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ABSTRACT
We formulate a new multi-objective hub location problem by con-
sidering economic, customer satisfaction and environmental objec-
tives. The economic objective includes loss cost in addition to
transportation cost and hub construction cost. The environmen-
tal objective covers noise pollution cost and carbon emissions
trading cost. The customer satisfaction objective is innovatively
defined as the sum of the transportation time satisfaction and
transportation quality satisfaction. Transportation costs, noise lev-
els and carbon emissions are assumed as uncertain parameters.
In practice, the probability distributions of uncertain parameters
are often ambiguous. To characterise this ambiguity, we first con-
struct an ambiguity set to propose a distributionally robust multi-
objective hub location model and derive its safe approximation
under mean and dispersion ambiguity set. Then, from the per-
spective of the government, a goal programming model is estab-
lished. Finally, we apply the proposed model to design China’s
super logistics hub network to verify the model’s validity and better
performance.
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1. Introduction

Hub locationproblems are the important networkoptimisationproblemswhich cangreatly
save costs and resources, and they play an extremely important role in today’s economic
globalisation. The hub location problems are concerned with locating hub facilities and
allocating non-hub nodes to hub facilities in order to route the traffic between origin-
destination pairs (Alumur and Kara 2008). Regarding the hub capacity, there are two
main types of hub location problems: uncapacitated hub location problem (e.g. Contreras,
Cordeau, and Laporte 2011) and capacitated hub location problem (e.g. Correia, Nickel, and
Saldanha-da-Gama 2018). They differ in whether the capacity of each hub is finite. In addi-
tion, single allocation hub location problem considers each non-hub node can send and
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receive traffic through a single hub facility (e.g. Azizi and Salhi 2022), while multiple allo-
cation hub location problem permits non-hub node to be allocated to more than one hub
facilities (e.g. Ghaffarinasab 2018).

The seminal research in hub location problems began with the pioneering work of
O’Kelly (1987). The original quadratic integer programming formulation with a non-convex
objective function was formulated for the single allocation p-hub median problem by
O’Kelly (1987). Subsequently, the integer programming formulations for four types of dis-
crete hub location problems were presented. These are the p-hub median problem, the
uncapacitated hub location problem, p-hub center problem and hub covering problem
(see, Campbell 1994). Because of the known computational difficulty, Campbell (1996) pro-
posed two new heuristic algorithms for the single allocation p-hubmedian problem. In the
same time, another paper (Ernst and Krishnamoorthy 1996) presented efficient algorithms
for the uncapacitated single allocation p-hub median problem. Some recent researches
have addressed the hub location problems as well as their variants (e.g. Huang et al. 2018;
Wang and Qin 2021; Korani and Eydi 2021; Kayışoğlu and Akgün 2021).

With respect to multi-objective nature of the hub location problems, some literatures
have considered different objective functions (see Section 1.2). It was found that time
and cost are major concerns in most of the literature for hub location problems. How-
ever, environmental factors in transportationnetworks’ designhave recently receivedmore
attention. We analyse the decision-making environment of hub location problem and find
that economic cost andenvironmental factors canbe regardedasobjective functionsunder
two different decision-making bodies of enterprises and government, respectively. More-
over, a complete hub location problem should include the decision-making environment,
in which there exist the government, enterprises and consumers. To this end, it is necessary
to construct a model that includes the three decision-making bodies. Based on the above
analysis, this study models the hub location problem as a multi-objective formulation with
economic, environmental and customer satisfaction objectives. Thereinto, we innovatively
define the customer satisfaction objective including the transportation time satisfaction
and transportation quality satisfaction.

In recent literatures, the hub location problems focus on location and network design
decisions in an uncertain environment (see Section 1.2). There are three main methods
to deal with uncertainty: stochastic optimisation, robust optimisation and fuzzy optimi-
sation. Traditionally, these three methods do not consider the ambiguity in the model
parameters’ distribution information. However, the ambiguity of probability distribution
in the uncertain hub location problem is getting more and more attention, which moti-
vates us to have an in-depth discussion. The distributionally robust optimisation method
can make full use of partial distribution information to provide the optimal decisions
that can resist the ambiguity of distribution. Motivated by the above considerations, it
is meaningful and feasible to introduce the distributionally robust optimisation method
under the ambiguity set including mean and dispersion information in the hub location
problem.

1.1. Main contributions

From a new viewpoint, we study the multi-objective hub location problem, which extends
the hub location problem in previous literature by introducing three objective functions. In
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addition, for the multi-objective hub location problem, we introduce a new ambiguity set
including mean and dispersion information, and propose a distributionally robust multi-
objective hub location model. More specifically, the major contributions of this paper are
as follows:

• We develop a new multi-objective hub location problem that includes economic, cus-
tomer satisfaction and environmental objectives. In the economic objective, we first put
forward the loss cost of accidents in the transportation, which makes the problemmore
realistic. In addition, we integrate carbon emissions and noise pollution as environmen-
tal objective. Importantly, we define a new customer satisfaction objective that includes
both transportation time satisfaction and transportation quality satisfaction.

• We propose a distributionally robust hub location model, in which transportation costs,
noise levels and carbon emissions are described as random variables with ambiguous
distribution information. Moreover, we derive the safe approximation of the proposed
distributionally robust optimisation model under mean and dispersion ambiguity set.
After that, we build a goal programming model based on the safe approximation. The
resulting framework is a single objective mixed integer second-order cone program-
ming (MISOCP) model, which can be solved efficiently by commercial optimisation
solver.

• We demonstrate the effectiveness of the proposed model by the case study about
China’s super logistics hub network. In order to illustrate the advantages of our new
approach,we compare itwith the classical robust optimisationmethod. The results show
that our new approach not only is effective when the distributions of random parame-
ters are ambiguous, but also reduces the cost by considering the probability distribution
information of the random parameters.

The remainders of this paper are organised as follows. The next subsection reviews the rel-
evant literature of hub location problems. In Section 2, we propose a new distributionally
robust multi-objective hub location problem. Safe approximation under mean and dis-
persion ambiguity set is derived in Section 3. The goal programming model is presented
for multi-objective hub location problem in Section 4. In Section 5, we report numerical
results about a practical problem and obtain some interesting management implications.
Section 6 gives the conclusions of the paper. The proofs of the main results are provided in
the Appendix.

1.2. Related literature

Our research is related to two streams of literature about hub location problems: the first
stream ismulti-objective hub location problems; another related literature stream is uncer-
tain hub location problems. Therefore, this subsection reviews these two streams in the
literatures.

1.2.1. Multi-objective hub location problems
Multi-objective hub location problems have been widely studied in recent years. Its ear-
lier theoretical study was found by da Graça Costa, Captivo, and Clímaco (2008), which
only included a bi-objective model (cost and time). After that, Alumur and Kara (2008) pre-
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dicted that the multi-objective hub location problems may be a research direction in the
future. Ghodratnama, Tavakkoli-Moghaddam, and Azaron (2013) presented a bi-objective
model including total costs (covering cost, transportation cost, opening cost and reopen-
ing cost of facilities, activating cost facilities in hubs, and vehicle using cost) and total times.
In contrast, the total costs and maximum transportation time could also be used as two
objective functions (see, Rahimi et al. 2016). Ghezavati and Hosseinifar (2018) regarded the
value at risk and the costs of establishing ahubandmaterial transportation as twoobjective
functions.

On the 25th anniversary of the hub location problems, Campbell and O’Kelly (2012)
pointed out that it would be a meaningful exploration to combine the environmen-
tal problems with the hub location problems. Since then, the research of Mohammadi,
Torabi, and Tavakkoli-Moghaddam (2014) is the case in point. In addition to the total
transportation cost objective, they also considered the total cost of noise pollution and
the consumed energy of vehicles as the other two objectives. Similarly, Zhalechian et al.
(2017) proposed a three-objective model including the noise pollution. Moreover, the car-
bon emissions were considered as objective function by Musavi and Bozorgi-Amiri (2017).
Parsa et al. (2019) not only considered the transport cost, but also studied the green-
house gas emissions, fuel consumption and noise in the design of airline hub-and-spoke
network.

Note that our work on multi-objective research is different from the previous literatures
about multi-objective hub location problems (see, Mohammadi, Torabi, and Tavakkoli-
Moghaddam (2014, 2019) andMusavi and Bozorgi-Amiri (2017). Twofold differences made
by this paper relative to Mohammadi, Torabi, and Tavakkoli-Moghaddam (2014, 2019) and
Musavi and Bozorgi-Amiri (2017) are emphasised here. Firstly, we establish a new multi-
objective optimisation model including economy, customer satisfaction and environment
objectives. In our model, economic objective includes not only the transportation costs
and hub construction costs, but also the loss cost due to some accidents, while Moham-
madi, Torabi, and Tavakkoli-Moghaddam (2014, 2019) andMusavi andBozorgi-Amiri (2017)
only considered the transportation costs and hub construction costs. Carbon emissions
and noise pollution are constructed in environmental objective. Secondly, we restructure
a new customer satisfaction objective via including both transportation time satisfaction
and transportation quality satisfaction, which is distinctly different from the problem pro-
posed by Mohammadi, Torabi, and Tavakkoli-Moghaddam (2014, 2019) and Musavi and
Bozorgi-Amiri (2017).

