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A B S T R A C T

A challenge of planning real-life sustainable supplier selection and order allocation (SS/OA) problems for pur-
chasing companies is to gather the extensive data and exact distributions of input data. Motivated by this
challenge, this paper addresses imprecise probability distributions of uncertain per unit cost, CO2 emissions,
demand, supply capacity and the minimum order quality and characterizes these distribution uncertainty by
ambiguity sets including the true distributions. Moreover, the purchasing company decisions to be optimized
simultaneously include four conflicting objectives regarding cost, CO2 emissions, society and suppliers’ com-
prehensive value while considering risk measures incurred by cost and emissions to achieve company sustain-
ability. To help decision makers formulate practicable policy, a novel distributionally robust sustainable SS/OA
goal programming model is developed with expected constraints and joint chance constraints. The proposed
optimization model can balance multiple conflicting objectives, and effectively solve our sustainable SS/OA
problem. More importantly, we structure ambiguous distributions sets, and thus derive the computationally
tractable approximation form of the proposed practical model. Finally, we illustrate our optimization method
through a case study about a steel company, conduct a thorough inquiry into the effect of uncertainty and
summarize the management implications of the results.

1. Introduction

The SS/OA problem, broadly speaking, refers to selecting the best
number of suppliers while simultaneously finding the rational order
allocation scheme among the selected suppliers based on a multiple-
sourcing policy on the premise of meeting the specific requirements and
limitations of suppliers and the purchasing company (Aissaoui,
Haouari, & Hassini, 2007). In today’s competitive global market, one of
the essential requirements of companies is to make critical decisions in
order to improve their performances and services (Nazari-Shirkouhi,
Shakouri, Javadi, & Keramati, 2013; Chiu & Chiou, 2016; Ghorabaee,
Amiri, Zavadskas, & Turskis, 2017). Selection of appropriate suppliers
and allocation of orders among the assigned suppliers are strategic
decisions in supply network management, that may affect successive
decisions about the quality and price of company’s final products
(Ghadimi, Toosi, & Heavey, 2018). In this regard, addressing the SS/OA
problem has become one of the most crucial activities for a company
and can substantially impact other processes in managing the supply
network (Nazari-Shirkouhi et al., 2013; Vahidi, Ali Torabi, &
Ramezankhani, 2018; Kellner & Utz, 2019).

Recent increasing awareness and demands of a sustainable supply
chain require that today’s global business environment transforms the
traditional SS/OA problem into a sustainable SS/OA problem by in-
corporating certain factors (e.g., CO2 emissions (Coyle, Thomchick, &
Ruamsook, 2015; Hamdan & Cheaitou, 2017; Hamdan & Cheaitou,
2017), society (Coyle et al., 2015), suppliers’ comprehensive value
(Ghadimi et al., 2018; Vahidi et al., 2018; Kellner & Utz, 2019; Xu, Qin,
Liu, & Martínez, 2019)) related to sustainable development (Azadnia,
Saman, & Wong, 2015; Mohammed, Harris, & Kannan, 2019). Nazari-
Shirkouhi et al. (2013) noted that selecting sustainable suppliers and
properly allocate orders among the contracted suppliers can sig-
nificantly reduce costs, improve social satisfaction, reduce CO2 emis-
sions and enhance the competitiveness of the purchasing company.
Under such policy requirements, companies committed to long-term
and sustainable development must improve their comprehensive per-
formance and quality as well as reduce costs and environmental pol-
lution to actualize sustainability (Chiu & Chiou, 2016).

In respond to sustainability, companies need to consider some non-
monetary criteria related to CO2 emissions, society and the suppliers’
comprehensive value in addition to the monetary criteria (Kellner &
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Utz, 2019). Hence, sustainable SS/OA usually presents a multi-objective
programming problem. In this case, from the perspective of companies’
sustainability and macro policy, this paper attempts to optimize four
goals over cost, CO2 emissions, social aspects and suppliers’ compre-
hensive value. Multiple conflicting goals are almost impossible to
achieve at the same time, which may lead to increased complexity of
this problem. Accordingly, effective exploration of the balance between
multiple goals represents an issue to be handled in this paper.

The optimization process in the sustainable multiple-objective pro-
gramming problem is often challenged by various uncertain informa-
tion (Ghorabaee et al., 2017), such as the per unit purchasing cost, CO2
emissions and demand. Quite a few researches have considered that
uncertain parameters were provided with known distributions (e.g.,
Liu, Gao, & Ma, 2019; Mari, Memon, Ramzan, Qureshi, & Iqbal, 2019;
Shadkam & Bijari, 2017). In real-world sustainable SS/OA, decision
makers are often unable to obtain accurate distributions of parameters
due to various uncertainties. This paper is informed by the imprecise
distributions of per unit cost, CO2 emissions, demand, supply capacity
and minimum order quality. Under these circumstances, the conven-
tional methods with fixed distributions (e.g., fuzzy sets, probability
distributions and stochastic optimization) cannot handle the problem
with imprecise distributions. This will pose a challenge to be solved in
this paper, because imprecise distributions may make the decision
makers lose control in planning the problem.

The above discussions raise the motivation of this paper with regard
to studying what approach decision makers should employ to optimize
the sustainable SS/OA problem to enable sustainability of the pur-
chasing company. The existence of multiple objectives and distribution
uncertainty makes it difficult for decision makers to make optimal de-
cisions. Therefore, for the long-term development of the company, it is
necessary to provide a quantitative method for decision makers to
formulate the appropriate scheme. To our best knowledge, there is no
comprehensive method for solving the sustainable SS/OA problem that
simultaneously integrating numerous imprecise probability distribu-
tions and multiple conflicting goals in previous works. To this end, this
paper aims to address the following three questions: (Q1) How should
imprecise distributions of uncertain parameters be depicted in the
planning procedure? (Q2) How should a comprehensive and efficient
model be built to integrate distribution uncertainty and balance mul-
tiple conflicting objectives? (Q3) How can a computationally tractable
formulation of the proposed model be derived, and how does the pro-
posed new approach address the case of sustainable SS/OA in practice?
In the following sections, we will unpack the study by answering these
three questions.

The remainder of this paper is organized as follows. Section 2 sys-
tematically reviews the relevant literature. Section 3 explains the pro-
blem in detail and puts forward a distributionally robust goal pro-
gramming model. Section 4 derives a safe approximation model of the
proposed model. Section 5 conducts a case study about a steel company
to illustrate the effectiveness of the model. Section 6 draws some con-
clusions and future research directions.

2. Literature review

Sustainable supplier selection and proper order allocation have been
key to each purchasing company’s sustainable development (Ghorabaee
et al., 2017). The sustainable SS/OA problem includes two distinct
features, mainly multiple conflicting objectives and various un-
certainties. Our work contributes to the reviewed relevant literature in
three aspects, including multiple conflicting objectives, uncertainty and
optimization method.

2.1. Multiple conflicting objectives in the sustainable SS/OA problem

Multiple conflicting objectives in sustainable SS/OA problems have
been introduced in order to fulfil the sustainability of companies in

recent years. The paper by Kannan, Khodaverdi, Olfat, Jafarian, and
Diabat (2013) designated two conflicting objectives to select green
suppliers and order allocation, in which the objectives are simulta-
neously maximization of the total purchasing value and minimization
of the total purchasing cost. Subsequently, Vahidi et al. (2018) con-
sidered simultaneously optimizing the total sustainability and resilience
scores of the selected suppliers and the total expected cost in planning
sustainable SS/OA, and Ghadimi et al. (2018) and Hamdan and
Cheaitou (2017); Hamdan and Cheaitou, 2017 considered the suppliers’
sustainability and total cost. Both studies (Gören, 2018 & Mirzaee et al.,
Mirzaee, Naderi, & Pasandideh, 2018) included the total costs and the
total purchasing value in the sustainable SS/OA model. Moreover, the
environmental impact related to suppliers was considered as an ob-
jective in addition to the total cost in a previous study (Govindan,
Jafarian, & Nourbakhsh, 2015). After that, Babbar and Amin (2018)
took into account various objectives, including total costs, defect rate,
environment, weights of suppliers and on-time delivery. Mohammed,
Setchi, Filip, Harris, and Li (2018) simultaneously optimized the
economy (cost), environmental impact, social impact of suppliers,
travel time of all livestock and criteria weights of all selected suppliers
in sustainable SS/OA problems, and Mohammed et al. (2019) con-
sidered optimizing the cost, carbon emission, social impact and sup-
pliers’ purchasing value. Moheb-Alizadeha and Handfield (2019) as-
sessed three objective related to the total cost, CO2 emissions and social
responsibility.

Although the number of references that model sustainable multiple
decisions has significantly increased in recent years, few papers ad-
dressed four multiple conflicting objectives, including cost, CO2 emis-
sions, society and suppliers’ comprehensive value at the same time. This
paper extends the reference (Mohammed et al., 2019) to optimizing
total cost, CO2 emissions, social impact and suppliers’ comprehensive
value under distribution uncertainty, which supports decision makers
planning the sustainability of purchasing companies. Moreover, in this
line of work, the distinguishing aspect of our paper is that we in-
corporate risk measures about cost and CO2 emissions into our sus-
tainable SS/OA model while considering four conflicting objectives,
which can effectively resist significant deviation from expected goal
levels and avoid high risks for decision makers.

