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Abstract

We prove that if a vector-function f belongs to the Morrey space L1,λ(Ω ,RN ), with Ω ⊂ Rn , n ≥ 3, N ≥ 2, λ ∈]0, n − 2],
and u is the solution of the system{

−Di (Ai j (x)D j u) = f in Ω

u ∈ W 1,1
0 (Ω ,RN )

then Du belongs to the space Lq,n−q(n−λ−1)(Ω ,RnN ), for any q ∈ [1, n
n−1 [, provided the matrix of bounded measurable

coefficients (Ai j ) has sufficiently small dispersion of the eigenvalues.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the regularity of the solution to the Dirichlet problem associated with the system1{
A(u) ≡ −Di (Ai j (x)D j u) = f
u ∈ W 1,1

0 (Ω ,RN )
(1)

where Ω is an open bounded subset of Rn (n ≥ 3) with smooth boundary, Ai j (x) is an elliptic symmetric matrix with
L∞-coefficients and f belongs to the Morrey space L1,λ(Ω ,RN ), λ ∈]0, n − 2].

The study of linear elliptic equations (N = 1) with L1-data was started by G. Stampacchia (see [25,27,28]) who
introduced, by means of a duality method, the notion of the very weak solution. The very weak solution is unique,
belongs to the space W 1,q

0 (Ω) for any q ∈ [1, n
n−1 [ and satisfies (1) in the distributional sense.

Since the sixties these results have been generalized in many directions. Thus the existence and uniqueness of
solutions to nonlinear elliptic equations with right-hand side measure have been studied in [3–6] and also in the
framework of nonlinear potential theory (see [26] and for an overview also [20]).
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For semilinear elliptic equations and systems with smooth coefficients in the main part and right-hand sides or
boundary data measures, analogous questions were answered in [1].

The same class of linear systems with L∞-coefficients was investigated in [23], where through a duality and a
C0,α arguments the existence and uniqueness of a very weak solution to (1) were obtained for convex (generally
nonsmooth) domains.

Results similar to those obtained in [3–6] for nonlinear elliptic systems with principal part behaving like a p-
Laplace operator can be found in [14–17].

Here we will study higher regularity of the solution for smoother right-hand side under the same conditions as
in [23]. Namely, we will prove that if f ∈ L1,λ(Ω ,RN ), with λ ∈]0, n − 2], and u is the vector-solution to (1), then
Du belongs to Morrey’s space Lq,n−q(n−λ−1)(Ω ,RnN ) for any q ∈ [1, n

n−1 [.
We point out that for λ = 0 the result has already been obtained in [23] while for λ > n − 2 it holds that

L1,λ(Ω) ⊂ W −1,2(Ω) and this case need not be treated in the L1-framework (see e.g. [19]).
Further comments about the space in which the right-hand side lies, the technique we are adopting and a wider

bibliography on equations with measure-valued data can be found in the paper [12].

2. Main notation, function spaces, and statement of the results

In Rn (n ≥ 3), with generic point x = (x1, x2, . . . , xn), we shall denote by Ω a bounded open nonempty set with
diameter dΩ and C1-boundary ∂Ω .

For ρ > 0 and xo ∈ Rn we define

B(xo, ρ) = {x ∈ Rn
: |x − xo| < ρ},

Ω(xo, ρ) = Ω ∩ B(xo, ρ),

d(xo, ∂Ω) = dist(xo, ∂Ω).

If yo = (yo1, . . . , yon−1, 0) we define

B+(yo, ρ) = {x ∈ B(yo, ρ) : xn > 0},

Γ (yo, ρ) = {x ∈ B(yo, ρ) : xn = 0}.

Moreover, if u ∈ L1(B,RN ) we define

u B =
1

|B|

∫
B

u(x) dx

where |B| is the n-dimensional Lebesgue measure of B.

