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a b s t r a c t

Interval-valued data is a complex data type which can be got by summarizing large datasets, linear
regression models for interval-valued data have been widely studied. Panel data models combining
cross-section and time series real-valued data have become increasingly popular in economic research
and data mining. It is very important to construct the regression models for panel data with uncertainty
and range variability. This paper introduces panel data regression model for interval-valued data and
constructs three kinds of panel interval-valued data regression models: the centre model of fixed
effects panel interval-valued data regression, the min–max model of fixed effects panel interval-valued
data regression and its special model, the centre and range model of fixed effects panel interval-valued
data regression. Then combining the parameters estimation of interval-valued regression and analysis
of covariance for panel data, this paper presents the parameters estimations for three kinds of panel
interval-valued data regression models. Finally, our proposed panel interval-valued data regression
models are applied in forecasting of Air Quality Index, the experimental evaluation of actual data sets
shows the advantages and the performance of our proposed panel interval-valued data models.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Interval-valued data are applied in many situations [1,2] in
hich data represent variability (minimum and maximum of
aily temperature), uncertainty (confidence intervals), etc. The
esearch of interval analysis assumes that observations and es-
imations in practice are usually uncertain or incomplete and can
e represented as intervals. Interval-valued data have also been
sed in symbolic data analysis (SDA) [3]. One source of interval-
alued data is the aggregation of huge data in a reduced number
f groups [4], which makes it possible to consider the variability
n the data. So how to analyse interval-valued data is meaningful.

Several approaches were used to analyse interval-valued data.
ome authors applied neural network models to manage interval-
alued data [5,6]. In SDA, Billard and Diday [7] introduced dis-
ersion measures and central tendency of interval-valued data.
nterval-valued linear regression models were also built based
n certain predefined criterion [8–14]. Billard and Diday [8] pre-
ented the first algorithm for fitting interval-valued linear regres-
ion, and this algorithm consisted of fitting a linear regression
odel to the midpoints of the interval values and the parameters
ere obtained by minimization of the mid-point error. Later,
illard and Diday [9] discussed the Min–Max Method, which
efined two models, each for one response bound, with response
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E-mail address: jabpjh@163.com (A.-b. Ji).
ttps://doi.org/10.1016/j.knosys.2021.107798
950-7051/© 2021 Elsevier B.V. All rights reserved.
lower bounds depending on the lower bounds of regressor vari-
ables and the response upper bounds depending on the upper
bounds of regressor variables. Lima Neto et al. [10] introduced
the Centre and Range Method (CRM), also proposed two linear
models: one for the midpoints and the other for the ranges. Lima
Neto et al. [11] later extended CRM to the Constrained Centre
and Range Method (CCRM) which guaranteed the mathematical
coherence of predicted values. Nonlinear regression models for
interval-valued data were also established based on dynamic
clustering algorithm [12].

Modelling and forecasting interval-valued time series (ITS) re-
ceived considerable attention in econometrics and statistics [15–
17]. Song et al. [18] discussed feature selection approaches for
dynamic interval-valued ordered data.

For more complicated economical or administrative activities,
which are represented by panel interval-valued data, i.e. cross-
section and time series interval-valued data, how to model it is
still an interesting problem, although there are some regression
models and time series models for interval-valued data.

Statistical models combining cross-section and time series
real-valued data become increasingly popular in economic re-
search, a panel data set offers a certain number of advantages
over traditional pure cross-section or pure time series data sets. A
detailed account of the benefits of panel data can be found in the
book by Hsiao [19], and panel data models allow us to construct
and test more complicated behavioural models than pure cross-
section or time series data. So far, the data in panel data models
are all real-valued [20–24], it is very necessary to build a panel

data model for interval-valued data.

https://doi.org/10.1016/j.knosys.2021.107798
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107798&domain=pdf
mailto:jabpjh@163.com
https://doi.org/10.1016/j.knosys.2021.107798
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By introducing fixed effects panel data regression models for
interval-valued data, this paper presents three kinds of panel
interval-valued data regression models and the estimation of
their parameters, and this is the first attempt to discuss panel
interval-valued data models. Both interval-valued regression
models and panel data regression models are extended to panel
interval-valued data regression models. Compared with panel
data regression model, panel interval-valued data regression
model can deal with uncertain data or variable data; compared
with interval-valued regression model, panel interval-valued data
regression model can reduce the degree of collinearity among
explanatory variables, and improve the effectiveness of model
estimation. Panel interval-valued data regression model can con-
struct and test more complex behaviours. Panel interval-valued
data regression models are used to analyse various actual prob-
lems, such as Air Quality Index (AQI) and stocks forecasting.

The main contributions of this paper include:

• Introducing interval-valued data into the panel data models
solves the problem of uncertainty and range variability.

• Three novel fixed effects panel interval-valued data regres-
sion models are constructed respectively:
(1) The centre model of fixed effects panel interval-valued
data regression (P-CM);
(2) The min–max model of fixed effects panel interval-
valued data regression (P-Min–Max) and its special model
(S-P-Min–Max);
(3) The centre and range model of fixed effects panel
interval-valued data regression (P-CRM).

• Each model reduces the degree of collinearity among ex-
planatory variables and can predict the interval of the re-
sponse variables, respectively. The applications in the fore-
casting of AQI show the advantages and the performance of
our proposed panel interval-valued data models.

The rest of this paper are organized as follows: some related
preliminaries are provided in Section 2; the proposed three kinds
of panel interval-valued data regression models are presented
in Section 3; the actual interval-valued data sets are analysed
and compared in Section 4 to illustrate the performance of the
proposed models.

2. Preliminary

In this section, some related preliminaries are provided.

2.1. Interval and their arithmetic

The statistical treatment of interval-valued data is considered
them as elements belonging to the space Kc(R) =

[a, b] : a ≤ b, a, b ∈ R}. Each compact interval A ∈ Kc(R) can
e expressed by means of its (inf , sup)-representation, i.e. A =

infA, supA], with infA ≤ supA. Alternatively, the notation A =

midA, sprA) with sprA ≥ 0, where midA =
supA+infA

2 is the
idpoint of the interval, and sprA =

sup A−inf A
2 denotes the spread

r radius of A. Statistical developments with interval-valued data
re generally based on the (mid, spr)-parametrization, since the

non-negativity condition for the spr component is usually easier
to handle than the order condition for the inf and sup components
of the (inf , sup)-characterization.

In order to manage intervals, a natural arithmetic is defined on
Kc(R) by means of the Minkowski addition A + B =

{a + b : a ∈ A, b ∈ B} and the product by scalars λA = {λa : a ∈

A}, for any A, B ∈ K (R) and λ ∈ R. The space (K (R), +, ·) is not
c c

2

linear but semi-linear due to the lack of symmetric elements with
respect to the addition.

For two intervals A =
[
a−, a+

]
, B =

[
b−, b+

]
in Kc(R), the

operations are as follows:

• A + B =
[
a−

+ b−, a+
+ b+

]
= (midA + midB, sprA + sprB),

• A − B = A + (−B) =
[
a−

− b+, a+
− b−

]
= (midA −

midB, sprA + sprB),

• For λ ∈ R, λB =

{
[λb−, λb+

], λ ≥ 0
[λb+, λb−

], λ < 0 and in (mid,

spr)-parametrization λB = (λmidB, |λ| sprB).

.2. Linear regression model for interval-valued data

All existing linear regression approaches with interval-valued
ata used certain fixed reference points to model interval data [8–
4], three methods are introduced and a novel special case for
in–Max method is presented.
Let E = {e1, e2, . . . , en} be a set of examples which are

escribed by p+ 1 interval-valued quantitative variables: depen-
ent variables Y and independent variables X1, X2, . . . , Xp. Each

example ei ∈ E (i = 1, 2, . . . , n) is represented as an interval
quantitative feature vector zi =

(
xi1, xi2, . . . , xip, yi

)
, where xij =[

aij, bij
]

∈ Kc (R) (j = 1, 2, . . . , p), yi =
[
yLi , y

U
i

]
∈ Kc (R).

