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Robust Pricing for a Dual-channel Green Supply
Chain under Fuzzy Demand Ambiguity
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Abstract—The pricing decision is a fundamental problem
in a two-echelon dual-channel supply chain and it is a chal-
lenging issue to get the optimal pricing strategy due to high
demand ambiguity. Although this problem has been studied by
many researchers, the market demand is usually assumed to
be deterministic or described as a fuzzy variable with exact
distribution information in most of the existing literature. In
this paper, the uncertain demand is assumed to possess fuzzy
uncertainty instead of stochastic nature. In the case that the
demand distribution information is partially available, this paper
proposes a new uncertainty distribution set to depict the demand
distribution uncertainty based on type-2 fuzzy theory. Then, a
novel robust pricing game modeling framework is developed for
the dual-channel green supply chain with the demand distribution
varying in the proposed uncertainty distribution set. Finally, a
new method is proposed for obtaining the robust equilibrium
decisions of supply chain members. Numerical analysis and
comparisons are conducted to demonstrate the impacts of the
demand ambiguity on the manufacturer’s equilibrium channel
choice strategy. We also demonstrate our solution results are
robust in the setting that the prices of the green products are
not equal in the retail channel and the direct channel.

Index Terms—Dual-channel green supply chain; Type-2 fuzzy
variable; Robust pricing; Demand ambiguity; Game theory

I. INTRODUCTION

With the rapid development of Internet and related informa-
tion technology, more and more consumers choose to purchase
through online channel. In 2021, the 48th statistical report
on the development of Internet released by China Internet
Network Information Center (CNNIC) showed that the number
of Internet users in China has reached 1.011 billion. In the first
half of 2021, the online retail sales reached 6113.3 billion
yuan. In order to meet consumers’ purchase choices, more
and more manufacturers have opened online direct selling
channel. For example, computer manufacturers (Apple, Dell
and Lenovo), cosmetics industry (Estee Lauder), beverage
and food industry (Coca Cola), sports industry (Nike), super-
markets (Carrefour, WalMart) and electronics manufacturers
(Samsung and Sony) are selling their products through both
online channel and the retail channel [1]. That is, they own
dual-channel: retail channel and direct channel.
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Implementation of dual-channel helps the manufacturers to
create their own market and obtain more benefits from the
growing demand. Meanwhile, adding a direct channel may
also place the manufacturer in competition with the existing
retailers ([2], [3]). In order to compete for consumers, it is
inevitable to blindly reduce the sales price which will affect the
profits of the supply chain members. Dual-channel also makes
consumers compare price information between the retail and
online stores to make sure that they can buy the most suitable
product at the lowest price. Therefore, pricing decisions are
very critical for the manufacturers in dual-channel supply
chain.

Many uncertain factors (for instance, material costs, cus-
tomer incomes, workers’ expenses and technology improve-
ments) exist in the real world and the uncertain factors usually
make the demand ambiguous and unpredictable which will
affect pricing decisions in dual-channel supply chain. There-
fore, how to characterize the uncertain demand becomes very
important for the decision-makers. In the existing literature
([4]-[6]), the market demand is assumed to be deterministic
or described as a random variable with known probabili-
ty distribution. In fact, the exact probability distribution of
demand may be difficult to obtain from limited historical
data. Moreover, in some cases, it may be impossible to
collect data ([7]). To address this situation, in our model,
the demand is assumed to possess fuzzy uncertainty instead
of stochastic nature. In this case, the demand information
can be approximately estimated based on the experiences or
subjective judgments of experts. For example, Jamali et al.
[8] studied pricing problem in a dual-channel green supply
chain by characterizing the uncertain demand as a fuzzy
variable with fixed possibility distribution. However, the exact
possibility distribution or membership function is difficult to
obtain due to insufficient cognition.

Motivated by the above discussions, in this paper, we
assume that the manufacturer only knows that the demand
distribution varies in some uncertainty distribution set instead
of the exact demand distribution. In the presence of the
demand ambiguity, this paper aims to address the following
four questions: (Q1) How to depict the imprecise distribution
of uncertain demand with limited historical data? (Q2) What
is the structure of the optimal solution like? (Q3) How do
the uncertain parameters in the uncertainty set affect the
manufacturer’s channel choice strategy? (Q4) Are the results
robust for other settings?

To answer the above questions, this paper studies the pricing
decision problem of a two-echelon dual-channel green supply
chain assuming that the demand distribution is unknown and
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only partial demand distribution information is available. In
order to depict the imprecise distribution of uncertain demand,
we introduce a new uncertainty distribution set based on type-
2 fuzzy theory and the uncertainty distribution set is con-
structed based on PLI type-2 triangular fuzzy variable. Based
on the proposed uncertainty distribution set, a novel robust
pricing game modeling framework is developed for the dual-
channel green supply chain. We also propose a new method to
obtain the corresponding robust equilibrium decisions. Also,
the effects of the uncertainty perturbation parameters on the
manufacturer’s channel choice strategy are investigated.

In comparison to the existing literature, the main contribu-
tions of the present paper include the following aspects.
• Based on type-2 fuzzy theory, a new uncertainty distribu-

tion set is proposed to depict the ambiguous distribution of the
uncertain demand in the case that the demand distribution is
partially available. The parameters embedded in the variable
distributions facilitates the managers to make wise decisions
according to their attitudes toward uncertainty.
• A novel robust pricing game modeling framework is

provided via the proposed new uncertainty distribution set for
a two-echelon dual-channel green supply chain. A new method
is presented to derive the robust equilibrium decisions of the
robust pricing game model.
• Numerical analysis are conducted to investigate how the

uncertainty perturbation parameters affect the manufacturer’s
channel choice strategy. The numerical results show that the
manufacturer’s channel selection strategy changes when the
uncertain perturbation parameters change. Specifically, when
the values of uncertainty perturbation parameters are relatively
small, opening a direct selling channel is not beneficial to
the manufacturer. When the values of uncertainty perturbation
parameters are relatively large, the manufacturer is willing to
own a direct selling channel.
• We demonstrate our results are robust in the setting that

the prices of the green products are not equal in the retail
channel and the direct channel.

The remainder of this paper is organized as follows. In
Section II, we review the relevant literature. Section III intro-
duces the robust pricing game model. The robust equilibrium
decisions are derived in Section IV and numerical results are
presented in Section V. We present an extension of our model
in Section VI and conclude the paper in Section VII.

II. LITERATURE REVIEW

Literature mostly related to our work can be categorized
into the following two streams: fuzzy pricing models in dual-
channel supply chain and fuzzy optimization theory.

A. Fuzzy pricing models in dual-channel supply chain
Determining the product prices of both channels in dual-

channel supply chain is an important issue. Pricing decisions
of dual-channel supply chain have been considered by many
researchers. There exist many pricing models about dual-
channel supply chain. Here we only focus on fuzzy pricing
models in dual-channel supply chain. We apply the methodol-
ogy used in [9]-[11] to gather the fuzzy pricing models in dual-
channel supply chain using Web of Science search engine, and

14 papers ([8], [12]-[24]) are obtained. For example, Soleimani
[13] analyzed the pricing decisions of a dual-channel supply
chain characterizing the manufacturing cost and the customer
demand as fuzzy variables. Jamali et al. [8] addressed green
product pricing decision considering dual distribution channels
under fuzzy conditions. They characterized production cost of
the green product, cost coefficient of the product greenness
level, and demand as fuzzy variables with known distributions.
Yang et al. [23] modeled the environmental responsibility
behaviors of both manufacturer and consumers to study the
dual-channel structure strategy of a green manufacturer and
further examined its environmental performance under fuzzy
demand. They showed that consumer demand uncertainty en-
courages the manufacturer to open his online channel. Karthick
and Uthayakumar [24] considered the pricing problems in a
dual-channel supply chain where the demands are uncertain
or ambiguous and are treated as trapezoidal fuzzy numbers.

