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Abstract. In this paper, we study the Cauchy problem for the three-dimensional incompressible Keller—Segel-Navier—Stokes
equations. By taking advantage of the geometry of axisymmetric flow without swirl, we obtain the global well-posedness
for the system.
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1. Introduction

Broadcast spawning is a fertilization strategy that males and females release sperm and egg gametes into
the surrounding flow. This phenomenon is studied by authors in [7,8]. Some experiments also indicate
that chemotaxis plays a role in coral spawning problem: Sperm will be attracted to what eggs release,
see [2,3,13,14]. The following model [7] is introduced to analyze the above phenomenon.

pr+u-Vop=2Ap+xV-(pV(A)p) —ep?, p(z,0), =R (1.1)

Here p denotes the unknown population density, which relates to the supposition that the densities of
sperm and egg gametes are identical. The given vector field u represents the ambient ocean flow, which is
divergence-free and independent of p. The term xV - (pV(A)~!p) means the standard chemotactic phe-
nomenon. The last term on the right-hand side of (1.1) models the reaction (fertilization). The parameters
x and ¢ denote the positive chemotactic sensitivity constant and the strength of the fertilization process,
respectively. Under the conditions that ¢ is an integer larger than two and initial data are sufficiently
smooth with the decaying condition in R? (d = 2,3), authors prove the global result in [7]. The critical
case ¢ = 2 is shown in [8] by giving logarithmic improvements of the decay of the total mass [ p(z,t)dz.

Recently, the following system is considered in [1]: “
pt+u-Vp=~Ap—xV-(pVc) —epi,
¢ +u-Ve=Ac—c+p,
V-u=0,
p(0,z) = po(x), c(0,2) = co(x).

The above model also describes the coral broadcast spawning phenomenon in R? (d = 2,3). From
mathematical point, for ¢ = 2 and ¢ > 2, they prove the local and global well-posedness of regular
solutions. Besides the total mass of the egg (sperm) density asymptotically approaches a strictly positive
constant is obtained.

(1.2)
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There are other papers [4,9,10,15,18-23] devoted to describing different biological process of chemoat-
traction in the past years. Our goal here is to investigate the model (1.2) for the case ¢ = 3, corresponding
to the subcritical case. Suppose that the chemical is also transported by the fluid and the fluid velocity
is modeled through a Navier—Stokes equation. Then we have the following model,

pr+u-Vp=~2Ap—xV-(pVc) —ep®,

¢t +u-Ve=Ac—aic+ p,

ut + Kk(u - Vu) + VP = Au — pV o, (1.3)
V-u=0,

p(O,LE) = po(z), C(O,ZL‘) = Co(:L‘),U(O,CC) = UO(*T)‘

The unknowns p, ¢, u and P are the cell density, the chemical concentration, the fluid velocity and the
pressure of the fluid separately. The parameters a1, k, x and € are nonnegative constants. The external
force —pV¢ is exerted on the fluid by cells. The potential function ¢ = ¢(x,t) is considered as centrifugal
force or gravity force. The form of gravity is ¢ = kxz; for a constant k£ € R which depends on fluid mass
density, cell mass density and gravity acceleration. Generally, ¢ is supposed to be a sufficiently smooth
function. In R?, as far as we know, the first global existence of weak solution for (1.3) with k = 0 is
shown in [5]. Then the global results are extended to x = 1 [17] in smoothly bounded domain in R2. Jin
[6] further proves the existence of large time periodic strong solutions for (1.3) with x = 1 in bounded
domain in R2. For the three-dimensional case, similar results are obtained in [6,16] for (1.3) with x = 0
in a bounded domain.

In this paper, we choose x = k = € = a; = 1, then (1.3) can be simplified as the following one

pi+u-Vp=~Ap—V-(pVe) - p’,

¢ +u-Ve=Ac—c+p,

u+u-Vu+ VP = Au—pVo, (1.4)
V.-u=0,

p(0,x) = po(x),c(0,2) = co(z),u(0,x) = up(x).

In this paper, we study the global existence for (1.4) with special geometry, namely axisymmetric

without swirl. An axisymmetric vector field u is called without swirl if it has the form:
u(t, ) = u"(t,7, 2)e, +u(t,r,2)e,, x = (x1,29,2), 7 = (23 + x%)%,
where (e, e.,eg) is the cylindrical basis of R?. Direct computations yield that the vorticity w = curlu of
the vector field takes the form:
w = (0.u" — Opu®)ey = wyey.

On the other hand, we know
,

w-V=u0,+u*d,, w-Vu= u—w
T
in the cylindrical coordinates. Therefore, the vorticity w satisfies
Ow +u-Vw — Aw = Y-V x (pVo).
T

Let g = pV¢ = g"e, + g%eq + g7e., where
.o 21p01¢ + 22p020 _ p(x1010 + 22020)
T r ’
0 $1pa2¢ - 172pa1¢ _ p($132¢ - I231¢)

9 = )
T T

9° = p0.¢ = p0. .
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If 2102¢ — 22019 = 0 and p = p(r, 2), ¢ = ¢(r, z), then we have g = pV¢ is a axisymmetric vector
field without swirl. Hence,

Vx (pV¢) =V x g=(0:9" — 0rg”)es
Set 2" = (z1,22) and V;, = (91, 92), we simply compute that
1
0. = ~0:px” - Vg + Lot V,(0.0),
Org® = 0rp0:0 + paf,zqi
Thus,
1
V x (pV¢) = (Taszh -Vno + gxh -Vin(0.0) — 0,p0,¢p — p@iz(b) e

Since the Laplacian operator has the from A = 9, + %& + 0., in the cylindrical coordinates, then
wy satisfies
wo u” 1
Oy + - Vg — Awy + —5 = —wp — ;aszh Vho — garh - Vi(0:0) + 0,p0-¢ + p0? ..

Then, the evolution of the quantity <% satisfies

2 1
(O +u- V)— - A7 - 29,20 . —50:pe" - Vi — T%xh V1 (0:0)
87" z 832
(200 | POrs® (1.5)
T r

The aim of this paper is to consider the global well-posedness of problem (1.4) with axisymmetric
initial data. Suppose the initial data satisfy

(1) po € L* N H, py > 0,

(2) co € H?, ¢y > 0,

(3)up € H*, Vo € L™, V*¢p € L™, V3¢ € L™, Vp(0) =

(4) ug, ¢ are all axisymmetric without swirl and x1092¢ — x231¢ =0,
(5)

5) supp ¢ dose not intersect the axis(Oz)and H supp ¢) is a compact set,

z

where H denotes the orthogonal projector over(Oz).

z

Now we present our result as follows:

Theorem 1.1. Let the triple (po, co,ug) € X and =2 € L?, wy =V x ug. Then system (1.4) has a unique
global solution (p,c,u) such that

p € L=(RF; LY (R?)) N Lis,(RT; HY(R?)) N Li, (RT; H*(R?)),

c € Lig.(RT; H*(R?)) N Li, (R H?(R?)),

u € Ligo (R H?(R?)) N Lo (RT; HP(R)).

Remark 1.1. For the case ¢ > 3 of system (1.4), the above theorem also holds.

