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a b s t r a c t

We study the existence of solutions of quasilinear elliptic systems involving N
equations and a measure on the right hand side, with the form

−
n
i=1

∂

∂xi

 N
β=1

n
j=1
aα,βi,j (x, u) ∂

∂xj
uβ

 = µα in Ω ,

u = 0 on ∂Ω ,

where α ∈ {1, . . . , N} is the equation index, Ω is an open bounded subset of Rn,
u : Ω → RN and µ is a finite Randon measure on Rn with values in RN . Existence of
a solution is proved for two different sets of assumptions on A. Examples are provided
that satisfy our conditions, but do not satisfy conditions required on previous works
on this matter.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider the Dirichlet elliptic problem

−div [A(x, u(x), Du(x))] = µ in Ω , (1.1)
u = 0 on ∂Ω , (1.2)

where u : Ω ⊂ Rn → RN , µ is a measure on Rn with values into RN and A satisfies suitable coercivity and
growth conditions. We note that (1.1) is a system of N equations.

∗ Corresponding author.
E-mail addresses: leonetti@univaq.it (F. Leonetti), eugenio@ua.pt (E. Rocha), vasile@ua.pt (V. Staicu).

http://dx.doi.org/10.1016/j.na.2016.04.002
0362-546X/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.na.2016.04.002
http://www.sciencedirect.com
http://www.elsevier.com/locate/na
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2016.04.002&domain=pdf
mailto:leonetti@univaq.it
mailto:eugenio@ua.pt
mailto:vasile@ua.pt
http://dx.doi.org/10.1016/j.na.2016.04.002


F. Leonetti et al. / Nonlinear Analysis 154 (2017) 210–224 211

First consider the case N = 1, i.e. (1.1) is only one single equation. Existence of distributional solutions
u : Ω ⊂ Rn → R has been deeply studied, starting from [7], see [9,11,8,32,4] and the survey [5]. Uniqueness
seems to be a delicate matter, e.g. see [33,3,19] and the introduction of [12]. Regularity results are contained
in [28–30,10,22,2] and the survey [31] (see also [6]). Note that existence of solutions is usually obtained by a
truncation argument, which shows why the vectorial case N ≥ 2 is difficult and only few contributions are
available in the literature. In fact, for systemsN ≥ 2, the p-Laplacian A(x, y, ξ) = |ξ|p−2ξ is treated in [18,13],
and the anisotropic case, in which each component of the gradientDiumay have a possibly different exponent
pi, is dealt in [23,24]. Let us write (1.1) using components, that is,

−
n
i=1

∂

∂xi
[Aαi (x, u(x), Du(x))] = µα for α ∈ {1, . . . , N}. (1.3)

We note that systems more general than the p-Laplacian are considered in [14,16], under the assumption

0 ≤
N
α=1

n
i=1
Aαi (x, y, ξ)((Id− b× b)ξ)αi (1.4)

for every b ∈ RN with |b| ≤ 1. In [34], the author assumes the componentwise sign condition

0 ≤
n
i=1
Aαi (x, y, ξ)ξαi (1.5)

for every α ∈ {1, . . . , N}. When N = 2, (1.4) implies (1.5), since it is enough to take first b = (1, 0) and
then b = (0, 1). In [25], the authors consider that A is independent of y and satisfies the componentwise
coercivity condition

ν|ξα|2 −M ≤
n
i=1
Aαi (x, ξ)ξαi (1.6)

for every α ∈ {1, . . . , N}, for some constants ν ∈ (0,+∞) andM ∈ [0,+∞). In [15], they relax (1.4) to some
extent

−c|ξ|q − g(x) ≤
N
α=1

n
i=1
Aαi (x, y, ξ)((Id− b× b)ξ)αi (1.7)

for some c ∈ [0,+∞), g ∈ L1(Ω) and q ∈ [1, n) where ξ → A(x, y, ξ) is n-coercive.
We note that in [19,17,26] the authors do not truncate u; they modify Du and then adjust via Hodge

decomposition; such a procedure requires the dimension n to be the exponent in the coercivity condition
for A. The authors use nice estimates for Hodge decomposition, which have been studied in [20] (see also
appendix A, in [21]).

