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 
Abstract—This paper investigates group decision-making 

(GDM) problems, where the decision makers (DMs)’ preference 
information is represented by incomplete interval-valued 
intuitionistic fuzzy preference relations (IVIFPRs). First, a 
multiplicative consistency property and an acceptably 
multiplicative consistency property for IVIFPRs are offered. 
Then, an optimization model to estimate the missing values in an 
incomplete IVIFPR is constructed. Subsequently, two 
optimization models are respectively established to derive a 
perfectly consistent IVIFPR and an acceptably consistent 
IVIFPR from a given inconsistent IVIFPR. Furthermore, a 
model is offered to gain the DMs’ weights. Afterward, the 
consensus index is defined. When the consensus for IVIFPRs is 
unacceptable, a model is presented to reach the consensus 
requirement. Moreover, a novel GDM method for incomplete 
IVIFPRs is presented. Finally, the presented method is applied to 
an illustrative example that shows the feasibility of the offered 
method. 
 

Index Terms—GDM, incomplete IVIFPR, multiplicative 
consistency, consensus, optimization model 

I. INTRODUCTION 

GDM usually requires a group of DMs to compare and rank 
alternatives. Preference relations, whose main feature is to 
compare alternatives pairwisely, are efficient vehicles for 
decision-making theory. On the basis of the characteristics of 
comparative judgments, traditional preference relations are 
divided into multiplicative preference relations (MPRs) [1] 
and fuzzy preference relations (FPRs) [2]. However, FPRs and 
MPRs only offer exact judgments, which are impractical due 
to the DMs’ subjective vagueness. Therefore, preference 
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relations with interval judgments are proposed among which 
interval FPRs [3] and interval MPRs [4] are two efficient tools 
that can simply express the lower and upper bounds of DMs’ 
uncertainties. To address the situation where more than one 
value exists for a judgement, hesitant FPRs [5] and hesitant 
MPRs [6] were proposed by using hesitant fuzzy sets (HFSs) 
[7] and hesitant multiplicative sets (HMSs) [6], respectively. 
However, the elements in the aforesaid preference relations 
[1]-[6] are all numerical values. With the increasing diversity 
and complexity, DMs are challenging to give their opinions 
with numerical values. Thus, linguistic preference relations 
(LPRs) [8], which measure the preference degree between two 
alternatives by using linguistic term sets (LTSs) [9], [10], were 
proposed. However, the single linguistic term is not 
convenient for a DM to express the hesitant qualitative 
information. To break this limitation, hesitant fuzzy linguistic 
term sets (HFLTSs) [11] were presented to enrich the 
linguistic elicitation using several consecutive linguistic terms. 
Later, hesitant fuzzy linguistic preference relations (HFLPRs) 
[12], which can flexibly represent DMs’ natural preferences 
based on HFLTSs [11], [13], were introduced. To manage the 
situation where various DMs may prefer to provide different 
linguistic terms with different importance degrees, 
probabilistic linguistic term sets (PLTSs) [14] were proposed. 
Moreover, Zhang et al. [15] introduced the definition of 
probabilistic linguistic preference relations (PLPRs), which 
are composed of PLTSs and are an efficient qualitative 
expression technique. Considering that the aforementioned 
preference relations [1]-[6], [8], [12], [15] only captured the 
DMs’ positive information, Atanassov [16] proposed 
intuitionistic fuzzy sets (IFSs) to express the DMs’ positive 
and negative judgments simultaneously. IFSs describe the 
fuzzy nature of objective things and make these things highly 
scientific and effective when used to deal with uncertain 
information. Considering the advantages of IFSs, Xu [17] 
introduced preference relations with IFSs called intuitionistic 
FPRs (IFPRs). Later, Atanassov and Gargov [18] introduced 
interval-valued intuitionistic fuzzy sets (IVIFSs) to express the 
uncertain membership and non-membership degrees. Xu and 
Chen [19] introduced IVIFSs into preference relations and 
developed the definition of IVIFPRs. 

Consistency, which measures the transitivity among 
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different alternatives and ensures the reasonability of the 
outcomes, is one of the most essential properties of preference 
relations. Consistency test and consistency adjustment play a 
key role in the decision-making process [12], [15], [20]-[24]. 
Zhang et al. [15] presented the methods to examine and 
ameliorate the addictive consistency of PLPRs based on the 
preference relation graph. Some algorithms were introduced 
for repairing the unacceptably consistent HFLPRs into 
acceptably consistent ones [12], [23]. For hesitant MPRs, 
Wang et al. [22] defined its consistency and established an 
algorithm for the consistency checking and inconsistency 
improving. Liao et al. [25] defined the multiplicative 
consistency of IVIFPRs and offered the consistency threshold 
using a simulation experiment. After the work of Liao et al. 
[25], many decision-making methods with IVIFPRs were 
proposed [26]-[36]. For example, Chu et al. [26] presented an 
additive consistency definition for IVIFPRs. Wan et al. [29] 
proposed a GDM method for additive consistent IVIFPRs. 
Wan et al. [32] defined a multiplicative consistency for 
IVIFPRs. Following the defined multiplicative consistency, 
they [32] improved the multiplicative consistency for 
IVIFPRs. 

Group consensus coordinates the different opinions of 
experts to achieve sufficient consistency. To address this point, 
consensus reaching process is a key procedure to obtain 
enough consensus and reasonable results in GDM. Some work 
has been done to investigate the consensus of various types of 
preference relations [22], [24], [27], [28], [31], [37]-[40]. For 
example, Wang et al. [22] established an optimization model 
to address group consensus issues for hesitant MPRs. The 
consistency and consensus of HLFPRs in GDM was 
investigated in [37] and [39]. For IVIFPRs, Wan et al. [31] 
offered a GDM method that considers multiplicatively 
consistent IVIFPRs. Meng et al. [27] presented a GDM 
approach. Tang et al. [28] offered a completely additive 
consistency and consensus based GDM approach. The 
consistency improving and consensus reaching methods for 
IVIFPRs can be generally divided into two types, i.e., 
iteration-based methods [25], [27], [28], [31], [32] and 
optimization-based methods [30], [35], [36]. Iteration-based 
methods are usually convergent. However, iteration-based 
methods might require the DMs to set the iteration parameters 
in advance or to provide some adjustment advices in each 
iteration, so sometimes iteration-based methods are 
time-consuming. Therefore, if the DMs don’t want to be more 
involved in the decision-making process and don’t want to 
spend too much time, optimization-based methods are 
recommended. Optimization-based methods usually gain the 
adjusted preference relations with acceptable consistency and 
acceptable consensus by some optimization models that 
minimize the deviations between the original preference 
relations and the adjusted ones. Therefore, through 
optimization-based methods, we can ensure the minimum 
information loss. However, sometimes, the built optimization 
models may be very complex and difficult to be solved by 
some optimization software. In this case, iteration-based 
methods are recommended. 

In some cases, DMs might not be able to compare some 
alternatives because of variously objective and subjective 
reasons. Thus, preference relations are not always complete, 
that is, some pairwise judgments are missed within preference 
relations. In this situation, it is necessary to handle GDM 
problems with incomplete preference relations where we need 
first to estimate missing values and supplement the incomplete 
preference relations. At present, some methods for 
ascertaining unknown values in incomplete preference 
relations were provided [27], [28], [41]-[46]. For example, 
Wang and Xu [44] proposed an interactive method based on a 
feedback mechanism for completing elements in incomplete 
LPRs. Xu and Cai [45] built two estimation procedures to 
estimate the missing values in an incomplete IVIFPR. Xu and 
Cai [46] developed a simple algorithm to extend each 
incomplete IVIFPR to a complete one based on the 
multiplicative consistency of existing incomplete IVIFPRs for 
the GDM problem. According to the additive consistency, 
Tang et al. [28] put forward a model to fulfill missing values 
using known information. Meng et al. [27] developed a 
constrained nonlinear optimization model, which aims for 
maximizing the multiplicative consistency level, to estimate 
the missing elements in incomplete IVIFPRs. 