In dealing with fuzzy demand, the above mentioned litera-
ture usually assumed that the exact possibility distribution or
membership function of the uncertain demand is accurately
known. In fact, it is impossible to obtain the exact possibility
distribution or membership function of uncertain model pa-
rameters due to insufficient cognition and limited cognitive
means. Different from the existing literature, we consider the
demand distribution uncertainty and characterize the uncertain
demand using an uncertainty distribution set.

B. Fuzzy optimization theory
It is well known that pricing decisions in dual-channel

supply chain are often affected by the uncertain market de-
mand. And the exact distribution of the uncertain demand is
difficult to obtain because of the rapid changes in real-life
situations. In this case, the distribution information of the
uncertain demand can be approximately estimated based on
the experts’ judgments, intuitions and experiences. To address
this issue, type-2 fuzzy theory has been employed which can
date back to Zadeh [25] who first proposed the concept of type-
2 fuzzy set. In order to make type-2 fuzzy sets easy to use
and understand, Mendel and John [26] established some basic
terms for type-2 fuzzy set. Subsequently, type-2 fuzzy theory
has been increasingly used and has become one of the most
important approaches to characterize subjective uncertainty
([27], [28]). For instances, Wu and Mendel [29] introduced
the centroid, cardinality, fuzziness, variance and skewness of
an interval type-2 fuzzy set as measures of uncertainty. Liu
and Liu [30] developed an axiomatic method called fuzzy
possibility theory, in which the variable based method is used
instead of the set based method to deal with type-2 fuzziness.
Ngan [31] provided a framework called probabilistic linguistic
computing in the context of general type-2 fuzzy setting.
Tahayori et al. [32] presented a universal methodology for
generating an interval type-2 fuzzy set membership function
from a collection of type-1 fuzzy sets. At the same time, type-
2 fuzzy set has been successfully applied to many practical
applications. For example, Pagola et al. [33] proposed a new
fuzzy thresholding algorithm, in which an expert can select
multiple membership functions to construct an interval type-
2 fuzzy set such that the length of the interval represents the
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uncertainty of the expert. Based on type-2 fuzzy theory, Bai et
al. [34] developed a distributionally robust sustainable devel-
opment model where the uncertain per capita gross domestic
product, per capita electricity consumption and per capita
greenhouse gas emissions are characterized by parametric
interval-valued possibility distributions and their associated
uncertainty distribution sets. Muhuri et al. [35] addressed
the multi-objective reliability-redundancy allocation problem
where the component parameters are modeled as interval type-
2 fuzzy numbers. They showed that their approach outper-
forms classical as well as other type-1 fuzzy number based
approaches. Kundu et al. [36] proposed a fuzzy multi-criteria
group decision-making method based on ranking interval type-
2 fuzzy variables and applied it to a transportation mode selec-
tion problem. Guo and Liu [37] developed a distributionally
robust fuzzy optimization model for single-period inventory
problem, in which the uncertain market demand is charac-
terized by generalized parametric interval-valued possibility
distribution. In this paper, we propose a new method to depict
the ambiguous demand distribution and develop a novel robust
game modeling framework for the dual-channel supply chain
pricing problem which is completely different from [34], [37].

III. THE MODEL

We consider a two-echelon dual-channel green supply chain
which consists of a manufacturer and a retailer, where the
manufacturer makes and sells the green products through
both the direct channel and the retail channel. Customers
can purchase products through either of the two channels
according to their preference. The manufacturer is assumed
to produce the green products with greening degree β at a
cost of c. The manufacturer sells the product to the retailer
at the wholesale price ω and then the retailer sells it to the
customers through the retail channel at a retail price pr. The
manufacturer also has an option to sell the green products
directly to the end consumers at price pd.

This paper assumes that the price in the direct channel is
equal to that in the retail channel in order to reduce channel
conflict, that is, pr = pd = p (the analysis of the nonconsistent
pricing strategy will be discussed in Section VI). To avoid the
trivial case, we assume p > ω > c.

We model the demands faced by the manufacturer and the
retailer as linear functions of both the greening degree β and
the sale price p. The demands of both channels are assumed
decreasing in the sale price p and increasing in the greening
level β, which is similar to [38]. Consequently, the demand
functions can be represented as Dr = γa − ηp + δrβ,Dd =
(1 − γ)a − ηp + δdβ, where a is the market size, η is the
sensitivity of demand to price changes. γ(0 < γ < 1) is
the degree of customer loyalty to the retail channel, and
correspondingly, 1 − γ represents the degree of customer
loyalty to the direct channel. δr and δd represent the demand
expansion effectiveness coefficients of the greening innovation
in the retail channel and the direct channel, respectively. The
assumption of linearity with respect to price and greening
level has been made in many of operations management and
marketing literature ([38]-[40] ).

Both the direct and the retail channels have their own
customers. For the same green level, the impact of retail
channel on customers is greater than that of direct channel
because customers can thoroughly check the green products
when they purchase the products, which means δr > δd.

The manufacturer must invest additional cost to realize the
green innovation based on the original production process.
The cost of green innovation is assumed to be quadratic([23],
[41]). Therefore, the extra cost to produce the green products
is C(β) = νβ2, where ν is an investment coefficient of the
green degree per unit. Table I summarizes the notations used
in this paper.

There are industries, such as GM, Toyota, Canon, Xerox,
and HP, where the manufacturers have more power than the re-
tailers. So, we discuss the pricing policies under manufacturer-
led Stackelberg game framework where the manufacturer as
the leader and the retailer as the follower.

The sequence of events is as follows:
(1) The manufacturer first announces the wholesale price

and the green level of the green products;
(2) After observing the wholesale price and the green level

of the products, the retailer sets the retail price.

A. The benchmark

Based on the above descriptions and assumptions, the
benchmark model can be represented as the following opti-
mization model:

max
ω,β

πm(p, ω, β)

s.t. p ∈ argmax
p

πr(p).
(1)

Let us denote by ωb, βb and pb the equilibrium solutions
to the benchmark model defined in Equation (1). By using
backward induction, Lemma 1 gives the equilibrium decisions.

Lemma 1: If ν >
δ2d+6δrδd−3δ2r

12η , we have the following
equilibrium decisions:

(a) The manufacturer’s optimal decisions are

ωb = 1
ηφ [aγψ + a(δrδd − δ2d − ψ) + 2ηc(2δrδd − ψ)],

βb = 1
φ [2aγ(δd − 3δr) + a(δd + 3δr)− 4ηcδd].

(b) The retailer’s optimal retail price is

pb = 1
φη [2a(γ(2ην − δrδd + δ2r) + ην + δ2r)

+ηc(ψ − 4δrδd)],

where φ = 12ην − δ2d − 6δrδd + 3δ2r , ψ = 4ην − δ2d + δ2r .
All proofs in this paper are included in Appendix A.

