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Abstract This paper is concerned with the chaotic
dynamics of a rotating pendulum system with bistable
characteristics subjected to a viscous damping and a
harmonic forcing. As a prototype of the single-degree-
of-freedom system with bistable characteristics, this
pendulum system exhibits a transition from smooth
to discontinuous dynamics by changing a geometri-
cal parameter. The dynamic behaviors of the unper-
turbed system with irrational nonlinearity bear signif-
icant similarities to the coupling of a simple pendu-
lum and the smooth and discontinuous (SD) oscillator
with the coexistence of the standard homoclinic orbits
of Duffing type and pendulum type and the coexis-
tence of the nonstandard homoclinic orbits of SD type
and pendulum type in the smooth and discontinuous
case, respectively. For the perturbed smooth system,we
present an approximate technique to analytically obtain
the lower bound line for horseshoes chaos arising from
the homoclinic orbits of Duffing-type and Pendulum-
type tangling, which overcomes the natural difficulties
of solving the analytical expression of the homoclinic
orbits and calculating the complicated Melnikov inte-
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grals. The chaotic thresholds of the perturbed discon-
tinuous system are calculated by applying the numeri-
cal technique due to its non-smooth feature. Numerical
simulations are carried out to certify the chaotic thresh-
olds, which show the efficiency of the proposed tech-
niques and demonstrate the predicated chaoticmotions.
Finally, different types of chaotic motions are illus-
trated via the cylindrical phase portraits. The contri-
bution of this study is also helpful for exploring the
dynamical behaviors of the complex nonlinear dynam-
ical system containing the standard homoclinic or het-
eroclinic orbit in terms of the quantitative calculation.

Keywords Rotating pendulum · Bistable characteris-
tics · Melnikov method · Chaotic threshold · Irrational
nonlinearity

1 Introduction

Pendulum [1–3] is a simple system that is usually
related to great discoveries in engineering applications
[4], artificial intelligence [5], scientific education [6],
medicine [7], etc. In particular, an explosion of pendu-
lum studies has produced afloodof information on non-
linear dynamics in termof oscillations [8–10], rotations
[11–13], bifurcations [14–16], chaos [17–19], synchro-
nization [20–22], experimental investigation [23–26],
energy absorption [27–29], etc. This paper reports a
classical pendulum system with bistable characteris-
tics [30], which possesses a cylindrical transitions from
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smooth to discontinuous double well dynamics via
changing a geometrical parameter. Interestingly, this
rotating pendulum system has successfully combined
the bistable and non-smooth characteristicswith simple
pendulum.

With the discovery of chaos [31,32] and the advent
of computers, the chaotic dynamics of nonlinear
dynamical system has become a hot topic in recent
decades [33,34],which especially set off a new roundof
upsurge of the study of pendulum. In particular, Mel-
nikov method [35] has been greatly developed as an
analytical method to argue the existence of classical
chaos in one-dimensional nonlinear dynamical system
subjected to small time-periodic perturbation. Smooth
and non-smooth chaos prediction using the Melnikov
method has been widely described as a topical sub-
ject [36]. Notice that the key ingredient in Melnikov
method is based upon investigating generalized inte-
grals along homoclinic or heteroclinic orbits to nor-
mally hyperbolic invariant manifolds. In general, two
age-old natural problems with such approach are how
to solve the analytical expression of the singular closed
trajectory and calculate the corresponding generalized
Melnikov integrals. Inmost real-life systems, such ana-
lytical expression of the homoclinics or heteroclinic
orbits and the corresponding Melnikov integrals, how-
ever, would not be expressed through simple formulas.
In other words, very few nonlinear dynamical systems
can be solved analytically such as Duffing oscillator
[37,38], simple pendulum [39], inverted pendulum and
pendulum-like system [40] etc.

To solve such natural problems, many techniques
have been developed to detect the chaotic thresholds
for the complicated nonlinear dynamical system based
upon Melnikov method. In 2006, Awrejcewicz et al.
analytically predicted homoclinic bifurcation in a class
of double self-excitedDuffing-type oscillator bymeans
of Melnikov–Gruender approach and the predicted
stick-slip chaotic motion can be verified by numerical
simulations [41]. In 2008, Cao et al. introduced a triple
linear approximation [42] to semi-analytically calcu-
late the homoclinic tangling of an archetypal smooth
and discontinuous (SD) oscillator [43] subjected to
damping anddrivingwith the help ofMelnikovmethod.
In 2009, Zhang et al. calculated the analytical predic-
tion of multi-pulse chaotic motion for the nonlinear
non-planar oscillations of a cantilever beam by means
of the extended Melnikov method [44]. In 2012, Han
et al. utilized Taylor’s expansion technique to obtain

the analytical criteria of chaos arising from different
kinds of singular closed orbits tangling in the cou-
pled smooth and discontinuous oscillator [45]. Based
upon an extended Pade approximation, Feng et al.
made a Melnikov analysis to investigate the chaotic
dynamics for a classes of multi-stable dynamical sys-
tems with asymmetric potentials under the perturba-
tions of external and parametric excitation [46]. To
avoid Taylor’s expansion and retain natural characteris-
tics, in 2014, Tian et al. developed an effective extended
Melnikov method to derive the chaotic boundary of a
spring–pendulum system having a complicated nonlin-
ear restoring force with irrational and fractional terms
[47]. In 2018, Zhang et al. [48] studied the chaotic
behaviors of a nanoplate postulating nonlinearWinkler
foundation, which can be described to Duffing equa-
tion whose chaotic thresholds is examined analytically
by using Melnikov method. Recently, Ren et al. have
derived the possible parameter area that triggers chaotic
motion in the flexible shaft rotating–lifting system [49]
by means of Melnikov method. This work resolves
these two natural problems in a different way: an effec-
tive technique is proposed to semi-analytically obtain
the chaotic thresholds corresponding to the homoclinic
orbits of Duffing type and pendulum type in a rotating
pendulum system with bistable characteristics, which
overcome the natural difficulties of solving the analyti-
cal expression of the singular closed trajectory and cal-
culating the complicated generalized integrals in apply-
ingMelnikov method. It is concluded that this approxi-
mate technique can be widely used to study the thresh-
old ofHorseshoes chaos in complex dynamical systems
with standard homoclinic or heteroclinic orbits.

In fact, the headline fundingof this study is to present
an effective technique to analyze the horseshoes chaos
arising from the standard homoclinic or heteroclinic
orbits tangling in low-dimensional nonlinear dynami-
cal system subjected to small time-periodic perturba-
tion. To this end, this paper can be organized as follows.
In Sect. 2, the equation of motion for a rotating pen-
dulum systemwith bistable characteristics subjected to
both the viscous damping and external harmonic forc-
ing is derived. In Sect. 3, the phase trajectories of unper-
turbed system can be studied by means of the Hamilto-
nian function; in particular, the coexistence of the stan-
dard homoclinic orbits of Duffing type and pendulum
type and the coexistence of the nonstandard homoclinic
orbits of SD type and pendulum type are reported in the
smooth and discontinuous case. In Sect. 4, an effective
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(a) (b)

Fig. 1 (Color online) Model of the rotating pendulum with
bistable characteristics: a mechanical model and corresponding
simplified plane model (b)

technique is proposed to calculate the chaotic criteria
resulted in homoclinic tangling in the rotating pendu-
lum system by means of the Melnikov method, and
then, the numerical simulations are utilized to verify
the efficiency of the criteria. Finally we summarize the
conclusions andprovide the further challenge inSect. 5.

