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a b s t r a c t 

A nonlinear reaction cross-diffusion predator-prey system under Neumann boundary con- 

dition is considered. Negative diffusion coefficients with local accumulation effect of prey 

are introduced. Firstly, the criteria for local asymptotic stability of the positive homoge- 

neous steady state with or without cross-diffusion are discussed. Moreover, the condi- 

tions for diffusion-driven instability are obtained and the Turing regions in the plane of 

cross-diffusion coefficients is achieved. Secondly, the existence and multiplicity of spa- 

tially nonhomogeneous/homogeneous steady-state solutions are studied by virtue of the 

Lyapunov–Schmidt reduction. Finally, to clarify the theoretical results, some numerical sim- 

ulations are carried out. One of the most interesting finding is that Turing instability in the 

model is induced by the negative diffusion coefficients. 
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1. Introduction 

In this paper, we consider the following predator-prey model with nonlinear cross-diffusion: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 1 

∂t 
= �[ ( 1 + αu 2 ) u 1 ] + u 1 

(
a − u 1 − cu 2 

1 + mu 1 

)
x ∈ �, 

∂u 2 

∂t 
= �[ 

(
μ + 

1 

1 + βu 1 

)
u 2 ] + u 2 

(
b − u 2 + 

du 1 

1 + mu 1 

)
x ∈ �, 

∂u 1 

∂ν
= 

∂u 2 

∂ν
= 0 x ∈ ∂�, 

u i (x, 0) = u i 0 (x ) ≥ 0 , x ∈ �, i = 1 , 2 , 

(1.1)

where u 1 ( x, t ) and u 2 ( x, t ) are representative of the predator density and the prey density at time t and space location x

respectively; � denotes the Laplacian operator; � ∈ R N ( N ≥ 1 is an integer) represents a bounded domain; a , c , d , m , μ, are

positive constants and b, α, β ∈ R . The nonlinear cross-diffusion term α�u 2 u 1 can imply different biological significance:

α > 0 ( α < 0), it depicts a tendency that prey species is far away from (resp., close to) high-density areas of predator
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species; and �
(

u 2 
1 + βu 1 

)
( β ≥ 0) means that the diffusion rate and the population pressure of predator species may

weaken in the high density location of prey species. We refer to [1] for more background about (1.1) . 

Some prey populations are very clever in the natural environment. When predators flock, they do not flee but gather

together in unity to form their own protective layer and close to the predator group to break it down one by one, such

as Asian bumblebees [2] and Asian bees [3] , especially Japanese bumblebees [4] and Japanese bees. A very large number

of Japanese bees will not directly fight back but use their unique skill–kill bumblebee with a ‘hot ball’ when face the

Bumblebee’s prey. They fly into groups of bumblebees and about every 500 bees surround a bumblebee, forming one tight

and hot ball after another. The bees continue to vibrate their flying muscles to emit heat. The temperature in the center of

these spheres rises to 47 ◦C in a few minutes just beyond the limit of the Bumblebee’s ability to withstand heat, but not

reach the upper limit of the bee. In about 20 min, Bumblebee is killed by the heat. This process has the following two

phenomena: the prey population is close to the high-density area of the predator population, that implies, α may be less

than 0; the rate of diffusive spread of predator populations increases in the process of forming spheres and the pressure on

the predator population enlarges in the center of the sphere, which means that α and β can be smaller than 0. 

Recently, much attention has been focused on Turing instability of predator-prey model by taking into account the effect

cross-diffusion [5–10] . For example, in [6] , Xie introduced the cross-diffusion terms in a three species food chain model, he

proved that the positive equilibrium is globally asymptotically stable for the system without diffusion by Lyapunov function,

and the Turing instability is driven solely form the effect of cross-diffusion. Guin [7] investigated a mathematical model

of predator-prey interaction subject to self and cross-diffusion and found that the effects of self-diffusion as well as cross-

diffusion play important roles in the stationary pattern formation of the model which concerns the influence of intra-species

competition among. Liu et al. [9] studied the Turing instability and pattern formation in a super cross-diffusion predator-prey

system with Michaelis–Menten type predator harvesting, and used some numerical simulations verify the theoretical results.

From these research results, we note that the cross-diffusion could play an important role in pattern formation. However, a

model very similar to (1.1) is investigated in [10] , and a surprising result is that the diffusion and cross-diffusion with α > 0

and β > 0 can not drive Turing instability. 

Based on the above discussion, to our best knowledge, there are still few works devoted to take the case of Eq. (1.1) with

α < 0 or β < 0 and Neumann boundary condition into account. In particular, the existence of Turing instability and steady-

state solution bifurcation plays an important role in the formation of pattern. This conclusion will be a welcoming addition

to the literature. This fact motivates our work for the manuscript. The remaining part is organized as follows. Section 2 is

devote to discussing the local stability of equilibria and Turing instability of the positive steady-state solutions. In Section 3 ,

by using Lyapunov–Schmidt reduction [11] , some sufficient conditions for the existence and multiplicity of non-constant

stationary solutions near the trivial and non-trivial equilibrium were established. In Section 4 , with the help of software

Matlab-2012, some numerical simulations are executed to illustrate the main results under one-dimensional spatial domain

� = (0 , π) . The paper ends with the discussion and conclusion. 

2. Turing instability of the positive stationary solution 

In this section, we mainly establish some criteria on the linear stability or instability of positive steady state u ∗ for ODEs

and PDEs respectively. As is known to all, Eqs. (1.1) corresponding ODEs system is the classical predator-prey model with

Holling type II functional response and has been studied extensively (see [12] and references therein). To well understand

behaviors of the system (1.1) , we firstly find the steady state of the spatially homogeneous system as follows. 

Proposition 2.1. For system (1.1) without diffusion, we have 

• the equilibria u 0 = (0 , 0) and u 01 = (a, 0) are always unstable; 
• if a < bc ( a > bc ), then the equilibrium u 02 = (0 , b) is stable(unstable); 
• if bc < a, ma ≤ 1 and bcm + cd ≤ 1 , and the unique interior equilibrium point u ∗ = (u ∗

1 
, u ∗

2 
) is stable. 

The proof of Proposition 2.1 is simple. Here, we omit it. 

To start Turing instability, we have to make the following assumption on the non-trivial steady-state solution u ∗: 

(H 1 ) bc < a, ma ≤ 1 , bcm + cd ≤ 1 . 

When u = u ∗, without loss of generality, for all u = (u 1 , u 2 ) 
T , let 

K(u ) = 

((
1 + αu 2 

)
u 1 , 

(
μ + 

1 

1 + βu 1 

)
u 2 

)
T , J(u ) = 

(
u 1 

(
a − u 1 − cu 2 

1 + mu 1 

)
, u 2 

(
b − u 2 + 

du 1 

1 + mu 1 

))
T , 

system (1.1) may be described as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂u 

∂t 
= �K(u ) + J(u ) x ∈ �, 

∂u 

∂ν
= 0 x ∈ ∂�, 

u i (x, 0) = u i 0 (x ) ≥ 0 , x ∈ �, i = 1 , 2 . 

(2.1) 
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The linearization of model (2.1) at u is ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂u 

∂t 
= �K u (u ) + J u (u ) x ∈ �, 

∂u 

∂ν
= 0 x ∈ ∂�, 

u i (x, 0) = u i 0 (x ) ≥ 0 , x ∈ �, i = 1 , 2 , 

(2.2)

where K u ( u 
∗) is the linearization matrix of K ( u ) at u ∗ and 

K u (u 

∗) = 

[ 

1 + αu 

∗
2 αu 

∗
1 −βu 

∗
2 

(1 + βu 

∗
1 
) 2 

μ + 

1 

1 + βu 

∗
1 

] 

= 

[
c 11 c 12 

c 21 c 22 

]
, 

J u (u 

∗) = 

⎡ 

⎢ ⎣ 

(ma − 1) u 

∗
1 − 2 m (u 

∗
1 ) 

2 

1 + mu 

∗
1 

−cu 

∗
1 

1 + mu 

∗
1 

du 

∗
2 

(1 + mu 

∗
1 
) 2 

−u 

∗
2 

⎤ 

⎥ ⎦ 

= 

[
a 11 a 12 

a 21 a 22 

]
. 