From the above literature review, some limitations in the 
existing research on IVIFPRs [25]-[34], [36], are identified: 

(1) In GDM methods [25], [26], [30], [32], [33], [36], the 
group consensus was overlooked. 

(2) Some GDM methods [25], [33], [34] overlooked the 
determination of DMs’ weights. 

(3) Some GDM methods [25], [26], [29], [30]-[34], [36] 
were unsuitable to cope with incomplete IVIFPRs. 

(4) Some GDM methods [26], [34] cannot cope with 
inconsistent IVIFPRs. In general, the IVIFPRs are inconsistent. 
To rank alternatives from IVIFPRs logically, the consistency 
check and adjustment is a necessary step. 

(5) Some GDM methods [26]-[30], [36] employed the 
complete consistency analysis. In some situations, the 
complete consistency requirement may be unnecessary or too 
strict and the consistency level to reach some degree may be 
sufficient. 

To make up for the aforesaid limitations, this paper further 
studies GDM with IVIFPRs and makes the following 
contributions: 

(1) A novel multiplicative consistency definition for IFPRs 
is offered, and a method to derive a multiplicatively consistent 
IFPR from a given intuitionistic fuzzy (IF) priority vector is 
presented. Then, we introduce a consistency index and present 
a definition of acceptably consistent IFPRs. Afterwards, a 
consistency property and an acceptably multiplicatively 
consistency property for IVIFPRs are offered. 

(2) An optimization model to ascertain missing judgements 
in an incomplete IVIFPR is constructed that makes the 
completed IVIFPR have the highest consistency level. Two 
optimization models for receiving perfectly and acceptably 
multiplicatively consistent IVIFPRs are respectively 
established. 

(3) An optimization model of maximizing the group 
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consensus level is set up to determine DMs’ weights. For 
GDM with IVIFPRs, a consensus index is defined. Some 
methods to discern and reach the acceptable consensus of 
IVIFPRs in GDM are investigated. 

(4) Motivated by the idea of deviation minimization, a 
model to find the priority vector is built. A procedure of GDM 
with IVIFPRs is designed that can address incompleteness, 
inconsistency and non-consensus. 

The remainder of the paper is organized as follows. Some 
concepts of IFPRs and IVIFPRs are reviewed in Section II. 
Section III analyzes incomplete and inconsistent IVIFPRs. 
Several programming models to obtain missing values and 
derive consistent and acceptably consistent IVIFPRs are 
constructed, respectively. Section IV focuses on GDM and 
proposes a consensus measure. Next, an optimization model 
for reaching the consensus requirements is built. In Section V, 
a new GDM method about incomplete IVIFPRs is proposed. 
Section VI reports on case studies and covers comparative 
analyses. Section VII completes this paper with some 
conclusions. 

II. PRELIMINARIES 

To begin with, let us recall several basic concepts that are 
related to this study. 

A. IFPRs 

Definition 2.1 [16]: An IFS is a set with the following form: 

    , ,R RR x x x x U   , where the functions 

 : 0,1R U   and  : 0,1R U   define membership and 

non-membership degrees of the element x  to the set R , 
respectively. For each x U ,    0 1R Rx x    . 

The pair    ,R Rx x   is called an intuitionistic fuzzy 

value (IFV) [47] and simply denoted by  ,    , where  

 , 0,1    , and 1    . 

Following the concept of IFVs, Xu [17] introduced the 
definition of IFPRs. 

Definition 2.2 [17]: The matrix  ij n n
A 


  on the finite set 

 1 2, , , nX x x x   is called an IFPR if its elements satisfy the 

relationships 

 , 0,1 ,  ,  ,  0.5,  1,ij ij ij ji ij ji ii ii ij ij                (1) 

where  ,ij ij ij    is an IFV for all , 1,2, ,i j n  . 

Definition 2.3 [48]: Let  1 2, , ,
T

n     be an 

intuitionistic fuzzy (IF) priority weight vector of an IFPR A , 

where  ,i i i
     ( 1, 2, ,i n  ) are IFVs with the 

conditions  , 0,1i i
    and 1i i

     for 1, 2, ,i n  . 

The vector   is called normalized if it satisfies 

1,

n

j i
j j i

  
 

 , and 
1,

2
n

i j
j j i

n  
 

    ,     (2) 

for all 1, 2, ,i n  . 

Definition 2.4 [49]: An IFPR   ,ij ij
n n

A  


  is 

multiplicatively consistent if it satisfies 

ij jk ki ij jk ki      ,                      (3) 

for all , , 1,2, ,i j k n  . 

B. IVIFPRs 

Definition 2.5 [18]: An IVIFS R  in U  is defined as 

    , ,
R R

R x x x x U   
  , where 

     ,
R R R

x x x         and      ,
R R R

x x x         

represent the membership degree interval and 

non-membership degree interval of element x  to IVIFS R , 

respectively, satisfying    0 1
R R

x x     , 

   0 1
R R

x x     , and     1
R R

x x     for any x U . 

The pair         , , ,
R R R R

x x x x             is called an 

interval-valued intuitionistic fuzzy value (IVIFV) [19] and 

simply denoted by     , , , ,                      . 

Definition 2.6 [19]: Let     , , , ,                       

be an IVIFV. Then, its score function is defined as 

   1

2
s               , and its accuracy function is 

defined as    1

2                . 

Xu and Chen [19] presented the following ranking method 
for IVIFVs: 

(1) If    1 2s s   , then 1  is smaller than 2 , denoted 

by 1 2   ; 

(2) If    1 2s s   , then 

(i) If    1 2     , then 1 2   ; 

(ii) If    1 2     , then 1  is indifferent to 2 , 

denoted by 1 2   . 

where  
1 11 ,       and  

2 22 ,        are two IVIFVs. 

Xu and Chen [19] introduced the concept of IVIFPRs whose 
elements are IVIFVs. 

Definition 2.7 [19]: The matrix  ij n n
A 


   on the finite 

alternative set  1 2, , , nX x x x   is called an IVIFPR if its 

elements ij , where  ,ij ij ij     and , 1, 2, ,i j n  , are 

IVIFVs such that 

   
 

, 0,1 ,  , 0,1 ,

,  ,  0.5,0.5 ,  1,

ij ij ij ij ij ij

ij ji ij ji ii ii ij ij

     

       

          


     



    
 (4) 

for all , 1, 2, ,i j n  . 

Definition 2.8: Let   ,ij ij
n n

A  


     and 

  ,ij ij
n n

A  


     be two IVIFPRs, where ,ij ij ij         , 
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,ij ij ij        , ,ij ij ij         , and ,ij ij ij        . The 

deviation between A  and A  is defined as follows: 

     
1

1 1

1
,

2 1

n n

ij ij ij ij ij ij ij
i j i

d A A
n n

       


  

                
   .(5) 

III. CONSISTENCY ANALYSIS FOR IFPRS AND IVIFPRS 

This section covers a key issue of preference relations: 
consistency, which ensures the rationality of the ranking. We 
next consider the consistency for IFPRs and IVIFPRs. 