1.2.2. Uncertain hub location problems
The hub location problems in uncertain environment had become a hot spot and
research focus. According to method classification of dealing with uncertainty, the lit-
eratures about uncertain hub location problems can be roughly divided into stochas-
tic hub location problems, fuzzy hub location problems and robust hub location
problems.

When the uncertain parameters are described as random variables and the exact
probability distribution is known, many researchers applied stochastic optimisation
method to model the uncertain hub location problems. Contreras, Cordeau, and Laporte
(2011) assumed demands and transportation costs are random variables and designed a
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Monte-Carlo simulation-based algorithm to solve their problems. Inmany cases, the uncer-
tainty was expressed by a finite set of scenarios (see, Alumur, Nickel, and Saldanha-da-
Gama 2012). Sadeghi et al. (2015) assumed the road capacity as random variable and
regarded road capacity reliability as a probability in p-hub covering location problem. In
addition, the two-stage stochastic programming model for real-world air network was
established by some researchers (e.g. Ahmadi et al. 2015). Recently, Azizi, Vidyarthi, and
Chauhan (2018) proposed a hub-and-spoke network model under random demand and
congestion. Correia, Nickel, and Saldanha-da-Gama (2018) regarded demand as random
variable and studied amulti-period stochastic capacitatedmultiple allocation hub location
problem. Shang et al. (2021a) presented the expected value and the chance-constrained
programming model for multi-modal hub location problem, and they derived the equiv-
alent integer second-order cone programming form of the proposed model. Similarly,
Hu et al. (2021) also studied a joint chance-constrained programming model under the
premise of considering the balanced utilisation of hub capacities, and carried out related
transformations.

The fuzzy optimisation method is often used to model the decision system in which the
data exhibit subjective uncertainty, and it depends on accurate possibility distribution. In
hub location problem, Chou (2010) proposed a fuzzy hub location selection model and
applied it to hub locations in Southeastern Asia. Yang, Liu, and Yang (2013, 2014) studied a
new risk aversion p-hub center problemwith fuzzy travel times. Yang, Yang, andGao (2017)
developed a two-phase approach for fuzzy hub-and-spoke network design problem.Wang
et al. (2018) considered the expected value criterion and the critical value criterion for the
fuzzy hub-and-spoke based road-rail intermodal transportation network problem.

The robust optimisation method describes uncertainty by an uncertainty set (Ben-Tal,
Ghaoui, and Nemirovski 2009). In recent years, the robust optimisation method has been
developed for hub locationproblems. For instance, in theuncapacitatedmultiple allocation
p-hub median problem, Talbi and Todosijević (2017) applied robust optimisation method
to study the uncertainty of flows. In different setting, by using robust optimisationmethod,
Yang and Yang (2017) studied the uncertainty of discount factor in the p-hubmedian prob-
lem. When demand was considered as an uncertain parameter, it may be depicted as a
polyhedral uncertainty set (see, Meraklı and Yaman 2016, Ghaffarinasab 2018). Cheng et al.
(2018) studied a two-stage robust optimisation approach for the reliable network design
problem.

In these three methods, stochastic optimisation and fuzzy optimisation methods rely
on accurate distribution information, while classical robust optimisation method does not
require distribution information at all. However, in most practical cases, the distribution
information is ambiguous, or partially known. In these cases, the distributionally robust
optimisation method is an effective research tool. Recently, this method has also been
applied to the hub location problems. For example, Yin et al. (2019) considered p-hub
median problem by addressing the uncertain carbon emissions from the transportation
and discussed two types of ambiguity sets including the probability distributions under the
bounded perturbations with zero means and Gaussian perturbations with partial knowl-
edge of expectations and variances. Under a similar ambiguity set, Shang et al. (2021b)
investigated a cluster-based hierarchical hub location problem through a distributionally
robust optimisation method. Wang, Chen, and Liu (2020) equivalently transformed the
adaptive distributionally robust hub location problem into a non-adaptive classical robust
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model under the assumption of independence, and its second-stage routing decision
followed the optimal static policy. Yin and Zhao (2021) considered the mean and
conditional value-at-risk criteria for a hub interdiction median problem to implement a
data-driven distributionally robust optimisation approach. Although the above literatures
studied the distributionally robust hub location problems, it is obvious that they only con-
sidered a single objective function, and did not study the model under the ambiguity set
includingmean and dispersion. In order to make readers more clearly understand the con-
tribution of this paper, we list the differences between this paper and its closely related
literature in Table 1. Inspired by this, we propose amulti-objective hub locationmodel that
includes customer satisfaction objective, and analyse the characteristics of the constructed
model under the ambiguity set including mean and dispersion information.

2. Distributionally robust multi-objective hub location problem

In this section, we focus on a multi-objective hub location problem including economic,
customer satisfaction, and environmental objectives. On the basis of the existing research
(Mohammadi, Torabi, and Tavakkoli-Moghaddam 2014; Zhalechian et al. 2017; Jiang et al.
2020), we ameliorate the hub location problem tomake it more realistic by considering the
loss cost of accidents, the transportation mode between hubs and customer satisfaction.
Thereafter, constituting the ambiguity sets based on the pieces of distribution information,
we establish a new distributionally robust multi-objective hub location model.

2.1. Problem description

The classical hub location problem aims to find the locations of p hubs and the alloca-
tions of non-hub nodes from the known nodes setN so that the total transportation cost or
time is minimised. In this paper, we extend the classic p-hub location problem by consid-
ering the capacity level c of hubs and the transport mode m between hubs. The capacity
of the hub is subdivided into several levels according to the size of the hub capacity. For
example, it is divided into three levels (high, medium and low), in which the capacity level
corresponding tohigh is the largest and the capacity level corresponding to low is the small-
est. The set of capacity levels for hubs is denoted as C, c ∈ C. In the same consideration
as Shang et al. (2021a), we consider multi-modal transportation between hubs. The set of
transport modes between hubs is abbreviated as M. Different from previous studies, we
consider three objective functions: economic goal, customer satisfaction goal and environ-
mental goal. Therefore, our main research problem is to design the network structure with
p hubs based on the known nodes set and relevant data, determine the capacity levels of
hubs, and select the transport mode between hubs to minimise the economic, customer
satisfaction and environmental objectives of the whole hub network. The simplified hub
network structure is exhibited in Figure 1, where i, j denote non-hub nodes and k, l denote
hub nodes.

In order to present the mathematical formulation for p-hub location problem, we give
some main assumptions. The model in this paper depends on the following assumptions:
(1) A non-hub node can only be assigned to a single hub; (2) The number of hubs is pre-
defined as p; (3) All hubs are interconnected, and there is no connection between non-hub



TRA
N
SPO

RTM
ETRIC

A
A
:TRA

N
SPO

RT
SC

IEN
C
E

7

Table 1. Related literature review.

Number of objectives Meaning of objectives Optimisation method

Recent research
Single

objective Multi-objective Economic Environmental
Customer
satisfaction Stochastic Fuzzy Robust

Distributionally
robust

Mohammadi, Torabi, and Tavakkoli-
Moghaddam (2014)

� � � � �

Musavi and Bozorgi-Amiri (2017) � � �
Mohammadi, Jula, and Tavakkoli-
Moghaddam (2019)

� � �

Shang et al. (2021a) � � �
Talbi and Todosijević (2017),

Ghaffarinasab (2018)
� � �

Wang et al. (2018) � � �
Yin et al. (2019) � � � �
Wang, Chen, and Liu (2020), Shang
et al. (2021b), Yin and Zhao (2021)

� � �

This paper � � � � �
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Figure 1. Simplified hub network structure.

nodes; (4) The capacity of the hub is restricted; (5) It is known that the probability of acci-
dents on planes and trains is so small that they can be neglected. So we assume that
the probability of accidents between hubs is zero. Based on the above assumptions, we
describe the modelling process of our hub location problem and the final model in detail
in the following contents.

2.2. Objective functions

For the practicality of hub location problem, we present a multi-objective optimisation
problem involving economic, customer satisfaction and environmental objectives. In the
economic objective, we take into account the occurrence of accidents at the transport,
which is of practical significance. In the customer satisfaction objective, we define the novel
transportation time satisfaction and transportation quality satisfaction. In the environmen-
tal objective, we not only consider the noise pollution of hub but also take into account the
carbon emissions produced in transportation. The specific forms of the three objectives are
elaborated below.