Notation Throughout the paper, C' stands for a generic constant and changes from line to line; || - ||,
denotes the norm of the Lebesgue space LP. Finally, D(R?) is a space of smooth compactly supported
functions on R?, and space S(R?) is the Schwartz class of smooth and rapidly decreasing functions.
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2. Preliminaries

In this section, we give some notations and recall basic properties which will be used throughout the

paper.
We first introduce the dynamic partition of the unity to define Besov spaces. One may check [12] for
more details. Let ¢ € C§°(R?) be supported in C = {¢ € R?, 2 < [¢| < £} such that

Z(p “i¢) =1, for £#£0.
qEZ

Defining x(§) =1— > ¢(279€). For f € &, we set Littlewood—Paley operators as follows
qeN

Aif=x(D)f; VgeN,Ayf =p(279D)f.
The following low-frequency cutoff will be also used:
Sof= ), A
—1<j<q-1

Now, let us recall the definition of the Besov space. For s € R, 1 < p,r < oo, the inhomogeneous space
is the set of tempered distribution f such that

£, = (X 21l ) <o

q>—1

BS

RS

It is worthwhile to remark that B3, and B, ., coincide with the usual Sobolev spaces H® and the

usual Holder space C*® for s € RT\Z, respectively.
We will use two kinds of mixed space—time Besov spaces. The first mixed space is LqTB;r. For T >0
and ¢ > 1, we define LqTB;J as the set of all tempered distribution f satisfying

1
1y, = H( > QjSTIIAijI’Lp> \
iz-1

The second mixed space is quB;’T which is the set of tempered distribution f satisfying

< 0.

Lt

1

g, = (3 271800 igen) " <o

j=z-1

And the norm | - [|za is defined as following

T 1
1l = ( / |f<7>|da)q
0

We have the following embeddings, which are the immediate results of Minkowski’s inequality.

Let s € R, ¢ >1and (p,r) € [1,0]?, then we have
L4B;, < L4BS,, ifr>q and LLBS, < LLB;, ifr<q.

P

Lemma 2.1. [12] Let 1 < p < g < co. Assume that f € LP, then there exists a constant C' independent of
f, j such that

suppf C {|¢] < C2} = |0 f|| e < CP1H3G=D)) 7 10,

; 1
suppf € {52 <6 < O} = |Ifllun < C2771° sup 10%fllzr-



ZAMP On the global well-posedness for the 3D axisymmetric Page 5 of 25 179

Lemma 2.2. [12] Let the divergence-free vector field u be azisymmetric without swirl, and denote w = wyey
its curl. Then

1 1
[ulloe < Cllwl|3 llwsll 7.

u” we 1w L
15 e < CIZZIZIZ2] .

3. Solutions to the regularized problem

In this section,we will prove the global well-posedness for the following regularized system:
Bpp° + (u¥ % 0%) - Vp© = Ap” = =V - (p°V(c" % 0%)) — (p°)?,
0y + (uf % 0°%) - V& — Af = = + pf,
Ou® + (uf x0%) - Vu® — Au® + VP® = —(p°V¢) * 0%, (3.1)
divu® =0,
(0%, %5 u) =0 = (PG, 5, ug) = (po * 0%, co % 0%, ug x 0%),

where o€ is a standard mollifier, namely

and satisfies the following conditions

o(lz]) € G5 (R?), o >0, /adaj =1.
R3
Proposition 3.1. Let V¢ € L*(R®) and the initial data (p§,c§,uf) € (H*(R®))® with s > 3. As-

sume that p5 > 0,c5 > 0, and p§ € LY (R3). Then there exists a unique global solution (p°,c°,uf) €
(C([0,00); H*(R3)) N LE ([0, 00); HSTYH(R3)))? for reqularized system (3.1). Moreover, p*(x,t) > 0 and

loc

(z,t) > 0 for all (z,t) € R® x RT.

Proof. Here we employ the standard method as used in [21]. For k > 1, let Jj be the spectral cutoff
defined by

Tif(©) = 1on(ENF(E) for &R,
We construct the following system in the space Hj(R?) £ {f € H® (R3)|suppfc B(0,k)} :
Duphs + Jk(Jk(uk’E *0°) - V(Jkpk’g)) = AJ,?pk’E -V Jk(Jkpk’EV(ck’E *x0%)) — (pk’g)?’,
Oy 4 Ji(Je(uh % 0%) - V(Jpd™®)) = ATRE — TR + TR p"e,
Ol + T (T (P 0%) - V(Jpuh ) + VI PR = AJRuME — T ((pF5V @) * 09), (3.2)

divu®® =0,

ke ke , ke
e ute)

(p |t:O = Jk(pgacgaug)'

With the Leray method and the incompressibility condition divu*¢ = 0, we remove the pressure P+
by projecting the third equation of (3.2) onto the following space of divergence-free functions:

H*(R) 2 {(p, c,u) € (H*(RY))divu = 0}.
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Then problem (3.2) reduces to an ODE in the Banach space H;"7(R3):

d Jr(p5) pre
—EFE(t) = Fi, o (E®®), E"(2,0) = Eo(2)"° = | Ji(c§) | , where M £ [ ¢he (3.3)
dt ’ € ke
Jk(uo) u"
and
T (TR 5 0%) - VIphE) + AT — V- (TR V(R 0%)) — (PPN [ FL
Fp.= — T (T (P % 0%) - Vo) + AJEcke — J2cke + J2phe £ | FZ.
~PJe(Ji(ub % %) - VJub =) + AJZuPe — P ((pF5V @) x 0°) R
Let us remark that problem (3.2) and problem (3.3) are the same in essence, which can be found for
example in [11] for the detailed proof. O

Step 1. For each k € NT, we will prove the existence and the uniqueness of solutions for (3.3). Exactly,
we have the following result.

Proposition 3.2. Let ¢ and the initial data (p§,c5,us) € (H*(R3))? as in Proposition 3.1. There exists a
unique global smooth solution (p*=, % uk=)(t) € (C(RT; H*(R?)))? of system (3.2) for each k € N*.

Proof of Proposition 3.2. First, for each k > 1 and all Ef*°, E}'® € H7(R?), it is easy to prove that

k,e ke k,e ke k,e ke
[Fy e (BYS) = Fi (B ) [me < Ok, [|EY (2 (| B2 )| BV = By ®lare, (3.4)
k, k, k, k, k, k,
[F7 (B ) = B (B )l < Ok, 1BV (12, | B2 ()1 B — By Sl (3.5)
and
k, k, k, k, k, k,
1F (BY®) = B (B3 ) lms < Clk, e, | By [l2, | B3 Fllos IV lloo) | BT = By || (3.6)

The estimates (3.4)-(3.6) show that Fj. maps H*(R?) into H*(R?®) and Fy . is locally Lipschitz
continuous on H*(R3). Thanks to the Cauchy-Lipschitz theorem, we know that for every (po,co,ug) €
(H*(R?))3, there exists a unique solution (p"=,c*¢ uk€) € (C([0,Tk), H*(R?)))® with T}, > 0 is the
maximal existence time.

According to Heat equation theory, we can show the time differentiation. For instance, we consider
the following equations:

up — Au = f(x,t), then wu =Au— f(x,t).