A. Consistency Analysis of IFPRs 

Theorem 3.1: Let   ,ij ij
n n

A  


  be an IFPR. The 

following two statements are equivalent: 
(i) ij jk ki ij jk ki      , , , 1,2, ,i j k n   ; 

(ii)
 

ln ln ln ln ln lnij jk ik ij jk ik          , 

, , 1,2, ,i j k n    and i j k  . 

Proof: It is easily proved according to six possible position 
cases of , ,i j k . 

The multiplicative consistency for IFPRs is redefined 
below: 

Definition 3.1: An IFPR   ,ij ij
n n

A  


  is 

multiplicatively consistent if it meets 
ln ln ln ln ln lnij jk ik ij jk ik          ,               (6) 

for , , 1,2, ,i j k n   and i j k  . 

The multiplicative consistency descried in Definition 2.4 
requires Eq. (3) to be hold true for all , , 1,2, ,i j k n  . 

Namely, if we use Definition 2.4 to judge the consistency of an 
IFPR, we need to consider all IFVs in this IFPR. By contrast, 
the multiplicative consistency descried in Definition 3.1 
requires Eq. (6) to be hold true for all , , 1, 2, ,i j k n   with 

i j k  . Namely, if we use Definition 3.1 to judge the 

multiplicative consistency of an IFPR, we only need to 
consider all the IFVs in the upper triangular part of this IFPR. 
Thus, it is more concise and computationally simple to 
describe the multiplicative consistency by Definition 3.1 than 
by Definition 2.4. 

Considering the case where the completely multiplicative 
consistency is too strict, we further offer a consistency index to 
evaluate the acceptable consistency. 

Definition 3.2: The consistency index of IFPR A
 
is defined 

as 

  3
1

1
ln ln ln ln ln lnij jk ik ij jk ik

i j k nn

CI A
C

     
   

      .  (7) 

If we build the consistency index based on Definition 2.4, 
we need to calculate the all absolute deviation degrees between 

ij jk ki    and ij jk ki    for all , , 1,2, ,i j k n  . However, if 

we use Definition 3.1 to build the consistency index, we only 
need to calculate the absolute deviation degrees between 
ln ln lnij jk ik     and ln ln lnij jk ik     for all 

, , 1,2, ,i j k n   with i j k  . That is to say, it is more 

convenient and computationally simple to build the 
consistency index based on Definition 3.1 than Definition 2.4. 

Based on Eq. (7), A  is completely multiplicatively 
consistent iff   0CI A  . Furthermore, the smaller  CI A  is, 

the more consistent the IFPR A . Based on the offered 
multiplicative consistency index, we define the acceptably 
multiplicatively consistent IFPRs. 

Definition 3.3: Let A  be an IFPR. Given a threshold value 

CI , if   CICI A  , then A  is called an IFPR with acceptably 

multiplicatively consistency. 
By means of the normalized IF priority weight vector 

 ,we build a new matrix  ij n n
P p


 , where 

 
 
 
0.5,0.5 ,  if ,

,
, , if .

ij ij ij

i j i j

i j
p p p

i j
 

      

  


              (8) 

Theorem 3.2: The matrix  ij n n
P p


 , where ijp  is given 

as Eq. (8), is a multiplicatively consistent IFPR. 
Proof: Clearly, we have ij i j j i jip p            and 

ij i j j i jip p            for all , 1,2, ,i j n  . As 

 , 0,1i i
    and 1i i

    , it follows that 

0 1ij i jp      , 0 1ij i jp      , and 

       

   

2 2 2 2

2 2

1 1
1.

2 2 2 2

i j i j

ij ij i j i j

i i j ji j i j

p p
   

     

      

   
   

      

 
    

    
    

 

In virtue of Definition 2.2,  ij n n
P p


  is an IFPR. Next, 

we prove that  ij n n
P p


  is multiplicatively consistent. As 

per Eq. (8), one has 

ij jk ki i j j k k i i j j k k i ij jk kip p p p p p                               . 

As per Definition 2.4, P  is multiplicatively consistent. 

Theorem 3.3: Let  ij n n
A 


  be an IFPR with 

 ,ij ij ij   , if there exists a normalized IF priority weight 

vector,  1 2, , ,
T

n     with  ,i i i
    , such that 

 
 
 
0.5,0.5 , if ,

,
, , if ,

ij ij ij

i j i j

i j

i j   
  

   

  


               (9) 

then A  is a multiplicatively consistent IFPR. 
Since ij ji   and ij ji  , Eq. (9) can be easily reduced 

as 

 
 
 
0.5,0.5 ,  if ,

,
, , if .

ij ij ij

i j i j

i j

i j   
  

   

  


           (10) 

Theorem 3.4: Let  h h
ij n n

A 


  be an IFPR with 

 ,h h h
ij ij ij   , where 1,2, ,h m  , and let  c c

ij n n
A 


  be 

the collective IFPR, where 
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5

     
1 1

, ,
h h

m mw wc c c h h
ij ij ij ij ij

h h

    
 

 
   

 
  with

1

1
m

h
h

w


  

and 0 1hw   ( 1,2, ,h m  ) [50]. Then, 

   
1

m
c h

h
h

CI A w CI A


 . 

Proof: Following Eq. (7), we derive 

  3
1

1 1 1

3
1

1 1 1

3

1
ln ln ln ln ln ln

ln ln ln
1

ln ln ln

1
ln ln ln ln ln

c c c c c c c
ij jk ik ij jk ik

i j k nn

m m m
h h h

h ij h jk h ik
h h h

m m m
i j k n h h hn

h ij h jk h ik
h h h

h h h h h
h ij jk ik ij jk

n

CI A
C

w w w

C
w w w

w
C

     

  

  

    

   

  

   

  

     

  


 

     



  


  

 

 

1 1

3
1 1

1

ln

1
ln ln ln ln ln ln

.

m
h
ik

i j k n h

m
h h h h h h

h ij jk ik ij jk ik
i j k n hn

m
h

h
h

w
C

w CI A



     

    

    



     



 

 



 

Corollary 3.1: If all IFPRs have the multiplicative 
consistency or acceptably multiplicative consistency, then 
their collective IFPR also exhibits the multiplicative 
consistency or acceptably multiplicative consistency. 

Proof: Suppose that hA  is acceptably multiplicative 

consistent, where 1,2, ,h m  , then we have   CIhCI A  . 

Based on Theorem 3.4, we have 

   
1 1

CI CI
m m

c h
h h

h h

CI A w CI A w
 

    . Consequently, cA  is 

acceptably multiplicative consistent. Moreover, let CI 0 , 

then we have that cA  is multiplicatively consistent if all hA  
( 1,2, ,h m  ) are multiplicative consistent. The proof is 
completed. 

B. Consistency Analysis of IVIFPRs 

For an IVIFPR     ,ij ij ijn n n n
A   

 
   

 
with 

,ij ij ij       and ,ij ij ij      , Wan et al. [32] defined its 

lower IFPR  ij n n
A  




 
and its upper IFPR  ij n n

A  


  as 

follows: 

 
 
 
 

, ,    if ,

, 0.5,0.5 ,   if ,

, ,    if ,

ij ij

ij ij ij

ij ij

i j

i j

i j

 

  

 

  

 
  




          (11) 

 
 
 
 

, ,    if ,

, 0.5,0.5 ,   if ,

, ,    if .

ij ij

ij ij ij

ij ij

i j

i j

i j

 

  

 

  

 
  




       (12) 

The multiplicatively consistency and acceptably 
multiplicatively consistency for an IVIFPR are defined by 
using its lower and upper IFPRs. 