Definition 2.1 (Morrey’s Space). Let q ≥ 1 and 0 ≤ λ < n. By Lq,λ(Ω ,RN ) we denote the linear space formed by
all vector-functions u ∈ Lq(Ω ,RN ) for which

‖u‖Lq,λ(Ω) = sup
xo∈Ω ,0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x)|qdx

}1/q

< +∞.

Lq,λ(Ω ,RN ) equipped with the above norm is a Banach space.

Definition 2.2 (Campanato Space). Let q ≥ 1 and 0 ≤ λ < n + q. By Lq,λ(Ω) we denote the space of all functions
u ∈ Lq(Ω) such that

[u]Lq,λ(Ω) = sup
xo∈Ω ,0<ρ≤dΩ

{
ρ−λ

∫
Ω(xo,ρ)

|u(x)− uΩ(xo,ρ)|
qdx

}1/q

< +∞.

If u : Ω → RN , we set

Di ≡
∂

∂xi
, Du = (Di u

r ) i=1,...,n
r=1,...,N

.
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Let Ai j (x), i, j = 1, 2, . . . , n, be matrix-functions for which the following conditions are satisfied:

Ai j (x) =

(
Ars

i j (x)
)

r,s=1,...,N
∈ L∞(Ω ,RN 2

),

Ars
i j (x) = Asr

ji (x) for a.e. x ∈ Ω ,
(2)

and there exist two positive constants Λ1 and Λ2 such that

Λ2|ξ |
2

≥ Ai j (x)ξiξ j ≥ Λ1 |ξ |2 for a.e. x ∈ Ω , ∀ξ = (ξ r
i ) ∈ RnN . (3)

The paper will be organized as follows. First we prove the following

Theorem 2.1. Let Ω be a bounded domain with C1-boundary and let the structural conditions (2) and (3) be satisfied.
Let u ∈ W 1,2

0 (Ω ,RN ) be the weak solution of the system

Di (Ai j (x)D j u) = Di gi in Ω

with gi ∈ L2,κ(Ω ,RN ), 0 ≤ κ < γ , where

γ = (n − 1)

[
1 −

(
Λ2 − Λ1

Λ2 + Λ1

)2
]
. (4)

Then

u ∈ L2,κ+2(Ω ,RN ), Du ∈ L2,κ(Ω ,RnN )

and

[u]L2,κ+2(Ω) + ‖Du‖L2,κ (Ω) ≤ c(n,Λ1,Λ2, κ, ∂Ω)‖g‖L2,κ (Ω). (5)

In particular, if the condition

Λ1

Λ2
>

√
n − 1 − 1

√
n − 1 + 1

(6)

holds and

κ ∈]n − 2, γ [, (7)

then u ∈ C0,µ(Ω ,RN ), with µ = 1 −
n−κ

2 , and the inequality

[u]C0,µ(Ω) ≤ c(n,Λ1,Λ2, κ, ∂Ω)‖g‖L2,κ (Ω) (8)

holds.

We recall now the notion of a very weak solution for such linear systems.

Definition 2.3. Let f ∈ L1(Ω ,RN ). We say that a vector-function u ∈ W 1,1
0 (Ω ,RN ) is a very weak solution (for

short a Stampacchia solution) of the system (1) if it satisfies∫
Ω

u A(ϕ) dx =

∫
Ω

f ϕ dx, ∀ϕ ∈ Φ = {ϕ ∈ W 1,2
0 (Ω ,RN ) ∩ C0(Ω̄ ,RN ) : A(ϕ) ∈ C0(Ω̄ ,RN )}.

As a consequence of the previous theorem we deduce

Theorem 2.2. Let Ω be a bounded domain with C1-boundary and let the right-hand side f ∈ L1(Ω ,RN ). Let
conditions (2), (3) and (6) be satisfied.

