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a b s t r a c t

The requirement of environmental improvement has led to the innovative emergence of shared bicycles.
The production and recycling of shared bicycles are a closed logistics network, which can be considered a
typical closed-loop supply chain (CLSC) problem. In practice, the CLSC network is influenced by social,
economic and environmental factors, which impose high degrees of uncertainty and usually trigger
various unanticipated risks, so controlling uncertain parameters becomes a key issue in supply chain
decisions. The purpose of this research is to construct a new distributionally robust optimization model
for a multi-product, multi-echelon CLSC network, in which the distributions of uncertain transportation
cost, demand and the returned product are only partially known in advance. In the proposed model,
robust mean-CVaR optimization formulation is employed as the objective function for a trade-off be-
tween the expected cost and the risk in the CLSC network. Further, to overcome the obstacle of model
solvability resulting from imprecise probability distributions, two kinds of ambiguity sets are used to
transform the robust counterpart into its computationally tractable forms. Finally, a case study on a
Chinese bicycle-sharing company is addressed to validate the proposed robust optimization model. A
comparison study is conducted on the performance between our robust optimization method and the
traditional optimization method. In addition, a sensitivity analysis is performed with respect to the risk
aversion parameter and the confidence level.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The growing awareness of the public for protecting the envi-
ronment and conserving natural resources has led to the rapid
development of a shared economy that has been introduced into
many aspects of life, including transportation (e.g., bicycle-sharing
(Zhang and Schmocker, 2019) and trucks-sharing (Vahdani et al.,
2019)), lodging (e.g., home-sharing (Gyodi, 2019)), and consump-
tion (e.g., food-sharing (Ukolov et al., 2016)). In 2017, the number of
shared bicycle users reached 70 million, and Chinese bike-sharing
companies served approximately 150 cities (Wang et al., 2019).
The large demand necessitates higher requirements for the pro-
duction and recycling of shared bicycles in a CLSC network.

Some important parameters in the CLSC network, such as de-
mands and costs, are significantly uncertain (Keyvanshokooh et al.,
2016), and addressing the uncertainty has been recognized as a
critical research issue in supply chain strategic decision making.
Some recent studies estimate the probability distributions of model
parameters from historical data and employ stochastic optimiza-
tion (SO) (Birge and Louveaux, 1997; Ruszczynski and Shapiro,
2003) to model the uncertain CLSC network design problem. In
practice, however, finding the stochastic nature of uncertain data
and further specifying the exact probability distribution might be
difficult, especially in large-scale, real-world applications (Ben-Tal
et al., 2009; Bertsimas and Sim, 2003). When the exact probabil-
ity distributions of model parameters are unknown and only partial
distribution information is available, the modeling methodology
will lead to the distributionally robust optimization (DRO)
approach, which has recently been applied to supply chain man-
agement (Xu et al., 2018; Fu et al., 2018; Gao et al., 2019).

On the other hand, the risk associated with distribution uncer-
tainty is a critical issue that needs to be addressed in the design of
CLSC networks. Distribution uncertainty originates from two as-
pects: iÞ the uncertainty in the realization of uncertain parameters
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produces a large number of scenarios; iiÞ the ambiguity in the
imprecise probability means that a realization has many possibil-
ities. Both cases enhance the decision risk in the CLSC network.
How should decision makers effectively avoid risk in designing
CLSC networks? Introducing an appropriate and effective risk-
averse evaluation criterion is a common way to avoid risk. As a
popular coherent risk measure, the conditional value-at-risk
(CVaR) (Rockafellar and Uryasev, 2000) is widely used to manage
risk in various fields of science (Yu et al., 2017; Noyan, 2012). In the
literature, earlier studies used CVaR to handle risk under exact
probability distributionwhen designing a CLSC network (Soleimani
et al., 2014; Cardoso et al., 2016; Baptista et al., 2019).

In contrast, this paper focuses on the design of a multi-scenario
CLSC network under the robust mean-CVaR criterion, in which the
imprecise probability occurs in transportation costs, demands and
the returned products. More specifically, uncertain parameters in
our model are considered by means of stochastic scenarios whose
probability distributions are ambiguous. The uncertainty in trans-
portation costs comes from fluctuations in fuel prices, and demands
depend on customers’ decisions, which are rooted in their survival
circumstances, such as policy, cultural and natural environments. In
addition, the amount of returned products depends on demand and
then contains uncertainty. To model this uncertain CLSC network
design problem, a distributionally robust optimization formulation
is developed. Furthermore, the robust counterparts of the proposed
robust optimization model can be converted to computationally
tractable mixed-integer linear programming models. Finally, a case
study on a real-world bicycle-sharing company in China is
addressed to demonstrate the credibility of the proposed model.
The computational results show that the proposed model can
effectively balance the expected cost and the CVaR to prevent the
inefficiencies of the former and reduce the uncertainty risk of the
latter; While the distributionally robust optimization approach can
overcome the disadvantage that the exact probability distribution
information is unknown.

Compared with the existing literature, the main contributions of
this paper include the following three aspects:

� This paper develops a distributionally robust model for the CLSC
network design problem. The model possesses two distinct
advantages: iÞ The proposed model does not require complete
distribution information of uncertain model data. In reality, due
to the complexity of the CLSC network, it is usually difficult to
estimate and predict the distribution of transportation costs,
demands and returned products. Instead, the distribution in-
formation of uncertain parameters is only partially known. A
distributionally robust CLSC network formulation is designed,
where uncertain parameters are characterized by imprecise
discrete probability distributions; iiÞ Based on the risk-averse
criterion, a mean-CVaR formulation is introduced to find a
better trade-off between the average cost and cost overrun. The
novelty of our formulation is that it adopts a flexible network
configuration strategy, and the trade-off can be adjusted to de-
cision makers’ risk preferences.

� The robust counterpart of our distributionally robust formula-
tion is a semi-infinite programming model that belongs to the
family of hard optimization problems for general ambiguity sets.
To transform the robust counterparts into their computationally
tractable forms, two new theoretical results are obtained under
the cases of box and polyhedral ambiguity sets. Finally, the
optimal solution can be obtained by solving the equivalent
mixed-integer linear programming model.

� To demonstrate the effectiveness and practicability of our pro-
posed optimization model, we provide a realistic case study
about a bicycle-sharing company in the Jing-Jin-Ji Metropolitan
Region of China. A comparison study between our dis-
tributionally robust optimization models and the nominal sto-
chastic model is conducted via a number of numerical
experiments. The computational results demonstrate the ad-
vantages of the proposed optimization model.

The structure of this paper is arranged as follows. Section 2
provides the related literature review and highlights our new
approach. Section 3 describes the studied problem in detail, and
develops an optimization model for our CLSC network design
problem. Under the cases of box and polyhedral ambiguity sets,
Section 4 discusses the equivalent deterministic programming
models for the robust counterpart of our distributionally robust
mean-CVaR optimization model. Section 5 introduces a real-world
bicycle-sharing case in the Jing-Jin-Ji Metropolitan Region to
demonstrate the applicability of the proposed model. Finally, Sec-
tion 6 concludes the paper and suggests several areas for future
research. All proofs are provided in the Appendix.

2. Literature review

The research on the CLSC network design begins with
Fleischmann et al. (2001), following his pioneeringwork, numerous
extended studies have emerged (Min and Zhou, 2002; Ko and
Evans, 2007; Cheraghalipour et al., 2018). This section reviews the
related literature in two main areas: uncertain CLSC network
design and riskmeasures in uncertain CLSC network design. Finally,
the proposed optimization approach in this paper is highlighted.

2.1. Uncertain CLSC network design

In realistic supply chain network systems, many works have
attempted to design and optimize the supply chain network under
increasing internal and external uncertainty (Govindan et al., 2017).
To the best of our knowledge, a large number of CLSC network
researchers have focused on inherent uncertainties caused by
several factors, such as the price, cost, supply, returned products
and especially demands (Fattahi and Govindan, 2017; Polo et al.,
2018; Ahmadi and Amin, 2019). The related literature summariza-
tion is illustrated in Table 1 wherein the uncertain parameters have
been shown in columns 4 to 11.

To handle these uncertainties, some existing studies use sto-
chastic optimization as a common paradigm for designing the CLSC
network with exact probability distribution. For example, Ma and
Liu (2017) discussed a stochastic CLSC network model with un-
certain transportation costs and demands, where uncertain pa-
rameters were characterized by discrete joint probability
distributions. Ebrahimi (2018) proposed a multi-objective sto-
chastic optimization model for a location-allocation-routing prob-
lem from the perspective of sustainable development.

