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Abstract. We study a Dirichlet problem for an elliptic equation defined by a degenerate coercive operator and a singular
right-hand side. We will show that the right-hand side has some regularizing effects on the solutions, even if it is singular.
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1. Introduction

In this paper we study existence of solutions to the following elliptic problem:
⎧⎨
⎩

−div
(

a(x)∇u

(1 + |u|)p
)

=
f

|u|γ in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded subset of R
N , N � 3, p and γ are positive reals, f is an Lm(Ω) non-

negative function and a : Ω → R is a measurable function such that 0 < α � a(x) � β, for two positive
constants α and β. We are able to prove the existence of distributional solutions u in the sense that for
every ω ⊂ ⊂ Ω there exists cω > 0 such that u � cω > 0 in ω and

∫
Ω

a(x)
∇u · ∇ϕ

(1 + u)p
=

∫
Ω

f

uγ
ϕ ∀ϕ ∈ C1

0 (Ω). (1.2)

We point out that the operator v → −div( a(x)∇v
(1+|v|)p ) is not coercive on H1

0 (Ω), when v is large (see [13]).
Moreover, the right-hand side is singular in the variable u. We will overcome these two difficulties
by approximation, truncating the degenerate coercivity of the operator term and the singularity of the
right-hand side (see problems (2.1)). We will prove by Schauder’s theorem that these problems admit
a bounded finite energy solution un with the property that for every subset ω ⊂ ⊂ Ω there exists a
positive constant cω > 0 such that un � cω almost everywhere in ω for every n ∈ N. This condition,
combined with some a priori estimates on un obtained in Section 3 will allow us to pass to the limit in
the approximating problems and get a solution to problem (1.1) in the sense of (1.2).

We remark that the lack of coercivity of the operator term can negatively affect the existence and
regularity of solutions to

⎧⎨
⎩ −div

(
a(x)∇u

(1 + |u|)p
)

= f in Ω,

u = 0 on ∂Ω.
(1.3)
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2 G. Croce / An elliptic problem with two singularities

This was first pointed out in [7], in the case p < 1. In the case where p > 1, the authors of [1] proved
that no solution exists even for some constant data f .

A natural question is then to search for lower order terms which regularize the solutions to prob-
lem (1.3). This leads to the study of existence and regularity of solutions to problems of the form

⎧⎨
⎩ −div

(
a(x)∇u

(1 + |u|)p
)

+ g(u, ∇u) = f in Ω,

u = 0 on ∂Ω,
(1.4)

under various hypotheses on g : Ω × R
N → R. In [6] the case g = g(s) = s was examined. That

work takes advantage of the fact that, just as for semilinear elliptic coercive problems (cf. [9]), the
summability of the solutions is at least that of the source f . In [10] we analysed two different lower
order terms g = g(s). The first, a generalization of the lower order term studied in [6], is g(s) = |s|r−1s,
r > 0. The second is a continuous positive increasing function such that g(s) → +∞, as s → s−

0 , for
some s0 > 0 (see [3]). The lower order term of [4] is, roughly speaking, b(|s|)|ξ|2 where b is continuous
and increasing with respect to |s|. In [11] we showed the regularizing effects of the lower order term

g(s, ξ) = |ξ|2

sq , q > 0, which grows as a negative power with respect to s and has a quadratic dependence
on the gradient variable (see [2] and [5] for elliptic coercive problems with the same lower order term).

In all of the above papers a regularizing effect on the solutions to (1.3) was shown under a sign
condition on g: either g(s, ξ) � 0 for every (s, ξ) ∈ R × R

N and the source is assumed to be positive or
g(s, ξ)s � 0 for every (s, ξ) ∈ R × R

N .
In this paper we study the effects on the solutions of a different term, f

uγ , on the right-hand side. Our
inspiration is taken from [8] where the authors considered the same right-hand side, for elliptic semilin-
ear problems whose model is −Δu = f

uγ , with zero Dirichlet condition on the boundary. Our main result
shows that, despite the singularity in u, this term has some regularizing effects on the solutions to (1.3).
The regularity depends on the different values of γ − p: we distinguish the cases p − 1 � γ < p + 1,
γ = p + 1, and γ > p + 1. These statements are made more precise in the following theorem.

