+

1

q
=

1

r
. (5.16)

Problem 5.6. Show the iterated Hölder’s inequality:

‖f1 · · · fm‖r ≤
m∏
j=1

‖fj‖pj ,
1

p1
+ · · ·+ 1

pm
=

1

r
. (5.17)

Problem 5.7. Show that

‖u‖p0 ≤ µ(X)
1
p0
− 1

p ‖u‖p, 1 ≤ p0 ≤ p.
(Hint: Hölder’s inequality.)

Problem 5.8 (Lyapunov inequality). Let 0 < θ < 1. Show that if f ∈
Lp1 ∩ Lp2, then f ∈ Lp and

‖f‖p ≤ ‖f‖θp1‖f‖
1−θ
p2 , (5.18)

where 1
p = θ

p1
+ 1−θ

p2
.

5.3. Nothing missing in Lp

Finally it remains to show that Lp(X, dµ) is complete.

Theorem 5.6. The space Lp(X, dµ), 1 ≤ p ≤ ∞, is a Banach space.

Proof. We begin with the case 1 ≤ p < ∞. Suppose fn is a Cauchy
sequence. It suffices to show that some subsequence converges (show this).
Hence we can drop some terms such that

‖fn+1 − fn‖p ≤
1

2n
.

Now consider gn = fn − fn−1 (set f0 = 0). Then

G(x) =
∞∑
k=1

|gk(x)|

is in Lp. This follows from∥∥∥ n∑
k=1

|gk|
∥∥∥
p
≤

n∑
k=1

‖gk‖p ≤ ‖f1‖p +
1

2
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using the monotone convergence theorem. In particular, G(x) < ∞ almost
everywhere and the sum

∞∑
n=1

gn(x) = lim
n→∞

fn(x)

is absolutely convergent for those x. Now let f(x) be this limit. Since
|f(x) − fn(x)|p converges to zero almost everywhere and |f(x) − fn(x)|p ≤
(2G(x))p ∈ L1, dominated convergence shows ‖f − fn‖p → 0.

In the case p = ∞ note that the Cauchy sequence property |fn(x) −
fm(x)| < ε for n,m > N holds except for sets Am,n of measure zero. Since
A =

⋃
n,mAn,m is again of measure zero, we see that fn(x) is a Cauchy

sequence for x ∈ X\A. The pointwise limit f(x) = limn→∞ fn(x), x ∈ X\A,
is the required limit in L∞(X, dµ) (show this). �

In particular, in the proof of the last theorem we have seen:

Corollary 5.7. If ‖fn − f‖p → 0, then there is a subsequence (of represen-
tatives) which converges pointwise almost everywhere.

Note that the statement is not true in general without passing to a
subsequence (Problem 5.9).

It even turns out that Lp is separable.

Lemma 5.8. Suppose X is a second countable topological space (i.e., it
has a countable basis) and µ is a regular Borel measure. Then Lp(X, dµ),
1 ≤ p < ∞, is separable. In particular, the set of characteristic functions
χO(x) with O in a basis is total.

Proof. The set of all characteristic functions χA(x) with A ∈ Σ and µ(A) <
∞ is total by construction of the integral. Now our strategy is as follows:
Using outer regularity, we can restrict A to open sets and using the existence
of a countable base, we can restrict A to open sets from this base.

Fix A. By outer regularity, there is a decreasing sequence of open sets
On such that µ(On)→ µ(A). Since µ(A) <∞, it is no restriction to assume
µ(On) < ∞, and thus µ(On\A) = µ(On) − µ(A) → 0. Now dominated
convergence implies ‖χA − χOn‖p → 0. Thus the set of all characteristic
functions χO(x) with O open and µ(O) < ∞ is total. Finally let B be a
countable basis for the topology. Then, every open set O can be written as
O =

⋃∞
j=1 Õj with Õj ∈ B. Moreover, by considering the set of all finite

unions of elements from B, it is no restriction to assume
⋃n
j=1 Õj ∈ B. Hence

there is an increasing sequence Õn ↗ O with Õn ∈ B. By monotone con-
vergence, ‖χO − χÕn

‖p → 0 and hence the set of all characteristic functions

χÕ with Õ ∈ B is total. �
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To finish this chapter, let us show that continuous functions are dense
in Lp.

Theorem 5.9. Let X be a locally compact metric space and let µ be a σ-
finite regular Borel measure. Then the set Cc(X) of continuous functions
with compact support is dense in Lp(X, dµ), 1 ≤ p <∞.

Proof. As in the previous proof the set of all characteristic functions χK(x)
with K compact is total (using inner regularity). Hence it suffices to show
that χK(x) can be approximated by continuous functions. By outer regu-
larity there is an open set O ⊃ K such that µ(O\K) ≤ ε. By Urysohn’s
lemma (Lemma 1.15) there is a continuous function fε which is 1 on K and
0 outside O. Since∫

X
|χK − fε|pdµ =

∫
O\K
|fε|pdµ ≤ µ(O\K) ≤ ε,

we have ‖fε − χK‖ → 0 and we are done. �

If X is some subset of Rn, we can do even better. A nonnegative function
u ∈ C∞c (Rn) is called a mollifier if∫

Rn

u(x)dx = 1. (5.19)

The standard mollifier is u(x) = exp( 1
|x|2−1

) for |x| < 1 and u(x) = 0

otherwise.

If we scale a mollifier according to uk(x) = knu(k x) such that its mass is
preserved (‖uk‖1 = 1) and it concentrates more and more around the origin,

-

6 uk

we have the following result (Problem 5.10):

Lemma 5.10. Let u be a mollifier in Rn and set uk(x) = knu(k x). Then
for every (uniformly) continuous function f : Rn → C we have that

fk(x) =

∫
Rn

uk(x− y)f(y)dy (5.20)

is in C∞(Rn) and converges to f (uniformly).
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Now we are ready to prove

Theorem 5.11. If X ⊆ Rn is open and µ is a regular Borel measure, then
the set C∞c (X) of all smooth functions with compact support is dense in
Lp(X, dµ), 1 ≤ p <∞.

Proof. By our previous result it suffices to show that every continuous
function f(x) with compact support can be approximated by smooth ones.
By setting f(x) = 0 for x 6∈ X, it is no restriction to assume X = Rn.
Now choose a mollifier u and observe that fk has compact support (since
f has). Moreover, since f has compact support, it is uniformly continuous
and fk → f uniformly. But this implies fk → f in Lp. �

We say that f ∈ Lploc(X) if f ∈ Lp(K) for every compact subset K ⊂ X.

Lemma 5.12. Suppose f ∈ L1
loc(Rn). Then∫

Rn

ϕ(x)f(x)dx = 0, ∀ϕ ∈ C∞c (Rn), (5.21)

if and only if f(x) = 0 (a.e.).

Proof. First of all we claim that for every bounded function g with compact
support K, there is a sequence of functions ϕn ∈ C∞c (Rn) with support in
K which converges pointwise to g such that ‖ϕn‖∞ ≤ ‖g‖∞.

To see this, take a sequence of continuous functions ϕn with support in
K which converges to g in L1. To make sure that ‖ϕn‖∞ ≤ ‖g‖∞, just set
it equal to sign(ϕn)‖g‖∞ whenever |ϕn| > ‖g‖∞ (show that the resulting
sequence still converges). Finally use (5.20) to make ϕn smooth (note that
this operation does not change the sup) and extract a pointwise convergent
subsequence.

Now let K be some compact set and choose g = sign(f)∗χK . Then∫
K
|f |dx =

∫
K
f sign(f)∗dx = lim

n→∞

∫
fϕndx = 0,

which shows f = 0 for a.e. x ∈ K. Since K is arbitrary, we are done. �

Problem 5.9. Find a sequence fn which converges to 0 in Lp([0, 1], dx),
1 ≤ p < ∞, but for which fn(x) → 0 for a.e. x ∈ [0, 1] does not hold.
(Hint: Every n ∈ N can be uniquely written as n = 2m + k with 0 ≤ m
and 0 ≤ k < 2m. Now consider the characteristic functions of the intervals
Im,k = [k2−m, (k + 1)2−m].)

Problem 5.10. Prove Lemma 5.10. (Hint: To show that fk is smooth, use
Problems 4.8 and 4.9.)
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5.4. Integral operators

Using Hölder’s inequality, we can also identify a class of bounded operators
in Lp.

Lemma 5.13 (Schur criterion). Consider Lp(X, dµ) and Lp(Y, dν) and let
1
p + 1

q = 1. Suppose that K(x, y) is measurable and there are measurable

functions K1(x, y), K2(x, y) such that |K(x, y)| ≤ K1(x, y)K2(x, y) and

‖K1(x, .)‖Lq(Y,dν) ≤ C1, ‖K2(., y)‖Lp(X,dµ) ≤ C2 (5.22)

for µ-almost every x, respectively, for ν-almost every y. Then the operator
K : Lp(Y, dν)→ Lp(X, dµ), defined by

(Kf)(x) =

∫
Y
K(x, y)f(y)dν(y), (5.23)

for µ-almost every x is bounded with ‖K‖ ≤ C1C2.

Proof. We assume 1 < p <∞ for simplicity and leave the cases p = 1,∞ to
the reader. Choose f ∈ Lp(Y, dν). By Fubini’s theorem

∫
Y |K(x, y)f(y)|dν(y)

is measurable and by Hölder’s inequality we have∫
Y
|K(x, y)f(y)|dν(y) ≤

∫
Y
K1(x, y)K2(x, y)|f(y)|dν(y)

≤
(∫

Y
K1(x, y)qdν(y)

)1/q (∫
Y
|K2(x, y)f(y)|pdν(y)

)1/p

≤ C1

(∫
Y
|K2(x, y)f(y)|pdν(y)

)1/p

(if K2(x, .)f(.) 6∈ Lp(X, dν), the inequality is trivially true). Now take this
inequality to the p’th power and integrate with respect to x using Fubini∫
X

(∫
Y
|K(x, y)f(y)|dν(y)

)p
dµ(x) ≤ Cp1

∫
X

∫
Y
|K2(x, y)f(y)|pdν(y)dµ(x)

= Cp1

∫
Y

∫
X
|K2(x, y)f(y)|pdµ(x)dν(y) ≤ Cp1C

p
2‖f‖

p
p.

Hence
∫
Y |K(x, y)f(y)|dν(y) ∈ Lp(X, dµ) and in particular it is finite for

µ-almost every x. Thus K(x, .)f(.) is ν integrable for µ-almost every x and∫
Y K(x, y)f(y)dν(y) is measurable. �

Note that the assumptions are for example satisfied if ‖K(x, .)‖L1(Y,dν) ≤
C and ‖K(., y)‖L1(X,dµ) ≤ C which follows by choosingK1(x, y) = |K(x, y)|1/q

and K2(x, y) = |K(x, y)|1/p.
Another case of special importance is the case of integral operators

(Kf)(x) =

∫
X
K(x, y)f(y)dµ(y), f ∈ L2(X, dµ), (5.24)
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where K(x, y) ∈ L2(X×X, dµ⊗dµ). Such an operator is called a Hilbert–
Schmidt operator.

Lemma 5.14. Let K be a Hilbert–Schmidt operator in L2(X, dµ). Then∫
X

∫
X
|K(x, y)|2dµ(x)dµ(y) =

∑
j∈J
‖Kuj‖2 (5.25)

for every orthonormal basis {uj}j∈J in L2(X, dµ).

Proof. Since K(x, .) ∈ L2(X, dµ) for µ-almost every x we infer∑
j

∣∣∣∣∫
X
K(x, y)uj(y)dµ(y)

∣∣∣∣2 =

∫
X
|K(x, y)|2dµ(y)

for µ-almost every x and thus∑
j

‖Kuj‖2 =
∑
j

∫
X

∣∣∣∣∫
X
K(x, y)uj(y)dµ(y)

∣∣∣∣2 dµ(x)

=

∫
X

∑
j

∣∣∣∣∫
X
K(x, y)uj(y)dµ(y)

∣∣∣∣2 dµ(x)

=

∫
X

∫
X
|K(x, y)|2dµ(x)dµ(y)

as claimed. �

Hence, for an operator K ∈ L(H) we define the Hilbert–Schmidt
norm by

‖K‖HS =
(∑
j∈J
‖Kuj‖2

)1/2
, (5.26)

where {uj}j∈J is some orthonormal base in H (we set it equal to ∞ if
‖Kuj‖ > 0 for an uncountable number of j’s). Our lemma for integral
operators above indicates that this definition should not depend on the par-
ticular base chosen. In fact,

Lemma 5.15. The Hilbert–Schmidt norm does not depend on the orthonor-
mal base. Moreover, ‖K‖HS = ‖K∗‖HS and ‖K‖ ≤ ‖K‖HS.

Proof. To see the first claim let {vj}j∈J be another orthonormal base. Then∑
j

‖Kuj‖2 =
∑
k,j

|〈vk,Kuj〉|2 =
∑
k,j

|〈uj ,K∗vk〉|2 =
∑
k

‖K∗vk‖2

shows ‖K‖HS = ‖K∗‖HS upon choosing vj = uj and hence also base inde-
pendence.
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To see ‖K‖ ≤ ‖K‖HS let f =
∑

j cjuj and observe

‖Kf‖2 =
∑
k

|〈uk,Kf〉|2 =
∑
k

∣∣∣∑
j

cj〈uk,Kuj〉
∣∣∣2

≤
∑
k

(∑
j

|〈uk,Kuj〉|2
)(∑

j

|cj |2
)

= ‖K‖2HS‖f‖2

which establishes the claim. �

Generalizing our previus definition for integral operators we will call K
a Hilbert–Schmidt operator if ‖K‖HS <∞.

Lemma 5.16. Every Hilbert–Schmidt operator is compact. The set of Hilbert–
Schmidt operators forms an ideal in L(H) and

‖KA‖HS ≤ ‖A‖‖K‖HS , respectively, ‖AK‖HS ≤ ‖A‖‖K‖HS . (5.27)

Proof. To see that a Hilbert–Schmidt operator K is compact, let Pn be the
projection onto span{uj}nj=1, where {uj} is some orthonormal base. Then
Kn = KPn is finite-rank and by

‖K −Kn‖2HS =
∑
j≥n
‖Kuj‖2,

converges to K in Hilbert–Schmidt norm and thus in norm.

Let K be Hilbert–Schmidt and A bounded. Then AK is compact and

‖AK‖2HS =
∑
j

‖AKuj‖2 ≤ ‖A‖2
∑
j

‖Kuj‖2 = ‖A‖2‖K‖2HS .

For KA just consider adjoints. �

Note that this gives us an easy to check test for compactness of an
integral operator.