Definition 3.4 [32]: An IVIFPR A  is multiplicatively 
consistent or acceptably multiplicatively consistent if both A  

and A  are multiplicatively consistent or acceptably 
multiplicatively consistent. 

From Eqs. (6) and (7), we derive the following assertions. 

Theorem 3.5: An IVIFPR A  is multiplicatively consistent 
iff ln ln ln ln ln lnij jk ik ij jk ik           and 

ln ln ln ln ln lnij jk ik ij jk ik          , for all 

, , 1,2, ,i j k n   and i j k  . 

Theorem 3.6: An IVIFPR A
 
is acceptably multiplicatively 

consistent iff 
3

1

ln ln ln ln ln ln CIij jk ik ij jk ik n
i j k n

C     
   

       ,(13)
 

and

 
3

1

ln ln ln ln ln ln CIij jk ik ij jk ik n
i j k n

C     
   

       . (14)

 Let A
 
be an IVIFPR whose priority weight vector is 

 1 2, , ,
T

n       , where 

 , , ,i i i i i
               ( 1,2, ,i n  ) are IVIFVs. Let 

the lower and upper IFPRs of A  are A

 
and A , whose IF 

priority weight vectors are  1 2, , ,
T

n        and 

 1 2, , ,
T

n        , respectively, where 

 ,i i i
      and  ,i i i

      ( 1,2, ,i n  ) are 

IFVs. Wan et al. [32] derived the interval-valued intuitionistic 

fuzzy (IVIF) priority weight vector   of A  by the following 
formulas: 

   
   

min , ,  max , ,

min , ,   max , .

i i i i i i

i i i i i i

     

     

     

     

   

   

  


 
(15) 

C. Models for Estimating Missing Values 

Let   ,ij ij
n n

A  


  be an incomplete IVIFPR. We 

establish an IVIFPR   ,ij ij
n n

A  


     with ,ij ij ij          

and ,ij ij ij        , where 

,  if  is known,

,  if  is unknown,

ij ij

ij
ij ij

 


 
  


, 
,  if  is known,

,  if  is unknown,
ij ij

ij
ij ij

 


 
  


 

,   if  is known,

,  if  is unknown,
ij ij

ij
ij ij

 


 
  


, 
,   if  is known,

,  if  is unknown.
ij ij

ij
ij ij

 


 
  


 

                                                                                        (16) 
Because the estimated values make the multiplicative 

consistency level of IVIFPR A  the larger the better, we build 
a model to estimate the unknown judgments. 
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3

1

3

1

min

ln ln ln ln ln ln ,

ln ln ln ln ln ln ,

s.t. 0 1,  1,2, , ,  ,

0 1,  1,2, , ,  ,

1

ij jk ik ij jk ik n
i j k n

ij jk ik ij jk ik n
i j k n

ij ij

ij ij

ij ij

F

C

C

i, j n i j

i, j n i j



      

      

 

 

 

   

   



          

           

     

     

  








,  1,2, , ,  .i, j n i j










  





 (M-1) 

By deleting the absolute value symbols, model (M-1) is 
transformed as 

 

 

3

1

3

1

min

,

,

ln ln ln ln ln ln 0,

, , 1,2, , ,  ,

s.t. ln ln ln ln ln ln 0,

, , 1,2,

ijk ijk n
i j k n

ijk ijk n
i j k n

ij jk ik ij jk ik ijk ijk

ij jk ik ij jk ik ijk ijk

F

C

C

i j k n i j k

i j k



  

  

       

       

   

   



  

  

           

  
            









, ,  ,

0 1,  1,2, , ,  ,

0 1,  1,2, , ,  ,

1,  1,2, , ,  ,

, , , 0,  , , 1,2, , ,  .

ij ij

ij ij

ij ij

ijk ijk ijk ijk

n i j k

i, j n i j

i, j n i j

i, j n i j

i j k n i j k

 

 

 

   











  
      


     
     
    











 (M-2) 

Solving the model (M-2), we can acquire the optimal 
objective function value F  and a complete IVIFPR A . If 

CIF   , then A  has acceptable consistency. If CIF   , 

then A  has unacceptable consistency. 

D. Models for Deriving a Perfectly Multiplicatively 
Consistent IVIFPR or an Acceptably Multiplicatively 
Consistent IVIFPR 

For an inconsistent IVIFPR   ,ij ij
n n

A  


     with 

,ij ij ij          and ,ij ij ij        , the next crucial step is to 

find a perfectly or acceptably multiplicatively consistent 

IVIFPR   ,ij ij
n n

A  


     with ,ij ij ij          and 

,ij ij ij        ,
 
which preserves the original preferences as 

much as possible. 
(1) Derive a perfectly multiplicatively consistent IVIFPR 
based on an inconsistent IVIFPR 

In what follows, a programming model is offered to acquire 

a perfectly multiplicatively consistent IVIFPR A  for an 
inconsistent IVIFPR A : 

 
           

           

1

1 1

min

ln ln ln ln ln ln ,

, , 1,2, , ,  ,

ln ln ln ln ln ln ,

s.t. , , 1,2, , ,  

n n

ij ij ij ij ij ij ij ij
i j i

ij jk ik ij jk ik

ij jk ik ij jk ik

Q

i j k n i j k

i j k n i

       

     

     



  

              

         

  

         

 

 



 ,

0 1,  , 1,2, , ,  ,

0 1,  , 1,2, , ,  ,

1,  , 1,2, , ,  ,

ij ij

ij ij

ij ij

j k

i j n i j

i j n i j

i j n i j

 

 

 









      
      


    








(M-3) 

where , , ,ij ij ij ij        ( , 1, 2, , ,i j n i j  ) are all decision 

variables. The first constraint and the second constraint are the 
multiplicative consistency condition. 

Obviously, the optimal solutions of model (M-3) can 
construct a multiplicatively consistent IVIFPR. Especially, the 
original IVIFPR is perfectly multiplicatively consistent when 
the optimal objective function value of model (M-3) is equal to 
zero. 
(2) Derive an acceptably multiplicatively consistent IVIFPR 
based on an unacceptably multiplicatively consistent IVIFPR 

Considering the case where the completely multiplicative 
consistency may be too strict, a model is presented to acquire 

an acceptably multiplicatively consistent IVIFPR A  from an 
unacceptably multiplicatively consistent IVIFPR A , which is 
shown as follows: 

 
           

           

1

1 1

3

1

3

1

min

ln ln ln ln ln ln CI ,

ln ln ln ln ln ln CI ,
s.t.

0

n n

ij ij ij ij ij ij ij ij
i j i

ij jk ik ij jk ik n
i j k n

ij jk ik ij jk ik n
i j k n

V

C

C

       

     

     



  

   

   

              

           

           








1, 0 1, , 1,2, , ,  ,

1,  , 1,2, , ,  ,

ij ij ij ij

ij ij

i j n i j

i j n i j

   

 






         
     





 (M-4) 

where , , ,ij ij ij ij        ( , 1, 2, , ,i j n i j  ) are decision 

variables. Solving the model (M-4), an acceptably 

multiplicatively consistent IVIFPR A  can be obtained. 

Especially, (M-4) is equivalent to (M-3) when CI 0 . 

