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COMMUN. I N  PARTIAL DIFFERENTIAL EQUATIONS,  16(6&7),  1155-1182 (1991) 

QUASILINEAR EQUATIONS AND SPACES OF CAMPANATO-MORREY TYPE 

J.-M. Rakotoson 

Universitk de Poitiers 

40, Avenue du Recteur Pineau 

86022 - POITIERS Cedex - FRANCE 

0. Introduction 

In recent papers [R], [R-Z], we studied some optimal conditions 

relating the solution u of Pu = Au + F(u,Vu) = T and the choice of 

the right hand side T. 

Namely in [R-Z], for a class of quasilinear operator P, for 

T = p a non negative Radon measure of w-lsq(R), we have shown the 

following equivalence u E c;,''(Q if and only if Vn'  e Q, 

3c(R1) > 0, 3 c  > 0 such that : 

p ( ~ ( x , r )  5 c.r N-p+c - + - =  1 1 1 
' P  9 

for any ball of radius r > 0 : B(x,2r) c R' c [ R ~ .  

Y Copyrtght O 1991 by Marcel Dekker. Inc. 
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1156 RAKOTOSON 

A simple and direct consequence of this equivalence is : that we 

get easily the w;;:(Q)-regularity for variational inequality with 

irregular obstacle. 

Notice that the first result on the proof of this equivalence was 

obtained by [L-S] in the case where Pu = Au. 

In [R], we extend such result by enlarging the class of operator 

P and also the class of right hand side T. We were lead to introduce 

new spaces in w-'"(Q) that we call Morrey space and denote M;''~(Q), 

AzO, which is roughly speaking the set of all distributions T in 

W-'"(R) such that the restriction on any ball of its norm 

11 nl grows like rhIq 
w- ' '~(B ) 

Such space contains not only the class of measure quoted above 

but also any distribution T which has a decomposition 

N a f .  
T = f - C 2 where f. belong to Campanato-Morrey space ~ ~ ' ~ ( f 2 ) .  

O i = l  a xi 

Such distributions have been also used by Campanato, we will denote 

this class : c;'"(Q). One of the new results of this paper is that 

Ch lrq(n) = M-' ,~(Q) ,  N-p<A<N and C; ) = M;'~(Q),  NdaN12. This 
h 

makes complete the results of [R]. We have shown that for a large 

class of strongly quasilinear equations Au + F(u,Vu) = T, if the so- 

lution u is locally bounded, then we have the following optimal con- 

dition 

if and only if 

for 

VR' 6 R c ( R ~ ,  3c(Q1) > 0, c > 0 such that 
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EQUATIONS OF CAMPANATO-MORREY TYPE 1157 

N-p+c 
for all x E R' , r>O such that 

B(x,2r) c R' . 

Such result extend Campanato's results for linear operator (see [c]). 

In particular, this result implies that u e c~A:(Q) (as a con- 

sequence of the Dirichlet growth of Morrey). 

Since we invoked here the fact that the solution has to be lo- 

cally bounded, we will show that for T E M;:;:~(Q). h > N-p and a 

class of quasilinear equation P, the solution of Pu = T  is locally 

bounded. A lot of methods has been developped for getting L~-estimate 

(see for instance [S], [H-S], [S-El, [R], [R-TJ, [D-TI-], [R-Z] and 

reference therein). The method, we introduce here is a combination of 

an idea used in [R] and a method used by [L-U] (see also [D-T] and 

[R-a )  . 
Thanks to the decompositions of T, we can associate a measure m 

to T, which will allow us to use Adarns' inequality. 

We will end this paragraph by a remark completing the results of 

Boccardo-Giachetti [B-GI for L~-estimate. 

The last paragraph will be devoted to cIE-results for quasili- 

near equations. In similar way, we will study the optimality of the 

choice of the right hand side T in order to have the solution 

The organization of our paper will be 

I - Preliminary results 

I1 - A decomposition of an element T E M;"~(Q), N>h>N-p 
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1158 RAKOTOSON 

I11 - Local L~-estimate for the solution u of Pu = T, where 

T E ~;l;:$fL), N-pcA 

1 IV - On ~~;l:-re~ulari ty.  

I. Preliminary results - Notation 

52 will denote a subset of IRN, 62 = B(x,p) n R, 
P 

B = B(x,p) = B(p) ball of center x and radius p > 0, 1 f L p l  is the 
P 

measure of R . 
0 

1.1.- Classical Campanato-Money in L~(Q),  kqs+oj. 