We perturb the model (2.1) near u ∗[
u 1 

u 2 

]
= 

[
u 

∗
1 + ε1 exp ((k x x + k y y ) i + ρt) 

u 

∗
2 + ε2 exp ((k x x + k y y ) i + ρt) 

]
, (2.3)

k = (k x , k y ) T acts for the wave vector; ρ represents the growth rate of perturbation in time t ; the Euclidean form k = | k |
stands for the wave number of the perturbation. The following characteristic equation of model (2.1) can be obtained after

replacing u with (2.3) , 

ρ2 − ρtr L (u ) + det L (u ) = 0 , (2.4)

where 

L (u ) = −k 2 K u (u 

∗) + J(u 

∗) , tr L (u ) = −(c 11 + c 22 ) k 
2 + (a 11 + a 22 ) , 

and 

det L (u ) = Ak 4 + Bk 2 + C, 

A = det K u (u 

∗) = c 11 c 22 − c 12 c 21 = (1 + αu 

∗
2 ) 

(
μ + 

1 

1 + βu 

∗
1 

)
+ 

αβu 

∗
1 u 

∗
2 

(1 + βu 

∗
1 
) 2 

, 

B = (1 + αu 

∗
2 ) u 

∗
2 + 

dαu 

∗
1 u 

∗
2 

(1 + mu 

∗
1 
) 2 

+ 

cβu 

∗
1 u 

∗
2 

(1 + mu 

∗
1 
)(1 + βu 

∗
1 
) 2 

− (1 + μ(1 + βu 

∗
1 ))[(ma − 1) u 

∗
1 − 2 m (u 

∗
1 ) 

2 ] 

(1 + βu 

∗
1 
)(1 + mu 

∗
1 
) 

, 

C = det J u (u 

∗) . 

In what follows, taking α as a parameter, we get the following results. 

Theorem 2.1. Suppose that H 1 is satisfied, then the cross-diffusion may exert Turing instability of the non-trivial steady-state

solution u ∗ in system (1.1) , if the following condition holds, 

α < αT and k > k T , 

where αT = − [ μ(1 + βu ∗1 ) + 1](1 + βu ∗1 ) 
u ∗

2 
(1 + βu ∗

1 
)[ μ(1 + βu ∗

1 
) + 1] + βu ∗

1 
u ∗

2 

, k T = max { k | Ak 4 + Bk 2 + C = 0 } . 

Proof. By Proposition 2.1 , the unique interior equilibrium point u ∗ = (u ∗1 , u ∗2 ) is stable without cross-diffusion under (H1).

Furthermore, by the expression of A , 

A = (1 + αu 

∗
2 ) 
(
μ + 

1 

1 + βu 

∗
1 

)
+ 

αβu 

∗
1 u 

∗
2 

(1 + βu 

∗
1 
) 2 

= α
[ 

u 

∗
2 

(
μ + 

1 

1 + βu 

∗
1 

)
+ 

βu 

∗
1 u 

∗
2 

(1 + βu 

∗
1 
) 2 

] 
+ 

(
μ + 

1 

1 + βu 

∗
1 

)
, 

after a simple calculation, we have A < 0 when α < αT . Since 

lim 

k 2 → + ∞ 

det L (u ) = lim 

k 2 → + ∞ 

(Ak 4 + Bk 2 + C) = −∞ , 

with A < 0, C > 0, by the intermediate value theorem, we obtain det L (u ) = 0 at least one positive root. Let k T = max { k | Ak 4 +
Bk 2 + C = 0 } , one can deduce det L (u ) < 0 when k > k immediately, which imply that (2.4) has a positive root. Namely, as
T 
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α decreasing, cross-diffusion can exert Turing instability of the non-trivial steady-state solution. Until now, the theorem is

completely proved. �

Remark 2.1. From Theorem 2.1 , we have the following results. 

• In the case α = β = 0 , i.e., the self-diffusion alone for system (1.1) (see [13] ), from (2.4) , one can obtain: 

c 11 = 1 , c 22 = μ, A = 1 + μ > 0 , B = u 

∗
2 −

(1 + μ)[(ma − 1) u 

∗
1 − 2 m (u 

∗
1 ) 

2 ] 

1 + mu 

∗
1 

> 0 , C = J(u 

∗) > 0 , 

which shows 

tr L (u ) = −(c 11 + c 22 ) k 
2 + (a 11 + a 22 ) < 0 , det L (u ) = Ak 4 + Bk 2 + C > 0 , for all k. 

According to Vieta theorem, (2.4) has two roots with negative real parts, which proves model (1.1) remains stable in the

presence of self-diffusion but without cross-diffusion, and the Turing instability can not occur. 
• In the case α > 0, β > 0, after a direct calculation, one can obtain that, 

c 11 + c 22 > 0 , A > 0 , B > 0 , C > 0 , 

which shows 

tr L (u ) = −(c 11 + c 22 ) k 
2 + (a 11 + a 22 ) < 0 , det L (u ) = Ak 4 + Bk 2 + C > 0 , for all k. 

Then, (2.4) has two roots with negative real parts, and system (1.1) with self-diffusion and cross-diffusion remains stable,

Turing instability can not appear also. 

Remark 2.2. The corresponding system with Holling I,II and III functional responses associated with Eqs. (1.1) was con-

sidered in [6] . The results obtained in [6] suggest that, if the diffusion coefficients are all positive, then diffusion-driven

instability can not happen. Furthermore, from Theorem 2.1 of the present manuscript, we see that the introduction of neg-

ative diffusion coefficients play an important role in Turing instability. 

Remark 2.3. Biologically, our results suggest that if the prey is close to predator (i.e. α < 0), or the predator species run

away from the prey (i.e. β < 0) respectively, the steady state will be strongly amplified by cross-diffusion, giving rise to a

spatially inhomogenous population distribution. In other words, cross-diffusion can drive the development of spatial patterns

under certain conditions. 

Remark 2.4. Regarding the diffusion rate of predator β as a parameter, in the same way as above, Turing instability can be

discussed also. 

3. The existence of non-constant steady-state solutions 

In this section, the Lyapunov–Schmidt reduction method, which is known from [14] , is applied to seek for the non-

constant steady-states near u 0 and u ∗ in (1.1) . The cases of other constant stationary solutions can be obtained similarly. In

order to investigate whether cross-diffusion can induce the non-constant steady-states around the constant steady-state, we

introduced some notations and basic facts throughout this article: 

• We always assume that each eigenvalue λi (i ∈ N 0 = N ∪ { 0 } ) of the operator −� on � is simple, where 0 = λ0 < λ1 <

λ2 < · · · and n → ∞ , λn → + ∞ . φi are the corresponding eigenfunction of λi , φ0 ( x ) > 0 and { φi } ∞ 

i =0 
is a complete or-

thonormal system in the Lebesgue space L 2 ( �) of integrable functions defined on �. 

• Y = L 2 (�) , X = H 

2 (�) ∩ H 

1 
0 
(�) where H 

1 
0 
(�) = { u ∈ H 

1 
0 
(�) | ∂u (x ) 

∂ν
= 0 , ∀ x ∈ ∂�} , H 

2 ( �) represents the Sobolev space

of the L 2 -functions f defined on �. Their derivatives 
d k f 

dx k 
are also belong to L 2 ( �). 

• The inner product formula of both space X and Y is 〈 
u (x ) , v (x ) 

〉 
= 

∫ 
�

u 

T (x ) v (x ) dx. 

• For each j ∈ N 0 , we have 

X j = 

{ 
ϕ ∈ X | 

∫ 
�

ϕ(x ) φ j (x ) dx = 0 

} 
, Y j = 

{ 
ϕ ∈ Y | 

∫ 
�

ϕ(x ) φ j (x ) dx = 0 

} 
. 

For more transparent, we define the vector operator 

F : X 

2 → Y 2 , F (u ) = 

(
F 1 (u 1 , u 2 ) , F 2 (u 1 , u 2 ) 

)
T , 

where ⎧ ⎪ ⎨ 

⎪ ⎩ 

F 1 (u 1 , u 2 ) = �
[ 
(1 + αu 2 ) u 1 

] 
+ u 1 

(
a − u 1 − cu 2 

1 + mu 1 

)
, 

F 2 (u 1 , u 2 ) = �
[ 
(μ + 

1 

) u 2 

] 
+ u 2 

(
b − u 2 + 

du 1 
)
. 

(3.1) 
1 + βu 1 1 + mu 1 
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3.1. Steady states near u 0 

The Fréchet derivative of F at u 0 is given by 

L η(u 0 ) = diag { � + a, μ� + b} = L η, 

where η = (η1 , η2 ) 
T = (a, b) T . So far, we can deduce the result about the stability of u 0 , which is as follows. 

Remark 3.1. There is i ∈ N 0 such that λi > a , μλi > b is fulfilled, u 0 is unstable in ODE system while stable in PDE system

(1.1) . 

Noted that a > 0, b > 0, λj ( j ∈ N 0 ) can be regarded as the bifurcation values of a and b . In what follows, we investigate

whether system (1.1) exists non-constant steady-state solutions near ( u 0 , η
0 ) with the following assumption. 