Clearly, the adjusted IVIFPR A  derived by model (M-3) or 
model (M-4) is closest to the initial complete IVIFPR A  on 
the premise of perfectly multiplicative consistency or 
acceptably multiplicative consistency. 

IV. CONSENSUS ANALYSIS FOR IVIFPRS 

In this section, we discuss the consensus. Let 

 1 2, , , mE e e e   be a set of DMs, who are required to 

compare alternatives in  1 2, , , nX x x x  . Let  h h
ij n n

A 


   

be the individual incomplete IVIFPR provided by the DM he , 

where    , , , ,h h h h h h h
ij ij ij ij ij ij ij              

 
and 

1,2, ,h m  . Let  h h
ij n n

A 


    be the complete IVIFPR 

obtained by the model (M-2), where 
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   , , , ,h h h h h h h
ij ij ij ij ij ij ij                     . Let  h h

ij n n
A 


    

be the perfectly multiplicatively consistent or acceptably 
multiplicatively consistent IVIFPR obtained by the model 
(M-3) or (M-4), where 

   , , , ,h h h h h h h
ij ij ij ij ij ij ij                     . 

Let  c c
ij n n

A 


   be a collective IVIFPR [32], where 

   , , , ,c c c c c c c
ij ij ij ij ij ij ij              

        
1 1 1 1

, , ,
h h h h

m m m mw w w wh h h h
ij ij ij ij

h h h h

   
   

            
    
    , (17) 

where  1 2, , ,
T

mw w w w   is the DMs’ weight vector such 

that 
1

1
m

hh
w


  and 0hw   for all 1,2, ,h m  . 

Theorem 4.1: If hA
 
( 1,2, ,h m  ) are all perfectly 

multiplicatively consistent or acceptably multiplicatively 
consistent, then the collective IVIFPR cA  obtained from Eq. 
(17) are perfectly multiplicatively consistent or acceptably 
multiplicatively consistent. 

Proof: Let  h h
ij n n

A  


   and  h h

ij n n
A  


   be the 

lower and upper IFPRs of hA , respectively. Based on Eqs. 
(11) and (12), we have 

 
 
 
 

, ,    if ,

, 0.5,0.5 ,      if ,

, ,    if ,

h h
ij ij

h h h
ij ij ij

h h
ij ij

i j

i j

i j

 

  

 

  

   
    


  

      (18) 

 
 
 
 

, ,    if ,

, 0.5,0.5 ,      if ,

, ,    if .

h h
ij ij

h h h
ij ij ij

h h
ij ij

i j

i j

i j

 

  

 

  

   
    


  

 (19) 

To prove the acceptably multiplicative consistency of 
cA , 

we need to prove its lower matrix  c c
ij n n

A  


  with 

 ,c c c
ij ij ij    

 
and its upper matrix  c c

ij n n
A  


  with 

 ,c c c
ij ij ij      are acceptably multiplicatively consistent. 

Following Eqs. (17)-(19), we derive 

 
 
 
 

   
 

   

1 1

1 1

, ,  if ,
, ,   if 

, 0.5,0.5 ,  if 0.5,0.5 ,                           if ,

, ,   if 
, ,  if ,

h h

h h

m mw wh h
c c ij ij
ij ij h h

c c
ij ij

m mc c w wh hij ij
ij ij

h h

i j
i j

i j i j

i j
i j

  

 

   

 

 

 

           


     
 

 

 









 

 
 
 
 

   
 

   

1 1

1 1

, ,  if ,
, ,   if 

, 0.5,0.5 ,  if 0.5,0.5 ,                           if ,

, ,  if 
, ,  if .

h h

h h

m mw wh h
c c ij ij
ij ij h h

c c
ij ij

m mc c w wh hij ij
ij ij

h h

i j
i j

i j i j

i j
i j

  

 

   

 

 

 

           


     
 

 

 








 

Obviously, cA   is a combination of hA   ( 1,2, .h m  ), 

and cA   is a combination of hA   ( 1,2, .h m  ). 

Because hA
 
is perfectly multiplicatively consistent or 

acceptably multiplicatively consistent, hA   and hA   are 
perfectly multiplicatively consistent or acceptably 
multiplicatively consistent following Definition 3.4. Then, as 
per Theorem 3.4, cA   and cA   are perfectly multiplicatively 
consistent or acceptably multiplicatively consistent. 
Furthermore, following Definition 3.4, we conclude that cA  is 
perfectly multiplicatively consistent or acceptably 
multiplicatively consistent, which completes the proof. 

Definition 4.1: Let hA  be an incomplete IVIFPR, let hA  be 

its complete IVIFPR, and let hA  be the adjusted 
multiplicatively consistent or acceptably multiplicatively 

consistent IVIFPR, where 1,2, ,h m  . Furthermore, let cA  
be the collective IVIFPR obtained from Eq. (17). The 

consensus index of hA  is defined below: 

       
1

1 1

1
ln ln

2 1

n n
h h c

ij ij
i j i

GCI A
n n

 


  

   
    

            ln ln ln ln ln lnh c h c h c
ij ij ij ij ij ij            ,(20) 

where 1,2, ,h m  . 

Following Eq. (20), we derive   0hGCI A   for any 

IVIFPR hA  ( 1,2, ,h m  ). 
In the procedure of calculating the collective IVIFPR, the 

DMs’ weight vector is used. In the setting of GDM, the 
weights of DMs are usually unknown. Therefore, we first need 
to determine the DMs’ weights. Following Eq. (20), we next 
build a model to generate the DMs’ weight vector by 
minimizing the consensus index. 

       

       

 

1

1 1 1 1 1

1 1

1

min ln ln ln ln

                            ln ln ln ln

0,1 ,  1, 2, , ,

s.t.
1.

m n n m m
h h h h

ij h ij ij h ij
h i j i h h

m m
h h h h

ij h ij ij h ij
h h

h

m

h
h

Z w w

w w

w h m

w

   

   



     

 




      




       


  






  

 





(M-5) 

Furthermore, we introduce several positive slack variables 
, , , , , , ,h h h h h h h h

ij ij ij ij ij ij ij ij                to remove the symbol of 

absolute value in model (M-5). Then, model (M-5) is 
transformed as 

 

   

   

1

1 1 1

1

1

min

ln ln 0,  , 1, 2, , ,  ,  1,2, , ,

ln ln 0,  , 1,2, , ,  ,

s.t.

m n n
h h h h h h h h
ij ij ij ij ij ij ij ij

h i j i

m
h h h h

ij h ij ij ij
h

m
h h h h

ij h ij ij ij
h

Z

w i j n i j h m

w i j n i j

       

   

   


       

   

 



 



       

       

      







 



   

   

 

1

1

1

 1,2, , ,

ln ln 0,  , 1, 2, , ,  ,  1, 2, , ,

ln ln 0,  , 1, 2, , ,  ,  1, 2, , ,

1,  0,1 ,  1,2, , ,

, , , ,

m
h h h h

ij h ij ij ij
h

m
h h h h

ij h ij ij ij
h

m

h h
h

h h h h
ij ij ij ij

h m

w i j n i j h m

w i j n i j h m

w w h m

   

   

   

 



 





   



       

       

  









 

 



, , , 0,  , 1,2, , ,  ,  1,2, , .h h h h
ij ij ij ij i j n i j h m      
















      

 

                                                                                         (M-6) 
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Solving model (M-6) yields the DMs’ weight vector 

 1 2, , ,
T

mw w w w     , and the optimal slack variables 

, , , , , , ,h h h h h h h h
ij ij ij ij ij ij ij ij                       . Then, by using Eq. 