DEFINITION 1.- Money-spaces Lq"(R), Az0. 

DEFINITION 2.- Campanato-Spaces !tq"(L2). 

Let us denote the average : 

Y?(Q) = u E Lq(n), Sup p-A'q Ilu - u II t XE R 

P >  0 

For more details on those spaces see [Mo], [C], [Da PI. In parti- 

cular, we will use the : 
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EQUATIONS OF CAMPANATO-MORREY TYPE 1159 

PROPOSITION 1.- We have, for smooth bounded domain Q : 

0, - 
Eq'?(n is isomorphic to the HBlder-space. C (G), N<hsN+q. 

Eq'"Q is isomorphic to L~'"(R), &h<N. 

L ~ ' ~ ( Q )  is isomorphic to L ~ ( R )  . 

I .2 .- Morrey-spaces in w-"~(Q) 

In [R], we define : 

DEFINITION 3.- We defhe in w-"~(Q) (dual spaw q/ W;.~(Q), 

1 1  
- + - = 1 )  the space M;"~(Q) by 
P q 

Properties of this space can be found in [R], in particular, we 

have : 

PROPOSITION 2.- If we set : 

It is not known whether c;lvq(n) = M;"~(Q) for all AzO. One 

1 1  of our results will show : C-"~(Q) = ~ ; " ~ ( n ) ,  + - = 1, n bounded 
h 9 

for N-p<kN and c;"~(Q(~) = M;"~(;), Vh>N-2. 
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1160 RAKOTOSON 

1.3.- Notations 

From now on, we deal with a solution u E w:;:(C~), l<p<ia of the 

equation : 

The Leray-Lions operator A can be written : 

where, 

for almost all X E  Q, all z in FtN, all u E R, vo is a conti- 

nuous function such that vo > 0 and : 

1 1  
where : a is an increasing from IR+ to IR+ , - + - = 1 

P q 

T E W;:L~(Q). 

a We will precise the class of function where v ,  , , go will 

be and also the value of s. 

DEFINITION 4.- We will say that the operator A is strongfy monoto- 

nic if the coefficients ai satisfy, one of the following inequali- 

ties : there exist constants c > 0, r 0 such that, for almost all 

x E Q, all u E IR, all z in RN, z' E RN : 
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EQUATIONS OF CAMPANATO-MORREY TYPE 

We have shown (see [R], [R-z]). 

THEOREM 0.- Assume that u E Lm (n) n w:;:(Q) is solution of (1.1) 
1 oc 

with the structure (1.2) to (1.4) with s = p-c ( V o O ) ,  v1 and 

1 A 

go 

on L,;'(Q), a. is in L;,"(Q). b N - p .  If A is strongly monotonic in 

the sense stated above then : 

if and only if for every relatively compact open set Q' in n, there 

exist c(R1) > 0,  c>O such that 

all X, r such that B(x,2r) c Q' . 

The following theorem is a direct consequence of a result due to 

Adams D. For more details, see [M, p.541 or [Z, p.2131. 

THEOREM 0.1 (Adams' inequality [A]).- Let m be a positive Radon mea- 

sure supported in Q such that there exists a constant M > 0. for all 

x E ( R ~ ,  O<r<+m, we have 
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RAKOTOSON 

N 
m(~(x , r ) )  -' M ra, a = s(- -1) 

P 

l<p<s<+m, p<N. If u E W;'~(Q), then : 

(This version is the one given in [Z]) 

11. A decomposition of an element T M;'%), A > N - ~  

In this paragraph, we want to show : 

1 I 
THEOREM 1.- Let T E M;?;:>Q) for N>h>N-p, - + - = 1 .  Then there 

P 'l 

exist fi E L;,"(Q), N>A>N-p such that 
N a f .  

Proof.- Consider T in M~;;:$Q) and Q' a relatively compact 

open set of R. Define : 

and v such that : 

where B(x,3r) c R' . We will denote by c>O different constants inde- 

pendant of x and r. The following properties are easy to  check. 
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EQUATIONS OF CAMPANATO-MORREY TYPE 1163 

PROPOSITION 2.- There exist constant c>O such that 

b) There exists a constant 

(1) 

q>p depending only N and p such that : 
' /P 

VvlPdy]  + c .  