Then there exists a unique Stampacchia solution u of the system (1) such that u ∈ W 1,q
0 (Ω ,RN ) for all q < n

n−1 .2

2 The existence of the Stampacchia solution can be proved also under the assumption of convexity of Ω (see [23]).



3612 G.R. Cirmi et al. / Nonlinear Analysis 68 (2008) 3609–3624

Moreover, u satisfies the estimate

‖u‖
W 1,q

0 (Ω)
≤ c(n, q,Λ1,Λ2)d

1−n
(

1−
1
q

)
Ω ‖ f ‖L1(Ω). (9)

Moreover, for the Stampacchia solution we have the following regularity properties:

Theorem 2.3. Assume Ω to be bounded domain with C1-boundary and hypotheses (2), (3) and (6) to be satisfied.
Assume moreover that

f ∈ L1,λ(Ω ,RN ), λ ∈]0, n − 2]. (10)

and let u be the Stampacchia solution of the problem (1).
Then

Du ∈ Lq,ν(Ω ,RN ) ∀q ∈

[
1,

n

n − 1

[
,

with ν = n − q(n − λ− 1), and there exists a positive constant c depending on n, q, λ,Λ1,Λ2,Ω such that

‖Du‖Lq,ν (Ω) ≤ c‖ f ‖L1,λ(Ω).

Corollary 2.1. Under the same assumptions as for Theorem 2.3 we have

u ∈ Lβ,ν(Ω ,RN )

for all β ∈

[
1, q(n−λ−1)

n−λ−2

[
.

3. Auxiliary results

In this section we consider a weak solution v of the linear system

−Di (Ai j (x)D jv) = 0 in Ω , (11)

that is, a function v ∈ W 1,2(Ω ,RN ) such that∫
Ω

Ai j (x)D jvDiϕ dx = 0 ∀ϕ ∈ W 1,2
0 (Ω ,RN ).

Analogously, for fixed yo = (yo1, yo2, . . . , yon−1, 0) and R > 0, let us take into account the system{
−Di (Bi j (x)D jv) = 0 in B+(yo, R),
v = 0 on Γ (yo, R)

(12)

under the structural assumptions

Bi j (x) = (Brs
i j (x))r,s=1,...,N ∈ L∞(B+(yo, R),RN 2

),

Brs
i j (x) = Bsr

ji (x) for a.e. x ∈ B+(yo, R),
(13)

and there exist two positive constants Λ′

1 and Λ′

2 such that

Λ′

2|ξ |
2

≥ Bi j (x)ξiξ j ≥ Λ′

1 |ξ |2 for a.e. x ∈ B+(yo, R), ∀ξ = (ξ r
i ) ∈ RnN . (14)

Definition 3.1. A vector-function v ∈ W 1,2(B+(yo, R),RN ) is a weak solution of the system (12) if
∫

B+(yo,R)
Bi j (x)D jvDiϕ, dx = 0, ∀ϕ ∈ W 1,2

0 (B+(yo, R),RN )

v = 0 on Γ (yo, R).

The key step in our paper will be proving the following
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Theorem 3.1 (Saint-Venant Principle on B). Let conditions (2), (3) and (6) be satisfied.
Then, there exist two positive constants µ = µ(n,Λ1,Λ2,Ω) ∈]0, 1[ and c = c(n, q,Λ1,Λ2) such that, for any

weak solution v ∈ W 1,2(Ω ,RN ) to the system (11), it holds that

‖Dv‖q
Lq (B(xo,ρ1))

≤ c

(
ρ1

ρ2

)n−q+µq

‖Dv‖q
Lq (B(xo,ρ2))

for all xo ∈ Ω , 0 < ρ1 ≤ ρ2 < d(xo, ∂Ω) and for any q ∈ [1, 2].

Theorem 3.2 (Saint-Venant Principle on B+). Let conditions (13), (14) and

Λ′

1

Λ′

2
>

√
n − 1 − 1

√
n − 1 + 1

be satisfied.
Then there exist two positive constants µ′

= µ′(n,Λ′

1,Λ
′

2) ∈]0, 1[ and c = c(n, q,Λ′

1,Λ
′

2) such that, for any weak
solution v ∈ W 1,2(B+(0, R),RN ) to the system (12), it holds that

‖Dv‖q
Lq (B(yo,ρ1)∩B+(0,R)) ≤ c

(
ρ1

ρ2

)n−q+µ′q

‖Dv‖q
Lq (B(yo,ρ2)∩B+(0,R)) (15)

for all yo ∈ B+(0, R/2), 0 < ρ1 ≤ ρ2 < R/2 and for any q ∈ [1, 2].