Considering the reality in the CLSC, however, it may be difficult
to obtain the exact probability distribution. In this case, robust
optimization approach is an alternative to handle this issue. Several
studies employed robust optimization approach to address uncer-
tainty in the CLSC network (Kim et al., 2018; Ghahremani-Nahr
et al., 2019; Saedinia et al., 2019). Keyvanshokooh et al. (2016)
developed a hybrid robust-stochastic optimization approach to
modeling qualitatively uncertainties in the CLSC network design,
where transportation costs are random parameters and demands
and returns belong to polyhedral uncertainty sets. Additionally,
Safaei et al. (2017) considered uncertain demand in a cardboard
recycling network model and solved the model with robust opti-
mization approach.

In addition, a few scholars have analyzed the situation of
partially known distribution information in supply chain network



Table 1
Gap analysis of the related researches.

Researches Network type Uncertain parameter Distribution information Risk measure

Forward Reverse Prices Costs Supply Demands Returned
products

Others Exact Partially
known

Unknown

Pishvaee et al. (2009) * * * * * * Mean
El-Sayed et al. (2010) * * * * * Mean
Soleimani et al. (2014) * * * * * MAD, VaR, CVaR
Keyvanshokooh et al. (2016) * * * * * * * e

Bai and Liu (2016) * * * * VaR
Cardoso et al. (2016) * * * * Variance, Downside risk,

Variability index, CVaR
Fattahi and Govindan (2017) * * * * * Mean
Ma and Liu (2017) * * * * * VaR
Yang and Liu (2017) * * * * VaR
Safaei et al. (2017) * * * * Mean, Variance
Salimi and Vahdani (2018) * * * Mean
Kim et al. (2018) * * * * * e

Polo et al. (2018) * * * * Net Present Value,
Internal Rate of Return

Ebrahimi (2018) * * * * Mean
Cheraghalipour et al. (2018) * * e

Prakash et al. (2018) * * * * * * * Supply side risk,
Transportation side risk

Ahmadi and Amin (2019) * * * * * e

Ghahremani-Nahr et al. (2019) * * * * * * * Mean
Saedinia et al. (2019) * * * * * * e

Baptista et al. (2019) * * * * * * * Time stochastic
dominance

Zhen et al. (2019) * * * * Mean
Zhao et al. (2018) * * * * * CVaR
This paper * * * * * * Mean-CVaR
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design models. Bai and Liu (2016) presented a robust supply chain
network design model by incorporating the uncertainties in vari-
able distributions. Salimi and Vahdani (2018) designed a bio-fuel
network considering the variability of the failure probability.
Vahdani and Mohammadi (2015) developed an interval-robust
design model for the CLSC network problem with imprecise dis-
tributions, and a new hybrid solution approach was proposed by
combining several approaches and programs. In Table 1, the
aforementioned literature is classified and summarized with
respect to the different types of uncertain distribution information
in columns 12 to 14.

2.2. Risk measures in uncertain CLSC network design

Risk neutrality is a common risk attitude in dealing with risky
issues. When decision makers are interested in the average per-
formance of a CLSC network system, the model constructed with
the expected cost is appropriate. Many CLSC network design
problems have considered the expected profit or cost in the
objective function and the constraints. For example, based on the
perspective of risk neutrality, El-Sayed et al. (2010) formulated a
stochastic, multi-stage decision making model to maximize the
total expected profit in the objective function; Zhen et al. (2019)
took into account the total expected cost in the objective function
by a scenario optimization approach.

In many decision processes, however, risk neutrality is not
suitable for the reality of CLSC management. To obtain more real-
istic strategies, some studies handled the decision risk caused by
uncertainty. Some usual risk measures were introduced to the CLSC
network design problem, such as the variance (Safaei et al., 2017),
VaR (Ma and Liu, 2017) and the CVaR (Zhao et al., 2018). Soleimani
et al. (2014) drew risk measures (VaR, CVaR and MAD) from
financial optimization problems into the CLSC network design
problem and compared three types of models, including three risk
measures. Furthermore, Cardoso et al. (2016)used four financial risk
measures (the CVaR, variance, downside risk and variability index)
to assess the risk in CLSC design and planning problems. Both of
these studies concluded that the CVaR is a well-behaving and
predominant risk measure.

The measures used in the aforementioned studies are regarded
as risk measure-based functions (Baptista et al., 2019). Recently,
some scholars introduced some risk-averse methods to reduce the
risk in CLSC networks. Polo et al. (2018) designed a robust CLSC
model, which em-ployed the net present value and the internal rate
of return to prevent the occurrence of financial risk. According to
Prakash et al. (2018), supply side risk and transportation side risk
are embedded in designing the CLSC networkmodel to address risk
events in the supply chain network. Baptista et al. (2019) mixed the
chance-constrained and time stochastic dominance risk-averse
strategies to reduce the risk of a multi-period, multi-product
CLSC design and operation planning problem. In Table 1, the used
risk measures of the related CLSC studies have been sorted out in
the last column.

2.3. Our new approach

To identify the research gap of existing studies on CLSC net-
works and to clarify the position of the present study in the related
literature, we classify some of the literature with four terms:
network type, uncertain parameters, the distribution information
and risk measures in Table 1, and the characteristics of our study
have been shown in the last row.

More specifically, we discover that some researchers charac-
terize uncertain parameters with exact probability distributions
from the risk-neutral perspective. In practice, however, it is difficult
to evaluate the probability distributions in capturing the historical
data with high accuracy. In addition, the risk-averse criteria may be
more suitable for the reality of CLSC management in many situa-
tions, and the CVaR is regarded as an outperforming risk criterion
from the comparative analysis of several risk measures. Motivated
by these observations, this paper studies a multi-scenario CLSC
network design problem with the CVaR to help supply chain
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managers measure organizational risk. Since only partial informa-
tion about the probability distributions of the model parameters is
available, a new distributionally robust optimization model is
developed. Under box and polyhedral ambiguity sets, the robust
counterparts of our proposed distributionally robust mean-CVaR
optimization model are translated into their equivalent computa-
tionally tractable optimization models, which can be solved by
CPLEX optimization software to obtain the optimal strategy.
3. Multi-scenario CLSC network design model

3.1. Problem description and assumptions

In this paper, our CLSC network is a single-period, multi-part,
multi-product CLSC network with uncertain demands, returned
products and transportation costs. It has been suggested that this
kind of CLSC network suits many related industry fields, such as the
automobile, electronics and bicycle industries. Taking a bicycle-
sharing CLSC network as an example, Fig. 1 illustrates a complete
network that consists of the suppliers, manufactories, distribution
centers, user areas, recycling/dismantling centers, and waste
disposal centers.

In the entire CLSC network, the manufacturers buy components
needed for producing products from potential suppliers and then
send products to distribution centers. Further, distribution centers
transfer them to user areas based on demand. Note that the user
areas are supposed to be predetermined in advance. In such a CLSC
network, hybrid facilities save on potential costs compared with
separate recycling or dismantling centers. Thus, both recycling and
dismantling centers are established at the same location, and the
returned products are sent there. After dismantling, the useful
components of the products are sent to the manufactories, and the
useless components are transported to waste disposal centers. In
particular, potential suppliers will give different price discounts
according to the number of orders for the components that are
required by the manufacturers. In addition to obtaining compo-
nents from suppliers, manufacturers can also receive components
from recycling/dismantling centers. In this paper, based on the
mean-CVaR optimization criterion, a multi-scenario mathematical
model under uncertainty will be presented. In addition, all as-
sumptions needed in the proposed optimization model are given as
follows:
Fig. 1. The structure of a bicyc
(A1) Manufactories and user areas are fixed.
(A2) According to the order quantity, potential suppliers offer
different price discounts whi-ch are known.
(A3) Each product is made up of multi-components.
(A4) The backlogging of the unsatisfied demand is not allowed
in the network, recycling/di-smantling centers will fully collect
all the returned products from user areas.
(A5) The average disposal fraction is deterministic.