2 Equation of motion

A rotating mechanical model is illustrated in Fig. 1a,
which is regard as the coupling of simple pendulum
and spring–mass oscillator. For a better understand-
ing of geometrical structure of mechanical model, the
corresponding simplified plane model is constructed in
Fig. 1b.
Consider the rotating mechanical model subjected to
a viscous damping (with coefficient C related to lin-
ear velocity) as well as an external harmonic forcing
(with amplitude F0 and frequency �) in the direction
of motion, and then, the differential equation can be
expressed as

mLx ′′ + CLx ′ + mg sin x

+ kh sin x

(
1 − l√

L2 + h2 − 2hL cos x

)
= F0 cos�t,

(1)

where the prime denotes derivative with respect to time
t , x represents the angular displacement of motion, m
corresponds to the quality of the lump mass, L is the
length of massless rod, l and k are the free length and

stiffness of spring, h represents the distance between
the point A and point B, always assumed h ≥ L and g
is the gravitational constant, respectively.

Introducing non-dimensional time t = √
g/L t and

defining L = l, a dimensionless form of this rotating
pendulum system (1) is given by

ẍ + ξ ẋ + sin x + qλ sin x

(
1 − 1√

1 + λ2 − 2λ cos x

)
= f0 cosωt,

(2)

where

ξ = C

m

√
L

g
, ωp =

√
g

L
, ωs =

√
k

m
,

q = ω2
s

ω2
p
, λ = h

L
, f0 = F0

mg
, ω =

√
L

g
�.

Note that the dot denotes derivative with respect to t
in system (2). One systemic parameter q represents
the ratio of natural frequency between spring–mass
oscillator and simple pendulum, and the other systemic
parameter λ reflects the geometrical structure of the
proposed model, respectively. Note that a transition
from the smooth dynamics to the discontinuous dynam-
ics occurs on system (2) by decreasing the smoothness
parameter λ to 1 from a mathematical point of view.

3 Standard and nonstandard homoclinic orbits

In this section, the phase trajectories of unperturbed
system can be studiedwith the help of the Hamiltonian;
in particular, the coexistenceof the standardhomoclinic
orbits of Duffing type and pendulum type and the coex-
istence of the nonstandard homoclinic orbits of SD type
and pendulum type are reported in the smooth and dis-
continuous case.

When f0 = 0 and ξ = 0, the unperturbed system
of the rotating pendulum (2) can be written as a two-
dimensional one

⎧⎨
⎩
ẋ = y,

ẏ = − sin x − qλ sin x

(
1 − 1√

1 + λ2 − 2λ cos x

)
.

(3)
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Fig. 2 (Color online) a
Potential surface of
unperturbed system (3) in
the xλV plane for q = 2, b
potential surface in the xqV
plane for λ = 1.2. c Effect
of parameter λ on potential
curves, d effect of parameter
q on potential curves

(a) (b)

(c) (d)

Note that we define x ∈ [−π, π ] due to its periodicity.
Letting ẋ = 0 and ẏ = 0, the equilibria of system (3)
can be expressed as

(x1, y1) = (0, 0),
(
x2,3, y2,3

)
(4)

= (±π, 0),
(
x4,5, y4,5

)
= (± arccos ρ, 0), ρ = 1 + λ2

2λ
− q2λ

2(1 + qλ)2
,

when |ρ| < 1. According to the eigenvalues at equilib-
ria (xi , yi ), we found that the conservative system (3)
possesses three saddle points

(
x1,2,3, y1,2,3

)
and two

centers
(
x4,5, y4,5

)
. The detailed analysis is shown in

Appendix (a) and (b) for ξ = 0.
In order to clarify the origin of non-smoothness in

the conservative system (3), especially the effects of
parameters λ and q on potential energy V (x) of the
conservative system (3),

V (x) = − (1 + qλ) cos x − q
√
1 + λ2 − 2λ cos x

+2qλ − q + 1,

(5)

the potential energy is plotted in Fig. 2. For the con-
venience of analysis, we always assume that the value
of potential energy is zero for x = 0 in Eq. (5). When
q = 2, Fig. 2a shows a potential surface in the xλV -
plane which means that the conservative system (3)
bears a transitions from single potential well to double
potential well by decreasing parameter λ. In particular,
for λ = 1, the potential energy V (x) of non-smooth
system can be written as

V (x) = − (1 + q) cos x − 2q
∣∣ sin x

2

∣∣ + q + 1. (6)

Clearly, the derivative of V (x) at x = 0 suddenly
switches from zero to nonexistence due to the absolute
value function when parameter λ is reduced to one. To
further explore the effect of parameter λ on the poten-
tial curves, especially non-smoothness, the potential
curves are plotted for different values of parameter λ

in Fig. 2c. When λ = 1.2, Fig. 2b displays a poten-
tial surface in the xqV -plane. It is found that system
exhibits a transitions from single potential well to dou-
ble potential well as parameter q increases; the details
are shown in Fig. 2d.
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Fig. 3 (Color online) a
Phase portraits of smooth
case with the coexistence of
the homoclinic orbits of
Duffing type (hom1) and
pendulum type (hom2) for
q = 3, λ = 1.2, b phase
portraits of discontinuous
case with the coexistence of
the nonstandard homoclinic
orbit of SD type (Dhom1)
and the pendulum type
(Dhom2) for q = 2, λ = 1

(a) (b)

Then we can derive the Hamiltonian function which
written as follows

H(x, y) = y2

2
− (1 + qλ) cos x − q

√
1 + λ2 − 2λ cos x

+2qλ − q + 1.

(7)

With the help of the Hamiltonian function (7), for
H(x, y) = E , the representative phase trajectories of
system (3) are plotted for the chosen parameters q and
λ in Fig. 3. This system exhibits similar behavior of
the double well dynamics with the coexistence of the
homoclinic orbits of Duffing type and pendulum type
marked by hom1 and hom2, as shown in Fig. 3a. From a
mathematical standpoint, we can transform the smooth
system into non-smooth system with the nonstandard
homoclinic orbits of SD type [43] (Dhom1) and pen-
dulum type (Dhom2) by diminishing the geometrical
parameterλ to 1. Similarly, the nonstandard homoclinic
orbits of SD type (blue) connecting a saddle-like point
(0, 0) and the nonstandard homoclinic orbits of pendu-
lum type (red) connecting two saddle point (±π, 0) are
coexistence and depicted in Fig. 3b.
Assuming f0 = 0 and ω = 0, the dynamic behav-
iors of the weak damping pendulum system can be
investigated by means of equilibrium analysis, phase
portraits and attractive basin. To explore the effect of
dissipative term ξ on five equilibria (xi , yi ), the Jaco-
bian matrix and the corresponding characteristic equa-
tions are introduced in dissipative system with bistable
characteristics, as shown in Appendix. When the dis-
sipative term ξ is sufficiently small, we conclude that
(x1,2,3, y1,2,3) are saddle points with two unequal real
eigenvalues and (x4,5, y4,5) represent a pair of sta-

ble focuses with conjugate virtual eigenvalues. Due to
the existence of positive dissipative term ξ , the closed
phase trajectories in Fig. 3 will break and then tend
to stable equilibria (x4,5, y4,5) in the form of inward
spiral, as shown in Fig. 4. Figure 4 shows the attrac-
tive basions of two stable equilibria (x4,5, y4,5) and
the corresponding perturbed manifolds over a period
x ∈ [−π, π ]. Note that the stablemanifolds correspond
to the boundaries of two attractive basion denoted by
the gray region and the dark region. Figure 4a depicts
the damped behavior of the smooth case, where the
stable manifolds denoted by S get infinitely close to
the saddle points and the unstable manifolds marked
by U is away from the saddle points and then flows
indefinitely into the stable equilibria (x4,5, y4,5). Simi-
larly, the damped behavior of the discontinuous case
is plotted in Fig. 4b. The details of all parameters
taken in Fig. 4 can be found in the corresponding
captions.