Theorem 1.1. Let γ � p − 1.

(1) Let γ < p + 1.

(a) If f ∈ Lm(Ω), with m � 2∗

2∗ −p−1+γ , there exists a solution u ∈ H1
0 (Ω) to (1.1) in the sense

of (1.2). If 2∗

2∗ −p−1+γ � m < N
2 , then u belongs to Lm∗∗ (γ+1−p)(Ω).

(b) If f ∈ Lm(Ω), with max{1, 1∗

2·1∗ −p−1+γ } < m < 2∗

2∗ −p−1+γ , there exists a solution u ∈
W 1,σ

0 (Ω), σ = Nm(γ+1−p)
N −m(p+1−γ) , to (1.1) in the sense of (1.2).

(2) Let γ = p + 1 and assume that f ∈ L1(Ω). Then there exists a solution u ∈ H1
0 (Ω) to (1.1) in the

sense of (1.2).
(3) Let γ > p + 1 and assume that f ∈ L1(Ω). Then there exists a solution u ∈ H1

loc(Ω) to (1.1) in

the sense of (1.2), such that u
γ+1−p

2 ∈ H1
0 (Ω).

(4) Let f ∈ Lm(Ω), with m > N
2 . Then the solution found above is bounded.

Let us point out the regularizing effects of the right-hand side. It is useful to recall the results obtained
in [7] for problem (1.3). Let p < 1 and q = Nm(1−p)

N −m(1+p) .
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(a) If 1 < m � 2N
N+2−p(N −2) , then there exists u ∈ W 1,q

0 (Ω) or | ∇u|s ∈ L1(Ω), ∀s < q.

(b) If 2N
N+2−p(N −2) � m < N

2 , then there exists u ∈ H1
0 (Ω) ∩ Lm∗∗ (1−p)(Ω).

(c) If m > N
2 , then there exists u ∈ H1

0 (Ω) ∩ L∞(Ω).

We now compare the summabilities obtained in Theorem 1.1 to the previous ones. First of all, we have
a solution for every p > 0, if γ � p − 1. This is not the case for problem (1.3), as proved in [1]. Under
the same conditions on f , the summability of the solutions to (1.1) is better than or equal to that of the
solutions to (1.3), since σ > q and m∗∗(γ + 1 − p) > m∗∗(1 − p). Moreover, we get H1

0 (Ω) solutions
for less regular sources than in [7]. Indeed, if p − 1 � γ < p + 1, one has 2∗

2∗ −p−1+γ < 2N
N (1−p)+2(p+1) ; if

γ = p + 1 we get a finite energy solution for every L1(Ω) source.

2. Approximating problems

As explained in the Introduction, we will work on the following approximating problems:

⎧⎨
⎩

−div
(

a(x)∇un

(1 + |Tn(un)|)p
)

=
Tn(f )

(|un| + 1
n )γ

in Ω,

un = 0 on ∂Ω,
(2.1)

where n ∈ N and

Tn(s) =

⎧⎨
⎩

−n, s � −n,
s, −n � s � n,
n, s � n.

(2.2)

Observe that we have “truncated” the degenerate coercivity of the operator term and the singularity of
the right-hand side.

Proposition 2.1. Problems (2.1) are well posed, that is, there exists a non-negative solution un ∈
H1

0 (Ω) ∩ L∞(Ω) for every fixed n ∈ N.