Proof of proposition 2. 

a) It suffices to multiply equation (2.2) by v-u. 

b) While for the statement b) (') is a classical result due to Meyer 

(see Giaquinta [GI). The proof relies on using as test function 

(') J' denotes an average. 

.pP(v - v ) where 0<2p55/2 r, rp E C;(B(X,Z~)), = 1 or 
XSP 

B(x,p), Ckrp51, v is the average over the ball of radius p. m 
X < P  

The following computations and results are due to Lewis (see [L]) 

and easy to derive : 

where repeated indices denote summation from 1 to N and 

If we set v = (1, (Vv1 2)p12, then v satisfies 

and L is a strongly linear operator, indeed : 

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 0
8:

58
 2

6 
D

ec
em

be
r 

20
14

 



1 5 b z z. J s A z where 

RAKOTOSON 

: min(p-l,l), A2 = max(p-1,l). 

Relation (2.4) implies that v is a supersolution for the opera- 

tor L. Hence we can apply the following result on linear equation 

with bounded coefficients (that can be found in [G-1). 

L E M M A  1.- For all p l ,  there exists a constant c(7) > 0 independant 

Here, v = ( I+ lVv1 2)P'2 is a supersolution of L. 

A simple combination of Proposition 2 and lemma 1 ,  leads to : 

PROPOSITION 3.- There are constants c>O : 

Max W Y ) ~  5 c + c [ fB(x ,3 r iVup  d i  . 
Y E B p  I 

Choosing such that q = py (where q is define in proposi- 
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EQUATIONS OF CAMPANATO-MORREY TYPE 1165 

LEMMA 2.- There exist csO, c>O. such that for all x, r : 

B(x,3r) c n1 and all O<p<r : 

Proof.- Case p r 2  

Let us substract equation (2.2) by (2.1), then : 

P - -1 P 

- div((1+ I vu 1')' VU) + div((l+ 1 vv 1 2)' VV)=T (2.6) 

Multipliying by u-v, equation(2.6) gives : 

One can check that there exist c>O : 
P P 

2 ~ - l  2 1' I ( ( I + I v ~ /  ) vu-(l+lVv( ) Vv,V(u-v))dy~c 
B(x.3r) 

and 

1 <T,u-D/ = I I ~ I  .II V(U-VIII 
w-"~(B(x ,~~) )  L~(B(X. 3:)) 

Assuming that T E ~;f;;$n) for b N - p  we derive the existence 

of cro, c>O : 

Thus if &p5r/3 (The case px /3  is obviuos) : 

N-p+c 
5 c.r + c pN Max / V V / ~  

r 
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1166 RAKOTOSON 

End of the proof of theorem 1 for p22 

We use need the following whose proof can be found in [GI see 

also [C], 

LEMMA 3.- Let 4 be a non negative and non decreasing function. Sup- 

pose that there are constants b O ,  B>O, O4<(w, c>O 

)(P) 5 A(:)' [+(r)+c] + 

for all p%r<diam(Q). Then, there exist c>O and c o  depending on 

Applying this lemma with lemma 

P - 1 

We conclude that ( ~ + I v u ~ ~ ) ~  Vu 

2 and setting : 

= N - p + c ,  a = N .  

is in (L~;:(Q))~ for b N - p ,  
P 

1 1  
2 i  ' , we have - + - = 1 thus i f w e  set f. = (l+lVul ) 

P q ax, 
N a f i  

T =  - C  - fi . L;;:'". 
i =  1 a xi 

P 

If l+pc2,  the operator Au = -div((l+/Vu12)' VU) is still stron- 

gly monotonic and we have instead of (2.7) the following inequality, 

whose proof is simple : 

Using the reverse H6lder inequality as in [R] we deduce : 
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E Q U A T I O N S  OF CAMPANATO-MORREY T Y P E  

Thus, using young inequality and relation a) of proposition 2 : 

2 - 0  

For all r j  > 0 

since T E M;!;;~(Q), A>N-p, we deduce there exist c>O, E>O, rj>O 

As before for any &psr : 

From (2.9), (2.10) and proposition 3,  we get easily 

P - 1 

Applying lemma 3, we get that (1+1Vu 1 2)2 Vu is in (L~;:(Q))~ 
P 

2 T' a u  N a f .  
b N - p .  Setting again fi = (l+Ivu ( ) q' we have T = - C -f 

i =  I a xi 

fi E L ~ ( Q ) .  

