
Journal of Functional Analysis 166, 179�196 (1999)

Global Morrey Regularity of Strong Solutions to
the Dirichlet Problem for Elliptic Equations with

Discontinuous Coefficients

Giuseppe Di Fazio

Dipartimento di Matematica, Universita� di Catania, Viale A. Doria, 6, 95125 Catania, Italy
E-mail: difazio�dipmat.unict.it

Dian K. Palagachev

Dipartimento di Matematica, Politecnico di Bari, Via E. Orabona, 4, 70125 Bari
E-mail: dian�pascal.dm.uniba.it

and

Maria Alessandra Ragusa

Dipartimento di Matematica, Universita� di Catania, Viale A. Doria, 6, 95125 Catania, Italy
E-mail: maragusa�dipmat.unict.it

Communicated by D. Sarason

Received August, 15, 1997; revised November 19, 1998

Well-posedness is proved in the space W2, p, *(0) & W 1, p
0 (0) for the Dirichlet

problem

{:

n

i, j

aij (x) Dxi xj
u= f (x) # L p, *(0)

u=0

a.e. in 0

on �0

if the principal coefficients aij (x) of the uniformly elliptic operator belong
to VMO & L�(0). � 1999 Academic Press

1. INTRODUCTION

In the last thirty years a number of papers have been devoted to the
study of local and global regularity properties of strong solutions to elliptic

Article ID jfan.1999.3425, available online at http:��www.idealibrary.com on

179
0022-1236�99 �30.00

Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.



equations with discontinuous coefficients. To be more precise, let us
consider the second order equation

Lu# :
n

i, j=1

aij (x) Dxi xj
u= f (x) for almost all x # 0, (1.1)

where L is a uniformly elliptic operator over the bounded domain 0/Rn,
n�2.

The regularizing properties of L in Ho� lder spaces (i.e., Lu # C:(0� )
implies u # C2+:(0� )) have been well studied in the case of Ho� lder con-
tinuous coefficients aij (x). Also, unique classical solvability of the Dirichlet
problem for (1.1) has been derived in this case. (We refer the reader to
[19] and the references therein.) In the case of uniformly continuous coef-
ficients aij , an L p-Schauder theory has been elaborated for the operator L

[1, 19]. In particular, Lu # L p(0) always implies that the strong solutions
to (1.1) belong to the Sobolev space W 2, p(0) for each p # (1, �).

However, the situation becomes rather difficult if one tries to allow dis-
continuity at the principal coefficients of L. In general, it is well known (cf.
[23]) that arbitrary discontinuity of aij's breaks down as the L p-theory of
L, as the strong solvability of the Dirichlet problem for (1.1). A notable
exception of that rule is the two-dimensional case (0/R2). It was shown
by Talenti ([27]) that the solely condition on measurability and bounded-
ness of the aij 's ensure isomorphic properties of L considered as a mapping
from W2, 2(0) & W 1, 2

0 (0) into L2(0). This way, to handle with the multi-
dimensional case (n�3) additional requirements on aij (x) should be added
to the uniform ellipticity in order L to possess the regularizing property in
Sobolev functional scales. In particular, if aij (x) # W 1, n(0) (cf. [24]), or if
the difference between the largest and the smallest eigenvalues of [aij (x)]
is small enough (the Cordes condition, see [7]), then Lu # L2(0) yields
u # W2, 2(0) and these results can be extended to W2, p(0) for p # (2&=, 2+=)
with sufficiently small =.

Recently (see [8] for an exhaustive presentation) the Sarason class
VMO of functions with vanishing mean oscillation was employed in the
study of local and global Sobolev regularity of the strong solutions to (1.1).
More precisely, it was proved in a series of papers by Chiarenza, Frasca,
Franciosi and Longo [11, 12, 10] that if aij (x) # VMO & L�(0) and
Lu # L p(0) then u # W2, p(0) for each value of p in the range (1, �). Also,
the well-posedness of the Dirichlet problem for (1.1) in W2, p(0) & W 1, p

0 (0)
were proved. These results were extended to the case of oblique derivative
boundary condition [13, 22] as well as to quasilinear equations with VMO
coefficients [25, 14]. As consequence, Ho� lder continuity of the strong solu-
tion or of its gradient follows, if the exponent p is sufficiently large. On the
other hand, Ho� lder continuity can be inferred for small p also, if one
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known more fine information on Lu such as its belonging to suitable
Morrey space L p, *(0).