2.2.1. Centre method
For the example zi =

(
xi1, xi2, . . . , xip, yi

)
, (i = 1, 2, . . . ,N),

where xij =
[
aij, bij

]
∈ Kc (R), yi =

[
yLi , y

U
i

]
∈ Kc (R). Let

xci =
(
xci1, x

c
i2, . . . , x

c
ip

)
, where xcij =

aij+bij
2 . yci =

yLi +yUi
2 (i =

, 2, . . . , n; j = 1, 2, . . . , p).
The linear regression relationship of X1, X2, . . . , Xp related to Y

was constructed by using the midpoints of response and regressor
intervals:

yci = βc
0 + βc

1x
c
i1 + βc

2x
c
i2 + · · · + βc

px
c
ip + εc

i

The values of βc
0, β

c
1, β

c
2, . . . , β

c
p were estimated by ordinary least

square (OLS) [8].

2.2.2. Min–Max method
The Min–Max method suggested estimating the lower and

upper bounds of the intervals by using different vectors of param-
eters [5]. It was equivalent to supposing independence between
the values of lower and upper bounds of the intervals.

X1, X2, . . . , Xp related to Y was studied according to the linear
regression relationship:

yLi = βL
0 + βL

1ai1 + βL
2ai2 + · · · + βL

paip + εL
i (1)

yUi = βU
0 + βU

1 bi1 + βU
2 bi2 + · · · + βU

p bip + εU
i (2)

The sum of the squares of deviations in the Min–Max model was
denoted by

S1 =

n∑
i=1

(
εL
i

)2
+

n∑
i=1

(
εU
i

)2
Ordinary least square (OLS) was used to find the values of

βL
0, β

L
1, β

L
2, . . . , β

L
p and βU

0 , βU
1 , βU

2 , . . . , βU
p by minimizing the ex-

pression S1.
The estimations of the parameters βL

0, β
L
1, β

L
2, . . . , β

L
p and

βU
0 , βU

1 , βU
2 , . . . , βU

p were equivalent to estimating βL
0, β

L
1, β

L
2,

. . . , βL
p based on left points aij (i = 1, 2, . . . , n; j = 1, 2, . . . , p)

and βU
0 , βU

1 , βU
2 , . . . , βU

p based on right points bij (i = 1, 2, . . . , n;
= 1, 2, . . . , p) respectively.
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A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n, 0,
∑

i ai1,
∑

i ai2, . . .
∑

i aip
0, n,

∑
i bi1,

∑
i bi2, . . .

∑
i bip∑

i ai1
∑

i bi1
∑

i [(ai1)
2
+ (bi1)2]

∑
i [ai2ai1 + bi2bi1] . . .

∑
i [aipai1 + bipbi1]

...
...

...
... . . .

...∑
i ai(p−1)

∑
i bi(p−1)

∑
i [ai1ai(p−1) + bi1bi(p−1)]

∑
i [ai2ai(p−1) + bi2bi(p−1)] . . .

∑
i [aipai(p−1) + bipbi(p−1)]∑

i aip
∑

i bip
∑

i [ai1aip + bi1bip]
∑

i [ai2aip + bi2bip] . . .
∑

i [a
2
ip

+ b2ip]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
B2 = (

∑
i y

L
i ,

∑
i y

U
i ,

∑
i (y

L
i ai1 + yUi bi1) . . .

∑
i(y

L
i aip + yUi bip))

T

Box I.
x

(

Taking into consideration the system with the same mecha-

ism, as a special case of Min–Max method, the coefficients of
ower and upper bounds of the intervals are assumed to be the
ame in Eqs. (1), (2), but different in the intercept terms, that is
L
i = β−

0 + β1ai1 + β2ai2 + · · · + βpaip + εU
i (3)

U
i = β+

0 + β1bi1 + β2bi2 + · · · + βpbip + εU
i (4)

β−

0 , β+

0 , β1, β2, . . . , βp are obtained by minimizing this ex-
pression S2,

S2 =

n∑
i=1

(
εL
i

)2
+

n∑
i=1

(
εU
i

)2
=

n∑
i=1

[

⎛⎝yLi − β−

0 −

p∑
j=1

βjaij

⎞⎠2

+

⎛⎝yUi − β+

0 −

p∑
j=1

βjaij

⎞⎠2

]

β̂ = (β̂−

0 , β̂+

o , β̂1, . . . , β̂p)T = A−1
2 B2

where A2 is a matrix (p + 2)×(p + 2) and B2 is a vector (p + 2)×
1, denoted as equations in Box I.

For a new given example xit described by xit =(
xit1, xit2, . . . , xitp

)
, where xitk = [aitk, bitk] (k = 1, 2, . . . , p),

according to Eqs. (1), (2) or (3), (4), the response variable ŷi =[
ŷLi , ŷ

U
i

]
is predicted as follows:

ŷLi = β̂L
0 + β̂L

1ai1 + β̂L
2ai2 + · · · + β̂L

paip,

ŷUi = β̂U
0 + β̂U

1 bi1 + β̂U
2 bi2 + · · · + β̂U

p bip

or

ŷLi = β̂−

0 + β̂1ai1 + β̂2ai2 + · · · + β̂paip,

ŷUi = β̂+

0 + β̂1bi1 + β̂2bi2 + · · · + β̂pbip.

Sometimes Min–Max method and it is special case do not
guarantee the mathematical coherence of the predicted interval
bounds, then the response variable is predicted as follows:

ŷi =
[
ŷLi , ŷ

U
i

]
=

⎧⎪⎨⎪⎩
[
ŷLi + ŷUi

2
,
ŷLi + ŷUi

2

]
if ŷLi > ŷUi ;

[ŷLi , ŷ
U
i ] if ŷLi ≤ ŷUi .

.2.3. Centre and range method
Lima Neto et al. [10] presented the Centre and range method

CRM) to estimate the parameters vector using the information
ontained in the midpoints and ranges of the intervals.
For the examples zi =

(
xi1, xi2, . . . , xip, yi

)
, i = 1, 2, . . . , n,

here x =
[
a , b

]
∈ K R , y =

[
yL, yU

]
∈ K R . Let
ij ij ij c ( ) i i i c ( )

3

c
i =

(
xci1, x

c
i2, . . . , x

c
ip

)
and xri =

(
xri1, x

r
i2, . . . , x

r
ip

)
, where xcij =

aij+bij
2 , xrij =

bij−aij
2 . yci =

yLi +yUi
2 , yri =

yUi −yLi
2 .

yci , yri were considered as dependent variables, xci =

xci1, x
c
i2, . . . , x

c
ip

)
and xri =

(
xri1, x

r
i2, . . . , x

r
ip

)
(i = 1, 2, . . . , n)

as independent predictor variables. They were related in the
following linear regression relationship:

yci = βc
0 + βc

1x
c
i1 + βc

2x
c
i2 + · · · + βc

px
c
ip + εc

i (5)

yri = βr
0 + βr

1x
r
i1 + βr

2x
r
i2 + · · · + βr

px
r
ip + εr

i (6)

In the CRM method, the sum of squares of deviations was
given by

S3 =

n∑
i=1

(
(
εc
i

)2
+

(
εr
i

)2)
=

n∑
i=1

(yci − βc
0 − βc

1x
c
i1 − · · · − βc

px
c
ip)

2
+

n∑
i=1

(yri − βr
0 − βr

1x
r
i1 − · · · − βr

px
r
ip)

2
.