B. Distributionally robust pricing model

In the benchmark model, the market size a is assumed to be
deterministic. Generally, the market size is uncertain due to the
impacts of the economic environment and business conditions.
In this section, we consider the distribution µξ of the uncertain
market size ξ is partially available and varies in the uncertainty
distribution set U which will be defined in Section IV. We
assume that both parties in the Stackelberg game are risk-
neutral and plan for the worst case.
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TABLE I: Notations

Symbols Description
pr Retail price of the retail channel
pd Selling price of the direct channel
ω Wholesale price
a The deterministic market size
ξ The uncertain market size
β Green degree of the green products
γ The degree of customer loyalty to the retail channel
η The sensitivity of demand to price changes
δr Demand expansion effectiveness coefficient of the greening innovation in the retail channel
δd Demand expansion effectiveness coefficient of the greening innovation in the direct channel
ν Investment coefficient of the green degree per unit
Dr The demand of retail channel in consistent price strategy
Dd The demand of direct channel in consistent price strategy
Dr The demand of retail channel in nonconsistent price strategy
Dd The demand of direct channel in nonconsistent price strategy
U The uncertainty distribution set
∆l Left span
∆r Right span

On the basis of the uncertainty distribution set, the uncertain
pricing model is represented as follows max

ω,β
E[πm(p, ω, β; ξ)],

s.t. p ∈ argmax
p

E[πr(p; ξ)].


µξ∈U.

(2)

where πm(p, ω, β; ξ) = (p−c)Dd+(ω−c)Dr−νβ2 represents
the manufacturer’s profit with the first two terms indicating
the profits of products sold through the direct channel and the
retail channel, respectively, and the last term denoting the extra
cost for producing the green products, πr(p; ξ) = (p− ω)Dr

represents the profit of the retailer and E is the expected value
operator of fuzzy variable ([42]-[44]).

It is evident that model (2) is a family of fuzzy expected
value models with µξ varying in the uncertainty distribution
set U .

Clearly, the inherent difficulty is that a collection of expect-
ed value models is not associated with the concepts of optimal
solution and optimal value. Therefore, how to define these
concepts to model (2) depends on the underlying decision
environment. Here we concentrate on the following decision-
making environment:

(A1) The manufacturer’s decisions and the retailer’s deci-
sion in model (2) represent “here and now” decisions;

(A2) The manufacturer and the retailer must be fully respon-
sible for the consequences of the decisions to be made when
and only when µξ belongs to the corresponding uncertainty
distribution set U .

The above assumptions can determine a meaningful feasible
solution to model (2) based on the worst-case criterion, which
is called a distributionally robust feasible solution. Thus, the
robust counterpart of model (2) is formally written as

max
ω,β

inf
µξ∈U

E[πm(p, ω, β; ξ)]

s.t. p ∈ argmax
p

inf
µξ∈U

E[πr(p; ξ)].
(3)

So far, we have obtained a robust counterpart model (3). The
optimal solution and optimal value of the robust counterpart
model (3) are called the distributionally robust optimal solution
and optimal value, respectively.

It is evident that model (3) includes infinitely many integral-
s, which are computationally tractable under our uncertainty
distribution set U . In order to derive the equivalent expression
of robust counterpart model (3), we will define the uncertainty
distribution set in the subsequent section.

IV. MODEL ANALYSIS

Usually, the market size is assumed to be deterministic in
the existing literature ([4], [5]). Actually, the market size a
is uncertain due to the innovation and market turbulence and
varies on a bounded interval, assuming a ∈ [a(1−∆l), a(1+
∆r)]. So we can use triangular fuzzy variable to characterize
the distribution uncertainty of the uncertain market size ξ.
Furthermore, in order to describe the distribution perturbation
of the uncertain market size ξ, we assume the uncertain market
size ξ is represented by a parametric level interval (PLI) type-2
triangular fuzzy variable Tri[r1, r2, r3; θ], θ = (θ1l , θ

1
r , θ

2
l , θ

2
r),

where r1 = a(1−∆l), r2 = a, r3 = a(1+∆r). In this section,
a new uncertainty distribution set U is introduced. For some
concepts and notations used but not defined in this section,
the interested reader may refer to the related literature [45].

Uncertainty distribution set Let the uncertain market size
ξ ∼ Tri[r1, r2, r3; θ], θ = (θ1l , θ

1
r , θ

2
l , θ

2
r) be a PLI type-2

triangular fuzzy variable and ξλ be its λ selection variable.
For any given λ ∈ [0, 1], the distribution of ξλ is denoted by
µξλ(x; θ) which is determined by the nested sets {[xLu , xRu ] :
xLu ∈ JL

u , x
R
u ∈ JR

u , u ∈ [0, 1]}, where xLu , x
R
u are represented

as

xLu = λ(r1 + u(r2 − r1)− θ1l min{u, 1− u})
+(1− λ)(r1 + u(r2 − r1) + θ1rmin{u, 1− u}),

xRu = λ(r3 − u(r3 − r2)− θ2l min{u, 1− u})
+(1− λ)(r3 − u(r3 − r2) + θ2rmin{u, 1− u}).

Then an uncertainty distribution set U associated with ξ is
defined as follows

U = {µξλ(x; θ)|µξλ(x; θ)is determined by the nested sets
{[xLu , xRu ] : xLu ∈ JL

u , x
R
u ∈ JR

u , u ∈ [0, 1]},where
λ ∈ [0, 1]}.

(4)

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3181465

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Beijing Normal University. Downloaded on June 12,2022 at 06:54:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS 5

Fig. 1: The variable possibility distribution of uncertain de-
mand ξ.

Evidently, there are infinitely many possibility distributions
µξλ(x; θ) in the uncertainty distribution set U . For the uncer-
tain market size ξ, the possibility distribution of the selection
variable ξλ is plotted in Figure 1.

According to the reviewers’ valuable suggestions on why
this paper uses PLI type-2 triangular fuzzy variable to de-
scribe the uncertain demand, we give some explanations and
summarize our concern in following Remark.

Remark: The reason that we use PLI type-2 triangular
fuzzy variable to characterize the uncertain demand includes
the following two aspects. First, in our model, based on the
limited sales data and subjective judgments of expert, we
can know the most possible demand quantity, and also learn
about the uncertain demand varies on a bounded interval via
some limited sales data. In this case, the uncertain demand
can be represented by a PLI type-2 triangular fuzzy variable.
In addition, it is known that type-2 triangular fuzzy variable
is one of the most commonly used fuzzy variables in the
literature ([34], [46], [47], [48]). In fact, other PLI type-
2 fuzzy variables can also be used to construct uncertainty
distribution set. For example, if the possible demand quantity
can be estimated to vary in an interval from historical sales
data, the uncertain demand can be modeled as a PLI type-2
trapezoidal fuzzy variable.

We next give a real case example to illustrate how to con-
struct the uncertainty distribution set U to depict the imprecise
distribution of uncertain demand with limited historical data.
Example: Consider a case about a manufacturer that sells its
air conditioners through online and offline channels. Before the
summer, the manufacturer plans to produce a fixed number
of air conditioners. However, the exact demand distribution
information is not available due to market turbulence and
product innovation. Based on the limited sales data and
subjective judgments of experts, the number of market demand
ξ is between 800 and 1300 during a sales cycle and the
most possible sales quantity is 1000. According to the sales
experience, we can take the triangular possibility distribution
Tri[800, 1000, 1300] as the nominal distribution of the market
demand ξ. The true demand distribution fluctuates around the
nominal distribution. In order to characterize the perturbation
of the nominal distribution, we begin with the cut set of the
nominal distribution. The u−cut of the nominal distribution

is assumed to be [TL
u , T

R
u ], where TL

u = 800 + u(1000 −
800), TR

u = 1300 − u(1300 − 1000) are fixed. In fact, the
endpoints TL

u and TR
u are difficult to determine. Thus, we

construct two intervals JL
u , J

R
u through introducing parameters

and TL
u , T

R
u vary in JL

u , J
R
u , respectively.