This way, a natural problem arises to study the regularizing properties
of the operator L in Morrey spaces in the case of VMO principal coef-
ficients. In [4], Caffarelli proved that each W 2, p-viscosity solution to (1.1)
lies in C 1+:

loc (0) if f (x) belongs to the Morrey space Ln, n:
loc (0) with : # (0, 1).

However, it seems that the assumption on f cannot be replaced by the
weaker one f # L p, *

loc (0), p<n, *>0, because of the Aleksandrov�Pucci
maximum principle employed in the proofs in [4]. In the paper [16], Di
Fazio and Ragusa proved interior Morrey regularity for the second
derivatives of W 2, p-solutions to (1.1). Precisely, the authors showed that
D2u # L p, *

loc (0) whenever f # L p, *
loc (0) and a ij (x) # VMO & L�(0).

The general aim of the present paper is to extend the local regularity
results in Morrey spaces from [4, 16] to global ones. More precisely, we
will consider the Dirichlet problem

{Lu= f (x)
u # W 2, p, *(0) & W 1, p

0 (0),
almost everywhere in 0,
p # (1, �)

(1.2)

in the case of VMO & L�(0) principal coefficients aij (x) and f # L p, *(0).
As we mentioned above, problem (1.2) with u # W2, p(0) & W 1, p

0 (0) has
been already studied in [12], and so the regularity and existence results in
W2, p(0) are known. Our goal will be to show that finer regularity of the
right-hand side f (x) increases the regularity of the second derivatives of the
solution. Namely, if u # W 2, p(0), 1<p<�, is a strong solution to (1.2)
with f # L p, *(0), then u # W 2, p, *(0) (the set of functions u # W 2, p(0) such
that D2u # L p, *(0)). This way, our first result asserts boundary Morrey
regularity for the second derivatives of the strong W2, p-solution. Indeed,
that result combined with the interior Morrey regularity already derived in
[16], implies immediately the global regularizing property of L in Morrey
spaces (Theorem 3.3). To derive the boundary regularity, we use an explicit
representation formula for the second derivatives in terms of singular
integral operators and commutators with Caldero� n�Zygmund kernels. This
way, the analytic heart of our paper consists of proving boundedness in
Morrey spaces of these integral operators. After that, using standard
techniques from the theory of PDE's, we derive the global a priori estimate
in Morrey spaces for strong solutions to (1.2). A combination of that
estimate with the W2, p-strong solvability of (1.2) proved in [12] leads to
the second result of the paper. Namely, we show well-posedness of the
Dirichlet problem (1.2) in the space W 2, p, *(0) & W 1, p

0 (0) for each
f # L p, *(0) and each p # (1, �) (Theorem 3.4).

Indeed, as a by-product of our global a priori estimate and the known
properties of Morrey spaces, we derive Ho� lder continuity of the gradient
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Du for suitable values of p # (1, �) and * # (0, n) (Corollary 4.1). We
believe that the possibility to have an estimate for the Ho� lder seminorm of
the gradient under very weak assumptions on aij (x) and f (x) will be useful
in the theory of nonlinear elliptic equations (cf. [5]).

At this end, let us note that quasilinear problems as well as the case of
other (oblique derivative) boundary conditions will be treated in forthcom-
ing papers.

2. SOME DEFINITIONS, NOTATIONS, AND
PRELIMINARY RESULTS

In this section we define all function spaces needed in the sequel. Let 0
be an open and bounded set in Rn with sufficiently smooth boundary �0.

Throughout the paper we will denote by B\(x) a ball of radius \ centered
at the point x, while Q\(x) stands for a cube centered at x and of side length
\. Further, we set B+

\ =B\(x) & [x # Rn : xn>0].
First of all we start with the definition of Morrey spaces. Let 1<p<�

and 0<*<n. We say that a locally integrable function f (x) belongs to the
Morrey space L p, *(0) if

& f & p
L p, * (0) #sup

\>0
x # 0

1
\* |

B\ (x) & 0
| f ( y)| p dy<�.