( H 2 ): there is η0 = (λ j , μλk ) 
T , where λj , λk are the fixed simple eigenvalues of operator −�. φj , φk are the corresponding

character functions. 

Next, we accordance with the Lyapunov–Schmidt reduction step to seek for the stationary bifurcation of u 0 . 

Step 1 . Let q 1 = (φ j , 0) T , q 2 = (0 , φk ) 
T and K = KerL η0 

. From hypothesis, we have 

L η0 
q 1 = diag{ � + λ j , μ� + μλk } q 1 = 

(
(−λ j + λ j ) φ j , (μ� + μλk )0 

)
T = 0 , 

L η0 
q 2 = diag{ � + λ j , μ� + μλk } q 2 = 

(
(� + λ j )0 , (−μλk + μλk ) φk 

)
T = 0 , 

that is, K = span { q 1 , q 2 } . 
Because Y 2 is a complete space and L η0 

: X 2 → Y 2 is a bounded linear operator, d imK, cod imRangeL η0 
are finite and L η0

is Fredholm operator. 

It is easy to verity that 〈 x, L η0 
y 〉 = 〈 L η0 

x, y 〉 , ∀ x, y ∈ X 2 . That is to say, L η0 
is a self-adjoint operator, L ∗η0 

= L η0 
. Using

Fredholm alternative theorem, we have the decompositions 

X 

2 = K � X 00 , Y 2 = K � Y 00 , 

where 

X 00 = X j × X k , Y 00 = Y j × Y k . 

Clearly, d imK = cod imRangeL η0 
, L η0 

is a Fredholm operator with index zero, and L η0 
| X 00 

: X 00 → Y 00 is invertible and its

inverse is bounded. 

Step 2 . Set P and I − P, P 1 and P 2 denote the projection operators from Y 2 to Y 00 and K, from Y to Y j and Y k respectively,

and 

P u = 

(
P 1 u 1 

P 2 u 2 

)
= 

(
u 1 (x ) − φ j 

∫ 
� φ j (x ) u 1 (x ) dx 

u 2 (x ) − φk 

∫ 
� φk (x ) u 2 (x ) dx 

)
, ∀ u = 

(
u 1 

u 2 

)
∈ Y 2 . 

Therefore, 

F (u, η) = 0 i f f P F (u, η) = 0 , (3.2)

(I − P ) F (u, η) = 0 . (3.3)

Step 3 . For every u ∈ X 

2 , there is a unique decomposition: 

u = z 1 q 1 + z 2 q 2 + w, z = (z 1 , z 2 ) 
T ∈ R 

2 , w = (w 1 , w 2 ) 
T ∈ X 00 . 

Replacing u of (3.2) with u = z 1 q 1 + z 2 q 2 + w, we have 

P F (z 1 q 1 + z 2 q 2 + w, η) = 0 . 

More abstractly, P F (z 1 q 1 + z 2 q 2 + w, η) can be viewed as a map from K × X 00 × R 2 to Y 00 , which satisfies two cases: 

(i) P 1 F 1 (0 , z 2 , 0 , w 2 , η) = 0 , P 2 F 2 (z 1 , 0 , w 1 , 0 , η) = 0 ;
ii) P F w 

(0 , 0 , 0 , 0 , η0 ) = P L η0 = L η0 . 

The first equal sign holds by the chain rule, and the second is because P | Y 00 
: Y 00 → Y 00 is a identity operator. 

Recall that L η0 
| X 00 

is invertible, so we apply the implicit function theorem to require a unique differentiable map w =
(w 1 , w 2 ) 

T in two open neighborhoods: δ of 0, ε of η0 in R 2 respectively, which satisfies 

w 1 (0 , z, η) = w 2 (z, 0 , η) = 0 , ∀ (z, η) ∈ δ × ε. 

Substituting u = z 1 q 1 + z 2 q 2 + w (z 1 , z 2 , η) into (3.3), we attain 

P F (z 1 q 1 + z 2 q 2 + w (z 1 , z 2 , η) , η) = 0 . (3.4)
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Step 4 . In this step, we solve the specific expressions of w ( z 1 , z 2 , η). Let 

w ls (z 1 , z 2 ) = 

∂ l+ s w (z 1 , z 2 ) 

∂ z l 
l 
∂ z s 

2 

∀ l, s ∈ N 0 , 

and d n F z , n ∈ Z + denote the n-order differential operators of F subject to z . For example, dF z expresses the Jacobian matrix

of F subject to z . By the chain rule of matrix, d(G ◦ F ) z = dG F (z) dF z , and differentiate (3.4) with respect to z , obtaining 

d(P F ) z = P L η0 ·
[
ϕ j + w 

1 
1 w 

1 
2 

w 

2 
1 ϕ k + w 

2 
2 

]
= P L η0 ·

[
w 

1 
1 w 

1 
2 

w 

2 
1 w 

2 
2 

]
= L η0 ·

[
w 

1 
1 w 

1 
2 

w 

2 
1 w 

2 
2 

]
. 

The first equality results from that the sequence of differentiate operations and projection operator P is commutative,

namely, d n (P F ) z = P d n F z , n ∈ Z + . The second equality is because K = span { q 1 , q 2 } . L η0 
| X 00 

is invertible, so 

dw z = 

[
w 

1 
1 w 

1 
2 

w 

2 
1 w 

2 
2 

]
= 0 . 

This proof is also mentioned roughly by [15] . 

The Taylor expansion of w ( z 1 , z 2 , η) is 

w (z 1 , z 2 , η) = 

1 

2 

w 20 z 
2 
1 + w 11 z 1 z 2 + 

1 

2 

w 02 z 
2 
1 + · · · . 

Continue to differentiate dF z subject to z to derive d 2 F z , go on differentiating d 2 F z with respect to z to derive d 3 F z , the rest

higher derivative can be got in the same manner. 

∀ ζ = (ζ1 , ζ2 ) 
T , ξ = (ξ1 , ξ2 ) 

T , ε = (ε 1 , ε 2 ) 
T ∈ K, d 2 F z ( ζ , ξ ) and d 3 F z ( ζ , ξ , ε) are respectively the following two ma-

trixes: 

( 
−2 ζ1 ξ1 + (α� − c)(ζ2 ξ1 + ζ1 ξ2 ) 
(d − β�) (ζ2 ξ1 + ζ1 ξ2 ) − 2 ζ2 ξ2 

) , 

(
2 cm (ζ1 ξ2 ε 1 + ζ2 ξ1 ε 1 + ζ1 ξ1 ε 2 ) 

(−2 md + 2 β2 �) (ζ1 ξ2 ε 1 + ζ2 ξ1 ε 1 + ζ1 ξ1 ε 2 ) 

)
. 

Furthermore, we have 

w 20 = −(L η0 ) −1 P d 2 F z (q 1 , q 1 ) = (w 

1 
20 , w 

2 
20 ) 

T = 

(2 φ j (φ j −
∫ 
� φ3 

j 
(x ) dx ) 

� + λ j 

, 0 

)
T , 

w 11 = −(L η0 ) −1 P d 2 F z (q 1 , q 2 ) = 

( 

w 

1 
11 

w 

2 
11 

) 

= 

⎛ 

⎜ ⎝ 

φ j (α� − c)(−φk + 

∫ 
� φ2 

j 
(x ) φk (x ) dx ) 

� + λ j 

φk (d − β�)(−φ j + 

∫ 
� φ j (x ) φ2 

k 
(x ) dx ) 

μ� + μλk 

⎞ 

⎟ ⎠ 

, 

w 02 = −(L η0 ) −1 P d 2 F z (q 2 , q 2 ) = (w 

1 
02 , w 

2 
02 ) 

T = 

(
0 , 

2 φk (φk −
∫ 
� φ3 

k 
(x ) dx ) 

μ� + μλk 

)
T , · · · · · · , 

where ( q i , q j ) by q i · q j computing. 

Substituting u = z 1 q 1 + z 2 q 2 + w (z 1 , z 2 , η) into (3.3) leads to 

�(z 1 , z 2 , η) = (I − P ) F (z 1 q 1 + z 2 q 2 + w (z 1 , z 2 , η) , η) = 0 . (3.5)

Until now, the original bifurcation problem is reduced to looking for solutions of �( z 1 , z 2 , η). Moreover, 

�(0 , 0 , η) = 0 , �z 1 (0 , 0 , η0 ) = 0 , �z 2 (0 , 0 , η0 ) = 0 . 

From the consequence of Lyapunov–Schmidt reduction, there is a vicinity V ∈ R 2 × R 2 of (0, 0, η0 ) satisfying that each

solution of �( z 1 , z 2 , η) one-to-one corresponds to a solution of F (u, η) = 0 . 