JL
u = [800 + u(1000− 800)− θ1l min{u, 1− u},

800 + u(1000− 800) + θ1r min{u, 1− u}],

JR
u = [1300− u(1300− 1000)− θ2l min{u, 1− u},

1300− u(1300− 1000) + θ2rmin{u, 1− u}]

According to Zadeh extension principle, for any given λ ∈
[0, 1], the possibility distribution fluctuates around the nominal
distribution and is determined by the nested sets {[xLu , xRu ] :
xLu ∈ JL

u , x
R
u ∈ JR

u , u ∈ [0, 1]}, where xLu , x
R
u are represented

as

xLu = λ(800 + u(1000− 800)− θ1l min{u, 1− u})
+(1− λ)(800 + u(1000− 800) + θ1rmin{u, 1− u}),

xRu = λ(1300− u(1300− 1000)− θ2l min{u, 1− u})
+(1− λ)(1300− u(1300− 1000) + θ2rmin{u, 1− u}).

Using the above construction method, we can obtain the
uncertainty distribution set.

Based on the definition of the uncertainty distribution set,
the expected profits of the manufacturer and the retailer can
be calculated as follows

E[πm(p, ω, β; ξλ)] = −λ
8 [γω + (1− γ)p− c](θ1r + θ1l + θ2r

+θ2l ) + [γω + (1− γ)p− c](
θ1
r+θ2

r

8

+ r1+2r2+r3
4 )− ηp(ω + p) + (δrω+

δdp)β − c((δr + δd)β − 2ηp)− νβ2.
(5)

E[πr(p; ξλ)] = −λ
8 γ(p− ω)(θ1r + θ1l + θ2r + θ2l )

+γ(p− ω)(
θ1
r+θ2

r

8 + r1+2r2+r3
4 )

+(p− ω)(δrβ − ηp).

(6)

For simplicity, we introduce the following notations

g1(p, ω, β) = (− θ1
l +θ2

l

8 + r1+2r2+r3
4 )[p(1− γ) + ωγ − c]

−ηp(ω + p) + (δrω + δdp)β
−c((δr + δd)β − 2ηp)− νβ2,

g2(p) = γ(p− ω)(− θ1
l +θ2

l

8 + r1+2r2+r3
4 ) + (p− ω)

(δrβ − ηp).

Using the notations above, the robust values of (5) and (6) can
be rewritten as

inf
µ
ξλ

∈U
E[πm(p, ω, β; ξλ)] = g1(p, ω, β), (7)

inf
µ
ξλ

∈U
E[πr(p; ξλ)] = g2(p). (8)

The robust counterpart model (3) can be equivalently rep-
resented as follows

max
ω,β

g1(p, ω, β)

s.t. p ∈ argmax
p

g2(p).
(9)

Let us denote by ωR, βR and pR the equilibrium solutions to
model (9). By using backward induction, Proposition 1 gives
the equilibrium decisions.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3181465

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Beijing Normal University. Downloaded on June 12,2022 at 06:54:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS 6

Proposition 1: If ν > δ2d+6δrδd−3δ2r
12η , we have the following

robust equilibrium decisions:
(a) The manufacturer’s robust equilibrium decisions are

ωR = ωb + 1
ηφ (m− a)(γψ + δrδd − δ2d − ψ),

βR = βb + 1
φ (m− a)[2γ(δd − 3δr) + (δd + 3δr)].

(b) The retailer’s robust equilibrium retail price is

pR = pb + 2
φη (m− a)[γ(2ην − δrδd + δ2r) + ην + δ2r ],

where φ = 12ην− δ2d − 6δrδd+3δ2r , ψ = 4ην− δ2d + δ2r ,m =

− θ1
l +θ2

l

8 + r1+2r2+r3
4 .

Based on Proposition 1, we study sensitivity analysis about
the degree of customer loyalty γ and the green degree β in
the distributionally robust manufacturer-led dual-channel green
supply chain. Two Propositions are provided below.

Proposition 2: The following results show how the robust
equilibrium decisions vary with respect to γ: ∂pR

∂γ > 0, ∂ω
R

∂γ >

0 and ∂βR

∂γ < 0.
Proposition 2 shows that, with the increase of γ, the

greening degree βR decreases, the wholesale price ωR and
the sales price pR increase. This is because, as the value of
γ decreases, the basic market demand in the direct channel
increases, which leads to the increase of the market demand
in the direct channel. The manufacturer’s profit gained from
dual-channel green supply chain increases. This will make the
manufacturer invest more in green innovation. On the other
hand, for higher value of γ, the market demand in the retail
channel increases. Therefore, the manufacturer can set higher
wholesale price without affecting the greening degree of the
product, which forces the retailer to raise the retail price.

Proposition 3: From Proposition 1, we can obtain ∂pR

∂β > 0

and ∂ωR

∂β > 0.

Proposition 3 implies that ωR increases with the increase
of β, as a result, pR also increases. This is because when the
greening level β increases, the production cost also increases.
So, the manufacturer sets higher wholesale price and the
retailer charges higher retail price in the retail channel and
higher selling price in the direct channel. Although the retail
price p increases, the customers want to buy more products
because the products are more environmental friendly.

V. NUMERICAL ANALYSIS

In this section, we perform a numerical study to validate the
behavior of our distributionally robust manufacturer-led dual-
channel green supply chain pricing model. It is noted that
all experiments are conducted with the values of parameters:
η = 0.85, δd = 0.75, δr = 0.87, ν = 50 and c = 100, which is
similar to the existing literature ([4], [49]). We employ Maple
to carry out the computations. The numerical experiments
are executed on a personal computer (Lenovo with Intel(R)
Core(TM) 3.00 GHz CPU and RAM 8.00 GB) by using the
Microsoft Windows 10 operating system.

A. Comparison results with fuzzy optimization method
In this subsection, the proposed robust optimization method

is compared with fuzzy optimization method. In fuzzy op-
timization method, the distribution of the uncertain market

size is assumed to be a fixed possibility distribution ([8]). For
convenience, the fixed possibility distribution is taken as the
nominal possibility distribution of the uncertain market size
corresponding to θ1l = θ1r = θ2l = θ2r = 0. The equilibrium
decisions for the robust method and fuzzy method are given in
Table II. From Table II, we find that the optimal decisions in
fuzzy method are no longer optimal in our robust method, that
is, a small perturbation of the nominal possibility distribution
can affect the optimality of the equilibrium solutions.