Before proving the previous theorems let us premise some useful lemmata which are interesting in themselves.
Let us set

γ ′
= (n − 1)

[
1 −

(
Λ′

2 − Λ′

1

Λ′

2 + Λ′

1

)2
]
, (16)

Fxo(ρ) := ρ−γ

∫
B(xo,ρ)

|Dv|2 dx, ρ ∈ ]0, d(xo, ∂Ω)[ , xo ∈ Ω ,

G yo(σ ) := σ−γ ′

∫
B+(yo,σ )

|Dv|2 dx, σ ∈]0, R/2[ , yo ∈ Γ (0, R/2).

Remark 1. By Theorems 3.1 and 3.2 from [22] it follows respectively that Fxo(ρ) and G yo(σ ) are monotone
nondecreasing functions in their domains.

The following lemmata are analogous of De Giorgi’s theorem [13] for the class of systems considered.

Lemma 2. Let the hypotheses of Theorem 3.1 be satisfied.
Then there exists a constant c = c(n,Λ1,Λ2) > 0 such that, for any weak solution v ∈ W 1,2(Ω ,RN ) to the system

(11), it holds that

[v]
C0,1−

n−γ
2 (B(xo,ρ))

≤ c(n,Λ1,Λ2) ρ
−1−γ /2

‖v‖L2(B(xo,6ρ)) (17)

for any xo ∈ Ω and for all 0 < ρ < 1
6 d(xo, ∂Ω).

Proof. Let us fix xo, ρ as in the statement and let τ ∈]0, 2ρ].
By the monotonicity of the function Fyo(τ ), yo ∈ B(xo, ρ), we have

Fyo(τ ) ≤ Fyo(2ρ) ≤ c ρ−γ
‖Dv‖2

L2(B(xo,3ρ))
. (18)

On the other hand, by Morrey’s theorem (see e.g. [18] p. 43) it follows that

[v]
C0,1−

n−γ
2 (B(xo,ρ))

≤ c(n,Λ1,Λ2) ‖Dv‖L2,γ (B(xo,ρ))

= c(n,Λ1,Λ2) sup
yo∈B(xo,ρ),τ≤2ρ

(Fyo(τ ))
1/2. (19)

Inequalities (19), (18) and Caccioppoli’s one (see e.g. [9] p. 46) then prove the theorem. �
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Lemma 3. Let the hypotheses of Theorem 3.2 be satisfied.
Then there exists a constant c = c(n,Λ′

1,Λ
′

2) > 0 such that, for any weak solution v ∈ W 1,2(B+(0, R),RN ) to
the system (12), it holds that

[v]
C0,1−

n−γ ′

2 (B+(zo,ρ))
≤ c(n,Λ′

1,Λ
′

2) ρ
−1−γ ′/2

‖v‖L2(B+(zo,10ρ)) (20)

for any zo ∈ Γ (0, R/2) and for all 0 < ρ ≤
1

10 R.

Proof. Let us fix ρ as in the statement and let yo ∈ B+(zo, ρ).
If yon = 0 then, ∀σ ∈]0, 2ρ], we have

σ−γ ′

‖Dv‖2
L2(B(yo,σ )∩B+(zo,ρ))

≤ σ−γ ′

‖Dv‖2
L2(B+(yo,σ ))

≤ G yo(2ρ)

≤ c ρ−γ ′

‖Dv‖2
L2(B+(zo,3ρ))

. (21)

If yon > 0, then consider the point y′
o = (yo1, . . . , yon−1, 0) and fix σ ∈]0, 2ρ].