In the present paper we consider quasilinear systems, i.e. systems (1.3) with

Aαi (x, y, ξ) =
N
β=1

n
j=1
aα,βi,j (x, y) ξβj , (QL)

where the coefficients aα,βi,j (x, y) are measurable with respect to x and continuous with respect to y. Moreover,
we assume ellipticity for the diagonal coefficients aα,αi,j , the off-diagonal coefficients aα,βi,j (with α ̸= β) are
sufficiently small, and all the coefficients are bounded. We prove existence of distributional solutions to
(1.1)–(1.2) under two sets of hypotheses, with different assumptions on the off-diagonal coefficients.

The first result deals with off-diagonal coefficients aα,βi,j (with α ̸= β) that have support contained in a
“staircase” set, along the diagonals of the yα − yβ plane (see assumption (A5) in Section 2 and Fig. 1).
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Fig. 1. Support contained in a staircase set (with h ∈ N ∪ {0}).

The second is devoted to systems with N = 2 equations, where the off-diagonal coefficients aα,βi,j (with
α ̸= β) are proportional to diagonal coefficients aβ,βi,j (see assumptions (A8) and (A9) in Section 2).

Precise assumptions and statements of the results are written in Section 2, where we also give examples
of quasilinear systems that fit our conditions but not the ones in the quoted papers. The proofs are based
on componentwise truncation arguments. The a priori estimates, needed to prove the existence result, are
contained in Theorem 1, when A has a staircase support, and in Theorem 2, when off-diagonal coefficients
are multiple of diagonal ones. Theorem 3 shows the existence of distributional solutions. Proofs are given in
Section 3.

2. Assumptions and results

For x ∈ Rn and r > 0, we denote by B (x, r) and B (x, r) the open and the closed ball with center x
and radius r, respectively. For convenience, we define B1 = B(0, 1) and B1 = B(0, 1). Assume Ω is an open
bounded subset of Rn, and n, N are integers greater than or equal to two.

We consider the following set of assumptions on A.

(A): For all i, j ∈ {1, . . . , n} and all α, β ∈ {1, . . . , N}, we consider that aα,βi,j : Ω × RN → R satisfy the
following conditions:
(A0) x → aα,βi,j (x, y) is measurable and y → aα,βi,j (x, y) is continuous;
(A1) (boundedness of all the coefficients) for some positive constant c > 0, we haveaα,βi,j (x, y)

 ≤ c
for almost all x ∈ Ω and for all y ∈ RN ;

(A2) (ellipticity of the diagonal coefficients) for some positive constant m > 0, we have

m|λ|2 ≤
n
i,j=1
aα,αi,j (x, y)λiλj

for almost all x ∈ Ω , for all y ∈ RN , and for all λ ∈ Rn;
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(A3) (off-diagonal coefficients are small) for some positive constant L with 0 < L < m, we have N
α=1


β∈{1,...,N}\{α}

n
i,j=1

aα,βi,j (x, y)
2
 1

2

≤ L;

(A4) (staircase support) when α ̸= β, we have

aα,βi,j (x, y) ̸= 0⇒ y ∈
+∞
h=0


h < |yα| < h+ 1, h <

yβ < h+ 1

.

For any f ∈ L1 Ω ,RN, we say that a function u : Ω → RN is a (distributional) solution with respect to
f , if u ∈W 1,2

0

Ω ,RN


and


Ω

N
α,β=1

n
i,j=1
aα,βi,j (x, u(x))Djuα (x)Diϕα(x)dx =

N
α=1
fα(x)ϕα(x)dx, (2.1)

for all ϕ ∈W 1,2
0

Ω ,RN


∩ L∞


Ω ,RN


. Our first result is the following.

Theorem 1. Suppose u is a solution with respect to f ∈ L1 Ω ,RN. Under the assumptions (A), the following
estimate

N
α=1


{k<|uα|<k+1}

|Duα|2 ≤ 1
m− L

N
α=1
∥fα∥L1(Ω) (E1)

holds for every integer k ≥ 0.

Remark 1. Take

Aαi (x, y, ξ) =
N
β=1

n
j=1
aα,βi,j (x, y) ξβj . (2.2)

Then assumptions (A2) and (A3) give

N
α,β=1

n
i,j=1
aα,βi,j (x, y) ξβj ξ

α
i ≥ (m− L) |ξ|2 , (2.3)

hence
N
α=1

n
i=1
Aαi (x, y, ξ) ξαi ≥ (m− L) |ξ|2 . (2.4)

Since 0 < L < m and by (2.4), we conclude that

ξ → A (x, y, ξ) is 2-coercive.