βc
0, β

c
1, β

c
2, . . . , β

c
p and βr

0, β
r
1, β

r
2, . . . , β

r
p were estimated by min-

imizing the expression S3.
In CRM, maybe ŷri is negative. To avoid this situation, Lima

Neto et al. [11] extended CRM to include positive constraints
to the coefficients of interval ranges, which guaranteed the pre-
dicted upper bounds were greater than or equal to their respec-
tive lower bounds. But the obtained estimators can be biased,
implying a poor adjustment of the model to the real linear re-
lationship of data. For a given new example X, the assignment
method of the predicted value ŷi =

[
ŷL
i , ŷ

U
i

]
is adjusted as follows:

ŷi =
[
ŷLi , ŷ

U
i

]
=

{[
ŷci , ŷ

c
i

]
if ŷri ≤ 0;[

ŷci − ŷri , ŷ
c
i + ŷri

]
if ŷri > 0.

2.3. Linear regression model for panel data

The term ‘‘panel data’’ refers to the pooling of observations
on a cross-section of firms, countries, households, etc. over sev-
eral periods. This can be achieved by surveying a number of
individuals and following them over time.

Panel data set contains repeated observations for the same
unit yit and Xit for units, i = 1, 2, . . . ,N and periods t =

1, 2, . . . , T , also called longitudinal data.
Compared with time series or cross-section data sets, panel

data model holds some advantages. (1) Panel data model sup-
poses that individuals (firms, states or countries) are heteroge-
neous, and it can control individuals’ heterogeneity. Time series
and cross-section studies not controlling this heterogeneity run
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he risk of obtaining biased results. (2) Panel data give more infor-
ative data, more variability, more degrees of freedom and less
ollinearity among the variables. Time-series studies are plagued
ith multi-collinearity. (3) Panel data models allow us to con-
truct and test more complicated behavioural models than pure
ross-section or time series data. (4) Panel data are more able
o identify and measure effects that are simply not detectable in
ure cross-section or pure time series data.
A panel data regression differs from a regular time series or

ross-section regression in that it has a double subscript on its
ariables

it = α + βTXit + uit , i = 1, 2, . . . ,N; t = 1, 2, . . . , T (7)

with i denoting individuals (such as firms, countries, etc.) and
t denoting time, the i subscript, therefore, denotes the cross-
section dimension whereas t denotes the time series dimension.
α is a scalar, β is p× 1 vector and Xit are the itth observation on
p explanatory variables.

Most of the panel data applications utilize a one-way error
component model for the disturbances, with

uit = µi + νt + εit ,

where µi denotes the unobservable individual-specific effect, νt
denotes the unobservable time-specific effect and εit denotes the
remainder disturbance. In the following, the focus is on the panel
data model with individual-specific effects, that is

yit = αi + βTXit + εit , i = 1, 2, . . . ,N; t = 1, 2, . . . , T (8)

where αi is an unobserved effect for individual i and is time
invariant. The parameters αi, β were estimated by least-squares
dummy-variable (LSDV) [19].

β̂ =

[
N∑
i=1

T∑
t=1

(
Xit − X̄i

) (
Xit − X̄i

)T]−1

×

[
N∑
i=1

T∑
t=1

(
Xit − X̄i

)
(yit − ȳi)

] (9)

α̂i = ȳi − β̂X̄i, i = 1, 2, . . . ,N,

where Xit = (xit1, xit2, . . . , xitk)T , X̄i =
1
T

∑T
t=1 xit , ȳi =

1
T

∑T
i=1 yit .

. Fixed effects panel interval-valued data model

For panel interval-valued data set S = {(Xit , yit ) | i = 1, 2,
. . ,N; t = 1, 2, . . . , T }, yit =

[
yLit , y

U
it

]
is assumed as the ob-

erved interval-valued dependent variables, Xit =

xit1, xit2, . . . , xitp
)T as p × 1 interval-valued independent vectors

ith xitj =
[
aitj, bitj

]
, i = 1, 2, . . . ,N , t = 1, 2, . . . , T , j =

, 2, . . . , p.
In the following, using certain fixed reference points, the linear

egression models with fixed individual-specific effects are to be
onstructed for the panel interval-valued data set.

= {(xit , yit ) | i = 1, 2, . . . ,N; t = 1, 2, . . . , T }.

In this section, three kinds of fixed-effects panel interval-
alued data models are proposed. Using the midpoints of the
nterval to represent interval-valued data, the centre model of
ixed effects panel interval-valued data regression (P-CM) is con-
tructed based on the midpoints of the panel interval-valued
ata. The Min–Max model of fixed effects panel interval-valued
ata regression (P-Min–Max) improves the P-CM model by es-
ablishing two models to fit the lower- and upper-bound of panel
nterval-valued data. The centre and range model of fixed effects
anel interval-valued data regression (P-CRM) also uses two inde-
endent models to fit the panel interval-valued data: one for the
4

idpoints of interval and another for ranges of the interval. These
hree kinds of fixed effects panel interval-valued data regression
odels hold their own advantages and disadvantages.

.1. The centre model of fixed effects panel interval-valued data
egression

For the panel interval-valued data set S = {(Xit , yit ) | i =

, 2, . . . ,N; t = 1, 2, . . . , T }, let xcitk =
aitk+bitk

2 , ycit =
yLit+yUit

2 .
ycit is considered as dependent variable and xcitk(k = 1, 2,

. . . , p) as independent predictor variables. Based on the centre
value of the panel interval-valued data, the linear regression
model with fixed individual-specific effects is as follows:

ycit = αi + βc
1x

c
it1 + βc

2x
c
it2 + · · · + βc

px
c
itp + εc

it (10)

where εc
it ∼ N(0, σ 2), i = 1, 2, . . . ,N; t = 1, 2, . . . , T .

Averaging Eq. (10) over time gives

ȳci. = αi + βc
1 x̄

c
i.1 + βc

2 x̄
c
i.2 + · · · + βc

p x̄
c
i.p + ε̄c

i. (11)

where ȳci. =
1
T

∑T
t=1 y

c
it , x̄

c
i.k =

1
T

∑T
t=1 x

c
itk(k = 1, 2, . . . , p).

Subtracting (11) from (10) gives
c
it−ȳci. = βc

1(x
c
it1−x̄ci.1)+βc

2(x
c
it2−x̄ci.2)+· · ·+βc

p (x
c
itp−x̄ci.p)+(εc

it−ε̄c
i.)

hus, in the centre model of fixed effects panel interval-valued
ata, the sum of squares of deviations is given by

4 =

N∑
i=1

T∑
t=1

(
εc
it − ε̄c

i.

)2
=

N∑
i=1

T∑
t=1

⎛⎝ycit − ȳci. −
p∑

j=1

βc
j (x

c
itj − x̄ci.j)

⎞⎠2

he values of βc
1, β

c
2, . . . , β

c
p are estimated by minimizing the

xpression S4,

ˆ T
= (β̂c

1, β̂
c
2, . . . , β̂

c
p )

T
= A−1

4 B4

ˆ i = ȳci. − (βc
1 x̄

c
i.1 + βc

2 x̄
c
i.2 + · · · + βc

p x̄
c
i.p),

here, see equations in Box II.
For a new given example Xit =

(
xit1, xit2, . . . , xitp

)T , with xitj =

aitj, bitj
]
, the response variables ŷit =

[
ŷLit , ŷ

U
it

]
are predicted as

ollows:

ˆ
L
it = α̂i +

(
X L
it

)T
β̂

ˆ
U
it = α̂i +

(
XU
it

)T
β̂

here
(
X L
it

)T
=

(
ait1, ait2, . . . , aitp

)
,

(
XU
it

)T
=

bit1, bit2, . . . , bitp
)
.