Step 5 . Calculate the inner product of (3.5) with q 1 and q 2 , deriving G (z 1 , z 2 , η) = 0 , where G = (G 1 , G 2 ) 
T is given by 

G s = 

〈 
q s , F (z 1 q 1 + z 2 q 2 + w (z 1 , z 2 , η) , η) 

〉 
s = 1 , 2 . 

It follows from (3.4) and the definition of F, we have for all z ∈ R , 

G 1 (0 , z, η) = G 2 (z, 0 , η) = 0 , 

and 

dG z (0 , 0 , η0 ) = diag(a − λ j , b − μλk ) . 

Thus, we can rewrite G ( z 1 , z 2 , η) as 

(
z 1 g 1 (z 1 , z 2 , η) , z 2 g 2 (z 1 , z 2 , η) 

)
T and 

(
g 1 (z 1 , z 2 , η) 
g 2 (z 1 , z 2 , η) 

)
= 

⎛ 

⎝ 

a − λ j + J 11 z 1 + J 12 z 2 + 

1 

6 

(b 120 z 
2 
1 + 3 b 111 z 1 z 2 + 3 b 102 z 

2 
2 ) + · · ·

b − μλk + J 21 z 1 + J 22 z 2 + 

1 

(3 b 220 z 
2 
1 + 3 b 211 z 1 z 2 + b 202 z 

2 
2 ) + · · ·

⎞ 

⎠ , 
6 
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where 

J 11 = 

〈 
q 1 , d 2 F z (q 1 , q 1 ) 

〉 
= −2 

∫ 
�

φ3 
j (x ) dx, 

J 12 = 

〈 
q 1 , d 2 F z (q 1 , q 2 ) 

〉 
= −(c + αλ j ) 

∫ 
�

φk (x ) φ2 
j (x ) dx, 

J 21 = 

〈 
q 2 , d 2 F z (q 1 , q 2 ) 

〉 
= (d + βλk ) 

∫ 
�

φ2 
k (x ) φ j (x ) dx, 

J 22 = 

〈 
q 2 , d 2 F z (q 2 , q 2 ) 

〉 
= −2 

∫ 
�

φ3 
k (x ) dx, 

b 120 = 

〈 
q 1 , d 3 F z (q 1 , q 1 , q 1 ) + 3 d 2 F z (q 1 , w 20 ) 

〉 
= 

12 

[ 
( 
∫ 
� φ3 

j 
(x ) dx ) 2 − ∫ � φ4 

j 
(x ) dx 

] 
� + λ j 

, 

b 202 = 

〈 
q 2 , d 3 F z (q 2 , q 2 , q 2 ) + 3 d 2 F z (q 2 , w 02 ) 

〉 
= 

12 

[ 
( 
∫ 
� φ3 

k 
(x ) dx ) 2 − ∫ � φ4 

k 
(x ) dx 

] 
μ� + μλk 

, 

b 102 = 

〈 
q 1 , d 3 F z (q 1 , q 2 , q 2 ) + 2 d 2 F z (q 2 , w 11 ) + d 2 F z (q 1 , w 02 ) 

〉 
= (α� − c) 

[ 
2 

∫ 
�

φ j (x ) φk (x ) w 

1 
11 dx + 

∫ 
�

φ2 
j (x ) w 

2 
02 dx 

] 
, 

b 211 = 

〈 
q 2 , d 3 F z (q 1 , q 2 , q 2 ) + 2 d 2 F z (q 2 , w 11 ) + d 2 F z (q 1 , w 02 ) 

〉 
= (d − β�) 

[ 
2 

∫ 
�

φ2 
k (x ) w 

1 
11 dx + 

∫ 
�

φk (x ) φ j (x ) w 

2 
02 dx 

] 
− 4 

∫ 
�

φ2 
k (x ) w 

2 
11 dx, 

b 220 = 

〈 
q 2 , d 3 F z (q 1 , q 1 , q 2 ) + d 2 F z (q 2 , w 20 ) + 2 d 2 F z (q 1 , w 11 ) 

〉 
= (d − β�) 

[ 
2 

∫ 
�

φk (x ) φ j (x ) w 

2 
11 dx + 

∫ 
�

φ2 
k (x ) w 

1 
20 dx 

] 
+ (2 md − β2 �) 

∫ 
�

φ2 
j (x ) φ2 

k (x ) dx, 

b 111 = 

〈 
q 1 , d 3 F z (q 1 , q 1 , q 2 ) + 2 d 2 F z (q 1 , w 11 ) + d 2 F z (q 2 , w 20 ) 

〉 
= (α� − c) 

[ 
2 

∫ 
�

φ2 
j (x ) w 

2 
11 dx + 

∫ 
�

φ j (x ) φk (x ) w 

1 
20 dx 

] 
+ 2 cm 

∫ 
�

φ3 
j (x ) φk (x ) dx − 4 

∫ 
�

φ2 
j (x ) w 

1 
11 dx. 

We next discuss the existence and multiplicity near u 0 by form. As we all know, the non-constant steady-states are

generally trivial, semi-trivial and non-trivial. 

Obviously, g(0 , 0 , η0 ) = 0 , F ( z 1 , z 2 , η) has trivial steady-state solution. 

F ( z 1 , z 2 , η) may have non-constant semi-trivial steady-states that take the form of ( z 1 , 0) T or (0, z 2 ) 
T in a neighborhood of

u 0 , where z 1 , z 2 satisfy z 1 z 2 � = 0 and F 1 (z 1 , 0 , η) = 0 , F 2 (0 , z 2 , η) = 0 . The previous equations are equivalent respectively

to g 1 (z 1 , 0 , η) = 0 , g 2 (0 , z 2 , η) = 0 . 

What we are going to do is to observe the existence of ( z 1 , 0) T , and owing to the symmetry of J 11 and J 22 , b 120 and b 202 ,

the questions whether and how (0, z 2 ) 
T exists can be solved by the same way. 

Let ε1 and ε2 represent two positive constants and 

J = dg z = 

[
J 11 J 12 

J 21 J 22 

]
;
{

U i = { ηi ∈ R | 0 < | ηi − η0 
i 
| < ε i } , i = 1 , 2 ;

U 

±
i 

= { η±
i 

∈ R | 0 < | η±
i 

∓ η0 
i 
| < ε i } , i = 1 , 2 , 

where η0 
i 

are mentioned at the beginning part of the subsection. 

When J 11 = dg 1 z 1 � = 0 , recall that g 1 (z 1 , 0 , η) = 0 , and apply the implicit function theorem for g 1 ( z 1 , 0, η) subject to z 1 .

We obtain a constant ε1 and continuously differentiable map η1 → z 1 η1 
: U 1 → R satisfying that g 1 ( z 1 , 0, η) has a zero point

z 1 η1 
, which is given by 

z 1 η1 
= 

−(a − λ j ) 

J 11 

+ o(| η1 − λ j | ) . (3.6)

It is clearly that z 1 η1 
relies on η1 and trends to 0 as η1 trends to λj . Moreover, if (a − λ j ) J 11 < 0 (resp., > 0), then z 1 η1 

> 0

(resp., z 1 η1 
< 0 ). Particularly, if j = 0 , J 11 < 0 , then z 1 η1 

> 0 . 

Meanwhile, F ( u 1 , u 2 , η) with η1 ∈ U 1 has a semi-trivial steady-states (u 1 η1 
, 0) , where 

u 1 η1 
= z 1 η1 

φ j + w 1 (z 1 η1 
, 0 , η1 ) . (3.7)
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We can see that u 1 η1 
depends on z 1 η1 

, so u 1 η1 
relies on η1 indirectly and also has the quality that u 1 η1 

→ 0 , as η1 → λj .

Particularly, as j = 0 , η1 J 11 < 0 , z 1 η1 
> 0 , u 1 η1 

is positive. 

When J 11 = 0 , by a directly calculation, we have ∫ 
�

φ3 
j (x ) dx = 0 , b 120 = 

−12 

∫ 
� φ4 

j 
(x ) dx 

a − λ j 

, b 120 (a − λ j ) = −12 

∫ 
�

φ4 
j (x ) dx < 0 . 

Then there are two continuously differentiable maps η±
1 

→ z ±
1 η1 

from U 

±
1 

to R satisfying (1.1) with η±
1 

∈ U 

±
1 

has two non-

constant steady-state solutions u ±
1 η1 

and 

u 

±
1 η1 

= z ±1 η1 
φ j + w (z ±1 η1 

, η1 ) , z ±1 η1 
= 

√ 

(a − λ j ) 2 

2 

∫ 
� φ4 

j 
(x ) dx 

+ o(| η1 − η0 
1 | ) . (3.8)

Analogously, we can get the result of (0, z 2 ) 
T . 