Assume u € L°H® and f € L{°H*"2, we have u, € LY H*~2. For the arbitrariness of s, we obtain

uy € LY H?®,V s > 0. In a similar process, we conclude

3:&(“15) —Auy = f;

and uy € L H*~2. Thus, we prove the time differentiation.
Next, we need to prove that T}, = co. Since p§ > 0, we obtain that p*<(¢) > 0 for all ¢t € [0,7}), by
analyzing the first equation of (3.3). Integrating the first equation of (3.3) over R?, we have

d
S0l == [+ az,
R3
which implies that

3d7 < o1 (3.7)

t
wmwm+/w“
0

Taking the L2-inner product for the second equation of (3.3) with ¢*¢, we have

S IS OIE + IV Tue™= (0113 + 1Tk (1) ]3
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- / Je( T (™" 5 0%) - VJjcP2)eh e da + / Jipte Jpche da.
R3 I

Since D(R?) is dense in H'(R?) for all | > 1, there are no boundary terms when we integrate by parts.
For the first term of the right-hand side on the above equality, we conclude

- / T (Je(uhe % 0%) - V) Me da = —% / T (W % 0%) - V()2 da = 0.
R3 R3
Thus, the Young inequality implies
1d
2 dt|

z/Jkpk’Echk’s dz

R3
< 1 ep™ = N2l Jec |2

1
< k™13 + 51 ke |3,

[B= @3 + IV Tee™ (13 + | Tuc= (@) 13

which together with (3.7) and interpolation inequality yields that

501 +2 [ IVl dr < e[ + ok 8)
Similarly, we can infer that
1d
Sl O3 + IV T =01 + 5 ()]
= /Jkpk’EV(ck’6 % o) - VI phe da
R3
< [ Tkp" N2V (% ™€) o |V T p™
1
< CEIMP™ U315 + 1V ke <13
and
1d 2 k,e 2 k,e k,e
5 el @B + IV I @13 < CUIV ol T ol
The Gronwall inequality means
|ka’5(t)||§+/|IVJk,0’“’E(T)II§dT < [lpg < |I3e“ " (3.9)
and
lu®= ()13 +2/ IV Tk (7) 5 dr < [lug <[5 (3.10)

By the same process as used in (3.4)—(3.6), we obtain that

k k
[ M2, [V lloo) 1 B (@) | e
k, k, k, k, )
< C(t, ke, 1o ll2s e ll2, llug Iz, IV @lloos 1o I IHE® (#)] -,

d
&HE’“’E(t)IIHS < Clk,e, [1p"l2, llc™
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where we have used estimates (3.8)—(3.10). We conclude from the Gronwall inequality that ||E*(¢)| z: <
C(t, k,e, E¥4(0)) for all t € [0,T}). Thus, by using the continuation property of ODEs on a Banach space,
we know solutions can be continued for all time. O

Step 2. In this step, we give the uniform estimates for (p*¢, ¢k u*) (independent of k).
Firstly, we obtain the L2-estimate of solution (p*=, c* u*:) from the estimates (3.8)—(3.10) that:

t
IES=(0)]3 + / IV IR (r)|3dr < C(t,2, B(0)). (3:11)
0

Secondly, we will prove the H'-estimate of solution (p*:¢, ¢*¢, »*¢). Multiplying the first equation of
(3.2) by —Ap"¢ and then integrating over R? imply
1d
2dt
=— /(VJkpk’E) VI (uPE % 0%) - VI phe da + / V(Jep® eV (% 0%)) ATy p™e da
R3 R3
< VT (u™ 5 o) [[ool IV Tkp™ <13 + IV (Tup™ V(5 0%) 2| AT 0" |2

1
< CE IV I3 + CE V315115 + o5 (13 l1e"[13) + 71 ATkp" I3

IVp5= @13 + [ATp"= O3 + 195V o" =13

Hence, we obtain
d £ [
SITA O + 1 ATk"= (1)

< CEIVA IRz + 1™ 13) + 12"l c=13). (3.12)

Similarly, we infer
1d
2dt

=— /(Vchk’s) VTR (uhE % 0%) - Ve do + / T AT ?E da — / T p e A TP da
R3 R3 R3

IV ()13 + | ATkc=(#)]13

<NV I (P % 0%) oo |V IS5 + | < [[2l| ATrc™ < [l2 + | Tep" < [[2l| ATwc™< 2
1
< CE)(uPell2Ve™ 15 + 11113 + [1o°113) + ZHAJkaH%-
Thus, we obtain
d
§||Vck’€(t)\|§ + ATk ()13 < CE) (W™= [12lIV 115 + 14113 + [1054]13)- (3.13)

Operating the curl to the third equation of (3.2), then multiplying the resulting equation by w**¢ and
integrating with respect to the space variable yield

1d
§&||wk,s(t)H§ FIV IS (@) < — /Curl(Jk((pk,sv¢) + 0%))wh da
R3
< CE)p™e N3 + lw®5. (3.14)

Summing up (3.12)—(3.14), then we get from the Gronwall inequality

t
IVER(6)]2 + / |AJES ()3 dr
0
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t

< (IVEy |3+ Ce) /(Ilpk’E(T)llgHC’“’E(T)H% + M) + P ()]13) dr)
0
t

xexp(C(e) /(||u’“’5(7)||2 + = ()3 + 1) dr).
0
This together with (3.11) gives

t
IES=@)lF + / 1Tk E™€ (1) |[32d7 < Cll Bl e exp exp(C(t, e, o511, I1E513))- (3.15)
0

Finally, we prove the H*-estimate for solutions by utilizing the Fourier localization technique. Taking
the operation A, for ¢ € Z on the first equation of (3.2), we obtain

O D™ 4 TuBg (T (uP 5 0%) - Viph®) — AN T pP = =V - T A (Jp™ oV (P % 0%)) — A ((07F)?).
Taking the L?-inner product with the above equality by A, p*° and integrating by parts yield that
1d
2 dt
= /Aq(Jk(uk’E % 0))Jp™e) - VA, Tppt da + /Aq(Jkpk’EV(ck’E x0%)) - VA, Jpp" e dz

R3

R3

18gp"5 O3 + IV A Tep™ (B)]3

_/Aq(pk7a)3quk7a dz
R3

< NAG (I (Wb % 0%) Tep™ )2V AGTup" 12 + |8 (Jrp" =V (72 % 0%)) |2V A Tup™ |2

3,

) 1
< A (k™ 5 0%) Jip" )15 + ClAG(Jep™ V(5 5 o) + IV AGTp"
from which we have
d
SNAGPPE DI + 17 AT (0)]3
< ClIAG (T (™ % 0%) Jep™)|3 + ClIAG (Jp V(5 5 %)) 13.
Multiplying 229° on both sides of the above inequality, then taking the ¢! norm, we conclude
d
allp’“’g(t)llz‘ /Y O]/
< O Ji(uhe % o) Jip™ || + CllTep™=V (5 0%) |13,
< CE) W1 191" g2 + 1Tkt g2 125115,
+COE) 0" 5. + [ Tep™ <32 13- (3.16)

In the same process, we deduce that

d
SO + IV O3, < Ol 09)Jc |3, + Cll Tt I3, + [T <11

dt
< C(E) (™15 1 Tke™ N2 + | Tew™ |3 [l
e+ 105 11%)- (3.17)
Taking the operation A, for ¢ € Z on the third equation of (3.2), we get
HAUPE + PI AL (T (15 % 0%) - VIuh®) — AA TR = —PA T ((07°V ) x 0°).
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In the same way, we obtain
d 1> 13
&Iluk’ O + IV T (@017
< Ol T (" + GE)JW'“’5||2- A+ Cl(p"eV ) o® |, + ™21,
< Cle)llu™e1%,. @)lp™e113 + [|u®

Summing up (3.16)—(3.18) and using the Gronwall inequality yield

(3.18)

B4 @)1 + / B (7) e

t
< (I1E5(0)II%. + / (170" 2 15113 + Nl p™13) d7)
0

t

xexp(C(e) / (1 7k0*

0

)dT).