2.2. Uncertainty in the sustainable SS/OA problem

In the process of planning actual sustainable SS/OA, decision ma-
kers often encounter vague and imprecise input data. Several references
discussed the uncertain input data for sustainable SS/OA problems.
Babbar and Amin (2018) posited that the per unit cost and demand are
provided with stochastic uncertainty in a sustainable SS/OA problem,
in which these uncertain parameters were characterized by stochastic
scenarios, and Vahidi et al. (2018) assumed that the capacity of each
supplier was based on stochastic scenarios. In reference (Mohammed
et al., 2019), the per unit purchasing cost, transportation cost, supply
capacity of suppliers, demand and CO2 emissions were assumed as
uncertain parameters and obeyed fuzzy triangular distributions.
Mirzaee et al. (2018) set the aspiration levels for total costs and pur-
chasing value of suppliers as fuzzy variables that obeyed triangular
distributions in a sustainable SS/OA problem. In Kannan et al. (2013),
the aspiration levels of total purchasing cost and total purchasing value
were also considered as fuzzy variables and characterized by mem-
bership functions. Moghaddam (2015) described the uncertain supply
and demand as fuzzy variables in a sustainable SS/OA problem and
depicted the uncertainty by linear membership functions. Govindan
et al. (2015) investigated SS/OA under stochastic demand, and the type
of uncertainty was integrated into the model based on the scenario.

Although the above references considered the uncertainty in plan-
ning sustainable SS/OA, these documents characterized the uncertainty
by fixed distributions, ignoring the imprecision of the distribution; that
is, no references analysed the distribution uncertainty. The key
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difference is that this paper assumes that the available distribution in-
formation of uncertain input data is often partial rather than accurate.
The advantage of our work is that it is well suited to situations where
distribution information of uncertain input data is not fully available.

2.3. Optimization methods in the sustainable SS/OA problem

Because of the multiple conflicting objectives and uncertainty in
sustainable SS/OA problems, choosing the appropriate optimization
method is a challenging task. Our work can be classified as a study on
handling uncertain distributions of input data and multiple conflicting
objectives, which is different from the following references. Babbar and
Amin (2018) proposed a two phase model, namely, a two-stage quality
function deployment, and a stochastic multi-objective mathematical
model, in which the stochastic (scenario) approach helped manage the
uncertainty in the order allocation process, and trapezoidal fuzzy
numbers were utilized to handle the vagueness of human thoughts. In
reference (Mohammed et al., 2018), a multi-objective programming
model was formulated to obtain the optimal order allocations in order
to minimize the costs, the environmental impact (particularly CO2
emissions), the travel time of products and to maximize the social im-
pact and the total purchasing value, and the fuzzy optimization method
was used to handle uncertainty. In Mohammed et al. (2019), a hybrid
multi-criteria decision-making fuzzy multi-objective optimization was
advanced for a sustainable SS/OA problem by considering economic,
environmental and social aspects, and uncertain input data were
characterized by fuzzy numbers. Bai (2015) formulated a credibility-
based bi-objective fuzzy optimization model to address a supplier se-
lection problem. Mirzaee et al. (2018) developed a preemptive fuzzy
goal programming approach for supplier selection and order allocation
under multiple objectives, and considered the uncertain aspiration le-
vels to satisfy triangular fuzzy distributions. Moreover, Kannan et al.
(2013) applied an integrated approach of fuzzy multi-attribute utility
theory and multi-objective programming to plan SS/OA with multiple
goals and uncertainty. Moghaddam (2015) presented a fuzzy multi-
objective mathematical model to identify and rank the candidate sup-
pliers and find the optimal numbers of new and refurbished parts and
final products in a reverse logistics network configuration under un-
certainty.

Based on a review of relevant literature available, fuzzy multi-ob-
jective programming or stochastic multi-objective programming is
often adopted to study these kind of problems. However, these methods
cannot address the distribution uncertainty in this paper. Under this
observation, we intend to support decision makers by proposing a new

distributionally robust goal programming model to plan the sustainable
SS/OA problem involving multiple conflicting objectives and distribu-
tion uncertainty. Our performance method is based on the idea of goal
programming (Charnes & Cooper, 1961) and distributionally robust
optimization method (Scarf, 1958; Žáčková, 1966). Distributionally
robust optimization can be considered as a combination of robust op-
timization (Ben-Tal & Hochman, 1972; Ben-Tal, Ghaoui, & Nemirovski,
2009) and stochastic optimization. For thorough coverage of develop-
ments and recent advances in robust optimization, the interested reader
can refer to Gabrel, Murat, and Thiele (2014). This method is also
utilized to study some other works such as supply chain network design
(Ma & Du, 2018), sustainable development problem (Bai, Li, Jia, & Liu,
2019; Jia, Bai, Song, & Liu, 2019), transportation problems (Zhang &
Yang, 2018) and portfolio optimization problems (Jia & Bai, 2018),
thus demonstrating the advantages of the distributionally robust opti-
mization method in solving uncertain problems. Accordingly, under the
idea of distributionally robust optimization, this paper can provide a
computationally tractable formulation for this distributionally robust
goal programming model under ambiguity sets. Compared with the
existing literature, our model supports the decision makers under dis-
tribution uncertainty to optimize cost, CO2 emissions, society and
suppliers’ comprehensive value.

3. Distributionally robust sustainable SS/OA goal programming
model

3.1. Problem statement

In this paper, a sustainable SS/OA problem is studied under an
uncertain environment. The sustainable SS/OA problem, involving a
centralized supply chain with a purchasing company and multiple
suppliers, includes four conflicting goals related to sustainability in
terms of cost, CO2 emissions, society and suppliers’ comprehensive
value. Fig. 1 briefly states this problem. Before making a decision, the
true distributions of per unit purchasing cost, unit transportation cost,
CO2 emissions, demand, supply capacity and acceptable minimum
order quantity from suppliers are not exactly captured, which leads to
more complicated decision making. To this end, this paper aims to
formulate a comprehensive method–the distributionally robust goal
programming model developed in Section 3.2.

3.2. Model development

The purpose of this paper is to solve a sustainable SS/OA problem

Fig. 1. Graphical representation of sustainable SS/OA problem.
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involving multiple conflicting objectives under uncertain distribution.
In the following, we build a distributionally robust goal programming
model including four conflicting objectives: cost,CO2 emissions, society
and suppliers’ comprehensive value.

We first provide the basic formulations related to the goals under
uncertain distribution:

= + +F q x C q C x C
q

TC
Dis( , , , ) ( ) ( )p t
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j
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j
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j,
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j
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uncertain unit transportation cost per mile from supplier j TC, re-
presents the unit transportation capacity per lorry, Disj represents the
transportation distance (in mile) of products from supplier j to the
factory, decision variable qj denotes the number of products ordered
from supplier j, and decision variable =x 1j if supplier j is selected and
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Section 4.
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is an expression of social influence, where wj
soc represents the perfor-

mance coefficient of supplier j with respect to the social criteria.
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is a representation concerning the suppliers’ comprehensive value as
characterized by the comprehensive contribution of suppliers under
three sets of criteria related to the economy, environment and society.
The three sets of criteria will be provided in Section 5.1, so that the
decision makers can select suppliers with better comprehensive value.
Parameter wj

eco represents the performance coefficient of supplier j with
respect to the economic criteria, and wj

env denotes the performance
coefficient of supplier j with respect to the environmental criteria.
Moreover, W W,eco env and W soc represent weights of a set of economic
criteria, a set of environmental criteria and a set of social criteria, re-
spectively. The determinations of the weights and the performance
coefficients are multi-criteria decision-making processes. They are cal-
culated by using the three sets of criteria about economy, environment
and society in Section 5.1. In the literature, a few researchers have
described the comprehensive value in a similar way, e.g., Ghadimi et al.
(2018),ohammed et al. (2019).

Based on the above basic formulations of the multiple conflicting
goals, we build a new distributionally robust goal programming model
with expected constraints and joint chance constraints for the sustain-
able SS/OA problem as follows:

+ + ++ +P d P d P d P dObjective min 1 1 2 2 3 3 4 4 (5)

+F q x d gCost
s. t.

~ ( ( , , , )) ,p t
, 1 1 1p t (6)

+F q d gCO emissions ~ ( ( , )) ,c
2 2 2 2c (7)

+F q d gSociety ( )3 3 3 (8)

+F q d gSuppliers comprehensive value ( )4 4 4 (9)

+
~ F q x F q xRisk on cost [ ( , , , ) ( ( , , , ))] ,p t p t p t

, 1 1 (10)
+

~ F q F qRisk on CO emissions [ ( , ) ( ( , ))] ,c c c2 2 2 (11)

q DDemand satisfaction Pr ~ ( ) 1 ,
j J

j D

(12)

~ q DQuality assurance Pr ( ) 1 ,
j J

j j d
(13)

~ q S x j JSupply capacity Pr { ( ) , } 1 ,S j j j
S

j s (14)

~ q Q x j JMinimum order quantity Pr { ( ) , } 1 ,Q j j
m

j
Q

j Q

(15)

x NMaximum number of suppliers
j J

j max
(16)

x NMinimum number of suppliers
j J

j min
(17)

x q jDecision variables {0, 1}, 0j j (18)

+ +d d d d jNon negativity , , 0 .1 2 3 4 (19)

In the above model, Eqs. (6), (7)(10)–(14) represent the inequal-
ities, with bold title contain distribution uncertainty. The aspiration
level gi is the goal value of the ith objective ( =i 1, 2, 3, 4), which is
expected to attain by the decision maker. The values of aspiration levels
gi are set in advance by decision makers according to their wishes and
the development requirement, which is one of the characteristics of the
goal programming method. Deviations ( + +d d d d, , ,1 2 3 4 ) in the model
are variables that need to be solved. Under the idea of goal program-
ming, if some of aspiration levels g g g, ,1 2 3 and g4 are achieved, the
corresponding deviations solved by the above model are zero. Other-
wise, they show non-zero values. In the process of optimization, goals
with high priority are usually achieved prior to those goals with low
priority. Therefore, in general, if these deviations obtained do not de-
stroy the priority structure, then they are acceptable deviations.

Eq. (5) aims to minimize the deviation, in which P P P, ,1 2 3 and P4
abiding by P P P P1 2 3 4 represent the relative importance of the
goals over cost, CO2 emissions, society and suppliers’ comprehensive
value.