for 

111. An Lm-local estimate for the solution 

AU + F(U,VU) = T E M - ~ ' ~  (n), N-p < A . 
A ,  loc 

In this paragraph, we consider u E W"~(Q) solution of Au+F(u,Vu) = T, 
loc D
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RAKOTOSON 

where A, F satisfies the structure (1.2) to (1.4) with : 

e - vo( 1 u 1) = constant vo , vl E L:;",Q, A>N-P 
0 .  

e : a((u1) = constant a , a. E L;;;(Q), b N - p  
1 

e . F has the following decomposition 
2 -  

F(x,u,z) = Fl(x,u,z) + F2(x,u,z) 

uFl(x,u,z) r 0 

1 F X U Z  1 c(gg(x)+ 1 z lP') 

with go E L;~(R),  h > N-p 

e 3 : T E M;~;;JR), N-~<*N. 

THEOREM 2.- Let u E W:;;(Q). l<p+N, be a weak solution of : 

with the structure (1 .2)  to (1.4). (eo) to (e3). Then, u is locally 

bounded. Moreover, there is a non negative Radon measure m such that : 

for a[[  62' relatively compact open set in R, there is 00, c>O : 

for all O<o<l and c,  a ,  B are absolute constants. 

Proof.- Let R' c. 52. For a value of k that will determined later, 

we set : 

k, = k( I - 2-5, i=o, 1,2,. . . 
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EQUATIONS OF CAMPANATO-MORREY TYPE 

and 

We consider the corresponding balls 

We denote by pi the cut-off function whose support is contained in 

Bi such that : 

p i = l  on B i + l ,  0 5 c p i 5  1 

and 

2 i + l  - -1 
i +2  

(observe that : (ri - r )-I = - 
i+l r(1-o-) and r - r = -) r (1-c)  

Let (y = py(l u 1 - k ) sign u. Multiplying (2.1 1) by (y, we get : 
1+1 + 

By theorem 1,  we have the existence of fi E ~;;'(n), h E IN-p.N] 

N a f .  N 
such that : T = - C -2 

a xi 
, we set f = ( c ?)'I2, 

i=  1 i = l  

Ai = B(r? n {(I u 1 -k. ) > 01. Using the structure of A, F and the 1+1 + 

decomposition of T, we get the following inequalities : 

for all TJ > 0 : 
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RAKOTOSON 

1 

with 1.4.1 = Lebesgue measure of Ai 
1 

We define the following measure m by setting : 

d m  = [ I  + vl(y) + a:(y) + g:(y) + ~ ? Y ) I ~ Y .  

A simple choice of and a combination of these last inequali- 

ties lead t o  the fundamental energy estimate : 

Using assumption on v ,  , a. , go and T, one can check that for 

any ball, B(x,2r) c R' : 

N-p+c 
m ( ~ ( x , r ) )  5 c . r  for some DO, DO. 

S 
So if we define s by :(N-p) = N-p + E ,  then the previous result of 
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EQUATIONS OF CAMPANATO-MORREY TYPE 

Adams (see theorem 0.1), 1/1 E ~ ~ ( d m ) .  Now : 

From Adams' inequality, we have : 

using (2.13), we get : 

Defining, Y .  = k-' 

m(Ai) 5 2('*l)~ k-' IB ( I  u 1 -k?.dy = 2 (i+ 1 )p 

i 
Yi 

and then observing, k 2 ki , we deduce : 
i+ 1 

Choosing, k r  I ,  we deduce 
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RAKOTOSON 

P 
p(2- -) 

We set b = 2 P > 1, a = 1- > 0. Then (2.14) yields 

'i+l 

C '  b i  Y!+' Choosing k such that 
( I  -e ) ' rP  

Lemma (4.7) of [L-U], yields : 

Yi--+O as i--+wo. 

Thus we get the desired result. 

COROLLARY 1.- Under the same assumptiolzs as in theorem 2, if further- 

more, A is strongly nzonotonic and s = p-& (VDO) for the growth of 

F .  Then u satisj7es the Dirichlet growth in R and in particular u 

Proof.- Combine theorem 0 with theorem 2 .  m 

COROLLARY 2.- Under the same assumptions as in theorenz 2. If p  is a 

signed Radon measure, such that the total variation / p /  satisfies 

the following growth 

I p I  ( ~ ( x , r ) )  I c . rN-~+ '  on any ball. 