23+ 1Tk

Then, combining with (3.11), we obtain

B4 @ + [ IIBR () s dr
< CI5 -expexpexp(Ct.<, 5 . | 3 ) (3.19)

Step 3. This step is to prove that (p*¢, %< u* <) converge to a limit (p°, ¢*, u°) satisfying system (3.1)

in the sense of distribution.
From estimate (3.19), we conclude that the family (0;p"¢, 9;c*=, 9,u*<) belongs to (L2, .

Suppose {x;}ien is a sequence of C§°(R3) cutoff functions supported in the ball B(0,] + 1) of R® and
equal to 1 in a neighborhood of B(0,1), namely
R in B(0,1),
=0, i B0, 4 1).
Thus, we have ||x;||re~ <1 and ||x;||ws.~ < C with C is independent of I.
The Moser estimate enables us to conclude that, for any [ € N,

C(llp" ¥ ze),

) }ken is uniformly bounded.

-1 < allze 1™z + Ixallwe-re< [l 0™

Ixip™*
where C is independent of [, which implies that {(x;n*, x;c"<, xyju®
On the other hand,

Ixip™<(s) = xap™* ()| ge—r = | / Bup™e (1)dr |y
t
1

t
S/ Ixidrp™ = (7) | gerdr < ( / ) / Ix104" (7) |31 dr) 2

S

I\?\»—-

< (t—s)}( / adep® e (7)[%e-2dr) %,

from which it follows that {(x;p"%, xi1c®%, xiu®*) }ren is equicontinuous in (C(RT, H5~1(R?)))3.

(RF; H*~1(R?)))°.
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Notice that the application p*° — y;p* is compact from H* into H as s > s. By applying

the Lions-Aubin lemma to the family {(x;p"%, xic"%, xiu**)}ren on the time interval [0,1], and using
Cantor’s diagonal process, it finally reduces a distribution (p°, ¢*, u¢) belonging to (C(R*, H* (R?)))? and
a subsequence (which we still denote by {(p*, c®¢ u*)}ren) such that, for all [ € N, we have

(lek,s’ chk,e’ Xluk’s) —k—oo (le€7 XlCEa Xlus) in (C([O7 l]7 HS/ (RB)))B

This obviously ensures that (p*°, % uF¢) tends to (p°,c%,u) in D'(RT x R?). According to the
Fatou lemma, we conclude

(p°, ¢, u”) € (Lise(RT5 H*(R?)) N Li (RT; HEFH(RY)).

Now we show the continuity of (p°,c%,u®) in H® x H® x H®. Taking the operator A,(¢ > 0) to the
first equation of (3.1) yields

Ogp” = DDgpf = =D, (4 #0%) - Vpf) = V- A (5 V(e 0%)) — A, (7).
Operating the L?-inner product of the above equation with Agp® yields

1d
5180t (@13 + C220) A0 ()3

= —(Ag((u % 0%) - VpF), Bgp®) — (V- Ay (p°V (" 5 0%)), Agp®) — (Dg(p%)*, Agp®)
g & £ () g C (>
< CllAG P75 + CllAg (P V(" x o))l + 271 2gp7 (13

_ C
+C2 2q||Aq(PE)3||§+222qHAqPEH§,
from which it follows that
d _
§||que(t)||§ + 220 Agp ()15 < C(1AG(up )13 + 184 (p°V (¢ % 0%))15 + 2727 Ag (0)13)-

Integrating in time ¢ yields
t

1Agh (D)2 2 + / 220 A, p* ()12 dr
0

< 1Agm5l3 + C/(IIAq(usps)(T)llg +18q(p° V(e % o)) (D13 + 272 Ag (p°)*(7)3) dr-
0

Multiplying the above inequality by 229° and computing the £2-norm result in
1

1
2 2
(sznquEn%mz) n (Z22q<s+”||quE||igLa)

q>0 q>0
< o5l + Cllwr o™l 2y e + Cllp"V (€ % o) 71 e + Ol My e

< lpollzs + Cllutl Lz ps

P Nezms + CENP Lz mllc Iz + Cllp® || Lge s P€||%gHs < 0.

This combining with the fact p°(t) € L° H® gives us

2
(3 2180 1ers) <oe

g=>—1

Namely, the sequence {Syp®}yez+ converges uniformly to p® in L{° H*®. Moreover, we can infer from
the fact dyp° € L2 _(Rt; H5 1(R3)) that p° € C(RT; H¥ (R3)) with s’ < s. It implies that Syp° €

loc

C(R*; H*(R?)) for a fixed N € ZT. Thus, we know p° € C(RT; H*(R?)). Similarly, we also have that
¢ € C(RY; H*(R?)) and w® € C(RT; H*(R?)).
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Step 4. Uniqueness.

Now, let us look at the difference equations to prove the uniqueness of the solutions of (3.1). Assume
that (p5,c5,uf) and (p5,c5,us) are two solutions of (3.1) with the same initial data (pf, ¢f, uf). Let us
for simplicity set dp° = p§ — p5, 6¢® = ¢ — ¢§ and du® = u§ — u§. Then (0p°, §c7, du) satisfies

0p0p° + (0u® % 0%) - Vpi + (ug x0%) - Vop® = Adp® =V - (§p°V(c] *x o))

=V (p5V(8¢" * 0%)) = p°((p5)* + pip5 + (p5)°),

00 + (0u® % 0%) - Vi + (ug * o) - Voc© = Adc® — dc® + 6p°,

Opou® + (du® % 0%) - Vui + (us * 0%) - Vou® + V(P; — P5) = Adu® — (§p°V¢) * o°.

Making the L2-inner product of the first equation with 6p° gives

1 d £ £ £ £ £ £ £
5 3107 @113 + Vo ()13 +/((p1)2 + 505 + (05)*) (0p°)° da
RS
=— /((SuE *x0%) - Vpiop®de — /V~ (6p°V (5 % 0%))dp° dw
R3 R3

—/V (p5V (8¢ % 0))6p° dx
R3

< 11567 % 0% all 5 1 17067 2 + 166° 201V (65 % o) o V8712
51211V (5" * 0%) 1 |65

< CllpS -

g £ £ (> () 1 £
ousllz + CE)Iop™ 3Nz + llpslI3N0e113) + 51V ap°I3.