.2. The Min–Max model of fixed effects panel interval-valued data
egression

In Min–Max panel interval-valued data regression model, sup-
ose a panel interval-valued data model with individual-specific
ffects is as follows:
L
it = αL

i + βL
1ait1 + βL

2ait2 + · · · + βL
paitp + εL

it (12)

U
it = αU

i + βU
1 bit1 + βU

2 bit2 + · · · + βU
p bitp + εU

it (13)
L
it ∼ N(0, σ 2), εU

it ∼ N(0, σ 2), i = 1, 2, . . . ,N; t = 1, 2, . . . , T .
P-Min–Max model consists of two different models. The re-

ressor lower bounds are used to build a model for the response
ower bounds. The same is done for the upper bounds.
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1(
(

β

α

w(

y

y

ε

y

w
b

A4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

T∑
t=1

[
(
xcit1 − x̄ci.1

) (
xcit1 − x̄ci.1

)
],

N∑
i=1

T∑
t=1

[
(
xcit2 − x̄ci.2

) (
xcit1 − x̄ci.1

)
], . . . ,

N∑
i=1

T∑
t=1

[
(
xcitp − x̄ci.p

) (
xcit1 − x̄ci.1

)
]

N∑
i=1

T∑
t=1

[
(
xcit1 − x̄ci.1

) (
xcit2 − x̄ci.2

)
],

N∑
i=1

T∑
t=1

[
(
xcit2 − x̄ci.2

) (
xcit2 − x̄ci.2

)
], . . . ,

N∑
i=1

T∑
t=1

[
(
xcitp − x̄ci.p

) (
xcit2 − x̄ci.2

)
]

...
...

...
...

N∑
i=1

T∑
t=1

[
(
xcit1 − x̄ci.1

) (
xcitp − x̄ci.p

)
],

N∑
i=1

T∑
t=1

[
(
xcit2 − x̄ci.2

) (
xcitp − x̄ci.p

)
], . . . ,

N∑
i=1

T∑
t=1

[
(
xcitp − x̄ci.p

) (
xcitp − x̄ci.p

)
]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
B4 = (

N∑
i=1

T∑
t=1

[(ycit − ȳci.)(x
c
it1 − x̄ci.1)], . . . ,

N∑
i=1

T∑
t=1

[(ycit − ȳci.)(x
c
itp − x̄ci.p)] )T

Box II.
t

β

α

Based on the infimum of yit and xitk (i = 1, 2, . . . ,N; t =

, 2, . . . , T ; k = 1, 2, . . . , p), the parameters αL
0, βL

=

βL
1, β

L
2, . . . , β

L
p

)T are estimated by least-squares dummy-variable
LSDV) [19].

ˆ L
=

(
β̂L
1, β̂

L
2, . . . , β̂

L
p

)T
=

(
AL
4

)−1
BL
4 (14)

ˆ
L
i = ȳLi − β̂LĀi, i = 1, 2, . . . ,N,

here AL
4 =

∑N
i=1

∑T
t=1

(
Ait − Āi

) (
Ait − Āi

)T
, BL

4 =
∑N

i=1
∑T

t=1

Ait − Āi
) (

yL
it

− ȳL
i

)
, Ait =

(
ait1, ait2, . . . , aitp

)T , Āi =
1
T

∑T
t=1 Ait ,

ȳLi =
1
T

∑T
t=1 y

L
it
.

So does it to obtain the parameters αU
0 , βU

=(
βU
1 , βU

2 , . . . , βU
p

)T based on the supremum of yit and xitj
(i = 1, 2, . . . ,N; t = 1, 2, . . . , T ; k = 1, 2, . . . , p).

β̂U
=

(
β̂U
1 , β̂U

2 , . . . , β̂U
p

)T
=

(
AU
4

)−1
BU
4 (15)

α̂U
i = ȳUi − β̂U B̄i, i = 1, 2, . . . ,N,

where AU
4 =

∑N
i=1

∑T
t=1

(
Bit − B̄i

) (
Bit − B̄i

)T
, BU

4 =
∑N

i=1
∑T

t=1(
Bit − B̄i

) (
yU
it

− ȳU
i

)
, Bit =

(
bit1, bit2, . . . , bitp

)T , B̄i =
1
T

∑T
t=1 Bit ,

¯Ui =
1
T

∑T
t=1 y

U
it
.

Considering some systems with the same mechanism, as a
special case of Min–Max panel interval-valued data model (S-
P-Min–Max), the coefficients of lower and upper bounds of the
intervals are assumed to be the same in Eqs. (12), (13), but
different in the intercept terms, that is

yLit = αL
i + β1ait1 + β2ait2 + · · · + βpaitp + εL

it (16)

U
it = αU

i + β1bit1 + β2bit2 + · · · + βpbitp + εU
it (17)

L
it ∼ N(0, σ 2), εU

it ∼ N(0, σ 2), i = 1, 2, . . . ,N; t = 1, 2, . . . , T .
Averaging (16) and (17) over time gives

ȳLi. = αL
i + β1āi1 + β2āi2 + · · · + βpāip + ε̄L

i. (18)

¯
U
i. = αU

i + β1b̄i1 + β2b̄i2 + · · · + βpb̄ip + ε̄U
i. (19)

here ȳLi. =
1
T

∑T
t=1 y

L
it , āi.k =

1
T

∑T
t=1 aitk, ȳ

U
i. =

1
T

∑T
t=1 y

U
it ,

¯ i.k =
1
T

∑T
t=1 bitk.

Subtracting (18) from (16) gives

yL − ȳL = β (a − ā ) + · · · + β (a − ā ) + (εL
− ε̄L ) (20)
it i. 1 it1 i.1 p itp i.p it i.

5

Subtracting (19) from (17) gives

yUit − ȳUi. = β1(bit1 − b̄i.1) + · · · + βp(bitp − b̄i.p) + (εU
it − ε̄U

i. ) (21)

The values of β1, β2, . . . , βp can be estimated by minimizing
his expression S5,

S5 =

N∑
i=1

T∑
t=1

(
εL
it − ε̄L

i.

)2
+

N∑
i=1

T∑
t=1

(
εU
it − ε̄U

i.

)2
=

N∑
i=1

T∑
t=1

[

⎛⎝yLit − ȳLi. −
P∑
j

βJ (aitJ − āi.J )

⎞⎠2

+

⎛⎝yUit − ȳUi. −

p∑
j=1

βj(bitj − b̄i.j)

⎞⎠2

]

ˆ = (β̂1, . . . , β̂p)T = A−1
5 B5,

ˆ
L
i = ȳLi. − β̂1āi.1 − β̂2āi.2 − · · · − β̂pāi.p,

α̂U
i = ȳUi. − β̂1b̄i.1 − β̂2b̄i.2 − · · · − β̂pb̄i.p,

where

A5 =

⎛⎜⎝ A11 A21 . . . Ap1
A12 A22 . . . Ap2
. . . . . . . . . . . .

A1p A2p . . . App

⎞⎟⎠ ,

B5 =
(
γ1, γ2, . . . , γp

)T
,

with
Anm

=

N∑
i=1

T∑
t=1

[(aitm − āi.m) (aitn − āi.n) +
(
bitm − b̄i.m

) (
bitn − b̄i.n

)
],

n,m = 1, 2, . . . , p,

γj =

N∑
i=1

T∑
t=1

[
(
yLit − ȳLi.

) (
aitj − āi.j

)
+

(
yUit − ȳUi.