Eq. (6) limits the total expected cost under ambiguous distribution
set and, as much as possible, does not exceed a given aspiration level
g1. In this problem, we expect the cost to be as small as possible. We do
not care if the expected cost is less than aspiration level g1, but once the
cost exceeds g1, we expect the excess to be as small as possible. That is
why only positive deviation +d1 is introduced in this constraint.

Eq. (7) ensures that the expected value of total CO2 emissions dose
not exceed aspiration level g2, as far as possible. Similarly, we do not
care whether the expected total CO2 emissions are smaller than as-
piration level g2, but once the expected value exceeds g2, we consider
the excess to be as small as possible. Hence, we only need to introduce
positive deviation +d2 .

Eq. (8) insures that the social impact of suppliers is equal to the
aspiration level g3 as much as possible. In this problem, we expect the
social impact to be as great as possible. Accordingly, as soon as the
social impact falls below aspiration level g3, we introduce the negative
deviation d3 to make the gap between expected value and aspiration
level g3 to be as small as possible.

Eq. (9) ensures that the comprehensive value equals the aspiration
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level g4 as much as possible. Similarly, we expect the comprehensive
value to be as large as possible. Therefore, only negative deviation d4 is
introduced in this expression.

In uncertain environments, it is necessary to consider risk measure,
in which we characterize the risk by means of upper semi-deviation. Eq.
(10) guarantees that the risk of the total cost exceeding the expected
value is less than a given level . Eq. (11) assures that the risk of the
CO2 emissions exceeding the expected value is smaller than a given
level .

Eq. (12) illustrates that the demand of the purchasing company
under ambiguous distribution set should be met at a certain prob-
ability level 1 D, in which D ( ) is the uncertain demand. Moreover,
uncertain demand D ( ) is parameterized by random variable .

Eq. (13) assures the quantity under a certain probability level d,
where j denotes the jth supplier’s product defect rates, and denotes
the acceptable waste rate of the purchasing company.

Eq. (14), a joint chance constraint, states the probability level that
the quantity of products ordered from each supplier ( j J ) less than
or equal to each supplier’ supply capacity no more than 1 s. S ( )j j

S is
the maximum capacity of supplier j.

Eq. (15), a joint chance constraint, indicates that the probability
level, related to the quantity of product ordered from each supplier
( j J ) satisfying the its minimum order quantity, is more than or
equal to 1 Q. In this constraint, Q ( )j

m
j
Q is the minimum order

quantity of supplier j.
Eqs. (16) and (17) are constraints on the number of suppliers. Eq.

(18) states the limit on decision variable xj and qj. This constraint en-
sures that the all quantities of products ordered from every supplier
throughout the supply chain are non-negative. Finally, Eq. (19) de-
termines that deviations (positive or negative) are non-negative.

The new model (5)–(19) is first used to study sustainable SS/OA
problems. Due to the uncertain information involved in the problem,
the model does not easily to obtain optimal solutions. Specifically, the
distributions of uncertain parameters in expected constraints (6), (7),
(10), (11), chance constraints (12) and (13) and joint chance con-
straints (14) and (15) are partially known and lie within ambiguity sets.
Since ambiguity sets include infinite distributions, the model is pro-
vided with infinite constraints, which leads to a computationally in-
tractable model. To obtain a tractable model, we must focus on a re-
latively novel approach, distributionally robust optimization, rather
than traditional methods to find a tractable formulation. Moreover, the
tractability of a distributionally robust model depends on the choice of
ambiguity set. Accordingly, in Section 4, we provide specific ambiguity
sets and derive the tractable formulation of model (5)–(19).

4. Tractable approximation

In this section, we derive a computationally tractable approximation
formulation of model (5)–(19), the crux of which lies in the treatment of
expected constraints (6) and (7), chance constraints (12) and (13) and
joint chance constraints (14) and (15). In the following, we build the
computationally tractable formulations of these constraints with dis-
tribution uncertainty via ambiguity sets.

First, we provide the computationally tractable formulations of in-
equalities (6), (7) and (10), (11) when random variables ,p t and c

satisfy the following ambiguity sets:

= = =
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to reference (Ben-Tal & Hochman, 1972) and =+d d( ¯ ) ¯j
kl

j
kl1

2 .
Based on the ambiguity sets (20), expected constraints (6) and (7)

can be easily transformed into explicitly tractable formulations. Now,
we obtain a well-structured tractable equivalent forms for the expected
constraints (10) and (11) by the following theorem.
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Proof.We only proof Eq. (21), and Eq. (22) can be proved similarly. For
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tl0 . Therefore, = =F yj J j1

+ +y y y( )j J j j J l L j
pl

j
pl

j
tl

j
tl0 . Since the distributions of random

variables j
p and j

t satisfy ambiguity sets (20), one has

= + +F q x y y µ y µ~ [ ( , , , )] ( ).p t

j J
j

j J l L
j
pl

j
pl

j
tl

j
tl

, 1
0p t

(23)

Then the following equation hold:

= +

+

+

F q x F q x

y y µ y y µ

~ [ ( , , , ) ( ( , , , ))]

~ ([ ] [ ]) .

p t p t

j J l L
j
pl

j
pl

j
pl

j
pl

j
tl

j
tl

j
tl

j
tl

, 1 1

,

p t

p t

Since =+[ ( )] | ( )|1
2 , one has

+

= +

+

= +

= +

+

+ +

{ } {
}

y y µ y y µ

y y µ y y µ

y y µ

y y µ

y µ y

µ

y d y d

~ ([ ] [ ])

~ ([ ] [ ])

~ |[ ]|

|[ ]|

| | ~ | | | | ~ |

|

(| |( ¯ ) | |( ¯ ) ).

j J l L
j
pl

j
pl

j
pl

j
pl

j
tl

j
tl

j
tl

j
tl

j J l L
j
pl

j
pl

j
pl

j
pl

j
tl

j
tl

j
tl

j
tl

j J l L
j
pl

j
pl

j
pl

j
pl

j J l L
j
tl

j
tl

j
tl

j
tl

j J l L
j
pl

j
pl

j
pl

j J l L
j
tl

j
tl

j
tl

j J l L
j
pl

j
pl

j
tl

j
tl

,

1
2 ,

1
2

1
2

1
2

1
2

p t

p t

p

t

p t

That is,

= +

+

+ +

F q x F q x

C q d C Dis d

sup ~ [ ( , , , ) ( ( , , , ))]

|( ) | ( ¯ ) ( ) ( ¯ ) .

p t p t

j J l L
j
pur l

j j
pl

j
tran l q

TC j j
tl

, 1 1p t

j

□

Next, we derive the tractable formulations of chance constraints
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(12) and (13) and joint chance constraints (14) and (15). However, in
the case of distribution uncertainty, it is difficult to find the equiva-
lently tractable forms of the chance constraints. Therefore, an indirect
method is used to seek out a tractable approximation form. This re-
quires the appropriate perturbation sets and ambiguous distribution
sets of random variables , j

S and j
Q. In this paper, the random variable

satisfies the following ambiguous distribution set and perturbation
set:

= = =+ +supp µ µ d

l L

{ : ( ) [ 1, 1], ( ) , [ ] ( ¯ ),

},
l l

l
l l

(24)

=
µ

l L, 1 1, ( ) 2ln(1/ ) , ,L
l

l L

l
l

l

2

(25)

and the random variables j
S and j

Q satisfy the following ambiguous
distribution sets and the perturbation sets:

= = =

=

+ +supp µ µ d

l L j J a S Q

{ : ( ) [ 1, 1], ( ) , [ ] ( ¯ ) ,

, }, , ,
j
a

j
al

j
al

j
al

j
al

j
al

(26)

= =
µ

l L a S Q, 1 1, ( ) 2ln(1/ ) , , ,j
a L

j
al

l L

j
al

j
l

j
al

2

(27)

where, parameter controls the size of perturbation sets.
Based on the above ambiguity sets and perturbation sets, we can

deduce the computationally tractable formulations of chance con-
straints (12) and (13) and joint chance constraints (14) and (15) by the
following theorems.

Theorem 2. For chance constraint (12) on demand satisfaction and
chance constraint (13) on quality assurance, the uncertain demand D ( )
is parameterized by random variable , i.e., = +D D D( ) l L

l l0 . Let
random variable satisfies the ambiguity set (24) and perturbation set
(25). Then vector q J respectively satisfies (12) and (13) if there
exist (u r, ) and +f h( , ) L 1 such that (q u r, , ) and (q f h, , )
respectively satisfy the following constraint systems:

= +

= +
+

+ +

D q u r

D u r l L
u u

r µ r r

,
| | 0

2ln(1/ ) ( ) ( ) 0

j J
j

l
l l

l L
l

l L
l l D

l L
l l

0
0 0

0

0
2 2

(28)

and

= +

= +
+

+ +

q D f h

D f h l L
f f

h µ h h

,
| | 0

2ln(1/ ) ( ) ( ) 0,

j J
j j

l
l l

l L
l

l L
l l d

l L
l l

0
0 0

0

0
2 2

(29)

where

=
++ +d m d e µ m

m
sup

2ln(2 ¯ cosh( ) (1 2 ¯ ) ) 2
.l

m

l l
µ m

l
2

l

(30)

That is, the constraint systems (28) and (29) are respectively safe
approximations of chance constraints (12) and (13).

Proof. The steps for proving compliance with theorem 2.4.4 from
Ben-Tal et al. (2009), then the chance constraint (12) can be
approximated by the following system

= +

= +
+

+ ++

D q u r

D u r l L
u u

r µ r µ r r

,
| | 0

max[ , ] 2ln(1/ ) ( ) 0,

j J
j

l
l l

l L
l

l L
l l l l D

l L
l l

0
0 0

0

0 2 2

(31)

which is the robust counterpart of the inequality q D ( )j J j under
the following perturbation set

= +z µ z µ

z l L

, , , 1 1,

( ) 2ln(1/ ) , .