Under the above assumptions, a multi-scenario CLSC network
design model will be proposed in the next section.
3.2. Formulation of CLSC network design model

3.2.1. Constraints
The following constraints play an important role in the formu-

lation of our CLSC network design problem.
3.2.1.1. Demand and return satisfaction constraints.X
k2K

zsklp þus
lp � dslp; c l; p; s; (1)

X
m2M

oslmp ¼ rslp; c l; p; s: (2)

The demands of all user areas are dominated by constraint (1).
The returned products from all user areas will be collected as
shown in constraint (2).
3.2.1.2. Balance constraints.X
i2I

X
h2H

xsijrh þ
X

m2M

tsmjr ¼
X
k2K

X
p2P

ysjkpdrp; c j ; r ; s ; (3)

X
j2J

ysjkp ¼
X
l2L

zsklp; c k; p ; s ; (4)

X
j2J

tsmjr ¼ð1� qrÞ
X
l2L

X
p2P

oslmpdrp; c r;m; s; (5)
le-sharing CLSC network.
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X
n2N

f smnr ¼ qr
X
l2L

X
p2P

oslmpdrp; c r;m; s: (6)

Constraints (3)e(6) are the balance constraints. Constraint (3)
guarantees that the components needed for the products produced
by manufactories can be satisfied by suppliers and the recycling/
dismantling centers. Constraint (4) assures that all products from
manufacturers are transported to user areas. Constraints (5)e(6)
ensure that the returned products from the user areas are
completely disassembled and transported to manufactories or
waste disposal centers.

3.2.1.3. Constraints of the quantity discount schemes for suppliers.

gijrhrirh�1 � xsijrh � gijrhr
�
irh; c i; j; r; h; s; (7)

X
h2H

gijrh � 1; c i; j; r: (8)

Let rirh be the maximum number of discounts h2 H for a
component r2R supplied by supplier i2I , and rirh�1 < r�irh � rirh.
To ensure that manufacturers are able to buy components reason-
ably, constraint (7) requires that the number of components bought
from a supplier is within the discount interval [rirh�1, r

�
irh], and the

supplier will provide a specific price discount. If only one type of
component is procured from a supplier, then the corresponding
discount level is just one. This criterion is reflected in constraint (8).

3.2.1.4. Capacity constraints.X
j2J

X
h2H

xsijrh � ssirui; c i; r; s; (9)

X
k2K

ysjkp � spjp; c j; p; s; (10)

X
j2J

ysjkp � vksdkp; c k; p; s; (11)

X
l2L

zsklp � vksdkp; c k; p; s; (12)

X
l2L

oslmp � cmscmp; c m; p; s; (13)

X
m2M

f smnr � wnspnr; c n; r; s; (14)

X
j2J

tsmjr þ
X
n2N

f smnr � cm
X
p2P

scmpdrp; cm; r; s: (15)

Constraints (9)e(15) set capacity limits. Constraint (9) is the
supply capacity of the parts from suppliers; constraints (10)e(13)
Cs ¼
�
f s1; :::; f sjI j; f d1; :::; f djK j; f c1; :::; f cjM j; f p1; :::; f pjN j; k1cs11 þ ts

þtspsjI jjJ jjR j; cm11 þ tpds111; :::; cmjJ jjP j þ tpdsjJ jjK jjP j; cp11 þ td

þtdcsjK jjL jjP j; cc11 þ tccs111; :::; ccjM jjP j þ tccsjL jjM jjP j; cr11 þ tcp

þtcpsjM jjJ jjR j; cd11 þ tcds111; :::; cdjN jjR j þ tcdsjM jjN jjR j;p11; :::;pjL
are the storage capacities of the products at the manufactories, the
distribution centers, and the recycling/dismantling centers,
respectively; constraints (14)e(15) are the storage capacities of the
parts at the recycling/dismantling centers and the waste disposal
centers, respectively.
3.2.1.5. Binary and non-negativity constraints.

gijrh;ui; vk; cm;wn2f0;1g; c i; j; r; h; k;m;n; (16)

xsijrh; y
s
jkp; z

s
klp; p

s
lmp; t

s
mjr; f

s
mnr � 0; c i; j; k; l;m;n; r; p; h; s: (17)

Constraint (16) expresses the binary restrictions of decision
variables. Constraint (17) indicates the non-negativity restrictions
of the corresponding decision variables.
3.2.2. The objective function
Before establishing the objective function, we first introduce the

total cost of the entire CLSC network, which includes four terms
under a scenario s.

The first term is the fixed costs of the opening facilities,

TFC¼
X
i2I

fsiui þ
X
k2K

fdkvk þ
X

m2M

fcmcm þ
X
n2N

fpnwn:

The second term is the processing costs under a particular
scenario s:

TPCs ¼
X
i2I

X
j2J

X
r2R

X
h2H

khcsirx
s
ijrh þ

X
j2J

X
k2K

X
p2P

cmjpy
s
jkp

þ
X
m2M

X
j2J

X
r2R

crmrtsmjr þ
X

m2M

X
n2N

X
r2R

cdnrf
s
mnr:

The third term is the transportation costs between the facilities
under a scenario s:

TTCs ¼
X
i2I

X
j2J

X
r2R

X
h2H

tspsijrx
s
ijrh þ

X
j2J

X
k2K

X
p2P

tpdsjkpy
s
jkp

þ
X
k2K

X
l2L

X
p2P

tdcsklpz
s
klp þ

X
l2L

X
m2M

X
p2P

tccslmpo
s
lmp

þ
X
m2M

X
j2J

X
r2R

tcpsmjrt
s
mjr þ

X
m2M

X
n2N

X
r2R

tcdsmnrf
s
mnr:

The fourth term is the penalty costs of the network under a
particular scenario s:

PCs¼
X
l2L

X
p2P

plpu
s
lp:

Based on the above notations, the total cost of the CLSC under a
particular scenario s is obtained as follows:

TCs ¼ TFC þ TPCs þ TTCs þ PCs ¼ CTs ts;

where
ps111; :::; kjH jcsjI jjR j

cs111; :::; cpjK jjP j
s
111; :::; crjM jjR j

jjP j;0; :::; 0
�T
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and
ts ¼
�
u1; :::;ujI j; v1; :::; vjK j; c1; :::; cjM j;w1; :::;wjN j; xs1111; :::; x

s
jI jjJ jjR jjH j; y

s
111; :::; y

s
jJ jjK jjP j;

zs111; :::; z
s
jK jjL jjP j; o

s
111; :::; o

s
jL jjM jjP j; t

s
111; :::; t

s
jM jjJ jjR j; f

s
jM jjN jjR j;u

s
11; :::;u

s
jL jjP j; g1111;

:::; gjI jjJ jjR jjH j
�T

:

As a consequence, the expected value of the total cost can be
represented by

Ep½TC� ¼
X
s2S

psTCs; (18)

where p ¼ ðp1; p2;…; pjS jÞT , ps >0 is the probability of scenario s
and

P
s2S ps ¼ 1.

Noting that the CVaR can quantify the losses that might be
encountered in the tail of the probability distribution function, it
becomes a common tool in the risk decision-making problem of a
supply chain. Hence, this paper employs the CVaR measure to
construct the following cost function for our CLSC network design
problem:

CVaRa;p½TC� ¼ min
f2Rþ

�
fþ 1

1� a
E½maxfTC�f;0g�

�
; (19)

where a2ð0;1Þ is the confidence level. By introducing the addi-
tional variables ts to represent maxfTCs �f;0g for s ¼ 1;2;…; jS j
and expanding the expected value of maxfTC�f;0g for all sce-
narios, problem (19) can be equivalently represented as the
following linear programming model:

min
f2Rþ

fþ 1
1� a

X
s2S

psts

s:t: TCs � f � ts; c s;

ts � 0; c s:

Using the CVaR criterion, only the mean value of the costs above
the confidence level is measured in the model, and the part of the
costs below the confidence level is ignored. In this paper, the ex-
pected value and the CVaR of the total cost are simultaneously used
to formulate our objective function. Combining (18) and (19), a
multi-scenario mean-CVaR CLSC model is formally built as follows:

min
t

lEp½TC� þ ð1� lÞCVaRa;p½TC�
s: t: constraints ð1Þ � ð17Þ; (20)

where t ¼ ðt1;…; tjS jÞT , and l2½0;1� is a risk aversion parameter.
In practice, it might be difficult to reliably specify the probability

distributions of random parameters. Thus, probability distributions
are assumed to be only partially known and belong to some am-
biguity sets in this paper. In the next section, we will address the
issue of imprecise discrete probability distributions.
4. Robust CLSC model with probability uncertainty