If σ < yon and thus B(yo, σ ) ∩ B+(zo, ρ) ⊂⊂ B+(0, R), by Lemma 3.1 from [22] we have

σ−γ ′

‖Dv‖2
L2(B(yo,σ )∩B+(zo,ρ))

≤ σ−γ ′

‖Dv‖2
L2(B(yo,σ ))

≤ y−γ ′

on ‖Dv‖2
L2(B(yo,yon))

≤ 2γ
′

(2yon)
−γ ′

‖Dv‖2
L2(B(y′

o,2yon))

≤ 2γ
′

G y′
o
(2ρ)

≤ c ρ−γ ′

‖Dv‖2
L2(B+(zo,3ρ))

. (22)

Finally, if σ ≥ yon , again by monotonicity of G yo(ρ) we have

σ−γ ′

‖Dv‖2
L2(B(yo,σ )∩B+(zo,ρ))

≤ σ−γ ′

‖Dv‖2
L2(B+(y′

o,2σ))

≤ G y′
o
(4ρ)

≤ c ρ−γ ′

‖Dv‖2
L2(B+(zo,5ρ))

. (23)

Gathering together (21)–(23) we conclude that Dv ∈ L2,γ ′

(B+(0, ρ)).
The assertion now follows as in the proof of previous theorem via Morrey’s theorem and Caccioppoli’s

inequality. �

Lemma 4. Let the hypotheses of Theorem 3.1 be satisfied.
Then there exists a constant c = c(n, q,Λ1,Λ2,Ω) > 0 such that

max
B(xo,ρ)

|v| ≤ c ρ−n/q
‖v‖Lq (B(xo,6ρ)) (24)

for any xo ∈ Ω , for all 0 < ρ < 1
62 d(xo, ∂Ω) and for any q ∈ [1, 2].

Proof. Let us fix xo, ρ and q as in the statement.
From (2.5) p. 14 of [9] and (17) we deduce

max
B(xo,ρ)

|v| ≤ [v]
C0,1−

n−γ
2 (B(xo,ρ))

ρ1−
n−γ

2 + c(n)ρ−n/2
‖v‖L2(B(xo,ρ))

≤ c ρ−n/2
‖v‖L2(B(xo,6ρ)).

We now exploit the above inequality and Young’s inequality proceeding as in [18], p. 81:

max
B(xo,ρ)

|v| ≤ c ρ−n/2
‖v‖L2(B(xo,6ρ))
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≤ c ρ−n/2

(
max

B(xo,6ρ)
|v|

) 2−q
2

‖v‖
q/2
Lq (B(xo,6ρ))

≤ ε max
B(xo,6ρ)

|v| + c c1(ε) ρ
−n/q

‖v‖Lq (B(xo,6ρ)), ∀ε > 0

whence the theorem follows by Lemma 5.1, p. 81, from [18]. �

Analogously we have the following

Lemma 5. Let the hypotheses of Theorem 3.2 be satisfied.
Then there exists a constant c = c(n, q,Λ′

1,Λ
′

2,Ω) > 0 such that

max
B+(zo,ρ)

|v| ≤ cρ−n/q
‖v‖Lq (B+(zo,10ρ)) (25)

for any zo ∈ Γ (0, R/2), for all 0 < ρ ≤
1

102 R and for all q ∈ [1, 2].

Proof. It is sufficient to repeat the steps of previous lemma using inequality (20) instead of (17). �

Proof of Theorem 3.1. Let us fix xo, ρ1, ρ2 and q as in the statement.
It will be enough to prove our inequality for ρ1 ∈]0, 1

2·62 ρ2[.
By means of the Hölder inequality, the monotonicity of the function Fxo(ρ) and Caccioppoli’s inequality we deduce

‖Dv‖Lq (B(xo,ρ1)) ≤ ρ
n(1/q−1/2)
1 ‖D v‖L2(B(xo,ρ1))

≤ cρn(1/q−1/2)
1

(
ρ1

ρ2

)γ /2
‖D v‖L2(B(xo,ρ2/72))

≤ cρn(1/q−1/2)
1

(
ρ1

ρ2

)γ /2
ρ−1

2 ‖v − vB(xo,ρ2)‖L2(B(xo,ρ2/62)). (26)

On the other hand, as for all h ∈ RN the vector-function v − h is still a solution of problem (11), by formula (24)
we obtain

max
B(xo,ρ2/62)

|v − vB(xo,ρ2)| ≤ cρ−n/q
2 ‖v − vB(xo,ρ2)‖Lq (B(xo,ρ2)).