B(x,2r) c R' cc R, 
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EQUATIONS OF CAMPANATO-MORREY TYPE 1173 

This results is more general than one we get in [R-Z] since the 

monotoni- city of A is weaker and p is a signed measure. 

Remark on ~ ~ - ~ l o b a l  estimate 

In their paper [B-GI, Boccardo-Giachetti studied the following 

Dirichlet problem : 

Au + F(u,Vu)=TinQ 

onaQ 

a 
 here Au = - - ai(x.u,Vu) - div(m(u)), with the structure (1.2), 

i =  1 
a xi 

v = constant, v l  = 0, a( 1 u l )  = constant, a is in L~(Q). 
0 0 

uF(u,Vu) 2 0 and has a p-growth with respect to the gradient. 

@ is continuous function such that : I @(u)f 5 c. 1 u 1 for some r r 0. 

They showed similar results as we did in [R 21, [R-TI, [R 11. One of 

the novelties in their paper is the additionnal term div(+(u)). In 

particular they showed if T E w""(R), nN/(p-I). Then u is boun- 

ded. 

In fact, their results can be extended to degenerate operators A 

as we did in [R I], [R 21, [R-TJ. We just have to observe the follo- 

wing lemma : 

L E M M A  4.- Let SgSh be the following lipchitz junction : S (t) = 0 
9,h 

if It ( 5 0, h>O. S (t) = sign t of It 1 r e+h and afJne else- 
e,h 

where. Let u E WbvP(Q). such that +(u) E L~(Q).  Then 

<div(+(u)), qSh(u)> = 0. 

Proof of lemma 1.- For E>O, define SC by sC (t) = e t  + S (t). 
9.h e,h 9.h 
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1174 RAKOTOSON 

Then one can check that s:,~ is invertible from R to R, s:,, 

remains in a bounded set of w l s r n ( ~ )  and for any u E ~; ' ' (n) .  

S' (u) converge to S (u) in W;'~(Q) strong when r goes to zero. 
e,h 0 , h  

One has, for u E c:(@ : 

<div m(u), S;,,(U)> = - I +(u) div(sish(u))dx 
R 

if we define 

Then, one has from Green formula : 

J #(u) div(~:,~(u))dx = 1 d i v ( ~ ~ ( x ) ) d x  = 0. 
n R 

Then : <div #(u), S' (u)> = 0. Letting E go to zero and then 
e,h 

using density, we get the desired result. rn 

IV. On cl+-regularity I O C  

The aim of this paragraph is to derive results similar to those 

obtained for the ~ " ~ - r e ~ u l a r i t y .  Again, our results will extend those 

obtained by Lewy-Stampacchia [L-S], Campanato [C] (see also [GI). The 

arguments that we use here is analogous to those that Campanato intro- 

duced. In this paragraph, a will denote different holder exponents. 

We consider the following operators : 
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EQUATIONS OF CAMPANATO-MORREY TYPE 

t/z E iRN, VU E R, for almost all x E R : 

N 
2 C aij(x,u)z.z. 2 vo( ( u  1 ) 121 , vo~C@),  vo>O 

i, j -1 1 J 

2 
IF(u,z)I = IF(x,u,z)I 5 a ( ( u ( ) ( l  + lzl ) 

with : a : R+ -+ R+ increasing. 

Let u E Hi0$Q) n L ~ ~ $ Q ) .  solution of : 

Au + F(u,Vu) = T E H;iC(Q). 

We have the following optimal condition. 

THEOREM 3. 

a) If u E C;;'Q) then T E M;?;& for some h E ]N,N+2]. 

b) Conversely, if T E M-Io2 N<AsN+2 then u E c'"(R). 
A ,  loc' loc 

Proof.- a) Let R' be a relatively compact open set, let p>O, 

- 
B(X~.P) c n l ,  cp E H~(B(X~.P)),  define 

N 
a u  f$x) = I: aip,u).- e C ~ ' ~ ( R ' ) .  Using the structure of F, g, 

j = l  a xj 

we have : 

+ c 'B(xo.p) I vu I I I dx + [B(xo,P) l c p I d x -  

where 
Cf?X .p 

is the average over the ball B(p) using Schwartz's 
0 

inequality, and Poincark's inequality : 
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11 76 RAKOTOSON 

Thus, there exist c>O and h>N such that for all ball B(xo,p) 

b) Conversely, we want to show that u is c:~:(J) if 

T E M;:f(Q). For this, we need the following decomposition. 