B. The impacts of the cost coefficient of green level per unit

In this subsection, we will explore how the cost coeffi-
cient ν of green degree per unit influences the dual-channel
green supply chain under uncertain market demand. We set
γ = 0.4, a = 400, θ1r = θ2r = 10, and the values of ν
vary from 10 to 200. Figure 2 shows the effect of ν on the
manufacturer’s profit in the dual-channel green supply chain
under different values of the perturbation parameters. Figure
3 shows the effects of ν on the sales price and the wholesale
price in the dual-channel green supply chain. Actually when
∆l = ∆r = 0, model (2) becomes the benchmark model (1).
The manufacturer’s profit in this case is denoted as πb

m. When
∆l ̸= 0,∆r ̸= 0, model (2) becomes model M in the case
that the perturbation parameters θ1l = θ2l = θ1r = θ2r = 0, that
is the uncertain market size ξ is characterized by a triangular
fuzzy variable Tri[r1, r2, r3]. The manufacturer’s profit in this
case is denoted as πF

m. From Figures 2 and 3, we have the
following observations.

• πm, p and ω decrease with the increase of ν. This finding
implies that higher ν not only discourages the manufacturer
from producing more environmental friendly products but also
increases the price of the products with the same greening
level. This finding shows that the government should provide
green subsidies to the companies which are devoted to the
green products in order to protect the environment.

• For given θr, πm decreases with the increase of θl. This
is because the larger the perturbation parameter θl, the larger
the uncertain degree of the basic demand and the larger the
price of robustness, which results in lower πm.

• When ∆r > ∆l, πb
m < πR

m < πF
m. In this case, the

expected demand is larger than the deterministic demand. So
πb
m is the smallest. πR

m is less than πF
m due to the price of

robustness.
When ∆r < ∆l, πb

m > πF
m > πR

m. In this case, the
expected demand is less than the deterministic demand. So
πb
m is the biggest. πR

m is also less than πF
m due to the price of

robustness.
When ∆r = ∆l, πb

m = πF
m > πR

m. In this case, the
expected demand is equal to the deterministic demand. So πb

m

is equal to πF
m. πR

m is also less than πF
m due to the price of

robustness.

M : max
ω,β

E[πm(p, ω, β; ξ)],

s.t. p ∈ argmax
p

E[πr(p; ξ)].
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TABLE II: Comparison results with fuzzy method

Method Equilibrium decisions
Fuzzy pF = 1

2φη
[(r1 + 2r2 + r3)(γ(2ην − δrδd + δ2r) + ην + δ2r) + 2ηc(ψ − 4δrδd)]

ωF = 1
4ηφ

[(r1 + 2r2 + r3)(δrδd − δ2d − (1− γ)ψ) + 8ηc(2δrδd − ψ)]

βF = 1
4φ

[(r1 + 2r2 + r3)(2γδd − 6γδr + δd + 3δr)− 16ηcδd]

Robust pR = 1
4φη

[(2(r1 + 2r2 + r3)− (θ1l + θ2l ))(γ(2ην − δrδd + δ2r) + ην + δ2r) + 8ηc(ψ − 4δrδd)]

ωR = 1
8ηφ

[(2(r1 + 2r2 + r3)− (θ1l + θ2l ))(δrδd − δ2d − (1− γ)ψ) + 16ηc(2δrδd − ψ)]

βR = 1
8φ

[(2(r1 + 2r2 + r3)− (θ1l + θ2l ))(2γδd − 6γδr + δd + 3δr)− 32ηcδd]

Fig. 2: Comparisons of manufacturer’s profits under different ν and θl.

Fig. 3: Effects of ν and θl on sales price p and wholesale price ω.
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TABLE III: Comparison between robust single-channel and
dual-channel supply chain

Equilibrium outcomes Single-channel Dual-channel
Green level δr(m−cη)

8ην−δ2r
βR

Wholesale price 4mν−cδ2r+4cην

8ην−δ2r
ωR

Retail price 6mν−cδ2r+2cην

8ην−δ2r
pR

Manufacturer’s profit ν(m−cη)2

8ην−δ2r
πR
m

Retailer’s profit 4ην2(m−cη)2

(8ην−δ2r)
2 πR

r

C. The impacts of the perturbation parameters on manufac-
turer’s channel choice

In this subsection, we will discuss the effects of the pertur-
bation parameters in our distributionally robust pricing model.
We want to identify when the manufacturer should open his
own direct channel through comparing the manufacturer’s and
retailer’s profits between the single-channel and the dual-
channel green supply chains under different values of the
perturbation parameters. The robust equilibrium outcomes of
the single-channel and the dual-channel green supply chains
are summarized in Table III. The robust equilibrium results
of the single-channel green supply chain are provided in
Appendix B. We assume that πs

m (πs
r) and πR

m (πR
r ) represent

the manufacturer’s (retailer’s) profits in single-channel and
dual-channel green supply chain, respectively.

Figure 4 shows the comparisons of the manufacturer’s
profits between single and dual channel green supply chains
under different θ1l . From Figure 4, we find that when θ1l is
relatively small, the manufacturer’s profit in single-channel
green supply chain is greater than that of dual-channel green
supply chain, πs

m decreases with θ1l increasing and is less
than πR

m when θ1l > θ0. However, the retailer’s profit πR
r in

dual-channel green supply chain is always greater than πs
r in

single retail channel green supply chain as θ1l increases. From
Figures 4 and 5, we can find that when the market size is
uncertain, opening a direct channel is not always profitable
for the manufacturer, but it is always beneficial to the retailer.
Our result is different from that of [5], who demonstrated that
opening a direct channel is always harmful to the retailer.

D. Managerial insights

Based on above numerical analysis, we can get the follow-
ing managerial insights.

(1) If a decision maker takes the parameters ∆l = ∆r = 0,
that is, the market size is deterministic, our distributionally
robust pricing model becomes the benchmark model, which is
consistent with the model in [5]. As shown in our application
example, the robust equilibrium solutions are sensitive to the
distribution of the uncertain market size ξ. Therefore, the
decision maker cannot ignore the uncertain factors in modeling
the pricing problem in dual-channel green supply chain.

(2) By comparing the manufacturer’s and the retailer’s
profits between single-channel and dual-channel green supply
chains under different θ1l , we find that there exists a threshold
θ0 for the parameter θ1l in the uncertainty set, when the value
of the parameter θ1l is less than θ0, opening a direct channel

Fig. 4: Comparisons of manufacturer’s profits between single
and dual channel green supply chains in consistent pricing
strategy.

Fig. 5: Comparisons of retailer’s profits between single and
dual channel green supply chains in consistent pricing strategy.

is not beneficial to the manufacturer and the manufacturer
is willing to own a direct channel when the value of the
parameter θ1l is greater than θ0.

(3) In our distributionally robust pricing model, the market
size is considered uncertain and characterized by a PLI type-2
fuzzy variable and its associated uncertainty distribution set.
The decision maker need to determine two kinds of param-
eters: the parameters ∆l,∆r and the perturbation parameters
θl, θr. They describe the degree of uncertainty that a type-
2 fuzzy variable takes its value. Decision makers can know
how the parameters affect their decisions from the sensitivity
analysis. Figures 2 and 3 report the impacts of the perturbation
parameter θl on the distributionally robust optimal solutions
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and optimal value when parameters ∆l,∆r take different
values.

VI. EXTENSION

So far, all the results and discussions in the above section
come from the condition of a consistent pricing strategy.
To ensure the robustness of our results, we have conducted
additional analysis by making extension to discuss the case in
which the prices of the green products are not equal in the
retail channel and the direct channel and showing that the key
analytical results continue to hold.