4 Chaotic dynamics

Smooth and non-smooth chaos prediction using the
Melnikov method has been widely described as a topi-
cal subject [36,39]. In this section, Melnikovmethod is
employed to obtain the chaotic thresholds for the coex-
istence of the standard homoclinic orbits of Duffing
type and pendulum type and the coexistence of the non-
standard homoclinic orbits of SD type and pendulum
type in smooth and discontinuous cases, respectively.

Then we will give the detailed process of Melnikov
analysis for the perturbed system (2), the expository
discussions of theory are seen in [35]. Moreover, we
introduce the following notation in system (2):
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(a) (b)

Fig. 4 (Color online) Damped behavior of the pendulum sys-
tem (2) for f0 = 0, ω = 0 and ξ = 0.2, a attractive basin of
the smooth case for q = 3 and λ = 1.2, b attractive basin of

the discontinuous case for q = 2 and λ = 1 , respectively (the
dark region represents the attractive basin of point (x4, y5) and
the gray region denotes the attractive basin of point (x5, y5))

X =
(
x
y

)
, F(X) =

(
y
F(x)

)
,

G(X, t) =
(
0
−ξ y + f0 cosωt

)
,

where

F(X (t)) ∧ G(X (t), t + τ) = −ξ y2(t) + y(t) f0 cosω(t + τ),

where a ∧ b = a1b2 − a2b1, for any a = (a1, a2)T

and b = (b1, b2)T, and the corresponding Melnikov
function [35,39,42] of system is given by

M(τ ) = −ξ

∫ +∞

−∞
y2(t) dt + f0∫ +∞

−∞
y(t) cosω(t + τ) dt. (8)

The Melnikov function M(τ ) = 0 has zero roots for τ ,
which indicates that the stable and unstable manifolds
will intersect each other. Once the stable and unstable
manifolds intersect transversely, they will intersect an
infinite number of times. The phase space will have
rapid expansion and contraction which will eventually
lead to horseshoe dynamics [39].

4.1 Melnikov analysis for the smooth system

Note that the dynamic behaviors of the unperturbed
smooth system (3) with irrational nonlinearity are sim-
ilar to simple pendulum coupled with SD oscillator
with the coexistence of the homoclinic orbits ofDuffing
type and pendulum type in Sect. 3. Since the analytical
expressions for the homoclinic orbits of Duffing type

and pendulum type cannot be expressed through sim-
ple formulas due to its strongly irrational nonlinearity,
two approximate analytical solutions can be defined by
means of themathematical characteristics of the homo-
clinic orbits to analytically calculate theMelnikov inte-
grals.

The homoclinic orbits of Duffing type (hom1) con-
necting a standard saddle point (0, 0) is plotted with
green in Fig. 5a, of which the main mathematical fea-
tures satisfy

lim
t→+∞ xhom1

	1,2
(t) = 0,

lim
t→−∞ xhom1

	1,2
(t) = 0. (9)

Based upon the mathematical features and the analyti-
cal expression of conventional homoclinic orbits [39],
the approximate analytical solution of the homoclinic
orbits of Duffing type can be defined as

(
xhom1
	1,2

(t), yhom1
	1,2

(t)
)

=
(
∓A1 cot

−1 (B1 cosh (C1 t)),

± A1B1C1 sinh (C1 t)

1 + B2
1 cosh

2 (C1 t)

)
,

(10)

where t ∈ (−∞,+∞) and A1 > 0, B1 > 0,C1 > 0.
Note that the details of the homoclinic orbits of pendu-
lum type (hom2) colored in red are described in Fig. 5a,
of which the main mathematical features satisfy

lim
t→+∞ xhom2

	1,2
(t) = ±π,

lim
t→−∞ xhom2

	1,2
(t) = ∓π. (11)
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Fig. 5 (Color online) a
Details of the standard
homoclinic orbits of
Duffing type (hom1) and
pendulum type (hom2) for
the smooth system, b details
of the nonstandard
homoclinic orbits of SD
type (Dhom1) and
pendulum type (Dhom2) for
the discontinuous system

(a) (b)

Fig. 6 (Color online)
Comparisons between the
numerical solution marked
by the black dotted lines and
the approximate analytical
solution marked by the red
solid lines, a and c
homoclinic orbits of Duffing
type for q = 3, λ = 1.5 and
q = 3, λ = 1.2, b and d
homoclinic orbits of
pendulum type for
q = 3, λ = 1.5 and
q = 3, λ = 1.2, respectively

(a) (b)

(c) (d)

Similarly, the approximate analytical solutions of the
homoclinic orbits of pendulum type connecting two
standard saddle points (−π, 0) and (π, 0) can be
defined as

(
xhom2
	1,2

(t), yhom2
	1,2

(t)
)

=
(
±A2 tan

−1 (B2 sinh (C2 t)),

± A2B2C2 cosh (C2 t)

1 + B2
2 sinh

2 (C2 t)

)
, (12)

where t ∈ (−∞,+∞) and A2 > 0, 1 > B2 >

0,C2 > 0.

Then, we begin to calculate the Melnikov integrals
corresponding to the homoclinic orbits of Duffing type
and pendulum type based upon the approximate ana-
lytical solutions. It is worth pointing out that yhom1

	1,2
(t)

are odd function in Eq. (10), and then, the Melnikov
function (8) for the homoclinic orbits of Duffing type
denoted by green in Fig. 5a can be expressed as

Mhom1(τ ) = −ξ

∫ +∞

−∞
(yhom1

	1,2
(t))2dt

− f0 sinωτ

∫ +∞

−∞
yhom1
	1,2

(t) sinωt dt. (13)
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(a) (b)

Fig. 7 Chaotic thresholds of the homoclinic orbits of Duffing
type denoted by the solid line ( f0/ξ = Rhom1(ω)) and the
homoclinic orbits of pendulum type denoted by the dashed line

( f0/ξ = Rhom2(ω)) for a q = 3, λ = 1.5 ,Rhom1(1.8) =
0.7556, Rhom2(1.8) = 5.3411 and b q = 3, λ = 1.2,
Rhom1(1.5) = 1.0859, Rhom2(1.5) = 4.7940, respectively

TheMelnikov integrals for the homoclinic orbits of the
Duffing type can be derived as

Ihom1
1 =

∫ +∞

−∞
(yhom1

	1,2
(t))2dt =

∫ +∞

−∞

(
± A1B1C1 sinh (C1 t)

1 + B2
1 cosh

2 (C1 t)

)2

dt

= A2
1C1

⎛
⎝1 − B2

1

2
√
1 + B2

1

ln

⎛
⎝2 + B2

1 + 2
√
1 + B2

1

B2
1

⎞
⎠

⎞
⎠ , (14)

Ihom1
2 =

∫ +∞

−∞
yhom1
	1,2

(t) sinωtdt =
∫ +∞

−∞

(
± A1B1C1 sinh (C1 t)

1 + B2
1 cosh

2 (C1 t)

)
sinωt dt

= ±A1π sin

(
ω

C1
sinh−1 1

B1

)
sech

(
πω

2C1

)
. (15)

It is worth reiterating here that Mhom1(τ ) = 0 has sim-
ple zero for τ if and only if the following inequality
holds:

f0
ξ

>

∣∣∣∣∣ I
hom1
1

Ihom1
2

∣∣∣∣∣ = Rhom1(ω). (16)

Clearly, the approximate analytical solutions yhom2
	1,2

(t)
are even function in Eq. (12). So theMelnikov function
(8) for the homoclinic orbits of pendulum type colored
in red in Fig. 5a can be expressed as

Mhom2(τ ) = −ξ

∫ +∞
−∞

(yhom2
	1,2

(t))2dt

+ f0 cosωτ

∫ +∞
−∞

yhom2
	1,2

(t) cosωt dt .