Moreover, assumption (A1) implies

N
α=1

n
i=1
Aαi (x, y, ξ) ξαi ≤ cn2N2 |ξ|2 . (2.5)

When n > 2, (2.5) says that ξ → A (x, y, ξ) is not n-coercive, therefore we are outside the assumptions
of [15,19,17,26].
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The next example concerns Theorem 1 and gives aα,βi,j : Ω × RN → R with i, j ∈ {1, . . . , n} and
α, β ∈ {1, . . . , N}, which satisfy (A). However A (x, y, ξ), defined by (2.2), does not verify neither (1.4)
nor (1.5). Moreover, (1.6) is false. Therefore, the example is outside of the assumptions of the quoted works
that use them.

Example 1. Let N = 2 and δi,j be the usual Kronecker delta function

δi,j =


1 if i = j,
0 if i ̸= j.

For α, β ∈ {1, 2} and for i, j ∈ {1, . . . , n} we define aα,βi,j (x, y) as follows

a1,1
i,j (x, y) = a2,2

i,j (x, y) = δi,j ,

a2,1
i,j (x, y) = 0,

a1,2
i,j (x, y) = bi (y) δi,j ,

where bi (y) = 0 for all i ≥ 2 and b1 (y) ≡ b1

y1, y2


is a bounded continuous function that will be defined

later (see (2.7)).

Let g : R→ R be the function defined by

g (t) =



0 if −∞ < t ≤ 1
8 ,

8t− 1 if 1
8 ≤ t ≤

1
4 ,

1 if 1
4 ≤ t ≤

3
4 ,

−8t+ 7 if 3
4 ≤ t ≤

7
8 ,

0 if 7
8 ≤ t < +∞.

(2.6)

Then g is continuous and supp(g) =
 1

8 ,
7
8

, so 0 ≤ g (t) ≤ 1 for t ∈ R. Let

gh (s) = g (s− h) for s ∈ R,
ph (y) = gh


y1

gh

y2


for y =

y1, y2


∈ R2,

and

b1 (y) = 1
2

∞
h=0
ph (y) for y ∈ R2. (2.7)

Then y → b1 (y) is a continuous map on R2,

b1 (y) ∈

0, 12


,

b1 (y) ̸= 0⇒ y ∈
∞
h=0


y1, y2


∈ R2 : h < y1 < h+ 1, h < y2 < h+ 1


,

and

b1


1
2 ,

1
2


= 1

2 . (2.8)
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Note that (A1) is satisfied with c = 1 and (A2) is satisfied for m = 1. Concerning the off-diagonal
coefficients, we have

2
α=1


β∈{1,2}\{α}

n
i,j=1

aα,βi,j (x, y)
2 =

n
i,j=1

a1,2
i,j (x, y)

2 +
n
i,j=1

a2,1
i,j (x, y)

2
= |b1 (y)|2 ,

hence, (A3) is satisfied for

L = sup
y∈R2
|b1 (y)| = 1

2 < 1 = m.

Now, defining A to satisfy
n
i=1
A1
i (x, y, ξ)ξ1i =

ξ12 + b1 (y) ξ21ξ11 = A,

taking ξ11 = 1, ξ21 = t ∈ R and ξ1i = ξ2i = 0 for i ≥ 2, we get

A = 1 + b1 (y) t.

If we take y =
 1

2 ,
1
2

, then

A = 1 + b1 (y) t = 1 + t2 → −∞ as t→ −∞,

showing that (1.5) is not satisfied. Moreover, since N = 2, and in this case, (1.4) implies (1.5), we get that
(1.4) is also not satisfied.

To see that (1.6) is false, remark that, if there exist ν > 0 and M ≥ 0 such that

ν
ξ12 −M ≤ n

i=1
A1
i (x, y, ξ) ξ1i

then, with our choices, the inequality

ν −M ≤ 1 + t2
is false for t sufficiently negative (i.e. when t→ −∞). Therefore, (1.6) is false.