The above inequality and Poincaré’s one yield

‖v − vB(xo,ρ2)‖L2(B(xo,ρ2/6)) ≤ c ρ−n/q+n/2
2 ‖v − vB(xo,ρ2)‖Lq (B(xo,ρ2))

≤ c ρ−n/q+n/2+1
2 ‖D v‖Lq (B(xo,ρ2)). (27)

Joining together formulas (26) and (27) we deduce

‖Dv‖Lq (B(xo,ρ1)) ≤ c ρn(1/q−1/2)
1

(
ρ1

ρ2

)γ /2
ρ−1

2 ρ
−n/q+n/2+1
2 ‖D v‖Lq (B(xo,ρ2))

which gives the expected result setting µ = 1 −
n−γ

2 . �

Proof of Theorem 3.2. Let us fix yo, ρ1, ρ2 and q as in the statement.
It will be enough to prove (15) for ρ1 ∈]0, 1

(2·10)2
ρ2[.

We will proceed as in the proof of Lemma 3.
If yon = 0 then we have

ρ
−γ ′

1 ‖Dv‖2
L2(B(yo,ρ1)∩B+(0,R)) = ρ

−γ ′

1 ‖Dv‖2
L2(B+(yo,ρ1))

≤ G yo

(
1

2 · 102 ρ2

)
. (28)
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Hence, by means of Hölder’s inequality, (28) and Caccioppoli’s inequality we deduce

‖Dv‖Lq (B(yo,ρ1)∩B+(0,R)) ≤ ρ
n(1/q−1/2)
1 ‖D v‖L2(B(yo,ρ1)∩B+(0,R))

≤ c ρn(1/q−1/2)
1

(
ρ1

ρ2

)γ ′/2

‖D v‖L2(B+(yo,
1

2·102 ρ2))

≤ c ρn(1/q−1/2)
1

(
ρ1

ρ2

)γ ′/2

ρ−1
2 ‖v‖L2(B+(yo,

1
102 ρ2))

. (29)

On the other hand, by formula (25) we obtain

max
B+(yo,

1
102 ρ2)

|v| ≤ cρ−n/q
2 ‖v‖Lq (B+(yo,

1
10ρ2))

.

The above inequality and Poincaré’s one yield

‖v‖L2(B+(yo,
1

102 ρ2))
≤ cρ−n/q+n/2

2 ‖v‖Lq (B+(yo,
1

10ρ2))

≤ c ρ−n/q+n/2+1
2 ‖D v‖Lq (B+(yo,

1
10ρ2))

. (30)

Joining together formulas (29) and (30) we deduce

‖Dv‖Lq (B(yo,ρ1)∩B+(0,R)) ≤ c

(
ρ1

ρ2

)n(1/q−1/2)+γ ′/2

‖D v‖Lq (B(yo,ρ2)∩B+(0,R))

which gives the expected result on setting µ = 1 −
n−γ ′

2 .
Assume now yon > 0 and consider the point y′

o = (yo1, . . . , yon−1, 0).
If ρ1 > yon then we have

ρ
−γ ′

1 ‖Dv‖2
L2(B(yo,ρ1)∩B+(0,R)) ≤ ρ

−γ ′

1 ‖Dv‖2
L2(B+(y′

o,2ρ1))

≤ 2γ
′

G y′
o
(2ρ2).