Proof. In this proof we will use the same technique as in [8]. Let S : L2(Ω) → L2(Ω) be the map which
associates to every v ∈ L2(Ω) the solution wn ∈ H1

0 (Ω) to

⎧⎨
⎩

−div
(

a(x)∇wn

(1 + |Tn(wn)|)p
)

=
Tn(f )

(|v| + 1
n )γ

in Ω,

wn = 0 on ∂Ω.
(2.3)

Observe that S is well-defined by the results of [12] and wn is bounded by the results of [14]. Let us
choose wn as a test function. Then,

α

∫
Ω

| ∇wn|2

(1 + n)p
�

∫
Ω

a(x)| ∇wn|2

(1 + |Tn(wn)|)p =
∫

Ω

Tn(f )wn

(|v| + 1
n )γ

� nγ+1
∫

Ω
|wn| � |Ω|1/2nγ+1 ‖wn‖L2(Ω)
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by the hypotheses on a and Hölder’s inequality on the right-hand side. Poincaré’s inequality on the
left-hand side implies

αP ‖wn‖2
L2(Ω) � |Ω|1/2(1 + n)pnγ+1 ‖wn‖L2(Ω).

Thus there exists an invariant ball for S. Moreover it is easily seen that S is continuous and compact by
the H1

0 (Ω) ↪→ L2(Ω) embedding. By Schauder’s theorem, S has a fixed point. Therefore there exists
a solution un ∈ H1

0 (Ω) to problems (2.1). Observe that un is bounded by the results of [14]; by the
maximum principle, un is non-negative since f is non-negative. �

Remark 2.2. We remark that the existence of solutions to (2.1) could not be inferred by the results
established in [7].

Proposition 2.3. Let un be the solution to problem (2.1). Then un � un+1 a.e. in Ω. Moreover for every
ω ⊂ ⊂ Ω there exists cω > 0 such that un � cω a.e. in ω for every n ∈ N.

Proof. We will use the same technique as in [13] to prove uniqueness of the solutions to problem (1.3).
In the proof C will denote a positive constant independent of n (depending on α, β, p and the constant
P of Poincaré’s inequality). The solution un to problem (2.1), being non-negative, satisfies

−div
(

a(x)∇un

(1 + Tn(un))p

)
=

Tn(f )

(un + 1
n )γ

� Tn+1(f )

(un + 1
n+1 )γ

.

Therefore

−div
(

a(x)∇un

(1 + Tn(un))p
− a(x)∇un+1

(1 + Tn+1(un+1))p

)
= Tn+1(f )

[
1

(un + 1
n+1 )γ

− 1

(un+1 + 1
n+1 )γ

]
� 0.

By choosing Tk((un − un+1)+) as a test function we get

α

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p

� β

∫
Ω

∇un+1 · ∇Tk

(
(un − un+1)+

)[ 1
(1 + Tn+1(un+1))p

− 1
(1 + Tn(un))p

]

by the hypotheses on a. In {0 � un − un+1 � k} one has

∣∣∣∣ 1
(1 + Tn+1(un+1))p

− 1
(1 + Tn(un))p

∣∣∣∣ � k

[
1

(1 + Tn+1(un+1))p
+

1
(1 + Tn(un))p

]
.

Therefore

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p

� Ck

∫
{0�un−un+1�k}

| ∇un+1 |
∣∣∇Tk

(
(un − un+1)+

)∣∣
∣∣∣∣ 1
(1 + Tn+1(un+1))p

+
1

(1 + Tn(un))p

∣∣∣∣.
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For sufficiently small k, one has in {0 � un − un+1 � k}

1
2p

1
(1 + Tn(un))p

� 1
(1 + Tn+1(un+1))p

� 2p

(1 + Tn(un))p
.

This implies that

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p
� Ck

∫
{0�un−un+1�k}

| ∇un+1 |
(1 + Tn+1(un+1))p/2

| ∇Tk((un − un+1)+)|
(1 + Tn(un))p/2

.