2.2.1. Economic objective
This objective minimises the total economic costs including total transport cost, accident
loss cost and hub construction cost. Let’s start with a few notations. dik ,wik and δik denote
transportation distance, flow and unit transportation cost from non-hub node i to hub
k, respectively. Therefore, the transportation cost from non-hub node i to hub k can be
expressed as δikwikdik . As we all know, due to the sudden occurrence of bad weather, road
congestion, traffic accidents and various natural disasters, there is loss cost in the process
of transportation. In our design, the accident loss cost is calculated by increasing the pro-
portion of transportation cost. Hence the actual transportation cost (including loss cost)
from i to k is (1 + pik)δikwikdik , where pik indicates loss ratio caused by accidents from non-
hub node i to hub k. Because of the impact of scale economy, the transportation cost
between hubs is reduced with the discount coefficient αm. Therefore, the transportation
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cost between hubs is αmδmkl wkldkl . In the case of the two-hub location problem (i → k →
l → j), the transportation cost from i to j is calculated as ((1 + pik)δikwikdik + αmδmkl wkldkl +
(1 + plj)δljwljdlj)Xmiklj, in which X

m
iklj is 1when transportmodem is used between hubs k and l,

and the route (i, k, l, j) is a path, otherwise, Xmiklj is 0.Moreover, Fck indicates fixed construction
cost for hub k with capacity c. So we have the following economic objective:∑

i,j,k,l∈N

∑
m∈M

[(1 + pik)δikwikdik + αmδmkl wkldkl + (1 + plj)δljwljdlj]X
m
iklj +

∑
k∈N

∑
c∈C

FckY
c
kk , (1)

in which Yckk = 1 if node k is established as a hub with capacity level c, otherwise, Yckk = 0.
What is noteworthiness is that δ exhibit the random characteristics based on historical

data, hence they can be considered as random variables. In our model, we assume that
δ = δ̄ + zδ̂, where δ̄ are nominal values, δ̂ are basic shifts, z are random variables. When the
precise probability distribution P of random variables z is known, we propose a value at risk
model for economic objective as follows:

min κ

s.t. Prz∼P

{ ∑
i,j,k,l∈N

∑
m∈M

[(1 + pik)(δ̄ik + z1i δ̂ik)wikdik + αm(δ̄mkl + z2k δ̂
m
kl )wkldkl

+(1 + plj)(δ̄lj + z3l δ̂lj)wljdlj]Xmiklj +
∑
k∈N

∑
c∈C

FckY
c
kk ≤ κ

}
≥ 1 − ε,

(2)

where ε represents the tolerance level for probability constraint violations, κ represents
the maximum budget economic cost. In most cases, the precise probability distributions
of random variables are unknown, which are only characterised by their partial distribution
information. The distribution P of random variables z is ambiguous, that is, P belongs to an
ambiguity set P1. The corresponding chance constraint becomes an ambiguous chance
constraint. Hence, the value at risk objective with ambiguous chance constraint can be
represented as follows:

min κ

s.t. inf
P∈P1

Prz∼P

{ ∑
i,j,k,l∈N

∑
m∈M

[(1 + pik)(δ̄ik + z1i δ̂ik)wikdik + αm(δ̄mkl + z2k δ̂
m
kl )wkldkl

+(1 + plj)(δ̄lj + z3l δ̂lj)wljdlj]Xmiklj +
∑
k∈N

∑
c∈C

FckY
c
kk ≤ κ

}
≥ 1 − ε.

(3)

2.2.2. Customer satisfaction objective
This objectiveminimises the total customer satisfaction index including transportation time
satisfaction and transportation quality satisfaction. In past research, the soft time windows
canbedivided intomany types according to thepenalties calculationmethod (see,Niknam-
far and Niaki 2016). In general, the penalties are calculated for the outside of the limited
time interval, both early and late. There is a type of soft time window that is more like a
hard time window. It has a certain degree of allowance, and also has to calculate the cor-
responding penalties. Both the part above a certain upper bound and the part below the
lower boundary are regarded as unacceptable parts, the penalties will be set to infinity. In
this paper, according to the actual logistics and transport services, the semi-time window
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is presented, which has one side time window. In this semi-time window, the upper bound
of transportation time from origin i to destination j is denoted as Lij. If tij > Lij, the penalty
cost is infinite.

Moreover, in thehub locationproblem, tik + tmkl + tlj is the transportation time fromnode
i to node j. Due to the influence of various uncontrollable factors, the actual transportation
time may increase some delay time. The actual transportation time is tij = (1 + pik)tik +
tmkl + (1 + plj)tlj by the sameway of calculating the loss cost. Hence, according to semi-time
window, we define the transportation time satisfaction of customer as

Lij − ((1 + pik)tik + tmkl + (1 + plj)tlj)

Lij
, (4)

where the molecule represents the difference between the maximum permissible trans-
portation time and the actual transportation time. The meaning of the defined transporta-
tion time satisfaction (4) is the ratio of the time interval between themaximumpermissible
transportation time and the actual transportation time. The larger the ratio, the shorter the
actual transportation time. That is, consumers receive the goods earlier. Obviously, con-
sumers want to receive their goods as soon as possible, so the result is that the greater the
transportation time satisfaction, themore favourable for customers. In addition, when Lij =
((1 + pik)tik + tmkl + (1 + plj)tlj), the actual transportation time is stuck on the maximum
permissible of the transportation time. At this point, the transportation time satisfaction is
0, which expresses the impartial attitude of consumers, that is, consumers do not get good
satisfaction, but the delivery is not delayed.

In addition, the customer requires not only the delivery time of the goods as fast as pos-
sible but also the loss of the goods as small as possible. Therefore, we define transportation
quality satisfaction as

pik+plj
2 . Thegoal of customer is toobtain a smaller loss rateof goods. As

a result, combining transportation time satisfaction and transportation quality satisfaction,
we construct a new customer satisfaction objective function as

max
∑

i,j,k,l∈N

∑
m∈M

(
Lij − ((1 + pik)tik + tmkl + (1 + plj)tlj)

Lij
− pik + plj

2

)
Xmiklj. (5)

It is found by analysis that this objective function successfully achieves dimension elim-
ination and unit unification through the fractional structure. And the first item and the
second item in the parentheses of the generated objective function (5) are both unitless
real numbers between 0 and 1.

2.2.3. Environmental objective
This objective minimises the total environmental costs including noise pollution cost and
carbonemissions cost.More specifically, according to themodel describedbyMohammadi,
Torabi, and Tavakkoli-Moghaddam (2014), the cost of noise pollution at hub k is presented
as φ[exp(ξL10,k − ξLmax,k) − 1], where L10,k is the total noise level calculated at a reference
distance of 10 metres from the nearside carriage way edge at hub k (hourly); Lmax,k is the
threshold measured in dB(A) at hub k; φ, ξ are constant coefficients. For more informa-
tion, we refer interested readers toMohammadi, Torabi, and Tavakkoli-Moghaddam (2014).
Beyond that, low-carbon logistics has also received a lot of attention recently (see, Jiang,
Zhang, and Meng 2021). One of the low-carbon logistics policies is called the carbon cap-
and-trade policy (see, Mohammed et al. 2017), which requires each firm to be assigned a
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free amount of initial carbon emissions. If a firm emits less amount of carbon than its pre-
scribed carbon cap (the deficiency is recorded as E−), then it can sell the unused amount of
carbon emissions. On the other hand, if a firm emits more amount of carbon than its pre-
scribed carbon cap (the excess ismarked as E+), itmaypurchase additional carbonemission
credit. However, in the actual decision-making environment, decision-maker of the enter-
prisedoesnot knowwhether topurchaseor sell carbonemissions in advance. Theproposed
model is to make a decision about this and output the enterprise’s trading volume E+ or
E−. Hence, we define δe(E+ − E−) as the cost through carbon emissions trading in a single
cycleof theentirenetwork,where δe is unit carbonemissionprice. Therefore, environmental
objective of hub network is expressed as

∑
k∈N

∑
c∈C

φ[exp(ξL10,k − ξLmax,k) − 1]Yckk + δe(E
+ − E−). (6)

Noteworthy, noise level L10,k , ∀k ∈ N are affected by many factors including the number of
heavy vehicles and traffic speed. The speedof transportation and thenumber of heavy vehi-
cles exhibit random characteristics based on historical data, so L10,k , ∀k ∈ N are considered
as randomvariables in this paper.We assume that L10,k = L̄10,k +z4k L̂10,k , ∀k ∈ N, where L̄10,k
is nominal value, L̂10,k is basic shifts, z4k is random variable. For a given precise distribution
P, the expectation of environmental objective can be represented as follows:

min Ez∼P

{∑
k∈N

∑
c∈C

φ[exp(ξ(L̄10,k +z4k L̂10,k) − ξLmax,k) − 1]Yckk + δe(E
+ − E−)

}
. (7)

However, the probability distribution of random variable z4k is usually ambiguous. In view
of this, we introduce an ambiguity setP2, which contains a family of distributions with the
same characteristics as the true probability distribution. Hence, the worst-case expected
environmental objective with ambiguity set can be represented as follows:

min sup
P∈P2

Ez∼P

{∑
k∈N

∑
c∈C

φ[exp(ξ(L̄10,k +z4k L̂10,k) − ξLmax,k) − 1]Yckk + δe(E
+ − E−)

}
. (8)

Although E+ and E− exist at the same timeandbothof themarenon-negative real numbers
in our model, the optimal decision with either E+ = 0 or E− = 0 will be finally obtained
through the constructed model.