(17)

Introducing symbols Ihom2
1 and Ihom2

2 , the Melnikov
integrals for the homoclinic orbits of the pendulum type
can be obtained as

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



An Approximate Technique to Test Chaotic Region in a Rotating Pendulum System

Fig. 8 (Color online) a
Bifurcation diagram for f0
versus x with the thresholds
f hom1
0 = 0.0456 marked by

the solid line for q = 3, λ =
1.5, ξ = 0.2, ω = 1.5, and
the corresponding
Lyapunov exponents (b).
When q = 3, λ = 1.2, ξ =
0.2, ω = 1.7, c bifurcation
diagram for f0 versus x
with the thresholds
f hom1
0 = 0.0456 marked by

the solid line, and the
corresponding Lyapunov
exponents (d). e and f Two
types of chaotic attractors
for f0 = 0.3 and 2.3, g and
h corresponding stable and
unstable manifolds

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 9 (Color online) When
q = 3, λ = 1.5, ξ =
0.06, ω = 1.8, a the
bifurcation diagram for f0
versus x with the thresholds
f hom1
0 = 0.0456 marked by

the solid line and
f hom2
0 = 0.3205 marked by

the dash line, and the
corresponding Lyapunov
exponents (b). c Bifurcation
diagram for f0 versus x
with the thresholds
f hom1
0 = 0.0434 marked by

the solid line and
f hom2
0 = 0.1918 marked by

the dash line at q = 3, λ =
1.2, ξ = 0.04, ω = 1.5, d
the corresponding Lyapunov
exponents, respectively

(a) (b)

(c) (d)

Ihom2
1 =

∫ +∞

−∞
(yhom2

	1,2
(t))2dt =

∫ +∞

−∞

(
∓ A2B2C2 cosh (C2 t)

1 + B2
2 sinh

2 (C2 t)

)2

dt;

= A2
2C2

⎛
⎝1 − B2

2

2
√
1 − B2

2

ln

⎛
⎝2 − B2

2 − 2
√
1 − B2

2

B2
2

⎞
⎠

⎞
⎠ , (18)

Ihom2
2 =

∫ +∞

−∞
yhom2
	1,2

(t) cosωtdt =
∫ +∞

−∞

(
∓ A2B2C2 cosh (C2 t)

1 + B2
2 sinh

2 (C2 t)

)
cosωt dt

= ∓A2π cos

(
ω

C2
sinh−1

√
1

B2
2

− 1

)
sech

(
πω

2C2

)
. (19)

Similarly, Mhom2(τ ) = 0 has simple zero for τ if and
only if the following inequality holds:

f0
ξ

>

∣∣∣∣∣ I
hom2
1

Ihom2
2

∣∣∣∣∣ = Rhom2(ω). (20)

In order to detect the lower bound line for horseshoes
chaos of the perturbed pendulum system (2), we define
the function Rs(ω) as follows

Rs(ω) = min{Rhom1(ω), Rhom2(ω)}. (21)

In fact, no chaotic region can be given for the param-
eters satisfying f0/ξ < Rs(ω). On the contrary, the
chaotic motion must exist in the region satisfying
f0/ξ > Rs(ω).
Thus, two bistable examples are given to demon-

strate the above theoretical results. When q = 3, λ =
1.5 and q = 3, λ = 1.2, the unperturbed pendulum
system (3) bears the standard double well dynamics
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with the coexistence of the homoclinic orbits ofDuffing
type and pendulum type. The natural difficulty, how-
ever, is that the analytical expressions of two types of
homoclinic orbits cannot be obtained through simple
formulas due to its irrational nonlinearity.We therefore
introduce two types of approximate analytical solutions
corresponding to Eqs. (10) and (12), and determine the
parameters A1, B1,C1 and A2, B2,C2 by using numer-
ical fitting to overcome the natural difficulty. To ver-
ify its approximation, Fig. 6 illustrates the compar-
isons between the numerical solution denoted by the
black dotted line and the approximate analytical solu-
tionmarked by red solid line.When q = 3 andλ = 1.5,
the detailed comparisons of the solution xhom1

	1
(t) and

xhom2
	1

(t) corresponding to the homoclinic orbits of
Duffing type (hom1) and pendulum type (hom2) are
plotted in Fig. 6a, b, where the approximate analyti-
cal solutions xhom1

	1
(t) and xhom2

	1
(t) can be derived by

using numerical fitting and written as

xhom1
	1

(t) = −0.8081 cot−1 (0.5609 cosh (1.769 t)) ,

xhom2
	1

(t) = 2 tan−1 (0.8234 sinh (1.992 t)) .

(22)

Similarly, the comparisons between the numerical sim-
ulation denoted by black dotted line and the approxi-
mate analytical solution marked by red solid line are
displayed for q = 3 and λ = 1.2 in Fig. 6c, d. The
approximate analytical solutions xhom1

	1
(t) of the homo-

clinic orbits of Duffing type (hom1) and xhom2
	1

(t) of
the homoclinic orbits of pendulum type (hom2) can be
written as

xhom1
	1

(t) = −0.979 cot−1 (0.235 cosh (2.59 t)) ,

xhom2
	1

(t) = 2 tan−1 (0.7538 sinh (1.822 t)) .

(23)

As shown in Fig. 6, a good degree of correlation
is demonstrated between the approximate analytical
solution and the numerical solution of the homoclinic
orbits of Duffing type and pendulum type; the details
are shown in the corresponding captions. Based upon
the Melnikov integrals corresponding to Eqs. (14),
(15), (18) and (19), the Melnikovian detected chaotic
boundary for the perturbed pendulum system (2) with

q = 3, λ = 1.5 is plotted by letting f0/ξ = Rhom1(ω)

and f0/ξ = Rhom2(ω) in Fig. 7a. It is worth pointing
out that the boundary curves of the homoclinic orbits
of Duffing type (hom1) and pendulum type (hom2)
obtained by Melnikov method are denoted by the solid
line and the dashed line, respectively. Similarly, the
chaotic boundary for the perturbed pendulum system
(2) with q = 3, λ = 1.2 is plotted in Fig. 7b.
Then numerical simulations are utilized to detect the
efficiency of the criteria obtained by Melnikov anal-
ysis, including bifurcation diagram, largest Lyapunov
exponents, phase portraits, time history and Poincaré
section. Figure 8a, c displays the bifurcation diagram
for the external harmonic forcing f0 versus angular
displacement x with the theoretical threshold f0 =
Rs(ω) × ξ = 0.245 and 0.158 marked by the solid
line and the corresponding large Lyapunov exponents
are plotted in Fig. 8b, d. Figure 8c shows that there
exists a lot of chaos beyond the theoretical boundary
0.245. Furthermore, two typical chaotic attractors can
be presented for f0 = 0.3 and f0 = 2.3 in Fig. 8e,
f, respectively. To be more precise, the corresponding
stable (colored in red) and unstable (colored in blue)
manifolds of a saddle point P near (0, 0) and (π, 0) are
given in Fig. 8g, h, respectively, which indicates that
the transversal intersections of the stable and unstable
manifolds create the chaos in the sense of the Smale
horseshoe.