) (
bitj − b̄i.j

)
],

j = 1, 2, . . . , p.
For a new given example xit described by xit =(

xit1, xit2, . . . , xitp
)
, where xitk = [aitk, bitk] , (k = 1, 2, . . . , p),

according to Eqs. (12), (13) or by (16), (17),

ŷL = α̂L
+ β̂La + · · · + β̂La + β̂La ,
it i 1 it1 2 it2 p itp
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ˆ
U
it = α̂U

i + β̂U
1 bit1 + β̂U

2 bit2 + · · · + β̂U
p bitp

r

ˆ
L
it = α̂L

i + β̂1ait1 + β̂2ait2 + · · · + β̂paitp,

ŷUit = α̂U
i + β̂1bit1 + β̂2bit2 + · · · + β̂pbitp.

Sometime P-Min–Max model and S-P-Min–Max model do not
guarantee the mathematical coherence of the predicted interval
bounds, then the response variables are predicted as follows:

ŷit =
[
ŷL
it , ŷ

U
it

]
=

⎧⎪⎨⎪⎩
[
ŷLit + ŷUit

2
,
ŷLit + ŷUit

2

]
if ŷLit > ŷUit ;

[ŷLit , ŷ
U
it ] if ŷLit ≤ ŷUit .

3.3. The centre and range model of fixed effects panel interval-valued
data regression

For panel interval-valued data set S = {(Xit , yit ) | i = 1,
, . . . ,N; t = 1, 2, . . . , T }, let X c

it =
(
xcit1, x

c
it2, . . . , x

c
itp

)
, X r

it =(
xrit1, x

r
it2, . . . , x

r
itp

)
, where xcitj =

aitj+bitj
2 , xritj =

bitj−aitj
2 . ycit =

yUit +yLit
2 ,

r
it =

yUit −yLit
2 .

ycit (y
r
it ) is assumed as dependent variable and X

c

it (X
r
it ) as in-

ependent predictor variables. They are related in the following
inear regression relationship:
c
it = αc

i + βc
1x

c
it1 + βc

2x
c
it2 + · · · + βc

px
c
itp + εc

it (22)

r
it = αr

i + βr
1x

r
it1 + βr

2x
r
it2 + · · · + βr

px
r
itp + εr

it (23)

here εc
it ∼ N(0, σ 2), εr

it ∼ N(0, σ 2)
P-CRM model consists of two independent models: one for the

nterval midpoints and another for the interval ranges.
Averaging over time in (22) gives

¯
c
i. = αc

i + βc
1 x̄

c
i.1 + βc

2 x̄
c
i.2 + · · · + βc

p x̄
c
i.p + ε̄c

i. (24)

veraging over time in (23) gives

¯
r
i. = αr

i + βr
1 x̄

r
i.1 + βr

2 x̄
r
i.2 + · · · + βr

p x̄
r
i.p + ε̄r

i. (25)

here ȳci. =
1
T

∑T
t=1 y

c
it , x̄

c
i.k =

1
T

∑T
t=1 x

c
itk, ȳ

r
i. =

1
T

∑T
t=1 y

r
it ,

¯ri.k =
1
T

∑T
t=1 x

r
itk.

Subtracting (24) from (22) gives

ycit − ȳci. = βc
1(x

c
it1 − x̄ci.1) + · · · + βc

p (x
c
itp − x̄ci.p) + (εc

it − ε̄c
i.)

Subtracting (25) from (23) gives

yrit − ȳri. = βr
1(x

r
it1 − x̄ri.1) + · · · + βr

p(x
r
itp − x̄ri.p) + (εr

it − ε̄r
i.)

Thus, in the P-CRM model of fixed effects panel interval-valued
data, the sum of squares of deviations is given by

S6 =

N∑
i=1

T∑
t=1

[
(
εc
it − ε̄c

i.

)2
+

(
εr
it − ε̄r

i.

)2
]

=

N∑
i=1

T∑
t=1

[

⎛⎝ycit − ȳci. −
P∑

j=1

βc
j (x

c
itj − x̄ci.j)

⎞⎠2

+

⎛⎝yrit − ȳri. −
p∑

j=1

βr
j (x

r
itj − x̄ri.j)

⎞⎠2

]

The values of βc
1, β

c
2, . . . , β

c
p; βr

1, β
r
2, . . . , β

r
p can be estimated by

minimizing this expression S6

(β̂c
1, β̂

c
2, . . . , β̂

c
p; β̂r

1, β̂
r
2, . . . , β̂

r
p)

T
= A−1

6 B6

=

(
A 0

)−1(
γ1 · · · γp η1 · · · ηp

)T

0 B

6

α̂c
i = ȳci. − β̂c

1 x̄
c
i.1 − β̂c

2 x̄
c
i.2 − · · · − β̂c

p x̄
c
i.p,

α̂r
i = ȳri. − β̂r

1 x̄
r
i.1 − β̂r

2 x̄
r
i.2 − · · · − β̂r

p x̄
r
i.p.

where

A =

⎛⎜⎝ A11 A21 · · · Ap1
A12 A22 · · · Ap2
· · · · · · · · · · · ·

A1p A2p · · · App

⎞⎟⎠ ,

B =

⎛⎜⎝ B11 B21 · · · Bp1
B12 B22 · · · Bp2
· · · · · · · · · · · ·

B1p B2p · · · Bpp

⎞⎟⎠ ,

and 0 means that the p × p zero matrix here,

Anm =

N∑
i=1

T∑
t=1

[
(
xcitm − x̄ci.m

) (
xcitn − x̄ci.n

)
],

Bnm =

N∑
i=1

T∑
t=1

[
(
xritm − x̄ri.m

) (
xritn − x̄ri.n

)
], n,m = 1, 2, . . . , p.

γj =

N∑
i=1

T∑
t=1

[
(
ycit − ȳci.

) (
xcitj − x̄ci.j

)
],

ηj =

N∑
i=1

T∑
t=1

[
(
yrit − ȳri.

) (
xritj − x̄ri.j

)
], j = 1, 2, . . . , p.

For a new given example xit described by xit =(
xit1, xit2, . . . , xitp

)
, where xitk = [aitk, bitk] , (k = 1, 2, . . . , p),

according to Eqs. (22), (23), ŷcit , ŷ
r
it are derived as follows.

ŷcit = α̂c
i + β̂c

1x
c
it1 + β̂c

2x
c
it2 + · · · + β̂c

px
c
itp

ŷrit = α̂r
i + β̂r

1x
r
it1 + β̂r

2x
r
it2 + · · · + β̂r

px
r
itp

Negative ŷrit may result in incoherence of the predicted interval
bounds. In order to guarantee the mathematical coherence of the
predicted interval bounds, the predicted values are adjusted as
follows:

ŷit =
[
ŷLit , ŷ

U
it

]
=

{
[ŷcit − ŷrit , ŷ

c
it + ŷrit ] if ŷrit ≥ 0;

[ŷcit , ŷ
c
it ] if ŷrit < 0.

4. Applications in forecasting of air quality index (AQI)

Air pollution is caused by harmful suspended particles re-
leased into the atmosphere. The air pollution problem in most
cities is very severe and has been the focus of the public and
government [25].

Some scholars studied the air quality from different aspects.
Luo [26] found out the primary pollutant of city was PM10,
followed by SO2. Xu et al. [27] showed that O3 and NO2 exhibited
a moderately negative correlation. Xu [28] used the principal
component analysis to explore the correlation between various
pollutants in the air quality monitoring index in Xi’an. Xu [29]
used daily average data of air pollution indicators in Changsha
and Haikou to obtain an optimal linear regression model.