The demand functions in the retail channel and the direct
channel are assumed as Dr = γa−β1pr +β2pd + δrβ,Dd =
(1 − γ)a − β1pd + β2pr + δdβ, where β1 is the price elas-
ticity which represents the manufacturer’s (retailer’s) demand
sensitivity to his(her) own direct selling (retail) price. β2
is the coefficient of cross-price sensitivity which represents
the substitution effect between the two channels whereby an
increase in one channel’s price lowers its own demand while
increasing its competitor’s demand. β1 > β2 indicates that
the impact of ownership price is greater than the impact of
cross-price.

The manufacturer’s profit function and the retailer’s profit
function are:

πm(pd, pr, ω, β) = pdDd + ωDr − c(Dr +Dd)− νβ2 (10)

πr(pr) = (pr − ω)Dr (11)

In this case, we also use the Stackelberg game led by the
manufacturer to process this model. First, the manufacturer
determines the wholesale price, the direct-selling price and
the green level. Then, as follower, the retailer makes deci-
sion about the retail price after observing the manufacturer’s
decisions.

We consider the distribution µξ of the uncertain market size
ξ is partially available and varies in the uncertainty distribution
set U defined in (4). We also assume that both parties in the
Stackelberg game are risk-neutral and plan for the worst case.

On the basis of uncertainty distribution set, the uncertain
pricing model is represented as follows max

ω,pd,β
E[πm(pd, pr, ω, β; ξ)],

s.t. pr ∈ argmax
pr

E[πr(pr; ξ)],


µξ∈U.

(12)

Based on the assumptions (A1), (A2) and worst-case crite-
rion, the robust counterpart of model (12) is formally written
as

max
ω,pd,β

inf
µξ∈U

E[πm(pd, pr, ω, β; ξ)]

s.t. pr ∈ argmax
pr

inf
µξ∈U

E[πr(pr; ξ)].
(13)

According to the definition of the uncertainty distribution
set defined in (4), the expected profits of the manufacturer
and the retailer can be calculated as follows

E[πm(pd, pr, ω, β; ξ
λ)]

= −λ(θ1
r+θ1

l +θ2
r+θ2

l )
8 [pd(1− γ) + ωγ − c]

+[pd(1− γ) + ωγ − c](
θ1
r+θ2

r

8 + r1+2r2+r3
4 )

+pd[−β1pd + β2pr + δdβ] + ω[−β1pr + β2pd + δrβ]
−c[pd(β2 − β1) + pr(β2 − β1) + β(δr + δd)]− νβ2

(14)

E[πr(pr; ξλ)] = −λ
8 γ(pr − ω)(θ1r + θ1l + θ2r + θ2l )

+γ(pr − ω)(
θ1
r+θ2

r

8 + r1+2r2+r3
4 )

+(pr − ω)[−β1pr + β2pd + δrβ]

(15)

and

inf
µ
ξλ

∈U
E[πm(pd, pr, ω, β; ξ

λ)]

= [pd(1− γ) + ωγ − c](− θ1
l +θ2

l

8 + r1+2r2+r3
4 )

+pd[−β1pd + β2pr + δdβ] + ω[−β1pr + β2pd + δrβ]
−c[pd(β2 − β1) + pr(β2 − β1) + β(δr + δd)]− νβ2

(16)
inf

µ
ξλ

∈U
E[πr(pr; ξλ)]

= γ(pr − ω)(− θ1
l +θ2

l

8 + r1+2r2+r3
4 ) + (pr − ω)[−β1pr

+β2pd + δrβ].
(17)

For simplicity, we introduce the following notations

f1(pd, pr, ω, β)

= [pd(1− γ) + ωγ − c](− θ1
l +θ2

l

8 + r1+2r2+r3
4 )

+pd[−β1pd + β2pr + δdβ] + ω[−β1pr + β2pd + δrβ]
−c[pd(β2 − β1) + pr(β2 − β1) + β(δr + δd)]− νβ2

f2(pr) = γ(pr − ω)(− θ1
l +θ2

l

8 + r1+2r2+r3
4 )

+(pr − ω)[−β1pr + β2pd + δrβ].

The robust counterpart model (13) can be equivalently
represented as follows

max
pd,ω,β

f1(pd, pr, ω, β)

s.t. pr ∈ argmax
pr

f2(pr).
(18)

Using backward induction, Proposition 4 gives the equilib-
rium outcomes.

Proposition 4: If ν > (β2
2+β2

1)δ
2
r+2β2

1δ
2
d+4β1β2δrδd

8β1(β2
1−β2

2)
, we have

the following robust equilibrium decisions:
(a) The manufacturer’s robust equilibrium decisions are

pRd = 1
2ϕ{mβ1[(δ

2
r − 8νβ1)(1− γ)− (8νβ2 + δrδd)γ]

+c[(2β2
2 + β1β2 + β2

1)δ
2
r + (β2

1 + 7β1β2)δrδd
+8β1β

2
2ν − 8β3

1ν + 4β2
1δ

2
d]},

ωR = 1
2ϕ{m[(2β1δ

2
d + β2δrδd − 8β2

1ν)γ − (β2δ
2
r + 8β1

β2ν + 2β1δrδd)(1− γ)] + c[(β2
2 + β1β2 + 2β2

1)δ
2
r

+(β2
2 + 5β1β2 + 2β2

1)δrδd + (2β1β2 + 2β2
1)δ

2
d

+8νβ1β
2
2 − 8νβ3

1 ]},
βR = 1

ϕ{c(β
2
1 − β2

2)(β2δr + β1δr + 2β1δd)

−m[(β2
2δr + β2

1δr + 2β1β2δd)γ
+2β1(β1δd + β2δr)(1− γ)]}.

(b) The retailer’s robust equilibrium retail price is

pRr = 1
2ϕ{m[γ(2β2δrδd + 3β1δ

2
d + 4νβ2

2 − 12νβ2
1)

−(1− γ)(2β2δ
2
r + 3β1δrδd + 8β1β2ν)]

+c[(2β1β2 + 2β2
1)δ

2
r + (2β2

2 + 3β2
1 + 3β1β2)δrδd

+(3β1β2 + β2
1)δ

2
d + 4ν(β3

2 − β2
1β2 + β1β

2
2 − β3

1)]},

where ϕ = (β2
1 − β2

2)(δ
2
r − 8β1ν) + 2(β1δd + β2δr)

2,m =

− θ1
l +θ2

l

8 + r1+2r2+r3
4 .

Proposition 5: The following results show how the robust
equilibrium decisions vary with respect to γ, ∂pR

d

∂γ < 0,
∂pR

r

∂γ >

0, ∂ω
R

∂γ > 0 and ∂βR

∂γ < 0.
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Proposition 5 shows that, as the value of γ increases, the
selling price pRd in the direct channel and the greening level
βR decrease, and the wholesale price ωR and the selling
price pRr in the retail channel increase. This is because, with
the value of γ decreasing, the market size of the direct
channel increases, which leads to the market demand in the
direct channel also increases. The manufacturer gains more
profits from dual channel green supply chain, which makes
the manufacturer to invest more in green innovation. The
price of the product is proportional to the greening degree.
Therefore, the manufacturer must set higher sale price in the
direct channel. On the other hand, the higher value of γ, the
greater the market demand of the retail channel. Therefore,
the manufacturer set higher wholesale price without affecting
the greening degree of the product, which enforce the retailer
to set higher retail price. However, the market demand of the
direct channel decreases with the value of γ increases. To
attract customers and maintain profit, the manufacturer must
reduce the selling price of the direct channel.