L L
l l l l l

l L

l

l
D

2

Now, we need to determine parameters +µ µ,l l and l such that the
following property from Ben-Tal et al. (2009) holds:

++{ }m µ m µ m m mexp{ }d ( ) exp max[ , ] 1
2

, ,

.

l l l l l
2 2

By a tight explicit bound on mexp( )T from Postek, Ben-Tal, den
Hertog, and Melenberg (2018), we can obtain

=

= +

{ }m m

d m d e

sup exp{ }d ( ) sup ~ exp{ }

¯ cosh( ) (1 ¯ ) ,

l l l

l l
µ ml

where d̄l is mean absolute deviation.
According to the relation between mean upper semi-deviation +d̄l

and mean absolute deviation d̄l, we have
= ++ +m d m d esup { exp{ }d ( )} 2 ¯ cosh( ) (1 2 ¯ )l l l l

µ ml . Then, one has

+ ++ + +{ }d m d e µ m µ m m2 ¯ cosh( ) (1 2 ¯ ) max[ , ] 1
2

.l l
µ m

l l l
2 2l

Since the distribution of random variable satisfying ambiguity set
(24) processes given expected value µ, it follows that = =+µ µ µl l

l.
Thus,

+ +

= + +

+r µ r µ r r

r µ r r

max[ , ] 2ln(1/ ) ( ) ( )

2ln(1/ ) ( ) ( ) ,
l L

l l l l D
l L

l l

l L
l l D

l L
l l

0
2 2

0
2 2

(32)

=
µ

l L, 1 1, ( ) 2ln(1/ ) , ,L
l

l L

l l

l
D

2

and

+ ++ + { }d m d e µ m m2 ¯ cosh( ) (1 2 ¯ ) 1
2

.l l
µ m

l l
2 2l

It follows that

=
++ +d m d e µ m

m
sup

2ln(2 ¯ cosh( ) (1 2 ¯ ) ) 2
,l

m

l l
µ m

l
2

l

Combining (31) and (32), we arrive at (28).
The above process proves that the robust counterpart (28) of in-

equality q D ( )j J j under perturbation set (25) is a safe approx-
imation of chance constraint (12) under ambiguity set (24).

The proof of (29) is similar to the process of (28). □ □

Theorem 3. For joint chance constraint (14) on supply capacity, the
uncertain independent supply capacity Sj is parameterized by random
independent variable j

S, i.e., = +S S S( )j j j l L j
l

j
Sl0 . Let random

independent variable j
Sl satisfies the ambiguity set (20). Then q x( , )j j
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satisfy constraint (14) if there exist +s v,j j
L 1 such that q x s v( , , , )j j j j

satisfy the following constraint system.

= +

= +

+

+ +

q S x s v j J

S x s v j J l L

s s j J l L

v µ v v j J l L

,

| | 0 ,

2ln(1/¯ ) ( ) ( ) 0 , ,

j j j j j

j
l

j j
l

j
l

j
l L

j
l

j
l

l L
j
Sl

j
l

s
l L

j
Sl

j
l

0 0 0

0

2 2

(33)
where =¯s J| |

s and

=
++ +d m d e µ m

m
sup

2ln(2( ¯ ) cosh( ) (1 2( ¯ ) ) ) 2
.j

Sl

m

j
Sl

j
Sl µ m

j
Sl

2

j
Sl

(34)

That is, the constraint system (33) is a safe tractable approximation
of joint chance constraint (14).

Proof (Proof). A sufficient condition to joint chance constraint (14) is

q S x
J

j JPr ~ { ( ) } 1
| |

, .j j j
S

j
sS

(35)

Similar to the derivation of Theorem 2, we transform the chance
constraint (35) into the following approximation system.

= +

= +

+

+ +

q S x s v j J

S x s v j J l L

s s j J l L

v µ v v j J l L

,

| | 0 ,

2ln(1/ ) ( ) ( ) 0 , ,

j j j j j

j
l

j j
l

j
l

j
l L

j
l

j
l

l L
j
Sl

j
l

J
l L

j
Sl

j
l

0 0 0

0

| |
2 2s

If for a given vector qj there exist +s v( , )j j
L 1 such that s v( , )j j satisfy

the above approximation system, then the vector qj is feasible for
chance constraint (35), which means that the vector qj is feasible for
joint constraint (14). This proves that the above approximation system
is a safe approximation of joint chance constraint (14). □

Theorem 4. For joint chance constraint (15) on minimum order
quantity, the uncertain independent minimum order quantity Qj

m is
parameterized by random independent variable j

Q, i.e.,
= +Q Q Q( ) ( ) ( )j

m
j
Q

j
m

l L j
m l

j
Ql0 . Let the distribution of random

independent variable j
Ql satisfies the ambiguity set (20). Then q x( , )j j

satisfy constraint (15) if there exist +g k,j j
L 1 such that q x g k( , , , )j j j j

satisfy the following constraint system.

= +

= +

+

+ +

Q x q g k j J

Q x g k j J l L

g g j J l L

k µ k k j J l L

( )

( ) ,

| | 0 ,

2ln(1/¯ ) ( ) ( ) 0 , ,

j
m

j j j j

j
m l

j j
l

j
l

j
l L

j
l

j
l L

j
Ql

j
l

Q
l L

j
Ql

j
l

0 0 0

0

0 2 2

(36)

where =¯Q J| |
Q and

=
++ +d m d e µ m

m
sup

2ln(2( ¯ ) cosh( ) (1 2( ¯ ) ) ) 2
.j

Ql

m

j
Ql

j
Ql µ m

j
Ql

2

j
Ql

(37)

That is, the constraint system (36) is a tractable safe approximation
of joint chance constraint (15).

Proof (Proof). The process of proof is similar to Theorem 3. □

As useful conclusions of Theorems 1–4, we derive tractable

formulations of constraints (10)–(15) with uncertain parameters. Ac-
cordingly, these theorems can be utilized to deduce the following
computationally tractable approximation model of the distributionally
robust goal programming model (5)–(19).

+ + +

+ +

+ +P d P d P d P d

C q C x C Dis

min

s. t. ( ) ( ) ( )
j J

j
pur

j j
adm

j j
tran q

TC j

1 1 2 2 3 3 4 4

0 0 j

(38)

+ +

+

+
+

+

+

+

+ +

+

( )
( )

C q µ C Dis µ d g

CO Dis CO Dis µ d g

F q d g
F q d g

C q d C Dis d

CO Dis d

( ) ( )

( )
( )

|( ) | ( ¯ ) ( ) ( ¯ )

( ¯ )

constraints (16) (19), (28) (29), (33), and (36).

l L
j
pur l

j j
pl

j
tran l q

TC j j
tl

j J
j

q
TC j

l L
j

l q
TC j j

cl

j J l L
j
pur l

j j
pl

j
tran l q

TC j j
tl

j J l L
j

l q
TC j j

cl

1 1

2
0

2 2 2

3 3 3

4 4 4

2

j

j j

j

j

Model (38) is the computationally tractable approximation system
of model (5)–(19). If vector x and q satisfy model (38), then x and q are
feasible for model (5)–(19).

5. Case study

In this section, we conduct a case study for a steel company to
understand the performance of our distributionally robust goal pro-
gramming method. All mathematical models are solved by CPLEX
software studio 12.6.3 running on a personal computer.

5.1. Description of the case study

Sustainable supply chain design has attracted widespread attention
in recent years, and the critical steps involve selecting sustainable
supplier and appropriately allocating orders (Azadnia et al., 2015).
However, environmental issues have become an inevitable challenge
for achieving sustainable SS/OA. In responding to the demands for
sustainable requirement, companies are confronted with many chal-
lenges (Ghorabaee et al., 2017). Many small steel companies have been
forced to stop producing. The degree of the environmental pollution by
steel companies exhibits a clear relationship with the raw materials. In
the past few years, a steel company has purchased a raw material
(limestone) from eight suppliers, but these suppliers may not be able to
meet the requirements of sustainability over time. In response to sus-
tainable development, the company is committed to transformation to
pursue sustainability. Therefore, based on comprehensive considera-
tions, the steel company plans to limit the number of suppliers and
reselect the suppliers that satisfy cost, CO2 emissions, society and
comprehensive value goals to comply with sustainable development. To
this end, the company initially locks in five suppliers, and the com-
pany’s board of directors establishes a group of five experts (decision
makers) from different sectors.

Three types of criteria from reference (Mohammed et al., 2019) are
shown in Fig. 2. The three types of criteria are utilized by decision
makers (DM1 to DM5) to evaluate the suppliers and thus compute the
weights and suppliers’ performance coefficients presented in Eq. (3) for
the third goal F3 and Eq. (4) for the fourth goal F4. The significance of
each criterion and the ratings of suppliers evaluated by decision makers
are shown in Tables 1 and 2, respectively. Based on the evaluation in
Tables 1 and 2, the weights of the criteria calculated by analytical
hierarchy process and the performance values of the suppliers calcu-
lated by the technique of order preference by similarity to ideal solution
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are summarized in Fig. 3.
Input data are collected from the suppliers and the steel company.

The steel company places an order with its suppliers on a weekly basis.
There are five alternative suppliers, i.e., =N 5max . The company needs
to select at least two suppliers, i.e., =N 2min . The demand for the
limestone is approximately 7,000 tons per week; that is, the nominal
value of demand is =D 70000 . According to the development require-
ments of the steel company, the decision makers decide that the as-
piration levels are = = =g g g600000, 15000000, 40001 2 3 and =g 45004 .
The capacity of each heavy truck is =TC 50 tons. Table 3 provides data
for each supplier, in which the transportation distances between the
purchasing company and the suppliers are obtained form Google map.
In all ensuing experiments, we set the priority levels

= = =P P P10 , 10 , 101
7

2
5

3
3 and =P 104 . In addition, we consider that

each uncertain parameter in this problem is affected by three potential
factors (i.e., =L 3). On the basis of the above data analysis, a series of
experimental results and sensitivity analysis results can be obtained.