To consider periodic solution and chaotic motion in
more detail, the nonlinear dynamical technique is intro-
duced. When q = 3, λ = 1.5, ξ = 0.06 and ω = 1.8,
Fig. 9a demonstrates a bifurcation diagram for the har-
monic forcing f0 versus angular displacement x with
two detected criteria f hom1

0 = ξ ×Rhom1(ω) = 0.0456
and f hom2

0 = ξ ×Rhom2(ω) = 0.3205. Note that bifur-
cation diagrams colored in blue and red are calculated
with different initial conditions (x, y) = (1, 0) and
(−1, 0), respectively. Meanwhile, there exist various
periodic windows and chaotic regions in Fig. 9a. It
is obvious that non-chaotic range is observed below
the chaotic boundary f0 = ξ × Rs(ω) = 0.0456 pre-
dicted by Melnikov analysis which is denoted by the
solid line from this bifurcation diagram. In order to
verify the chaotic zone, Fig. 9b shows the correspond-
ing largest Lyapunov exponents with the initial condi-
tion (−1, 0). It is found that a good degree of correla-
tion is demonstrated between the bifurcation diagram
(Fig. 9a) and Lyapunov exponents (Fig. 9b). When
parameter f0 enlarges beyond above threshold value
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0.0456 reaching around 0.34, the system jumps to a
chaotic motion from a pair of coexisting period-1 solu-
tions and a pair of coexisting period-2 solutions. Notice
that these two coexisting period-1 solutions, colored
in red and blue, are symmetrical and the phase por-
traits orbits for f0 = 0.1 are presented in Fig. 10a, the
corresponding Poincaré section are marked by the yel-
low solid point and the green solid point, respectively.
Clearly, the time history of a pair of period-1 solutions
are displayedwith red and blue solid lines in Fig. 10b.A
period-3 solution [34] occurs at f0 = 0.6,while the cor-
responding phase portrait marked by black curve and
Poincaré section denoted by green points is displayed
in Fig. 10c, and the corresponding time history of the
period-3 solution is plotted in Fig. 10d. Meanwhile,
the digits are introduced to describe the law of periodic
motions. As parameter f0 increases, the different types
of chaotic motions of this system (2) are calculated for
f0 = 0.65 and 1.6, the corresponding chaotic attrac-
tors are displayed in Fig. 10e, g, respectively. Owing
to the coupling of simple pendulum and SD oscillator,
the chaotic attractor depicted in Fig. 10e bears signifi-
cant similarities to the structure of SD attractor, which
means that the pendulumballwill swing irregularly; the
details are shown in [43]. Clearly, the chaotic attractor
shown in Fig. 10g is similar to the coupling of pen-
dulum attractor and SD attractor, which represents the
mixedmotions of irregular oscillation and rotation. Fur-
thermore, the corresponding time histories are shown
in Fig. 10f, h, and the law of chaoticmotions are labeled
including oscillation and rotation, respectively.

Similarly, the bifurcation diagram is given for f0
versus x with two detected criteria f hom1

0 = ξ ×
Rhom1(ω) = 0.0434 and f hom2

0 = ξ × Rhom2(ω) =
0.1918 for parameters q = 3, λ = 1.2, ξ = 0.04, ω =
1.5 in Fig. 9c. The bifurcation diagrams colored in
blue and red start from different initial conditions
(x, y) = (1, 0) and (−1, 0), respectively, from which
the existence of a pair of period doubling series and
chaoticwindows can be seen. From this bifurcation dia-
gram, no chaotic motion is observed below the chaotic
boundary f0 = ξ ×Rs(ω) = 0.0434 predicted byMel-
nikov method which is marked by the solid line. The
corresponding largest Lyapunov exponents is plotted
from the initial condition (−1, 0) in Fig. 9d. These
two coexisting period-4 solutions and two coexisting
period-3 solutions [34], colored red and blue, are sym-
metrical, the orbits for f0 = 0.58 and 0.9 are presented
in Fig. 11a, c, and the corresponding Poincaré section

are marked by the yellow solid points and the green
solid points, respectively. Time histories are shown in
Fig. 11b, d, ofwhich the lawofmotion is describedwith
the digits. When f0 = 0.65, this system (2) exhibits
chaotic motion, of which the chaotic attractor is given
in Fig. 11e and the corresponding time history is plotted
in Fig. 11f. From the time history diagram, the system
exhibits the irregular oscillating and rotationalmotions;
however, the oscillating movement dominates and the
rotationmovement occasionally appears; the details are
shown in Fig. 11f. Unlike the above chaotic motion, the
dominance of the irregular rotation in thewhole chaotic
movement is presented, whose chaotic attractor is cal-
culated in Fig. 11g and the corresponding time history
is displayed in Fig. 11h.
To further detect the rationality of the chaotic boundary
derived by Melnikov method, for q = 3, λ = 1.2, ξ =
0.04, Fig. 12 shows a two-dimensional parameter space
plot in the range of ω ∈ [0, 4] and f0 ∈ [0, 2]. The
red and white regions depicted in Fig. 12, which can
be plotted by calculating the largest Lyapunov expo-
nents, correspond to the chaotic region with positive
Lyapunov exponent and non-chaotic region. For exam-
ple, the parameters f0 and ω take the value of red
region which means that the system exhibits a chaotic
motion and its largest Lyapunov exponents is a pos-
itive value. With the help of the Melnikov integrals
Eqs. (14), (15), (18) and (19), the Melnikovian to pre-
dict the border of chaos for the perturbed pendulum
system (2) are plotted by letting f0 = Rhom1(ω) × ξ

(black solid curve) and f0 = Rhom2(ω) × ξ (black
dashed curve), as shown in Fig. 12. Moreover, the the-
oretical threshold of chaotic regionmarked by the green
curve can be plotted by calculating f0 = Rs(ω) × ξ .
It is found that the chaotic region corresponding to the
red region shows a good agreement with the theoret-
ical analysis satisfying f0 > Rs(ω) × ξ . It is worth
reiterating here that the numerical studies have been
presented by using MATLAB and DYNAMICS [50]
softwares which allows one to investigate the nonlin-
ear dynamic behaviors by considering the time history,
bifurcation diagram, Poincaré map, Lyapunov expo-
nents and parameter space plot.

4.2 Melnikov analysis for the discontinuous system

When the geometrical parameter λ decreases to 1 from
the mathematical point of view, the rotating pendulum
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Fig. 10 (Color online)
When q = 3, λ = 1.5, ξ =
0.06, ω = 1.8, a phase
portraits and their Poincaré
section of a pair of period-1
solutions for f0 = 0.1, b
corresponding time histories
x(t), c phase portrait and its
Poincaré section of a
period-3 solution for
f0 = 0.6, d corresponding
time history x(t), e chaotic
attractor of SD type for
f0 = 0.95 and the
corresponding time history
(f), g chaotic attractor of
pendulum type for
f0 = 1.78 and its time
history (h), respectively

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Fig. 11 (Color online)
When q = 3, λ = 1.2, ξ =
0.04, ω = 1.5, a the phase
portraits and their Poincaré
section of a pair of period-4
solutions for f0 = 0.58, b
the corresponding time
histories x(t), c the phase
portraits of a pair of
period-3 solutions and their
Poincaré section for
f0 = 0.9, d the
corresponding time histories
x(t), e the chaotic attractor
for f0 = 0.65 and its time
history (f), g the chaotic
attractor for f0 = 1.6 and
its time history (h),
respectively

(a) (b)

(g) (h)

(e) (f)

(c) (d)
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system (1) becomes a non-smooth dynamical system
with a discontinuous nonlinear restoring force. The
chaotic dynamics [42,51] for the limit case of this pen-
dulum system is studied by using the numerical tech-
nique in this subsection. This non-smooth dynamical
system can be described as a piecewise smooth system
and written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = y

ẏ = f0 cosωt − ξ ẋ +

⎧⎪⎪⎨
⎪⎪⎩

− (1 + q) sin x + q cos
x

2
, x ∈ (0, π ]

0, x = 0

− (1 + q) sin x − q cos
x

2
, x ∈ (−π, 0).