Hölder’s inequality on the right-hand side gives

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p

� Ck

[∫
{0�un −un+1�k}

| ∇un+1 |2

(1 + Tn+1(un+1))p

] 1
2
[∫

{0�un −un+1�k}

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p

] 1
2

,

and then

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p
� Ck2

∫
{0�un−un+1�k}

| ∇un+1 |2

(1 + Tn+1(un+1))p
. (2.4)

On the other hand, by Poincaré’s inequality and (2.4)

k2∣∣{0 � un − un+1 � k}
∣∣ �

∫
Ω

| ∇Tk((un − un+1)+)|2

(1 + Tn(un))p
(
1 + Tn(un)

)p

� Ck2
∫

{0�un−un+1�k}

| ∇un+1 |2(1 + n)p

(1 + Tn+1(un+1))p
,

that is,

∣∣{0 � un − un+1 � k}
∣∣ � C

∫
{0�un−un+1�k}

| ∇un+1 |2(1 + n)p

(1 + Tn+1(un+1))p
.

The right-hand side of the above inequality tends to 0, as k → 0. Therefore |{0 � un − un+1 � k}| → 0
as k → 0. This implies that un � un+1 a.e. in Ω.

We remark that u1 is bounded, that is, |u1 | � c, for some positive constant c. Setting h(s) =∫ s
0

dt
(1+T1(t))p , we have

−div
(
a(x)∇

(
h(u1)

))
= − div

(
a(x)

∇u1

(1 + T1(u1))p

)
� T1(f )

(c + 1)γ
.

Let z be the H1
0 (Ω) solution to −div(a(x)∇z) = T1(f )

(c+1)γ . By the strong maximum principle, for every
ω ⊂ ⊂ Ω there exists a positive constant cω such that z � cω a.e. in ω. By the comparison principle,
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we have h(u1) � z a.e. in Ω. The strict monotonicity of h implies the existence of a constant cω > 0,
for every ω ⊂ ⊂ Ω, such that u1 � cω a.e. in ω. Since un is an increasing sequence, as proved above,
un � cω a.e. in ω for every n ∈ N. �

3. Existence results

We are going to prove in the following three lemmata some a priori estimates on the solutions un to
problems (2.1). They will allow us to prove Theorem 1.1. In the proofs C will denote a positive constant
independent of n.

Lemma 3.1. Assume that p − 1 � γ < p + 1.

(1) Let f ∈ Lm(Ω), with m � 2∗

2∗ −p−1+γ . Then the solutions un to (2.1) are uniformly bounded in

H1
0 (Ω). If 2∗

2∗ −p−1+γ � m < N
2 then the solutions un are uniformly bounded in Lm∗∗ (γ+1−p)(Ω).

(2) Let f ∈ Lm(Ω), with max{1, 1∗

2·1∗ −p−1+γ } < m < 2∗

2∗ −p−1+γ . Then the solutions un to (2.1) are

uniformly bounded in W 1,σ
0 (Ω), σ = Nm(γ+1−p)

N+γm−m(p+1) .

Proof. In case (1) let us choose (1 + un)p+1 − 1 as a test function; the hypotheses on a imply that

α(p + 1)
∫

Ω

| ∇un|2

(1 + Tn(un))p
(1 + un)p � C

∫
Ω

|f |up+1−γ
n .

By Sobolev’s inequality on the left-hand side and Hölder’s inequality with exponent m = 2∗
2∗ −p−1+γ =

2N
N (γ+1−p)+2(p+1−γ) (>1) on the right one, we have

Sα(p + 1)‖un‖2
L2∗ (Ω) � α(p + 1)‖∇un‖2

L2(Ω) � ‖f ‖Lm(Ω)

[∫
Ω

|un|m′ (p+1−γ)
] 1

m′
.

We remark that 2∗ = m′(p + 1 − γ). Moreover, 2
2∗ � 1

m′ as γ � p + 1. Then the above estimate implies
that the sequence un is bounded in L2∗

(Ω) and in H1
0 (Ω).