When J 22 � = 0, g 2 (0, z 2 , η) has a zero z 2 η2 
depending on η2 , which is 

z 2 η2 
= 

−(b − μλk ) 

J 22 

+ o(| η2 − η0 
2 | ) . (3.9) 

z 2 η2 
approaches to 0 as η2 gets close to λk . Moreover, if (b − μλk ) J 22 < 0 (resp., > 0), then z 2 η2 

> 0 (resp., z 2 η2 
< 0 ). Partic-

ularly, as k = 0 , J 22 < 0 , then z 2 η2 
> 0 . 

Meanwhile, F ( u 1 , u 2 , η) with η2 ∈ U 2 has a zero (0 , u 2 η2 
) , with 

u 2 η2 
= z 2 η2 

φk + w 2 (0 , z 2 η2 
, η2 ) , (3.10) 

which relies on η2 indirectly and has the same trend with z 2 η2 
. Moreover, u 2 η2 

is positive(resp., negative) if (η2 − λk ) J 22 < 0

(resp., > 0). Particularly, as k = 0 , η2 J 22 < 0 , z 2 η2 
> 0 , u 2 η2 

is positive. 

When J 22 = 0 , there are two continuously differentiable maps η2 → z ±
2 η2 

from U 

±
2 

to R satisfying that (1.1) with η2 ∈ U 2 

has two non-constant steady-state solutions u ±
2 η2 

and 

u 

±
2 η2 

= z ±2 η2 
φk + w (z ±2 η2 

, η2 ) , z ±2 η2 
= 

√ 

(b − μλk ) 2 

2 

∫ 
� φ4 

k 
(x ) dx 

+ o(| η2 − η0 
2 | ) . (3.11)

Therefore, the following assertions hold. 

Theorem 3.1. Suppose the H 2 holds, then system (1.1) possesses different forms of non-constant semi-trivial steady-state solution,

which are splited into four circumstances: 

(i) system (1.1) with η1 ∈ U 1 has the solution taking the form of (u 1 η1 
, 0) T if J 11 � = 0, which is revealed by (3.6) and (3.7) .

Moreover, u 1 η1 
is positive as j = 0 , J 11 < 0 . 

(ii) If J 11 = 0 , then system (1.1) with η±
1 

∈ U 

±
1 

owns two solutions (u ±
1 η1 

, 0) T , which is displayed by (3.8) , and the sign of u ±
1 η1 

allows positive as well as negative. 

(iii) system (1.1) with η2 ∈ U 2 has a solution taking the form of (0 , u 2 η2 
) T if J 22 = dg 2 z 2 � = 0 , which is showed by (3.9) and

(3.10) . Moreover, u 2 η2 
is positive as j = 0 , J 22 < 0 . 

(iv) If J 22 = 0 , then system (1.1) with η±
2 

∈ U 

±
2 

owns two solutions (0 , u ±
2 η2 

) T , which is exhibited by (3.11) , and the sign of

u ±
2 η2 

allows positive as well as negative. 

Remark 3.2. When η is close to some critical values, there is one or two semi-trivial steady-state solutions in a neighbour-

hood of u 0 . Both the situation (ii) and (iv) of the Theorem 3.1 show that the sign of non-constant steady-state solutions can

be negative, but the negative steady-states are meaningless in biology models. 

Lastly, in a vicinity of u 0 , F ( z 1 , z 2 , η) can exist positive non-constant steady-state solutions taking the form of ( z 1 , z 2 ) 
T , and

z 1 , z 2 satisfy F 1 (z 1 , z 2 , η) = 0 , F 2 (z 1 , z 2 , η) = 0 , namely, g 1 (z 1 , z 2 , η) = 0 , g 2 (z 1 , z 2 , η) = 0 . 

By directly computing, there is 

det J = 4 

∫ 
�

φ3 
j (x ) dx 

∫ 
�

φ3 
k (x ) dx + (c + αλ j )(d + βλk ) 

∫ 
�

φk (x ) φ2 
j (x ) dx 

∫ 
�

φ2 
k (x ) φ j (x ) dx. 

If det J � = 0 , from the implicit function theorem, then there is a constant δ > 0 and a unique differentiable continuously

map z η = (z 1 η, z 2 η) T from N(η0 , δ) = { η ∈ R 2 | | η − η0 | < δ} to R 2 meeting that g(z η, η) = 0 for all η ∈ N ( η0 , δ). Moreover,

we have ⎧ ⎪ ⎨ 

⎪ ⎩ 

z 1 η = 

J 12 (b − μλk ) − J 22 (a − λ j ) 

det J 
+ o(| η − η0 | ) , 

z 2 η = 

J 21 (a − λ j ) − J 11 (b − μλk ) 

det J 
+ o(| η − η0 | ) , 

(3.12) 
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and lim η→ η0 z η = 0 . At the same time, F ( u 1 , u 2 , η) with η ∈ N ( η0 , δ) have only one non-constant positive steady-states u η =
(u 1 η, u 2 η) T in a vicinity of u 0 , with {

u 1 η = z 1 ηφ j + ω 1 (z 1 η, z 2 η, η) , 
u 2 η = z 2 ηφk + ω 2 (z 1 η, z 2 η, η) , 

(3.13)

and lim η→ η0 u η = 0 . 

If det J = 0 , then there are ϑs ∈ R 2 and ϑ 

∗
s ∈ R 2 ∗ (s = 0 , 1) satisfying Jϑ 0 = 0 , ϑ 

∗
0 

J = 0 , and ϑ 

∗
l 
ϑ s = δls , l, s = 0 , 1 , where

R 2 ∗ represents the Euclidian space of two-dimensional row vectors. Hence, g(z, η) = 0 if and only if for all x 1 , y ∈ R , we

have 

ϑ 

∗
0 g(x 1 ϑ 0 + yϑ 1 , η) = 0 , (3.14)

ϑ 

∗
1 g(x 1 ϑ 0 + yϑ 1 , η) = 0 . (3.15)

Note that 

ϑ 

∗
l g(0 , η) = 0 , ϑ 

∗
1 g y (0 , η) = ϑ 

∗
l Jϑ l � = 0 , 

from the implicit function theorem, there is a positive constant σ and a unique continuously differentiable map y ( x , η)

from N (0, σ ) × U to R , where N(0 , δ) = { x 1 ∈ R | | x 1 | < σ } and U = { η ∈ R 2 | ‖ η − η0 ‖ < δ} . y ( x 1 , η) satisfies that for every

( x 1 , η) ∈ N (0, σ ) × U , there are 

y (0 , η0 ) = 0 , ϑ 

∗
l g 

(
x 1 ϑ 0 + y (x 1 , η

0 ) ϑ l , η
)

= 0 . 

Substituting y ( x 1 , η) into (3.14), we have 

ϑ 

∗
0 g 

(
x 1 ϑ 0 + y (x 1 , η) ϑ l , η

)

= (a − λ j ) ϑ 

∗
01 + (b − μλk ) ϑ 

∗
02 + 

1 

12 

(
x 1 ϑ 0 + y (x 1 , η) ϑ l 

)
T D η

(
x 1 ϑ 0 + y (x 1 , η) ϑ l 

)

= (a − λ j ) ϑ 

∗
01 + (b − μλk ) ϑ 

∗
02 + 

1 

12 

x 2 1 ϑ 

T 
0 D ηϑ 0 + o 

(
x 3 1 + | x 2 1 (η − η0 ) | 

)
= 0 , 

where 

D η = 

[
2(ϑ 

∗
01 b 120 + ϑ 

∗
02 b 220 ) 3(ϑ 

∗
01 b 111 + ϑ 

∗
02 b 211 ) 

3(ϑ 

∗
01 b 111 + ϑ 

∗
02 b 211 ) 6 ϑ 

∗
01 b 102 

]
. 

Let 

S = 

[ 
(a − λ j ) ϑ 

∗
01 + (b − μλk ) 

] 
ϑ 

T 
0 D η0 ϑ 0 . 

It is not hard to find that if S > 0, then r ( x 1 , η) has no zeros, otherwise, two nontrivial zeros x ±
1 η . Moreover, 

x ±1 η = − (a − λ j ) ϑ 

∗
01 + (b − μλk ) 

ϑ 

T 
0 

D η0 

+ o 

(
x 3 1 + | x 2 1 (η − η0 ) | 

)
, z ±η = x ±1 ηϑ 0 + r(x ±1 η, η) ϑ l . (3.16)

Correspondingly, system (1.1) has no non-constant positive steady-state solutions near u 0 if S > 0, and otherwise, two non-

constant positive solutions: u (z ±η ) , where 

u (z ±η ) = z ±1 η1 
q 1 + z ±2 η2 

q 2 + w (z ±1 η1 
, z ±2 η2 

, η) . (3.17)

Thus, we obtain the following results. 