(20), we obtain the consensus index of hA  as 

    
1

1 1

1

2 1

n n
h h h h h h

ij ij ij ij ij
i j i

GCI A
n n

    


         

  

     
   

h h h
ij ij ij          . 

Let 
 
be the given threshold of consensus. If the consensus 

level does not satisfy this threshold, namely,  hGCI A   , 

then we improve the consensus level. Considering that the 
influences of different judgments are different, their 
adjustments should be different too. For all , 1,2, ,i j n   

with i j , let 

         
         

1 1

1 1

,  ,

,    ,

h h h h
ij ij ij ij

h h h h
ij ij ij ij

h h c h h c
ij ij ij ij ij ij

h h c h h c
ij ij ij ij ij ij

   

   

     

     

 

 

       

       

   
(21) 

where  , , , 0,1h h h h
ij ij ij ij     . 

As per Eq. (21), we have 

       
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ln 1 ln ,
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    

    

    


   


   

              
(22) 

Moreover, the adjusted IVIFPRs should achieve several 
goals: (i) The adjusted IVIFPRs should have acceptable 
consistency; (ii) The adjusted IVIFPRs should have acceptable 
consensus; (iii) The adjusted IVIFPRs should have the 
smallest deviations from the original IVIFPRs. Hence, we 
present the following model: 

 
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                 (M-7) 

From model (M-7), the optimal solutions h
ij
 , h

ij
 , 

,h h
ij ij    are obtained. Then, by inserting these optimal 

solutions into Eq. (21), the upper triangular components 

, , ,h h h h
ij ij ij ij           ( , 1, 2, , ,  i j n i j  ) are obtained. 

Then, a modified IVIFPR  h h
ij n n

A  


    with acceptable 

consensus is obtained via Eq. (4) below: 

 
 
    
 

, , , ,  ,

, 0.5,0.5 , 0.5,0.5 ,              ,

, , , ,  .

h h h h
ij ij ij ij

h h h
ij ij ij

h h h h
ji ji ji ji

i j

i j

i j

   

  

   

   

  

   

         
    


          

   (23) 

V. GDM WITH INCOMPLETE IVIFPRS 

In this part, we study the derivation of the priority weights 
based on the collective IVIFPR. Then, a GDM method is 
presented. 

A. Derivation of the Priority Weights 

Assume that the IVIF priority vector of cA is 

 1 2, , ,
T

n       , where  , , ,i i i i i
                are 

IVIFVs. Let     ,c c c c
ij ij ijn n n n

A      

 
   and 

    + ,c c c c
ij ij ijn n n n

A     

 
   be the lower and upper 

IFPRs of cA . Let the IF priority weight vectors of cA   and 
+cA be  1 2, , ,

T

n        and  1 2, , ,
T

n        , 

respectively, where  ,i i i
       and  ,i i i

       

are IFVs. 

Based on Definition 3.4 and Theorem 3.3, IVIFPR cA  is 
multiplicatively consistent iff cA   and +cA  are 
multiplicatively consistent iff there exist two normalized IF 
priority weight vectors  and    such that 

 
 
 
0.5,0.5 ,       if ,

,
, , if ,

c c c
ij ij ij

i j i j

i j

i j   
  

   
  

   

  


 (24) 

and 

 
 
 
0.5,0.5 ,       if ,

,
, , if .

c c c
ij ij ij

i j i j

i j

i j   
  

   
  

   

  


  (25) 

Furthermore, Eqs. (24) and (25) are simplified as 
,  ,  ,  ,c c c c

ij i j ij i j ij i j ij i j
                                 (26) 

where , 1, 2, , ,  i j n i j  . 

However, there may exist some deviations between the 
ideal judgments and the real judgments. Moreover, the smaller 
the deviations are, and the more consistent the collective 
IVIFPR cA  is. Thus, by minimizing the deviations, the 
following model is offered to acquire the normalized IF 
priority weights  and   . 
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1

1 +1

1, 1,

min

0 , , , 1,  1,2, , ,

1,  1,  1,2, , ,

,  2

s.t.
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n n ij i j ij i j

c c
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    (M-8) 

where i
  , i

  , i
   and i

   ( 1, 2, ,i n  ) are decision 

variables. The first three constraint conditions is to derive IF 
priority weights. The fourth to seventh constraints are the 
normalization constraints imposed on the IF priority vectors 
 and   . 

Let  max ,i i is      and let  max ,i i it
     , where 

1, 2, ,i n  . Then, model (M-8) is further transformed as 
follows: 
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     (M-9) 

The optimal solution i
   , i

  , i
    and i

   

( 1, 2, ,i n  ) of model (M-9) can be applied to construct an 

IVIF priority weight i  ( 1, 2, ,i n  ) via Eq. (15). 

B. An Algorithm 

A GDM method for incomplete IVIFPRs is put forward as 
follows: 

Step 1: Let hA , where 1, 2, ,h m  , be any m  IVIFPRs. If 

all of them are complete, then set h hA A    and go to Step 2. 
Otherwise, model (M-2) is adopted to estimate missing 

judgements, which is denoted as hA . 

Step 2: Let CI  be a predetermined acceptably 
multiplicative consistency threshold. For each complete 

IVIFPR hA , Definition 3.4 is adopted to check its 
multiplicative consistency or acceptably multiplicative 
consistency. If all of them are perfectly multiplicatively 
consistent or acceptably multiplicatively consistent, then let 

h hA A   , where 1, 2, ,h m  , and go to Step 4. Otherwise, 
go to Step 3. 

Step 3: Substitute hA  into model (M-3) or (M-4). If (M-3) 
or (M-4) has solutions, then a perfectly multiplicatively 
consistent or acceptably multiplicatively consistent IVIFPR 

hA  is derived by using model (M-3) or (M-4). If (M-3) or 
(M-4) has no solutions, then reset the consistency threshold 

CI  and return to Step 2. 
Step 4: Using model (M-6), the DMs’ weight vector is 

obtained, where  1 2, , ,
T

mw w w w     . Eq. (17) is applied to 

calculate the collective IVIFPR cA . 
Step 5: According to Eq. (20), compute the consensus index 

of hA , denoted by  hGCI A  ( 1,2, ,h m  ).  

Step 6: Predetermine the consensus threshold  . Judge 
whether or not all IVIFPRs are of acceptable consensus. If yes, 

go to Step 8. Otherwise, let     
1
maxh l

l m
GCI A GCI A

 
    

and go to Step 7. 

Step 7: Plug hA  into model (M-7) and solve this model. If 

model (M-7) has solutions, then the revised IVIFPR hA  is 
obtained by using model (M-7) and Eq. (23). And then we set 

h hA A    and return to Step 4. If model (M-7) has no 
solutions, then reset the consensus threshold   and return to 
Step 6. 

Step 8: Obtain the normalized IF priority weight vector   

from cA   and the normalized IF priority weight vector    
from +cA  by the model (M-9), respectively. 

Step 9: Based on   and   , the IVIF priority weight i  

is obtained via Eq. (15), where 1, 2, ,i n  . 

Step 10: Compute the score value  is   and accuracy 

value  i   of IVIF priority weight i  via Definition 2.6, 

where 1, 2, ,i n  . 

Step 11: Rank alternatives ix  ( 1, 2, ,i n  ) based on i  

( 1, 2, ,i n  ). 
A flowchart of the presented GDM procedure with 

incomplete IVIFPRs is described in Fig. 1. 