Example. Let [a, b] be some compact interval and suppose K(x, y) is
bounded. Then the corresponding integral operator in L2(a, b) is Hilbert–
Schmidt and thus compact. This generalizes Lemma 3.4. �

Problem 5.11. Let H = `2(N) and let A be multiplication by a sequence
a = (aj)

∞
j=1. Show that A is Hilbert–Schmidt if and only if a ∈ `2(N).

Furthermore, show that ‖A‖HS = ‖a‖ in this case.

Problem 5.12. Show that K : `2(N) → `2(N), fn 7→
∑

j∈N kn+jfj is

Hilbert–Schmidt with ‖K‖HS ≤ ‖c‖1 if |kj | ≤ cj, where cj is decreasing
and summable.



Chapter 6

The main theorems
about Banach spaces

6.1. The Baire theorem and its consequences

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 6.1 (Baire category theorem). Let X be a complete metric space.
Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X =
⋃∞
n=1Xn. We can assume that the sets Xn are closed

and none of them contains a ball; that is, X\Xn is open and nonempty for
every n. We will construct a Cauchy sequence xn which stays away from all
Xn.

Since X\X1 is open and nonempty, there is a closed ball Br1(x1) ⊆
X\X1. Reducing r1 a little, we can even assume Br1(x1) ⊆ X\X1. More-
over, since X2 cannot contain Br1(x1), there is some x2 ∈ Br1(x1) that is

not in X2. Since Br1(x1)∩ (X\X2) is open, there is a closed ball Br2(x2) ⊆
Br1(x1) ∩ (X\X2). Proceeding by induction, we obtain a sequence of balls
such that

Brn(xn) ⊆ Brn−1(xn−1) ∩ (X\Xn).

Now observe that in every step we can choose rn as small as we please; hence
without loss of generality rn → 0. Since by construction xn ∈ BrN (xN ) for
n ≥ N , we conclude that xn is Cauchy and converges to some point x ∈ X.

91
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But x ∈ Brn(xn) ⊆ X\Xn for every n, contradicting our assumption that
the Xn cover X. �

Remark: The set of rational numbers Q can be written as a countable
union of its elements. This shows that completeness assumption is crucial.

(Sets which can be written as the countable union of nowhere dense sets
are said to be of first category. All other sets are second category. Hence
we have the name category theorem.)

In other words, if Xn ⊆ X is a sequence of closed subsets which cover
X, at least one Xn contains a ball of radius ε > 0.

Since a closed set is nowhere dense if and only if its complement is open
and dense (cf. Problem 1.5), there is a reformulation which is also worthwhile
noting:

Corollary 6.2. Let X be a complete metric space. Then any countable
intersection of open dense sets is again dense.

Proof. Let On be open dense sets whose intersection is not dense. Then
this intersection must be missing some closed ball Bε. This ball will lie in⋃
nXn, where Xn = X\On are closed and nowhere dense. Now note that

X̃n = Xn ∪ B are closed nowhere dense sets in Bε. But Bε is a complete
metric space, a contradiction. �

Now we come to the first important consequence, the uniform bound-
edness principle.

Theorem 6.3 (Banach–Steinhaus). Let X be a Banach space and Y some
normed linear space. Let {Aα} ⊆ L(X,Y ) be a family of bounded operators.
Suppose ‖Aαx‖ ≤ C(x) is bounded for fixed x ∈ X. Then {Aα} is uniformly
bounded, ‖Aα‖ ≤ C.

Proof. Let

Xn = {x| ‖Aαx‖ ≤ n for all α} =
⋂
α

{x| ‖Aαx‖ ≤ n}.

Then
⋃
nXn = X by assumption. Moreover, by continuity of Aα and the

norm, each Xn is an intersection of closed sets and hence closed. By Baire’s
theorem at least one contains a ball of positive radius: Bε(x0) ⊂ Xn. Now
observe

‖Aαy‖ ≤ ‖Aα(y + x0)‖+ ‖Aαx0‖ ≤ n+ C(x0)

for ‖y‖ ≤ ε. Setting y = ε x
‖x‖ , we obtain

‖Aαx‖ ≤
n+ C(x0)

ε
‖x‖

for every x. �
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The next application is

Theorem 6.4 (Open mapping). Let A ∈ L(X,Y ) be a bounded linear oper-
ator from one Banach space onto another. Then A is open (i.e., maps open
sets to open sets).

Proof. Denote by BX
r (x) ⊆ X the open ball with radius r centered at x

and let BX
r = BX

r (0). Similarly for BY
r (y). By scaling and translating balls

(using linearity of A), it suffices to prove BY
ε ⊆ A(BX

1 ) for some ε > 0.
Since A is surjective we have

Y =
∞⋃
n=1

A(BX
n )

and the Baire theorem implies that for some n, A(BX
n ) contains a ball

BY
ε (y). Without restriction n = 1 (just scale the balls). Since −A(BX

1 ) =

A(−BX
1 ) = A(BX

1 ) we see BY
ε (−y) ⊆ A(BX

1 ) and by convexity of A(BX
1 )

we also have BY
ε ⊆ A(BX

1 ).

So we have BY
ε ⊆ A(BX

1 ), but we would need BY
ε ⊆ A(BX

1 ). To complete

the proof we will show A(BX
1 ) ⊆ A(BX

2 ) which implies BY
ε/2 ⊆ A(BX

1 ).

For every y ∈ A(BX
1 ) we can choose some sequence yn ∈ A(BX

1 ) with
yn → y. Moreover, there even is some xn ∈ BX

1 with yn = A(xn). How-
ever xn might not converge, so we need to argue more carefully and ensure
convergence along the way: start with x1 ∈ BX

1 such that y − Ax1 ∈ BY
ε/2.

Scaling the relation BY
ε ⊂ A(BX

1 ) we have BY
ε/2 ⊂ A(BX

1/2) and hence we can

choose x2 ∈ BX
1/2 such that (y −Ax1)−Ax2 ∈ BY

ε/4 ⊂ A(BX
1/4). Proceeding

like this we obtain a sequence of points xn ∈ BX
21−n such that

y −
n∑
k=1

Axk ∈ BY
ε2−n .

By ‖xk‖ < 21−k the limit x =
∑∞

k=1 xk exists and satisfies ‖x‖ < 2. Hence
y = Ax ∈ A(BX

2 ) as desired. �

Remark: The requirement that A is onto is crucial (just look at the
one-dimensional case X = C). Moreover, the converse is also true: If A is
open, then the image of the unit ball contains again some ball BY

ε ⊆ A(BX
1 ).

Hence by scaling BY
rε ⊆ A(BX

r ) and letting r → ∞ we see that A is onto:
Y = A(X).

As an immediate consequence we get the inverse mapping theorem:

Theorem 6.5 (Inverse mapping). Let A ∈ L(X,Y ) be a bounded linear
bijection between Banach spaces. Then A−1 is continuous.
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Example. Consider the operator (Aa)nj=1 = (1
j aj)

n
j=1 in `2(N). Then its

inverse (A−1a)nj=1 = (j aj)
n
j=1 is unbounded (show this!). This is in agree-

ment with our theorem since its range is dense (why?) but not all of `2(N):
For example (bj = 1

j )∞j=1 6∈ Ran(A) since b = Aa gives the contradiction

∞ =
∞∑
j=1

1 =
∞∑
j=1

|jbj |2 =
∞∑
j=1

|aj |2 <∞.

In fact, for an injective operator the range is closed if and only if the inverse
is bounded (Problem 6.2). �

Another important consequence is the closed graph theorem. The graph
of an operator A is just

Γ(A) = {(x,Ax)|x ∈ D(A)}. (6.1)

If A is linear, the graph is a subspace of the Banach space X ⊕ Y (provided
X and Y are Banach spaces), which is just the cartesian product together
with the norm

‖(x, y)‖X⊕Y = ‖x‖X + ‖y‖Y (6.2)

(check this). Note that (xn, yn)→ (x, y) if and only if xn → x and yn → y.
We say that A has a colsed graph if Γ(A) is a closed set in X ⊕ Y .

Theorem 6.6 (Closed graph). Let A : X → Y be a linear map from a
Banach space X to another Banach space Y . Then A is bounded if and only
if its graph is closed.

Proof. If Γ(A) is closed, then it is again a Banach space. Now the projection
π1(x,Ax) = x onto the first component is a continuous bijection onto X.
So by the inverse mapping theorem its inverse π−1

1 is again continuous.
Moreover, the projection π2(x,Ax) = Ax onto the second component is also
continuous and consequently so is A = π2 ◦ π−1

1 . The converse is easy. �

Remark: The crucial fact here is that A is defined on all of X!

Operators whose graphs are closed are called closed operators. Being
closed is the next option you have once an operator turns out to be un-
bounded. If A is closed, then xn → x does not guarantee you that Axn
converges (like continuity would), but it at least guarantees that if Axn
converges, it converges to the right thing, namely Ax:

• A bounded: xn → x implies Axn → Ax.

• A closed: xn → x and Axn → y implies y = Ax.

If an operator is not closed, you can try to take the closure of its graph,
to obtain a closed operator. If A is bounded this always works (which is
just the contents of Theorem 1.28). However, in general, the closure of the
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graph might not be the graph of an operator as we might pick up points
(x, y1,2) ∈ Γ(A) with y1 6= y2. Since Γ(A) is a subspace, we also have

(x, y2)− (x, y1) = (0, y2−y1) ∈ Γ(A) in this case and thus Γ(A) is the graph
of some operator if and only if

Γ(A) ∩ {(0, y)|y ∈ Y } = {(0, 0)}. (6.3)

If this is the case, A is called closable and the operator A associated with
Γ(A) is called the closure of A.

In particular, A is closable if and only if xn → 0 and Axn → y implies
y = 0. In this case

D(A) = {x ∈ X|∃xn ∈ D(A), y ∈ Y : xn → x and Axn → y},
Ax = y. (6.4)

For yet another way of defining the closure see Problem 6.5.

Example. Consider the operator A in `p(N) defined by Aaj = jaj on
D(A) = {a ∈ `p(N)|aj 6= 0 for finitely many j}.

(i). A is closable. In fact, if an → 0 and Aan → b then we have anj → 0
and thus janj → 0 = bj for any j ∈ N.

(ii). The closure of A is given by

D(A) = {a ∈ `p(N)|(jaj)∞j=1 ∈ `p(N)}

and Aaj = jaj . In fact, if an → a and Aan → b then we have anj → aj
and janj → bj for any j ∈ N and thus bj = jaj for any j ∈ N. In particular

(jaj)
∞
j=1 = (bj)

∞
j=1 ∈ `p(N). Conversely, suppose (jaj)

∞
j=1 ∈ `p(N) and

consider

anj =

{
aj , j ≤ n,
0, j > n.

Then an → a and Aan → (jaj)
∞
j=1.

(iii). Note that the inverse of A is the bounded operator A
−1
aj =

j−1aj defined on all of `p(N). Thus A
−1

is closed. However, since its range

Ran(A
−1

) = D(A) is dense but not all of `p(N), A
−1

does not map closed
sets to closed sets in general. In particular, the concept of a closed operator
should not be confused with the concept of a closed map in topology! �

The closed graph theorem tells us that closed linear operators can be
defined on all of X if and only if they are bounded. So if we have an
unbounded operator we cannot have both! That is, if we want our operator
to be at least closed, we have to live with domains. This is the reason why in
quantum mechanics most operators are defined on domains. In fact, there
is another important property which does not allow unbounded operators
to be defined on the entire space:
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Theorem 6.7 (Hellinger–Toeplitz). Let A : H→ H be a linear operator on
some Hilbert space H. If A is symmetric, that is 〈g,Af〉 = 〈Ag, f〉, f, g ∈ H,
then A is bounded.

Proof. It suffices to prove that A is closed. In fact, fn → f and Afn → g
implies

〈h, g〉 = lim
n→∞

〈h,Afn〉 = lim
n→∞

〈Ah, fn〉 = 〈Ah, f〉 = 〈h,Af〉

for every h ∈ H. Hence Af = g. �

Problem 6.1. Is the sum of two closed operators also closed? (Here A+B
is defined on D(A+B) = D(A) ∩D(B).)

Problem 6.2. Suppose A : D(A) → Ran(A) is closed and injective. Show
that A−1 defined on D(A−1) = Ran(A) is closed as well.

Conclude that in this case Ran(A) is closed if and only if A−1 is bounded.

Problem 6.3. Show that the differential operator A = d
dx defined on D(A) =

C1[0, 1] ⊂ C[0, 1] (sup norm) is a closed operator. (Compare the example in
Section 1.5.)

Problem 6.4. Consider A = d
dx defined on D(A) = C1[0, 1] ⊂ L2(0, 1).

Show that its closure is given by

D(A) = {f ∈ L2(0, 1)|∃g ∈ L2(0, 1), c ∈ C : f(x) = c+

∫ x

0
g(y)dy}

and Af = g.

Problem 6.5. Consider a linear operator A : D(A) ⊆ X → Y , where X
and Y are Banach spaces. Define the graph norm associated with A by

‖x‖A = ‖x‖X + ‖Ax‖Y . (6.5)

Show that A : D(A)→ Y is bounded if we equip D(A) with the graph norm.
Show that the completion XA of (D(A), ‖.‖A) can be regarded as a subset of
X if and only if A is closable. Show that in this case the completion can
be identified with D(A) and that the closure of A in X coincides with the
extension from Theorem 1.28 of A in XA.

6.2. The Hahn–Banach theorem and its consequences

Let X be a Banach space. Recall that we have called the set of all bounded
linear functionals the dual space X∗ (which is again a Banach space by
Theorem 1.29).
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Example. Consider the Banach space `p(N) of all sequences x = (xj)
∞
j=1

for which the norm

‖x‖p =

(∑
n∈N
|xn|p

)1/p

(6.6)

is finite. Then, by Hölder’s inequality, every y ∈ `q(N) gives rise to a
bounded linear functional

ly(x) =
∑
n∈N

ynxn (6.7)

whose norm is ‖ly‖ = ‖y‖q (Problem 6.7). But can every element of `p(N)∗

be written in this form?