2.3. Constraints

2.3.1. Basic constraints
Constraint (9) indicates the number of hubs. Constraint (10) requires that a non-hub node
can only be connected to one hub. Constraint (11) indicates that as long as node k is
selected as hub, non-hub nodes i can connect to it. Constraint (12) indicates that at most
one capacity level can be selected for a hub node. Constraint (13) selects single hub pair
(k,l) for each origin-destination pair (i, j) and a specific transportation mode m. Constraint
(14) ensures that a route (i, k, l, j) employs one transportationmode at most. Constraint (15)
obliges that if node k is located as hub, there is the only one transport mode between hubs
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k and l. Constraint (16) is the binary constraint.∑
c∈C

∑
k∈N

Yckk = p. (9)

∑
c∈C

∑
k∈N

Ycik = 1,∀i ∈ N. (10)

Ycik ≤ Yckk , ∀i, k ∈ N, c ∈ C. (11)∑
c∈C

Yckk ≤ 1,∀k ∈ N. (12)

∑
k,l∈N

∑
m∈M

Xmiklj = 1,∀i, j ∈ N. (13)

∑
m∈M

Xmiklj ≤ 1,∀i, j, k, l ∈ N. (14)

∑
l∈N

∑
m∈M

Xmiklj ≤
∑
c∈C

Yckk , ∀i, k, j ∈ N. (15)

Xmiklj, Y
c
kk , Y

c
ik ∈ {0, 1},∀i, j, k, l ∈ N,m ∈ M, c ∈ C. (16)

2.3.2. Capacity constraints
Constraint (17) ensures that the flow passing through hub k does not exceed the capacity
of hub, where wik is the flow from non-hub node i to hub k, �ck is the capacity of node k as
a hub with level c. ∑

c∈C

∑
i∈N

(wik + wki)Y
c
ik ≤

∑
c∈C

�
c
kY

c
kk , ∀k ∈ N. (17)

Constraint (18) indicates that the actual transportation time cannot exceed Lij for each
origin-destination pair (i,j), where Lij is the upper bound of transportation time from origin
i to destination j. ∑

m∈M
[(1 + pik)tik + tmkl + (1 + plj)tlj]X

m
iklj ≤ Lij, ∀i, j, k, l ∈ N. (18)

Considering the sustainability of logistics transport, carbon emissions from vehicles are
taken into account during our modelling process. We use eik to represent the carbon
emissions generated per unit distance between non-hub and hub. Discount coefficient of
carbon emission cost between hubs is marked as βm. Therefore, we can obtain that the car-
bon emissions produced in a complete route (i, k, l, j) is eikdik + βmemkldkl + eljdlj. In view of
the carbon policy, the difference between the total carbon emissions generated in the hub
network and the given free initial carbon quota Ecap can be traded as a carbon credit. In
the course of trading, the resulting capacity constraint of carbon emissions is obtained as
follows: ∑

i,j,k,l∈N

∑
m∈M

(eikdik + βme
m
kldkl + eljdlj)X

m
iklj + E− ≤ Ecap + E+.

According tohistorical data, the carbonemissions fromtransportationexhibit randomchar-
acteristics. So e are considered as random variables in this paper. We assume that e =
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ē + zê, where ē are nominal values, ê are basic shifts, z are random variables. For tolerance
level ε, the following chance constraint is obtained.

Pr
z∼P

⎧⎨
⎩
∑
i,j∈N

∑
k,l∈N

∑
m∈M

((ēik + z5i êik)dik + βm(ēmkl + z6k ê
m
kl )dkl + (ēlj + z7l êlj)dlj)X

m
iklj + E−

≤ Ecap + E+} ≥ 1 − ε.

In particular, the probability distribution P of random variables z is ambiguous and belongs
to ambiguity set P3. Hence, the following ambiguous chance constraint about carbon
emissions is obtained.

inf
P∈P3

Prz∼P{
∑

i,j,k,l∈N

∑
m∈M

((ēik + z5i êik)dik + βm(ēmkl + z6k ê
m
kl )dkl + (ēlj + z7l êlj)dlj)X

m
iklj + E−

≤ Ecap + E+} ≥ 1 − ε.
(19)

2.4. Distributionally robustmodel

Under the premise of the proposed objective functions and constraints, we obtain the
following distributionally robust multi-objective hub location model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min κ

max
∑

i,j,k,l∈N

∑
m∈M

(
Lij − ((1 + pik)tik + tmkl + (1 + plj)tlj)

Lij
− pik + plj

2

)
Xmiklj

min sup
P∈P2

Ez∼P

{∑
k∈N

∑
c∈C

φ[exp(ξ(L̄10,k +z4k L̂10,k) − ξLmax,k) − 1]Yckk + δe(E+ − E−)

}

s.t. inf
P∈P1

Prz∼P

{ ∑
i,j,k,l∈N

∑
m∈M

[(1 + pik)(δ̄ik + z1i δ̂ik)wikdik + αm(δ̄mkl + z2k δ̂
m
kl )wkldkl

+(1 + plj)(δ̄lj + z3l δ̂lj)wljdlj]Xmiklj +
∑
k∈N

∑
c∈C

FckY
c
kk ≤ κ

}
≥ 1 − ε

and constraints (9) − (19).
(20)

For the above formulated distributionally robust multi-objective hub location model, a
problem that arises in practice is the need to commit to a distribution family P with only
partial information about the probability distribution. Therefore, the proposed model is
unfortunately a semi-infinite programming and it results in a severely computationally
intractable character. A more challenging difficulty is dealing with the expectation of envi-
ronmental objective (8) and ambiguous chance constraints (3) and (19). Hence, in an effort
to address these issues, we discuss how to deal with them in the next section, so as to trans-
form the distributionally robust multi-objective hub location model into computationally
solvable form.

3. Safe approximation under mean and dispersion information

The distribution P is ambiguous in many practical problems. Therefore, when we specify
partial distributional information of the model’s uncertain parameters, an ambiguity set P
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of distribution is effective, which contains the true nominal distribution P. As we are dis-
covering, the structure of P completely determines the difficulty degree of solving this
problem. In this section, we assume that ambiguity set P contains only mean and disper-
sion information (μ, d), where d is the mean absolute deviations from the means μ. For
more information about (μ, d), we refer interested readers to Postek et al. (2018). Postek
et al. (2018) showed that for the ambiguity setPμ,d , no equivalent closed-form result exists.
Hence, in the following sections,wewill showhow to compute anupper boundof expected
environmental objective (20) and seek the safe approximations of ambiguous chance con-
straints (3) and (19). The mentioned ‘safe’ in this paper means that the optimal solution
of the derived model is still in the feasible domain of the original model. So the derived
model is the safe approximation model of the original model. The reason is that the feasi-
ble domain of the derived approximation model is a subset of the feasible domain of the
original problem, that is to say, the optimal solution of the approximation model must be
feasible for the original model.

3.1. The upper bound of expected value

In the expected environmental objective, we observe that only z4k is randomvariable and its
distribution P belongs to an ambiguity set P2. For simplicity, the expected environmental
objective can be rewritten as follows:

min sup
P∈P2

∑
k∈N

∑
c∈C

φ[exp(ξ L̄10,k −ξLmax,k)Ez∼P[exp(ξz4k L̂10,k)] − 1]Yckk + δe(E
+ − E−). (21)

To address the above objective, a challenging difficulty is dealing with Ez∼P exp(ξz4k L̂10,k),
∀P
∈ P2. Under the mean and dispersion information, as Postek et al. (2018), we also assume
that z4k has a support contained in [−1, 1] and mean 0, the ambiguity set P2

μ,d is defined as
follows:

P2
μ,d = {P : supp(z4k ) ⊆ [−1, 1], EP[z

4
k ] = 0, EP[|z4k |] = d4k , k ∈ N}. (22)

Observing that the ambiguity set P2
μ,d has only support, mean and dispersion constraints,

due to the ambiguity of distribution, we cannot obtain an exact form of the worst-case
expectation. To overcome this problem, in this paper, we provide a good upper bound of
Ez∼P exp(ξz4k L̂10,k) as shown in the following theorem.

Theorem 3.1: Let z4k , k ∈ N be mutually independent random variables. Then, for the given

parameters ξ and L̂10,k, we have

sup
P∈P2

μ,d

Ez∼P exp(ξz4k L̂10,k) ≤ d4k
2

exp(−ξ L̂10,k) + d4k
2

exp(ξ L̂10,k) + (1 − d4k) exp(0)

= d4kcosh(ξ L̂10,k) + 1 − d4k , (23)

where cosh(·) is hyperbolic cosine function. That is, d4kcosh(ξ L̂10,k) + 1 − d4k isanupperbound

of Ez∼P exp(ξz4k L̂10,k).
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Based on the derivation of the above theorem, we get the upper bound of the expected
value as a safe approximation of the original expectation. So the worst-case expected
environmental objective is converted into the following form:

min
∑
k∈N

∑
c∈C

φ[exp(ξ L̄10,k −ξLmax,k)(d
4
kcosh(ξ L̂10,k) + 1 − d4k) − 1]Yckk + δe(E

+ − E−).