To formulate the main hypotheses on the coefficients of elliptic operators
under consideration, we shall need also the John�Nirenberg space [21] of
functions with bounded mean oscillation (BMO) and the Sarason class
VMO of the functions with vanishing mean oscillation ([26]). Let f (x) be
a locally integrable function. We say that f (x) belongs to BMO if

& f &
*

# sup
B/Rn

1
|B| |B

| f (x)& fB | dx<�.

Hereafter, fB stands for the integral average 1�|B| �B f (x) dx of the function
f (x) over the set B, and B ranges in the class of balls of Rn. For a function
f (x) # BMO set

'(r)= sup

\�r
x # R n

1
|B\ | |B\

| f (x)&fB\
| dx.

We say that f (x) # VMO if limr � 0+ '(r)=0 and refer to '(r) as the VMO-
modulus of f (x).

Let us note that replacing the ball B above by the intersection B & 0,
one obtains the definitions of BMO(0) and VMO(0). Further, in view of
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[2, Proposition 1.3], having a function defined on 0 that belongs to
BMO(0) (VMO(0)) it is possible to extend it to all Rn preserving its
BMO(VMO) character. In the following we will use this remark without
explicit reference.

We shall also use the classical Sobolev spaces

Wk, p(0)=[ f (x): D:f # L p(0), |:|�k], k is an integer,

equipped with the norm & f &Wk, p (0)=& f &L p (0)+&Dkf &L p (0) . The closure of
the space C �

0 (0) with respect to the norm in Wk, p(0) will be denoted, as
usual, by W k, p

0 (0).
Finally, we set Wk, p, *(0) for the Banach space of functions belonging to

Wk, p(0) and having kth order derivative lying in the Morrey space
L p, *(0). A natural norm in that space is

& f &Wk, p, * (0)=& f &L p (0)+&Dkf &L p, * (0) .

Definition 2.1. Let f (x) be a locally integrable function in Rn we
define the maximal function and the sharp maximal function of f (x) respec-
tively as

Mf (x)=sup
r>0

1
|Qr(x)| |Qr (x)

| f ( y)| dy,

(2.1)

f >(x)=sup
r>0

1
|Qr(x)| |Qr(x)

| f ( y)& fQr
| dy,

where Qr(x) ranges in the class of all cubes centered in x # Rn with side
length r>0.

Let f (x) be a locally integrable function defined in the half space
Rn

+ #Rn & [xn>0]. Following [20], we may define the local maximal
function and the local sharp maximal function of the function f respectively
as did in (2.1) but now the cubes are centered at x # Rn

+ and it is assumed
f (x) to be extended identically zero in the half-space [xn<0]. It is a
known result that the maximal function is bounded in the Morrey space
L p, *(Rn). The same is true, with the same proof, if the function is con-
sidered only in the half-space. Namely we have

Theorem 2.2. For any 1<p<� and any 0<*<n, the local maximal
operator is bounded. Precisely, there exists a constant c independent of f (x)
such that

&Mf &Lp, * (R n
+ )�c & f &L p, * (Rn

+ ) .
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Proof. Let x0 # Rn
+ and \>0. Now, using the inequality in [17,

Lemma 1, p. 111], we have

|
Q\ (x0) & R

n
+

|Mf (x)| p dx=|
R n

|Mf (x)| p /Q\ (x0 ) & R
n
+

dx

�c |
R n

| f (x)| p M/Q\ (x0 ) & R
n
+

dx

with /Q\ (x0 ) & R
n
+

being the characteristic function of the respective set.
Following the lines of [9, Theorem 1, p. 275]), we obtain

|
Q\ (x0 ) & R

n
+

|Mf (x)| p dx�c\* & f & p
L p, * (R n

+ )

and the theorem is proved. K

In a similar manner it is possible to prove the following theorem about
the local sharp maximal function (for the global result we refer the reader
to [15]).

Theorem 2.3. For any 1<p<� and any 0<*<n, there exists a
constant c independent of f (x) such that

& f &L p, * (Rn
+ )�c & f >&L p, * (Rn

+) .