In a similar process, we get
1d
2 dt
=— /(&f % 0%) - Vejoc® do — /(505505 dz + /6/)5(508 dz
R3 R3 R3
< |6 * 0%||allef oo VI 12 + [[6¢7[13 + [100°[|2[10c" |

< Ol

15 ()13 + Vac™ (£)]13

1
su|l3 + Clloc |13 + 10p°115 + §IIV5C€||§
and

1d £ 2 € 2
3 g low Ollz + [Veus (©)]2

=— /(5uE x0%) - Vujou® de — /((5p€v¢) * 0°)ou® da

R3 R3
< (0" x o l2l|uilloo[[VOuT|l2 + [[(6p7V @) % 02| 0u7 |2

< Olluillze

1
SuZ(l3 + Cllop I3 + 1ousl3 + S IVousl3.
Summing up the above estimates yields
d S 2 £ 2 € 2 5 2 £ 2 € 2
3 10p° @ll2 + 110 @) 12 + 0w (®)12) + Vop" (B)ll2 + Vo (B2 + [Vous (1)]12

< CllpS Iz 10u3 + Ce)(10p7 3115113 + o213 ]16¢]13)
+C|lci I 16uZl|3 + Clloct 13 + 19p°13 + Cllus 13- 5u® 13 + Cllop%[I3 + fl6us]l3.
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Therefore,
d £ (1 £
praide O3 + 10 (@)[13 + [[6u (t)]13)

< (160°113 + N3 + w13 o5 Zre + o5l + ek lZrs + lluilizr + 1)

The Gronwall inequality ensures that p = p5, ¢§ = ¢5, u§ = u§ on time interval [0, T].
Next we show the positivity of n° > 0 and ¢ > 0 for all (z,t) € R3 x R*. Let

(nf)~ £ min{n®,0}.
Multiplying the first equation of (3.1) by (n°)~ and integrating in space variable x, we have
1d
51 I V) e = = [ V- V(e 50 0) o~ [ (0 n)
R3 R3
Integrating by parts and utilizing Hoder’s inequality imply
—/V - (n°V(c® *x0%))(n®)"dx = /nEV(cE * o)V (n®) " dx
R3 R3
_ 1 _
< CENENZlm) 7172 + 31V ()7 I1Ze-
On the other hand, we get
—/(na)g(ns)*dx < Ol || (n°) 712
R3
Collecting the above inequalities, we obtain
d _ _ _
)72 + V() 7M1 < CEUENT: + In 7)1 (nF) 7 I1Zs-
Using Gronwall’s inequality, we have for any ¢t > 0
1(n*)~ @)llz> < [I(n5) " [[L2C(¢) = 0,
which gives that n® > 0 for almost everywhere (z,t) € R® x RT. Since s > 1, we infer H'(R?) — C,(R?).

Thus, we conclude that n® > 0 for all (z,t) € R® x RT. By the same process, we can obtain the positivity
of ¢ > 0 for all (z,t) € R3 x R*. Hence, we complete the proof of Proposition 3.1.

4. Uniform estimates for the regularized problem

In this section, we show uniform estimates of smooth solutions (p°,c®,u®) to the regularized problem
(3.1) which are independent neither of ¢ > 0 nor the mollifier o°. To simplify the notation, we set
(p,c,u) = (p°,c%,uf) in the following part of this section.

Proposition 4.1. Let the initial (po,co,up) € X N (H*7)3, and ug € H?, e L?. Suppose (p,c,u) is a
smooth solution of system (3.1). Then there exists a constant C' independent of & such that

o)1y +/IIP(T)II§dT < llpolls, (4.1)
0

t
lu(t)I13 +/IIVU(T)II§dT < Ce, (4.2)
0
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t
IIC(t)II§+/IIVC(T)H§dT < [leoll3 + looll1- (4.3)
0

Proof. For (4.1), integrating the first equation of (3.1) in o over R?, then integrating the resulting equation
with respect to time ¢ yields

IIP(t)||1+/|\/)(T)II§dT: llpoll1- (4.4)
0

Operating the L2-inner product for the third equation of (3.1) with u, we get

1d _

3@ —/(pV¢)*a udx
R3

IVollsclipllzllullz-

Performing the Gronwall inequality to the above inequality and using the interpolation inequality, we
obtain

lull3 + [ Vull3

IN

t
lu()lI3 + / IVu(r)|I3 dr < Ce. (4.5)
0

Similarly, we obtain

1d
33 el + IVl + el = [ ped
R3
< el

1
< Cllpll3 + 5 lell3-

Then, integrating in time together with (4.4) gives us that

t
IIC(t)||§+/IIVC(T)II§dT < lleoll3 + lloll1- (4.6)

0
This completes the proof of Proposition 4.1. O

Proposition 4.2. Let the initial (po, co,ug) € X N(H*7)3, “0 e L2. Then every solution (p,c,u) of system
(3.1) satisfies

t
w w
IZ2@)13 + / IVED @3 dr < Ce, (4.7)
0
t
Ct
lu(t) [3s + / lu(m) 3 dr < e, (48)
0
t
<Ct
IVe(®)l3 + / IV2e(m)l3 dr < e, (4.9)
0
t
()13 + / (V)13 + llo() 1) dr < Ce. (4.10)

0
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Proof. Performing the same process of deducing (1.5), it is clear that “2 satisfies the following equation

()09 () -8 ()T ()

1 T z a’%z
_ _7szhvh¢_£xhVh(az¢)+apa¢+p ,d) %o
72 r2 r r
u” - u” * oc
+<T2(w*a Jeg — - wg).

Taking the L2-inner product of the above equality with ¢ gives

2
zdt? °[,+ vl
—_ _ P 1>
/ 9. pa thb( x 0 )dx /r z" - Vi( qu)( x 0 )dx
Rd
0?2
+/7Tp8z¢ (%*05> dx—l—/ip red (%*05) dz
T T r r
RS RS
u” u” * of wo
+/<T2(w*a)697 2 w9>7dx
R3
=0+ + I3+ 14+ I5. (4.11)

Next, we estimate the right-hand side of (4.11). An integration by parts yields

1 h we e 1 h we e
h= [ o0 (Vi) r oty dot [ SpaVi60. (L o) da

R3 R?
_ /pxh 0. (Vo) — 0.(Vr¢(0,0,23)) (ﬂ «0°) da

B ' '

—i—/px: (Vno) — (Vrh¢(0,07$3))8z(% % 0%)de
< ol 2|17 2 0% + ol 192 [ 022 %]
< cllol+ || 2] + 5[v<2

Similarly,
I < ||””2H%hHoo”v3¢”°°HWG H < Cllpll3 + H H

Employing coordinate transformation, we compute I3 and I, respectively,
+oo +0oo

13://%ﬂ(%*06)7"d7“dz

— 00 —O0

400 +00 400 +o0

—/ /p@rang(% *Us)deZ—/ /pazqﬁr(% * o) drdz

—co 0 —oo 0
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0,0, 0

g
R3 R3
< Nplla V%6 o] |2 % 0% Oloc] [V 22 5 0°
wo 1 we
< clolf + 2] *HV*H
< Clol + || 2|, + 5|7
and
3 we
1 < ol |2 < Cloli3 + | 2]

For the last term, we have

w u"x0of W
[entwens® o~ piapes) 2 aa - [ F5T0 % as

wy u" x 0t wy
/wg(y)oa(ac - y)dy) - dz — / o we - dz

R3 R3

w u" ko w,
o) e =) 2y ) o — [ E5 T

—
€

R3 R3 R3
T
— [wnty) [ G@oty -2 2asdy - [0 ar =0
T ' T
R3 R3 R3

Combining the estimates above yields

al ol + v, < i+ o2

from which (4.7) follows.
Next we prove (4.8), applying the curl to the third equation of (3.1) yields

Ow + (u*x0°) - Vw — Aw = u—(w *0%) — curl(pVe) * o°
r
Taking the L2-inner product with w for (4.12), we get
S + IV < |||, + ol + 19,

from which we conclude

d u”
Slw®I3 + V)3 < || || Il +Clel3.