In particular, taking n = 3, we obtain

a1,1(x, y) = a2,2(x, y) =

1 0 0
0 1 0
0 0 1

 ,
a1,2(x, y) =

b1 (y) 0 0
0 0 0
0 0 0

 ,
a2,1(x, y) =

0 0 0
0 0 0
0 0 0

 ,
which corresponds to the elliptic problem

−∆u1 − ∂
∂x1


b1(u1, u2)∂u

2

∂x1


= µ1 in Ω ,

−∆u2 = µ2 in Ω ,
u1 = u2 = 0 on ∂Ω ,

with Ω an open bounded subset of R3 and µ a finite Radon measure on R3 with values in R2.
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We now introduce a second set of assumptions (A∗) confined to a system with two equations (that is,
N = 2).

(A∗): For all i, j ∈ {1, . . . , n} and all α, β ∈ {1, 2}, we consider that aα,βi,j : Ω × RN → R satisfy the
conditions (A0)–(A3) but (A4) is replaced by:
(A∗4) there exist r1, r2 ∈ R such that

a1,2
i,j (x, y) = r1a2,2

i,j (x, y) ,

a2,1
i,j (x, y) = r2a1,1

i,j (x, y) ,

with r1r2 < 1.

We are in conditions to show the second estimate.

Theorem 2. Suppose u is a solution with respect to f ∈ L1 Ω ,RN, see (2.1). Under the assumptions (A∗),
the following estimate

2
α=1


{k<|uα|<k+1}

|Duα|2 ≤ 1 + |r1|+ |r2|
m (1− r1r2)

N
α=1
∥fα∥L1(Ω) (E2)

holds for every integer k ≥ 0.

The following example concerns Theorem 2 and it gives aα,βi,j : Ω × RN → R with i, j ∈ {1, . . . , n} and
α, β ∈ {1, 2}, which satisfy (A∗). However A (x, y, ξ), defined by (2.2), does not verify neither (1.4) nor (1.5).
Moreover, (1.6) is false.

Example 2. Let N = 2. For α, β ∈ {1, 2} and for i, j ∈ {1, . . . , n} we define aα,βi,j (x, y) as follows

a1,1
i,j (x, y) = a2,2

i,j (x, y) = δi,j ,

a1,2
i,j (x, y) = r1a2,2

i,j (x, y) = r1δi,j ,

a2,1
i,j (x, y) = r2a1,1

i,j (x, y) = r2δi,j ,

where the real numbers r1 and r2 are such that

r1 > 0, r2 > 0, r1r2 < 1 and r21 + r22 <
1
n
. (2.9)

Assumption (A1) is satisfied with c = 1 and (A2) is satisfied for m = 1. Concerning the off-diagonal
coefficients, we have that assumption (A3) is satisfied for

L :=

n

r21 + r22

 1
2 ,

since the last inequality in (2.9) implies that L < m.

To show that (1.5) is not satisfied, remark that for α = 1, defining B to satisfy
n
i=1
A1
i (x, y, ξ)ξ1i =

n
i=1


ξ1i
2 +

n
i=1
r1ξ

2
i ξ

1
i = B,

and choosing

ξ11 = 1, ξ21 = t, and ξ1i = ξ2i = 0 for i ≥ 2, (2.10)

we have

B = 1 + r1t→ −∞ as t→ −∞ (remember r1 > 0).

Hence, (1.5) is not satisfied. Moreover, since N = 2 and in this case, (1.4) implies (1.5), we get that (1.4) is
not satisfied.
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To see that (1.6) is false, remark that, from (2.10), we have
n
i=1
A1
i (x, y, ξ) ξ1i = 1 + r1t,

ξ12 =
n
i=1


ξ1i
2 = 1.

If there exist ν > 0 and M ≥ 0 such that

ν |ξα|2 −M ≤
n
i=1
Aαi (x, y, ξ) ξαi

then

ν −M = ν
ξ12 −M ≤ n

i=1
A1
i (ξ) ξ1i = 1 + r1t

and since r1 > 0, this is false for t→ −∞. Therefore (1.6) is false.

Taking n = 3 and r1 = r2 = 1
4 , we verify (2.9) and the example have the simple form

a1,1(x, y) = a2,2(x, y) =

1 0 0
0 1 0
0 0 1

 ,

a1,2(x, y) = a2,1(x, y) =


1
4 0 0

0 1
4 0

0 0 1
4

 ,
which corresponds to the elliptic problem

−∆u1 − 1
4∆u2 = µ1 in Ω ,

−1
4∆u1 −∆u2 = µ2 in Ω ,

u1 = u2 = 0 on ∂Ω ,

with Ω an open bounded subset of R3 and µ a finite Radon measure on R3 with values in R2.