We are now going to prove that un is bounded in Lm∗∗ (γ+1−p)(Ω), if m < N
2 . Let us choose (1 +

un)δ − 1 as a test function: by the hypotheses on a, one has

4αδ

(−p + δ + 1)2

∫
Ω

∣∣∇
[
(1 + un)

−p+δ+1
2 − 1

]∣∣2

= αδ

∫
Ω

| ∇un|2

(1 + un)p−δ+1
� αδ

∫
Ω

| ∇un|2

(1 + Tn(un))p
(1 + un)δ−1

�
∫

Ω

Tn(f )

(un + 1
n )γ

[
(un + 1)δ − 1

]
� C + C

∫
Ω

|f |
(un + 1)−δ+γ

.

By Sobolev’s inequality on the left-hand side and Hölder’s inequality on the right-hand one we have

[∫
Ω

∣∣[(1 + un)
−p+δ+1

2 − 1
]∣∣2∗

] 2
2∗

� C‖f ‖Lm(Ω)

[∫
Ω

|un + 1|m′ (δ−γ)
] 1

m′
.
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Let δ be such that (1+δ−p)N
N −2 = (δ−γ)m

m−1 and 2
2∗ � 1

m′ , that is,

δ =
(1 − p)N (m − 1) + γm(N − 2)

N − 2m

and m � N
2 . We observe that (−p + δ + 1) 2∗

2 = m∗∗(γ + 1 − p) > 1. This implies that un is bounded
in Lm∗∗ (γ+1−p)(Ω).

In case (2), let us choose (1 + un)θ − 1, θ = (p−1)N (m−1)−γm(N −2)
2m−N , as a test function. With the same

arguments as before, we have

[∫
Ω

∣∣[(1 + un)
−p+θ+1

2 − 1
]∣∣2∗

] 2
2∗

� C

∫
Ω

| ∇un|2

(1 + un)p−θ+1
� C‖f ‖Lm(Ω)

[∫
Ω

|un + 1|m′ (θ−γ)
] 1

m′
.

As above, we infer that un is bounded in L
N (1+θ−p)

N −2 (Ω). We observe that p − θ + 1 > 0 and 1 < σ =
Nm(γ+1−p)

N −m(p+1−γ) < 2, by the assumptions on m. Writing

∫
Ω

| ∇un|σ =
∫

Ω

| ∇un|σ

(1 + un)σ
p−θ+1

2

(1 + un)σ
p−θ+1

2

and using Hölder’s inequality with exponent 2
σ , we obtain

∫
Ω

| ∇un|σ �
[∫

Ω

| ∇un|2

(1 + un)p−θ+1

]σ
2
[∫

Ω
(1 + un)σ

p−θ+1
2−σ

] 2−σ
2

.

The above estimates imply that the sequence un is bounded in W 1,σ
0 (Ω) if σ p−θ+1

2−σ = N (1+θ−p)
N −2 , that is,

σ = Nm(γ+1−p)
N −m(p+1−γ) . �

Lemma 3.2. Assume that γ = p + 1 and f ∈ L1(Ω). Then the solutions un to (2.1) are uniformly
bounded in H1

0 (Ω).

Proof. Let us choose (1 + un)p+1 − 1 as a test function. Using that a(x) � α a.e. in Ω, we have

α(p + 1)
∫

Ω

| ∇un|2

(1 + Tn(un))p
(1 + un)p � C

∫
Ω

|f |.

The previous estimate implies that the sequence un is bounded in H1
0 (Ω). �

Lemma 3.3. Assume that γ > p+1 and f ∈ L1(Ω). Then the solutions un to (2.1) are such that u
γ+1−p

2
n

is uniformly bounded in H1
0 (Ω), un is uniformly bounded in L

γ+1−p
2 2∗

(Ω) and in H1
loc(Ω).
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Proof. If we choose uγ
n as a test function and use the hypotheses on a we get

4αγ

(γ + 1 − p)2

∫
Ω

∣∣∇
(
u

γ+1−p
2

n
)∣∣2 = αγ

∫
Ω

| ∇un|2uγ−1−p
n �

∫
Ω

|f |.