In the CLSC literature (Pishvaee et al., 2009; Soleimani et al.,
2014), the exact distributions of random variables are usually
assumed to be known, and the optimal supply chain configuration
is obtained by solving the corresponding stochastic optimization
model. In this section, we assume that the information about the
probability distributions is partially available, and the discrete
probability distribution vector p belongs to an ambiguity set §.
4.1. Ambiguity sets

Due to the assumption of imprecise discrete probability distri-
butions, our robust optimization models can be built with respect
to the box and polyhedral ambiguity sets, where the box and
polyhedral ambiguity sets are defined as

§B ¼
n
p¼p0 þ x

���eTx¼0; k xk∞ �J
o
; (21)

§P ¼
n
p¼p0 þP1x

���eTP1x¼0;p0 þP1x�0; k xk1 �1
o
: (22)

In Eqs. (21) and (22), p0 is the nominal distribution that signifies
the most likely probability distribution; e represents the vector of
ones; x ¼ ðx1; x2;…; xjS jÞ denotes the perturbation vector; J is a
real value in ½0;1�; and P1 is a known scaling matrix. The conditions
eTP1x ¼ 0 and the nonnegativity constraint p0 þ P1x � 0 ensure p
meets the nonnegative property of the probability distribution. It is
sensible to consider the box and polyhedral ambiguity sets, which
are the simplest ambiguity sets to be specified, and the resulting
problem can also be formulated in a computationally tractable
manner.
4.2. Distributionally robust CLSC optimization model

In this section, the distributionally robust CLSC network design
model is presented under the box and polyhedral ambiguity sets.
This network design model is a family of stochastic optimization
models (20) with probability p belonging to the ambiguity set §,
i.e.,

�
min
t

lEp½TC� þ ð1� lÞCVaRa;p½TC�
s: t: constraints ð1Þ � ð17Þ

�
p2§

:

Further, based on “worst-case” oriented rule, the robust coun-
terpart of the proposed distributionally robust model is formulated
as

min
t

lmax
p2§

Ep½TC� þ ð1� lÞmax
p2§

CVaRa;p½TC�
s: t: constraints ð1Þ � ð17Þ:

(23)

Note that maxp2§Ep½TC� and maxp2§CVaRa;p½TC� in problem
(23) depend on the structure of the ambiguity set of discrete
probability distributions. In addition, the equivalent form of the
expected value of the total cost maxp2§Ep½TC� can be represented
by



Fig. 2. The procedures for the solution of distributionally robust model.
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max
p2§

Ep½TC� ¼max
p2§

TCTp; (24)

while the equivalent form of the CVaR of the total cost
maxp2§CVaRa;p½TC� can be represented by

min
f2Rþ

fþ 1
1� a

maxp2§tTp

s:t: TCs � f � ts; c s;

ts � 0; c s;

(25)

where
TCT ¼ ðTC1;…; TCjS jÞ ¼ ðCT

1t1;…;CT
jS jtjS jÞ ¼ CTt;C ¼

ðCT
1;…;CTjS jÞ

T
and t ¼ ðt1; t2;…; tjS jÞT .

Problem (23) is a semi-infinite programming model, which is
usually computationally intractable for general ambiguity sets;
finding its solution is a time-consuming process. To transform
problem (23) into a tractable optimization model, problems (24)
and (25) must be transformed into their computationally tractable
models.

Under box and polyhedral ambiguity sets, the following obser-
vations are obtained.

Theorem 1. If probability p belongs to box ambiguity set (21), then
problem (23) can be equivalently turned into the following compu-
tationally tractable optimization model with respect to variables ðm;m’;
h;h’;g;g’Þ2R� R� RjS j � RjS j � RjS j � RjS j:

min
t;f;m;h;g;m’;h’;g’

l
�
CTtp0 þJThþJTg

�
þ ð1� lÞ

	
fþ 1

1� a

�
tTp0 þJTh’þJTg’

�

s: t:TCs � f

� ts; c s; em� hþ g ¼ tTC; em’� h’þ g’ ¼ t; ts � 0; c s; h

� 0;g � 0;h’ � 0;g’ � 0; constraints ð1Þ � ð17Þ
(26)

Remark 1. In the caseJ ¼ 0, problem (26) reduces to its nominal
stochastic CLSC problem (20).

Theorem 2. If probability p belongs to polyhedral ambiguity set
(22), then problem (23) can be equivalently turned into the
following computationally tractable optimization model with
respect to variables ðw;w’; n; n’; 2; 2’Þ2RjS j � RjS j � R� R� R� R:

min
t;f;w;n;2;w’;n’;2’

l
�
CTtp0 þ pT

0wþ n
�
þ ð1� lÞ

	
fþ 1

1� a
pT
0tþ

1
1� a

�
pT
0w’þ n’

�

s: t:TCs � f

� ts; c s;
���PT

1t
TCþ PT

1wþ PT
1e2

���
∞

� n;
���jPT

1tþ PT
1w’þ PT

1e2’j
���
∞

� n’; ts � 0; c s; w � 0; n � 0;w’

� 0; n’ � 0; constraints ð1Þ � ð17Þ
(27)

Next, we give the following proposition to ensure that the optimal
solution of model (23) with § ¼ §P is the optimal solution of model
(27).

Proposition 1. If ðt�;f�; t�;w�; n�; 2�;w’�; n’�; 2’�Þ solves model (27),
then ðt�;f�; t�Þ solves model (23) with § ¼ §P ; Conversely, if
ð~t�; ~f�

;~t�Þ solves model (23) with § ¼ §P , then ð~t�; ~f�
; ~t�; ~w�

;~n�;~2�;
~w’�;~n’�;~2’�Þ solves model (27), i.e. ð~t�; ~w�

;~n�;~2�Þ solves model (32),
where ð~w�
;~n�;~2�Þ solves (31), and ð~t�; ~f�

;~t�; ~w’�;~n’�;~2’�Þ solves (33).
Remark 2. In the case P1 ¼ 0, problem (27) reduces to its nominal
stochastic CLSC problem (20).
4.3. Methodology step

To solve the CLSC network problem, we first need to introduce
some parameters and then construct a multi-scenario model by
stochastic optimization. Furthermore, a distributionally robust
model is proposed, and the ambiguity sets are determined. Based
on dual theory, the equivalent forms of the distributionally robust
model are obtained. Finally, the equivalent models are solved by
CPLEX. The methodology steps are visualized, and the detailed
description is presented in Fig. 2.

5. Case study about bicycle-sharing in the Jing-Jin-Ji region

Bicycle-sharing is currently a popular mode of travel, which
mainly relies on the bicycle-sharing company (Industry analysis
report, 2017). Bicycle-sharing not only solves“the last kilometer”
traffic problem to promote the efficiency of short-distance urban
life but also realizes the low-carbon environment and green travel
(DeMaio, 2009). Currently, bicycle-sharing has attracted the
attention of many city dwellers as a green, flexible, sustainable
mobility model.

5.1. Data description

In this subsection, a real-world case study on ofo, a bicycle-



Fig. 3. The locations of all facilities.

Table 2
The value ranges of parameters in case study, originated from Industry analysis
report (2017).

Costs Value (¥) Parameter Value

fsi 20-40 thousand ssir 200-300 thousand
fdk 20-40 thousand spjp 400-600 thousand
fcm 60-80 thousand sdkp 100-200 thousand

fpn 40-60 thousand scmp 250-300 thousand
cssirh 25e35 spnr 400-500 thousand
cms

jp 300 rir1 120-150 thousand

cpskp 13e20 rir2 180-250 thousand

ccsmp 0.5e1.5 ds 6e10

crsmr 0.5e1.5 qr 0.1

cdsnr 43e50 tsps , tpds , tdcs

ps
lp 40-60 thousand tccs , tcps , tcds [0.7, 3]
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sharing company in the Jing-Jin-Ji Metropolitan Region in China, is
presented. There are 10 suppliers (s1 to s10) located in Tianjin.
There are 3 manufactories, Feige, Fenghuang and Fushida (p1 to p3,
respectively), located in Tianjin. The five distribution centers are
numbered from d1 to d5. In total, 13 cities are defined as user areas
(c1 to c13). The six recycling/dismantling centers are numbered
Table 3
Problem size for each instance.