Under the assumptions of either Theorem 1 or Theorem 2, we prove the main existence result.

Theorem 3. Assume that either (A) or (A∗) holds, and µ is a finite Radon measure on Rn with values in
RN . Then there exists u ∈


1<q< n

n−1
W 1,q

0

Ω ,RN


such that


Ω

N
α,β=1

n
i,j=1
aα,βi,j (x, u (x))Djuβ (x)Diϕα (x) dx =

N
α=1


Ω

ϕα (x) dµα (x)

for every ϕ ∈ C∞0

Ω ,RN


.

Remark 2. Theorem 3 deals with existence of a distributional solution to the Dirichlet problem (1.1), (1.2).
A glance at our proof in Section 3 shows that we are dealing with a SOLA, that is, a Solution Obtained as
Limit of Approximations, see [11] and Section 2.2 in [22]. Entropy solutions have been considered in [3]; see
the introduction of [12] for renormalized solutions.
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3. Proofs

Proof of Theorem 1. For a fixed integer k ≥ 0, we consider Tk : R→ R defined as follows

Tk (s) =



−1 if s < −k − 1,
s+ k if −k − 1 ≤ s ≤ −k,
0 if −k < s < k,
s− k if k ≤ s ≤ k + 1,
1 if k + 1 < s.

(3.1)

Note that

− 1 ≤ Tk (s) ≤ 1 for every s ∈ R. (3.2)

We choose ϕ =

ϕ1, . . . , ϕN


in (2.1) given by

ϕα = Tk (uα) (3.3)

so that

Diϕ
α = 1{k<|uα|<k+1}Diu

α, (3.4)

where 1E (x) = 1 if x ∈ E and 1E (x) = 0 if x ̸∈ E. Note that inequality (3.2) gives
Ω

N
α=1
fαϕα ≤

N
α=1


Ω

|fα| . (3.5)

Moreover,
Ω

N
α,β=1

n
i,j=1
aα,βi,j Dju

β1{k<|uα|<k+1}Diu
α =


Ω

N
α=1

n
i,j=1
aα,αi,j Dju

α1{k<|uα|<k+1}Diu
α

+

Ω

N
α=1


β∈{1,2,...,N}\{α}

n
i,j=1
aα,βi,j Dju

β1{k<|uα|<k+1}Diu
α

where aα,βi,j ≡ a
α,β
i,j (x, u (x)). Applying (3.3) in Eq. (2.1), we may define the terms C, D, E as

C =

Ω

N
α=1

n
i,j=1
aα,αi,j Dju

α1{k<|uα|<k+1}Diu
α

= −

Ω

N
α=1

N
β∈{1,2,...,N}\{α}

n
i,j=1
aα,βi,j Dju

β1{k<|uα|<k+1}Diu
α +


Ω

N
α=1
fαϕα = D + E. (3.6)

The ellipticity condition for diagonal coefficients aα,αi,j (see (A2)) implies that

C ≥ m
N
α=1


{k<|uα|<k+1}

|Duα|2 . (3.7)

Now we use the assumption (A4), about the support for off-diagonal coefficients aα,βi,j , obtaining

1{k<|uα|<k+1}a
α,β
i,j = 1{k<|uα|<k+1}1{k<|uβ |<k+1}a

α,β
i,j . (3.8)

Then

D = −

Ω

N
α=1


β∈{1,2,...,N}\{α}

n
i,j=1
aα,βi,j 1{k<|uα|<k+1}1{k<|uβ |<k+1}Dju

βDiu
αdx (3.9)
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and using the Cauchy–Schwarz inequality, we get

D ≤

Ω

 N
α=1


β∈{1,2,...,N}\{α}

n
i,j=1

aα,βi,j 2
 1

2  N
α=1
|Duα|2 1{k<|uα|<k+1}

 1
2
 N
β=1

Duβ2 1{k<|uβ |<k+1}

 1
2

≤ L


N
γ=1


Ω

|Duγ |2 1{k<|uγ |<k+1}


(3.10)

where we used assumption (A3).