(24)

We only consider one period x ∈ (−π, π ] for system
(24) due to the periodic nature. Note that the dynamic
behaviors of the unperturbed discontinuous system is
similar to simple pendulum coupled with SD oscilla-
tor with the coexistence of the nonstandard homoclinic
orbits of SD type and pendulum type in Sect. 3. The
phase trajectories of the nonstandard homoclinic orbits
of SD type (blue) and pendulum type (red) are plot-
ted in Fig. 13 and the corresponding implicit function
expressions are

	Dhom1
1,2 (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


+ :
{

(x, y)

∣∣∣∣ y2

2
− (1 + q) cos x − 2q sin

x

2
+ q + 1 = 0

}
,

x = 0 : (x, y) = (0, 0),


− :
{

(x, y)

∣∣∣∣ y2

2
− (1 + q) cos x + 2q sin

x

2
+ q + 1 = 0

}
,

(25)

and

	Dhom2
1,2 (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


+ :
{

(x, y)

∣∣∣∣ y2

2
− (1 + q) cos x − 2q sin

x

2
+ q − 1 = 0

}
,

x = 0 : (x, y) = (0,±β),


− :
{

(x, y)

∣∣∣∣ y2

2
− (1 + q) cos x + 2q sin

x

2
+ q − 1 = 0

}
.

(26)

It is worth pointing out that the phase space is divided
into two parts denoted by
+ and
− by the line x = 0.
Furthermore, the details of solutions xDhom1

	1,2
(t) for the

homoclinic orbits of SD type connecting a nonstandard
saddle point (0, 0)with blue are shown inFigs. 13 or 5b,
of which the main mathematical features for ∃ T0 > 0
satisfy

{ (
xDhom1
	1,2

(t), yDhom1
	1,2

(t)
)∣∣ (x(t), y(t)) ∈ 
±, t ∈ (−T0, T0)

} ⋃
(0, 0). (27)

Moreover, the details of solutions xhom2
	1,2

(t) for the
homoclinic orbits of pendulum type connecting two
saddle point (±π, 0) with red are shown in Figs. 13
or 5b, of which the main mathematical features satisfy
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Fig. 12 A two-dimensional parameter space plot for q = 3, λ =
1.2, ξ = 0.04 in the range of f0 ∈ [0, 2] and ω ∈ [0, 4] and
two chaotic boundaries (hom1 and hom2) derived by Melnikov
analysis (the red region corresponds to the chaotic region, the
white region represents non-chaotic region and the green curve
f0 = 0.04 × Rs(ω) is the theoretical boundary of chaos)

{(
xDhom2
	1,2

(t), yDhom2
	1,2

(t)
)∣∣ (x(t), y(t)) ∈ 
±, t ∈ (−∞, 0) ∪ (0,+∞)

} ⋃
(0,±β). (28)

We define that the trajectory crossing two planes 
+
and
− is continuous at point x = 0, so the non-smooth
homoclinic orbits should satisfy

lim
t→±T0

xDhom1
	1,2

(t) = 0, lim
t→±T0

yDhom1
	1,2

(t)

= 0, lim
t→0

xDhom1
	1,2

(t) = ∓α, (29)

lim
t→0

xDhom2
	1,2

(t) = 0, lim
t→0

yDhom2
	1,2

(t)

= ±β, lim
t→+∞ xDhom2

	1,2
(t) = ∓π. (30)

Due to the non-smooth characteristics at t = T0 of the
solutions xDhom1

	1,2
(t) for the homoclinic orbits of SD

type, the numerical technique is utilized to calculate
chaotic thresholds in the perturbed discontinuous sys-
tem.

Clearly, yDhom1
	1,2

(t) is odd function, so the Mel-
nikov function (8) for the homoclinic orbits of SD type
marked by blue in Fig. 5b can be expressed as

MDhom1(τ )= lim
ε→0

{
−ξ

∫ T0−ε

−(T0−ε)

(yDhom1
	1,2

(t))2dt− f0 sinωτ

∫ T0−ε

−(T0−ε)

yDhom1
	1,2

(t) sinωt dt

}
. (31)

where xDhom1
	1,2

(±(T0 − ε)) = ∓ε, as shown in Fig. 13.

Note that yDhom2
	1,2

(t) is a continuous even function for
t ∈ (−∞,+∞), the corresponding Melnikov function
(8) of the homoclinic orbits of pendulum type marked
by red in Fig. 5b become

MDhom2(τ ) = −ξ

∫ +∞

−∞
(yDhom2

	1,2
(t))2dt

+ f0 cosωτ

∫ +∞

−∞
yDhom2
	1,2

(t) cosωt dt .

(32)

With the aid of Hamiltonian function (7), we have

dxDhom1
	1,2

(t)

dt

= ∓
√
2 (1 + q) cos x + 2q

√
2 − 2 cos x − 2q − 2,

(33)

dxDhom2
	1,2

(t)

dt

= ±
√
2 (1 + q) cos x + 2q

√
2 − 2 cos x − 2q + 2.

(34)

Based upon Eqs. (33) and (34), the integrating equa-
tion yields

t =
∫ x

±α

dϕ

∓√
2 (1 + q) cosϕ + 2q

√
2 − 2 cosϕ − 2q − 2

> 0,

(35)

t =
∫ x

0

dϕ

±√
2 (1 + q) cosϕ + 2q

√
2 − 2 cosϕ − 2q + 2

> 0.

(36)

Let us substitute Eqs. (33) and (35) into Eq. (31), the
Melnikov integrals for the homoclinic orbits of SD type
can be obtained and expressed as
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Fig. 13 (Color online)
Phase trajectories of the
nonstandard homoclinic
orbits of SD type (Dhom1)
and pendulum type
(Dhom2) for the
discontinuous system. Note
that the trajectory is smooth
for (x, y) ∈ 
+ ∪ 
−,
while the trajectory is
non-smooth for x = 0

IDhom1
1 = lim

ε→0

∫ T0−ε

−(T0−ε)

(yDhom1
	1,2

(t))2dt = 2 lim
ε→0

∫ ±ε

±α

yDhom1
	1,2

(x) dx

= 2 lim
ε→0

∫ α

ε

√
2 (1 + q) cos x + 2q

√
2 − 2 cos x − 2q − 2 dx, (37)

IDhom1
2 = lim

ε→0

∫ T0−ε

−(T0−ε)

yDhom1
	1,2

(t) sinωtdt = 2 lim
ε→0

∫ ±ε

±α

sinωt dx

= 2 lim
ε→0

∫ α

ε

sin

(
ω

∫ x

α

dϕ√
2 (1 + q) cosϕ + 2q

√
2 − 2 cosϕ − 2q − 2

)
dx . (38)