Model Network structure

SU MA DC UA RDC

(20) 10 3 5 13 6
(26) 10 3 5 13 6
(27) 10 3 5 13 6

SU¼ suppliers, MA¼manufactories, DC¼ distribution centers, UA¼ user areas, RDC¼ re
from cd1 to cd6, and the waste disposal centers are numbered from
dc1 to dc5. To relieve the environmental pressure of first-tier cities,
the distribution centers and recycling/dismantling centers are set
up in second- or third-tier cities (see Fig. 3). There are 8 types of
components with 3 price discounts to 3 manufactories for pro-
ducing 5 types of bicycles: ofo 1.0, ofo 2.0, ofo 3.0, ofo 3.1 and ofo
curve.

In our CLSC network design experiment, the demands, trans-
portation costs and the return amount of the used products are
uncertain parameters, which have been predicted to have 3
possible scenarios with unknown occurrence probabilities.

Assume that the demand dslp is a linear function of ds, i.e., dslp ¼
d rp � d al � ds þ d blp, where ds is the unit demand per hundred
people under scenario s; d al is the size of the population in user
area l; d rp is the permeability of the ofo sharing bicycle p in the city
and d blp is the extra demand. The amount of the returned products
depends on demand, and further assume the returned products rslp
is a linear function of the demand dslp. Concretely, r

s
lp ¼ r� dslp,

where r is the return rate of the used products. In general, the value
on the return rate to ofo is in the interval ½1:2;1:4�.

In addition, the transportation costs are also uncertain, which
are related to the fuel prices and the distances between cities. The
unit transportation cost tspsijr depends on the random unit fuel cost
tsps under three scenarios. Assume tspsijr is a linear function of tsps,
i.e., tspsijr ¼ tsp rr � tsp aij � tsps þ tsp bijr . Here, tsps is the unit fuel
cost per kilometer from suppliers to manufactories under three
scenarios, tsp rr is the cost coefficient for part, tsp aijr is the dis-
tance between two facilities and tsp bijr is the extra cost. Similarly,
tspsijr , tpd

s
jkp, tdc

s
klp, tcc

s
lmp, tcp

s
mjr and tcdsmnr are characterized by the

linear functions of tsps, tpds, tdcs, tccs, tcps and tcds, respectively.
In our numerical experiments, the fixed, operating and penalty

costs, and other relevant determinate parameters are collected in
Table 2. Moreover, the size of this case study is given in Table 3,
which includes the CLSC network structure, the variables and the
constraints of the mathematical models. In addition, assume that
the suppliers will offer a 90% discount when xijr1 is in the range of 1
to r�ir1; if xijr2 is in the range of rir1 to r�ir2, then the suppliers will
provide an 85% discount; if xijr3 exceeds r�ir2, then the suppliers will
offer a 75% discount.

Note that the uncertain demands, returned products and
transportation costs in our CLSC network design have been pre-
dicted to fall into 3 possible scenarios with unknown occurrence
probabilities. However, the nominal probability distribution can be
fixed in advance and is denoted as p0 ¼ ð0:4;0:5;0:1ÞT . The value of
the adjustable parameterJ in the box uncertainties equals to 0:01;
0:02;0:03;0:04;0:05;0:06;0:07;0:08;0:09 and 0.1, respectively. The
scaling matrix is set in the polyhedral ambiguity set as P1 ¼JjS jI,
where I is an identity matrix. The software for solving the numer-
ical example is IBM ILOG CPLEX 12.6.3 solver, and the PC’s config-
uration includes a 2.50 GHz Intel(R) Core i5-7200 CPU processor
with 8.0 GB of RAM.
5.2. Computational results under the distributionally robust model

When imprecise probabilistic distributions of uncertain
Variables Constraints

WDC Binary Integer Other

5 746 5877 e 6185
5 746 5877 23 6209
5 746 5877 37 6215

cycling/dismantling centers, WDC¼waste disposal centers.



Table 4
Summary of computational results under imprecise probabilistic distribution.

Ambiguity
set

Confidence
level (a)

Risk aversion
parameter
(l)

Adjustable parameter (J)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Box (J) 0.9 0.1 467212337.72 467250069.04 467303036.82 467369674.98 467422121.42 467460626.26 467512325.08 467564848.64 467617257.90 467669724.31
0.3 460271183.50 460428582.72 460585981.95 460759840.68 460900801.08 461077145.02 461215776.85 461372978.08 461530377.30 461687776.53
0.5 453341686.16 453604076.01 453866465.85 454147436.83 454391245.54 454653635.38 454916355.22 455178735.07 455440804.91 455703194.75
0.7 446410561.35 446777907.13 447145252.91 447531125.89 447879944.47 448247290.26 448614636.04 448981981.82 449349327.60 449716673.38
0.9 439479436.54 439951738.26 440424039.97 440896341.69 441368643.41 441840945.13 442313246.85 442785548.57 443257850.28 443730152.00

0.7 0.1 451028229.24 451947835.56 452851819.79 453755804.02 454659875.75 455563857.48 456467839.21 457371740.94 458275725.16 459178624.79
0.3 447691705.89 448511303.26 449330900.55 450150497.88 450971009.53 451789896.57 452625666.97 453428887.21 454248647.80 455085375.76
0.5 444355182.53 445090546.24 445826280.05 446561273.68 447296637.40 448032341.12 448767364.99 449519730.24 450238402.29 450990592.13
0.7 441018659.17 441686799.04 442320919.38 442975731.60 443623179.59 444291416.27 444942570.58 445593724.89 446244879.19 446878830.12
0.9 437700482.41 438249716.30 438815928.80 439382825.29 439951950.18 440533964.20 441100841.87 441650987.26 442231993.47 442801474.87

0.5 0.1 447297206.04 447845641.90 448408929.65 448972217.41 449535505.16 450098724.92 450662014.67 451240866.82 451788594.18 452351883.94
0.3 444778186.81 445348803.29 445887650.73 446442382.69 447010422.78 447551846.62 448106778.00 448661966.84 449216042.50 449778628.08
0.5 442290243.99 442820271.64 443366815.81 443912619.98 444458857.24 445004968.51 445551472.49 446097585.01 446643491.00 447189664.99
0.7 439770008.14 440307624.51 440845240.89 441383361.26 441920473.64 442458090.02 442995706.39 443533322.77 444070939.15 444608975.66
0.9 437266620.80 437795661.38 438324035.97 438853094.55 439399413.01 439911211.72 440440270.30 440969328.88 441498387.47 442027446.05

Polyhedral
(G ¼
JjS j)

0.9 0.1 467238637.67 467302459.45 467381159.06 467478907.14 467553243.11 467631916.13 467697159.75 467774657.12 467853356.74 467946608.20
0.3 460350114.11 460585981.95 460838244.84 461058179.63 461294278.47 461530377.30 461766476.14 462002574.98 462238832.82 462480248.47
0.5 453472881.09 453866465.85 454260050.62 454653635.38 455047220.15 455440804.91 455834389.68 456230772.84 456621559.21 457015143.97
0.7 446594773.24 447145252.91 447696271.58 448247290.26 448798308.93 449349327.60 449900346.27 450451364.94 451002383.61 451553402.28
0.9 439715587.40 440424039.97 441132492.55 441840945.13 442549397.71 443257850.28 443966833.87 444674755.44 445383208.02 446108924.48

0.7 0.1 451480144.71 452851819.79 454194917.82 455550380.82 456919830.07 458275725.18 459631701.51 460970425.63 462326116.05 463699253.89
0.3 448117925.01 449347197.65 450560296.55 451800770.34 453035881.79 454248484.54 455477880.54 456707276.54 457954127.32 459168482.20
0.5 444723324.97 445825909.96 446928955.54 448032001.12 449135780.81 450238402.29 451341137.86 452444183.44 453547229.02 454650524.59
0.7 441361221.89 442321438.02 443314684.81 444274309.70 445251004.87 446227700.03 447204808.18 448181090.34 449157785.50 450134830.66
0.9 437983014.70 438815928.80 439683647.70 440516618.28 441366963.02 442217307.76 443068183.50 443917997.24 444768341.98 445618686.72

0.5 0.1 447578896.10 448408855.65 449253790.29 450098792.92 450943724.55 451804324.43 452649317.10 453494387.26 454339523.68 455184527.60
0.3 445055552.79 445903311.57 446735501.48 447567691.39 448399745.66 449232303.72 450048141.01 450880238.41 451712336.33 452544679.92
0.5 442563828.46 443366445.81 444186062.06 445021276.18 445840585.84 446659895.50 447463047.08 448282276.78 449101902.62 449920535.84
0.7 440038816.32 440845240.89 441651665.45 442458090.02 443264969.58 444070939.15 444877363.71 445700626.53 446507007.99 447296638.97
0.9 437530448.09 438324035.97 439118262.84 439928445.77 440704799.59 441498387.47 442291975.34 443085563.22 443896191.51 444673198.10
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Fig. 4. The computational results of distributionally robust model.
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parameters belong to box and polyhedral ambiguity sets, the
equivalent models (26) and (27) of the distributionally robust
model are employed to solve the CLSC network design problem.
Table 4 provides the computational results with respect to the
adjustable parameters, risk aversion parameters and confidence
levels. We consider the risk aversion parameter to be 0.1, 0.3, 0.5,
0.7, and 0.9 and the confidence level to be 0.5, 0.7, and 0.9. From the
computational results in Table 4, the objective function value de-
creases when the risk aversion parameter l increases, and the
optimal value increases when the confidence level a increases. In
Table 5
Summary of computational results under nominal probabilistic distribution.