Suppose p = 1 and choose l ∈ `1(N)∗. Now define

yn = l(δn), (6.8)

where δnn = 1 and δnm = 0, n 6= m. Then

|yn| = |l(δn)| ≤ ‖l‖ ‖δn‖1 = ‖l‖ (6.9)

shows ‖y‖∞ ≤ ‖l‖, that is, y ∈ `∞(N). By construction l(x) = ly(x) for every

x ∈ span{δn}. By continuity of ` it even holds for x ∈ span{δn} = `1(N).
Hence the map y 7→ ly is an isomorphism, that is, `1(N)∗ ∼= `∞(N). A similar
argument shows `p(N)∗ ∼= `q(N), 1 ≤ p < ∞ (Problem 6.8). One usually
identifies `p(N)∗ with `q(N) using this canonical isomorphism and simply
writes `p(N)∗ = `q(N). In the case p = ∞ this is not true, as we will see
soon. �

It turns out that many questions are easier to handle after applying a
linear functional ` ∈ X∗. For example, suppose x(t) is a function R → X
(or C → X), then `(x(t)) is a function R → C (respectively C → C) for
any ` ∈ X∗. So to investigate `(x(t)) we have all tools from real/complex
analysis at our disposal. But how do we translate this information back to
x(t)? Suppose we have `(x(t)) = `(y(t)) for all ` ∈ X∗. Can we conclude
x(t) = y(t)? The answer is yes and will follow from the Hahn–Banach
theorem.

We first prove the real version from which the complex one then follows
easily.

Theorem 6.8 (Hahn–Banach, real version). Let X be a real vector space
and ϕ : X → R a convex function (i.e., ϕ(λx+(1−λ)y) ≤ λϕ(x)+(1−λ)ϕ(y)
for λ ∈ (0, 1)).

If ` is a linear functional defined on some subspace Y ⊂ X which satisfies
`(y) ≤ ϕ(y), y ∈ Y , then there is an extension ` to all of X satisfying
`(x) ≤ ϕ(x), x ∈ X.
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Proof. Let us first try to extend ` in just one direction: Take x 6∈ Y and
set Ỹ = span{x, Y }. If there is an extension ˜̀ to Ỹ it must clearly satisfy

˜̀(y + αx) = `(y) + α˜̀(x).

So all we need to do is to choose ˜̀(x) such that ˜̀(y+αx) ≤ ϕ(y+αx). But
this is equivalent to

sup
α>0,y∈Y

ϕ(y − αx)− `(y)

−α
≤ ˜̀(x) ≤ inf

α>0,y∈Y

ϕ(y + αx)− `(y)

α

and is hence only possible if

ϕ(y1 − α1x)− `(y1)

−α1
≤ ϕ(y2 + α2x)− `(y2)

α2

for every α1, α2 > 0 and y1, y2 ∈ Y . Rearranging this last equations we see
that we need to show

α2`(y1) + α1`(y2) ≤ α2ϕ(y1 − α1x) + α1ϕ(y2 + α2x).

Starting with the left-hand side we have

α2`(y1) + α1`(y2) = (α1 + α2)` (λy1 + (1− λ)y2)

≤ (α1 + α2)ϕ (λy1 + (1− λ)y2)

= (α1 + α2)ϕ (λ(y1 − α1x) + (1− λ)(y2 + α2x))

≤ α2ϕ(y1 − α1x) + α1ϕ(y2 + α2x),

where λ = α2
α1+α2

. Hence one dimension works.

To finish the proof we appeal to Zorn’s lemma (see Appendix A): Let E

be the collection of all extensions ˜̀ satisfying ˜̀(x) ≤ ϕ(x). Then E can be
partially ordered by inclusion (with respect to the domain) and every linear
chain has an upper bound (defined on the union of all domains). Hence there
is a maximal element ` by Zorn’s lemma. This element is defined on X, since
if it were not, we could extend it as before contradicting maximality. �

Theorem 6.9 (Hahn–Banach, complex version). Let X be a complex vector
space and ϕ : X → R a convex function satisfying ϕ(αx) ≤ ϕ(x) if |α| = 1.

If ` is a linear functional defined on some subspace Y ⊂ X which satisfies
|`(y)| ≤ ϕ(y), y ∈ Y , then there is an extension ` to all of X satisfying
|`(x)| ≤ ϕ(x), x ∈ X.

Proof. Set `r = Re(`) and observe

`(x) = `r(x)− i`r(ix).

By our previous theorem, there is a real linear extension `r satisfying `r(x) ≤
ϕ(x). Now set `(x) = `r(x) − i`r(ix). Then `(x) is real linear and by
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`(ix) = `r(ix) + i`r(x) = i`(x) also complex linear. To show |`(x)| ≤ ϕ(x)

we abbreviate α = `(x)∗

|`(x)| and use

|`(x)| = α`(x) = `(αx) = `r(αx) ≤ ϕ(αx) ≤ ϕ(x),

which finishes the proof. �

Note that ϕ(αx) ≤ ϕ(x), |α| = 1 is in fact equivalent to ϕ(αx) = ϕ(x),
|α| = 1.

If ` is a linear functional defined on some subspace, the choice ϕ(x) =
‖`‖‖x‖ implies:

Corollary 6.10. Let X be a Banach space and let ` be a bounded linear
functional defined on some subspace Y ⊆ X. Then there is an extension
` ∈ X∗ preserving the norm.

Moreover, we can now easily prove our anticipated result

Corollary 6.11. Suppose `(x) = 0 for all ` in some total subset Y ⊆ X∗.
Then x = 0.

Proof. Clearly if `(x) = 0 holds for all ` in some total subset, this holds
for all ` ∈ X∗. If x 6= 0 we can construct a bounded linear functional on
span{x} by setting `(αx) = α and extending it to X∗ using the previous
corollary. But this contradicts our assumption. �

Example. Let us return to our example `∞(N). Let c(N) ⊂ `∞(N) be the
subspace of convergent sequences. Set

l(x) = lim
n→∞

xn, x ∈ c(N), (6.10)

then l is bounded since

|l(x)| = lim
n→∞

|xn| ≤ ‖x‖∞. (6.11)

Hence we can extend it to `∞(N) by Corollary 6.10. Then l(x) cannot be
written as l(x) = ly(x) for some y ∈ `1(N) (as in (6.7)) since yn = l(δn) = 0

shows y = 0 and hence `y = 0. The problem is that span{δn} = c0(N) 6=
`∞(N), where c0(N) is the subspace of sequences converging to 0.

Moreover, there is also no other way to identify `∞(N)∗ with `1(N), since
`1(N) is separable whereas `∞(N) is not. This will follow from Lemma 6.15 (iii)
below. �

Another useful consequence is

Corollary 6.12. Let Y ⊆ X be a subspace of a normed linear space and let
x0 ∈ X\Y . Then there exists an ` ∈ X∗ such that (i) `(y) = 0, y ∈ Y , (ii)
`(x0) = dist(x0, Y ), and (iii) ‖`‖ = 1.
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Proof. Replacing Y by Y we see that it is no restriction to assume that
Y is closed. (Note that x0 ∈ X\Y if and only if dist(x0, Y ) > 0.) Let

Ỹ = span{x0, Y } and define

`(y + αx0) = α dist(x0, Y ).

By construction ` is linear on Ỹ and satisfies (i) and (ii). Moreover, by
dist(x0, Y ) ≤ ‖x0 − −yα ‖ for every y ∈ Y we have

|`(y + αx0)| = |α| dist(x0, Y ) ≤ ‖y + αx0‖, y ∈ Y.

Hence ‖`‖ ≤ 1 and there is an extension to X∗ by Corollary 6.10. To see
that the norm is in fact equal to one, take a sequence yn ∈ Y such that
dist(x0, Y ) ≥ (1− 1

n)‖x0 + yn‖. Then

|`(yn + x0)| = dist(x0, Y ) ≥ (1− 1

n
)‖yn + x0‖

establishing (iii). �

A straightforward consequence of the last corollary is also worthwhile
noting:

Corollary 6.13. Let Y ⊆ X be a subspace of a normed linear space. Then
x ∈ Y if and only if `(x) = 0 for every ` ∈ X∗ which vanishes on Y .

If we take the bidual (or double dual) X∗∗, then the Hahn–Banach
theorem tells us, that X can be identified with a subspace of X∗∗. In fact,
consider the linear map J : X → X∗∗ defined by J(x)(`) = `(x) (i.e., J(x)
is evaluation at x). Then

Theorem 6.14. Let X be a Banach space. Then J : X → X∗∗ is isometric
(norm preserving).

Proof. Fix x0 ∈ X. By |J(x0)(`)| = |`(x0)| ≤ ‖`‖∗‖x0‖ we have at least
‖J(x0)‖∗∗ ≤ ‖x0‖. Next, by Hahn–Banach there is a linear functional `0 with
norm ‖`0‖∗ = 1 such that `0(x0) = ‖x0‖. Hence |J(x0)(`0)| = |`0(x0)| =
‖x0‖ shows ‖J(x0)‖∗∗ = ‖x0‖. �

Thus J : X → X∗∗ is an isometric embedding. In many cases we even
have J(X) = X∗∗ and X is called reflexive in this case.

Example. The Banach spaces `p(N) with 1 < p <∞ are reflexive: Identify
`p(N)∗ with `q(N) and choose z ∈ `p(N)∗∗. Then there is some x ∈ `p(N)
such that

z(y) =
∑
j∈N

yjxj , y ∈ `q(N) ∼= `p(N)∗.

But this implies z(y) = y(x), that is, z = J(x), and thus J is surjective.
(Warning: It does not suffice to just argue `p(N)∗∗ ∼= `q(N)∗ ∼= `p(N).)
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However, `1 is not reflexive since `1(N)∗ ∼= `∞(N) but `∞(N)∗ 6∼= `1(N)
as noted earlier. �

Example. By the same argument (using the Riesz lemma), every Hilbert
space is reflexive. �

Lemma 6.15. Let X be a Banach space.

(i) If X is reflexive, so is every closed subspace.

(ii) X is reflexive if and only if X∗ is.

(iii) If X∗ is separable, so is X.

Proof. (i) Let Y be a closed subspace. Denote by j : Y ↪→ X the natural
inclusion and define j∗∗ : Y ∗∗ → X∗∗ via (j∗∗(y

′′))(`) = y′′(`|Y ) for y′′ ∈ Y ∗∗
and ` ∈ X∗. Note that j∗∗ is isometric by Corollary 6.10. Then

X
JX−→ X∗∗

j ↑ ↑ j∗∗
Y −→

JY
Y ∗∗

commutes. In fact, we have j∗∗(JY (y))(`) = JY (y)(`|Y ) = `(y) = JX(y)(`).
Moreover, since JX is surjective, for every y′′ ∈ Y ∗∗ there is an x ∈ X such
that j∗∗(y

′′) = JX(x). Since j∗∗(y
′′)(`) = y′′(`|Y ) vanishes on all ` ∈ X∗

which vanish on Y , so does `(x) = JX(x)(`) = j∗∗(y
′′)(`) and thus x ∈ Y

by Corollary 6.13. That is, j∗∗(Y
∗∗) = JX(Y ) and JY = j ◦ JX ◦ j−1

∗∗ is
surjective.
(ii) Suppose X is reflexive. Then the two maps

(JX)∗ : X∗ → X∗∗∗ (JX)∗ : X∗∗∗ → X∗

x′ 7→ x′ ◦ J−1
X x′′′ 7→ x′′′ ◦ JX

are inverse of each other. Moreover, fix x′′ ∈ X∗∗ and let x = J−1
X (x′′).

Then JX∗(x
′)(x′′) = x′′(x′) = J(x)(x′) = x′(x) = x′(J−1

X (x′′)), that is JX∗ =
(JX)∗ respectively (JX∗)

−1 = (JX)∗, which shows X∗ reflexive if X reflexive.
To see the converse, observe thatX∗ reflexive impliesX∗∗ reflexive and hence
JX(X) ∼= X is reflexive by (i).
(iii) Let {`n}∞n=1 be a dense set in X∗. Then we can choose xn ∈ X such
that ‖xn‖ = 1 and `n(xn) ≥ ‖`n‖/2. We will show that {xn}∞n=1 is total in

X. If it were not, we could find some x ∈ X\span{xn}∞n=1 and hence there
is a functional ` ∈ X∗ as in Corollary 6.12. Choose a subsequence `nk

→ `.
Then

‖`− `nk
‖ ≥ |(`− `nk

)(xnk
)| = |`nk

(xnk
)| ≥ ‖`nk

‖/2,

which implies `nk
→ 0 and contradicts ‖`‖ = 1. �



102 6. The main theorems about Banach spaces

If X is reflexive, then the converse of (iii) is also true (since X ∼= X∗∗

separable implies X∗ separable), but in general this fails as the example
`1(N)∗ = `∞(N) shows.

Problem 6.6. Let X be some Banach space. Show that

‖x‖ = sup
`∈X∗, ‖`‖=1

|`(x)| (6.12)

for all x ∈ X.

Problem 6.7. Show that ‖ly‖ = ‖y‖q, where ly ∈ `p(N)∗ as defined in (6.7).
(Hint: Choose x ∈ `p such that xnyn = |yn|q.)

Problem 6.8. Show that every l ∈ `p(N)∗, 1 ≤ p <∞, can be written as

l(x) =
∑
n∈N

ynxn

with some y ∈ `q(N). (Hint: To see y ∈ `q(N) consider xN defined such that
xnyn = |yn|q for n ≤ N and xn = 0 for n > N . Now look at |`(xN )| ≤
‖`‖‖xN‖p.)

Problem 6.9. Let c0(N) ⊂ `∞(N) be the subspace of sequences which con-
verge to 0, and c(N) ⊂ `∞(N) the subspace of convergent sequences.

(i) Show that c0(N), c(N) are both Banach spaces and that c(N) =
span{c0(N), e}, where e = (1, 1, 1, . . . ) ∈ c(N).

(ii) Show that every l ∈ c0(N)∗ can be written as

l(x) =
∑
n∈N

ynxn

with some y ∈ `1(N) which satisfies ‖y‖1 = ‖`‖.
(iii) Show that every l ∈ c(N)∗ can be written as

l(x) =
∑
n∈N

ynxn + y0 lim
n→∞

xn

with some y ∈ `1(N) which satisfies |y0|+ ‖y‖1 = ‖`‖.

Problem 6.10. Let {xn} ⊂ X be a total set of linearly independent vectors
and suppose the complex numbers cn satisfy |cn| ≤ c‖xn‖. Is there a bounded
linear functional ` ∈ X∗ with `(xn) = cn and ‖`‖ ≤ c? (Hint: Consider e.g.
X = `2(Z).)
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6.3. Weak convergence

In the last section we have seen that `(x) = 0 for all ` ∈ X∗ implies x = 0.
Now what about convergence? Does `(xn) → `(x) for every ` ∈ X∗ imply
xn → x? Unfortunately the answer is no:

Example. Let un be an infinite orthonormal set in some Hilbert space.
Then 〈g, un〉 → 0 for every g since these are just the expansion coefficients
of g which are in `2 by Bessel’s inequality. Since by the Riesz lemma (Theo-
rem 2.10), every bounded linear functional is of this form, we have `(un)→ 0
for every bounded linear functional. (Clearly un does not converge to 0, since
‖un‖ = 1.) �

If `(xn)→ `(x) for every ` ∈ X∗ we say that xn converges weakly to
x and write

w-lim
n→∞

xn = x or xn ⇀ x. (6.13)

Clearly xn → x implies xn ⇀ x and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since `(xn)→ `(x) and
`(xn)→ `(x̃) imply `(x− x̃) = 0. A sequence xn is called a weak Cauchy
sequence if `(xn) is Cauchy (i.e. converges) for every ` ∈ X∗.