This proves that the sequence u
γ+1−p

2
n is bounded in H1

0 (Ω). Sobolev’s inequality on the left-hand side

applied to u
γ+1−p

2
n gives

∫
Ω

u
γ+1−p

2 2∗

n � C. (3.1)

Let us prove that un is bounded in H1
loc(Ω). For ϕ ∈ C1

0 (Ω) we choose [(un + 1)p+1 − 1]ϕ2 as a test
function in (2.1). Then, if ω = {ϕ 
= 0}, one has by the hypotheses on a and Lemma 2.3

α(p + 1)
∫

Ω
| ∇un|2ϕ2 + 2α

∫
Ω

∇un · ∇ϕϕun �
∫

Ω

|f |
(un + 1

n )γ
[
(un + 1)p+1 − 1

]
ϕ2

�
∫

Ω
Cω |f |ϕ2 � Cω ‖ϕ‖2

L∞ (Ω)

∫
Ω

|f |,

where Cω is a positive constant depending only on ω ⊂ ⊂ Ω and p. Then

(p + 1)
∫

Ω
| ∇un|2ϕ2 � −2

∫
Ω

∇un · ∇ϕϕun +
Cω

α
‖ϕ‖2

L∞ (Ω)

∫
Ω

|f |. (3.2)

Young’s inequality implies that

2
∣∣∣∣
∫

Ω
∇un · ∇ϕϕun

∣∣∣∣ �
∫

Ω
| ∇un|2ϕ2 +

∫
Ω

| ∇ϕ|2u2
n.

From (3.2) we infer that

p

∫
Ω

| ∇un|2ϕ2 �
∫

Ω
| ∇ϕ|2u2

n +
Cω

α
‖ϕ‖2

L∞ (Ω)

∫
Ω

|f |.

Since un is uniformly bounded in L2(Ω) by (3.1), this proves our result. �

We are now able to prove Theorem 1.1.

Proof. We will prove point (1); the second and the third point can be proved in a similar way. Lemma 3.1
gives the existence of a function u ∈ H1

0 (Ω) such that un → u weakly in H1
0 (Ω) and a.e. in Ω, up to a

subsequence. We will prove that u is a solution to (1.1) passing to the limit in (2.1). For every ϕ ∈ C1
0 (Ω),

∫
Ω

a(x)∇un · ∇ϕ

(1 + Tn(un))p
−→

∫
Ω

a(x)∇u · ∇ϕ

(1 + u)p
,
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since 1
(1+Tn(un))p → 1

(1+u)p in Lr(Ω), for every r � 1. For the limit of the right-hand side of (2.1), let
ω = {ϕ 
= 0}. One can use Lebesgue’s theorem, since

∣∣∣∣ Tn(f )ϕ

(un + 1
n )γ

∣∣∣∣ � |ϕ| |f |
cγ
ω

,

where cω is the constant given by Lemma 2.3. In the case where 2∗

2∗ −p−1+γ � m < N
2 , since m∗∗(γ +

1 − p) > 1, Lemma 3.1 implies that un converges weakly in Lm∗∗ (γ+1−p)(Ω) to some function, which is
u by identification.

To prove that u is bounded for γ � p − 1, let us choose [(un + 1)γ+1 − (k + 1)γ+1]+ as a test function
in (2.1):

α(γ + 1)
∫

Ak

| ∇un|2

(1 + un)p−γ
�

∫
Ak

|f | (un + 1)γ+1 − (k + 1)γ+1

(un + 1
n )γ

� c(γ)
∫

Ak

|f |(un − k), (3.3)

where Ak = {un � k} and c(γ) denotes a positive constant depending only on γ.
For p − γ � 0, (3.3) is the starting point of the proof of Theorem 4.1 in [14]. For 0 < p − γ � 1, (3.3)

is the starting point of Lemma 2.2 in [7]. In both cases un is uniformly bounded in L∞(Ω) and therefore
(at the a.e. limit) the solutions u found in the previous results are bounded. �

Remark 3.4. We observe that we have the boundedness of the solution to problem (1.1) for any value
of γ � p − 1.
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