Confidence level (a) Risk aversion parameter (l)

0.1 0.3

0.9 467145060.22 460114024.27
0.7 450126298.69 446872108.55
0.5 446718986.39 444223454.85
addition, as the adjustable parameter J increases, the optimal
value of the distributionally robust model worsens. As shown in
Fig. 4, a comparison of the distributionally robust model under box
and polyhedral ambiguity sets also indicates the same trend. Fig. 4
depicts that the increase in the adjustable parameter J and risk
aversion parameter l yields a moderate, linear increase in the
optimal value. These phenomena are perfectly consistent with the
theoretical facts. For example, it is easy to see that the optimal
objective function of the model is linear with respect to the pa-
rametersJ and l. Note that the changes in the optimal value when
0.5 0.7 0.9

453079296.32 446043215.57 439007134.82
443619818.81 440367529.06 437115239.32
441727923.30 439232391.76 436736860.22
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a ¼ 0:9 coincided well with those of a ¼ 0:7 and a ¼ 0:5, and they
both maintain obvious increases as the adjustable parameter in-
creases. In addition, when the confidence level increases, the
optimal value worsens. Therefore, it is very important for decision
makers to determine the confidence level and perturbation in-
tervals of the uncertain parameters in their real CLSC network de-
cision process.

On the other hand, the results show that the total cost under a
polyhedral ambiguity set is higher than that under box ambiguity
set. The same trend is displayed in Fig. 4. It is confirmed that the
“polyhedral” ambiguity set is larger than the “box” ambiguity set;
that is, the “polyhedral” ambiguity set completely covers the “box”
ambiguity set. Therefore, the ambiguity set is larger and becomes
more conservative. Decision makers should select a suitable am-
biguity set based on their own economic situation to resist the risk
from imprecise probability distribution.

5.3. Computational results under the nominal stochastic model

In this subsection, the numerical experiment is conducted by
solving the nominal stochastic model (20), and the computational
results under different confidence levels and risk aversion param-
eters are reported in Table 5. It can be observed that the optimal
value increases with respect to the confidence level when the risk
aversion parameter is fixed. In addition, when the confidence level
is fixed, the objective function value decreases as the risk aversion
parameter increases. Fig. 5 depicts the linear variation in the
optimal value when the risk aversion parameter l increases.

5.4. A comparison between the robust and nominal stochastic
models

In the following subsection, a comparison study is performed
between our distributionally robust optimization model and the
nominal stochastic model with exact probabilistic distributions.
The selection of the facilities is different under the nominal sto-
chastic model and distributionally robust model. For example,
when a ¼ 0:9, l ¼ 0:5 and J ¼ 0:01, facilities s1, s8 and s10 are
selected as potential suppliers in the nominal stochastic model.
Nevertheless, facilities s2, s3, s10 are selected in the distributionally
robust model under box ambiguity set, and facilities s1, s2, s7 are
selected in the distributionally robust model under polyhedral
Fig. 5. The computational results of nominal stochastic model.
ambiguity set. Based on the above statement, we can know that the
location strategies are distinct in the network design of the nominal
and robust solution models.

In addition, Fig. 6 compares the computational results between
the nominal stochastic model and the distributionally robust model
under different l with a ¼ 0:9 and J ¼ 0:01. The comparative
study indicates that the optimal value under the nominal stochastic
model is less than the optimal values under distributionally robust
models, and all the models decrease with increasing l. In particular,
the results of the relevant management/operational performance
measures such as expected cost, CVaR and total transportation
costs underJ ¼ 0:01 are given in Table 6. From Table 6, it is clearly
seen that the expected costs and CVaR of distirbutionally robust
models (26) and (27) are greater than the nominal stochastic model
(20). Besides, transportation costs under different scenarios of the
nominal stochastic model and distributionally robust models are
also distinct, and the nominal stochastic model are not beyond the
distributionally robust models. Note that in the case of l ¼ 1, the
objective function only includes the part of expected costs. Trans-
portation costs have no difference under different a because they
are independent of parameter a. In contrast, when l ¼ 0, the
objective function only includes CVaR, and transportation costs
vary greatly with respect to parameter a. Additionally, we find out
that parameters l and a have a less influence on the total supplied
volume to customers. The results of the total supplied volume to
customers are 3294377, 3303717 and 3282822 under model (20),
(26) and (27), respectively. The largest total supplied volume is
from distirbutionally robust model with box ambiguity set. The
comparative study shows the differences between distirbutionally
robust models and nominal stochastic model. The dominant
advantage of distirbutionally robustmodel is it can effectively resist
the risk brought by ambiguity of probability distribution.

To analyze the cause of aforementioned phenomenon, the price
of distributional robustness (DRP) is given as follows:

DRP¼DROV�NSOV;

where DROV is the optimal value of the distributionally robust
model and NSOV is the optimal value of the nominal stochastic
model. From Fig. 7, it is easy to see that the DRP increases with the
adjustable parameterJ, particularly in the polyhedral-DRP. That is,
the larger the ambiguity set, the higher the cost the decision
Fig. 6. The comparison of computational results under two types model under.a ¼ 0:9



Table 6
The computational results of the relevant management/operational measures.

Risk aversion Confidence Model Expected cost CVaR Transportation costs

parameter (l) level (a) scenario 1 scenario 2 scenario 3

0 0.9 (20) e 470679788.20 23502365.70 34558342.04 50021841.20
(26) e 470679788.35 27730462.64 38456940.68 50021841.20
(27) e 470679788.35 23621849.60 34995875.32 49995801.20

0.7 (20) e 451765763.23 28134808.84 34323970.48 50048797.20
(26) e 452696490.92 21820202.76 34298771.60 50020601.20
(27) e 453169464.80 22836540.00 34298771.60 50020601.20

0.5 0.9 (20) 435489094.00 470669499.00 21431132.50 34298771.60 50020601.52
(26) 436013874.00 470669498.00 21431132.50 34298771.60 50020601.20
(27) 436276264.00 470669498.00 21433139.82 34298771.60 50020601.20

0.7 (20) 435489094.00 451750543.00 21431132.50 34298771.60 50020601.20
(26) 436013874.00 452696491.00 21431132.50 34298771.60 50020601.20
(27) 436276264.00 453169465.00 21431132.50 34298771.60 50020601.20

1 0.9 (20) 435506802.09 e 21440132.50 34323970.48 50048797.20
(26) 436013874.14 e 21431132.50 34298771.60 50020601.20
(27) 436276263.98 e 21431132.50 34298771.60 50020601.20

0.7 (20) 435506802.09 e 21440132.50 34323970.48 50048797.20
(26) 436013874.14 e 21431132.50 34298771.60 50020601.20
(27) 436276263.98 e 21431132.50 34298771.60 50020601.20

Fig. 7. The price of distributional robustness under two ambiguity sets under.a ¼ 0:9;
l ¼ 0:5
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makers will have to pay. The additional costs are caused by the
ambiguous distribution, which cannot be ignored. In this case, if
decision makers still insist on using the optimal solution of the
nominal stochastic model, the actual cost increment will greatly
increase and even produce infinite costs. Moreover, this situation
will lead to decision failure. Therefore, although the total cost of the
distributionally robust model is higher than that of the nominal
stochastic model, it resists the probability distribution ambiguity
better than the stochastic model with exact probabilistic
distributions.