Lemma 6.16. Let X be a Banach space.

(i) xn ⇀ x implies ‖x‖ ≤ lim inf ‖xn‖.
(ii) Every weak Cauchy sequence xn is bounded: ‖xn‖ ≤ C.

(iii) If X is reflexive, then every weak Cauchy sequence converges weakly.

(iv) A sequence xn is Cauchy if and only if `(xn) is Cauchy, uniformly
for ` ∈ X∗ with ‖`‖ = 1.

Proof. (i) Choose ` ∈ X∗ such that `(x) = ‖x‖ (for the limit x) and ‖`‖ = 1.
Then

‖x‖ = `(x) = lim inf `(xn) ≤ lim inf ‖xn‖.
(ii) For every ` we have that |J(xn)(`)| = |`(xn)| ≤ C(`) is bounded. Hence
by the uniform boundedness principle we have ‖xn‖ = ‖J(xn)‖ ≤ C.
(iii) If xn is a weak Cauchy sequence, then `(xn) converges and we can define
j(`) = lim `(xn). By construction j is a linear functional on X∗. Moreover,
by (ii) we have |j(`)| ≤ sup ‖`(xn)‖ ≤ ‖`‖ sup ‖xn‖ ≤ C‖`‖ which shows
j ∈ X∗∗. Since X is reflexive, j = J(x) for some x ∈ X and by construction
`(xn)→ J(x)(`) = `(x), that is, xn ⇀ x. (iv) This follows from

‖xn − xm‖ = sup
‖`‖=1

|`(xn − xm)|

(cf. Problem 6.6). �
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Remark: One can equip X with the weakest topology for which all
` ∈ X∗ remain continuous. This topology is called the weak topology and
it is given by taking all finite intersections of inverse images of open sets
as a base. By construction, a sequence will converge in the weak topology
if and only if it converges weakly. By Corollary 6.12 the weak topology is
Hausdorff, but it will not be metrizable in general. In particular, sequences
do not suffice to describe this topology.

In a Hilbert space there is also a simple criterion for a weakly convergent
sequence to converge in norm.

Lemma 6.17. Let H be a Hilbert space and let fn ⇀ f . Then fn → f if
and only if lim sup ‖fn‖ ≤ ‖f‖.

Proof. By (i) of the previous lemma we have lim ‖fn‖ = ‖f‖ and hence

‖f − fn‖2 = ‖f‖2 − 2Re(〈f, fn〉) + ‖fn‖2 → 0.

The converse is straightforward. �

Now we come to the main reason why weakly convergent sequences are
of interest: A typical approach for solving a given equation in a Banach
space is as follows:

(i) Construct a (bounded) sequence xn of approximating solutions
(e.g. by solving the equation restricted to a finite dimensional sub-
space and increasing this subspace).

(ii) Use a compactness argument to extract a convergent subsequence.

(iii) Show that the limit solves the equation.

Our aim here is to provide some results for the step (ii). In a finite di-
mensional vector space the most important compactness criterion is bound-
edness (Heine-Borel theorem, Theorem 1.11). In infinite dimensions this
breaks down:

Theorem 6.18. The closed unit ball in X is compact if and only if X is
finite dimensional.

For the proof we will need

Lemma 6.19. Let X be a normed linear space and Y ⊂ X some subspace.
If Y 6= X, then for every ε ∈ (0, 1) there exists an xε with ‖xε‖ = 1 and

inf
y∈Y
‖xε − y‖ ≥ 1− ε. (6.14)
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Proof. Pick x ∈ X\Y and abbreviate d = dist(x, Y ) > 0. Choose yε ∈ Y
such that ‖x− yε‖ ≤ d

1−ε . Set

xε =
x− yε
‖x− yε‖

.

Then xε is the vector we look for since

‖xε − y‖ =
1

‖x− yε‖
‖x− (yε + ‖x− yε‖y)‖

≥ d

‖x− yε‖
≥ 1− ε

as required. �

Proof. (of Theorem 6.18) If X is finite dimensional, then X is isomorphic
to Cn and the closed unit ball is compact by the Heine-Borel theorem (The-
orem 1.11).

Conversely, suppose X is infinite dimensional and abbreviate S1 = {x ∈
X| ‖x‖ = 1}. Choose x1 ∈ S1 and set Y1 = span{x1}. Then, by the lemma
there is an x2 ∈ S1 such that ‖x2− x1‖ ≥ 1

2 . Setting Y2 = span{x1, x2} and

invoking again our lemma, there is an x3 ∈ S1 such that ‖x3 − xj‖ ≥ 1
2 for

j = 1, 2. Proceeding by induction, we obtain a sequence xn ∈ S1 such that
‖xn − xm‖ ≥ 1

2 for m 6= n. In particular, this sequence cannot have any
convergent subsequence. (Recall that in a metric space compactness and
sequential compactness are equivalent — Lemma 1.10.) �

If we are willing to treat convergence for weak convergence, the situation
looks much brighter!

Theorem 6.20. Let X be a reflexive Banach space. Then every bounded
sequence has a weakly convergent subsequence.

Proof. Let xn be some bounded sequence and consider Y = span{xn}.
Then Y is reflexive by Lemma 6.15 (i). Moreover, by construction Y is
separable and so is Y ∗ by the remark after Lemma 6.15.

Let `k be a dense set in Y ∗. Then by the usual diagonal sequence
argument we can find a subsequence xnm such that `k(xnm) converges for
every k. Denote this subsequence again by xn for notational simplicity.
Then,

‖`(xn)− `(xm)‖ ≤‖`(xn)− `k(xn)‖+ ‖`k(xn)− `k(xm)‖
+ ‖`k(xm)− `(xm)‖
≤2C‖`− `k‖+ ‖`k(xn)− `k(xm)‖

shows that `(xn) converges for every ` ∈ span{`k} = Y ∗. Thus there is a
limit by Lemma 6.16 (iii). �
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Note that this theorem breaks down if X is not reflexive.

Example. LetX = L1(R). Every bounded ϕ gives rise to a linear functional

`ϕ(f) =

∫
f(x)ϕ(x) dx

in L1(R)∗. Take some nonnegative u1 with compact support, ‖u1‖1 = 1,
and set uk(x) = ku1(k x). Then we have∫

uk(x)ϕ(x) dx→ ϕ(0)

(see Problem 5.10) for every continuous ϕ. Furthermore, if ukj ⇀ u we
conclude ∫

u(x)ϕ(x) dx = ϕ(0).

In particular, choosing ϕk(x) = max(0, 1−k|x|) we infer from the dominated
convergence theorem

1 =

∫
u(x)ϕk(x) dx→

∫
u(x)χ{0}(x) dx = 0,

a contradiction.

In fact, uk converges to the Dirac measure centered at 0, which is not in
L1(R). �

Finally, let me remark that similar concepts can be introduced for oper-
ators. This is of particular importance for the case of unbounded operators,
where convergence in the operator norm makes no sense at all.

A sequence of operators An is said to converge strongly to A,

s-lim
n→∞

An = A :⇔ Anx→ Ax ∀x ∈ D(A) ⊆ D(An). (6.15)

It is said to converge weakly to A,

w-lim
n→∞

An = A :⇔ Anx ⇀ Ax ∀x ∈ D(A) ⊆ D(An). (6.16)

Clearly norm convergence implies strong convergence and strong conver-
gence implies weak convergence.

Example. Consider the operator Sn ∈ L(`2(N)) which shifts a sequence n
places to the left, that is,

Sn (x1, x2, . . . ) = (xn+1, xn+2, . . . ) (6.17)

and the operator S∗n ∈ L(`2(N)) which shifts a sequence n places to the right
and fills up the first n places with zeros, that is,

S∗n (x1, x2, . . . ) = (0, . . . , 0︸ ︷︷ ︸
n places

, x1, x2, . . . ). (6.18)
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Then Sn converges to zero strongly but not in norm (since ‖Sn‖ = 1) and S∗n
converges weakly to zero (since 〈x, S∗ny〉 = 〈Snx, y〉) but not strongly (since
‖S∗nx‖ = ‖x‖) . �

Lemma 6.21. Suppose An ∈ L(X) is a sequence of bounded operators.

(i) s-limn→∞An = A implies ‖A‖ ≤ lim inf ‖An‖.
(ii) Every strong Cauchy sequence An is bounded: ‖An‖ ≤ C.

(iii) If Any → Ay for y in a dense set and ‖An‖ ≤ C, then s-limn→∞An =
A.

The same result holds if strong convergence is replaced by weak convergence.

Proof. (i) and (ii) follow as in Lemma 6.16 (i).
(iii) Just use

‖Anx−Ax‖ ≤ ‖Anx−Any‖+ ‖Any −Ay‖+ ‖Ay −Ax‖
≤ 2C‖x− y‖+ ‖Any −Ay‖

and choose y in the dense subspace such that ‖x−y‖ ≤ ε
4C and n large such

that ‖Any −Ay‖ ≤ ε
2 .

The case of weak convergence is left as an exercise. �

For an application of this lemma see Problem 6.15.

Lemma 6.22. Suppose An, Bn ∈ L(X) are two sequences of bounded oper-
ators.

(i) s-limn→∞An = A and s-limn→∞Bn = B implies s-limn→∞AnBn =
AB.

(ii) s-limn→∞An = A and w-limn→∞Bn = B implies w-limn→∞AnBn =
AB.

Proof. For the first case just observe

‖(AnBn −AB)x‖ ≤ ‖(An −A)Bx‖+ ‖An‖‖(Bn −B)x‖ → 0.

The second case is similar and again left as an exercise. �

Example. Consider again the last example. Then

SnS
∗
n(x1, x2, . . . ) = (0, . . . , 0︸ ︷︷ ︸

n places

, xn+1, xn+2, . . . )

converges to 0 weakly (in fact even strongly) but

S∗nSn (x1, x2, . . . ) = (x1, x2, . . . )

does not! Hence the second claim in the previous lemma cannot be im-
proved. �
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Remark: For a sequence of linear functionals `n, strong convergence is
also called weak-∗ convergence. That is, the weak-∗ limit of `n is ` if

`n(x)→ `(x) ∀x ∈ X. (6.19)

Note that this is not the same as weak convergence on X∗, since ` is the
weak limit of `n if

j(`n)→ j(`) ∀j ∈ X∗∗, (6.20)

whereas for the weak-∗ limit this is only required for j ∈ J(X) ⊆ X∗∗ (recall
J(x)(`) = `(x)). So the weak topology on X∗ is the weakest topology for
which all j ∈ X∗∗ remain continuous and the weak-∗ topology on X∗ is the
weakest topology for which all j ∈ J(X) remain continuous. In particular,
the weak-∗ topology is weaker than the weak topology and both are equal
if X is reflexive.

With this notation it is also possible to slightly generalize Theorem 6.20
(Problem 6.16):

Theorem 6.23. Suppose X is separable. Then every bounded sequence
`n ∈ X∗ has a weak-∗ convergent subsequence.

Example. Let us return to the example after Theorem 6.20. Consider the
Banach space of bounded continuous functions X = C(R). Using `f (ϕ) =∫
ϕf dx we can regard L1(R) as a subspace of X∗. Then the Dirac measure

centered at 0 is also in X∗ and it is the weak-∗ limit of the sequence uk. �

Problem 6.11. Suppose `n → ` in X∗ and xn ⇀ x in X. Then `n(xn) →
`(x).

Similarly, suppose s-lim `n → ` and xn → x. Then `n(xn)→ `(x).

Problem 6.12. Show that xn ⇀ x implies Axn ⇀ Ax for A ∈ L(X).

Problem 6.13. Show that if {`j} ⊆ X∗ is some total set, then xn ⇀ x if
and only if xn is bounded and `j(xn) → `j(x) for all j. Show that this is
wrong without the boundedness assumption (Hint: Take e.g. X = `2(N)).

Problem 6.14 (Convolution). Show that for f ∈ L1(Rn) and g ∈ Lp(Rn),
the convolution

(g ∗ f)(x) =

∫
Rn

g(x− y)f(y)dy =

∫
Rn

g(y)f(x− y)dy (6.21)

is in Lp(Rn) and satisfies Young’s inequality

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (6.22)

(Hint: Without restriction ‖f‖1 = 1. Now use Jensen and Fubini.)
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Problem 6.15 (Smoothing). Suppose f ∈ Lp(Rn). Show that fk defined
as in (5.20) converges to f in Lp. (Hint: Use Lemma 6.21 and Young’s
inequality.)

Problem 6.16. Prove Theorem 6.23





Chapter 7

The dual of Lp

7.1. Decomposition of measures

Let µ, ν be two measures on a measure space (X,Σ). They are called
mutually singular (in symbols µ ⊥ ν) if they are supported on disjoint
sets. That is, there is a measurable set N such that µ(N) = 0 and ν(X\N) =
0.

Example. Let λ be the Lebesgue measure and Θ the Dirac measure (cen-
tered at 0). Then λ ⊥ Θ: Just take N = {0}; then λ({0}) = 0 and
Θ(R\{0}) = 0. �

On the other hand, ν is called absolutely continuous with respect to
µ (in symbols ν � µ) if µ(A) = 0 implies ν(A) = 0.

Example. The prototypical example is the measure dν = f dµ (compare
Lemma 4.15). Indeed µ(A) = 0 implies

ν(A) =

∫
A
f dµ = 0 (7.1)

and shows that ν is absolutely continuous with respect to µ. In fact, we will
show below that every absolutely continuous measure is of this form. �

The two main results will follow as simple consequence of the following
result:

Theorem 7.1. Let µ, ν be σ-finite measures. Then there exists a unique
(a.e.) nonnegative function f and a set N of µ measure zero, such that

ν(A) = ν(A ∩N) +

∫
A
f dµ. (7.2)

111
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Proof. We first assume µ, ν to be finite measures. Let α = µ + ν and
consider the Hilbert space L2(X, dα). Then

`(h) =

∫
X
h dν

is a bounded linear functional by Cauchy–Schwarz:

|`(h)|2 =

∣∣∣∣∫
X

1 · h dν
∣∣∣∣2 ≤ (∫ |1|2 dν)(∫ |h|2dν)

≤ ν(X)

(∫
|h|2dα

)
= ν(X)‖h‖2.