VI. APPLICATIONS AND COMPARISONS 

In this section, we evaluate the applicability and 
effectiveness of our algorithm using a numerical example 
adopted from [28] and compare its performance with those of 
several existing methods. 

A. Numerical Example 

Example 6.1 [28]: Consider a case study concerning the 
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introduction of talents in a Chinese “double first-class” 
university. To select the best talents, the university constructs a 
committees, comprised of four senior experts he  ( 1, 2, 3, 4h  ), 

to evaluate all the candidates in this introduction. In this case 
study, there are four candidates 1x , 2x , 3x  and 4x . Four 

incomplete IVIFPRs hA  ( 1, 2,3, 4h  ) are constructed by the 
experts and are listed in Example 5 of [28]. 

To rank four candidates via the proposed method, the 
following process is realized: 

Step 1: Four complete IVIFPRs hA  ( 1, 2,3, 4h  ) based on 

model (M-2) are derived and their lower IFPRs hA   

( 1, 2, 3, 4h  ) and upper IFPRs hA   ( 1, 2, 3, 4h  ) based on 
Eqs. (11) and (12) are obtained. 

Steps 2 and 3: Let CI 0.1 . It can be computed via Eq. (7) 

that  1 0.06CI A   ,  1 0.76CI A   ,  2 0.14CI A   , 

 2 0.29CI A   ,  3 0.18CI A   ,  3 0.18CI A   , 

 4 0.18CI A   , and  4 0.18CI A   , meaning that the 

IVIFPR hA  is of unacceptable consistency, where 
1, 2,3, 4h  . With respect to each complete IVIFPR, the 

acceptably multiplicatively consistent IVIFPRs hA  
( 1, 2, 3, 4h  ) following model (M-4) are obtained. 

Step 4: Following the model (M-6), the weight vector of 

DMs is  0.13,0.53,0.28,0.06
T

w  . The collective IVIFPR 
cA  using Eq. (17) is derived. 
Steps 5, 6 and 7: Let 0.1   be the acceptable consensus 

threshold. Based on Eq. (20), we derive  1 0.21GCI A  , 

 2 0.1GCI A  ,  3 0.18GCI A  , and  4 0.17GCI A  . 

Based on model (M-7), the acceptably multiplicatively 

consistent IVIFPRs hA  ( 1, 2, 3, 4h  ) with the given 
consensus level can be obtained. 

Furthermore, the collective IVIFPR cA  is obtained by Eq. 
(17). 

Step 8: Following the collective IVIFPR cA , its lower 
IFPR cA   and upper IFPR +cA  are derived via Eqs. (11) and 
(12). Furthermore, by solving model (M-9), the IF priority 
weight vectors of cA   and +cA  are derived as follows: 

        0.24,0.76 , 0.39,0.61 , 0,1 , 0.38,0.62
T

  , 

        0.24,0.76 , 0.39,0.61 , 0,1 , 0.38,0.62
T

  . 

Step 9: Using Eq. (15), the IVIF priority weights are 
identified as 

    1 0.24,0.24 , 0.76,0.76  , 

    2 0.39,0.39 , 0.61,0.61  , 

    3 0,0 , 1,1  , 

    4 0.38,0.38 , 0.62,0.62  . 

Steps 10 and 11: The scores based on Definition 2.6 are 

 1 0.52s    ,  2 0.22s    ,  3 1s    , and 

 4 0.24s    . Thus, the ranking is 2 4 1 3x x x x   , 

namely, the second candidate is the most suitable choice. 

B. Comparative Analyses with Previous Methods 

This section covers the comparative analyses with the 
methods presented in [27] and [28]. 

(1) We compare our method with Tang et al.’s method [28]. 
In this example, the ranking is 2 4 1 3x x x x    based on our 

method that is slightly different from the obtained ranking 

2 1 4 3x x x x    using Tang et al.’s method [28]. However, 

both of them show that 2x  is the best choice. Compared with 

Tang et al.’s method [28], there are several merits of our 
method: 

(i) Our method adopts the acceptably multiplicative 
consistency analysis, while Tang et al.’s method [28] 
employed the completely additive consistency analysis. Due to 
the differences in professional competence and thinking 
among experts, it takes lots of time and efforts to reach 
complete consistency of all experts, and sometimes it may be 
even impossible to attain the complete consistency of a group. 
Therefore, in real life, the result of GDM is supposed to be 
acceptable if the consistency degree achieves a certain level. 
Under this view, an acceptably multiplicative consistency 
concept is more suitable. It is noticeable that when we let the 
acceptably multiplicative consistency threshold be equal to 1, 
we derived decision-making methods with IVIFPRs following 
the completely multiplicative consistency analysis. 

(ii) Tang et al.’s method [28] improves the consensus level 
by an iterative method that is based on more adjustments. By 
contrast, our method adjusts the consensus degree by a model 
that is based on once adjustment for judgments in the 
procedure of the consistency and consensus analysis. It is 
worth stressing that the presented model can be easily handled 
using MATLAB or LINGO. 

(2) When our method is adopted to manage Example 6 
considered in [27], the ranking is 2 1 4 3x x x x   , which 

shows that 2x  is the best option. When Meng et al.’s method 

[27] is used to handle this example, the ranking is 

1 2 3 4x x x x   . This result indicates that different rankings 

and best options may be derived following two different 
methods. Compared with Meng et al.’s method [27], some 
merits and differences between ours and Meng et al.’s method 
[27] are shown as: 

(i) Meng et al.’s method [27] used completely 
multiplicatively consistent IVIFPRs, while our method uses 
the acceptably multiplicative consistency analysis following 
Definition 3.1. 

(ii) Meng et al.’s method [27] employed an iterative method 
to reach the consensus requirement, and all IVIFVs in 
IVIFPRs are adjusted by the same proportion. The new 
method researches the acceptably multiplicative consistency 
and consensus simultaneously, which can ensure two goals: (a) 
the smallest total adjustment is guaranteed; (b) it permits the 
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adjustment to be different for different IVIFVs in IVIFPRs. 
(iii) The fully multiplicative consistency and consensus of 

IVIFPRs were checked and reached by a threshold and a 
control parameter in [27], and how to select a suitable 
threshold and a control parameter could take much time. The 
proposed method can simultaneously check and reach the 
acceptably multiplicative consistency and consensus of the 

given IVIFPRs only by the optimization models without the 
help of the predetermined control parameter. 

(iv) For improving the consensus of an IVIFPR, Meng et 
al.’s method [27] may need several iteration times, while the 
proposed method can improve the consensus of an IVIFPR 
only by solving a programming model. Thus, our method is 
time-saving.