Equality (3.6) and inequalities (3.10), (3.5) and (3.7) give

m

N
α=1


{k<|uα|<k+1}

|Duα|2 ≤ L
N
α=1


{k<|uα|<k+1}

|Duα|2 +
N
α=1


Ω

|fα| ,

hence

(m− L)
N
α=1


{k<|uα|<k+1}

|Duα|2 ≤
N
α=1
∥fα∥L1(Ω) .

Since 0 < L < m, we get estimate (E1). This ends the proof of Theorem 1. �

Proof of Theorem 2. As in the proof of Theorem 1, for a fixed integer k ≥ 0, we consider Tk : R→ R defined
by (3.1). We take a new test function ϕ =


ϕ1, ϕ2 in (2.1) as

ϕα =
2
γ=1
CγαTk (uγ) (3.11)

where Cγα are real constants to be chosen later. Then

Diϕ
α =

2
γ=1
Cγα1{k<|uγ |<k+1}Diu

γ . (3.12)

Note that inequality (3.2) gives
Ω

 2
α=1
fαϕα


dx ≤

2
α=1

2
γ=1
|Cγα|


Ω

|fα| dx. (3.13)

Moreover, 
Ω

2
α,β=1

n
i,j=1
aα,βi,j Dju

βDiϕ
α =


Ω

2
α,β=1

n
i,j=1
aα,βi,j Dju

β

 2
γ=1
Cγα1{k<|uγ |<k+1}Diu

γ



=

Ω

n
i,j=1

2
γ=1
a1,1
i,jDju

1Cγ1 1{k<|uγ |<k+1}Diu
γ

+

Ω

n
i,j=1

2
γ=1
a1,2
i,jDju

2Cγ1 1{k<|uγ |<k+1}Diu
γ

+

Ω

n
i,j=1

2
γ=1
a2,1
i,jDju

1Cγ2 1{k<|uγ |<k+1}Diu
γ

+

Ω

n
i,j=1

2
γ=1
a2,2
i,jDju

2Cγ2 1{k<|uγ |<k+1}Diu
γ
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=

Ω

n
i,j=1
a1,1
i,jDju

1C1
1 1{k<|u1|<k+1}Diu

1

+

Ω

n
i,j=1
a1,1
i,jDju

1C2
1 1{k<|u2|<k+1}Diu

2

+

Ω

n
i,j=1
a1,2
i,jDju

2C1
1 1{k<|u1|<k+1}Diu

1

+

Ω

n
i,j=1
a1,2
i,jDju

2C2
1 1{k<|u2|<k+1}Diu

2

+

Ω

n
i,j=1
a2,1
i,jDju

1C1
2 1{k<|u1|<k+1}Diu

1

+

Ω

n
i,j=1
a2,1
i,jDju

1C2
2 1{k<|u2|<k+1}Diu

2

+

Ω

n
i,j=1
a2,2
i,jDju

2C1
2 1{k<|u1|<k+1}Diu

1

+

Ω

n
i,j=1
a2,2
i,jDju

2C2
2 1{k<|u2|<k+1}Diu

2

= F

where aα,βi,j ≡ a
α,β
i,j (x, u (x)). Using assumptions (A∗4), we get

F = C1
1


Ω

n
i,j=1
a1,1
i,jDju

11{k<|u1|<k+1}Diu
1 + C2

1


Ω

n
i,j=1
a1,1
i,jDju

11{k<|u2|<k+1}Diu
2

+ r1C1
1


Ω

n
i,j=1
a2,2
i,jDju

21{k<|u1|<k+1}Diu
1 + r1C2

1


Ω

n
i,j=1
a2,2
i,jDju

21{k<|u2|<k+1}Diu
2

+ r2C1
2


Ω

n
i,j=1
a1,1
i,jDju

11{k<|u1|<k+1}Diu
1 + r2C2

2


Ω

n
i,j=1
a1,1
i,jDju

11{k<|u2|<k+1}Diu
2

+ C1
2


Ω

n
i,j=1
a2,2
i,jDju

21{k<|u1|<k+1}Diu
1 + C2

2


Ω

n
i,j=1
a2,2
i,jDju

21{k<|u2|<k+1}Diu
2

=

C1

1 + r2C1
2
 

Ω

n
i,j=1
a1,1
i,jDju

11{k<|u1|<k+1}Diu
1 +


C2

1 + r2C2
2
 

Ω

n
i,j=1
a1,1
i,jDju

11{k<|u2|<k+1}Diu
2

+

r1C

1
1 + C1

2
 

Ω

n
i,j=1
a2,2
i,jDju

21{k<|u1|<k+1}Diu
1 +


r1C

2
1 + C2

2
 

Ω

n
i,j=1
a2,2
i,jDju

21{k<|u2|<k+1}Diu
2

= G.