Using the Gronwall inequality, we infer

t t t
C 1% || odT
|wm@f/wmm&hs@wﬁ+c/wm@w}o .
0 0

ZAMP

(4.12)

(4.13)



ZAMP On the global well-posedness for the 3D axisymmetric

By Lemma 2.2, we have

2
o dr
Hl

- (™

dT<C/Hw9

t

% i we
<c / 1dr / 122 idr) " ([ 12 @Idr

0
t

<C(t+O/H Hd +/

0

we

o )

Hl

r

< Ce“t.

Plugging the above inequality into (4.13), we obtain

()l + [ IV dr < ce”,
0

which together with (4.2) yields (4.8).
Taking 0; on both sides of the second equation of (3.1) implies

Or0;ic+ (u*0°) - VOjc — Adjc = —0ic + 0ip — 0;(u* o) - Ve.

Page 17 of 25

I

Multiplying the above equality by 0;c and integrating with respect to space variable yield

2dt||ac 2 + /|Vacx 12 dz

3
_/aicaicdx—i—/8ip8icdx—2/3i(uj % 0°)0jc0;cda.
R3 R3 j:]-]RB

For the last term, we have

—/(‘%(uj % 0%)0;c0icdx

—Z/uj*a cacdx—FZ/uJ*a 608 sedx

= 1R3 J= 1R3
< 2fulloo [ Vell2 [ Ac] 2.

Insert the above estimate into (4.14), we obtain
d
GIVell+ [ 190ic(e, 0 o
3

< Cllullso|[Vell2Acllz + [ Vell3 + llpll2l| Acl2
1
< Cllullz[[Vel3 + [[Vellz + Clpls + 31 Acll3.
By the Gronwall inequality, we get

Ct

IVe(t)]2 + / IV2e(r)|Bdr < o™,

179

(4.14)
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which implies (4.9).
Next, we turn to estimate the term of ||Vel|s.

3dtH8c Hg+/8ic(x,t)|V6ic(x,t)\2dx
3

3
—/810\8ic|8icdz+/3ip|8ic|8icdz—Z/@i(uj % 0°)0;¢|0;c|0;cdx.
R3 R3 j:1R3

By the Holder inequality, we have
/8zp|8 clOiedx = — 2/ |0;c|0%cdx
R3

<Clollslwll ( [ 101cte0)] [Vose(a. ) ds)

1
<Cllpl3Ndells + 7 /\3 c(z, t)][VOic(z,1)|* da.
R3
Similarly, we obtain

72/8 (u? % p° 80|ac|8cdwf22/8 (u? * p° c|8c\8jcdz

J=lps J=lps

< 2|l Vulaltel ([ 0rctz o) [V0ic(z. ) o)

R3

1
< 2l TulBloicl + 5 [ ic(e. ] [Voic(z, O do

R3

ZAMP

(4.15)

(4.16)

1
< 2l|elS IVullallAullzficls + 7 / |Oic(a, )| [VOyc(, 1)]? da.

Plugging the above estimate and (4.16) into (4.15), we get
3
3dtHac HS+/8¢C(m,t)\V8ic(x,t)|2 dz
3

< ll0iclls + llellZ [Inll5]|Bic(®) ||, + NellZ [ Vull2| Aull2[|die(t)]] -
This means
CIIVe|2 < 19l + ellZlnl + el [Vl Al
Using Gronwall’s inequality yields
IVe®)]l; < Ol Ve |
Plugging this estimate into (4.17), we finally have

ey + [ |[eIverni?],
0

dr < Cee’

(4.17)
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For (4.10), making the L?-inner product of the first equation of (3.1) with p, we obtain

1d
5 3 IP®15 + 1Ve@IIE + le®)z = —/V' (pVe) - pda.
R3

Integrating by parts and using the Holder inequality, we conclude

—/V- (ch) -pdx z/chVpdx
R3

RS
3|12
<Cllolls | 17el?||” 1902
1 3|8 a3 3
<Clloll3 |||vel? | |1l || 1vpl3

3|2 1
<CIVelly ||V I9el?|| 1ol + £ 17015.

Inserting this estimate into (4.18) and integrating the resulting inequality in time ¢ give

t t
oI + / IV p(r) I3 dr + / ()| dr
0 0
t

2
3
< lpols +€ [ 191, |T1velt )], ho(ol3- .
0

Using Gronwall’s inequality means

t t
o3+ [ 19p@IEar+ [ lo(mliar < e
0 0

Thus, we have finished the proof of Proposition 4.2.

(4.18)

(4.19)

O

Proposition 4.3. Let the initial (po,co,ug) € X N (H*Y)3. Then every solution (p,c,u) of system (3.1)

satisfies

t
lAu(t)|2 + / IV Au(r)[2dr < Cee”
0
t
lAc(t)|2 + / VA3 dr < Ce™|
0

t

Ct

IV ollz + / |Ap(r)|3dr < Cee™.
0

Proof. Taking the A to the third equation of (3.1) yields
WAu — AAu+ VAP = —A((u*x o) - Vu) — A((pVo) % o).
Multiplying (4.23) with Au and integrating in spaces, we have

1d

2dt
R3

——||Au|j3 + |[VAu|3 = —/A((u *x0°) - Vu)Audx — /A((pV(b) * o) Audz.
R3

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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For the first term, we get
- / A((ux0®) - Vu)Audz = —/A(u *x0° - VulAudz — 2 / V(u*0®) - VulAudz
R3 R3 R3
< O|IVull2||Aulf < C|Vullzl|Aull3 [V Aull3

1
< ClIVullz]|Aull3 + IV Au|l3.

For the second term, integration by parts implies

— / A((pVo) x 0%)Audx = /V((qui)) x 0% )VAudx
R3 R3

:/(VpV¢)*UEVAudx+/(pV2¢))*JEVAudx
R3 R3

< IVoll2[Volloo[VAuUll2 + [lpll2 V2 lloc [V A2

1
< C(IVollz + llpll3) + IV Aull3.

Inserting the above inequalities to (4.24), we obtain
d
318Ul + IVAul3 < ClIVulz| Aull3 + CIV3 + llol13).

By Gronwall’s inequality, we derive (4.20).
Taking the A to the second equation of (3.1) yields
OAc— AAc = —A((u* %) - Ve) — Ac+ Ap.

Multiplying (4.25) with Ac and integrating in spaces give
1d
|Acl2 + |VAC|Z = —/A((u *x0°) - Ve)Acdr — /AcAcdx Jr/ApAcdx

2dt
R3 R3 R3

= /V((u*ae)-Vc)VAcdx—/AcAcdx—/VpVAcdx
R3 R3 R3

ZAMP

(4.25)

< IVulloo [ Vell2[VAcll2 + ulloo [ V2ell2[IVAc]2 + [[Acl + Vo]l VAc |2

1
< ClIVullXVellz + CllullZ [ V2ellz + | Aclls + ClIVpll3 + IV AC.