______________________________________________________________________________________________________ 

                   
                   

                   
         

1

0.5,0.5 , 0.5,0.5 0.4,0.5 , 0.2,0.3 , , , 0.55,0.6 , 0.3,0.35

0.2,0.3 , 0.4,0.5 0.5,0.5 , 0.5,0.5 0.35,0.55 , 0.25,0.3 , , ,

, , , 0.25,0.3 , 0.35,0.55 0.5,0.5 , 0.5,0.5 0.4,0.5 , 0.3,0.45

0.3,0.35 , 0.55,0.6 , , , 0.3,0.4

A

   

   


   

   



         5 , 0.4,0.5 0.5,0.5 , 0.5,0.5

 
 
 
 
 
 
 

, 

                   
                   
                   
      

2

0.5,0.5 , 0.5,0.5 0.3,0.4 , 0.4,0.45 0.4, , ,0.45 ,0.5 , 0.2,

0.4,0.45 , 0.3,0.4 0.5,0.5 , 0.5,0.5 0.4,0.45 , 0.35,0.4 0.3,0.35 , 0.25,0.45

,0.45 , 0.4, 0.35,0.4 , 0.4,0.45 0.5,0.5 , 0.5,0.5 0.3, , ,0.5

0.2, , ,0.5 0.25,0.45 ,

A

   


   

 



            0.3,0.35 ,0.5 , 0.3, 0.5,0.5 , 0.5,0.5

 
 
 
 
 
   

, 

                   
                   
                   

         

3

0.5,0.5 , 0.5,0.5 0.35,0.4 , 0.4,0.5 0.3,0.4 , 0.4,0.6 , , ,

0.4,0.5 , 0.35,0.4 0.5,0.5 , 0.5,0.5 0.4,0.5 , 0.35,0.45 0.5,0.65 , 0.25,0.3

0.4,0.6 , 0.3,0.4 0.35,0.45 , 0.4,0.5 0.5,0.5 , 0.5,0.5 , , ,

, , , 0.25,0.3 , 0.5,0.65

A

   


   

   



         , , , 0.5,0.5 , 0.5,0.5

 
 
 
 
 
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, 

                   
                   

                   
           

4

0.5,0.5 , 0.5,0.5 , , , 0.25,0.45 , 0.3,0.4 0.3,0.45 , 0.25,

, , , 0.5,0.5 , 0.5,0.5 , , , 0.3,0.55 , 0.35,0.4

0.3,0.4 , 0.25,0.45 , , , 0.5,0.5 , 0.5,0.5 ,0.45 , 0.25,0.4

0.25, , 0.3,0.45 0.35,0.4 , 0.3,0.55 0.25,0.4 ,

A

    

       


    

 



       ,0.45 0.5,0.5 , 0.5,0.5

 
 
 
 
 
 
 

, 

                   
                   

                
1

0.5,0.5 , 0.5,0.5 0.4,0.5 , 0.2,0.3 0.61,0.61 , 0.39,0.39 0.55,0.6 , 0.3,0.35

0.2,0.3 , 0.4,0.5 0.5,0.5 , 0.5,0.5 0.35,0.55 , 0.25,0.3 0.51,0.51 , 0.49,0.49

0.39,0.39 , 0.61,0.61 0.25,0.3 , 0.35,0.55 0.5,0.5 , 0.5,0.5 0.4,0.5 , 0.
A 

  
                   

3,0.45

0.3,0.35 , 0.55,0.6 0.49,0.49 , 0.51,0.51 0.3,0.45 , 0.4,0.5 0.5,0.5 , 0.5,0.5

 
 
 
 
 
 
 

, 

                   
                   
                   

2

0.5,0.5 , 0.5,0.5 0.3,0.4 , 0.4,0.45 0.4,0.4 , 0.27,0.45 0.27,0.5 , 0.2,0.5

0.4,0.45 , 0.3,0.4 0.5,0.5 , 0.5,0.5 0.4,0.45 , 0.35,0.4 0.3,0.35 , 0.25,0.45

0.27,0.45 , 0.4,0.4 0.35,0.4 , 0.4,0.45 0.5,0.5 , 0.5,0.5 0.3,0.44 , 0.4,0.5
A 

                   0.2,0.5 , 0.27,0.5 0.25,0.45 , 0.3,0.35 0.4,0.5 , 0.3,0.44 0.5,0.5 , 0.5,0.5

 
 
 
 
 
 
 
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                   
                   
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3
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0.4,0.6 , 0.3,0.4 0.35,0.45 , 0.4,0.5 0.5,0.5 , 0.5,0.5 0.67,0.67 , 0.33,0.33

0

A 
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0.3,0.4 , 0.25,0.45 0.53,0.53 , 0.42,0.47 0.5,0.5 , 0.5,0.5 0.39,
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Furnish individual IVIFPRs hA
  1,2, ,h m   

 

Check the multiplicative consistency or acceptably multiplicative consistency of hA
 
 1,2, ,h m   by Definition 3.4 

Derive a perfectly multiplicatively consistent or an acceptably multiplicatively 

consistent IVIFPR hA  via model (M-3) or model (M-4) 

Calculate the consensus index  hGCI A  ( 1,2, ,h m  ) by using Eq. (20) 

Calculate the collective IVIFPR cA
 

by applying Eq. (17) 

Check the consensus of hA
 
 1,2, ,h m   

Yes 

Derive the normalized IF priority weight vectors   and   by solving model (M-9) 

Multiplicative consistency or acceptably multiplicative 
consistency? 

No 

Obtain the DMs’ weight vector w

 
by model (M-6) 

Set h hA A    

Acceptable consensus? 

Set h hA A    

Derive the adjusted IVIFPR hA
 

via model (M-7) and Eq. (23)  

Yes No 

Complete? 

Set h hA A    

Yes 

Obtain the complete IVIFPR hA  by using model (M-2) 

No 

Let     
1
maxh l

l m
GCI A GCI A

 
    

Derive the IVIF priority vector i  ( 1, 2, ,i n  ) based on    and   via Eq. (15) 

Calculate the score value  is   and accuracy value  i   via Definition 2.6 

Rank alternatives ix  ( 1, 2, ,i n  ) based on i  ( 1, 2, ,i n  ) 

Plug hA  into model (M-7) and solve it 

(M-7) has solutions? 

Yes 

No 

Reset the consensus threshold   

 

Plug hA  into model (M-3) or model (M-4) and solve it 

Reset the consistency  

threshold CI  

(M-3) or (M-4) has 
solutions? 

No 

Yes 

 
Fig. 1. The flowchart of the proposed GDM algorithm based on incomplete IVIFPRs 
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VII. CONCLUSIONS 

Considering that IVIFPRs are useful to describe the 
uncertain judgments of DMs, we have further researched the 
utilization of IVIFPRs. The main original facets of the study 
are summarized below: 

(1) A multiplicative consistency of IFPRs was defined to 
guarantee the ranking accurately. Using this new consistency 
concept, an approach of establishing the multiplicative 
consistent IFPR from the given IF priority weight vector was 
presented. Then, by splitting an IVIFPR into two IFPRs, two 
consistency properties for IVIFPRs were proposed in 
accordance with that of these two IFPRs. 

(2) Considering the situation where the IVIFPRs provided 
by DMs are often incomplete and inconsistent, several 
mathematical programming models for determining missing 
values and deriving multiplicatively consistent and acceptably 
multiplicatively consistent IVIFPRs were established, 
respectively. 

(3) For GDM with incomplete IVIFPRs, in order to reach 
maximum group support degree, a programming model was 
presented to gain the DMs’ weights. Moreover, individual 
IVIFPRs were integrated into the collective IVIFPR. 

(4) For GDM with IVIFPRs, we defined a consensus index. 
When the consensus fails to fulfil the requirement, a model 
was presented to achieve the consensus requirement, ensure 
the acceptably multiplicative consistency, and try to retain the 
original information. 

(5) A model of achieving the priority weight vector was 
established. A GDM method with incomplete IVIFPRs was 
designed. A problem was presented to display the developed 
method, followed by some comparison analysis and 
discussion. 

A question on how to extend our method to deal with other 
uncertain information [51]-[53] becomes an interesting issue 
deserving further investigations. 
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