Proof. Let x0 # Rn
+ , r>0 be arbitrary and take a point x� 0 # Rn

+ such
that Q+

r (x0)#Qr(x0) & Rn
+/Q2r(x� 0). Denote by /Q2r (x� 0 ) the characteristic

function of the cube Q2r(x� 0). Let # # (*�n, 1). Then, by means of the known
properties of the maximal function, we obtain

|
Qr

+ (x0 )
| f (x)| p dx�|

R n
| f (x)| p /Q2r (x� 0 ) dx�|

R n
| f (x)| p M/Q2r (x� 0 ) dx

�|
R n

|Mf (x)| p (M/Q2r (x� 0 ))
# dx.

To proceed further, we employ the Fefferman�Stein inequality between the
maximal and the sharp maximal functions (cf. [18, p. 410]), with weight
(M/Q2r (x� 0 ))

#. Thus,

|
R n

|Mf (x)| p (M/Q2r (x� 0 ))
# dx

�c(n, p) |
Rn

| f >(x)| p (M/Q2r (x� 0 ))
# dx
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�c(n, p) {|Q2r (x� 0 )
| f >(x)| p dx

+ :
�

k=1
|

Q2k+1r (x� 0 )"Q2 kr (x� 0 )
| f >(x)| p \ r

|x� 0&x|&r+
n#

dx=
�c(n, p, *, #) r* & f >& p

L p, * (R
n
+ ) :

�

k=0

2k(*&n#)

�c(n, p, *, #)
1

1&2*&n# r* & f >& p
L p, * (Rn

+)

(recall *<n#), and the result follows. K

Our strategy in deriving boundary Morrey regularity of solutions to the
Dirichlet problem is based on an explicit representation of solution's
second-order derivatives. That representation formula is a sum of singular
integrals of two types. The first one is a sum of singular integral operators
and commutators with Calderon�Zygmund kernels (see [12, 16]). The
boundedness in Morrey spaces of that types of operators has been proved
in [16] and we present the respective result here (Theorem 2.4). On the
other hand, the second type operators appearing in the representation
formula are less singular and they due to the specific boundary condition.
The boundedness of these operators will be proved below (Theorems 2.5
and 2.6).

Theorem 2.4 [16, Theorem 2.3]. Let D be an open subset of Rn,
f # L p, *(D), 1<p<�, 0<*<n, a # VMO & L�(Rn). Let k(x, z) be a
Caldero� n�Zygmund kernel in the z variable for almost all x # D such that

max
|:| �2n "

�:

�z: k(x, z)"L� (D_7)

=M<+�,

where 7 denotes the surfaces of the unit sphere in Rn. For any =>0, we set

K= f (x)=|
|x& y|>=, x # D

k(x, x& y) f ( y) dy,

C=(a, f )(x)=|
|x& y|>=, x # D

k(x, x& y)(a(x)&a( y)) f ( y) dy.

Then there exist Kf, C(a, f ) # L p, *(D) such that

lim
= � 0

&K= f &Kf &L p, * (D)= lim
= � 0

&C=(a, f )&C(a, f )&Lp, * (D)=0
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and moreover, there is a positive constant c=c(n, p, *, M) such that

&Kf &L p, * (D)�c & f &L p, * (D) , &C(a, f )&L p, * (D)�c &a&
*

& f &L p, * (D) .

Theorem 2.5. Let x # Rn
+ and

K� f (x)=|
R n

+

f ( y)
|x~ & y|n dy, x~ #(x1 , ..., xn&1 , &xn).

Then there exists a constant c independent of f (x), such that

&K� f &Lp, * (R n
+ )�c & f &L p, * (R n

+ ) .

Proof. Let x0 # Rn
+ and r>0 be arbitrary. Then, for x # Rn

+ we have

f (x)= f (x) /B
+
2r (x0 )+ :

�

k=1

f (x) /B +
2k+1r (x0 )"B

+
2 k r (x0) # :

�

k=0

f j (x).

By virtue of [12, Theorem 2.5], one has

|
B r

+ (x0 )
|K� f0(x)| p dx�&K� f0 & p

L p (R n
+ )�c(n, p) & f0& p

L p(R n
+ )

=c(n, p) |
B +

2r (x0 )
| f (x)| p dx�c(n, p, *) r* & f & p

L p, * (R n
+ ) .