Proposition 6: From Proposition 4, we can obtain ∂pR
d

∂β >

0,
∂pR

r

∂β > 0 and ∂ωR

∂β > 0.

Proposition 6 implies that ωR increases as β increases and
then pRr also increases. This is because the production cost also
increases when the greening degree β increases. Therefore,
the manufacturer sets higher wholesale price and the retailer
charges higher retail price and a higher sale price in the direct
channel. Although the retail price pRr increases, the customers
want to purchase more products because the products are more
environmental friendly.

Compared with the results under the consistent pricing s-
trategy, we find that the impacts of the perturbation parameters
on the channel choice of the manufacturer are the same.

Figure 6 shows the impacts of the perturbation parameter
θ1l on the manufacturer’s profits in both single channel and
dual-channel green supply chain. From Figure 6, we find that
when θ1l is relatively small, the manufacturer’s profit in single-
channel green supply chain is greater than that in dual-channel
green supply chain, πs

m decreases with θ1l increasing and is
less than πR

m when θ1l > κ, which is the same with the results
under the consistent pricing strategy.

Figure 7 shows the impacts of the perturbation parameter
θ1l on the retailer’s profits in both single channel and dual-
channel green supply chain. We find that the retailer’s profit
in dual-channel green supply chain is always greater than that
in single retail channel green supply chain as θ1l increases,
which is also the same with the results under the consistent
pricing strategy.

VII. CONCLUSIONS

In this paper, a pricing decision problem in a dual-channel
green supply chain was considered with uncertain market size.
The major findings of the work can be summarized below.

(1) This paper discussed the pricing decision problem for
a dual-channel green supply chain in which the uncertain
demand is characterized by a PLI type-2 fuzzy variable, whose
possibility distribution is variable. In order to characterize
the perturbations of the distribution of the uncertain market

Fig. 6: Comparisons of manufacturer’s profits between single
and dual channel green supply chains in nonconsistent pricing
strategy.

Fig. 7: Comparisons of retailer’s profits between single and
dual channel green supply chains in nonconsistent pricing
strategy.

demand, a new uncertainty distribution set is introduced based
on type-2 fuzzy theory.

(2) A novel distributionally robust model was proposed for
the pricing decision problem of a two-echelon dual-channel
green supply chain based on the manufacturer-led Stackelberg
game framework. To the best of our knowledge, it is the first to
combine robust optimization with game theory in the pricing
decision problem of the dual-channel green supply chain.

(3) A new analytically tractable method was given to derive
the robust equilibrium decisions of the robust pricing game
model. Several numerical analysis were conducted to validate
the behavior of our distributionally robust manufacturer-led
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pricing model. The numerical results show that when the
market size is uncertain, opening a direct channel is not always
profitable for the manufacturer, but it is always beneficial to
the retailer. We also demonstrate our results are robust in the
case that the prices of the green products are not equal in the
retail channel and the direct channel.

Several possible directions for future research follow this
study. In this paper, we assume all information is known to
all members in the supply chain. One could discuss the game
results under asymmetric information. We assume that the
demand is dependent on both prices and green level. In reality,
the demand function is complex. One can consider demand of
other types of demand functions. In addition, We assume that
there is one player in each level of the supply chain. One
can extend it to the case with competing manufacturers or
competing retailers.

APPENDIX A

Proof of lemma 1
Proof: The manufacturer’s profit: πm(p, ω, β) = (p −

c)((1− γ)a− ηp+ δdβ) + (ω − c)(γa− ηp+ δrβ)− νβ2

The retailer’s profit: πr(p) = (p− ω)(γa− ηp+ δrβ)
From the expression of πr(p), we have the second order

sufficient condition ∂2πr

∂p2 = −2η < 0,which ensures that
unique optimal solution exists. For given ω, β, the retailer’s
response function is derived from the first-order condition of
the retailer’s profit πr(p).

∂πr
∂p

= 0 ⇒ p =
δrβ + ηω + γa

2η

After getting the reaction of the retailer, the manufacturer
maximizes his profit and determines the optimal decisions
ω, β. The Hessian matrix associated with the profit function
πm(p, ω, β) is given by

H =

(
−3η

2
δd
2

δd
2

2δrδd−δ2r
2η − 2ν

)

Now, |H| = 3νη +
3δ2r
4 − δ2d

4 − 3δrδd
2 > 0 if ν >

δ2d+6δrδd−3δ2r
12η , Therefore, H is negative definite if and only

if ν >
δ2d+6δrδd−3δ2r

12η . Thus manufacturer’s profit function
πm(p, ω, β) is jointly concave in ω and β. Equating the first
order conditions to 0, that is,{ ∂πm

∂ω = 0
∂πm

∂β = 0

We get ωb = 1
ηφ [aγψ + a(δrδd − δ2d − ψ) + 2ηc(2δrδd −

ψ)], βb = 1
φ [2aγ(δd − 3δr) + a(δd + 3δr)− 4ηcδd].

Substituting the values of ω, β into the value of p we get,
pb = 1

φη [2a(γ(2ην − δrδd + δ2r)+ ην + δ2r)+ ηc(ψ− 4δrδd)],
where φ = 12ην − δ2d − 6δrδd + 3δ2r , ψ = 4ην − δ2d + δ2r .

Proof of Proposition 1
Proof:

max
ω,β

g1(p, ω, β)

s.t. p ∈ argmax
p

g2(p).

From the expression of g2(p), we have the second order
sufficient condition ∂2g2

∂p2 = −2η < 0,which ensures that
unique optimal solution exists. For given ω, β, the retailer’s
response function is derived from the first-order condition of
the retailer’s profit g2(p).

∂g2
∂p

= 0 ⇒ p =
δrβ + ηω + γm

2η

After getting the reaction of the retailer, the manufacturer
maximizes his profit and determines the optimal decisions
ω, β. The Hessian matrix associated with the profit function
g1(p, ω, β) is given by

H =

(
∂2g1
∂ω2

∂2g1
∂ω∂β

∂2g1
∂β∂ω

∂2g1
∂β2

)
=

(
−3η

2
δd
2

δd
2

2δrδd−δ2r
2η − 2ν

)

Now, |H| = 3νη +
3δ2r
4 − δ2d

4 − 3δrδd
2 > 0 if ν >

δ2d+6δrδd−3δ2r
12η , Therefore, H is negative definite if and only

if ν >
δ2d+6δrδd−3δ2r

12η . Thus manufacturer’s profit function
g1(p, ω, β) is jointly concave in ω and β. Equating the first
order conditions to 0, that is,{

∂g1
∂ω = 0
∂g1
∂β = 0

We get ωR = ωb + 1
ηφ (m− a)(γψ+ δrδd − δ2d −ψ), βR =

βb + 1
φ (m− a)[2γ(δd − 3δr) + (δd + 3δr)].

Substituting the values of ω, β into the value of p we get,
pR = pb + 2

φη (m− a)[γ(2ην − δrδd + δ2r) + ην + δ2r ], where
φ = 12ην − δ2d − 6δrδd + 3δ2r , ψ = 4ην − δ2d + δ2r ,m =
−(θ1

l +θ2
l )

8 + r1+2r2+r3
4 .

Proof of Proposition 2
Proof: Taking the first-order derivatives of pR, ωR and

βR with respect to γ, we have

∂pR

∂γ
=

2m

φη
(2ην − δrδd + δ2r),

∂ωR

∂γ
=
ψm

φη
,

∂βR

∂γ
=

2m

φ
(δd − 3δr).