Letting MDhom1(τ ) = 0, there exists simple zero
for τ if and only if the following inequality holds:

f0
ξ

>

∣∣∣∣∣ I
Dhom1
1

IDhom1
2

∣∣∣∣∣ = RDhom1(ω). (39)

Similarly, theMelnikov integrals for the homoclinic
orbits of pendulum type can be derived by substituting
Eqs. (34) and (36) into Eq. (32), and written as

IDhom2
1 =

∫ +∞

−∞
(yDhom2

	1,2
(t))2dt =

∫ ±π

∓π

yDhom2
	1,2

(x) dx;

= 2
∫ π

0

√
2 (1 + q) cos x + 2q

√
2 − 2 cos x − 2q + 2 dx, (40)

IDhom2
2 =

∫ +∞

−∞
yDhom2
	1,2

(t) cosωtdt =
∫ ±π

∓π

cosωt dx

= 2
∫ π

0
cos

(
ω

∫ x

0

dϕ√
2 (1 + q) cosϕ + 2q

√
2 − 2 cosϕ − 2q + 2

)
dx . (41)

It is concluded that MDhom2(τ ) = 0 possesses simple
zero for τ if and only if the following inequality holds:

f0
ξ

>

∣∣∣∣∣ I
Dhom2
1

IDhom2
2

∣∣∣∣∣ = RDhom2(ω); (42)
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Fig. 14 (Color online)
When q = 3, λ = 1, ξ =
0.04, ω = 2, a the chaotic
thresholds of the homoclinic
orbits of SD type denoted
by the solid line
( f0/ξ = Rhom1(ω)) and the
homoclinic orbits of
pendulum type denoted by
the dashed line
( f0/ξ = Rhom2(ω)), b the
bifurcation diagram for f0
versus x with the thresholds
f Dhom1
0 = 0.0687 marked

by solid line and
f hom2
0 = 0.4263 marked by

dash line, c the phase
portraits and their Poincaré
section of a pair of period-1
solutions for f0 = 0.06, d
the phase portrait and its
Poincaré section of a
period-3 solution for
f0 = 2, e and f the chaotic
attractors of discontinuous
case for f0 = 0.95 and
f0 = 2.5, respectively

(a) (b)

(c) (d)

(e) (f)

where the parameters α and β in Eqs. (35) and (38)
denoted in Fig. 5b satisfy the following equations

α = arccos

∣∣∣∣1 + 2q − q2

(1 + q)2

∣∣∣∣, β = 2. (43)

So as to detect the chaotic boundary of perturbed dis-
continuous system, we define the function

RD(ω) = min{RDhom1(ω), RDhom2(ω)}. (44)

It is clear that the non-chaotic region can be given
for the parameters satisfying f0/ξ < RD(ω), while

the chaotic motion must exist in the region satisfying
f0/ξ > RD(ω).
Then the numerical simulations are utilized to detect

the efficiency of the criteria. The boundaries detected
by the Melnikovian for the perturbed discontinuous
system are plotted by letting f0/ξ = RDhom1(ω) and
f0/ξ = RDhom2(ω), which are marked by solid and
dashed lines in Fig. 14a, respectively. For parame-
ters q = 3, λ = 1, ξ = 0.04, ω = 2 taken fixed,
Fig. 14b presents a bifurcation diagram for f0 versus
x starting with different initial conditions (1,0) col-
ored in blue and (-1,0) colored in red, respectively.
As can be seen in this bifurcation diagram, the non-
chaotic region is observed below the boundary f0 =
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Fig. 15 (Color online)
Cylindrical phase portraits
of the chaotic motions in the
perturbed pendulum system.
a Oscillation of smooth case
for q = 3, λ = 1.5, ξ =
0.06, ω = 1.8, f0 = 0.95, b
the oscillation of
discontinuous case for
q = 3, λ = 1, ξ =
0.04, ω = 2, f0 = 0.95, c
the oscillation and rotation
of smooth case for
q = 3, λ = 1.5, ξ =
0.06, ω = 1.8, f0 = 1.78, d
the oscillation and rotation
of discontinuous case for
q = 5, λ = 1, ξ = 0.4, ω =
1.5, f0 = 2, e
q = 8, λ = 1.5, ξ =
0.5, ω = 1, f0 = 2, f
q = 2, λ = 1.5, ξ =
0.5, ω = 1, f0 = 2

ξ × RD(ω) = 0.0687 calculated by Melnikov method
which is denoted by the solid line. While the param-
eter f0 enlarges beyond above boundary value 0.0687
reaching around 0.85, the pendulum jumps to a chaotic

motion starting from a pair of period-1 motions, of
which phase portraits and their Poincaré sections can
be depicted in Fig. 14c. Moreover, the phase portrait
marked by black solid line and its Poincaré section
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Fig. 16 (Color online)
Non-smooth chaotic
motion, a phase portrait for
t ∈ [0, 1000] starting from
initial condition (1, 0), b
and c time histories x(t) and
y(t), d time history y(t)
with non-smooth points

(a) (b)

(c) (d)

denoted by green solid points of the periodic-3 solu-
tion are displayed; the details are shown in Fig. 14d.
The oscillating chaotic attractor of perturbed discontin-
uous system can be calculated in Fig. 14e for parameter
f0 = 0.65. When parameter f0 = 2.5, the discontin-
uous chaotic attractor of the oscillation coupled with
rotation is calculated as shown in Fig. 14f.

4.3 Cylindrical phase portraits for different types of
chaotic motions

The perturbed rotating pendulum system (2) exhibits
different types of chaotic motions due to the tight cou-
pling nonlinearities of simple pendulum (Rotation) and
SD oscillator (Oscillation). In order to describe differ-
ent kinds of chaotic motions, the analysis of cylindrical
phase portraits is introduced to effectively distinguish
the rotational motion (trajectory twining around the
cylinder) with the oscillating motion (trajectory attach-
ing to the surface of the cylinder) by means of the map-
ping X = cos x,Y = sin x, Z = ẋ in this subsection.

Figure. 15a presents a phase portrait on the unit
cylinder marked by black solid line, which seems to
attach the phase portrait to the surface of unit cylinder.

Such cylindrical phase portrait in the perturbed smooth
system (2) represents the chaotic motion characterized
by oscillation. The cylindrical phase portrait in Fig. 15a
implies that pendulumball does an irregular reciprocat-
ing movement near the equilibrium x1. Particularly, the
chaotic motion characterized by oscillation in the per-
turbed discontinuous system is illustrated in Fig. 15b,
whose the phase trajectories show non-smooth dynam-
ics at the line colored in blue. Obviously, the cylin-
drical phase portrait of the chaotic motion character-
ized by the coexistence of rotation and oscillation in
the perturbed smooth system is displayed in Fig. 15c,
which means that pendulum ball does both the irregu-
lar reciprocating movement and the irregular rotating
movement around the point A depicted in Fig. 1. For
the perturbed discontinuous system, Fig. 15d shows the
cylindrical phase portrait for the chaoticmotion charac-
terized by the coexistence of rotation and oscillation.
In addition, different kinds of chaotic motions of the
perturbed smooth system (2) are described in Fig. 15e,
f. The details of the parameters taken in Fig. 15 can be
found in the corresponding captions.
The cylindrical phase diagram is an effective way to
distinguish between rotation and oscillation in the per-
turbed rotating pendulum system (2). Note that the
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Fig. 17 (Color online)
Chaotic motion for
q = 2, λ = 1.5, ξ =
0.5, ω = 1, f0 = 2, a the
time history x(t) for
t ∈ [0, 1000000], b the
phase portrait in the xy
plane for t ∈ [0, 1000] and
the corresponding time
history (c), d the time
history x(t) for
t ∈ [63000, 66000], e and f
two enlarged images of time
history with sudden rotation