5.5. Managerial insights

In this subsection, we analyze the managerial insights of solu-
tions and the optimal values and provide some insights into the
distributionally robust optimization approach for engineers.

5.5.1. The insights of the solution results
The computational results show that the obtained solutions of

our distributionally robust and nominal stochastic models are
significantly different. In view of this finding, engineers should not
ignore the effect of an imprecise probability distribution on the
optimal location strategy. Engineers can employ distributionally
robust optimization to derive a reasonable location strategy when
the distribution information is only partially known.

According to the analysis of the computational results, the type
of ambiguity set has a great influence on the optimal value. The
larger the ambiguity set is, the higher the cost, and the corre-
sponding model becomes more conservative. If engineers focus on
the costs, the conservativeness of the model should be controlled.
In addition, the optimal value is also affected by the risk aversion
parameter l and the confidence level a. To obtain a reasonable,
optimal scheme, engineers should set the appropriate risk aversion
parameter and the confidence level based on the requirements and
economic conditions of the firm.

5.5.2. The insights of distributionally robust optimization approach
In many practical CLSC problems, engineers often face diverse

types of uncertainty. When the exact probability distribution in-
formation can be obtained, engineers can design the CLSC network
with stochastic optimization method. In contrast, engineers may
only know the support, and any distribution information is out of
reach. In this case, they often make decisions by employing the
traditional robust method, which is regarded as a method that does
not require the distribution information.

In practical situations, however, engineers frequently confront
the situation that the distribution information lies somewhere in
between these two cases. They can only obtain partial information
on the probability distribution. It is easy to see from comparative
studies that ignorance to the differences in the distribution infor-
mation will lead to great decision-making risks and high costs. The
proposed distributionally robust method in this study is useful
because it should be employed when only partial distribution in-
formation is known. Therefore, engineers can use the proposed
distributionally robust mean-CVaRmodel to design a CLSC network
and resist the risk caused by imprecise probability distribution
information, further ensuring a reasonable decision is made.

6. Conclusions

In this paper, a multi-scenario optimization model is developed
to design an optimal CLSC network under distribution ambiguity
from a new perspective. The major findings are as follows:
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i) Model: A new distributionally robust mean-CVaR model is
proposed for designing the CLSC network. To better reflect
the uncertain nature of CLSC decision circumstances, un-
certain parameters are characterized by imprecise discrete
probability distributions. The objective is to minimize the
total cost and risk of the entire supply chain network by an
optimal trade-off between the expected value and the CVaR.

ii) Tractability: The robust counterpart of the proposed model is
a hard optimization problem and is usually computationally
intractable for general ambiguity sets. Consequently, two
types of ambiguity sets are selected and applied to obtain
computationally tractable forms of the proposed model. As a
result, the optimal solution can be obtained via conventional
optimization software such as CPLEX.

iii) Application: A realistic case study about a bicycle-sharing
company in the Jing-Jin-Ji Metropolitan Region of China is
implemented with the proposed approach. Actual data from
ofo are used to examine the performance of the proposed
model. To evaluate the effectiveness, a sensitivity analysis
and a comparison study are conducted via a number of nu-
merical experiments, from which some managerial insights
are recommended. Decision makers can make informed de-
cisions to design the CLSC configuration under imprecise
probability distributions of uncertain parameters.

A limitation of this research is the assumption of discrete
probability distributions for uncertain parameters. The intention of
this assumption is to construct a multi-scenario optimization
model that can be effectively solved. However, in many decision
problems, the uncertain parameter is continuous. In this case,
constructing a proper model for the bicycle-sharing CLSC network
problem and transforming it to a tractable form are two valuable
problems to be solved.

Moreover, the lack of consideration on carbon decisions is
another limitation, so an extension direction would be to reduce
the environmental pressures. A further attempt at other application
cases in different countries and regions is also an opportunity for
future research.
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Appendix A. The main notations of CLSC networkIn order to
formulate our CLSC network design model, the following
notations are necessary:
Related parameters of costs
fsi Fixed cost for selecting supplier i2I
fdk Fixed cost for opening distribution center k2K
fcm Fixed cost for opening recycling/dismantling center

m2M
fpn Fixed cost for opening waste disposal center n2N
csir Purchasing cost per unit component r2R from supplier

i2I
cmjp Manufacturing cost per unit product p2P for

manufactory j2J
cpkp Operating cost per unit product p2P for distribution

center k2K
ccmp recycling and dismantling cost per unit returned

product p2P for recycling/dism-antling center m2M
crmr Recovery cost per unit component r2R from recycling/

dismantling center m2M to manufactory j2J
cdnr Disposal cost per unit useless component r2R for

waste disposal center n2N
tspsijr Cost of shipping component r2R from supplier i2I to

manufactory j2J under scenario s2S
tpdsjkp Cost of shipping product p2P from manufactory j2J

to distribution center k2K under scenario s2S
tdcsklp Cost of shipping product p2P from distribution center

k2K to user area l2L under scenario s2S
tccslmp Cost of shipping product p2P from user area l2L to

recycling/dismantling center m2M under scenario
s2S

tcpsmjr Cost of shipping component r2R from recycling/
dismantling center m2M to manufactory j2J under
scenario s2S

tcdsmnr Cost of shipping component r2R from recycling/
dismantling center m2M to waste disposal center
n2N under scenario s2S

plp Penalty costs of unit product p2P that don’t satisfy
demand for customer l2L
Other parameters of CLSC network
ssir The capacity of supplier i2I to store component r2R
spjp The capacity of manufactory j2J to store product p2P
sdkp The capacity of distribution center k2K to store

product p2P
scmp The capacity of recycling/dismantling center m2M to

store product p2P
spnr The capacity of waste disposal center n2N to store

component r2R
dslp Demand for product p2P in user area l2L under

scenario s2S
rslp Amount of return product p2P from the user area

l2L under scenario s2S
drp The number of component r2R needed to produce one

product p2P
kh The coefficient of discount scheme h2H
qr Average disposal fraction of component r2R
Decision variables of CLSC network
xsijrh The number of component r2R purchased from

supplier i2I to manufactory j2J with quantity
discount h2H under scenario s2S

https://doi.org/10.1016/j.jclepro.2019.118967
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ysjkp The number of product p2P shipped from
manufactory j2J to distribution center k2 K under
scenario s2S

zsklp The number of product p2P shipped from distribution
center k2K to user area l2L under scenario s2 S

oslmp The number of returned product p2P from user area
l2L to recycling/dismantling center m2 M under
scenario s2S

tsmjr The number of useful component r2 R shipped from
recycling/dismantling center m2M to manufactory j2
J under scenario s2S

f smnr The number of useless component r2 R shipped from
recycling/dismantling center m2M to waste disposal
center n2N under scenario s2S

us
lp The number of product p2P that don’t meet demand

for users area l2L under scenario s2 S
ui Binary variable indicating whether potential supplier

i2I is selected or not
vk Binary variable indicating whether potential

distribution center k2K is opened or not
cm Binary variable indicating whether potential recycling/

dismantling center m2M is opened or not
wn Binary variable indicating whether potential waste

disposal center n2N is opened or not
gijrh Binary variable indicating whether manufactory j2 J

purchased component r2R from supplier i2 I with
discount h2H or not
Appendix B. The Proofs of Main Theorems

We first give the proof of Theorem 1.
Suppose probability distribution vector p belongs to a box am-

biguity set, i.e., Eq. (21), problems (24) and (25) are all linear pro-
gramming problems. To be specific, problem (24) can be
represented as follows:

max
p2§B

TCT ¼ TCTp0 þmax
x

n
TCTx

���eTx¼0; k xk∞ �J
o
:

where x∞ ¼ max
s2S

jxsj.
Thus, on the basis of the strong duality theory of linear pro-

gramming, the dual form of problem (24) is the following linear
programming model:

min
t;m;h;g

TCTp0 þJThþJTg

s:t: em� hþ g ¼ TC;
h � 0;g � 0;

(28)

while the dual programming of problem (25) is the following linear
programming model:

min
m’;t;h’;g’

fþ 1
1� a

�
tTp0 þJTh’þJTg’

�
s: t: TC � f � ts; c s;

em’� h’þ g’ ¼ t;

ts � 0; c s;

h’ � 0;g’ � 0:

(29)

Combining models (28) and (29), under the ambiguity set § ¼
§B , problem (23) is equivalent to the following linear system:

min
t;f;m;h;g;m0;h0;g0

l
�
TCTp0 þJThþJTg

�
þ ð1� lÞ
	
fþ 1

1� a

�
tTp0 þJTh0 þJTg0

�

s:t: TCs � f

� ts; c s; em� hþ g ¼ TC; em0 � h0 þ g0 ¼ t; ts

� 0; c s; h � 0;g � 0;h0 � 0;g0

� 0; constraints ð1Þ � ð17Þ;

where m;m’;h;h’;g;g’2R� R� RjS j � RjS j � RjS j � RjS j are the
dual variables/vectors.