Hence by the Riesz lemma (Theorem 2.10) there exists a g ∈ L2(X, dα) such
that

`(h) =

∫
X
hg dα.

By construction

ν(A) =

∫
χA dν =

∫
χAg dα =

∫
A
g dα. (7.3)

In particular, g must be positive a.e. (take A the set where g is negative).
Furthermore, let N = {x|g(x) ≥ 1}. Then

ν(N) =

∫
N
g dα ≥ α(N) = µ(N) + ν(N),

which shows µ(N) = 0. Now set

f =
g

1− g
χN ′ , N ′ = X\N.

Then, since (7.3) implies dν = g dα, respectively, dµ = (1− g)dα, we have∫
A
fdµ =

∫
χA

g

1− g
χN ′ dµ =

∫
χA∩N ′g dα = ν(A ∩N ′)

as desired. Clearly f is unique, since if there is a second function f̃ , then∫
A(f − f̃)dµ = 0 for every A shows f − f̃ = 0 a.e.

To see the σ-finite case, observe that Xn ↗ X, µ(Xn) <∞ and Yn ↗ X,
ν(Yn) < ∞ implies Xn ∩ Yn ↗ X and α(Xn ∩ Yn) < ∞. Hence when
restricted to Xn∩Yn, we have sets Nn and functions fn. Now take N =

⋃
Nn

and choose f such that f |Xn = fn (this is possible since fn+1|Xn = fn a.e.).
Then µ(N) = 0 and

ν(A ∩N ′) = lim
n→∞

ν(A ∩ (Xn\N)) = lim
n→∞

∫
A∩Xn

f dµ =

∫
A
f dµ,

which finishes the proof. �

Now the anticipated results follow with no effort:
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Theorem 7.2 (Lebesgue decomposition). Let µ, ν be two σ-finite measures
on a measure space (X,Σ). Then ν can be uniquely decomposed as ν =
νac + νsing, where νac and νsing are mutually singular and νac is absolutely
continuous with respect to µ.

Proof. Taking νsing(A) = ν(A ∩ N) and dνac = f dµ, there is at least
one such decomposition. To show uniqueness, first let ν be finite. If there
is another one, ν = ν̃ac + ν̃sing, then let Ñ be such that µ(Ñ) = 0 and

ν̃sing(Ñ
′) = 0. Then ν̃sing(A) − ν̃sing(A) =

∫
A(f̃ − f)dµ. In particular,∫

A∩N ′∩Ñ ′(f̃ − f)dµ = 0 and hence f̃ = f a.e. away from N ∪ Ñ . Since

µ(N ∪ Ñ) = 0, we have f̃ = f a.e. and hence ν̃ac = νac as well as ν̃sing =
ν − ν̃ac = ν − νac = νsing. The σ-finite case follows as usual. �

Theorem 7.3 (Radon–Nikodym). Let µ, ν be two σ-finite measures on a
measure space (X,Σ). Then ν is absolutely continuous with respect to µ if
and only if there is a positive measurable function f such that

ν(A) =

∫
A
f dµ (7.4)

for every A ∈ Σ. The function f is determined uniquely a.e. with respect to
µ and is called the Radon–Nikodym derivative dν

dµ of ν with respect to
µ.

Proof. Just observe that in this case ν(A ∩ N) = 0 for every A; that is,
νsing = 0. �

Problem 7.1. Let µ be a Borel measure on B and suppose its distribution
function µ(x) is differentiable. Show that the Radon–Nikodym derivative
equals the ordinary derivative µ′(x).

Problem 7.2. Suppose µ and ν are inner regular measures. Show that
ν � µ if and only if µ(C) = 0 implies ν(C) = 0 for every compact set.

Problem 7.3. Let dν = f dµ. Suppose f > 0 a.e. with respect to µ. Then
µ� ν and dµ = f−1dν.

Problem 7.4 (Chain rule). Show that ν � µ is a transitive relation. In
particular, if ω � ν � µ, show that

dω

dµ
=
dω

dν

dν

dµ
.

Problem 7.5. Suppose ν � µ. Show that for every measure ω we have

dω

dµ
dµ =

dω

dν
dν + dζ,

where ζ is a positive measure (depending on ω) which is singular with respect
to ν. Show that ζ = 0 if and only if µ� ν.
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7.2. Complex measures

Let (X,Σ) be some measure space. A map ν : Σ → C is called a complex
measure if

ν(
∞⋃
n=1

An) =
∞∑
n=1

ν(An), An ∩Am = ∅, n 6= m. (7.5)

Note that a positive measure is a complex measure only if it is finite (the
value ∞ is not allowed for complex measures). Moreover, the definition
implies that the sum is independent of the order of the sets Aj , hence the
sum must be absolutely convergent.

Example. Let µ be a positive measure. For every f ∈ L1(X, dµ) we have
that f dµ is a complex measure (compare the proof of Lemma 4.15 and use
dominated in place of monotone convergence). In fact, we will show that
every complex measure is of this form. �

The total variation of a measure is defined as

|ν|(A) = sup
{ ∞∑
n=1

|ν(An)|
∣∣∣An ∈ Σ disjoint, A =

∞⋃
n=1

An

}
. (7.6)

Note that by construction we have

|ν|(A) ≤ |ν(A)|. (7.7)

Theorem 7.4. The total variation is a positive measure.

Proof. Suppose A =
⋃∞
n=1An. We need to show |ν|(A) =

∑∞
n=1 |ν|(An)

for disjoint sets An.

Let Bn,k be a disjoint cover for A such that

|ν|(An) ≤
∞∑
k=1

|ν(Bn,k)|+
ε

2n
.

Then
∞∑
n=1

|ν|(An) ≤
∞∑

n,k=1

|ν(Bn,k)|+ ε ≤ |ν|(A) + ε

since
⋃∞
n,k=1Bn,k = A. Letting ε→ 0 shows |ν|(A) ≥

∑∞
n=1 |ν|(An).

Conversely, if A =
⋃∞
n=1Bn, then

∞∑
k=1

|ν(Bk)| =
∞∑
k=1

∣∣∣ ∞∑
n=1

ν(Bk ∩An)
∣∣∣ ≤ ∞∑

k,n=1

|ν(Bk ∩An)|

=

∞∑
n=1

∞∑
k=1

|ν(Bk ∩An)| ≤
∞∑
n=1

|ν|(An).
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Taking the supremum shows |ν|(A) ≤
∑∞

n=1 |ν|(An). �

Theorem 7.5. The total variation |ν| of a complex measure ν is a finite
measure.

Proof. Splitting ν into its real and imaginary part, it is no restriction to
assume that ν is real-valued since |ν|(A) ≤ |Re(ν)|(A) + |Im(ν)|(A).

The idea is as follows: Suppose we can split any given set A with |ν|(A) =
∞ into two subsets B and A\B such that |ν(B)| ≥ 1 and |ν|(A\B) = ∞.
Then we can construct a sequence Bn of disjoint sets with |ν(Bn)| ≥ 1 for
which

∞∑
n=1

ν(Bn)

diverges (the terms of a convergent series must converge to zero). But σ-
additivity requires that the sum converges to ν(

⋃
nBn), a contradiction.

It remains to show existence of this splitting. Let A with |ν|(A) = ∞
be given. Then there are disjoint sets Aj such that

n∑
j=1

|ν(Aj)| ≥ 2(1 + |ν(A)|).

Now let A± =
⋃
{Aj |±ν(Aj) > 0}. Then for one of them we have |ν(Aσ)| ≥

1 + |ν(A)| and hence

|ν(A\Aσ)| = |ν(A)− ν(Aσ)| ≥ |ν(Aσ)| − |ν(A)| ≥ 1.

Moreover, by |ν|(A) = |ν|(Aσ) + |ν|(A\Aσ) either Aσ or A\Aσ must have
infinite |ν| measure. �

Note that this implies that every complex measure ν can be written as
a linear combination of four positive measures. In fact, first we can split ν
into its real and imaginary part

ν = νr + iνi, νr(A) = Re(ν(A)), νi(A) = Im(ν(A)). (7.8)

Second we can split every real (also called signed) measure according to

ν = ν+ − ν−, ν±(A) =
|ν|(A)± ν(A)

2
. (7.9)

By (7.7) both ν− and ν+ are positive measures. This splitting is also known
as Hahn decomposition of a signed measure.

If µ is a positive and ν a complex measure we say that ν is absolutely
continuous with respect to µ if µ(A) = 0 implies ν(A) = 0.

Lemma 7.6. If µ is a positive and ν a complex measure then ν � µ if and
only if |ν| � µ.
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Proof. If ν � µ, then µ(A) = 0 implies µ(B) = 0 for every B ⊆ A
and hence |µ|(A) = 0. Conversely, if |ν| � µ, then µ(A) = 0 implies
|ν(A)| ≤ |ν|(A) = 0. �

Now we can prove the complex version of the Radon–Nikodym theorem:

Theorem 7.7 (Complex Radon–Nikodym). Let (X,Σ) be a measure space,
µ a positive σ-finite measure and ν a complex measure which is absolutely
continuous with respect to µ. Then there is a unique f ∈ L1(X, dµ) such
that

ν(A) =

∫
A
f dµ. (7.10)

Proof. By treating the real and imaginary part separately it is no restriction
to assume that ν is real-valued. Let ν = ν+−ν− be its Hahn decomposition.
Then both ν+ and ν− are absolutely continuous with respect to µ and by
the Radon–Nikodym theorem there are functions f± such that dν± = f±dµ.
By construction ∫

X
f±dµ = ν±(X) ≤ |ν|(X) <∞,

which shows f = f+ − f− ∈ L1(X, dµ). Moreover, dν = dν+ − dν− = f dµ
as required. �

In this case the total variation of dν = f dµ is just d|ν| = |f |dµ:

Lemma 7.8. Suppose dν = f dµ, where µ is a positive measure and f ∈
L1(X, dµ). Then

|ν|(A) =

∫
A
|f |dµ. (7.11)

Proof. If An are disjoint sets and A =
⋃
nAn we have∑

n

|ν(An)| =
∑
n

∣∣∣ ∫
An

f dµ
∣∣∣ ≤∑

n

∫
An

|f |dµ =

∫
A
|f |dµ.

Hence |ν|(A) ≤
∫
A |f |dµ. To show the converse define

Ank = {x|k − 1

n
≤ arg(f(x))

2π
<
k

n
}, 1 ≤ k ≤ n.

Then the simple functions

sn(x) =

n∑
k=1

e−2πi k−1
n χAn

k
(x)

converge to f(x)∗/|f(x)| pointwise and hence

lim
n→∞

∫
A
snf dµ =

∫
A
|f |dµ
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by dominated convergence. Moreover,∣∣∣ ∫
A
snf dµ

∣∣∣ ≤ n∑
k=1

∣∣∣ ∫
An

k

f dµ
∣∣∣ ≤ n∑

k=1

|ν(Ank)| ≤ |ν|(A)

shows
∫
A |f |dµ ≤ |ν|(A). �

As a consequence we obtain (Problem 7.6):

Corollary 7.9. If ν is a complex measure, then dν = h d|ν|, where |h| = 1.

In particular, note that∣∣∣ ∫
A
f dν

∣∣∣ ≤ ‖f‖∞|ν|(A). (7.12)

Problem 7.6. Prove Corollary 7.9 (Hint: Use the complex Radon–Nikodym
theorem to get existence of f . Then show that 1− |f | vanishes a.e.).

Problem 7.7. Let ν be a complex measure and let

ν = νr,+ − νr,− + i(νi,+ − νi,−)

be its decompostition into positive measures. Show the estimate

1√
2
νs(A) ≤ |ν|(A) ≤ νs(A), νs = νr,+ + νr,− + νi,+ + νi,−.

7.3. The dual of Lp, p <∞

After these preparations we are able to compute the dual of Lp for p <∞.

Theorem 7.10. Consider Lp(X, dµ) for some σ-finite measure and let q be
the corresponding dual index, 1

p + 1
q = 1. Then the map g ∈ Lq → `g ∈ (Lp)∗

given by

`g(f) =

∫
X
gf dµ (7.13)

is isometric. Moreover, for 1 ≤ p <∞ it is also surjective.

Proof. Given g ∈ Lq it follows from Hölder’s inequality that `g is a bounded
linear functional with ‖`g‖ ≤ ‖g‖q. That in fact ‖`g‖ = ‖g‖q can be shown
as in the discrete case (compare Problem 6.7).

To show that this map is surjective, first suppose µ(X) <∞ and choose

some ` ∈ (Lp)∗. Since ‖χA‖p = µ(A)1/p, we have χA ∈ Lp for every A ∈ Σ
and we can define

ν(A) = `(χA).
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Suppose A =
⋃∞
j=1Aj . Then, by dominated convergence, ‖

∑n
j=1 χAj −

χA‖p → 0 (this is false for p =∞!) and hence

ν(A) = `(
∞∑
j=1

χAj ) =
∞∑
j=1

`(χAj ) =
∞∑
j=1

ν(Aj).

Thus ν is a complex measure. Moreover, µ(A) = 0 implies χA = 0 in Lp

and hence ν(A) = `(χA) = 0. Thus ν is absolutely continuous with respect
to µ and by the complex Radon–Nikodym theorem dν = g dµ for some
g ∈ L1(X, dµ). In particular, we have

`(f) =

∫
X
fg dµ

for every simple function f . Clearly, the simple functions are dense in Lp, but
since we only know g ∈ L1 we cannot control the integral. So suppose f is
bounded and pick a sequence of simple function fn converging to f . Without
restriction we can assume that fn converges also pointwise and ‖fn‖∞ ≤
‖f‖∞. Hence by dominated convergence `(f) = lim `(fn) = lim

∫
X fng dµ =∫

X fg dµ. Thus equality holds for every bounded function.

Next let An = {x|0 < |g| < n}. Then, if 1 < p,

‖χAng‖qq =

∫
An

|g|q

g
g dµ = `(χAn

|g|q

g
) ≤ ‖`‖‖χAn

|g|q

g
‖1/pp = ‖`‖‖χAng‖q/pq

and hence
‖χAng‖q ≤ ‖`‖.

Letting n→∞ shows g ∈ Lq. If p = 1, let An = {x||g| ≥ ‖`‖+ 1
n}. Then

(‖`‖+
1

n
)µ(An) ≤

∫
X
χAn |g| dµ ≤ ‖`‖µ(An),

which shows µ(An) = 0 and hence ‖g‖∞ ≤ ‖`‖, that is g ∈ L∞. This finishes
the proof for finite µ.

If µ is σ-finite, let Xn ↗ X with µ(Xn) <∞. Then for every n there is
some gn on Xn and by uniqueness of gn we must have gn = gm on Xn∩Xm.
Hence there is some g and by ‖gn‖ ≤ ‖`‖ independent of n, we have g ∈
Lq. �

Corollary 7.11. Let µ be some σ-finite measure. Then Lp(X, dµ) is reflex-
ive.