LEMMA 5.- Let T E M*?;:~(Q), N d a N t 2 .  Then there exist fi E c~;:(Q) 

such that : 
N a f ,  

and conversely, 

1 
Proof of lemma 5.- Consider, n' e Q and define u E Ho(R) solution of 

- 
-Au = T in n. For DO such that : B(xo,r) c n' , denote by 

v E H'(B) such that : 

Av = 0 B(r) 

v = u on aBr . 

We want to show that u E c:;:. For this, we divide the pmof into Wo 

steps. 

1'' step. IVuJ E L ~ ~ J O ) ,  we have : - 
-A(u-v) = T in B(r). 

Multiplying by u-v, we derive : (using the fact T E M;~;:~(Q)) 

I V(u-v) I 'dx zs c.11 l l l  2 h : c.r , b N .  
H % W )  

Let &par, from Caccioppoli-estimate (see [GI), we derive : 
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EQUATIONS OF CAMPANATO-MORREY TYPE 

Thus : 

s t ep  2. u E c:;;(n). 

Using Campanato's result ([c], corollary 7.11), we have 

p N+2 1 Vv-(vv) 1 d 5 ( )  j" I Vv-(Vv), , , I  'dx. 
X0'P 

B(r) 0 

On the other hand, a simple decomposition leads to : 

Since (Vv) = , r  (by Green formula) we deduce 
x , r  
0 0 

Using Campanato's lemma (lemma 6.11 [c]), we derive that Vu E 1:;&2), 

for some b N ,  then, u E c:,"(Q). m 

Proof of theorem 3 (conveme).- Let u be in L ~ ~ J Q )  n H:~JQ) 

a a u 
solution of - [a i j (x .uk]  + F(u,vu) = T with the structure 

j 
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11 78 RAKOTOSON 

(4.1) to (4.4), if T E M,~;:~(Q) from the decomposition (lemma 5 ) ,  we 

N a f ,  
0 a can write : T = - $, fi E C,;'(R), let v be solution of : 

i =  1 

( u - v =  0 on aB(r)  

with B(xo,r) c R' cc 61. 

By the preceeding result on ~ O ' ~ - r e ~ u l a r i t ~ ,  we have that 

u E c:;: and thus a..(x,u(x)) u is in c:,~(Q). 

From here, the proof is similar to the proof of lemma 5. We divi- 

de it into two steps. 

lSt srep. lvul s L;~(Q) 

Multiply by u-v the following equation : 

Then : 

A simple application of maximum's principle leads : 

Equation (4.5) becomes : 

2 + c i fBe, I V U  1 dx + c.rNr 
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EQUATIONS OF CAMPANATO-MORREY T Y P E  1179 

Using lemma 8.1 of Campanato's [C] and using the fact that 

a,. E C O ' ~ ,  we dirive : O < p r  
U 

We deduce 

JB,, vu 

So from (4.5) to (4.8), we derive : 

From lemma 3, we deduce that 

Step 2. u E c~"(R) 
lac 

Using Campanato's lemma, (lemma 8.11, [c]) we derive for O<p<r : 

As in relation (4.5), on has easily 

N a f .  
where T = - -2 , f. E c;," . A simple decomposition of : - 

i = l  axi 
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1180 RAKOTOSON 

analogous to step two of lemma 5 lead to : (using (4.9). fi E c;," : 

Since IVu/ E L:~L~~(R) 

2 lul d~ +c.rN*. 

Nta 'dx + c.r . 

From lemma 6.11 of Campanato's [C], we deduce that IVu 1 E P:;:(Q). 

Thus, u E c:;:(R). rn 

COROLLARY OF THEOREM 3.- Let p be a signed Radon measure whose to- 

tal variation grows as follows : 

N-l+c 
/~ l (B(x , r ) )  5 c . r  

for all x, r : B(x,2r) c Q' cc Q, 00, 00. 

-1 ,2  
Th%, P E for N<h%N+2. 

In particular, under the same assumptions as in theorem 3, the 

solution u of Au + F(u,Vu) = p, u E L ~ ~ $ D )  n H:~$Q) is in c:~",Q). 

Proof.- Applying the result of Lewy-Stampacchia [L-S], we know that 

Av = p the solution v of in in c " ~  loc' Thus, IJ E Mxslo  -l"$"). 

Applying theorem 3, we get that u E c:A:(Q). 
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