Theorem 3.2. Suppose the H 2 holds, then system (1.1) exists different forms of the non-constant positive steady-states, which

takes part in two kinds of circumstances: 

(i) F ( u 1 , u 2 , η) with η ∈ N ( η0 , δ) has only one non-constant positive steady-state solution ( u 1 η , u 2 η) T in a vicinity of u 0 if

det J � = 0 , which is displayed by the combination of (3.12) and (3.13) . This means that only one bifurcation solution occurs

in a vicinity of u 0 . 

(ii) If det J = 0 , ϑ 

T 
0 

D η0 ϑ 0 � = 0 , then the non-constant solutions near u ∗ of system (1.1) undergo a bifurcation as η near η0 .

More precisely, if ϑ 

T 
0 D η0 ϑ 0 > 0 (resp., < 0 ), two nontrivial solutions u (z ±η ) exist for η with S < 0 (resp., S > 0 ), which are

described by the combination of (3.16) and (3.17) . Moreover, the two non-boundary solutions coalesce into zero solution as
0 
η goes to η . 
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Remark 3.3. From now on, we have used the Lyapunov-Schmidt reduction method to obtain the existence and multiplicity

of non-constant steady-state solutions near the origan of (1.1) . Our results showed the non-constant stationary will occur as

the parameters value take for a certain range. Compare [1] , we can see our process is more detailed and our results about

of non-constant stationary solution more comprehensive. 

Remark 3.4. Compare with [16–18] , although the contents all contain Turing instability, the cross-diffusion terms of these

models are different from each other, the degree of nonlinear for the cross-diffusion terms in this paper looks higher. 

3.2. Steady states near u 

∗

In this section, we consider the existence of non-constant steady-state solutions of u ∗ under the condition H 1 . Recall that

the Fréchet derivative of F at u ∗ has been given by K u (u ∗)� + J u (u ∗) , which reads 

R α : = 

⎡ 

⎢ ⎣ 

(1 + αu 

∗
2 )� + a − 2 u 

∗
1 −

cu 

∗
2 

(1 + mu 

∗
1 
) 2 

αu 

∗
1 � − cu 

∗
1 

1 + mu 

∗
1 −βu 

∗
2 

(1 + βu 

∗
1 
) 2 

� + 

du 

∗
1 

(1 + mu 

∗
1 
) 2 

(
μ + 

1 

1 + βu 

∗
1 

)
� − u 

∗
2 

⎤ 

⎥ ⎦ 

. 

It is not hard to deduce that the adjoint operator R ∗α of R α is ⎡ 

⎢ ⎣ 

(1 + αu 

∗
2 )� + a − 2 u 

∗
1 −

cu 

∗
2 

(1 + mu 

∗
1 
) 2 

−βu 

∗
2 

(1 + βu 

∗
1 
) 2 

� + 

du 

∗
1 

(1 + mu 

∗
1 
) 2 

αu 

∗
1 � − cu 

∗
1 

1 + mu 

∗
1 

(
μ + 

1 

1 + βu 

∗
1 

)
� − u 

∗
2 

⎤ 

⎥ ⎦ 

. 

u = (u 1 , u 2 ) 
T ∈ KerR α if and only if ⎧ ⎪ ⎨ 

⎪ ⎩ 

(1 + αu 

∗
2 )�u 1 + 

(ma − 1) u 

∗
1 − 2 m (u 

∗
1 ) 

2 

1 + mu 

∗
1 

u 1 + αu 

∗
1 �u 2 −

cu 

∗
1 

1 + mu 

∗
1 

u 2 = 0 , 

−βu 

∗
2 

(1 + βu 

∗
1 
) 2 

�u 1 + 

du 

∗
2 

(1 + mu 

∗
1 
) 2 

u 1 + (μ + 

1 

1 + βu 

∗
1 

)�u 2 − u 

∗
2 u 2 = 0 , 

(3.18) 

that is equivalent to {
c 11 �u 1 + a 11 u 1 + c 12 �u 2 + a 12 u 2 = 0 , 

c 21 �u 1 + a 21 u 1 + c 22 �u 2 + a 22 u 2 = 0 . 
(3.19) 

Substitute u = 

∑ 

v j φ j , j = 0 , 1 , 2 , . . . , v j ∈ R 2 into (3.19) , from the definition of { φ j } ∞ 

n =0 
, then we obtain the following

algebraic equations [
−c 11 λ j + a 11 −c 12 λ j + a 12 

−c 21 λ j + a 21 −c 22 λ j + a 22 

]
v j = Q(λ j ) v j = 0 , ∀ j ∈ N 0 . (3.20)

Therefore, (3.19) has a nontrivial solution if and only if (3.20) has a nontrivial solution v j for some j ∈ N 

0 , namely exists j

satisfying det Q(λ j ) = 0 . It is easy to see that 

det Q(λ j ) = Aλ2 
j + Bλ j + C = det L η(u 

∗) . 

From Section 2 , we have the following results. 

Lemma 3.1. If one of conditions of Theorem (2.2) holds, then for all j ∈ N 

0 , we have det Q(λ j ) > 0 , KerR α = ∅ . If one of condi-

tions of Theorem (2.3) holds, then there is j ∈ N 

0 such that det Q(λ j ) = 0 , which yields that KerR α � = ∅ . 
Next step, we still consider α as bifurcation parameter to investigate the existence of non-constant steady-state solutions

near u ∗ with the following hypothesis. 

(H 

∗
i 2 
) : α < αT , det Q(λi 2 , α

0 ) = 0 , det Q(λs , α
0 ) � = 0 , ∀ s ∈ N 0 \ { i 2 } , 

from (3.20) , 

α0 = −
c 22 λ

2 
i 2 

+ (a 12 c 21 − a 11 c 22 − a 22 ) λi 2 + C 

(c 22 u 

∗
2 

+ c 21 u 

∗
1 
) λ2 

i 2 
+ (a 21 u 

∗
1 

− a 22 u 

∗
2 
) λi 2 

. 

Equally, use the Lyapunov–Schmidt reduction to derive the stationary bifurcation. 

Set K = KerR α, K 

∗ = KerR ∗α, from Eq. (3.20) , we have K = span { q i 2 } , K 

∗ = span { p i 2 } , where 

q i 2 = v i 2 φi 2 , p i 2 = v ∗i 2 φi 2 , 

v i 2 , v ∗
i 2 

∈ R 2 \ { 0 } satisfying 

Q (λi 2 ) v i 2 = 0 , Q 

∗(λi 2 ) v 
∗
i = 0 , v ∗i v i 2 = 1 . 

2 2 
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We have the following decompositions 

X 

2 = K � X i 2 , Y 2 = K 

∗
� Y i 2 . 

The represent meanings of φi 2 
, X i 2 , Y i 2 are not changed. Due to the same reason of L η0 

in the Section 3.1 , R α: X 

2 → Y 2 is

Fredholm operator with zero index, and R α| X i 2 : X i 2 → Y i 2 is invertible and has a bounded inverse. Let M and I − M denote

the projection operators from Y 2 to Y i 2 and K 

∗ respectively, then naturally for every u ( x ) ∈ Y 2 , we have 

Mu = u (x ) − v i 2 φi 2 

∫ 
�

v ∗i 2 φi 2 (x ) u (x ) dx = u (x ) − φi 2 

∫ 
�

φi 2 (x ) u (x ) dx. 

Furthermore, 

F (u, α) = 0 i f f MF (u, α) = 0 , (3.21)

(I − M) F (u, α) = 0 . (3.22)

Noticed, for every u ∈ X 

2 , there is a unique decomposition 

u = u 

∗ + zq i 2 + w. 

Hence, (3.19) can be rewritten as 

MF (u 

∗ + zq i 2 + w, α) = 0 . 

Similarly, it can be considered as a map MF : K × X i 2 × R → Y i 2 , which satisfies the conditions of the implicit function the-

orem: MF (u ∗, α) = 0 , MF w 

(u ∗, α) = MR α = R α . So we can get a unique continuously differentiable map w = (w 1 , w 2 ) 
T in

two open neighborhoods δ of 0 in R 2 , ε of α0 in R respectively, which satisfies 

∀ (z, α) ∈ δ × ε, w (0 , α) = 0 . 

Substituting u = u ∗ + zq i 2 + w (z, α) into the equation (3.16), we have 

∀ (z, α) ∈ δ × ε, MF 

(
u 

∗ + zq i 2 + w (z, α) , α
)

= 0 . (3.23)

Next we apply the implicit function theorem for (3.23) to formulate w ( z , α). The step is similar to Subsection (3.1) , here we

are not describe in detail. 