(24)

3.2. Safe approximation of ambiguous chance constraints

The distributionally robust hub location model is a semi-infinite programming since there
are ambiguous chance constraints, which usually cannot be solved directly. Meanwhile, we
can observe that ambiguous chance constraints (3) and (19) have the same structure, the
difference between them is that the ambiguity sets are different. In order to express more
intuitively, we first study the safe approximation of the ambiguous chance constraint (3)
under mean and dispersion information. The results of (19) can be obtained similarly. We
rewrite (3) as the following ambiguous chance constraint:

inf
P∈P1

Prz∼P

{ ∑
i,j,k,l∈N

∑
m∈M

[(1 + pik) δ̄ik wikdik + αm δ̄
m
kl wkldkl + (1 + plj) δ̄lj wljdlj]Xmiklj

+∑
i∈N

z1i
∑

j,k,l∈N

∑
m∈M

(1 + pik) δ̂ik wikdikXmiklj +
∑
k∈N

z2k
∑

i,j,l∈N

∑
m∈M

αm δ̂
m
kl wkldklXmiklj

+∑
l∈N

z3l
∑

i,j,k∈N

∑
m∈M

(1 + plj) δ̂lj wljdljXmiklj +
∑
k∈N

∑
c∈C

FckY
c
kk ≤ κ

}
≥ 1 − ε.

(25)
For brevity, adding the additional variable y0, y1i , y

2
k and y3l to the chance constraint, let

y0 =
∑

i,j,k,l∈N

∑
m∈M

[(1 + pik)δ̄ikwikdik + αmδ̄mkl wkldkl

+ (1 + plj)δ̄ljwljdlj]X
m
iklj +

∑
k∈N

∑
c∈C

FckkY
c
k − κ ,

y1i =
∑
j,k,l∈N

∑
m∈M

(1 + pik) δ̂ik wikdikX
m
iklj,

y2k =
∑
i,j,l∈N

∑
m∈M

αm δ̂
m
kl wkldklX

m
iklj,

y3l =
∑
i,j,k∈N

∑
m∈M

(1 + plj) δ̂lj wljdljX
m
iklj. (26)

Then, by the above substitution, the ambiguous chance constraint (3) is converted into the
following form

inf
P∈P1

Prz∼P{y0 +
∑
i∈N

z1i y
1
i +

∑
k∈N

z2ky
2
k +

∑
l∈N

z3l y
3
l ≤ 0} ≥ 1 − ε. (27)
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Nowwe deduce the safe approximation of the ambiguous chance constraint (27). Under
the mean and dispersion information, we assume that the components z1i , z

2
k , z

3
l have

support contained in [−1, 1], the ambiguity set P1
μ,d is defined as follows:

P1
μ,d = {P : supp(z1i ) ⊆ [−1, 1], supp(z2k ) ⊆ [−1, 1], supp(z3l ) ⊆ [−1, 1],

EPz
1
i = 0, EPz

2
k = 0, EPz

3
l = 0,

EP|z1i | = d1i , EP|z2k | = d2k , EP|z3l | = d3l , i, k, l ∈ N}. (28)

Due to the above ambiguity set, the equivalent forms of (27) cannot be obtained, thus, we
provide its safe approximation.

Theorem3.2: Given y0, y1i , y
2
k , y

3
l , P ∈ P1

μ,d, if thereexist auxiliary variablesγ , τ that satisfy the
second-order cone constraint system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = γ0 + τ0,

y1i = γ 1
i + τ 1i , ∀i ∈ N,

y2k = γ 2
k + τ 2k , ∀k ∈ N,

y3l = γ 3
l + τ 3l , ∀l ∈ N,

γ0 + ∑
i∈N

|γ 1
i | + ∑

k∈N
|γ 2

k | + ∑
l∈N

|γ 3
l | ≤ 0,

2 ln(1/ε)

(∑
i∈N

(σ 1
i τ 1i )

2 + ∑
k∈N

(σ 2
k τ 2k )

2 + ∑
l∈N

(σ 3
l τ 3l )

2

)
≤ τ 20 ,

(29)

where

σ 1
i = sup

t∈R

√
2 ln(d1i cosh(t) + 1 − d1i )

t2
,

σ 2
k = sup

t∈R

√
2 ln(d2k cosh(t) + 1 − d2k)

t2
,

σ 3
l = sup

t∈R

√
2 ln(d3l cosh(t) + 1 − d3l )

t2
, (30)

then the constraint system (29) is a safe approximation of (27), and all feasible solution in the
constraint system is feasible in (27).
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In combination with the conclusion of Theorem 3.2, if y0, y1i , y
2
k , y

3
l are substituted, we

can obtain the safe approximation of (3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i,j,k,l∈N

∑
m∈M

[(1 + pik) δ̄ik wikdik + αm δ̄
m
kl wkldkl + (1 + plj) δ̄lj wljdlj]Xmiklj

+ ∑
k∈N

∑
c∈C

FckY
c
kk − κ = γ0 + τ0,∑

j,k,l∈N

∑
m∈M

(1 + pik) δ̂ik wikdikXmiklj = γ 1
i + τ 1i , ∀i ∈ N,

∑
i,j,l∈N

∑
m∈M

αm δ̂
m
kl wkldklXmiklj = γ 2

k + τ 2k , ∀k ∈ N,

∑
i,j,k∈N

∑
m∈M

(1 + plj) δ̂lj wljdljXmiklj = γ 3
l + τ 3l , ∀l ∈ N,

γ0 + ∑
i∈N

|γ 1
i | + ∑

k∈N
|γ 2

k | + ∑
l∈N

|γ 3
l | ≤ 0,

2 ln(1/ε)

(∑
i∈N

(σ 1
i τ 1i )2 + ∑

k∈N
(σ 2

k τ 2k )2 + ∑
l∈N

(σ 3
l τ 3l )2

)
≤ τ 20 ,

(31)

in which σ 1
i , σ

2
k , σ

3
l are given by formula (30).

Similarly, we derive the safe approximation of the ambiguous chance constraint
(19). Under the mean (EPz5i = EPz6k = EPz7l = 0) and dispersion information (EP|z5i | =
d5i , EP|z6k | = d6k , EP|z7l | = d7l ), the safe approximation result of (19) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i,j,k,l∈N

∑
m∈M

(ēik dik + βm ēmkl dkl + ēlj dlj)Xmiklj + E− − Ecap − E+ = η0 + θ0,

∑
j,k,l∈N

∑
m∈M

êik dikXmiklj = η5i + θ5i , ∀i ∈ N,

∑
i,j,l∈N

∑
m∈M

êmkl βmdklXmiklj = η6k + θ6k , ∀k ∈ N,

∑
i,j,k∈N

∑
m∈M

êlj dljXmiklj = η7l + θ7l , ∀l ∈ N,

η0 + ∑
i∈N

|η5i | + ∑
k∈N

|η6k | + ∑
l∈N

|η7l | ≤ 0,

2 ln(1/ε)

(∑
i∈N

(ς5
i θ5i )2 + ∑

k∈N
(ς6

k θ6k )2 + ∑
l∈N

(ς7
l θ7l )2

)
≤ θ20 ,

(32)

where η, θ are auxiliary variables, and

ς5
i = sup

t∈R

√
2 ln(d5i cosh(t) + 1 − d5i )

t2
,

ς6
k = sup

t∈R

√
2 ln(d6k cosh(t) + 1 − d6k)

t2
,

ς7
l = sup

t∈R

√
2 ln(d7l cosh(t) + 1 − d7l )

t2
. (33)

In summary, we derive the safe approximations of ambiguous chance constraints (3) and
(19). So the distributionally robust multi-objective hub location model is transformed into
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a computationally solvable form, which is a deterministic second-order cone program-
ming model. However, this form is still a multi-objective optimisation problem. In the next
section, to solve this model, by using the goal programming method, we transform it into
a single objective optimisation model.

4. The goal programming formulation for multi-objective hub location
problem

Depending on the specific ambiguity set with the mean and dispersion information in
Section 3, the proposed model is approximately transformed into the following mixed
integer second-order cone optimisation model

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min κ

max
∑

i,j,k,l∈N

∑
m∈M

(
Lij − ((1 + pik)tik + tmkl + (1 + plj)tlj)

Lij
− pik + plj

2

)
Xmiklj

min
∑
k∈N

∑
c∈C

φ[exp(ξ L̄10,k −ξLmax,k)(d4k cosh(ξ L̂10,k) + 1 − d4k) − 1]Yckk + δe(E+ − E−)

s.t. constraints (9) − (18), (24), (31)and (32).
(34)

Based on the mixed integer second-order cone optimisation model (34) with three objec-
tive functions, we establish a goal programming model under resource constraints for
multi-objective hub location problem. The concept of goal programmingmodel originated
from Charnes and Cooper (1961). After that, the goal programming is well-known by more
and more researchers (Aouni and Kettani 2001) because it can be readily solved through
general-purpose optimisation software.