(2.2)

Let k�1 and x # B+
r (x0). For every y # B+

2 k+1r(x0)"B+
2 k r(x0) we have

|x~ & y|� |x& y|�(2k&1) r�2k&1r.

Therefore,

|K� fk(x)| p�\|2k r�|x0& y|�2 k+1r

| f ( y)|
|x~ & y|n dy+

p

�\2n(1&k)r&n |
|x0& y|�2 k+1r

| f ( y)| dy+
p

�c(n) 2np(1&k)r&np2(k+1) p�p$rnp�p$ |
|x0& y| �2 k+1r

| f ( y)| p dy
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as consequence of the Ho� lder inequality (1�p+1�p$=1). In other words

|K� fk(x)| p�c(n) 22np&n&knr&n |
|x0& y|�2k+1r

| f ( y)| p dy

�c(n) 22np&n&knr&n2*+k*r* & f & p
L p, * (R n

+ )

�c(n, p, *) 2k(*&n)r*&n & f & p
L p, * (Rn

+ ) .

Hence

|
B r

+ (x0 )
|K� fk(x)| p dx�c(n, p, *) 2k(*&n)r* & f & p

L p, * (Rn
+ ) .

A combination of the last inequality with (2.2) yields

|
B r

+ (x0 )
|K� f (x)| p dx� :

�

k=0
|

B r
+ (x0 )

|K� fk(x)| p dx

�c(n, p, *) 2k(*&n)r* & f & p
L p, * (R n

+ ) :
�

k=0

2k(*&n)

=c(n, p, *)
1

1&2*&n r* & f & p
L p, * (R n

+ ) .

This completes the proof of Theorem 2.5. K

Theorem 2.6. Let f # L p, *(Rn
+), 1<p<�, 0<*<n, a # VMO &

L�(Rn
+). For x # Rn

+ , define

C� (a, f )(x)=|
R

n
+

|a(x)&a( y)|
|x~ & y|n f ( y) dy. (2.3)

The commutator defined by (2.3) is bounded from L p, *(Rn
+) into itself.

Precisely, there exists a constant c independent of a(x) and f (x) such that

&C� (a, f )&Lp, * (R n
+ )�c &a&

*
& f &L p, * (Rn

+ ) . (2.4)

Proof. It is known that, for almost all x # Rn
+ , 1<r<�, (see [3,

Theorem 2.1]) one has

|C� (a, f )> (x)|�c &a&
*

[(M(K� ( | f | ))r)1�r (x)+(M( | f | )r)1�r (x)]. (2.5)

Let x0 # Rn
+ , \>0, f # L p, *(Rn), 1<r<p<�. Using Theorems 2.2, 2.3,

and 2.5, we get

187GLOBAL MORREY REGULARITY



|
B\ (x0 ) & R

n
+

|M(K� ( | f | ))r| p�r (x) dx�\* &M(K� ( | f | r))1�r)& p
Lp, * (R n

+ )

�c\* &(K� ( | f | r))1�r& p
L p, * (Rn

+ )

=c\* &K� ( | f | r)& p�r
L p�r, * (R

n
+)

�c\* &| f | r& p�r
Lp�r, * (R n

+)

=c\* & f & p
L p, * (R n

+ ) .

The estimate of the second term in (2.5) is even simpler, so

&C(a, f )>&Lp, * (Rn
+ )�c &a&

*
& f &L p, *(R n

+ ) .

Thus the estimate (2.4) follows by virtue of the boundedness of the sharp
maximal operator (Theorem 2.3). K

3. THE DIRICHLET PROBLEM

Let 0 be an open bounded set in Rn with a C1, 1 smooth boundary and
consider the second order differential operator

L=aij (x) D ij , Dij #
�2

�x i �x j
.

(Here we have adopted the usual-summation convention on repeated
indices.)

In the sequel, we will need the following regularity and ellipticity assump-
tions on the coefficients of L:

{aij (x) # VMO(0),
_}>0: }&1 |!|2�aij (x) ! i!j�} |!|2

aij(x)=aji(x),
\! # Rn, a.a. x # 0.