The studies mentioned above are limited to a separate city
and use daily average data of air pollution indicators. The used
calculation process of air quality index is as follows: (1) compared
with the grading concentration limit of each pollutant (GB3095-
2012), the Individual Air Quality Index (IAQI) is calculated by
the measured concentration values of CO, NO2, O3, PM10, PM2.5
and SO2, (2) AQI is the maximum value of the IAQI of various
pollutants. This brings up a problem: In the current measurement,
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a
t
d
C
r
(
d
u

1

1
m

A4 =

⎛⎜⎜⎜⎜⎜⎝
118.720 1897.420 −6.059 8910.749 6165.432 764.430
1897.420 69439.917 1584.667 214216.458 152054.792 15517.008
−6.059 1584.667 37584.208 1644.758 20593.275 471.683
8910.749 214216.458 1644.758 1436243.017 765614.758 53382.075
6165.432 152054.792 20593.275 765614.758 593461.017 22183.542
764.430 15517.008 471.683 53382.075 22183.542 33606.175

⎞⎟⎟⎟⎟⎟⎠
B4 = ( 1565.643, 61067.783, 4088.633, 203740.45, 189149.316, 4962.3 )T

Box III.
y

y

4

4

S
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a
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α

w
A

Table 1
Individual-specific effects αi of each city in P-CM model.
Cities i âci
Shanghai 1 13.260
Chongqing 2 4.820
Beijing 3 13.430
Tianjin 4 13.941

only the PM10 or PM2.5 affects the final AQI. This paper tries to
solve this problem with new methods.

The concentration of all kinds of pollutants changes with space
nd time. The panel interval-valued data can be used to describe
his variation, this paper aims to construct panel interval-valued
ata models for AQI. Based on the AQI-related data in Shanghai,
hongqing, Beijing and Tianjin in China, this study selected AQI-
elated data from 4 representative cities for 40 consecutive days
2018.11.01–2018.12.10). Among them, the data of the first 30
ays are used to train the models, and the remaining data are
sed to test the models.
For the panel interval-valued data set S = {(xit , yit ) | i =

, . . . , 4; t = 1, 2, . . . , 40}, yit =
[
yLit , y

U
it

]
is considered to be

the observed interval-valued dependent variable, which is AQI.
yLit represents the minimum value of AQI in ith city on date t and
yUit represents the maximum value of AQI in ith city on date t ,
Xit = (xit1, xit2, . . . , xit6)T is an interval-valued independent vec-
tors, which represent the values of CO, NO2, O3, PM10, PM2.5 and
SO2 respectively, xitj =

[
aitj, bitj

]
, i = 1, . . . , 4, t = 1, 2, . . . , 40,

j = 1, 2, . . . , 6, aitk indicates the minimum value of kth pollutant
in ith city on date t , and bitk indicates the maximum value of kth
pollutant in ith city on date t . Because the original data set is too
large, it is not shown here, and can be found in the attached table.
Only models results are displayed.

4.1. AQI forecasting of P-CM

The specific construction process of this model is shown in
Section 3.1. Data processing can be lead to matrix: (see equations
in Box III.)

The regression coefficients are computed as follows:

β̂ = (β̂c
1, β̂

c
2, β̂

c
3, β̂

c
4, β̂

c
5, β̂

c
6)

T
= A−1

4 B4

=
(
1.784, −0.069, −0.015, 0.261, 0.938, −0.158

)T
The individual-specific effects can be computed as follows:

α̂i = ȳci. − (1.784x̄ci.1 − 0.069x̄ci.2 + 0.015x̄ci.3 + 0.261x̄ci.4
+ 0.938x̄ci.5 − 0.158x̄ci.6)

where ȳci. =
1
30

∑30
t=1 y

c
it , x̄

c
i.k =

1
30

∑30
t=1 x

c
itk, (k = 1, 2, . . . , 6; i =

, . . . , 4). The individual-specific effects (ai) of each city in this
odel are shown in Table 1.
 a

7

Table 2
Individual effect values α̂L

i , α̂U
i of each city in P-Min–Max model.

Cities i âLi âUi
Shanghai 1 12.190 24.962
Chongqing 2 3.506 14.083
Beijing 3 13.395 18.086
Tianjin 4 11.040 31.134

The AQI P-CM forecasting models can be constructed as fol-
lows: ŷit = [ŷLit , ŷ

U
it ], where

ˆ
L
it = α̂c

i +1.784ait1 − 0.069ait2 + 0.015ait3 + 0.261ait4
+ 0.938ait5 − 0.158ait6,

ˆ
U
it = α̂c

i +1.784bit1 − 0.069bit2 + 0.015bit3 + 0.261bit4
+ 0.938bit5 − 0.158bit6.

.2. AQI forecasting of P-Min–Max model and S-P-Min–Max model

.2.1. P-Min–Max model
The specific construction process of this model is shown in

ection 3.2, by processing the lower bounds of the interval, the
elated matrix can be obtained as equations in Box IV.

The regression coefficients are computed as follows:

β̂L
=

(
β̂L
1 β̂L

2 β̂L
3 β̂L

4 β̂L
5 β̂L

6

)T
= (AL

4)
−1BL

4

=
(
8.144, −0.065, −0.002, 0.186, 0.945, −0.195

)T
Similarly, by processing the upper bounds of the interval, the
related matrix can be got as equations in Box V.

The regression coefficients are computed as follows:

BU
4 =

(969.253,40759.4,−6307.9, 102146.433,103829.367,2637.667)T

he regression coefficients are computed as follows:

β̂U
=

(
β̂U
1 β̂U

2 β̂U
3 β̂U

4 β̂U
5 β̂U

6

)T
= (AU

4 )
−1BU

4

=
(
−15.719, 0.009, −0.166, 0.347, 1.020, −0.711

)T
nd the individual effect values α̂L

i , α̂
U
i are computed as follows:

ˆ
L
i = ȳLi − β̂LĀi

ˆ
U
i = ȳUi − β̂U B̄i, i = 1, 2, . . . ,N,

here Ait = (ait1, ait2, . . . , ait6)T , Bit =
(
bit1, bit2, . . . , bitp

)T ,
¯ i =

1
30

∑30
t=1 Ait , B̄i =

1
30

∑30
t=1 Bit , ȳLi =

1
30

∑30
t=1 y

L
it
, ȳUi =

1
30

∑30
t=1 y

U
it
.

The individual effect values α̂L
i , α̂U

i of each city in this model
re shown in Table 2.
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y

a

α

α

T
m

AL
4 =

⎛⎜⎜⎜⎜⎜⎝
24.456 776.628 76.082 2493.962 2297.016 109.323
776.628 52571.433 20087.833 97769.333 86656.067 6122.533
76.082 20087.833 62053.4 16904.267 19593.067 4012.3

2493.962 97769.333 16904.267 502140.9 312562.267 11284.367
2297.016 86656.067 19593.067 312562.267 314787.733 5249.067
109.323 6122.533 4012.3 11284.367 5249.067 4314.2

⎞⎟⎟⎟⎟⎟⎠
BL
4 =

(
2771.609, 102108.367, 20135.4, 401845.767, 368975.067, 6722.667

)T
Box IV.
AU
4 =

⎛⎜⎜⎜⎜⎜⎝
10.369 410.147 −56.275 782.054 850.545 28.581
410.147 24313.533 −3843.433 31886 35642.033 1546.3
−56.275 −3843.433 7628.733 −2615.6 −4949.033 −91.967
782.074 31886 −2615.6 129391.467 69390.833 2830.167
850.545 35642.033 −4949.033 69390.833 91720.5 2301.267
28.582 1546.3 −91.967 2830.167 2301.267 1539.142

⎞⎟⎟⎟⎟⎟⎠
Box V.
A5 =

⎛⎜⎜⎜⎜⎜⎝
34.825 1186.775 19.806 3276.016 3147.561 137.904

1186.775 76884.967 16244.4 129655.333 122298.1 7668.833
19.806 16244.4 69682.133 14288.667 14644.033 3920.333

3276.016 129655.333 14288.667 631532.367 381953.1 14114.533
3147.561 122298.1 14644.033 381953.1 406508.233 7550.333
137.904 7668.833 3920.333 14114.533 7550.333 4698.9

⎞⎟⎟⎟⎟⎟⎠
B5 = (3740.863, 142867.767, 13827.5, 503992.2, 472804.433, 9360.333)T

Box VI.
y

Then the AQI P-Min–Max forecasting models can be con-
structed as follows: ŷit = [ŷLit , ŷ

U
it ], where

ˆ
L
it = α̂L

i + 8.144ait1 − 0.065ait2 − 0.002ait3 + 0.186ait4
+ 0.949ait5 − 0.195ait6,

ŷUit = α̂U
i − 15.719bit1+0.009bit2 − 0.166bit3 + 0.347bit4

+ 1.020bit5 − 0.711bit6.