Proof. Identify Lp(X, dµ)∗ with Lq(X, dµ) and choose h ∈ Lp(X, dµ)∗∗.
Then there is some f ∈ Lp(X, dµ) such that

h(g) =

∫
g(x)f(x)dµ(x), g ∈ Lq(X, dµ) ∼= Lp(X, dµ)∗.

But this implies h(g) = g(f), that is, h = J(f), and thus J is surjective. �
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7.4. The dual of L∞ and the Riesz representation theorem

In the last section we have computed the dual space of Lp for p <∞. Now
we want to investigate the case p =∞. Recall that we already know that the
dual of L∞ is much larger than L1 since it cannot be separable in general.

Example. Let ν be a complex measure. Then

`ν(f) =

∫
X
fdν (7.14)

is a bounded linear functional on B(X) (the Banach space of bounded mea-
surable functions) with norm

‖`ν‖ = |ν|(X) (7.15)

by (7.12) and Corollary 7.9. If ν is absolutely continuous with respect to
µ, then it will even be a bounded linear functional on L∞(X, dµ) since the
integral will be independent of the representative in this case. �

So the dual of B(X) contains all complex measures. However, this is
still not all of B(X)∗. In fact, it turns out that it suffices to require only
finite additivity for ν.

Let (X,Σ) be a measure space. A complex content ν is a map ν :
Σ→ C such that (finite additivity)

ν(
n⋃
k=1

Ak) =
n∑
k=1

ν(Ak), Aj ∩Ak = ∅, j 6= k. (7.16)

Given a content ν we can define the corresponding integral for simple func-
tions s(x) =

∑n
k=1 αkχAk

as usual∫
A
s dν =

n∑
k=1

αkν(Ak ∩A). (7.17)

As in the proof of Lemma 4.13 one shows that the integral is linear. More-
over,

|
∫
A
s dν| ≤ |ν|(A) ‖s‖∞, (7.18)

where

|ν|(A) = sup
{ n∑
k=1

|µ(Ak)|
∣∣∣Ak ∈ Σ disjoint, A =

n⋃
k=1

Ak

}
. (7.19)

(Note that this definition agrees with the one for complex measures.) We
will require |ν|(X) < ∞. Hence this integral can be extended to all of
B(X) by Theorem 1.28 (compare Problem 4.6). However, note that our
convergence theorems (monotone convergence, dominated convergence) will
no longer hold in this case (unless ν happens to be a measure).
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In particular, every complex content gives rise to a bounded linear func-
tional on B(X) and the converse also holds:

Theorem 7.12. Every bounded linear functional ` ∈ B(X)∗ is of the form

`(f) =

∫
X
f dν (7.20)

for some unique complex content ν and ‖`‖ = |ν|(X).

Proof. Let ` ∈ B(X)∗ be given. If there is a content ν at all it is uniquely
determined by ν(A) = `(χA). Using this as definition for ν, we see that
finite additivity follows from linearity of `. Moreover, (7.20) holds for char-
acteristic functions and by

`(
n∑
k=1

αkχAk
) =

n∑
k=1

αkν(Ak) =
n∑
k=1

|ν(Ak)|, αk = sign(ν(Ak)),

we see |ν|(X) ≤ ‖`‖.
Since the characteristic functions are total, (7.20) holds everywhere by

continuity. �

Remark: To obtain the dual of L∞(X, dµ) from this you just need to re-
strict to those linear functionals which vanish onN (X, dµ) (cf. Problem 7.8),
that is, those whose content is absolutely continuous with respect to µ (note
that the Radon–Nikodym theorem does not hold unless the content is a
measure).

Example. Consider B(R) and define

`(f) = lim
ε↓0

(λf(−ε) + (1− λ)f(ε)), λ ∈ [−1, 1], (7.21)

for f in the subspace of bounded measurable functions which have left and
right limits at 0. Since ‖`‖ = 1 we can extend it to all of B(R) using the
Hahn–Banach theorem. Then the corresponding content ν is no measure:

λ = ν([−1, 0)) = ν(
∞⋃
n=1

[− 1

n
,− 1

n+ 1
)) 6=

∞∑
n=1

ν([− 1

n
,− 1

n+ 1
)) = 0. (7.22)

Observe that the corresponding distribution function (defined as in (4.3))
is nondecreasing but not right continuous! If we render the distribution
function right continuous, we get the Dirac measure (centered at 0). In
addition, the Dirac measure has the same integral at least for continuous
functions! �
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Theorem 7.13 (Riesz representation). Let I ⊆ R be a compact interval.
Every bounded linear functional ` ∈ C(I)∗ is of the form

`(f) =

∫
X
f dν (7.23)

for some unique complex Borel measure ν and ‖`‖ = |ν|(X).

Proof. Without restriction I = [0, 1]. Extending ` to a bounded linear
functional ` ∈ B(I)∗ we have a corresponding content ν. Splitting this
content into real and imaginary part we see that it is no restriction to assume
that ν is real. Moreover, the same proof as in the case of measures shows
that |ν| is a positive content and splitting ν into ν± = (|ν| ± ν)/2 it is no
restriction to assume ν is positive.

Now the idea is as follows: Define a distribution function for ν. By
finite additivity of ν it will be nondecreasing, but it might not be right-
continuous. However, right-continuity is needed to use Theorem 4.2. So
why not change the distribution function at each jump such that it becomes
right continuous? This is fine if we can show that this does not alter the
value of the integral of continuous functions.

Let f ∈ C(I) be given. Fix points a ≤ xn0 < xn1 < . . . xnn ≤ b such that
xn0 → a, xnn → b, and supk |xnk−1 − xnk | → 0 as n → ∞. Then the sequence
of simple functions

fn(x) = f(xn0 )χ[xn0 ,x
n
1 ) + f(xn1 )χ[xn1 ,x

n
2 ) + · · ·+ f(xnn−1)χ[xnn−1,x

n
n].

converges uniformly to f by continuity of f . Moreover,∫
I
f dν = lim

n→∞

∫
I
fn dν = lim

n→∞

n∑
k=1

f(xnk−1)(ν(xk)− ν(xk−1)),

where ν(x) = ν([0, x)), ν(1) = ν([0, 1]), and the points xnk are chosen to
stay away from all discontinuities of ν(x). Since ν is monotone, there are at
most countably many discontinuities and this is possible. In particular, we
can change ν(x) at its discontinuities such that it becomes right continuous
without changing the value of the integral (for continuous functions). Now
Theorem 4.2 ensures existence of a corresponding measure.

To see ‖`‖ = |ν|(X) recall dν = hd|ν| where |h| = 1 (Corollary 7.9) and
approximate h by continuous functions as in the proof of Lemma 5.12. �

Note that ν will be a positive measure if ` is a positive functional,
that is, `(f) ≥ 0 whenever f ≥ 0.

Problem 7.8. Let M be a closed subspace of a Banach space X. Show that
(X/M)∗ ∼= {` ∈ X∗|M ⊆ Ker(`)}.
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Problem 7.9 (Vague convergence of measures). A sequence of measures νn
is said to converge vaguely to a measure ν if∫

I
fdνn →

∫
I
fdν, f ∈ C(I). (7.24)

Show that every bounded sequence of measures has a vaguely convergent
subsequence. Show that the limit ν is a positive measure if all νn are.
(Hint: Compare this definition to the definition of weak-∗ convergence in
Section 6.3.)



Chapter 8

Bounded linear
operators

8.1. Banach algebras

In this section we want to have a closer look at the set of bounded linear
operators L(X) from a Banach space X into itself. We already know from
Section 1.5 that they form a Banach space which has a multiplication given
by composition. In this section we want to further investigate this structure.

A Banach space X together with a multiplication satisfying

(x+ y)z = xz + yz, x(y + z) = xy + xz, x, y, z ∈ X, (8.1)

and

(xy)z = x(yz), α (xy) = (αx)y = x (αy), α ∈ C. (8.2)

and

‖xy‖ ≤ ‖x‖‖y‖. (8.3)

is called a Banach algebra. In particular, note that (8.3) ensures that
multiplication is continuous (Problem 8.1). An element e ∈ X satisfying

ex = xe = x, ∀x ∈ X (8.4)

is called identity (show that e is unique) and we will assume ‖e‖ = 1 in
this case.

Example. The continuous functions C(I) over some compact interval form
a commutative Banach algebra with identity 1. �

Example. The bounded linear operators L(X) form a Banach algebra with
identity I. �

123
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Example. The space L1(Rn) together with the convolution

(g ∗ f)(x) =

∫
Rn

g(x− y)f(y)dy =

∫
Rn

g(y)f(x− y)dy (8.5)

is a commutative Banach algebra (Problem 8.3) without identity. �

Let X be a Banach algebra with identity e. Then x ∈ X is called
invertible if there is some y ∈ X such that

xy = yx = e. (8.6)

In this case y is called the inverse of x and is denoted by x−1. It is straight-
forward to show that the inverse is unique (if one exists at all) and that

(xy)−1 = y−1x−1. (8.7)

Example. Let X = L(`1(N)) and let S± be defined via

S−xn =

{
0 n = 1

xn−1 n > 1
, S+xn = xn+1 (8.8)

(i.e., S− shifts each sequence one place right (filling up the first place with a
0) and S+ shifts one place left (dropping the first place)). Then S+S− = I
but S−S+ 6= I. So you really need to check both xy = e and yx = e in
general. �

Lemma 8.1. Let X be a Banach algebra with identity e. Suppose ‖x‖ < 1.
Then e− x is invertible and

(e− x)−1 =

∞∑
n=0

xn. (8.9)

Proof. Since ‖x‖ < 1 the series converges and

(e− x)

∞∑
n=0

xn =
∞∑
n=0

xn −
∞∑
n=1

xn = e

respectively ( ∞∑
n=0

xn

)
(e− x) =

∞∑
n=0

xn −
∞∑
n=1

xn = e.

�

Corollary 8.2. Suppose x is invertible and ‖yx−1‖ < 1 or ‖x−1y‖ < 1.
Then (x− y) is invertible as well and

(x− y)−1 =

∞∑
n=0

(x−1y)nx−1 or (x− y)−1 =

∞∑
n=0

x−1(yx−1)n. (8.10)

In particular, both conditions are satisfied if ‖y‖ < ‖x−1‖−1 and the set of
invertible elements is open.
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Proof. Just observe x− y = x(e− x−1y) = (e− yx−1)x. �

The resolvent set is defined as

ρ(x) = {α ∈ C|∃(x− α)−1} ⊆ C, (8.11)

where we have used the shorthand notation x−α = x−αe. Its complement
is called the spectrum

σ(x) = C\ρ(x). (8.12)

It is important to observe that the fact that the inverse has to exist as an
element of X. That is, if X are bounded linear operators, it does not suffice
that x− α is bijective, the inverse must also be bounded!

Example. If X = L(Cn) is the space of n by n matrices, then the spectrum
is just the set of eigenvalues. �

Example. If X = C(I), then the spectrum of a function x ∈ C(I) is just
its range, σ(x) = x(I). �

The map α 7→ (x− α)−1 is called the resolvent of x ∈ X. If α0 ∈ ρ(x)
we can choose x→ x− α0 and y → α− α0 in (8.10) which implies

(x−α)−1 =
∞∑
n=0

(α−α0)n(x−α0)−n−1, |α−α0| < ‖(x−α0)−1‖−1. (8.13)

This shows that (x−α)−1 has a convergent power series with coefficients in
X around every point α0 ∈ ρ(x). As in the case of coefficients in C, such
functions will be called analytic. In particular, `((x− α)−1) is a complex-
valued analytic function for every ` ∈ X∗ and we can apply well-known
results from complex analysis:

Theorem 8.3. For every x ∈ X, the spectrum σ(x) is compact, nonempty
and satisfies

σ(x) ⊆ {α| |α| ≤ ‖x‖}. (8.14)

Proof. Equation (8.13) already shows that ρ(x) is open. Hence σ(x) is
closed. Moreover, x− α = −α(e− 1

αx) together with Lemma 8.1 shows

(x− α)−1 = − 1

α

∞∑
n=0

(x
α

)n
, |α| > ‖x‖,

which implies σ(x) ⊆ {α| |α| ≤ ‖x‖} is bounded and thus compact. More-
over, taking norms shows

‖(x− α)−1‖ ≤ 1

|α|

∞∑
n=0

‖x‖n

|α|n
=

1

|α| − ‖x‖
, |α| > ‖x‖,

which implies (x − α)−1 → 0 as α → ∞. In particular, if σ(x) is empty,
then `((x − α)−1) is an entire analytic function which vanishes at infinity.
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By Liouville’s theorem we must have `((x − α)−1) = 0 in this case, and so
(x− α)−1 = 0, which is impossible. �

As another simple consequence we obtain:

Theorem 8.4. Suppose X is a Banach algebra in which every element ex-
cept 0 is invertible. Then X is isomorphic to C.

Proof. Pick x ∈ X and α ∈ σ(x). Then x − α is not invertible and hence
x−α = 0, that is x = α. Thus every element is a multiple of the identity. �

Theorem 8.5 (Spectral mapping). For every polynomial p and x ∈ X we
have

σ(p(x)) = p(σ(x)). (8.15)

Proof. Fix α0 ∈ C and observe

p(x)− p(α0) = (x− α0)q0(x).

If p(α0) 6∈ σ(p(x)) we have

(x− α0)−1 = q0(x)((x− α0)q0(x))−1 = ((x− α0)q0(x))−1q0(x)

(check this — since q0(x) commutes with (x − α0)q0(x) it also commutes
with its inverse). Hence α0 6∈ σ(x).

Conversely, let α0 ∈ σ(p(x)). Then

p(x)− α0 = a(x− λ1) · · · (x− λn)

and at least one λj ∈ σ(x) since otherwise the right-hand side would be
invertible. But then p(λj) = α0, that is, α0 ∈ p(σ(x)). �

Next let us look at the convergence radius of the Neumann series for
the resolvent

(x− α)−1 = − 1

α

∞∑
n=0

(x
α

)n
(8.16)

encountered in the proof of Theorem 8.3 (which is just the Laurent expansion
around infinity).

The number

r(x) = sup
α∈σ(x)

|α| (8.17)

is called the spectral radius of x. Note that by (8.14) we have

r(x) ≤ ‖x‖. (8.18)

Theorem 8.6. The spectral radius satisfies

r(x) = inf
n∈N
‖xn‖1/n = lim

n→∞
‖xn‖1/n. (8.19)
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Proof. By spectral mapping we have r(x)n = r(xn) ≤ ‖xn‖ and hence

r(x) ≤ inf ‖xn‖1/n.