For the sake of clarity, the above-mentioned linear system can
be rewritten as

min
t;f;m;h;g;m’;h’;g’

l
�
CTtp0 þJThþJTg

�
þ ð1� lÞ

	
fþ 1

1� a

�
tTp0 þJTh’þJTg’

�

s: t:TCs � f

� ts; c s; em� hþ g ¼ tTC; em’� h’þ g’ ¼ t; ts � 0; c s; h

� 0;g � 0;h’ � 0;g’ � 0; constraints ð1Þ � ð17Þ:

The proof of theorem is complete.
We next presents the proof of Theorem 2.
Suppose probability distribution vector p belongs to a poly-

hedral ambiguity set, i.e., Eq. (22), optimization problem (24) can be
represented as

max
p2§P

TCTp ¼ TCTp0 þmax
x

n
TCTP1x

���eTP1x ¼ 0;p0

þP1x � 0; k xk1 � 1
o
¼ TCTp0 þ Y�ðTCÞ;

where jjxjj1 ¼ P
s2S

jxsj, and Y�ðTCÞ is the optimal value of the
following convex program

max
x

n
TCTP1x

���eTP1x¼0;p0 þP1x�0; k xk1 �1
o
: (30)

The Lagrange function of problem (30) is

L ðw; n; 2; xÞ¼TCTP1xþwTðp0 þP1xÞþ 2eTP1xþ nð1� jjxjj1Þ:
Then we obtain the following Lagrange dual function with var-

iables ðw; n; 2Þ2RjS j � R� R,

gðw; n; 2Þ ¼ max
x

L ðw; n; 2; xÞ

¼ �
pT
0wþ n

�
þmax

x

n�
PT
1TCþ PT

1wþ PT
1e2

�
x� njjxjj1

o
¼ �

pT
0wþ n

�
þ f �

�
PT
1TCþ PT

1wþ PT
1e2

�
;

where

f *
�
PT
1TCþPT

1wþPT
1e2

�
¼
(
0;

���PT
1TCþ PT

1wþ PT
1e2k∞ � n

∞; otherwise

is the conjugate function of f ðxÞ ¼ nkxk1, and���PT
1TCþ PT

1wþ PT
1e2

���
∞

¼ max
s2S

���ðPT
1TCþ PT

1wþ PT
1e2Þs

���. For any
w � 0 and n � 0, the dual of problem (30) is the following optimi-
zation problem

min
ðw;n;2Þ2RjS j�R�R

(
pT
0wþ n

�����
���PT

1TCþ PT
1wþ PT

1e2
���
∞

� n

w � 0 and n � 0

)
: (31)

Thus the equivalent programming of problem (24) with regard
to variables ðw; n; 2Þ2RjS j � R� R can be represented as follows:
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min
t;w;n;2

TCTp0 þ pT
0wþ n

s: t:
���jPT

1TCþ PT
1wþ PT

1e2j
���
∞

� n;

w � 0; n � 0:

(32)

Similarly, the equivalent programming of problem (25) can be
represented as the following form:

min
t;w’;n’;2’

fþ 1
1� a

pT
0tþ

1
1� a

�
pT
0w’þ n’

�

s: t: TCs � f � ts; c s;���PT
1tþ PT

1w’þ PT
1e2’

���
∞

� n’;

ts � 0; c s;

w’ � 0; n’ � 0:

(33)

Combining models (32) and (33), under the ambiguity § ¼
§P , problem (23) is equivalent to the following solvable system:

min
t;f;w;n;2;w’;n’’2’

l
�
TCTp0 þ pT

0wþ n
�
þ ð1� lÞ

	
fþ 1

1� a
pT
0tþ

1
1� a

�
pT
0w’þ n’

�

s: t:TCs � f

� ts; c s;
���jPT

1TCþ PT
1wþ PT

1e2j
���
∞

� n;
���PT

1tþ PT
1w’þ PT

1e2’
���
∞

� n’; ts � 0; c s;w � 0; n � 0;w’ � 0; n’

� 0; constraints ð1Þ � ð17Þ;

where n; 2; n’; 2’;w;w’2R� R� R� R� RjS j � RjS j are dual vari-
ables/vectors.

For the sake of clarity, the above-mentioned linear system can
be rewritten as

min
t;f;w;n;2;w’;n’;2’

l
�
CTtp0 þ pT

0wþ n
�
þ ð1� lÞ

	
fþ 1

1� a
pT
0tþ

1
1� a

�
pT
0w’þ n’

�

s: t:TCs � f

� ts; c s;
���jPT

1t
TCþ PT

1wþ PT
1e2j

���
∞

� n;
���PT

1tþ PT
1w’þ PT

1e2’
���
∞

� n’; ts � 0; c s;w � 0; n � 0;w’ � 0; n’

� 0; constraints ð1Þ � ð17Þ:

The proof of theorem is complete. ∎
Finally, we show the proof of Proposition 1.
If ðt�;f�; t�;w�; n�; 2�;w’�; n’�; 2’�Þ is the optimal solution of model

(27) with § ¼ §P , then ðt�;w�; n�; 2�Þ is the optimal solution of
model (32). By the lagrange weak duality theorem, we can show
that

max
p2§P

CTt�p ¼ CTt�p0 þ Y�ðTCÞ

� CTt�p0 þ pT
0w

� þ n�:

So ðt�;f�; t�Þ is a feasible solution tomodel (23).We assume that
ðt�;f�

; t�;w�
; n�; 2�;w’�; n’�; 2’�Þ is another solution and it is the

optimal solution to model (23), then ðt�; w�
; n�; 2�Þ is the optimal

solution of model (32) such that

CTt�p0 þpT
0w

� þ n� � CTt�p0 þ pT
0w

� þ n�; (34)

where ðw�
; n�; 2�Þ solves model (31).
By the strong duality theorem, we have

max
p2§P

CTt� p ¼ CTt�p0 þ Y�ðTCÞ ¼ CTt�p0 þ pT
0w

� þ n�:

The CVaR criterion is similar to expected value. Combine with
constraints in model (23) and (31), it means that ðt�;f�

; t�;w�
; n�; 2�;

w’�; n’�; 2’�Þ is a feasible solution to model (27), which contradicted
the assumption that ðt�;f�; t�;w�; n�; 2�;w’�; n’�; 2’�Þ is an optimal
solution to model (27). Therefore, ðt�;f�; t�Þ is the optimal solution
to model (23).

Conversely, if ð~t�; ~f�
;~t�Þ is a solution to model (23) with § ¼

§P , then ð~t�; ~w�
;~n�; ~2�Þ solves model (32), where ð~w�

;~n�;~2�Þ solves
(31), and ð~t�; ~f�

;~t�; ~w’�;~n’�;~2’�Þ solves model (33). So
ð~t�; ~f�

;~t�; ~w�
;~n�;~2�; ~w’�;~n’�;~2’�Þ is a feasible solution to model (27).

Assume ðt�;f�
; t�; w�

; n�; 2�;w’�; n’�; 2’�Þ is another solution to model
(23), then, for expected value criterion, ðt�;w�

; n�; 2�Þ is the optimal
solution of model (32) such that

CT~t�p0 þpT
0
~w
� þ ~n� � CTt�p0 þ pT

0w
� þ n�; (35)

where ðw�
; n�; 2�Þ solves model (31). According to the discussion in

the first part, ðt�;f�
; t�Þ is an optimal solution to model (23), which

contradicts the assumption that ð~t�; ~f�
;~t�Þ solves model (23).

Therefore, ð~t�; ~f�
;~t�; ~w�

;~n�;~2�; ~w’�;~n’�;~2’�Þ solves model (27).
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