We assume that the aspiration levels of the three objective functions are F1,F2 andF3,
respectively. Meanwhile, the positive and negative deviations of economic objective, cus-
tomer satisfactionobjective andenvironmental objective aredenotedas (π+

1 ,π−
1 ), (π+

2 ,π−
2 )

and (π+
3 , π−

3 ), respectively. From the government’s point of view, based on the idea of sus-
tainable development, the environmental objective is the first priority. Then the customer
satisfaction objective is the second priority. In order to ensure the normal operation of the
company, as far as possible to reduce the cost, the economic objective is the third priority.
Based on the above description, we establish the following goal programming model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min P1π
+
3 + P2π

−
2 + P3π

+
1

s.t. κ + π−
1 − π+

1 = F1∑
i,j,k,l∈N

∑
m∈M

(
Lij − ((1 + pik)tik + tmkl + (1 + plj)tlj)

Lij
− pik + plj

2

)
Xmiklj

+π−
2 − π+

2 = F2∑
k∈N

∑
c∈C

φ[exp(ξ L̄10,k −ξLmax,k)(d4k cosh(ξ L̂10,k) + 1 − d4k) − 1]Yckk + δe(E+ − E−)

+π−
3 − π+

3 = F3

π+
1 ,π−

1 ,π+
2 ,π−

2 ,π+
3 ,π−

3 ≥ 0
constraints (9) − (18), (24), (31)and (32).

(35)
where P1,P2,P3 are weight coefficients, and P1 	 P2 	 P3.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 19

According to the goal programming method, the multi-objective optimisation model
is converted into a single-objective optimisation model by considering the priority order
of the objective functions, so the model (35) is different from the original model (34). This
transformation is beneficial for solvability of our model in practical settings. The proposed
goal programming model (35) is still an MISOCP model, which can be solved directly by
commercial optimisation software.

Remark 4.1: Note that the adopted goal programming method is not directly applied to
the original multi-objective distributionally robust optimisation model, but is applied to
the safe approximation model transformed in Section 3. The ambiguousness in the orig-
inal model cannot be handled directly. Hence, our indirect processing method can effec-
tively handle the ambiguousness and transform the multi-objective optimisation model
into a single-objective optimisation model, which is readily solved by general commercial
optimisation solver.

5. A case study about China’s super logistics hub network

In this section, we apply the proposedmodel to the actual case study of China’s super logis-
tics hub network. In addition, the performance of the proposed model in practical cases is
analysed to verify the model’s validity.

In Section 5.1, the problem background of designing China’s super logistics hub net-
work and the test data required are described. The computational results are presented
in Section 5.2. In order to present the advantages of our model, we do some contrastive
study in Section 5.3. Finally, the management significances of the proposed method are
summarised in Section 5.4.

5.1. Application case and test data

Aswe all know,Memphis can be called the ‘U. S. hub’, because it is not only themost impor-
tant transportation hub in the United States, but also the world’s largest air logistics hub.
Analogously, for China, which city has this potential? Over the past few years, many central
cities inChinahavebeen competing for the status of ‘ChinaMemphis’, such asXi’an,Wuhan,
etc. Which city is the most likely to succeed? In this paper, we select 12 potential cities in
China as shown in Figure 2, to abstract China’s super logistics hub network design into a
hub location problem. From the point of view of a hub location problem, we try to choose
several cities that are most likely to become China’s super logistics hub by the proposed
distributionally robust hub location model.

The data about the 12 potential cities (N = 12) are from searching relevant websites. We
obtain Euclidean distances d between any two cities, which are measured in Google Maps.
According to ‘the traffic safety law of the PRC’, the speed of trucks on expressways shall not
exceed 100 km/h, and shall not be less than 60 km/h. Thus we assume that the speed of a
truck is a random value between 60 and 100 km/h. Then the transportation time t between
non-hubnode andhub is equal to thequotient of thedistance and the speedof truck. There
are two transport modes between hubs (M = {1, 2}, aircraft and train), m = 1 for aircraft
mode,m = 2 for trainmode.When the transportmode between hubs is aircraft, we get the
transportation time t1 fromGoogleMaps. Since the speed of express cargo trains in China is
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Figure 2. The locations of 12 potential cities in China.

120 km/h,we assume that the speedof ordinary freight trains is a randomvalue between 80
and 120 km/h. Thus, when the transport mode between hubs is train, the transportation
time t2 is equal to the quotient of the distance and the speed of train. We get traffic flow
w between cities by seeking each city’s ‘Statistical Yearbook 2017’ (Since this is a small hub
network, the magnitude of traffic flow is reduced by 10−7 times.).

The capacity of the hub is divided into three levels: high level, medium level, and low
level, i.e. C = 3. We assume that the capacity � of hub corresponding to the three levels is
equal to the flow of the highway, railway, and air traffic in the ‘Statistical Yearbook 2017’,
respectively (The order of magnitude of the flow is reduced by 10−5 times). We take the
transaction price of Beijing carbon tradingmarket on 3 September 2018 as the unit carbon
emissionprice δe, which is 67.51CNY (http://www.tanpaifang.com/tanhangqing/). Basedon
‘National Road Freight Transport Price Index’, δ̄ is a random value between 0.233 and 0.424
CNY (http://www.crtm.cn/ezine/15132.html), δ1 is a random value between 2 and 4 CNY,
and δ2 is a random value between 0.08 and 0.14 CNY. In addition, the basic shift of uncer-
tain parameters is equal to 5% of the nominal value. We assume that the mean absolute
deviations d are random values between 0 and 0.5. The parameters ς and σ are calculated
based on equations (30) and (33). The right side of each equation is an optimisation prob-
lem for univariate nonlinear function with respect to t. For a given value of parameter d,
with the help of Matlab software, we can draw the image of this function and calculate
its supremum value. That is, the values of the parameters ς and σ are obtained. Since

http://www.tanpaifang.com/tanhangqing/
http://www.crtm.cn/ezine/15132.html
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Table 2. The remaining parameters values.

Parameter value λ

200
Lmax,k (dB)
55

Ecap (kg)
10,000

φ

1
Parameter value ξ

0.25
αm
[0.2, 0.2]

βm
[0.2, 0.2]

pik
U(0, 0.04)

Parameter value F1k (million)
U(0.45, 0.50)

F2k (million)
U(0.40, 0.45)

F3k (million)
U(0.35, 0.40)

Lij(h)
U(25, 35)

Parameter value L̄10,k (dB)
U(75, 100)

ēik (kg)
U(0.3, 0.5)

ē1kl (kg)
U(0.7, 0.9)

ē2kl (kg)
U(0.5, 0.7)

Table 3. The optimal values of the proposed model.

The number of hubs Positive deviation Negative deviation The optimal values (CNY)

p = 1 π+
1 = 841460 π−

1 = 0 Ec = 3, 441, 460
π+
2 = 0 π−

2 = 1.3717 Cs = 93.6283
π+
3 = 0 π−

3 = 1437.8 En = 6562.2

p = 2 π+
1 = 278, 330 π−

1 = 0 Ec = 2, 878, 330
π+
2 = 5.3465 π−

2 = 0 Cs = 100.3465
π+
3 = 0 π−

3 = 1143.2 En = 6856.8

p = 3 π+
1 = 30, 768 π−

1 = 0 Ec = 2, 630, 768
π+
2 = 8.1472 π−

2 = 0 Cs = 103.1472
π+
3 = 0 π−

3 = 1026.8 En = 6973.2

P1 	 P2 	 P3, we assume that P1 = 104,P2 = 100,P3 = 10−4 and ε = 0.02. The values
of the other parameters are shown in Table 2.

5.2. Case results

Considering this problem’s size, we only study the cases when p = 1, 2 and 3, that is, only
one, twoor three nodes are chosen as hubs. Dependingon thedata obtained, the proposed
model is solved by using the optimisation solver CPLEX 12.8. All computational results
are solved on an Inter(R) Core(TM) i5-7200U 2.50GHz personal computer with 12GB RAM
operating under Windows 10.

In order to be more reasonable, by referring to the optimal values of the correspond-
ing single-objective models, the aspiration levels of three goals are F1 = 2, 600, 000,F2 =
95, andF3 = 800, respectively. Solving the proposed goal programming model, the opti-
mal values are shown in Table 3.

In Table 3, Ec, Cs and En represent the optimal values of economic, customer satisfac-
tion and environmental objectives, respectively. From Table 3 horizontally, when p = 1,
we can find that the positive deviations of the customer satisfaction and environmental
objectives are 0, which indicate that the environmental objective is achieved. That is, the
customer satisfaction and environmental cost do not exceed the given goal value. By con-
trast, it is found that the economic objective exceeds the given goal value. When p = 2 and
3, we find that, unlike p = 1, the positive deviations relative to environmental objective is
0. This means that the environmental objective in the goal programming model has been
achieved no more than the given goal value. But the economic objective is not achieved.
This may be due to the fact that economic objective is regarded as the lowest in the pre-
vious target priorities. By longitudinal observation of Table 3, we observe that when the
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Table 4. The optimal solutions of the proposed model.

The number of hubs Ecap E+ E− The actual carbon emissions The optimal hubs The capacity level of hub

p = 1 14,000 0 42,493 56,493 11 Medium
p = 2 12,000 0 38,918 50,918 9,11 Low,Medium
p = 3 10,000 0 37,521 47,521 9,10,11 Low,Medium, Medium

value of p increases, the optimal value of environmental objective increases accordingly.
The reason is that as the number of hubs increases, the corresponding noise pollution cost
increases, which increases the environmental objective. As for the economic objective, with
the increase of the number of hubs and the impact of economies of scale, the incurred costs
decreases as shown in Table 3.