Conversely, fix ` ∈ X∗, and consider

`((x− α)−1) = − 1

α

∞∑
n=0

1

αn
`(xn). (8.20)

Then `((x − α)−1) is analytic in |α| > r(x) and hence (8.20) converges
absolutely for |α| > r(x) by a well-known result from complex analysis.
Hence for fixed α with |α| > r(x), `(xn/αn) converges to zero for every
` ∈ X∗. Since every weakly convergent sequence is bounded we have

‖xn‖
|α|n

≤ C(α)

and thus

lim sup
n→∞

‖xn‖1/n ≤ lim sup
n→∞

C(α)1/n|α| = |α|.

Since this holds for every |α| > r(x) we have

r(x) ≤ inf ‖xn‖1/n ≤ lim inf
n→∞

‖xn‖1/n ≤ lim sup
n→∞

‖xn‖1/n ≤ r(x),

which finishes the proof. �

To end this section let us look at two examples illustrating these ideas.

Example. Let X = L(C2) be the space of two by two matrices and consider

x =

(
0 1
0 0

)
. (8.21)

Then x2 = 0 and consequently r(x) = 0. This is not surprising, since x has
the only eigenvalue 0. The same is true for any nilpotent matrix. �

Example. Consider the linear Volterra integral operator

K(x)(t) =

∫ t

0
k(t, s)x(s)ds, x ∈ C([0, 1]), (8.22)

then, using induction, it is not hard to verify (Problem 8.2)

|Kn(x)(t)| ≤ ‖k‖
n
∞t

n

n!
‖x‖∞. (8.23)

Consequently

‖Knx‖∞ ≤
‖k‖n∞
n!
‖x‖∞,

that is ‖Kn‖ ≤ ‖k‖
n
∞

n! , which shows

r(K) ≤ lim
n→∞

‖k‖∞
(n!)1/n

= 0.
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Hence r(K) = 0 and for every λ ∈ C and every y ∈ C(I) the equation

x− λK x = y (8.24)

has a unique solution given by

x = (I− λK)−1y =

∞∑
n=0

λnKn y. (8.25)

�

Problem 8.1. Show that the multiplication in a Banach algebra X is con-
tinuous: xn → x and yn → y imply xnyn → xy.

Problem 8.2. Show (8.23).

Problem 8.3. Show that L1(Rn) with convolution as multiplication is a
commutative Banach algebra without identity (Hint: Problem 6.14).

8.2. The C∗ algebra of operators and the spectral theorem

We begin by recalling that if H is some Hilbert space, then for every A ∈
L(H) we can define its adjoint A∗ ∈ L(H). Hence the Banach algebra L(H)
has an additional operation in this case. In general, a Banach algebra X
together with an involution

(x+ y)∗ = x∗ + y∗, (αx)∗ = α∗x∗, x∗∗ = x, (xy)∗ = y∗x∗, (8.26)

satisfying
‖x‖2 = ‖x∗x‖ (8.27)

is called a C∗ algebra. Any subalgebra which is also closed under involution,
is called a ∗-subalgebra. Note that (8.27) implies ‖x‖2 = ‖x∗x‖ ≤ ‖x‖‖x∗‖
and hence ‖x‖ ≤ ‖x∗‖. By x∗∗ = x this also implies ‖x∗‖ ≤ ‖x∗∗‖ = ‖x‖
and hence

‖x‖ = ‖x∗‖, ‖x‖2 = ‖x∗x‖ = ‖xx∗‖. (8.28)

Example. The continuous functions C(I) together with complex conjuga-
tion form a commutative C∗ algebra. �

Example. The Banach algebra L(H) is a C∗ algebra by Lemma 2.13. �

If X has an identity e, we clearly have e∗ = e and (x−1)∗ = (x∗)−1 (show
this). We will always assume that we have an identity. In particular,

σ(x∗) = σ(x)∗. (8.29)

If X is a C∗ algebra, then x ∈ X is called normal if x∗x = xx∗, self-
adjoint if x∗ = x, and unitary if x∗ = x−1. Moreover, x is called positive
if x = y2 for some y = y∗ ∈ X. Clearly both self-adjoint and unitary
elements are normal and positive elements are self-adjoint.
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Lemma 8.7. If x ∈ X is normal, then ‖x2‖ = ‖x‖2 and r(x) = ‖x‖.

Proof. Using (8.27) twice we have

‖x2‖ = ‖(x2)∗(x2)‖1/2 = ‖(xx∗)∗(xx∗)‖1/2 = ‖x∗x‖ = ‖x‖2

and hence r(x) = limk→∞ ‖x2k‖1/2k = ‖x‖. �

Lemma 8.8. If x is self-adjoint, then σ(x) ⊆ R.

Proof. Suppose α+ iβ ∈ σ(x), λ ∈ R. Then α+ i(β + λ) ∈ σ(x+ iλ) and

α2 + (β + λ)2 ≤ ‖x+ iλ‖2 = ‖(x+ iλ)(x− iλ)‖ = ‖x2 + λ2‖ ≤ ‖x‖2 + λ2.

Hence α2 + β2 + 2βλ ≤ ‖x‖2 which gives a contradiction if we let |λ| → ∞
unless β = 0. �

Given x ∈ X we can consider the C∗ algebra C∗(x) (with identity)
generated by x (i.e., the smallest closed ∗-subalgebra containing x). If x is
normal we explicitly have

C∗(x) = {p(x, x∗)|p : C2 → C polynomial}, xx∗ = x∗x, (8.30)

and in particular C∗(x) is commutative (Problem 8.5). In the self-adjoint
case this simplifies to

C∗(x) = {p(x)|p : C→ C polynomial}, x = x∗. (8.31)

Moreover, in this case C∗(x) is isomorphic to C(σ(x)) (the continuous func-
tions on the spectrum).

Theorem 8.9 (Spectral theorem). If X is a C∗ algebra and x is self-adjoint,
then there is an isometric isomorphism Φ : C(σ(x)) → C∗(x) such that
f(t) = t maps to Φ(t) = x and f(t) = 1 maps to Φ(1) = e.

Moreover, for every f ∈ C(σ(x)) we have

σ(f(x)) = f(σ(x)), (8.32)

where f(x) = Φ(f(t)).

Proof. First of all, Φ is well-defined for polynomials. Moreover, by spectral
mapping we have

‖p(x)‖ = r(p(x)) = sup
α∈σ(p(x))

|α| = sup
α∈σ(x)

|p(α)| = ‖p‖∞

for every polynomial p. Hence Φ is isometric. Since the polynomials are
dense by the Stone–Weierstraß theorem (see the next section) Φ uniquely
extends to a map on all of C(σ(x)) by Theorem 1.28. By continuity of the
norm this extension is again isometric. Similarly we have Φ(f g) = Φ(f)Φ(g)
and Φ(f)∗ = Φ(f∗) since both relations hold for polynomials.
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To show σ(f(x)) = f(σ(x)) fix some α ∈ C. If α 6∈ f(σ(x)), then
g(t) = 1

f(t)−α ∈ C(σ(x)) and Φ(g) = (f(x) − α)−1 ∈ X shows α 6∈ σ(f(x)).

Conversely, if α 6∈ σ(f(x)) then g = Φ−1((f(x)−α)−1) = 1
f−α is continuous,

which shows α 6∈ f(σ(x)). �

In particular this last theorem tells us that we have a functional calculus
for self-adjoint operators, that is, if A ∈ L(H) is self-adjoint, then f(A) is
well defined for every f ∈ C(σ(A)). If f is given by a power series, f(A)
defined via Φ coincides with f(A) defined via its power series. Using the
Riesz representation theorem we get another formulation in terms of spectral
measures:

Theorem 8.10. Let H be a Hilbert space, and let A ∈ L(H) be self-adjoint.
For every u, v ∈ H there is a corresponding complex Borel measure µu,v (the
spectral measure) such that

〈u, f(A)v〉 =

∫
σ(A)

f(t)dµu,v(t), f ∈ C(σ(A)). (8.33)

We have

µu,v1+v2 = µu,v1 + µu,v2 , µu,αv = αµu,v, µv,u = µ∗u,v (8.34)

and |µu,v|(σ(A)) ≤ ‖u‖‖v‖. Furthermore, µu = µu,u is a positive Borel
measure with µu(σ(A)) = ‖u‖2.

Proof. Consider the continuous functions on I = [−‖A‖, ‖A‖] and note
that every f ∈ C(I) gives rise to some f ∈ C(σ(A)) by restricting its
domain. Clearly `u,v(f) = 〈u, f(A)v〉 is a bounded linear functional and the
existence of a corresponding measure µu,v with |µu,v|(I) = ‖`u,v‖ ≤ ‖u‖‖v‖
follows from Theorem 7.13. Since `u,v(f) depends only on the value of f on
σ(A) ⊆ I, µu,v is supported on σ(A).

Moreover, if f ≥ 0 we have `u(f) = 〈u, f(A)u〉 = 〈f(A)1/2u, f(A)1/2u〉 =

‖f(A)1/2u‖2 ≥ 0 and hence `u is positive and the corresponding measure µu
is positive. The rest follows from the properties of the scalar product. �

It is often convenient to regard µu,v as a complex measure on R by using
µu,v(Ω) = µu,v(Ω∩σ(A)). If we do this, we can also consider f as a function
on R. However, note that f(A) depends only on the values of f on σ(A)!

Note that the last theorem can be used to define f(A) for every bounded
measurable function f ∈ B(σ(A)) via Lemma 2.11 and extend the functional
calculus from continuous to measurable functions:

Theorem 8.11 (Spectral theorem). If H is a Hilbert space and A ∈ L(H)
is self-adjoint, then there is an homomorphism Φ : B(σ(A)) → L(H) given
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by

〈u, f(A)v〉 =

∫
σ(A)

f(t)dµu,v(t), f ∈ B(σ(A)). (8.35)

Moreover, if fn(t)→ f(t) pointwise and supn ‖fn‖∞ is bounded, then fn(A)u→
f(A)u for every u ∈ H.

Proof. The map Φ is well-defined linear operator by Lemma 2.11 since we
have ∣∣∣ ∫

σ(A)
f(t)dµu,v(t)

∣∣∣ ≤ ‖f‖∞|µu,v|(σ(A)) ≤ ‖f‖∞‖u‖‖v‖

and (8.34). Next, observe that Φ(f)∗ = Φ(f∗) and Φ(fg) = Φ(f)Φ(g)
holds at least for continuous functions. To obtain it for arbitrary bounded
functions, choose a (bounded) sequence fn converging to f in L2(σ(A), dµu)
and observe

‖(fn(A)− f(A))u‖2 =

∫
|fn(t)− f(t)|2dµu(t)

(use ‖h(A)u‖2 = 〈h(A)u, h(A)u〉 = 〈u, h(A)∗h(A)u〉). Thus fn(A)u →
f(A)u and for bounded g we also have that (gfn)(A)u → (gf)(A)u and
g(A)fn(A)u → g(A)f(A)u. This establishes the case where f is bounded
and g is continuous. Similarly, approximating g removes the continuity re-
quirement from g.

The last claim follows since fn → f in L2 by dominated convergence in
this case. �

In particular, given a self-adjoint operator A we can define the spectral
projections

PA(Ω) = χΩ(A), Ω ∈ B(R). (8.36)

They are orthogonal projections, that is P 2 = P and P ∗ = P .

Lemma 8.12. Suppose P is an orthogonal projection. Then H decomposes
in an orthogonal sum

H = Ker(P )⊕ Ran(P ) (8.37)

and Ker(P ) = (I− P )H, Ran(P ) = PH.

Proof. Clearly, every u ∈ H can be written as u = (I− P )u+ Pu and

〈(I− P )u, Pu〉 = 〈P (I− P )u, u〉 = 〈(P − P 2)u, u〉 = 0

shows H = (I−P )H⊕PH. Moreover, P (I−P )u = 0 shows (I−P )H ⊆ Ker(P )
and if u ∈ Ker(P ) then u = (I−P )u ∈ (I−P )H shows Ker(P ) ⊆ (I−P )H. �
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In addition, the spectral projections satisfy

PA(R) = I, PA(
∞⋃
n=1

Ωn)u =
∞∑
n=1

PA(Ωn)u, u ∈ H. (8.38)

Such a family of projections is called a projection valued measure and

PA(t) = PA((−∞, t]) (8.39)

is called a resolution of the identity. Note that we have

µu,v(Ω) = 〈u, PA(Ω)v〉. (8.40)

Using them we can define an operator-valued integral as usual such that

A =

∫
t dPA(t). (8.41)

In particular, if PA({α}) 6= 0, then α is an eigenvalue and Ran(PA({α}))
is the corresponding eigenspace since

APA({α}) = αPA({α}). (8.42)

The fact that eigenspaces to different eigenvalues are orthogonal now
generalizes to

Lemma 8.13. Suppose Ω1 ∩ Ω2 = ∅. Then

Ran(PA(Ω1)) ⊥ Ran(PA(Ω2)). (8.43)

Proof. Clearly χΩ1χΩ2 = χΩ1∩Ω2 and hence

PA(Ω1)PA(Ω2) = PA(Ω1 ∩ Ω2).

Now if Ω1 ∩ Ω2 = ∅, then

〈PA(Ω1)u, PA(Ω2)v〉 = 〈u, PA(Ω1)PA(Ω2)v〉 = 〈u, PA(∅)v〉 = 0,

which shows that the ranges are orthogonal to each other. �

Example. Let A ∈ L(Cn) be some symmetric matrix and let α1, . . . , αm
be its (distinct) eigenvalues. Then

A =
m∑
j=1

αjPA({αj}), (8.44)

where PA({αj}) is the projection onto the eigenspace corresponding to the
eigenvalue αj . �

Problem 8.4. Let X be a C∗ algebra and Y a ∗-subalgebra. Show that if
Y is commutative, then so is Y .

Problem 8.5. Show that the map Φ from the spectral theorem is positivity
preserving, that is, f ≥ 0 if and only if Φ(f) is positive.
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Problem 8.6. Show that σ(x) ⊂ {t ∈ R|t ≥ 0} if and only if x is positive.

Problem 8.7. Let A ∈ L(H). Show that A is normal if and only if

‖Au‖ = ‖A∗u‖, ∀u ∈ H. (8.45)

(Hint: Problem 1.20.)

8.3. The Stone–Weierstraß theorem

In the last section we have seen that the C∗ algebra of continuous functions
C(K) over some compact set K ⊆ C plays a crucial role and that it is
important to be able to identify dense sets. We will be slightly more general
and assume that K is some compact metric space. Then it is straightforward
to check that the same proof as in the case K = [a, b] (Section 1.2) shows
that C(K,R) and C(K) = C(K,C) are Banach spaces when equipped with
the maximum norm ‖f‖∞ = maxx∈K |f(x)|.