5.2. Computational results

Before proceeding with these experiments, some parameters used in
the model need to be determined. We set mean values

= = =µ µ µ 0j
kl

j
al

l and semi-deviations = = =+ + +d d d( ¯ ) ( ¯ ) ( ¯ ) 0.05j
kl

j
al

j
l

= =k p t c a S Q( , , ; , ). Then, the parameters = = 0.4126421j
al

l are
solved using Eqs. (30), (34) and (37). We set the perturbation
coefficients =D 350l l L( ). Moreover, the perturbation coefficients

= =Q C C C C( ) [7; 6; 5.5; 4; 2], ( ) [0.5%( ) ;0.5%( ) ;0.5%( ) ;m l pur l pur pur pur
1

0
2

0
3

0

= =C C C C CO CO0.5%( ) ;0.05%( ) ], ( ) 0.5%( ) , 0.5%pur pur
j
tran l

j
tran

j
l

j4
0

5
0 0

2 2
0 and

=S S1%j
l

j
0 j J l L( , ). In addition, the probability levels are set

as = = = =¯ ¯ 0.1D d s Q . Basedonthe above data, we obtain the 9 sets
of results with the different values of parameters , and . The re-
sulting recommended supplier selection and the order allocation are
shown in Tables 4, 5 and Fig. 4.

Table 4 summarizes the supplier selection, order allocation and
fulfilment degree of each goal with respect to the company’s acceptable
waste rate . On the one hand, we can clearly observe that the fulfil-
ment degree of each goal differs with varying . The first goal

corresponding to = 0.04 is unfulfilled, but the first goal is fulfilled
when equals other values. The second goal is always achieved, and the
third and fourth goal are always unfulfilled regardless of the value of
the waste rate . Under these circumstances, acceptable waste rate

= 0.04 may not be a good selection for decision makers. Furthermore,
we can observe that the unfulfilled degrees vary even if the goals are
always unrealized. On the other hand, it is evident that the optimal
numbers of contracted suppliers and corresponding order allocations
are distinct under different waste rate . With = 0.04, 0.06, supplier 2
and supplier 5 are selected. Suppliers 1, 2 and 5 are contracted for
values of 0.08, 0.10 and 0.12, and when the waste rate is equal to
0.14, the resulting suppliers are suppliers 1, 2, 3, and 5. Although the
resulting suppliers may be the same under different values of , the
order allocations of contracted suppliers are different. For example,
when = 0.04, the order qualities q2 and q5 are 4550 and 3000, re-
spectively, which are different from the values of 6250 and 1400 cor-
responding to = 0.06. This means that decision makers can select a

Fig. 2. Criteria used for evaluating suppliers.

Table 1
The importance of the criteria.

Decision makers Economic Environmental Social

C1 C2 C3 C4 G1 G2 G3 O1 O2 O3

DM1 VH VH VH H VH VH M H M VH
DM2 VH H VH VH VH H H H M VH
DM3 VH VH VH VH M VH H H H H
DM4 H H VH VH VH M H M H VH
DM5 VH VH H VH H H VH H M VH

Table 2
The evaluation of the suppliers.

Decision
makers

Suppliers Economic Environmental Social

C1 C2 C3 C4 G1 G2 G3 O1 O2 O3

DM1 S1 VH M M H VH M H H H H
S2 VH H H H M H VH H L VH
S3 H VH H H M H H VH L VH
S4 H VH H M H VH H H H H
S5 H H VH H M H H M H H

DM2 S1 VH H H M H M VH M M VH
S2 VH M VH H M VH M H M H
S3 H VH M H H VH M M H H
S4 H H H VH M VH M H M VH
S5 VH H H H L H VH M H VH

DM3 S1 VH H H H VH H H VH M L
S2 H H VH H H VH M M H H
S3 VH H M L H H H H L VH
S4 H VH H H M H H H M VH
S5 H H VH M H H L VH L H

DM4 S1 VH VH H VH VH M L M H VH
S2 VH H H H VH M H H M H
S3 H VH VH H H M VH VH L H
S4 H L VH VH H H VH VH M M
S5 VH H H VH H VH H L VH H

DM5 S1 VH H H M H M M H L VH
S2 VH M H VH H M VH M L VH
S3 VH H M VH M M H H H H
S4 H L VH VH M H H H L VH
S5 H VH VH M H H H M H H
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satisfactory supplier portfolio and allocate the orders by confirming the
acceptable waste rate .

Fig. 4 depicts the effect of varying the company’s acceptable waste
rate on the order allocation. The horizontal axis corresponds to the
waste rate and the vertical axis corresponds to the order allocation
among the assigned suppliers. From Fig. 4, we can intuitively find that
the resulting order allocations differ upon changing , especially the
order qualities q q q, ,1 2 3 and q5. When is equal to 0.04 or 0.06, the
order quantity q2 from the 2nd supplier is the largest, followed by q5,
and the order quantity of the other suppliers is 0. For > 0.06, the order
quantity q1 increases with , the order quantity q2 decreases, and the
order quantity q5 remains at an steady state. Under = 0.14, the 3rd
supplier begins to be allocated orders. In addition, it is worth noting
that regardless of the value of , the order quantity q4 from the fourth
supplier is always 0.

Table 5 shows the supplier portfolios, the resulting order allocation
and the fulfilled degree of each goal under different risk levels ( , ).

On the one hand, it can be intuitively observed that the realization
degrees of the goals are distinct under varying risk levels and . The
first goal is fulfilled under = 6000, 5500 and = 8500, 8000, 7500,
but that corresponding to = 5000 is unfulfilled. The second goal is
always realized, and the third and fourth goals are always unachieved.
In this case, ( , ) values equal to (6000, 10000) and (5500, 10000)
may become preferred choices than others for decision makers. On the
other hand, different risk levels and may correspond to different
supplier combinations and order assignments. The selected suppliers
are suppliers 1, 2 and 5 when the risk level changes, whereas the
resulting suppliers are suppliers 2 and 5 when the risk level are again
altered. Even if different risk levels correspond to the same supplier
portfolio, the order allocations from contracted suppliers are different.
The order quality q2 is equal to 5,500 as = 8500, and those values
corresponding to values of 8,000 and 7,500 are 4,200 and 2,900,

Fig. 3. The weights of criteria and the performance values of suppliers.

Table 3
Data table.

Data S1 S2 S3 S4 S5

C( )j
pur 0 50 60 70 80 140

Cj
adm 20 20 22 19 19

C( )j
tran 0 2 2 2 2 2

CO j2
0 1100 1100 1100 1100 1100

Disj 82.4 74.3 76.2 78.5 51.4

Sj
0 10500 9660 7000 6300 11200

Q( )j
m 0 1000 900 850 600 550

j 0.2 0.05 0.1 0.15 0.01

Table 4
Computation results with =( , ) (6000, 10000) for different .

0.04 0.06 0.08 0.10 0.12 0.14

+d1 117450 0 0 0 0 0
+d2 0 0 0 0 0 0

d3 302.54 336.64 231.87 156.73 100 43.828
d4 659.6 618.6 491.05 397.9 329.47 351.56
x1 0 0 1 1 1 1
x2 1 1 1 1 1 1
x3 0 0 0 0 0 1
x4 0 0 0 0 0 0
x5 1 1 1 1 1 1
q1 0 0 1200 2000 2800 3350
q2 4550 6250 5250 4650 3900 2300
q3 0 0 0 0 0 1050
q4 0 0 0 0 0 0
q5 3000 1400 1400 1350 1400 1350

Table 5
Computation results with = 0.11 for different ( , ).

( , ) = 10000 = 6000

= 6000 = 5500 = 5000 = 8500 = 8000 = 7500

+d1 0 0 15979 42980 144890 246810
+d2 0 0 0 0 0 0

d3 129.63 253.96 325.81 350.67 284.81 218.95
d4 363.83 510.633 605.11 665.3 657.49 649.69
x1 1 1 1 0 0 0
x2 1 1 1 1 1 1
x3 0 0 0 0 0 0
x4 0 0 0 0 0 0
x5 1 1 1 1 1 1
q1 2400 2550 2750 0 0 0
q2 4300 3550 2750 5500 4200 2900
q3 0 0 0 0 0 0
q4 0 0 0 0 0 0
q5 1350 1650 2050 2050 3350 4650

Fig. 4. Effect of changing the waste rate on the order allocation.
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respectively. This indicates that supplier selection and order allocation
are affected by the risk levels. Therefore, decision makers can make
satisfactory decisions based on specific risk levels.

5.3. Sensitivity analysis

In this section, we conduct a series of sensitivity analyses with re-
spect to parameter , probability level , uncertainty and weights. The
probability level reflects the possibility of the event, and parameter
controls the size of perturbation sets. We conduct the sensitivity ana-
lysis on and to explore their effects on decisions. For uncertain
parameters in goals, we first probe the effects of cost uncertainty and
CO2 emissions uncertainty from high to low priority. Furthermore, we
also study the impacts of joint cost and CO2 emissions uncertainty on
decision making. For the uncertainty in constraints, we take demand
uncertainty as an example to discuss the impact of demand uncertainty
on decision making. The method for exploring the impact of other
uncertain parameters (e.g., supply capacity uncertainty) in constraints
is similar to this method for the demand uncertainty. Finally, we ex-
plore the effects of weights and performance coefficients on decisions.