The optimal solutions obtained by ourmodel are shown in Table 4. When the number of
hubs is 3, the optimal hub nodes are 9, 10 and 11. The corresponding cities are Dalian, Xia-
men and Ezhou. The optimal hub nodes are 9 and 11 if the number of hubs is 2. The optimal
hub node is 11 if only one hub is needed. From this observation, it is inferred that Ezhou is
most likely to become ‘China Memphis’ by using our model. Of course, this result, which is
based on our established hub location model, is only a reference for the decision maker.
Table 4 not only gives the locations of the hubs, but also gives the corresponding capac-
ity levels of the hubs. The transport mode between hubs, not given in the table, obtained
by the proposed model is air transportation. What’s more, as we can see from the fifth col-
umn of the table, with the increase of the number of hubs, the actual amount of carbon
emissions is reduced due to the impact of economies of scale.

In a hub network, the scale effect between hubs is an important factor for decision-
makers to achieve their goals. In our proposed model, the scale effect is measured by the
discount coefficient. There are two discount coefficients in ourmodel, one is αm, which can
affect the saving proportion of transportation cost in economic objective, and the other
is βm, which can affect the saving proportion of inter-hub carbon emission in capacity
constraint. We will study the influence of these two discount coefficients on the optimal
results of the model, respectively. In general, the value of discount coefficient is between
0.2 and 0.8. Therefore, we take the discount coefficient as (0.2: 0.1: 0.8), which means that
0.2 is the initial value point, 0.8 is the final value point, and 0.1 is the step length. On
this basis, for the value of αm, 7 × 7 parameter values are obtained by the cross com-
bination. Under different parameters, the proposed goal programming model is solved
separately, and the optimal values of the three objective functions are obtained as shown in
Figure 3.

From Figure 3, we can observe the change trend of the three objective values in
αm. In Figure 3(a), under the same α2, it is obvious that the optimal value of economic
objective increases with the increase of α1. By contrast, the influence of α2 is not obvi-
ous, but it also slightly affects the optimal value of economic objective. For example,
as shown in Figure 3(a), when α1 = 0.7 and α2 changes from 0.2 to 0.3, the optimal
value of economic objective in the model increases from 2,674,455 to 2,674,747. Since
αm exists only in the mathematical expression of economic objective, it intuitively does
not affect customer satisfaction objective and environmental objective. Even so, we find
that αm has an impact on customer satisfaction objective and environmental objec-
tive at some angles. This impact is shown in Figure 3(b) and (c). It is because there is
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Figure 3. The optimal values corresponding to the value of αm. (a) Ec corresponding to the value of αm.
(b) Cs corresponding to the value of αm. (c) En corresponding to the value of αm

a close relationship and conflict between the three objectives of our proposed model.
αm indirectly affects the customer satisfaction objective and environmental objective by
changing the economic objective. Similar to the sensitivity analysis of αm, the sensi-
tivity study of discount coefficient βm can also be obtained, which is omitted here for
brevity.

5.3. Contrastive studywith robust optimisationmodel

For the proposedDROmodel (denoted asDRO-(μ, d)), when the uncertain parameters only
have support contained in [−1, 1], that is, the distribution information of uncertain parame-
ters is unknown, the proposedmodel degenerates to a classical robust optimisationmodel.
To illustrate theeffectivenessof theproposedmodel,wecompare theproposedmodelwith
the classical robust optimisationmodel. Under the support information, the classical robust
optimisation model still needs to be transformed into a deterministic robust counterpart
problem that can be solved via commercial solver. For details regarding the transformation
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Figure 4. The influence of parameter ξ on the optimal values. (a) The influence of parameter ξ on Ec.
(b) The influence of parameter ξ on Cs. (c) The influence of parameter ξ on En.

process, please refer to the study by Ben-Tal, Ghaoui, and Nemirovski (2009). We select 21
values of parameter ξ in [0.1, 0.3]. When ξ takes different values, it is worth noting that
the model we solve is the goal programmingmodel under the safety approximation of the
DROmodel, which corresponds to the goal programmingmodel under the transformation
of the classical robust optimisationmodel. For the proposedmodel and the classical robust
optimisation model, the influences of parameter ξ on their optimal results are shown in
Figure 4 and Table 5.

From theperformance of the optimal values in Figure 4,weobserve that, under the same
value of ξ , our model gets better optimal objectives. This shows that the proposed model
yields the lower costs and higher customer satisfaction, which is better than the classical
robust optimisation model. In addition, with the increase of parameter ξ , Figures 4(a) and
(b) show that the optimal values of economic objective and customer satisfaction objective
of our model both remain unchanged first and then present an increasing and decreasing
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Table 5. The influence of parameter ξ on the optimal solution.

The optimum hub location The capacity level of hub

ξ RO DRO-(μ, d) RO DRO-(μ, d)

0.10 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.11 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.12 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.13 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.14 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.15 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.16 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.17 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.18 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.19 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.20 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.21 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.22 9, 10, 11 9, 10, 11 Low, Medium, Medium Low, Medium, Medium
0.23 7, 9, 10 9, 10, 11 Medium, Low, Medium Low, Medium, Medium
0.24 7, 9, 10 9, 10, 11 Medium, Low, Medium Low, Medium, Medium
0.25 7, 9, 10 9, 10, 11 Medium, Low, Medium Low, Medium, Medium
0.26 7, 9, 10 7, 9, 10 Medium, Low, Medium Medium, Low, Medium
0.27 7, 9, 10 7, 9, 10 Medium, Low, Medium Medium, Low, Medium
0.28 4, 9, 10 7, 9, 10 Medium, Low, Medium Medium, Low, Medium
0.29 4, 9, 10 7, 9, 10 Medium, Low, Medium Medium, Low, Medium
0.30 4, 9, 10 4, 9, 10 Medium, Low, Medium Medium, Low, Medium

trend, respectively. The same observation is obtained for the classical robust optimisation
model.

Table 5 lists the optimal hub locations and hub capacity levels of the DRO model and
the classical robust optimisation model. From the table, we can find that, no matter how
ξ changes, the optimal solutions of the two models do not change when ξ is relatively
small. But when ξ is large, the optimal solutions of the two models change. The optimal
solution of classical robust optimisation model begins to change after ξ = 0.22, while our
model starts to change after ξ = 0.25. This shows that our proposedmodel is less sensitive
to parameter ξ .

5.4. Management insights

In the previous subsection, we represent the computational results of our model and anal-
yse the effects of the key parameters’ changes on the optimal decision, by which we can
provide the reference range of parameters for decision makers in practice. In addition, our
method is comparedwith classical robust optimisationmethod. According to the results of
numerical experiments, we give somemanagerial insights for decision-makers:

• The proposed distributionally robust multi-objective hub location model can help
decision-makers to obtain the optimal solution by incorporating the ambiguity of dis-
tribution information. Therefore, decision-makers may adopt our model when the dis-
tributions of random parameters are ambiguous. Moreover, if decision-makers know
the mean and dispersion information of random variables, they may directly use the
conclusion on safe approximation of our model in Section 3.

• The sensitivity analysis of discount coefficient shows that the discount coefficient affects
all the threeobjective valuesof ourmodel.Moreover, thediscount coefficient reflects the
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degreeof scale economy inpractice. Thus, decision-makersmay set the valueof discount
coefficient according to the real size of economy.

• Compared with the classical robust optimisation model, our new model produces the
lower costs and higher customer satisfaction. This shows an advantage of the proposed
method. Therefore, when the distributions of random parameters are ambiguous, to
save costs and improve customer satisfaction, decision-makers may apply our model
to design a better hub network structure by taking advantage of as much distribution
information as possible.

• From Figure 4 and Table 5, we find that the parameter ξ affects the optimal results of
the proposed model. But when parameter ξ takes value within the range of [0.1, 0.25],
the optimal hub network provided by our model remains unchanged. Therefore, when
the proposedmodel is used to design a hubnetwork in practice, decision-makers should
analyse the specific conditions to determine the appropriate support set of parameter ξ .

6. Conclusions

In this paper, we studied a new multi-objective hub location problem, in which eco-
nomic, customer satisfaction and environmental objectives were optimised. In particular,
we proposed a new customer satisfaction objective by defining transportation time sat-
isfaction and transportation quality satisfaction. Moreover, the unit transportation costs,
carbon emissions and noise levels exhibited random characteristics, and only partial distri-
bution information could be obtained. The adopted detailed technique approach and the
obtained meaningful results are shown below:

We first proposed a distributionally robust multi-objective hub location model when
the ambiguous probability distribution was characterised via general ambiguity set. The
ambiguity set characterised the possible range of the real probability distribution. In addi-
tion, when the ambiguity set was characterised by the mean and dispersion of the random
variable, we derived the safe approximation of the proposed model. This resulting safe
approximation was a multi-objective MISOCP model.

Then, we applied goal programming method to deal with the multi-objective MISOCP
model. From the government’s point of view, the environmental objectivewas taken as the
first priority, then the customer satisfaction and economic objectives were ranked accord-
ingly as the second and third priorities. The resulted model was a single objective MISOCP
model, which could be solved directly using a commercial optimisation software.