We first prove m > 0. The construction of the uncertainty
set ensure the following inequalities hold. 0 < θ1l < r2−r1 =
a∆l, 0 < θ1r < r2 − r1 = a∆l, 0 < θ2l < r3 − r2 = a∆r, 0 <
θ2r < r3−r2 = a∆r. From the above four inequalities, we can
obtain 0 < 5a+a∆r+3a(1−∆l)

8 < m = − θ1
l +θ2

l

8 + r1+2r2+r3
4 <

3a+a∆r+a(1−∆l)
4

The condition ν >
δ2d+6δrδd−3δ2r

12η ensures φ > 0, ψ >

0, 2ην − δrδd + δ2r > 0. Since δd < δr,δd − 3δr < 0.
Based on the analysis above, Proposition 2 can be derived.

Proof of Proposition 3
Proof: Using the first order optimality condition of g2(p),

we get
pR = δrβ+ηω+γm

2η . Now ∂pR

∂β = δr
2η > 0.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3181465

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Beijing Normal University. Downloaded on June 12,2022 at 06:54:51 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS 12

Using the first order optimality condition of g1(p, ω, β),
∂g1
∂β = 0, we have ∂ωR

∂β = 1
ηδd

(δ2r − 2δrδd + 4ηβν) > 0.

Proof of Proposition 4
Proof:

max
pd,ω,β

f1(pd, ω, β)

s.t. pr ∈ argmax
pr

f2(pr).

From the expression of f2(pr), we have the second order
sufficient condition ∂2f2

∂p2
r

= −2β1 < 0,which ensures that
unique optimal solution exists. For given pd, ω, β, the retailer’s
response function is derived from the first-order condition of
the retailer’s profit f2(pr).

∂f2
∂pr

= 0 ⇒ pr =
δrβ + β1ω + γm+ β2pd

2β1

After getting the reaction of the retailer, the manufacturer
maximizes his profit and determines the optimal decisions
pd, ω, β. The Hessian matrix associated with the profit function
f1(pd, ω, β) is given by

H =


∂2f1
∂ω2

∂2f1
∂ω∂β

∂2f1
∂ω∂pd

∂2f1
∂pd∂ω

∂2f1
∂p2

d

∂2f1
∂pd∂β

∂2f1
∂β∂ω

∂2f1
∂β∂pd

∂2f1
∂β2


=

 −β1 β2
δr
2

β2 −2β1 +
β2
2

β1
δd +

β2δr
2β1

δr
2 δd +

β2δr
2β1

−2ν


Now, |H1| = −β1 < 0, |H2| = 2β2

1 − β2
2 < 0,|H| =

4ν(β2
2 − β2

1) +
β2
1δ

2
r+β2

2δ
2
r+2β2

1δ
2
d+4β1β2δrδd

2β1
< 0 if ν >

(β2
2+β2

1)δ
2
r+2β2

1δ
2
d+4β1β2δrδd

8β1(β2
1−β2

2)
. Therefore, H is negative definite

if and only if ν >
(β2

2+β2
1)δ

2
r+2β2

1δ
2
d+4β1β2δrδd

8β1(β2
1−β2

2)
. Thus manu-

facturer’s profit function f1(pd, prω, β) is jointly concave in
pd, ω and β. Equating the first order conditions to 0, that is,

∂f1
∂pd

= 0
∂f1
∂ω = 0
∂f1
∂β = 0

We get the equilibrium solutions pRd , ω
R, βR. Substituting

the values of pd, ω, β into the value of pr we get the repre-
sentation of pRr .

Proof of Proposition 5
Proof: Taking the first-order derivatives of pR, ωR and

βR with respect to γ, we have
∂pR

d

∂γ = mβ1

2ϕ [8ν(β1 − β2)− δr(δr + δd)],
∂pR

r

∂γ = m
2ϕ [(3β1 + 2β2)δrδd + 4ν(β2

2 − 3β2
1 + 2β1β2)

+3β1δ
2
d + 2β2δ

2
r ],

∂ωR

∂γ = m
2ϕ [8νβ1(β2 − β1) + (2β1 + β2)δrδd + 2β1δ

2
d + β2δ

2
r ],

∂βR

∂γ = m
ϕ [(β1 − β2)

2δr + 2β1δd(β2 − β1)]

m > 0 can be proved similar with that in Proposition 2.
The condition ν > (β2

2+β2
1)δ

2
r+2β2

1δ
2
d+4β1β2δrδd

8β1(β2
1−β2

2)
ensures ϕ < 0.

Based on the analysis above, Proposition 5 can be derived.

Proof of Proposition 6
Proof: Using the first order optimality condition of

f2(pr), we get
pRr = δrβ+β1ω+γm+β2pd

2β1
. Now ∂pR

r

∂β = δr
2β1

> 0.
Using the first order optimality condition of f1(pd, pr, ω, β),

∂f1
∂β = 0, ∂f1∂ω = 0, we have ∂ωR

∂β =
8νβ1+δ2r
4β1δr

> 0,∂p
R
d

∂β =
8νβ1−δ2r
4β2δr

> 0.

APPENDIX B

Single-channel equilibruim
The manufacturer’s profit: πm(ω, β) = (ω − c)(a − ηp +

δrβ)− νβ2

The retailer’s profit: πr(p) = (p− ω)(a− ηp+ δrβ)
Similar with the case of distributionally robust dual-channel

model, we get

inf
µ
ξλ

∈U
E[πm(ω, β, ξλ)] = h1(ω, β) .

inf
µ
ξλ

∈U
E[πr(p, ξλ)] = h2(p) .

where h1(ω, β) = (ω − c)(m− ηp+ δrβ)− νβ2, h2(p) =

(p− ω)(m− ηp+ δrβ),m = − θ1
l +θ2

l

8 + r1+2r2+r3
4 .

The robust counterpart model can be represented as follows

max
ω,β

h1(ω, β)

s.t. p ∈ argmax
p

h2(p).
.

From the expression of h2(p), we have the second order
sufficient condition ∂2h2

∂p2 = −2η < 0, which ensures that
unique optimal solution exists. For given ω, β, the retailer’s
response function is derived from the first-order condition of
the retailer’s profit h2(p).

∂h2
∂p

= 0 ⇒ p =
δrβ + ηω +m

2η

After getting the reaction of the retailer, the manufacturer
maximizes his profit and determines the optimal decisions
ω, β. The Hessian matrix associated with the profit function
h1(ω, β) is given by

H =

(
−η δr

2
δr
2 −2ν

)
Now, |H| = 2νη− δ2r

4 > 0 if ν > δ2r
8η , Therefore, H is negative

definite if and only if ν >
δ2r
8η . Thus manufacturer’s profit

function h1(ω, β) is jointly concave in ω and β. Equating the
first order conditions to 0, that is,{

∂h1

∂ω = 1
2 (m+ δrβ − 2ηω + ηc) = 0

∂h1

∂β = (ω−c)δr
2 − 2νβ = 0

We get ω =
4ηcν−cδ2r+4mν

8ην−δ2r
, β = (m−ηc)δr

8ην−δ2r
Substituting the values of ω, β into the value of p we get,

p =
2ηcν−cδ2r+6mν

8ην−δ2r
.

From the above equilibrium values we derive the retailer’s
profit, manufacturer’s profit.
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