(3.1)

Set 'ij for the VMO-modulus of the function aij (x) and let '(r)=
(�n

ij=1 '2
ij)

1�2. We denote by 1(x, t) the normalized fundamental solution of
L, i.e.,

1(x, !)=
1

n(2&n) |n - det[aij (x)] \ :
n

i, j=1

A ij (x) ! i!j+
(2&n)�2

for a.a. x and all ! # Rn"[0],

where Aij (x) stand for the entries of the inverse matrix of the matrix
[aij (x)] i, j=1, ..., n , and |n is the measure of the unit ball in Rn. We set also
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1i (x, !)=
�

�!i
1(x, !),

1ij (x, !)=
�

�!i �!j
1(x, !),

M= max
i, j=1, ..., n

max
|:|�2n "

�:1ij (x, !)
�!: "L� (0_7)

.

It is well known that 1ij (x, !) are Caldero� n�Zygmund kernels in the !
variable.

We shall need the following result concerning interior Morrey regularity,
which is proved in [16]:

Theorem 3.1. Let (3.1) be true, 1<p<�, 0<*<n. Suppose
u # W 2, p

loc (0) and Lu # L p, *
loc (0).

Then, for any 0$/0"/0, we have Diju # L p, *(0$) and there exists a
constant c=c(n, }, p, *, dist(0$, �0"), M, ') such that

&Dij u&Lp, * (0$)�c(&u&Lp, * (0")+&Lu&Lp, * (0")).

In the following theorem we prove the main result of the paper which
concerns the boundary regularity in Morrey spaces for the second
derivatives of solutions to the Dirichlet problem for the operator L. Define
W2, p

#0
(B+

r ) to be the closure in W2, p of the subspace C#0
=[u: u is the

restriction to B+
r =[x=(x1 , ..., xn)#(x$, xn) # Rn : xn>0] of a function

belonging to C �
0 (Br), u(x$, 0)=0].

Theorem 3.2. Let (3.1) be true, 1<p<�, 0<*<n. There exist con-
stants c=c(n, }, p, *, M, �0) and \0 # (0, r) such that for every \<\0 and
every u # W 2, p

#0
(B+

r ) satisfying Lu # L p, *(B+
r ) and Diju # L p, *(B+

r ), one has

&Dij u&Lp, * (B \
+)�c &Lu&Lp, * (B \

+) . (3.2)

Proof. We recall the representation formula for second derivatives of
functions in W 2, p

#0
(B+

r ) (see [12]).

Diju(x)=P.V. |
B r

+
1ij (x, x& y)

_{ :
n

h, k=1

(ahk(x)&ahk( y)) Dhk u( y)+Lu( y)= dy

+Lu(x) |
|!|=1

1i (x, !) ! j d_!+I ij (x), (3.3)
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where we have set

Iij (x)=|
B r

+
1ij(x, T(x)& y) { :

n

h, k=1

(ahk(x)&ahk( y)) Dhku( y)+Lu( y)= dy

for 1�i, j<n;

Iin(x)=Ini (x)

=|
B r

+ \ :
n

j=1

1ij(x, T(x)& y) Aj (x)+
_{ :

n

h, k=1

(ahk(x)&ahk( y)) Dhku( y)+Lu( y)= dy

for 1�i<n;

Inn(x)=|
B r

+ \ :
n

i, j=1

1ij (x, T(x)& y) A i (x) Aj (x)+
_{ :

n

h, k=1

(ahk(x)&ahk( y)) Dhku( y)+Lu( y)= dy.

Further,

T(x, y)=x&
2xn

ann( y)
an( y), T(x)#T(x, x),

with an( y)=(ain( y)) i=1, ..., n being the last row (column) of the matrix a( y)
=[aij ( y)] i, j=1, ..., n , and

A(x)=(A1(x), ..., An(x))=T(en , x)#T((0, ..., 0, 1), x).

In order to derive the estimate (3.2), we will take the L p, *-norms of the
both sides of (3.3). So, let us remark that

(i) the first integral appearing in (3.3) is a Principal Value one and
to estimate it in L p, * is necessary to use Theorem 2.4;

(ii) � |!|=1 1i (x, !) !j d_! # L�(B+
r ) with a bound independent of r;

(iii) the integrals appearing in the definition of Iij are Lebesgue
integrals. Although they are not singular, they cannot be treated by the
help of Theorem 2.4.