Now, choosing

C2
1 = −r2C2

2 and C1
2 = −r1C1

1 ,

hence

C1
1 + r2C1

2 = C1
1 − r1r2C1

1 = (1− r1r2)C1
1 ,

C2
1 + r2C2

2 = 0,
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r1C
1
1 + C1

2 = 0,
r1C

2
1 + C2

2 = −r1r2C2
2 + C2

2 = (1− r1r2)C2
2 ,

we get

G = (1− r1r2)C1
1


Ω

n
i,j=1
a1,1
i,jDju

1Diu
11{k<|u1|<k+1} + (1− r1r2)C2

2


Ω

n
i,j=1
a2,2
i,jDju

2Diu
21{k<|u2|<k+1}.

It is enough to choose C1
1 = C2

2 = 1, use the fact that r1r2 < 1, and the ellipticity condition (A2) to obtain

G ≥ m (1− r1r2)

{k<|u1|<k+1}

Du12 +m (1− r1r2)

{k<|u2|<k+1}

Du22 ,
and 

Ω

2
α,β=1

n
i,j=1
aα,βi,j Dju

βDiϕ
α ≥ m (1− r1r2)


{k<|u1|<k+1}

Du12
+ m (1− r1r2)


{k<|u2|<k+1}

Du22 . (3.14)

We use Eq. (2.1), estimates (3.13) and (3.14) to obtain

m (1− r1r2)

{k<|u1|<k+1}

Du12 +m (1− r1r2)

{k<|u2|<k+1}

Du22
≤

2
α=1

2
γ=1
|Cγα|


Ω

|fα|

= (1 + |r2|)

Ω

f1 dx+ (1 + |r1|)

Ω

f2 dx
≤ (1 + |r1|+ |r2|)


Ω

f1 dx+

Ω

f2 dx .
This ends the proof. �

Proof of Theorem 3. Let µ : B (Rn) → RN be a finite Radon measure on Rn with values in RN and let |µ|
denote its total variation. Let (ρε)ε>0 be a family of mollifiers, that is ρε (x) = ε−nρ


x
ε


, where ρ ∈ C∞c (Rn)

satisfies

ρ (x) ≥ 0, ρ (−x) = ρ (x) , supp(ρ) ⊆ B1 and


Rn
ρ (x) dx = 1.

Recall that the convolution µ ∗ ρε defined by

(µ ∗ ρε) (x) =

B(x,ε)

ρε (x− y) dµ (y)

is a regular function, that is µ ∗ ρε ∈ C∞

Rn,RN


.

Let (εh)h∈N be such that 0 < εh ≤ 1 and εh → 0 as h→∞. Then µ ∗ ρεh ∈ C∞

Rn,RN


and

Ω

|µ ∗ ρεh | (x) dx ≤ |µ| (Iεh (Ω)) ≤ |µ| (Rn) < +∞, (3.15)

where Iε (Ω) denotes the open ε-neighborhood of Ω (see [1], Theorem 2.2, p. 42). We define

fh = µ ∗ ρεh ∈ L2 Ω ,RN .
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By assumptions (A2) and (A3), we have (2.3). Then the conditions of Leray–Lions Theorem (see [27]) are
satisfied, so for each h ∈ N we obtain

uh ∈W 1,2
0

Ω ,RN


and, for all ϕ ∈W 1,2

0

Ω ,RN


,

Ω

N
α,β=1

n
i,j=1
aα,βi,j (x, uh(x))Djuαh (x)Diϕα(x)dx =


Ω

N
α=1
fαh (x)ϕα(x)dx =

N
α=1


Ω

ϕαdµαεh . (3.16)

Now, we use the estimate (E1), if the assumptions of Theorem 1 are satisfied, and estimate (E2), if the
assumptions of Theorem 2 are satisfied. We obtain that there exists c > 0 such that

N
α=1


{k<|uαh |<k+1}

|Duαh |
2 ≤ c N

α=1
∥fαh ∥L1(Ω) for all k ≥ 0. (3.17)

The definition of fαh and inequalities (3.15) and (3.17) allow us to use Lemma 1 of Boccardo–Gallouet [7],
i.e. for α ∈ {1, . . . , N} and 1 < q < n

n−1 there exists C2 > 0 such that

∥uαh∥W 1,q
0 (Ω) ≤ C2.