4.2.2. S-P-Min–Max model
The specific construction process of this model is shown in

Section 3.1. Data processing can lead to matrix as equations in
Box VI.

The regression coefficients are computed as follows:

β̂ = (β̂1, β̂2, β̂3, β̂4, β̂5, β̂6)
T

= A−1
5 B5

=
(
3.313, −0.053, −0.024, 0.223, 0.948, −0.192

)T
nd the individual effect values α̂L

i , α̂
U
i are computed as follows:

ˆ
L
i = ȳLi. − (3.313āi.1 − 0.053āi.2 − 0.024āi.3 + 0.223āi.4

+ 0.948āi.5 − 0.192āi.6)

ˆ
U
i = ȳUi. − (3.313b̄i.1 − 0.053b̄i.2 − 0.024b̄i.3 + 0.223b̄i.4

+ 0.948b̄i.5 − 0.192b̄i.6).

he individual effect values α̂L
i , α̂U

i of each city in S-P-Min–Max
odel are shown in Table 3.
8

Table 3
Individual effect values α̂L

i , α̂U
i of each city in S-P-Min–Max model.

Cities i âLi âUi
Shanghai 1 15.132 14.717
Chongqing 2 5.402 6.715
Beijing 3 14.893 16.393
Tianjin 4 15.654 15.966

Then the AQI S-P-Min–Max forecasting models can be con-
structed follows: ŷit = [ŷLit , ŷ

U
it ], where

ˆ
L
it = α̂L

i + 3.313ait1 − 0.053ait2 − 0.024ait3 + 0.223ait4
+ 0.948ait5 − 0.192ait6,

ŷUit = α̂U
i + 3.313bit1 − 0.053bit2 − 0.024bit3

+ 0.223bit4 + 0.948bit5 − 0.192bit6.

Sometimes P-Min–Max model and its special model do not
guarantee the mathematical coherence of the predicted interval
bounds, then the response variables are predicted as follows:

ŷit =
[
ŷL
it , ŷ

U
it

]
=

⎧⎪⎨⎪⎩
[
ŷLit + ŷUit

2
,
ŷLit + ŷUit

2

]
if ŷLit > ŷUit ;

L U L U

[ŷit , ŷit ] if ŷit ≤ ŷit .
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S(

T
a

α

α

T
a

f

y

y

A61 =

⎛⎜⎜⎜⎜⎜⎝
14.125 508.548 −44.549 1359.774 1311.901 58.976
508.548 30672.958 885.258 52853.3 52270.642 3543.375
−44.549 885.258 18477.067 1727.842 3928.108 1145.025
1359.774 52853.3 1727.842 244995.542 151395.933 6415.783
1311.901 52270.642 3928.108 151395.933 161458.992 3895.075
58.976 3543.375 1145.025 6415.783 3895.075 1539.142

⎞⎟⎟⎟⎟⎟⎠

A62 = A63 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

A64 =

⎛⎜⎜⎜⎜⎜⎝
3.287 84.840 54.452 278.234 261.880 9.977
84.840 7769.525 7236.942 11974.367 8878.408 291.042
54.452 7236.942 16364 5416.492 3393.908 815.142
278.234 11974.367 5416.492 70770.642 39580.617 641.483
261.880 8878.408 3393.908 39580.617 41795.125 −119.908
9.977 291.042 815.142 641.483 −119.908 810.308

⎞⎟⎟⎟⎟⎟⎠
B6 = (1565.643 61067.783 4088.633 203740.45 189149.317 4962.3
304.789 10366.1 2825.117 48255.65 47252.9 − 282.133)T

Box VII.
4

p
p
e
a
T
m

i
o
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Table 4
Individual effect values α̂c

i , α̂r
i of each city in P-CRM model.

Cities i âci âri
Shanghai 1 1.563 13.260
Chongqing 2 0.075 4.820
Beijing 3 1.224 13.430
Tianjin 4 0.962 13.941

4.3. AQI forecasting of P-CRM

The specific construction process of this model is shown in
ection 3.3. Data processing can lead to matrix: A6 =

A61 A62
A63 A64

)
, where (see equations in Box VII.)

The regression coefficients are computed as follows:

β̂ = (β̂c
1, β̂

c
2, β̂

c
3, β̂

c
4, β̂

c
5, β̂

c
6, β̂

r
1, β̂

r
2, β̂

r
3, β̂

r
4, β̂

r
5, β̂

r
6, )

T
= A−1

6 B6
= (1.784, − 0.069, 0.015, 0.261, 0.938, − 0.158,

5.590, 0.115, − 0.121, 0.102, 0.984, − 0.272)T

he individual effect values α̂c
i , α̂

r
i of each city can be computed

s follows:

ˆ
c
i = ȳci. − (1.784x̄ci.1 − 0.069x̄ci.2+0.015x̄ci.3 + 0.261x̄ci.4

+ 0.938x̄ci.5 − 0.158x̄ci.6)

ˆ
r
i = ȳri. − (5.590x̄ri.1+0.115x̄ri.2 − 0.121x̄ri.3 + 0.102x̄ri.4

+ 0.984x̄ri.5 − 0.272x̄ri.6).

he individual effect values α̂c
i , α̂

r
i of each city in P-CRM model

re shown in Table 4.
Then the AQI P-CRM forecasting models can be constructed as

ollows: ŷit = (ŷcit , ŷ
r
it ), where

ˆ
c
it = α̂c

i − 1.784xcit1 − 0.069xcit2+0.015xcit3 + 0.261xcit4
+ 0.938xcit5 − 0.158xcit6,

ˆ
r
it = α̂r

i + 5.590xrit1+0.115xrit2 − 0.121xrit3 + 0.102xrit4
r r
+ 0.984xit5 − 0.272xit6.
9

Then the predicted value

ŷit =
[
ŷL
it , ŷ

U
it

]
=

{
[ŷcit − ŷrit , ŷ

c
it + ŷrit ] if ŷrit ≥ 0;

[ŷcit , ŷ
c
it ] if ŷrit < 0.

.4. The evaluation of three models

All three models are presented, but which one is the best to
redict the air quality index? The fitting effect and prediction
erformance of these models were evaluated by calculating three
rror measures: mean magnitude of relative error (MMER), mean
verage absolute error (MAE), root mean squared error (RMSE).
he better the fitting degree of the model is, the lower the error
easure is.
To prove that our proposed models are superior to the general

nterval-valued regression model, this study conducts two groups
f experiments below. In the first group of experiments, the data
f the four cities are regarded as a whole, and the corresponding
olutions were obtained by using the corresponding pooled panel
nterval-valued regression model (that is, the ordinary interval-
alued linear regression discussed in Section 2.2), this means
hat such experimental data are regarded as having no individual
ffect. In the second set of experiments, the data of the four
ities are regarded as panel interval-valued data with individual
ehaviour differences (individual effects), and the corresponding
olutions are obtained in Sections 4.1–4.3.
For convenience, the MMERi of pooled panel interval-valued

ata regression model and fixed effects panel interval-valued data
egression model rewrite P−MMERi and F −MMERi respectively.
MER, MAEi, MAE, RMSEi and RMSE are also expressed similarly.
The individual index MMERi (i = 1, 2, . . . ,N) and total index

MMER are defined respectively:

MMERi =
1
2T

T∑
t=1

{⏐⏐⏐⏐ ŷLit−yLit
ŷLit

⏐⏐⏐⏐ +

⏐⏐⏐⏐ ŷUit −yUit
ŷUit

⏐⏐⏐⏐},

MMER =
1

2NT

N∑ T∑{⏐⏐⏐⏐ ŷLit−yLit
ŷLit

⏐⏐⏐⏐ +

⏐⏐⏐⏐ ŷUit −yUit
ŷUit

⏐⏐⏐⏐}.
i=1 t=1
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Table 5
Performance of the fitting errors estimate value of P-CM.