5.3.1. Effects of parameter and probability level on decisions
To demonstrate the effects of parameter and probability level on

decision making, we carry out sensitivity analysis for different and
values. In these experiments, we still set the mean value

= = =µ µ µ µj
kl

j
al

l , semi-deviation = = =+ + + +d d d d( ¯ ) ( ¯ ) ( ¯ ) ¯j
kl

j
al

j
l

= =k p t c a S Q( , , ; , ), and then parameters = =j
al

l . By adjusting
the parameters , we can obtain the series of solutions shown in
Table 6. Moreover, we set = = = =¯ ¯D d s Q . Based on the different
probability levels, the obtained solutions are presented in Table 7.

Table 6 provides the 6 sets of solutions obtained by adjusting
parameter , in which the value of parameter depends on +µ d( , ¯ ).
Therefore, six sets of +µ d( , ¯ ) correspond to six different values of , and
six sets of solutions can be solved. From Table 6, we can clearly observe
that the different parameters correspond to different fulfilled degrees
of the third and fourth goals, as well as different order qualities from
designated suppliers. For example, the unrealized degree of the third
goal is 204.77 under = 0.4126421, which is greater than the value of
183.82 under = 0.3695402. The order qualities q q,1 2 and q5 are 1,600,
4,900 and 1,400 under = 0.4126421 but 1,650, 4,950 and 1,350 under

= 0.3690423, respectively. A similar case can be found for other values
of .

Table 7 shows the sensitivity of the fulfilment degree of each goal
and the order allocation to the probability level . We can easily observe
that the achievement degrees of the third and fourth goals corre-
sponding to different values exhibit slight differences. For example,
the unrealized degrees of the third and the fourth goals are 157.18 and
399 when = 0.05, slightly larger than the degrees of 156.73 and 397.9
when = 0.1. Furthermore, it is easily observed that the resulting order
allocations from suppliers 1, 2 and 5 are different for different prob-
ability levels. For example, the order qualities q q,1 2 and q5 are 1,950,
4,700 and 1,350 under = 0.05, which are different from the values of
2,100, 4,550 and 1,350 corresponding to probability level as 0.3.

According to the sensitivity analyses for and , the different
parameter and probability level exert a certain effects on the order

allocation from contracted suppliers. That is, the order allocation is
sensitive to parameter and probability level . In this case, decision
maker may depend on personal experience and knowledge to confirm
the parameter and probability level to reasonably allocate orders
among the assigned suppliers and formulate a sustainable strategy.

5.3.2. Effects of cost uncertainty on decisions
To observe the effects of cost uncertainty on decisions, problems

with different cost uncertainty levels are solved: (I) =C( )pur l

[0.55, 0.2, 0.355, 0.355, 0.2] and =C( ) [0.02, 0.02, 0.02, 0.02, 0.02]tran l

l L( ); (II) =C( )pur l [0.5, 1.2, 0.7, 0.8, 0.14] and =C( )tran l

[0.03, 0.03, 0.03, 0.03, 0.03] l L( ). It is worth noting that =C( )pur l

C C C C C[( ) , ( ) , ( ) , ( ) , ( ) ]pur l pur l pur l pur l pur l
1 2 3 4 5 and =C( )tran l C[( ) ,tran l

1
C C C C( ) , ( ) , ( ) , ( ) ]tran l tran l tran l tran l

2 3 4 5 . The set of experiment is conducted
under = = =0.1, 0.1, 0.4126421 and =( , ) (6000, 10000). The
results of deviations in case (I) are =d 275.384 , while the others are 0,
and the deviations in the case (II) are = = =+ +d d d252150, 0, 178.171 2 3
and =d 591.84 . A change in the cost uncertainty evidently impacts the
realization of the goals. The results of supplier selection and order al-
location for cases (I) and (II) are shown in Fig. 5.

Fig. 5 displays two sets of supplier portfolios and order allocations
with respect to two sets of perturbation coefficients (I) and (II). In
Fig. 5, the blank area indicates that the supplier is not selected, that is,
the order allocation is 0, and the coloured area indicates that the sup-
plier is selected to provide raw materials. Specifically, in the coloured
area, the longer the radius is, the greater the order quality the supplier
provides. The effect of cost uncertainty on the supplier portfolio and
order allocation are intuitively observed. In case (I), suppliers 2, 4 and 5
are selected, and the corresponding order qualities q q,2 3 and q5 are
6,700, 900 and 750. Unlike in case (I), when the perturbation coeffi-
cients are set as in case (II), suppliers 1 and 5 are contracted, and the
resulting order qualities q1 and q5 are 2,550 and 5,000, respectively.
This result means that different cost uncertainty levels greatly impact
on supplier selection and order allocation. It is extremely important for
decision makers to determine the uncertainty level of demand in order
to formulate effective decisions.

5.3.3. Effects of CO2 emissions uncertainty on decisions
To illustrate the impact of CO2 emissions uncertainty on decisions,

experiments are carried out with two different set of perturbation
coefficients =CO CO CO CO CO CO[ , , , , ]l l l l l l

2 21 22 23 24 25 : (i) =CO l
2

[6, 6, 6, 6, 6]; (ii) =CO [8, 8, 8, 8, 8]l
2 . This set of experiments

is conducted under = = =0.1, 0.1, 0.4126421 and =( , )
(6000, 10000).

Based on cases (i), we obtain deviations =d 2003 and =d 598.74 ,
while the others are zero. This is different from deviations

Table 7
Sensitivity analysis with = 0.10 and = 0.4126421 for different .

+d1
+d2 d3 d4 q1 q2 q3 q4 q5

0.05 0 0 157.18 399 1950 4700 0 0 1350
0.10 0 0 156.73 397.9 2000 4650 0 0 1350
0.20 0 0 156.28 396.81 2050 4600 0 0 1350
0.30 0 0 155.82 395.71 2100 4550 0 0 1350

Table 6
Sensitivity analysis with = 0.09 and = 0.1 for different .

µ +d̄ +d1
+d2 d3 d4 q1 q2 q3 q4 q5

0 0.05 0.4126421 0 0 204.77 456.99 1600 4900 0 0 1400
0.025 0.3695402 0 0 183.82 431.97 1600 5000 0 0 1350

0.05 0.05 0.4111048 0 0 204.32 455.89 1650 4850 0 0 1400
0.025 0.3690423 0 0 183.37 430.88 1650 4950 0 0 1350

0.25 0.05 0.460666 0 0 205.22 429.78 1700 4900 0 0 1350
0.025 0.4345143 0 0 129.54 428.69 1750 4850 0 0 1350
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= = =+ +d d d380070, 0, 132.831 2 3 and =d 639.54 corresponding to case
(ii). This means that the larger the perturbation coefficients are, the less
likely the goals is to be achieved. Therefore, acquiring as much CO2
emissions information as possible in the process of planning makes a
certain positive impact on decision making. Moreover, the results re-
garding selection and order allocation are shown in Fig. 6.

The impact of uncertain CO2 emissions levels on the resulting sup-
pliers selection and corresponding order allocation are depicted in
Fig. 6. We can intuitively observe from the figure that the solutions
corresponding to different levels of CO2 emissions uncertainty are dif-
ferent. When the perturbation coefficient is set as in case (i), the sup-
plier portfolio includes suppliers 1, 2, 3 and 5, and the order quantities
assigned for the contracted suppliers are 1,550, 3,050, 1,700 and 1,350.
Different from case (i), the supplier combination in case (ii) is 2 and 5,
and the order allocation are 1,200 and 6,350, respectively. As un-
certainty levels vary, the optimal supplier portfolio and order allocation
change accordingly. Hence, decision makers can make substantial de-
cisions and provide sustainable strategic planning by ascertaining the
levels of CO2 emissions uncertainty.

5.3.4. Effects of joint cost and CO2 emissions uncertainty on decisions
To investigate the effects of uncertainty on joint cost and CO2

emissions on decisions, several experiments have been conducted by
simultaneously adjusting cost uncertainty and CO2 emissions un-
certainty. The set of experiments is conducted under

= = =0.1, 0.1, 0.4126421 and =( , ) (6000, 10000). The re-
sulting order allocations shown in Fig. 7 are obtained with respect to
case 1 and case 2. Case 1 represents that the cost perturbation coeffi-
cients and CO l

2 perturbations are set as in case (I) and case (i), respec-
tively. Similarly, case 2 represents that the cost perturbation

coefficients and CO2 perturbation coefficients are set as in case (II) and
case (ii), respectively.

The realization degrees of the goals with respect to cases 1 and 2 are
different. For case 1, the deviations d3 and d4 are 119.2 and 645.4,
while the others are zero. Comparing the deviations in the two cases,
the deviations in case 2 are = = =+ +d d d398310, 2 0, 45.7251 3 and

=d 648.54 . The difference in deviations +d1 and d3 is distinct. Hence,
the joint cost andCO2 emissions uncertainty obviously and significantly
impacts the unfulfillment degree of the goals. Moreover, the resulting
supplier selection and order allocation for cases 1 and 2 are listed in
Fig. 7. Fig. 7 reveals the impacts of joint cost and CO2 emissions un-
certainty on decision making. For case 1, suppliers 2, 3, 4 and 5 are
assigned to supply order qualities of 3,750, 1,250, 1,750 and 850, re-
spectively. When the perturbation coefficients are set as in case (ii), the
suppliers 3 and 5 are selected to provide order qualities of 1,150 and
6,400, quite different from case 1. This indicates that the corresponding
optimal decision will also change when the uncertainty levels of cost
and CO2 emissions vary at the same time.

5.3.5. Effects of demand uncertainty on decisions
To evaluate the impact of demand uncertainty on optimal decisions,

the proposed model has been run with different perturbation coeffi-
cients =D D: 200l l and =D 400l . The set of experiments is conducted
under = = =0.1, 0.1, 0.4126421 and =( , ) (6000, 10000).
Under the two different Dl, the deviations differ slightly. The deviations
are =d 152.843 and =d 394.324 in the case of =D 200l , and

=d 157.183 and =d 3994 for =D 400l . This shows that the demand
uncertainty of constraints makes a small impact on the realization of
the goals. In addition, Fig. 8 summarizes the resulting order allocation
for =D 200l and =D 400l .