In the same way, for all ζ = (ζ1 , ζ2 ) 
T , ξ = (ξ1 , ξ2 ) 

T , ε = (ε 1 , ε 2 ) 
T ∈ K, the form of d 2 F z ( ζ , ξ ) and d 3 F z ( ζ , ξ , ε) are re-

spectively (
A 1 ζ1 ξ1 + A 2 (�)(ζ2 ξ1 + ζ1 ξ2 ) 

A 3 (�) ζ1 ξ1 + A 4 (�)(ζ2 ξ1 + ζ1 ξ2 ) + A 5 ζ2 ξ2 

)
, 

(
B 1 ζ1 ξ1 ε 1 + B 2 (ζ1 ξ2 ε 1 + ζ2 ξ1 ε 1 + ζ1 ξ1 ε 2 ) 

B 3 (�) ζ1 ξ1 ε 1 + B 4 (�)(ζ1 ξ2 ε 1 + ζ2 ξ1 ε 1 + ζ1 ξ1 ε 2 ) 

)
. 

A 1 = 2 

(
cmu 

∗
2 

(1 + mu 

∗
1 
) 3 

− 1 

)
, A 2 (�) = α� − c 

(1 + mu 

∗
1 
) 2 

, A 3 (�) = 2 

( β2 u 

∗
2 

(1 + βu 

∗
1 
) 3 

� − mdu 

∗
2 

(1 + mu 

∗
1 
) 3 

)
, 

A 4 (�) = 

d 

(1 + mu 

∗
1 
) 2 

− β�

( 1 + βu 

∗
1 
) 2 

, A 5 = −2 , B 1 = 

6 cm 

2 u 

∗
2 

(1 + mu 

∗
1 
) 4 

, B 2 = 

2 cm 

(1 + mu 

∗
1 
) 3 

, 

B 3 (�) = 6 

(
m 

2 du 

∗
2 

(1 + mu 

∗
1 
) 4 

− β3 u 

∗
2 

(1 + βu 

∗
1 
) 3 

�
)
, B 4 (�) = 2 

(
β2 �

(1 + βu 

∗
1 
) 3 

− md 

(1 + mu 

∗
1 
) 3 

)
. 

From (3.23) , we have 

w (z, α) = 

1 

2 

w 2 z 
2 + 

1 

6 

w 3 z 
3 + · · · , w 2 = −(R α0 ) −1 d 2 F z (q i 2 , q i 2 ) , 

where 

(R α0 ) −1 = 

1 

det R α0 

[
c 22 � + a 22 −c 12 � − a 12 

−c 21 � − a 21 c 11 � + a 11 

]
= 

[
E 1 E 2 
E 3 E 4 

]
, 

−d 2 F z (q i 2 , q i 2 ) = 

(
A 1 (v 1 i 2 

) 2 + 2 A 2 (−λi 2 ) v 1 i 2 
v 2 

i 2 

A 3 (−λi 2 )(v 1 i 2 
) 2 + 2 A 4 (−λi 2 ) v 1 i 2 

v 2 
i 2 

+ A 5 (v 2 i 2 
) 2 

)
φ2 

i 2 
. 

Substitute u = u ∗ + zq i 2 + w (z, α) into (3.20), which can be rewritten as 

(I − M) F 
(

u 

∗ + zq i 2 + w (z, α) , α
)

= 0 . (3.24)
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To simplify the computations, we denote 

W 1 = E 1 

[ 
A 1 (v 1 i 2 

) 2 + 2 A 2 v 1 i 2 
v 2 i 2 

] 
+ E 2 

[ 
A 3 (v 1 i 2 

) 2 + 2 A 4 v 1 i 2 
v 2 i 2 

+ A 5 (v 2 i 2 
) 2 
] 
, 

W 2 = E 3 

[ 
A 1 (v 1 i 2 

) 2 + 2 A 2 v 1 i 2 
v 2 i 2 

] 
+ E 4 

[ 
A 3 (v 1 i 2 

) 2 + 2 A 4 v 1 i 2 
v 2 i 2 

+ A 5 (v 2 i 2 
) 2 
] 
. 

Calculating the inner product of (3.24) with q i 2 , derive 

G 

∗(z, α) = 

〈 
q i 2 , F (u 

∗ + zq i 2 + w (z, α) , α) 
〉 

= z 

(
(a 11 − c 11 λi 2 )(v 

1 
i 2 
) 2 + J 11 z + 

1 

6 

b 120 z 
2 + · · ·

)
= 0 , 

where 

J 11 = 

[ 
A 1 

2 

(v 1 i 2 
) 3 + 

(
A 2 (−λi 2 ) + 

A 3 (−λi 2 ) 

2 

)
(v 1 i 2 

) 2 v 2 i 2 
+ A 4 (−λi 2 ) v 

1 
i 2 
(v 2 i 2 

) 2 + A 5 (v 2 i 2 
) 3 
] ∫ 

�
φ3 

i 2 
(x ) , 

b 120 = 

[ 
B 1 (v 1 i 2 

) 4 + 

(
3 B 2 + B 3 (−λi 2 

) 
)
(v 1 

i 2 
) 3 v 2 

i 2 
+ 3 B 4 (−λi 2 

)(v 1 
i 2 
) 2 (v 2 

i 2 
) 2 + 

3 

(
A 1 (v 1 i 2 

) 2 + (A 2 + A 3 ) v 1 i 2 
v 2 i 2 

+ A 4 (v 2 i 2 
) 2 
)

W 1 + 3 

(
A 2 (v 1 i 2 

) 2 + A 4 v 1 i 2 
v 2 i 2 

+ A 5 (v 2 i 2 
) 2 
)

W 2 

] ∫ 
�

φ4 
i 2 
(x ) dx. 

If J 11 � = 0, from the implicit function theorem, we can obtain a unique continuously differentiable map α → z α in two

open neighborhoods δ of 0 in R , ε of α0 in R , which satisfies G 

∗(z, α) = 0 and 

z α = 

(a 11 − c 11 λi 2 )(v 1 i 2 
) 2 

J 11 

+ o 

(
| α − α0 | 

)
. 

Due to the corresponding relationship between solutions of G 

∗(z, α) = 0 and (1.1) , we know that if G 

∗(z, α) = 0 has a non-

trivial solutions z α , then there is a positive constant δ and a continuously differentiable maps α → z α from U to X 

2 such

that system (1.1) with α ∈ U has a non-constant steady-states u α , with u α = u ∗ + z αφ j + w (z α, α) . 

If J 11 = 0 , then the number of the non-trivial solutions of G 

∗(z, α) = 0 is determined by the sign of term b 120 (a 11 −
c 11 λi 2 

) . When it is negative, G 

∗(z, α) = 0 has two non-trivial solutions. Otherwise, G 

∗(z, α) = 0 has no solution. So the

current work is to analyze the sign of b 120 (a 11 − c 11 λi 2 
) . 

Recall that a 11 < 0, c 11 = 1 + αu ∗2 = 0 , α∗ = − 1 

u ∗
2 

, a 11 − c 11 λi 2 
= 0 and λ∗

i 2 
= 

a 11 

c 11 
. If α > α∗, then a 11 − c 11 λi 2 

< 0 ;

Provided that α < α∗. If λi 2 
> λ∗

i 2 
, then a 11 − c 11 λi 2 

< 0 . If λi 2 
< λ∗

i 2 
, then a 11 − c 11 λi 2 

> 0 . 

From the assumption α < αT , we need to check if the parameter threshold value α∗ < αT , 

αT = − (1 + βu 

∗
1 ) + μ(1 + βu 

∗
1 ) 

2 

u 

∗
2 

[ 
βu 

∗
1 

+ (1 + βu 

∗
1 
) + μ(1 + βu 

∗
1 
) 2 
] > − 1 

u 

∗
2 

. 

That is, α∗ < αT . 

Due to the corresponding relationship between solutions of G 

∗(z, α) = 0 and (1.1) , we know that if G 

∗(z, α) = 0 has

two non-trivial solutions z ±α , then there is a positive constant δ and two continuously differentiable maps α → z ±α from U =
{ α ∈ R || α − α0 | < δ} to X 

2 such that system (1.1) has two non-constant steady-states u ±α , with u ±α = u ∗ + z ±αφi 2 
+ w (z ±α , α) .

And lim α→ α0 u 
±
α = u ∗. Moreover, the two non-boundary solutions coalesce into u ∗ as α goes to α0 , which means that a

bifurcation occurs near u ∗. Therefore, the following lemma holds. 

Lemma 3.2. Provided that α∗ < α < αT . If b 120 > 0 holds, then G 

∗(z, α) = 0 has two non-trivial solutions; If b 120 < 0, then

G 

∗(z, α) = 0 has no non-trivial solutions. Equivalently, If b 120 > 0 holds, then F (z, α) = 0 has two non-constant steady-state

solutions; If b 120 < 0, then F (z, α) = 0 has no non-constant steady-state solutions. 