Hence, passing to a subsequence if needed, we may assume that there exists uα∞ ∈W
1,q
0 (Ω) such that

uαh
w→uα∞ in W 1,q

0 (Ω) and uαh → uα∞ in Lq (Ω) , (3.18)

where w→ denotes weak convergence. Again passing to a subsequence if needed, we may assume that

uαh (x)→ uα∞ (x) for almost all x ∈ Ω ,

and, by the continuity of y → aα,βi,j (x, y) (see (A0)), it follows that

aα,βi,j (x, uh (x))→ aα,βi,j (x, u∞ (x)) for almost all x ∈ Ω .

For presentation convenience, we set aα,βi,j (uh) ≡ aα,βi,j (x, uh (x)) and aα,βi,j (u∞) ≡ aα,βi,j (x, u∞ (x)). For every
ϕ ∈ C∞0 (Ω ,Rn), we have


Ω

n
i,j=1

N
α,β=1

aα,βi,j (uh)DjuβhDiϕ
αdx−


Ω

n
i,j=1

N
α,β=1

aα,βi,j (u∞)Djuβ∞Diϕαdx


=



Ω

n
i,j=1

N
α,β=1


aα,βi,j (uh)− aα,βi,j (u∞)


Dju

β
hDiϕ

αdx+

Ω

n
i,j=1

N
α,β=1

aα,βi,j (u∞)DjuβhDiϕ
αdx

−

Ω

n
i,j=1

N
α,β=1

aα,βi,j (u∞)Djuβ∞Diϕαdx


≤

n
i,j=1

N
α,β=1


Ω

aα,βi,j (uh)− aα,βi,j (u∞)
q′ |Diϕα|q′ 1

q′


Ω

Diuβhq 1
q

dx

+


n
i,j=1

N
α,β=1


Ω

aα,βi,j (u∞)DiϕαDjuβh −

Ω

aα,βi,j (u∞)DiϕαDjuβ∞
 . (3.19)

Using the dominated convergence theorem, we obtain
Ω

aα,βi,j (uh)− aα,βi,j (u∞)
q′ |Diϕα|q′ → 0 (3.20)
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and, by the weak convergence in (3.18), it follows that
Ω

aα,βi,j (u∞)DiϕαDjuβh →

Ω

aα,βi,j (u∞)DiϕαDjuβ∞. (3.21)

From (3.19)–(3.21), it follows that
Ω

n
i,j=1

N
α,β=1

aα,βi,j (x, uh (x))Djuβh (x)Diϕα (x) dx

→

Ω

n
i,j=1

N
α,β=1

aα,βi,j (x, u∞ (x))Djuβ∞ (x)Diϕα (x) dx. (3.22)

On the other hand, 
Ω

fαh (x)ϕα (x) dx =

Ω

ϕαdµαεh →

Ω

ϕαdµα.

Therefore, for each q ∈


1, nn−1


there exist u∞,q ∈ W 1,q

0

Ω ,RN


and a subsequence, again denoted by

(uh)h, such that

uh
w→u∞,q in W 1,q

0

Ω ,RN


(3.23)

and 
Ω

n
i,j=1

N
α,β=1

aα,βi,j (x, u∞,q (x))Djuβ∞,q (x)Diϕα (x) dx =

Ω

N
α=1
ϕα (x) dµα (x) ,

i.e. u∞,q is a (distributional) solution of our problem.

We claim that u∞,q does not depend on a fixed q. Indeed, if q < q < n
n−1 then

∥uαh∥
W 1,q

0 (Ω)
≤ C2 (q)

and, passing to a subsequence of (uh)h satisfying (3.23), we can assume that

uh
w→u∞,q in W 1,q

0

Ω ,RN


. (3.24)

By (3.23), (3.24) and the fact that q < q, we obtain

u∞,q = u∞,q.
Therefore,

u∞,q ∈W 1,q
0

Ω ,RN


for all q ∈ 1, n

n− 1


,

and the proof is concluded. �
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