Theorem 8.14 (Stone–Weierstraß, real version). Suppose K is a compact
metric space and let C(K,R) be the Banach algebra of continuous functions
(with the maximum norm).

If F ⊂ C(K,R) contains the identity 1 and separates points (i.e., for
every x1 6= x2 there is some function f ∈ F such that f(x1) 6= f(x2)), then
the algebra generated by F is dense.

Proof. Denote by A the algebra generated by F . Note that if f ∈ A, we
have |f | ∈ A: By the Weierstraß approximation theorem (Theorem 1.19)
there is a polynomial pn(t) such that

∣∣|t| − pn(t)
∣∣ < 1

n for t ∈ f(K) and
hence pn(f)→ |f |.

In particular, if f, g are in A, we also have

max{f, g} =
(f + g) + |f − g|

2
, min{f, g} =

(f + g)− |f − g|
2

in A.

Now fix f ∈ C(K,R). We need to find some f ε ∈ A with ‖f−f ε‖∞ < ε.

First of all, since A separates points, observe that for given y, z ∈ K
there is a function fy,z ∈ A such that fy,z(y) = f(y) and fy,z(z) = f(z)
(show this). Next, for every y ∈ K there is a neighborhood U(y) such that

fy,z(x) > f(x)− ε, x ∈ U(y),

and since K is compact, finitely many, say U(y1), . . . , U(yj), cover K. Then

fz = max{fy1,z, . . . , fyj ,z} ∈ A
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and satisfies fz > f−ε by construction. Since fz(z) = f(z) for every z ∈ K,
there is a neighborhood V (z) such that

fz(x) < f(x) + ε, x ∈ V (z),

and a corresponding finite cover V (z1), . . . , V (zk). Now

f ε = min{fz1 , . . . , fzk} ∈ A
satisfies f ε < f + ε. Since f − ε < fzl we also have f − ε < fε and we have
found a required function. �

Theorem 8.15 (Stone–Weierstraß). Suppose K is a compact metric space
and let C(K) be the C∗ algebra of continuous functions (with the maximum
norm).

If F ⊂ C(K) contains the identity 1 and separates points, then the ∗-
subalgebra generated by F is dense.

Proof. Just observe that F̃ = {Re(f), Im(f)|f ∈ F} satisfies the assump-
tion of the real version. Hence every real-valued continuous functions can be
approximated by elements from the subalgebra generated by F̃ , in particular
this holds for the real and imaginary parts for every given complex-valued
function. Finally, note that the subalgebra spanned by F̃ contains the ∗-
subalgebra spanned by F . �

Note that the additional requirement of being closed under complex
conjugation is crucial: The functions holomorphic on the unit ball and con-
tinuous on the boundary separate points, but they are not dense (since the
uniform limit of holomorphic functions is again holomorphic).

Corollary 8.16. Suppose K is a compact metric space and let C(K) be the
C∗ algebra of continuous functions (with the maximum norm).

If F ⊂ C(K) separates points, then the closure of the ∗-subalgebra gen-
erated by F is either C(K) or {f ∈ C(K)|f(t0) = 0} for some t0 ∈ K.

Proof. There are two possibilities: either all f ∈ F vanish at one point
t0 ∈ K (there can be at most one such point since F separates points)
or there is no such point. If there is no such point, we can proceed as in
the proof of the Stone–Weierstraß theorem to show that the identity can
be approximated by elements in A (note that to show |f | ∈ A if f ∈ A,
we do not need the identity, since pn can be chosen to contain no constant
term). If there is such a t0, the identity is clearly missing from A. However,
adding the identity to A, we get A + C = C(K) and it is easy to see that
A = {f ∈ C(K)|f(t0) = 0}. �

Problem 8.8. Show that the functions ϕn(x) = 1√
2π

einx, n ∈ Z, form an

orthonormal basis for H = L2(0, 2π).
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Problem 8.9. Let k ∈ N and I ⊆ R. Show that the ∗-subalgebra generated
by fz0(t) = 1

(t−z0)k
for one z0 ∈ C is dense in the C∗ algebra C∞(I) of

continuous functions vanishing at infinity

• for I = R if z0 ∈ C\R and k = 1, 2,

• for I = [a,∞) if z0 ∈ (−∞, a) and every k,

• for I = (−∞, a] ∪ [b,∞) if z0 ∈ (a, b) and k odd.

(Hint: Add ∞ to R to make it compact.)

Problem 8.10. Let K ⊆ C be a compact set. Show that the set of all
functions f(z) = p(x, y), where p : R2 → C is polynomial and z = x+ iy, is
dense in C(K).





Appendix A

Zorn’s lemma

A partial order is a binary relation ”�” over a set P such that for all
A,B,C ∈ P:

• A � A (reflexivity),

• if A � B and B � A then A = B (antisymmetry),

• if A � B and B � C then A � C (transitivity).

Example. Let P(X) be the collections of all subsets of a set X. Then P is
partially ordered by inclusion ⊆. �

It is important to emphasize that two elements of P need not be com-
parable, that is, in general neither A � B nor B � A might hold. However,
if this is the case P will be called totally ordered.

Example. R with ≤ is totally ordered. �

If P is partially ordered, then every totally ordered subset is also called
a chain. If Q ⊆ P. Then an element M ∈ P satisfying A � M for all
A ∈ Q is called an upper bound.

Example. Let P(X) as before. Then a collection of subsets {An}n∈N ⊆
P(X) satisfying An ⊆ An+1 is a chain. The set

⋃
nAn is an upper bound. �

An element M ∈ P for which M � A for some A ∈ P is only possible if
M = A is called a maximal element.

Theorem A.1 (Zorn’s lemma). Every partially ordered set in which every
chain has an upper bound contains at least one maximal element.

137
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Zorn’s lemma is one of the equivalent incarnations of the Axiom of
Choice and we are going to take it, as well as the rest of set theory, for
granted.
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Glossary of notation

arg(z) . . . argument of a complex number
Br(x) . . . open ball of radius r around x, 5
B(X) . . . Banach space of bounded measurable functions
B = B1

Bn . . . Borel σ-field of Rn, 60
C . . . the set of complex numbers
C(H) . . . set of compact operators, 45
C(U) . . . set of continuous functions from U to C
C(U, V ) . . . set of continuous functions from U to V
C∞c (U, V ) . . . set of compactly supported smooth functions
χΩ(.) . . . characteristic function of the set Ω
dim . . . dimension of a linear space
dist(x, Y ) = infy∈Y ‖x− y‖, distance between x and Y
D(.) . . . domain of an operator
e . . . exponential function, ez = exp(z)
H . . . a Hilbert space
i . . . complex unity, i2 = −1
Im(.) . . . imaginary part of a complex number
inf . . . infimum
Ker(A) . . . kernel of an operator A, 27
L(X,Y ) . . . set of all bounded linear operators from X to Y , 29
L(X) = L(X,X)
Lp(X, dµ) . . . Lebesgue space of p integrable functions, 80
L∞(X, dµ) . . . Lebesgue space of bounded functions, 80
Lploc(X, dµ) . . . locally p integrable functions, 87
L2
cont(I) . . . space of continuous square integrable functions, 24
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142 Glossary of notation

`p(N) . . . Banach space of p summable sequences, 20
`2(N) . . . Hilbert space of square summable sequences, 22
`∞(N) . . . Banach space of bounded summable sequences, 17
max . . . maximum
N . . . the set of positive integers
N0 = N ∪ {0}
Q . . . the set of rational numbers
R . . . the set of real numbers
Ran(A) . . . range of an operator A, 27
Re(.) . . . real part of a complex number
sign(x) = x/|x| for x 6= 0 and 0 for x = 0; sign function
sup . . . supremum
supp . . . support of a function, 10
span(M) . . . set of finite linear combinations from M , 17
Z . . . the set of integers
I . . . identity operator√
z . . . square root of z with branch cut along (−∞, 0)

z∗ . . . complex conjugation
‖.‖ . . . norm, 21
‖.‖p . . . norm in the Banach space `p and Lp, 20, 79
‖.‖HS . . . Hilbert–Schmidt norm, 89
〈., ..〉 . . . scalar product in H, 21
⊕ . . . orthogonal sum of linear spaces or operators, 42
∂ . . . gradient
∂α . . . partial derivative
M⊥ . . . orthogonal complement, 38
(λ1, λ2) = {λ ∈ R |λ1 < λ < λ2}, open interval
[λ1, λ2] = {λ ∈ R |λ1 ≤ λ ≤ λ2}, closed interval
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a.e., see almost everywhere

absolute convergence, 20

absolutely continuous

measure, 111

accumulation point, 6

algebra, 59

almost everywhere, 62

B.L.T. theorem, 28

Baire category theorem, 91

Banach algebra, 123

Banach space, 16

Banach–Steinhaus theorem, 92

base, 7

basis, 18

orthonormal, 35

Bessel inequality, 34

bidual space, 100

bijective, 9

Bolzano–Weierstraß theorem, 13

Borel

function, 69

measure, 61

regular, 61

set, 60

σ-algebra, 60

boundary condition, 4

boundary value problem, 4

bounded

operator, 28

sesquilinear form, 26

set, 12

Cantor

set, 62

Cauchy sequence, 8

Cauchy–Schwarz–Bunjakowski inequality,

22

characteristic function, 70

closed set, 7

closure, 7

cluster point, 6

compact, 11

locally, 13

sequentially, 12

complete, 8, 16

completion, 27

content, 119

continuous, 9

convergence, 8

convex, 81

convolution, 108

cover, 10

C∗ algebra, 128

dense, 8

diffusion equation, 1

dimension, 37

Dirac measure, 61, 74

direct sum, 30

discrete set, 6

discrete topology, 6

distance, 5, 13

distribution function, 61

domain, 27

dominated convergence theorem, 74

double dual, 100

eigenspace, 47

eigenvalue, 47

simple, 48

eigenvector, 47
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equivalent norms, 25

essential supremum, 80

Extreme value theorem, 13

finite intersection property, 11

form

bounded, 26

Fourier series, 36

Fredholm alternative, 57

Fredholm operator, 58

Fubini theorem, 76

function

open, 9

Gram–Schmidt orthogonalization, 36

graph, 94

graph norm, 96

Green function, 52

Hahn decomposition, 115

Hausdorff space, 7

heat equation, 1

Heine–Borel theorem, 12

Hilbert space, 21

dimension, 37

Hilbert–Schmidt

norm, 89

operator, 89

Hölder’s inequality, 83

homeomorphism, 9

identity, 29, 123

index, 58

induced topology, 7

injective, 9

inner product, 21

inner product space, 21

integrable, 73

integral, 70

interior, 8

interior point, 5

involution, 128

isolated point, 6

Jensen’s inequality, 82

kernel, 27

Kuratowski closure axioms, 8

Lebesgue

decomposition, 113

measure, 62

limit point, 6

Lindelöf theorem, 10

linear

functional, 29, 39

operator, 27

linearly independent, 17

maximum norm, 15

measurable

function, 69

set, 60

space, 60

measure, 60

absolutely continuous, 111

complete, 68

complex, 114

finite, 60

Lebesgue, 62

mutually singular, 111

product, 76

space, 60

support, 62

metric space, 5

Minkowski’s inequality, 83

mollifier, 86

monotone convergence theorem, 71

neighborhood, 6

Neumann series, 126

Noether operator, 58

norm, 15

Hilbert–Schmidt, 89

operator, 28

normal, 14, 128

normalized, 22

normed space, 15

nowhere dense, 91

null space, 27

onto, 9

open

ball, 5

function, 9

set, 6

operator

adjoint, 40

bounded, 28

closeable, 95

closed, 94

closure, 95

compact, 45

domain, 27

finite rank, 54

Hilbert–Schmidt, 89

linear, 27

nonnegative, 41

self-adjoint, 47

strong convergence, 106

symmetric, 47

unitary, 37

weak convergence, 106

order
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partial, 137

total, 137

orthogonal, 22

orthogonal complement, 38

orthogonal projection, 39

orthogonal projections, 131

orthogonal sum, 42

outer measure, 66

parallel, 22

parallelogram law, 23

partial order, 137

partition of unity, 14

perpendicular, 22

polarization identity, 23

premeasure, 60

product measure, 76

product topology, 10

projection valued measure, 132

pseudo-metric, 5

Pythagorean theorem, 22

quadrangle inequality, 14

quotient space, 31

Radon–Nikodym

derivative, 113

theorem, 113

range, 27

rank, 54

reflexive, 100

relative topology, 7

resolution of the identity, 132

resolvent, 51, 125

resolvent set, 125

Riesz lemma, 39

scalar product, 21

Schauder basis, 18

Schur criterion, 88

second countable, 7

self-adjoint, 128

seminorm, 15

separable, 8, 18

separation of variables, 2

series

absolutely convergent, 20

sesquilinear form, 21

bounded, 26

parallelogram law, 26

polarization identity, 26

σ-algebra, 59

σ-finite, 60

simple function, 70

singular values, 53

span, 17

spectral measure, 130

spectral projections, 131

spectral radius, 126

spectrum, 125

∗-subalgebra, 128

Stone–Weierstraß theorem, 134

strong convergence, 106

Sturm–Liouville problem, 4

subcover, 10

support, 10

surjective, 9

tensor product, 43

Theorem

Lax–Milgram, 42

theorem

Arzelà–Ascoli, 46

B.L.T., 28

Bair, 91

Banach–Steinhaus, 92

Bolzano–Weierstraß, 13

closed graph, 94

dominated convergence, 74

Fubini, 76

Hahn–Banach, 98

Heine–Borel, 12

Hellinger–Toeplitz, 96

Lebesgue decomposition, 113

Lindelöf, 10

monotone convergence, 71

open mapping, 93

Pythagorean, 22

Radon–Nikodym, 113

Riesz representation, 121

Schur, 88

Stone–Weierstraß, 134

Urysohn, 13

Weierstraß, 13, 19

Zorn, 137

topological space, 6

topology

base, 7

product, 10

total, 18

total order, 137

total variation, 114

triangel inequality, 5, 15

inverse, 5, 15

trivial topology, 6

uniform boundedness principle, 92

uniformly convex space, 25

unit vector, 22

unitary, 128

Urysohn lemma, 13

vague convergence

measures, 122
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Vandermonde determinant, 20
Vitali set, 62

wave equation, 3
weak convergence, 103

weak topology, 104
weak-∗ convergence, 108

weak-∗ topology, 108

Weierstraß approximation, 19
Weierstraß theorem, 13

Young inequality, 108

Zorn’s lemma, 137
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