Using the Gronwall inequality, we obtain (4.21).

Taking V to the first equation of (3.1) yields
XVp+V(u-Vp)—VAp=—-VV-(pVc) — V(p*).

Multiplying the above equality with Vp and integrating with respect to space variable imply

1
§HVP||§ +[1Apl3 + 3[pVpll3
= /Vu~Vprdx—/VV- (ch)Vpdx—/V(p3)Vpdx
R3 R3 R3

< IVullso VoIl + 1V pll2lIVellso [ Apllz + llollsll Acls]| Apll2

1
< llullmsIVollz + ClIVolallelzs + IVolzllAclz [ VA2 + 5 A,
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from which it follows that
1
§HVPII§ + [|Apll5 + 3llpVoll3
<Nlullmsl|Volls + CIVol3llclis + IVol3l A2l VA2

Using Gronwall’s inequality and combining with (4.20)—(4.21) means (4.22). This completes the proof
of Proposition 4.3. O

5. Proof of the main result

This section is devoted to presenting the proof of Theorem 1.1. We first prove the existence. Considering
the following approximation scheme:
Oip° + (uf % 0°) - Vp* — Ap® = =V - (p°V(cF * %)) — (p°)?,
O c® + (uf x0°) - V& — Ac® = —c° + p%,
Ou® + (u® x 0%) - Vu® — Au® + VP = —(p°V¢) x 0°, (5.1)
divu® =0,
(p°, ¢ u%)|t=0 = (po * 0%, co * 0%, ug * 0°).

The property of the mollifier 0 and (po, co, ug) € X enable us to know that (p§, c§, u§) € XoN(H>)?
with H> £ Ns>0H?®. Proposition 3.1 ensures us that system (5.1) admits a unique globally smooth
solution. In addition, from Sect. 4, we have the following bounds uniform in &:

pf € L®(RT; LY (RY) N Lig,(RT; HY (R?)) N L, (RY; H*(R?)),
¢ € Lig (R H*(R%)) N L, (RT; HP(RY)),
u® € Lis,(RY; H*(R?)) N L, (RY; HO(RY)).

Now in order to apply the Aubin—Lions compactness lemma, it is suffices to prove the uniform bound-
edness for 9;p*, 0;c* and d;u”. From the first equation of (5.1), we get

100 12— = AP | L2m-2 + (" % 0%) - Vo llzm—1 + IV - (0°V(e % 0%) 21 + 1(0°)° || L2071
<o llLzmr + [[u® - p*[l 22 + [PV (c® % 0%)|| 212 + H(PE)SHL3L2
<l zar + Null e llpll 2z + 0% L 22 IV L2 e + 10T 00 o 107 [ L2 26

<efllezms + lu e nzllplzee + 0% palle iz s + 1% oo 0% 3 2
<C.

This means that 9;p° is bounded in L (R*; H~1). Similarly, we can also deduce that d;c® and dyuf
are bounded in LIZOC(RJF; H™1), respectively. Notice that L? is locally compactly embedded in H* and H*
continuously embedded in H~! with s € (—1,0). Repeating the process used in the proof of Proposition
3.1, we conclude that the sequence (p°,c®,u®) converges to (p,c,u) in C(RT; H®) with s < 0 and the

solution (p, ¢, u) satisfies (1.4) in D'(RT x R3). According to Fatou’s lemma, we obtain
p € L¥(RY; LH(R?)) N LS (RY; H' (R®)) N Li (RT; H(R?)),
¢ € L (R H*(R?)) N Lio(RT; HP(R?)),

u € LY (RT; H2(R?)) N LE (RT; H3(R?)).

loc loc

Next, we prove the uniqueness. Let us consider the two solutions (p1, ¢1,u1) and (p2, ¢, us) of system
(1.4) associated with the same initial data (po,co,uo), then the different (dp,dc, du) solve the following
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difference equations.
8i0p + 6u - Vp1 +ug - Vép = Adp = V - (5pVer) — V - (p2V6e) — 5p(pi + prp2 + p3),
0idc+ ou-Vey +ug - Voe = Ade — de + dp, (5.2)
Opou + 0u - Vuy +ug - Vou + V(P — Py) = Adu — 0pV .

Operating the L?-inner product of the first equation with Jp gives

1d
S 1601 + IVopl3 = - / (6u- Vpr)dpda — / V- (6pVer)opda
R3 R3

—/V - (p2Véc)dpda — /(p? + p1p2 + p3)dpdpda
Rfi

R3
2V, + Vo4 Vs + Vi (5.3)
For IV, by Young’s inequality, we get
1
Vi = /pléu -Vopdz < ||oullsllp1[lsl|Vopllz < CIVaul3]lprll3 + §||V5p||§~ (5.4)
R3

By the Holder inequality, we have

Vo = /5PV01 -Vépdx
R3
< épll2lVerllss [Vpl|2

1
< l16pl3llerllzs + glleH%- (5.5)
In a similar process,

1
Vs = /p2V5c - Vopdz < [|pals]|Véclls[[Voplla < Cllpal[3[V2c]3 + §HV5P||§- (5.6)
R3
Then Vj can be ignored for it is negative. Substituting (5.4)—(5.6) into (5.3), we obtain
d
&Hfsﬂ(t)”% +[IVop)l3 < CUUIVSull3llp i3 + 10pll3]ler 1

Hlp2l31V23c]3 + (o lls + llo2ll3)?10p113)- (5.7)
Taking the L?-inner product of the second equation of (5.2) with dc yields

%%Héc(t)”% +[|[Vée(t)]|3 = f/(éu -Vep)dedx — /5050(1:10 + /5p50dx
R3 R3 R3
= /016u~V&cdx—/écécdx—i—/ép&dm
R3 R3 R3

< [|0ullzller[lo IV cll2 + 13¢5 + [|p]2[l5¢]2
1
< [oulzlleallze + 5 1V3ell3 + lldel3 + C(llap3 + l19¢ll3),
from which we get

d
F19eOIz + [Voe®)|3 < C(lldulzller |5 + 9ol + [loc]3). (5-8)
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For H?-estimate of dc,

S SAsDI3 + IV As
= — / A(du - Veyp)Adeda — /AUQ - ViécAdcdx — 2/Vuz - VViocAdcdx
R3 R3 R3
- / ug - VAdcAdcdx — /A60A5c dr + /AJpAchx
R3 R3 R3
STV +IVy + IVs 4+ IV, + IVs + IV (5.9)

For IV;, by the Holder inequality and the Young inequality, we obtain

v, = /V(5u -Vep)VASedz
RS
= /(Véu -Vep)VAGsedx + /5u -VVe VASedx
R3 R3
< [ Voull2|[Verlloo [ VASE|l2 + [|0ulls]V2er [l3]V Adell
< [Voull2[[Verlloo [ VASE]lz + [|Vaull2[ Ve [[3 VASC] 2