Lemma 3.3. Assume that α < α∗, there is a constant λ∗
i 2 

. If (λ∗
i 2 

− λi 2 
) b 120 > 0 holds, then G 

∗(z, α) = 0 has two non-trivial

solutions, that is, F (z, α) = 0 has two non-constant steady-state solutions; If (λ∗
i 2 

− λi 2 
) b 120 < 0 holds, then G 

∗(z, α) = 0 has

no non-trivial solutions, which is equivalently to that F (z, α) = 0 has no non-constant steady-state solutions. 

Furthermore, we can derive the following theorem. 

Theorem 3.3. Under the assumption ( H 

∗
i 2 

), 

(i) if J 11 � = 0, then there exists a continuously differentiable map α → u α in two open neighborhoods δ of 0 in R , ε of α0 

in R, which satisfies system (1.1) near u ∗ has only one non-constant steady-state solution u (z α) = u ∗ + z αφi 2 
+ w (z α, α) .

Moreover, lim α→ α0 u (z α) = u ∗. 

(ii) Assume that J 11 = 0 . If α∗ < α < αT , b 120 > 0 or α < α∗, (λ∗
i 2 

− λi 2 
) b 120 > 0 hold, then model (1.1) with α ∈ U has two

± ∗
non-constant steady-state solutions u (z α ) , then there is a bifurcation near u . Otherwise, system (1.1) has no bifurcation. 
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Fig. 1. The stability of u ∗ changes from the range of α, β expanding in system (1.1) . 

 

 

 

 

 

 

 

Remark 3.5. When α close to each α0 satisfying assumption ( H 

∗
i 2 

) with i 2 � = 0, u ( z α) established by Theorem 3.3 is spatially

nonhomogeneous and positive on �. Otherwise, u ( z α) is spatially homogeneous. 

Remark 3.6. From Lemma 3.1 , there are two assumptions base on which to investigate the existence of non-constant steady-

state solutions near u ∗. One is ( H 

∗
i 2 

) and another is the following hypothesis (H 

∗
jk 
) : 

• The condition (iii) of Proposition 2.1 holds; 
• There exists α0 ∈ R such that 

det Q(λ j , α
0 ) = det Q(λk , α

0 ) = 0 , det Q(λs , α
0 ) � = 0 , ∀ s ∈ N 

0 \ { j, k } . 
By combining the step of the research under assumption ( H 2 ) and the results of ( H 

∗
i 2 

), we can obtain the existence of

non-constant steady-state solutions near u ∗ with hypothesis (H 

∗
jk 
) . Here, we are not repeat. 

4. Numerical examples 

In this section, we give some numerical simulations in one-dimensional spatial domain � = (0 , π) to verify and com-

plement the analysis results. The method of parameter selection is based on reference [12] . Thus, in the system (1.1) without

diffusion, we take the values of 

a = 1 , b = 0 . 7 , c = 0 . 4 , d = 0 . 6 , m = 0 . 2 , μ = 1 . 

Obviously, system (1.1) has a trivial steady-state solution u 0 (0, 0), two boundary equilibria u 01 (1, 0), u 02 (0, 0.7) and a interior

equilibrium point u ∗(0.1429, 0.7836). Noticing that, under these parameter values, condition (H1) is satisfied and the steady-

state solution u ∗(0.1429, 0.7836) is asymptotically stable (see Fig. 1 ). 
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Fig. 2. Solutions of models (1.1) with α∗ < α < αT tend to a positive steady state. 

Fig. 3. Model (1.1) with α < α∗, (λ∗
i 2 

− λi 2 ) b 120 > 0 has the non-constant steady-state near u ∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.1. We simulated three tendencies of from different parameter values can be displayed in Fig. 2 . The curves of ( a )

of Fig. 2 depict the circumstance of β = 0 , that is, system (1.1) only have the cross-diffusion term �αu 1 u 2 , αT = −2 . 3529 .

We can see that the stability of u ∗ changes as α. The blue and green curves represent that the real part of largest eigenvalue

ρ j of u ∗ are negative for both α = 0 > αT and α = 3 . 10 0 0 > αT . That is, u ∗ is uniformly asymptotically stable. While α =
−6 . 30 0 0 < αT , the red curve represents that Re ( ρ j ) of u ∗ become positive and �αu 1 u 2 causes Turing instability of u ∗. 

From the curves of ( b ) and ( c ) in Fig. 2 , we find the following phenomena. If α = −6 . 30 0 0 is fixed and keep others same

except β . β = 

9 
10 u ∗

1 
> 0 , u ∗ is still unstable, but β = − 9 

10 u ∗
1 
, u ∗ is stable. They may express the information: when β = β(u ∗1 ) ,

�
(

u 2 
1 + βu ∗

1 

)
is not related to u ∗1 and can impact on the appearance of Turing instability. Moreover, ( c ) may survey the

regularity of stability shift velocity when 

1 

1 + βu ∗
1 

close to − 1 
u ∗

1 
. From the right: β = − 9 

100 u ∗
1 

is far away from − 1 
u ∗

1 
, the

stability not change; when β = − 9 
10 u ∗

1 
is close to − 1 

u ∗
1 
, u ∗ become stable from unstable. From the left, β = − 109 

100 u ∗
1 

close to

− 1 
u ∗

1 
, u ∗ become unstable; β = − 1009 

10 0 0 u ∗
1 

more closer to − 1 
u ∗

1 
, u ∗ become unstable faster. In conclusion, 

1 

1 + βu ∗
1 

more closer

to − 1 
u ∗

1 
, u ∗ become unstable more faster. 

In next example, we present a special case of Theorem 3.3 where the space dimension is 1, the situation of u 0 is similar

to obtain. 

Example 4.2. In this special case, −� subject to the homogeneous Neumann boundary condition on ∂� has eigenvalues

λn = n 2 , n ∈ N 

0 , φn is the eigenfunction associated with the eigenvalue λn , and φ0 (x ) = 

1 √ 

π
, φn (x ) = 

√ 

2 
π cos nx, n ∈ N. 

With the virtue of Matlab, it is easy to see that if we choose α∗ < α = −3 . 3500 < αT , then λ∗
i 2 

= −0 . 5386 , b 120 < 0, from

Theorem 2.1 , the steady-state solution u ∗(0.1429, 0.7836) is asymptotically stable, and (1.1) has no non-constant steady-

state solution (see Fig. 2 ). When we choose α = −3 . 90 0 0 < α∗ = −2 . 7319 , λ∗
i 2 

= 0 . 5318 , λi 2 
= 2 . 1433 , b 120 < 0 , from (ii) of

∗
Theorem 3.3 , (1.1) has two non-constant steady-state solution bifurcates from u (see Fig. 3 ). 
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5. Discussion and conclusions 

In this paper, we study a nonlinear reaction cross-diffusion predator-prey system under Neumann boundary condition.

System (1.1) is very general, From a biology viewpoint, negative diffusion coefficients with local accumulation effect of

prey are introduced. We compute analytically Turing instability and bifurcation of spatially non-homogeneous steady-state

solutions. In particular, the classical diffusion-driven instability induced by self-diffusion does not occur and the important

role of negative diffusion coefficient in Turing instability is discussed in detail, i.e., the model generates spatial patterns only

in the presence of α < 0 (or β < 0). Furthermore, we present the existence and multiplicity of spatially nonhomogeneous

steady-state solutions by Lyapunov–Schmidt reduction. 

We split two aspects to analyze our work. On the one hand, the model is different from other similar system [1,19] . The

main reason is that the prey cross-diffusion parameter range change, expanding non-negative values to all real numbers. The

expansion of the parameters led to the study of model more complicated, but improve the biological reality and significance

of the nonlinear cross-diffusion coefficients in this system. In addition, the boundary conditions is homogeneous Neumann

boundary conditions, which is also different from the model used in [1,19] . On the other, about the method, when research

the existence, stability and Turing instability of equilibria of the model, we do not use new method. But in Section 3 , we

apply the Lyapunov–Schmidt reduction method to the study of the bifurcation induced by nonlinear cross-diffusion term

�αu 1 u 2 ( α ∈ R ) and �
(

u 2 
1 + βu 1 

)
(β ∈ R ) . Our results showed that Lyapunov–Schmidt reduction method is suitable and

can establish some sufficient conditions of the existence of non-constant steady-state solutions near trivial and non-trivial

solutions. 

There are two problems that keep open. One is the existence of the spatially time-periodic nonhomogeneous steady-

state solutions. The other is the effect of two nonlinear cross-diffusion term with delay. To our knowledge, many scholars

[20–22] to think about the influence of reaction diffusion with delay, but few papers report about this work. These could be

the building blocks of later research. We leave them for future work. 
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