Cities Evaluation measure (fitting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.174 0.087 7.175 4.255 9.346 5.975
Chongqing 0.064 0.042 5.130 2.659 7.743 5.611
Beijing 0.161 0.109 9.420 8.670 13.268 11.616
Tianjin 0.111 0.074 8.575 7.178 11.904 10.307
Total 0.127 0.078 7.575 5.691 11.091 8.952
Table 6
Performance of the forecasting errors estimate value of P-CM.

Cities Evaluation measure (forecasting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.179 0.132 5.487 4.960 6.869 6.183
Chongqing 0.071 0.043 3.455 1.571 3.880 2.092
Beijing 0.340 0.189 15.129 13.232 20.071 18.208
Tianjin 0.213 0.141 14.235 12.135 20.741 19.436
Total 0.201 0.126 9.576 7.975 15.003 13.769
Table 7
Performance of the fitting errors estimate value of P-Min–Max.

Cities Evaluation measure (fitting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.101 0.105 4.425 4.532 5.829 5.902
Chongqing 0.085 0.049 5.705 3.267 8.517 5.626
Beijing 0.101 0.097 8.206 8.067 11.432 10.918
Tianjin 0.076 0.065 6.605 6.340 9.181 8.411
Total 0.091 0.079 6.235 5.551 9.097 8.201
Table 8
Performance of the forecasting errors estimate value of P-Min–Max.

Cities Evaluation measure (forecasting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.126 0.145 4.412 5.641 6.906 7.456
Chongqing 0.072 0.070 3.143 2.202 3.589 2.958
Beijing 0.239 0.190 14.629 13.364 20.629 19.291
Tianjin 0.178 0.137 14.035 12.564 21.846 20.342
Total 0.154 0.136 9.054 8.442 15.637 14.820
The individual index MAEi (1, 2, . . . ,N) and total index MAE
f lower and upper bounds of the predictive interval are defined
espectively:

AEi =
1
2T

T∑
t=1

{⏐⏐ŷLit − yLit
⏐⏐ +

⏐⏐ŷUit − yUit
⏐⏐},

AE =
1

2NT

N∑
i=1

T∑
t=1

{⏐⏐ŷLit − yLit
⏐⏐ +

⏐⏐ŷUit − yUit
⏐⏐}.

The individual index RMSEi (1, 2, . . . ,N) and total index RMSE of
lower and upper bounds of the interval are defined respectively:

RMSEi =
1
2 {

√∑T
t=1

(
ŷLit−yLit

)2
T +

√∑T
t=1

(
ŷUit −yUit

)2
T },

MSE =
1
2 {

√∑N
i=1

∑T
t=1

(
ŷLit−yLit

)2
NT +

√∑N
i=1

∑T
t=1

(
ŷUit −yUit

)2
NT }.

Based on the training data set and test data set in the attached
able, the fitting errors and prediction errors of the models can
e obtained. The fitting and forecasting errors for pooled panel
nterval-valued data regression model and three kinds of the fixed
ffects panel interval-valued data regression models are given in
ables 5 to 12.
As shown in Tables 5 to 12, our proposed three kinds of fixed

ffects panel interval-valued data regression models all have good
itting effects and prediction performance. Compared with the
10
three models, the fitting effect and prediction performance of the
P-CM model is the worst. Meanwhile, compared with the pooled
panel interval-valued regression model, in general, our proposed
three kinds of fixed effects panel interval-valued data regression
models all have good fitting effect and prediction performance.
This shows that the AQI in the four cities are heterogeneous and
the AQI-related data in the four cities are not from a population,
and there are individual behaviour differences in forecasting. It
is best to use the panel interval-valued data model in forecasting
the AQI.

In this study, our proposed panel interval-valued data regres-
sion models are applied in AQI forecasting. But according to the
air monitoring data, the highest and lowest concentrations of
pollutants in a day may appear at different time points, which
results in a poor linear relationship. This may result in a bad
forecasting effect.

5. Conclusions and further studies

This paper proposes three kinds of fixed effects panel interval-
valued data regression models and presents their parameter es-
timation methods. Our proposed models are applied in AQI fore-
casting, and the experimental evaluation shows that our proposed
panel interval-valued data regression models enjoy better fitting
effect and predictive performance. Therefore, the three models
proposed in this article can be a good choice for analysing the
linear correlation between heterogeneous interval variables.
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Table 9
Performance of the fitting errors estimate value of S-P-Min–Max.

Cities Evaluation measure (fitting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.079 0.083 3.903 3.938 5.374 5.336
Chongqing 0.092 0.046 5.901 2.842 8.478 5.189
Beijing 0.118 0.119 8.956 9.292 12.347 11.912
Tianjin 0.078 0.075 7.021 7.198 10.183 9.918
Total 0.092 0.081 6.445 5.817 9.514 8.727
Table 10
Performance of the forecasting errors estimate value of S-P-Min–Max.

Cities Evaluation measure (forecasting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.504 0.135 8.779 5.064 10.777 6.503
Chongqing 0.085 0.055 3.067 2.048 3.598 2.541
Beijing 0.675 0.195 19.712 14.017 26.182 19.637
Tianjin 0.361 0.150 17.910 12.963 26.841 20.960
Total 0.406 0.134 12.367 8.523 19.641 14.849
Table 11
Performance of the fitting errors estimate value of P-CRM.

Cities Evaluation measure (fitting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.077 0.086 3.788 4.289 5.318 5.567
Chongqing 0.057 0.037 4.265 2.643 7.376 4.848
Beijing 0.140 0.118 8.724 8.774 11.641 11.147
Tianjin 0.077 0.070 6.823 6.746 9.580 9.318
Total 0.088 0.078 5.900 5.613 8.874 8.245
Table 12
Performance of the forecasting errors estimate value of P-CRM.

Cities Evaluation measure (forecasting)

P − MMERi F − MMERi P − MAEi F − MAEi P − RMSEi F − RMSEi
Shanghai 0.126 0.132 4.752 5.156 6.564 6.562
Chongqing 0.082 0.054 3.524 2.281 3.908 2.663
Beijing 0.240 0.189 15.079 13.965 21.566 20.339
Tianjin 0.156 0.129 13.097 11.936 21.753 20.802
Total 0.151 0.126 9.029 8.334 16.098 15.094
There are still some limitations on our proposed panel
nterval-valued data regression models, that is, the mathematical
oherence of the predicted interval bounds is sometimes not
uaranteed. For future studies, some constraints can be added
n the least square method to ensure the mathematical coher-
nce of the prediction interval boundary. In addition, the future
tudy focuses on the robust panel interval-valued data mod-
ls, such as adding corresponding outlier penalty terms in the
odels to reduce the sensitivity of the least squares method,
ernel methods for panel interval-valued data. Furthermore, the
anel interval-valued data nonlinear regression models are to be
iscussed.
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