Fig. 5. Optimal result about cost uncertainty.

Fig. 6. Optimal result under CO2 emissions
uncertainty.

R. Jia, et al. Computers & Industrial Engineering 140 (2020) 106267

11



Fig. 8 provides two sets of optimal supplier portfolios and corre-
sponding order allocations in the cases of different demand perturba-
tion coefficients Dl. When =D 200l , suppliers 1, 2 and 5 are contracted
and supply order qualities of 2,150, 4,450 and 1,400, which are dif-
ferent from the order qualities 1,950, 4,700 and 1,350 requested from
suppliers 1, 2 and 5 in the case of =D 400l . That is, although different
uncertainty levels of demand have no effect on the choice of suppliers,
they have some influence on the order allocation. As a result, decision
makers can reasonably allocate orders among the contracted suppliers
by determining the perturbation coefficient Dl in order to achieve
sustainability.

5.3.6. Effects of weights and performance coefficients on decisions
In this subsection, we explore the effects of weights W W,eco env and

W soc and performance coefficients w w,j
eco

j
env and wj

soc on results, and
experiments are conducted under = = =0.09, 0.1, 0.4126421 and

=( , ) (5500, 10000).
We show that the influence of weights on the optimal results is

exerted through the following eight groups of weights
[W W W, ,eco env soc]: (i) [0.2934, 0.3108, 0.3958], (ii) [0.2934, 0.4108,
0.2958], (iii) [0.3958, 0.3508, 0.2458], (iv) [0.3534, 0.3108, 0.3458],
(v) [0.4934, 0.2108, 0.2958], (vi) [0.5934, 0.2608, 0.1458], (vii)
[0.6934, 0.1108, 0.1958], (viii) [0.7934, 0.1108, 0.0958]. The results
of supplier selection and order allocation are = =q q1750, 42001 2 and

=q 16505 under these weights. This invariable supplier selection and
order allocation is primarily achieved because weights W W,eco env and
W soc are obtained based on the importance evaluation of the three sets
of criteria by decision makers. Therefore, a change in the weights will
not affect the supplier selection and order allocation. However, it will

affect the realization of the comprehensive value. That is, the values of
deviation d4 under the eight groups of weights are different, which is
shown in Fig. 9.

In Fig. 9, the horizontal axis corresponds to the eight groups of
weights and the vertical axis corresponds to the deviation d4 . From this
figure, we can intuitively observe the variation in the unfulfillment
degree of the 4th goal for the comprehensive value under the different
weights. Specifically, the deviation d4 exhibits a decreasing trend with
weight from (i) to (viii). From (i) to (viii), the weight of economic
criteria is increasing, and the remaining weights of the environmental
and social criteria are decreasing. Therefore, this shows that the de-
viation d4 decreases with increasing economic weight and decreasing
environmental and social weights. This means that the decision makers
must make more effort when they decide to pursue certain positive
impacts of non-monetary criteria related to environment and society
instead of only pursuing interests.

Furthermore, the performance coefficients w w,j
eco

j
env and wj

soc are
obtained according to the evaluation of suppliers by decision makers
with respect to the three sets of criteria. Hence, changes in these
coefficients may produce a certain effect on the order allocation. To
demonstrate this conjecture, we conducted experiments based on the
two cases shown in Table 8. The solved deviations d3 and d4 differ
between the two cases. The deviations d3 and d4 in case A are 58.375
and 296.94, respectively, which are different from the values of 362.35
and 615.08 corresponding to case B. Furthermore, the order allocation
results with respect to the two cases are provided in Fig. 10.

Fig. 10 displays two sets of different order allocations among as-
signed suppliers 1, 2 and 5. For case A, suppliers 1 and 2 supply order
qualities of 1,950 and 4,700, which are different from the order

Fig. 7. Optimal result under joint un-
certainty on cost and CO2 emissions.

Fig. 8. Optimal result under demand uncertainty.

R. Jia, et al. Computers & Industrial Engineering 140 (2020) 106267

12



qualities 2,000 and 4,650 requested from suppliers 1 and 2 in case B.
This reveals that the evaluation by decision maker regarding suppliers’
performance with respect to the three sets of criteria has a certain
impact on the results. Consequently, the above experiments demon-
strate that the weights have a certain impact on the order allocation.
Furthermore, the decision maker plays a vital role in the determination
of the weights and even in the entire optimization process.

5.4. Managerial implications

The case study confirms that the distributionally robust goal pro-
gramming method is beneficial to the purchasing company with respect
to selecting proper suppliers and allocating the orders in pursuit of
sustainability. The results illustrate the managerial and practical im-
plications of the proposed method. We summarize these implications as
follows.

• It should be noted that in the steel company application, the deci-
sion makers are not obligated to obtain accurate and true distribu-
tions of the input data. Decision makers can plan the sustainable SS/
OA using the proposed method even if they do not have access to the
complete input data information.
• According to the experimental results, it is important for decision
makers to note that the multiple conflicting objectives are almost
impossible to simultaneously achieve. The newly presented method
with priority structure can explore the trade-offs among multiple
conflicting objectives in an uncertain environment to fulfil as many
goals as possible.
• Numerical experiments show that satisfactory results can be ob-
tained by assigning the parameters involved in this model. By ad-
justing the acceptable waste rate and risk level ( , ), the corre-
sponding changes in the satisfactory solution can be observed. The
results can be regarded as a guideline for decision makers to make
appropriate decisions in order to meet the needs of company de-
velopment.

• By adjusting the parameter , probability level and demand un-
certainty level Dl, the supplier selection does not change; however,
the results of the optimal order allocation among selected suppliers
will change accordingly. After the suppliers are selected, decision
maker may formulate better decisions on order allocation by ad-
justing , and Dl.
• Adjusting the uncertainty level of cost and CO2 emissions not only
changes the supplier choice, but also changes the distribution of
orders among the contracted suppliers. Decision makers may choose
parameters according to personal experience and knowledge in
order to make the satisfactory decision.
• The developed method for solving the sustainable SS/OA problem is
flexible; it can be extended or modified in lines with the practical
needs of the problem. For example, decision makers can provide the
proper priority levels among multiple objectives under the re-
quirements of time and company development.

6. Conclusions

This paper proposed a new distributionally robust goal program-
ming model including expected constraints and chance constraints for
sustainable SS/OA problems under distribution uncertainty and mul-
tiple conflicting objectives. In detail, the exact distributions of the un-
certain per unit purchasing cost, per unit transportation cost, per unit
CO2 emissions, demand, supply capacity and minimum order quality
are unavailable. We characterized the imprecise distributions by am-
biguous distribution sets, and incorporated this type of uncertainty into
our model under the idea of the distributionally robust optimization
method rather than conventional methods. Moreover, we optimized the
multiple conflicting objectives related to cost, CO2 emissions, society
and suppliers’ comprehensive value with the priority structure, while
incorporating risk measures for cost and CO2 emissions into our sus-
tainable SS/OA model. Because of the intractability of the dis-
tributionally robust sustainable SS/OA goal programming model, we
derived robust counterpart forms of the expected constraints and safe
approximation systems of the chance constraints under the mean ab-
solute semi-dispersion ambiguity sets and new perturbation sets.
Consequently, this paper derived the new tractable robust approxima-
tion model.

We applied the proposed new model to a case study involving a steel
company to illustrate the effectiveness of the model and conducted a
series of comprehensive numerical experiments. The results demon-
strated that the new model can serve as a quantitative tool and offer
advice for decision makers to solve the sustainable SS/OA problem in
order to achieve sustainability of the company under distribution un-
certainty. The proposed optimization method is also applicable to dif-
ferent companies that are committed to long-term and sustainable de-
velopment. These companies actively respond to sustainability. Thus
they need to consider multiple conflicting goals that include some non-
monetary goals related to CO2 emissions, society and the suppliers’
comprehensive value in addition to the monetary goal. Under the reg-
ulatory environment, the proposed model provides a tool for these
companies to select multiple suitable suppliers among those suppliers
who are willing to cooperate and act in compliance in the case of un-
certainty.

In the scope of this research work, the issues of imprecise random
distribution of uncertain input data have been investigated and ad-
dressed by developing a new distributionally robust goal programming
method. In further work, the issues of imprecise possibility distribution
of uncertain parameters can also be studied and investigated by the
fuzzy optimization method (Bai, Zhang, & Liu, 2018; Liu, Chen, Liu, &
Qin, 2013) and parametric credibilistic optimization method (Liu, Bai,
& Yang, 2017). Furthermore, the implementation of other ambiguity
sets for the uncertain parameters in the sustainable SS/OA problem can
be studied in future works.

Fig. 9. The deviations d4 under different weights.

Table 8
Two sets of performance coefficients.

Case A S1 S2 S3 S4 S5

wj
eco 0.508915 0.56469 0.540057 0.437148 0.571704

wj
env 0.52003 0.503307 0.466368 0.46827 0.478947

wj
soc 0.454708 0.49308 0.570297 0.513594 0.546273

Case B S1 S2 S3 S4 S5
wj

eco 0.562485 0.48402 0.462906 0.534292 0.517256

wj
env 0.57477 0.431406 0.399744 0.57233 0.433333

wj
soc 0.502572 0.42264 0.488826 0.627726 0.494247

R. Jia, et al. Computers & Industrial Engineering 140 (2020) 106267

13



Declaration of Competing Interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work are supported partially by the National Natural Science
Foundation of China (No. 61773150), the National Major Science and
Technology Projects of China (No. 2018YF0500702-3), the Youth
Natural Science Foundation of Hebei Province (No. A2016204057) and
the Post-graduate’s Innovation Fund Project of Hebei University (No.
hbu2019ss029).