(a) (b)

(c) (d)

(e) (f)

cylindrical phase portraits depicted in Fig. 15b, f show
novel nonlinear phenomena which allows us to explore
more deeply in the complex chaotic motion of pendu-
lum system. Figure 15b describes the cylindrical phase
portrait of non-smooth oscillating chaotic motion and
the corresponding phase portrait in the xy plane is plot-
ted in Fig. 16a. For a better understanding of non-
smooth feature, two time histories x(t) and y(t) are
displayed for t ∈ [0, 1000], as shown in Fig. 16b, c.
Clearly, there exist many non-smooth points in time
history y(t); the details are shown in Fig. 16d. Inter-
estingly, Fig. 15f presents novel cylindrical phase por-
trait for t ∈ [0, 1000]which looks like a quasi-periodic
solution. It is found that, however, themotion of pendu-

lum system is chaoswhenwe take enough time for x(t).
For t ∈ [0, 1000000], the time history x(t) is calculated
in Fig. 17a. When t ∈ [0, 1000], the phase portrait in
the xy plane and the corresponding time history are
plotted in Fig. 17b, c, respectively. Because the time t
is too short to observe the nature of its motion, accord-
ing to Fig. 17b, c,wemaymistake it for a quasi-periodic
solution. To explore this chaotic motion, we consider
the time history in this interval t ∈ [63000, 66000]
where time history has changed dramatically for the
first time, shown in Fig. 17d. Notice that the pendulum
takes place a sudden rotational motion at some uncer-
tain time which breaks the so-called quasi-periodic
motion; the details are shown in Fig. 17e, f.
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5 Conclusion

The chaotic dynamics of the rotating pendulum sys-
tem with bistable characteristics under the perturba-
tions of the viscous damping and harmonic forcing is
studied in this paper. An effective technique for testing
the chaotic thresholds arising from the coexistence of
the homoclinic orbits of Duffing-type and pendulum-
type tangling is presented in the perturbed smooth sys-
tem, which allows us to semi-analytically derived the
chaotic thresholds of the complicated nonlinear sys-
tem. More precisely, two types of the approximate
analytical solutions corresponding to the homoclinic
orbits of Duffing type and pendulum type are intro-
duced to avoid the barrier of the associated irrational
nonlinearity, of which Melnikov integrals can be ana-
lytically calculated. Notice that the homoclinic orbits
of SD type has a substantial departure in the dynam-
ics from the standard one, for which a numerical tech-
nique is carried out to detect the chaotic thresholds of
the perturbed discontinuous system. The efficiency of
the proposed techniques has been presented by using
numerical simulations including the bifurcation dia-
gram, Lyapunov exponents, phase portraits, time his-
tory and Poincaré section, which clearly demonstrates
the predicated chaotic attractors. The results obtained
herein provide an effective technique for testing the
chaotic thresholds in nonlinear dynamical systemwith-
out solving the analytical expression of the singular
closed trajectory and calculating the complicated Mel-
nikov integrals. With the help of cylindrical phase por-
traits, different types of chaos can be classified includ-
ing oscillation, rotation and coexistence of oscillation
and rotation. An undetectable chaos which bears sig-
nificant similarity of quasi-periodic motion is studied
with sudden rotation. The future study on the rotating
pendulum system with bistable characteristics is being
carried out by the current authors in two application
aspects: The first is the resonance analysis [52,53] and
the second are the vibration isolation [54,55] and the
energy absorption [56].
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Appendix

When f0 = 0 and ω = 0, the damping pendulum
system can be written as

⎧⎪⎨
⎪⎩
ẋ = y,

ẏ = −ξ y − sin x − qλ sin x

(
1 − 1√

1 + λ2 − 2λ cos x

)
.

This study focuses on the rotating pendulum system
with bistable characteristics which means that there
exist five equilibria (xi , yi )i=1,2,3,4,5 in the damping
pendulum system satisfying |ρ| < 1 or{
(λ, q)

∣∣∣∣ q >
λ − 1

λ (2 − λ)
, λ ∈ (1, 2), q ∈ (0,+∞)

}
.

Then, the Jacobianmatrix at equilibria (xi , yi )i=1,2,3,4,5

can be expressed as

J(xi ,yi ) =
[
0 1
K (x) −ξ

]
,

and

K (x) = −(1 + qλ) cos x + qλ cos x√
1 + λ2 − 2λ cos x

−qλ2 sin2 x
(
1 + λ2 − 2λ cos x

)−1.5
,

which leads to the characteristic equation

Λ2 + ξΛ − K (xi ) = 0.

Two eigenvaluesΛ1,2 can be derived by calculating the
characteristic equation and written as

Λ1,2 = −ξ ± √
ξ2 + 4K (xi )

2
,

where

� = ξ2 + 4K (xi ), K (x1)

= q
λ(2 − λ)

λ − 1
− 1 > 0,

K (x2,3) = 1 + qλ2

1 + λ
> 0, K (x4,5)

= −
(
1 − ρ2

)
(1 + qλ)3

q2λ
< 0.
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Then, we will explore the effect of nonnegative damp-
ing ξ on the equilibria (xi , yi )i=1,2,3,4,5 based upon
two eigenvalues. The detailed analysis is listed in the
following.

(a) When ξ > 0 and ξ = 0, for the equilibria
(x1, y1), (x2, y2) and (x3, y3), there exist two unequal
real roots

Λ1,2 =
−ξ ±

√
ξ2 + 4K (x1,2,3)

2
, Λ1,2 = ±

√
K (x1,2,3).

due to � > 0 and K (x1,2,3) > 0. It is concluded that
the equilibria (x1, y1), (x2, y2) and (x3, y3) are saddle
points.

(b) No damping: When ξ = 0, for the equilibria
(x4, y4) and (x5, y5), there exists a pair of conjugate
pure virtual roots

Λ1,2 = ±√−K (x4,5) i.

due to � < 0 and K (x4,5) < 0. It is concluded that
(x4, y4) and (x5, y5) are centers.

(c) Weak damping: When ξ2 + 4K (x4,5) < 0, for
the equilibria (x4, y4) and (x5, y5), there exists a pair
of conjugate virtual roots

Λ1,2 = −ξ ± √−ξ2 − 4K (x1,2,3) i

2
due to � < 0 and K (x4,5) < 0. Since the real part
of the eigenvalues are less than zero, we conclude that
(x4, y4) and (x5, y5) are stable focus points.

(d) Strong damping: When ξ2 + 4K (x4,5) > 0,
for the equilibria (x4, y4) and (x5, y5), there exist two
unequal real roots

Λ1,2 = −ξ ± √
ξ2 + 4K (x1,2,3)

2
due to � > 0 and K (x4,5) < 0. Since two eigenvalues
are less than zero,we conclude that (x4, y4) and (x5, y5)
are stable node points.

(e) Critical damping: When ξ2 + 4K (x4,5) = 0,
for the equilibria (x4, y4) and (x5, y5), there exist two
equal real roots

Λ1,2 = −ξ

2
due to � = 0 and K (x4,5) < 0. It is concluded that
(x4, y4) and (x5, y5) are stable degenerate nodes.
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