Finally, we applied the proposed model to design China’s super logistics network. The
computational results verified the effectiveness of our new method in the case the prob-
ability distributions of random parameters were ambiguous. We compared the proposed
methodwith the classical robust optimisationmethod. The results showed that ourmethod
had a better performance by taking advantage of the probability distribution information,
instead of just using the support information of random parameters. Moreover, according
to the computational results, we provided some management implications that might be
helpful to decision-makers in hub network design and researchers in other fields.

While our proposedmodel has been transformed into a computationally solvablemodel
by employing safe approximation and goal programming, themethod of solving the trans-
formed model directly with the optimisation solver has the limitation that it can only deal
with small-scale cases. For large-scale cases, it is necessary to develop heuristic algorithms
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to obtain their Pareto fronts. This is one of our future research directions. Additionally, in
our future research, we will study the application of distributionally robust optimisation
methods to our hub location problem under other ambiguity sets.
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Appendix A. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1: When the support, expectation and deviation of the random variable z4k are
known, the distribution of the random variable belongs to the following ambiguity set.

P2
μ,d4k

= {P : supp(z4k ) ⊆ [a, b], EP[z4k ] = μ, EP[|z4k − μ|] = d4k }.

In order to obtain the upper bound of the expected value of a convex function exp(ξz4k L̂10,k) con-
taining a random variable z4k , when the true probability distribution of z

4
k belongs to an ambiguity set

Pμ,d4k
, the following upper bound is given by Postek et al. (2018):

max
P∈P2

μ,d4k

EP[exp(ξz4k L̂10,k)] = p1 exp(ξa L̂10,k) + p2 exp(ξμ L̂10,k) + p3 exp(ξb L̂10,k),

where p1 = d4k
2(μ−a) , p2 = 1 − d4k

2(μ−a) − d4k
2(b−μ)

, p3 = d4k
2(b−μ)

. Due to μ = 0, a = −1 and b = 1, we

obtain: p1 = d4k
2 , p2 = 1 − d4k , p3 = d4k

2 . Therefore, the following conclusions are obtained.

sup
P∈P2

μ,d

Ez∼P[exp(ξz4k L̂10,k)]
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≤ d4k
2

exp(−ξ L̂10,k) + d4k
2

exp(ξ L̂10,k) + (1 − d4k ) exp(0)

= d4k cosh(ξ L̂10,k) + 1 − d4k .

The proof of theorem is complete. �

Proof of Theorem 3.2: The proof of Theorem 3.2 is based on the following conclusions.
Theorem 3 (Ben-Tal, Ghaoui, and Nemirovski (2009)). If the random variables z1i , z

2
k , z

3
l obey the

following properties P.1-2 and a− ≤ z ≤ a+, a− ≤ μ− ≤ μ+ ≤ a+, for all i, k, l.
P.1. For any i, k, l ∈ N, z1i , z

2
k and z3l are independent random variables such that supp(z1i ) ⊆

[−1, 1], supp(z2k ) ⊆ [−1, 1], supp(z3l ) ⊆ [−1, 1],
P.2. The distributions Pi , Pk , Pl of the components z1i , z

2
k , z

3
l are such that∫

exp(ts)dPi(s) ≤ exp(max{(μ1
i )

+t, (μ1
i )

−t} + 1
2
(σ 1

i )2t2), ∀t ∈ R,

∫
exp(ts)dPk(s) ≤ exp(max{(μ2

k)
+t, (μ2

k)
−t} + 1

2
(σ 2

k )2t2), ∀t ∈ R,

∫
exp(ts)dPl(s) ≤ exp(max{(μ3

l )
+t, (μ3

l )
−t} + 1

2
(σ 3

l )2t2), ∀t ∈ R

with known constants (μ1
i )

− ≤ (μ1
i )

+, (μ2
k)

− ≤ (μ2
k)

+ and (μ3
l )

− ≤ (μ3
l )

+. Then, the following robust
counterpart⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = γ0 + τ0,

y1i = γ 1
i + τ 1i , ∀i ∈ N,

y2k = γ 2
k + τ 2k , ∀k ∈ N,

y3l = γ 3
l + τ 3l , ∀l ∈ N,

γ0 + ∑
i∈N

max[(a1i )
−
γ 1
i , (a

1
i )

+
γ 1
i ] +

∑
k∈N

max[(a2k)
−
γ 2
k , (a

2
k)

+
γ 2
k ] +

∑
l∈N

max[(a3l )
−
γ 3
l , (a

3
l )

+
γ 3
l ] ≤ 0,

τ0 + ∑
i∈N

max[(μ1
i )

−
τ 1i , (μ

1
i )

+
τ 1i ] +

∑
k∈N

max[(μ2
k)

−
τ 2k , (μ

2
k)

+
τ 2k ] +

∑
l∈N

max[(μ3
l )

−
τ 3l , (μ

3
l )

+
τ 3l ]

+√2ln(1/ε)
√∑

i∈N
(σ 1

i τ 1i )
2 + ∑

k∈N
(σ 2

k τ 2k )
2 + ∑

l∈N
(σ 3

l τ 3l )
2 ≤ 0

of {y0 +∑
i∈N z1i y

1
i +∑

k∈N z2k y
2
k +∑

l∈N z3l y
3
l ≤ 0} corresponding to the perturbation set

U =

⎧⎪⎨
⎪⎩η ∈ R3N : ∃γ ∈ R3N :

μ− ≤ η − γ ≤ μ+√∑
γ 2/σ 2 ≤ √

2ln(1/ε)

a− ≤ η ≤ a+

⎫⎪⎬
⎪⎭

is a safe approximation of (27). Moreover, every decision variable x that can be extended to a feasible
solution (x, γ , τ) to the ambiguous chance constraint (3) is feasible for the chance constraint (27).

In Theorem 3, if (μ1
i )

− = (μ1
i )

+ = (μ2
k)

− = (μ2
k)

+ = (μ3
l )

− = (μ3
l )

+ = 0, (a1i )
− = (a2k)

−

= (a3l )
− = −1, (a1i )

+ = (a2k)
+ = (a3l )

+ = 1, we can get the conclusion of Theorem 3.2, but we also
need to get the values of σ 1

i , σ
2
k and σ 3

l . Firstly, we substitute z1i , z
2
k and z3l into P.2 and get the

following results:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

−1
exp(tz1i )dPi(z

1
i ) ≤ exp

(
max{(μ1

i )
+
t, (μ1

i )
−
t} + 1

2
(σ 1

i )
2
t2
)
, ∀t ∈ R, ∀P ∈ P1

μ,d ,∫ 1

−1
exp(tz2k )dPk(z

2
k ) ≤ exp

(
max{(μ2

k)
+
t, (μ2

k)
−
t} + 1

2
(σ 2

k )
2
t2
)
, ∀t ∈ R, ∀P ∈ P1

μ,d ,∫ 1

−1
exp(tz3l )dPl(z

3
l ) ≤ exp

(
max{(μ3

l )
+
t, (μ3

l )
−
t} + 1

2
(σ 3

l )
2
t2
)
, ∀t ∈ R, ∀P ∈ P1

μ,d .

(36)



TRANSPORTMETRICA A: TRANSPORT SCIENCE 31

According to Postek et al. (2018), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
P∈P1

μ,d

{∫ 1

−1
exp(tz1i )dPi(z

1
i )

}
= d1i cosh(t) + 1 − d1i ,

sup
P∈P1

μ,d

{∫ 1

−1
exp(tz2k )dPk(z

2
k )

}
= d2k cosh(t) + 1 − d2k ,

sup
P∈P1

μ,d

{∫ 1

−1
exp(tz3l )dPl(z

3
l )

}
= d2l cosh(t) + 1 − d2l .

(37)

Thus, if we substitute (37) into (36), we get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d1i cosh(t) + 1 − d1i ≤ exp
(
max{(μ1

i )
+
t, (μ1

i )
−
t} + 1

2
(σ 1

i )
2
t2
)
, ∀t ∈ R,

d2k cosh(t) + 1 − d2k ≤ exp
(
max{(μ2

k)
+
t, (μ2

k)
−
t} + 1

2
(σ 2

k )
2
t2
)
, ∀t ∈ R,

d2l cosh(t) + 1 − d2l ≤ exp
(
max{(μ3

l )
+
t, (μ3

l )
−
t} + 1

2
(σ 3

l )
2
t2
)
, ∀t ∈ R.

Setting (μ1
i )

+ = (μ1
i )

− = 0, (μ2
k)

+ = (μ2
k)

− = 0, (μ3
l )

+ = (μ3
l )

− = 0, then we obtain the following
conclusion ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d1i cosh(t) + 1 − d1i ≤ exp
(
1
2
(σ 1

i )
2
t2
)
, ∀t ∈ R,

d2k cosh(t) + 1 − d2k ≤ exp
(
1
2
(σ 2

k )
2
t2
)
, ∀t ∈ R,

d2l cosh(t) + 1 − d2l ≤ exp
(
1
2
(σ 3

l )
2
t2
)
, ∀t ∈ R

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 1
i = sup

t∈R

√
2ln(d1i cosh(t) + 1 − d1i )

t2
,

σ 2
k = sup

t∈R

√
2ln(d2k cosh(t) + 1 − d2k )

t2
,

σ 3
l = sup

t∈R

√
2ln(d3l cosh(t) + 1 − d3l )

t2
.

The proof is complete. �
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