References

Aissaoui, N., Haouari, M., & Hassini, E. (2007). Supplier selection and order lot sizing
modeling: A review. Computers & Operations Research, 34, 3516–3540.

Azadnia, A. H., Saman, M. Z. M., & Wong, K. Y. (2015). Sustainable supplier selection and
order lot-sizing: An integrated multi-objective decision-making process. International
Journal of Production Research, 53(2), 1–26.

Babbar, C., & Amin, S. H. (2018). A multi-objective mathematical model integrating
environmental concerns for supplier selection and order allocation based on fuzzy
QFD in beverages industry. Expert Systems with Applications, 92, 27–38.

Bai, X. J. (2015). Credibility-based biobjective fuzzy optimization for supplier selection
problem with disruption. Mathematical Problems in Engineering, Ariticle ID: 256428.

Bai, X. J., Zhang, F., & Liu, Y. K. (2018). Modeling fuzzy data envelopment analysis under
robust input and output data. RAIRO-Operations Research, 52, 619–643.

Bai, X. J., Li, X., Jia, R. R., & Liu, Y. K. (2019). A distributionally robust credibilistic
optimization method for the economic-environmental-energy-social sustainability
problem. Information Sciences, 501, 1–18.

Ben-Tal, A., & Hochman, E. (1972). More bounds on the expectation of a convex function
of a random variable. Journal of Applied Probability, 9, 803–812.

Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. United States of
America: Princeton University Press.

Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of
linear programming. Management Science, 4(1), 1–113.

Chiu, M. C., & Chiou, J. Y. (2016). Technical service platform plaaning based on a
company’s competitive advantage and future marker trends: A case study of an IC
foundry. Computers & Industrial Engineering, 99, 503–517.

Coyle, J. J., Thomchick, E. A., & Ruamsook, K. (2015). Environmentally sustainable
supply chain management: An evolutionary framework. Marketing Dynamism &
Sustainability: Things Change, Things Stay the Same, Springer.

Gabrel, V., Murat, C., & Thiele, A. (2014). Recent advances in robust optimization: An
overview. European Journal of Operational Research, 235(3), 471–483.

Ghadimi, P., Toosi, F. G., & Heavey, C. (2018). A multi-agent systems approach for sus-
tainable supplier selection and order allocation in a partnership supply chain.
European Journal of Operational Research, 269, 286–301.

Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., & Turskis, Z. (2017). A new multi-criteria
model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation
and order allocation with environmental considerations. Computers & Industrial
Engineering, 112, 156–174.

Gören, H. G. (2018). A decision framework for sustainable supplier selection and order
allocation with lost sales. Journal of Cleaner Production, 183, 1156–1169.

Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable
order allocation and sustainable supply chain network strategic design with sto-
chastic demand using a novel robust hybrid multi-objective metaheuristic. Computers

& Operations Research, 62, 112–130.
Hamdan, S., & Cheaitou, A. (2017). Dynamic green supplier selection and order allocation

with quantity discounts and varying supplier availability. Computers & Industrial
Engineering, 110, 573–589.

Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green
criteria: An MCDM and multi-objective optimization approach. Computers and
Operations Research, 81, 282–304.

Jia, R. R., & Bai, X. J. (2018). Robust optimization approximation of amiguous P-model
and its application. Mathematical Problems in Engineering, Article ID:5203127,14
pages.

Jia, R. R., Bai, X. J., Song, F. X., & Liu, Y. K. (2019). Optimizing sustainable development
problem under uncertainty: Robust vs fuzzy optimization methods. Journal of
Intelligent & Fuzzy Systems, 37, 1311–1326.

Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., & Diabat, A. (2013). Integrated fuzzy
multi criteria decision making method and multiobjective programming approach for
supplier selection and order allocation in a green supply chain. Journal of Cleaner
Production, 47, 355–367.

Kellner, F., & Utz, S. (2019). Sustainability in supplier selection and order allocation:
Combining integer variables with Markowitz portfolio theory. Journal of Cleaner
Production, 214, 462–474.

Liu, Y. K., Chen, Y. J., Liu, Y., & Qin, R. (2013). Fuzzy optimization methods with appli-
cations. Beijing: Science Press.

Liu, Y. K., Bai, X. J., & Yang, K. (2017). Parametric credibilistic optimization methods.
Beijing: Science Press.

Liu, P. D., Gao, H., & Ma, J. H. (2019). Novel green supplier selection method by com-
bining quality function deployment with partitioned Bonferroni mean operator in
interval type-2 fuzzy environment. Information Sciences, 490, 292–316.

Ma, L., & Du, N. N. (2018). A bi-objective distributionally robust model on green supplier
selection of SCN design with demand uncertainty. Journal of Uncertain Systems, 12(4),
243–255.

Mari, S. I., Memon, M. S., Ramzan, M. B., Qureshi, S. M., & Iqbal, M. W. (2019).
Interactive fuzzy multi criteria decision making approach for supplier selection and
order allocation in a resilient supply chain. Mathematics, 7(2), 137.

Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order
allocation in reverse logistics systems under supply and demand uncertainty. Expert
Systems with Applications, 42, 6237–6254.

Mohammed, A., Setchi, R., Filip, M., Harris, I., & Li, X. (2018). An integrated metho-
dology for a sustainable two-stage supplier selection and order allocation problem.
Journal of Cleaner Production, 192, 99–114.

Mohammed, A., Harris, I., & Kannan, G. (2019). A hybrid MCDM-FMOO approach for
sustainable supplier selection and order allocation. International Journal of Production
Economics, 217, 171–184.

Moheb-Alizadeha, H., & Handfield, R. (2019). Sustainable supplier selection and order
allocation: A novel multi-objective programming model with a hybrid solution ap-
proach. Computers & Industrial Engineering, 129, 192–209.

Mirzaee, H., Naderi, B., & Pasandideh, S. H. R. (2018). A preemptive fuzzy goal pro-
gramming model for generalized supplier selection and order allocation with incre-
mental discount. Computers & Industrial Engineering, 122, 292–302.

Nazari-Shirkouhi, S., Shakouri, H., Javadi, B., & Keramati, A. (2013). Supplier selection
and order allocation problem using a two-phase fuzzy multi-objective linear pro-
gramming. Applied Mathematical Modelling, 37, 9308–9323.

Postek, K., Ben-Tal, A., den Hertog, D., & Melenberg, B. (2018). Robust optimization with
ambiguous stochastic constraints under mean and dispersion information. Operations
Research, 66(3), 814–833.

Scarf, H. E. (1958). A min-max solution to an inventory problem. In K.J. Arrow, S. Karlin,
H.E. Scarf (Eds.), Studies in the mathematical theory of inventory and production,
Stanford University Press, Stanford.

Shadkam, E., & Bijari, M. (2017). Multi-objective simulation optimization for selection
and determination of order quantity in supplier selection problem under uncertainty
and quality criteria. International Journal of Advanced Manufacturing Technology,

Fig. 10. Optimal result under different performance coefficients.

R. Jia, et al. Computers & Industrial Engineering 140 (2020) 106267

14

http://refhub.elsevier.com/S0360-8352(20)30001-2/h0015
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0015
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0020
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0020
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0020
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0025
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0025
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0025
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0035
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0035
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0040
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0040
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0040
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0045
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0045
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0050
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0050
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0055
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0055
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0060
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0060
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0060
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0070
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0070
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0075
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0075
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0075
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0080
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0080
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0080
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0080
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0085
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0085
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0090
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0090
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0090
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0090
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0095
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0095
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0095
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0100
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0100
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0100
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0110
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0110
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0110
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0115
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0115
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0115
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0115
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0120
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0120
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0120
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0125
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0125
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0130
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0130
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0135
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0135
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0135
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0140
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0140
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0140
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0145
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0145
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0145
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0150
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0155
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0155
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0155
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0160
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0165
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0165
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0165
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0170
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0170
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0170
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0175
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0175
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0175
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0180
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0180
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0180
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0190
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0190
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0190


93(1–4), 161–173.
Vahidi, F., Ali Torabi, S., & Ramezankhani, M. J. (2018). Sustainable supplier selection

and order allocation under operational and disruption risks. Journal of Cleaner
Production, 174, 1351–1365.

Žáčková, J. (1966). On minimax solutions of stochastic linear programming problems.
Časopis pro Pěston Matematiky, 91, 423–430.

Zhang, P. Y., & Yang, G. Q. (2018). Safe tractable approximations of ambiguous expected
model with chance constraints and applications in transportation problem. Journal of
Uncertain Systems, 12(2), 151–160.

Xu, Z., Qin, J. D., Liu, J., & Martínez, L. (2019). Sustainable supplier selection based on
AHPSort II in interval type-2 fuzzy environment. Information Sciences, 483, 273–293.

R. Jia, et al. Computers & Industrial Engineering 140 (2020) 106267

15

http://refhub.elsevier.com/S0360-8352(20)30001-2/h0190
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0195
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0195
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0195
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0205
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0205
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0210
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0210
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0210
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0215
http://refhub.elsevier.com/S0360-8352(20)30001-2/h0215

	Sustainable supplier selection and order allocation: Distributionally robust goal programming model and tractable approximation
	Introduction
	Literature review
	Multiple conflicting objectives in the sustainable SS/OA problem
	Uncertainty in the sustainable SS/OA problem
	Optimization methods in the sustainable SS/OA problem

	Distributionally robust sustainable SS/OA goal programming model
	Problem statement
	Model development

	Tractable approximation
	Case study
	Description of the case study
	Computational results
	Sensitivity analysis
	Effects of parameter σ and probability level ∊ on decisions
	Effects of cost uncertainty on decisions
	Effects of CO2 emissions uncertainty on decisions
	Effects of joint cost and CO2 emissions uncertainty on decisions
	Effects of demand uncertainty on decisions
	Effects of weights and performance coefficients on decisions

	Managerial implications

	Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References