It is not hard to see that the operators Iij are bounded. Indeed, using the
geometric properties of T, it is easy to show that

c1 |x~ & y|�|T(x)& y| (3.4)
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for some positive constant c1 (see [12, Lemma 3.1]), and then Theorems
2.5 and 2.6 yield

&Iij&L p, * (B r
+ )�c :

n

h, k=1

&C� (ahk , Dhku)&L p, * (B r
+ )+&K� (Lu)&Lp, * (B r

+)

�c \ :
n

k, k=1

&ahk &
*

&Dhku&L p, * (B r
+ )+&Lu&Lp, * (Br

+ )+ .

Therefore,

&Dij u&Lp, * (B r
+ )�c('(r) &Diju&Lp, * (B r

+)+&Lu&L p, * (B r
+ )).

This way, in view of the VMO assumption on the coefficients aij (x), it is
possible to choose \0 so small that c'(\0)=1�2 and then

&Dij u&L p, * (B \
+ )�c &Lu&L p, * (B \

+ ) for each \<\0 . K

The next regularity result refines what was proved in Theorem 3.2. In
fact, we are able to remove the assumption Diju # L p, *.

Theorem 3.3. Let (3.1) be true, 1<p<� and 0<*<n. Assume further
that f # L p, *(0) and u # W 2, p & W 1, p

0 (0) are such that Lu= f a.e. in 0.
Then Diju # L p, *(0) and moreover, there exists a constant c=c(n, }, p,

*, M, �0) such that

&Dij u&L p, * (0)�c(&u&L p, * (0)+& f &L p, * (0)). (3.5)

Proof. We start with deriving a local version of (3.5) near the bound-
ary. So, let B+

\ be a half ball with a radius \ to be chosen later. For an
arbitrary function f # L p, *(B+

\ ), we set

Sijhk( f )#P.V. |
B \

+
1ij (x, x& y)(ahk(x)&ahk( y)) f ( y) dy

and

S� ijhk( f )(x)=|
B\

+
1ij (x, T(x)& y)(ahk(x)&ahk( y)) f ( y) dy

for 1�i, j<n, 1�h, k�n;

S� inhk( f )(x)=|
B\

+ \ :
n

j=1

1ij (x, T(x)& y) Aj (x)+ (ahk(x)&ahk( y)) f ( y) dy
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for 1�i<n, 1�h, k�n;

S� nnhk( f )(x)=|
B \

+ \ :
n

i, j=1

1ij (x, T(x)& y) Ai (x) Aj (x)+
_(ahk(x)&ahk( y)) f ( y) dy

for 1�h, k�n.
In view of Theorems 2.4, 2.5 and (3.4), one has

:
n

i, j, h, k=1

&S ijhk( f )+S� ijhk( f )&L p, * (B \
+ )

�c :
n

h, k=1

&ahk&
*

& f &Lp, * (B \
+ )�c :

n

h, k=1

'hk & f &L p, * (B\
+ )

�c' & f &Lp, * (B \
+ ) \ f # L p, *(B+

\ ).

Therefore, taking into account aij # VMO, it is possible to choose \>0
such that

:
n

i, j, h, k=1

&Sijhk+S� ijhk&<1. (3.6)

Now, for the given u # W 2, p
#0

(recall Lu # L p, *(B+
\ )) we set

hij (x)=P.V. |
B\

+
1ij (x, x& y) Lu( y) dy

+Lu(x) |
|!|=1

1i (x, !) !j d_!+I� ij (x),

where

I� ij (x)=|
B \

+
1ij (x, T(x)& y) Lu( y) dy

for 1�i, j<n;

I� in(x)=I� ni (x)=|
B \

+ \ :
n

j=1

1ij (x, T(x)& y) Aj (x)+ Lu( y) dy

for 1�i<n;

Inn(x)=|
B \

+ \ :
n

i, j=1

1ij (x, T(x)& y) Ai (x) Aj (x)+ Lu( y) dy.