1
< | Vaull3lled|F + g\IVMCHg- (5.10)
For the second term, we have by the Holder inequality
IVy < C|Aus 3] Vocls[| Adellz < Clluz|[3ps || Adel]3. (5.11)
By the Young inequality, one has
1
V3 < 2|[Vus||3||V2dc|l2|Adclls < Cllus|F|Adc|3 + gIIVMCII% (5.12)
By the Holder inequality,
1
Vi < [luzloo [ VASe]l2| Adell < Cllus|[Fal| Adell3 + £ | VAde]3 (5.13)
and
1
Vo=~ [ Vépvaseds < CIVspl + 5|V A3, (5.14)
R3

With the estimates (5.10)—(5.14), we have

d
T IVOc)IIz + [1Aade ()13
< [|Adel3(luzllEs + luzllZe) + [Voul3llenlFs + [IVpll3. (5.15)
Taking the L?-inner product of the third equation of (5.2) with du, we obtain
1d
§&||5u(t)||§ + [|[Véu(t)||2 = —/(5u -Vuq) - dudx — /§pv¢ - dudx
R3 R3
< [[ullsIVur [[sl5ullz + [Vl [[dpll2]|ull2

1
< Clloul3llu 7= + 511Vouls + C(lIopl3 + 19ull3).
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This implies that
d
3 19u@IE + [Vou®I < C(loull3llur 7= + 190113 + 15l2)- (5.16)

For the H!'-estimate of du,

S SIVaun) 3 + 19%u(t) 13
= f/V(éu -Vup)Voudx — /Véu -Vu Véudx — /V(&pV(ﬁ)Véudx
R3 R3 IR3
=— /((5u - Vup)VZiudr — /V(Su - Vu Voudx — /(5pV¢V26uda:
R3 R3 R3

< Ollgull6]|Vur I3 V20ullz + [ Voulls|| Vur ||| Vo2 + IV @lloc [p112] V2 5ul2
1
< C||Vaullzluallzz + IVSIZNI0pIE + SIIVZdul3.
Hence,
d
ZIVou®Iz + IVZsu)llz < ClIIVoul3]lual= + IVl 9p]3. (5.17)
Collecting (5.7), (5.8), (5.15), (5.16) and (5.17), we obtain

d
33 U9pOIE + [16c(®)IIZ2 + 5u@)15:) + [VOpll3 + [ Vell3 + [ Voe]Fz + |V oullZ
< C(IVéull3lls + 16pl3lerllZrs + lp2ll31 V20l + [IVoull3llurll + 1Vl Idpl3
HAde]3([uallFs + lluzllFz) + [V oul3lleslFs
Hloul3lluslize + 16pl13 + 16ull3 + I6ullZlerlZ, + l18pll3 + locll3)-

Then, we have

d
&(I\t?p(t)llg + 16e() 132 + 16u(t)||3m)
< CE®)(16p(t)]15 + 16¢() 132 + 0u(®)I3),
where
F(t) = o5 + llo2ll3 + lluallFrz + lluzllzrs + leallFs + 1.

We know from Sect. 4 that F(t) is integrable. Using the Gronwall inequality, we can obtain the
uniqueness.

Acknowledgements

Q. Hua was partially supported by the Key Science and Technology Foundation of the Education Depart-
ment of Hebei Province [Grant Number ZD2019021]. Q. Zhang was partially supported by the National
Natural Science Foundation of China [Grant Numbers 11501160 and 11771423]; Natural Science Founda-
tion of Hebei Province [Grant Numbers A2017201144 and A2020201014]; Young Talents Foundation of
Hebei Education Department [Grant Number BJ2017058]; the Second Batch of Young Talents of Hebei
Province; Nonlinear Analysis Innovation Team of Hebei University.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



ZAMP On the global well-posedness for the 3D axisymmetric Page 25 of 25 179
References

(1] Ahn, J., Kang, K., Kim, J., Lee, J.: Lower bound of mass in a chemotactic model with advection and absorbing reaction.
SIAM J. Math. Anal. 49, 723-755 (2017)
[2] Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the
scleractinian coral Montipora digitata. Mar. Biol. 118, 177-182 (1994)
[3] Coll, J.C., et al.: Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs
of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123, 137-143 (1995)
[4] Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis fluid coupled model for swimming bacteria with nonlinear
diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28, 1437-1453 (2010)
(5] Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110-126
(2015)
[6] Jin, C.: Large time periodic solutions to coupled chemotaxis-fluid models. Z. Angew. Math. Phys. 68, 137 (2017)
[7] Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ.
Equ. 37, 298-312 (2012)
[8] Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J.
Math. Phys. 53, 115609 (2012)
(9] Liu, J.G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré. Anal. Non linéare 28,
643-652 (2011)
[10] Lorz, A.: A coupled Keller-Segel-Stokes model: global existence for small initial data and blow-up delay. Commun.
Math. Sci. 10, 555-574 (2012)
[11] Majda, A., Bertozzi, A.L.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27.
Cambridge University Press, Cambridge (2002)
[12] Miao, C., Wu, J., Zhang, Z.: Littlewood-Paley Theory and Applications to Fluid Dynamics Equations. Monographs on
Modern Pure Mathematics, vol. 142. Science Press, Beijing (2012)
[13] Miller, R.L.: Sperm chemotaxis in hydromedusae. I. Species specifity and sperm behavior. Mar. Biol. 53, 99-114 (1979)
[14] Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, Holothuroidea, Ophiuroidea. J. Exp.
Zool. 234, 383-414 (1985)
[15] Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium
diffusion. Discrete Contin. Dyn. Syst. 32, 1901-1914 (2012)
[16] Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid
system. Z. Angew. Math. Phys. 66, 2555-2573 (2015)
[17] Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier—Stokes
system. Z. Angew. Math. Phys. 67, 138 (2016)
[18] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier—)Stokes system modeling cellular swimming in fluid
drops. Commun. Partial Differ. Equ. 37, 319-351 (2012)
[19] Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier—Stokes system. Arch. Ration. Mech. Anal. 211,
455-487 (2014)
[20] Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier—Stokes system. Ann. Inst. H. Poincaré
Anal. Non Linéaire 33, 1329-1352 (2016)
[21] Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier—Stokes equa-
tions. STAM J. Math. Anal. 46, 3078-3105 (2014)
[22] Zhang, Q., Wang, P.: Global well-posedness for the 2D incompressible four-component chemotaxis-Navier—Stokes equa-
tions. J. Differ. Equ. 269, 1656-1692 (2020)
[23] Zhang, Q., Zheng, X.: Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier—Stokes
equations with logistic source. J. Differ. Equ. 274, 576-612 (2021)

Qiang Hua and Qian Zhang

Hebei Key Laboratory of Machine Learning and Computational Intelligence, School of Mathematics and Information Science
Hebei University

Baoding 071002

People’s Republic of China

e-mail: zhanggian@hbu.edu.cn

Qiang Hua
e-mail: huaq@hbu.edu.cn

(Received: April 6, 2021; revised: August 18, 2021; accepted: August 20, 2021)



	On the global well-posedness for the 3D axisymmetric incompressible Keller–Segel–Navier–Stokes equations
	Abstract
	1. Introduction
	2. Preliminaries
	3. Solutions to the regularized problem
	4. Uniform estimates for the regularized problem
	5. Proof of the main result
	Acknowledgements
	References