192 DI FAZIO, PALAGACHEV, AND RAGUSA



Having in mind (3.4) and Theorems 2.4 and 2.5, we conclude immediately
that hij # L p, *(B+

\ ).
Now take a w=[wij] i, j=1, ..., n # [L p, *(B+

\ )]n 2
, and define the operator

U: [L p, *(B+
\ )]n2

� [L p, *(B+
\ )]n 2

by the setting

Uw#[(Uw) ij] i, j=1, ..., n=\ :
n

h, k=1

(S ijhk+S� ijhk) w ij+hij (x)+ i, j=1, ..., n
.

It is a simple matter to see that U is a contraction mapping by virtue of
(3.6). Therefore, there exists a unique fixed point w� =[w� ij]i, j=1, ..., n #
[L p, *(B+

\ )]n2
of U. On the other hand, it follows from (3.3) that also the

Hessian D2u=[Diju] i, j=1, ..., n # [L p(B+
\ )]n 2

is a fixed point of U. By the
inclusion properties of Lebesgue and Morrey spaces we get that the fixed
point is the same in the both cases. Therefore, D2u#w� , Diju # L p, *(B+

\ )
and moreover, the estimate (3.2) holds for the second derivatives Diju.

Finally, standard covering and flattening arguments combined with the
interior estimate (Theorem 3.1) and with the boundary estimate (3.2) yield
the bound (3.5). K

Now we can prove well-posedness of the Dirichlet problem (1.2) in the
Morrey space W2, p, *(0).

Theorem 3.4. Let (3.1) be true, 1<p<� and 0<*<n.
Then for every f # L p, *(0) there exists a unique solution of the Dirichlet

problem

{Lu= f (x) a.e. in 0,
u # W2, p, *(0) & W 1, p

0 (0).
(3.7)

Moreover, there is a constant c=c(n, }, p, *, M, ', 0) such that

&Dij u&L p, * (0)�c & f &L p, * (0) . (3.8)

Proof. Since L p, *(0)/L p(0), existence and uniqueness of strong
solution u # W 2, p(0) to (3.7) is already known (cf. [12, Theorem 4.3]). On
the other hand, Theorem 3.3 asserts u # W2, p, *(0) & W 1, p

0 (0).
To show continuous dependence of the solution on the right hand side

(the bound (3.8)), let us note that the linear operator

L: W2, p, *(0) & W 1, p
0 (0) � L p, *(0)
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is a continuous one. In fact,

&Lu&L p, * (0)�c &Diju&Lp, * (0)

since the coefficients aij (x) are bounded (cf. (3.1)). Moreover that operator
is injective and surjective mapping as it was shown above. Therefore, the
classical theorem of S. Banach implies continuity of the inverse operator,
that is, exactly (3.8). K

Remark 3.5. The results obtained above can be applied in the study of
the nonhomogeneous problems (3.7). In fact, let f # L p, *(0) and
. # W2, p, *(0) and consider the Dirichlet problem

{Lu= f (x)
u=.

a.e. in 0
on �0, u&. # W 1, p

0 (0).
(3.9)

Obviously, L. # L p, *(0) and therefore, the difference u(x)&.(x) will
solve the homogeneous Dirichlet problem (3.7). This way, the strong solu-
tions to (3.9) will belong to the space W2, p, *(0).

4. CONCLUDING REMARKS

1. The results presented here can be applied in studying Morrey
regularity of the strong solutions to (3.9) for general elliptic operators

L#aij (x) Dij+bi (x) D i+c(x)

with aij # VMO & L�(0) and the lower order coefficients b i (x) and c(x)
owning suitable integrability properties. We refer the reader to [28, 29] for
the W2, p-regularity results concerning the problem (3.9) (see [22] also).

2. An immediate consequence of Theorem 3.3 and the known
properties of Morrey spaces for suitable p and * (cf. [6]) is the next global
Holder regularity for the gradient Du of the strong solutions to (3.9), which
generalizes the result of Caffarelli [4].

Corollary 4.1. Let u # W2, p(0) be a strong solution to (3.9) with
f # L p, *(0) and . # W2, p, *(0). Suppose n& p<*<n.

Then the gradient Du is a Ho� lder continuous function on 0� with exponent
:=1&(n&*)�p.
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