If ρ1 ≤ yon ≤ ρ2 then we have

ρ
−γ ′

1 ‖Dv‖2
L2(B(yo,ρ1)∩B+(0,R)) = ρ

−γ ′

1 ‖Dv‖2
L2(B(yo,ρ1))

≤ y−γ ′

on ‖Dv‖2
L2(B(yo,yon))

≤ 2γ
′

(2yon)
−γ ′

‖Dv‖2
L2(B+(y′

o,2yon))

≤ 2γ
′

G y′
o
(2ρ2).

Hence, for the latter two cases the theorem follows as for the first one.

If ρ2 < yon , since B(yo, ρ2) ⊂⊂ B+(0, R), the assertion follows immediately from Theorem 3.1. �

4. Interior and boundary estimates with right-hand side in L2,κ

We now give the interior and boundary estimates for a vector-function u which is a weak solution of some auxiliary
problems.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied and let u ∈ W 1,2(Ω ,RN ) be a weak solution of the
system

Di (Ai j (x)D j u) = Di gi in Ω

where gi = (gr
i ) ∈ L2,κ(Ω ,RN ) with 0 ≤ κ ≤ γ .
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Then, for every open set Ω ′
⊂⊂ Ω , we have

D u ∈ L2,κ(Ω ′,RnN )

and the inequality

‖D u‖L2,κ (Ω ′) ≤ c
[
‖D u‖L2(Ω) + ‖g‖L2,κ (Ω)

]
(31)

holds, where the constant c > 0 depends also on dist(Ω ′, ∂Ω).

Proof. The proof can be attained via the standard Campanato technique (see e.g. [8] or [7], p. 59, or [22]) using
Theorem 3.1 with q = 2. �

Theorem 4.2. Let the assumptions of Theorem 3.2 be satisfied and let u ∈ W 1,2(B+(0, R1),RN ) be a weak solution
of the system

Di (Bi j (x)D j u) = Di gi in B+(0, R1),

u = 0 on Γ (0, R1)

where gi = (gr
i ) ∈ L2,κ(B+(0, R1),RN ) with 0 ≤ κ ≤ γ ′.

Then, for every R < R1
2 , we have

D u ∈ L2,κ(B+(0, R),RnN )

and the inequality

‖D u‖L2,κ (B+(0,R)) ≤ c
[
‖D u‖L2(B+(0,R1))

+ ‖g‖L2,κ (B+(0,R1))

]
holds, where the constant c > 0 depends also on R1.

Proof. The proof can be acquired as well via the standard Campanato technique (see e.g. [8] or [7], p. 59, or [10],
p. 312, or [22]) exploiting Theorem 3.2 with q = 2. �

5. Global regularity with right-hand side in L2,κ : Proof of Theorem 2.1

In this section we will prove a global regularity result for the system{
Di (Ai j (x)D j u) = Di gi in Ω
u = 0 on ∂Ω (32)

where gi ∈ L2,κ(Ω ,RN ) with 0 ≤ κ < γ .
The claimed result can be proved as in papers [10,22]. We will reproduce the basic steps here for the reader’s

convenience.
Let Ω be of class C1 and u ∈ W 1,2(Ω ,RN ) be the solution of the Dirichlet problem (32).
Since Ω is of class C1, for each yo ∈ ∂Ω there is a ball B(yo, Ro) and a C1-function ζ defined on a domain

D ⊂ Rn−1 such that with respect to a suitable system of coordinates {y1, . . . , yn}, with the origin at yo:

(a) the set ∂Ω ∩ B(yo, Ro) can be represented by an equation of the type

yn = ζ(y1, . . . , yn−1),

(b) each y ∈ Ω ∩ B(yo, Ro) satisfies

yn < ζ(y1, . . . , yn−1).

Without loss of generality we can suppose that the system of coordinates is such that the hyperplane tangent to ∂Ω
at yo has equation yn = 0 and

ζ(yo1, . . . , yon−1) = 0, Dζ(yo1, . . . , yon−1) = 0. (33)
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For such domains the boundary can be locally straightened by means of the C1 transformation:{
ψi (y) = yi − yo i for i = 1, 2, . . . , n − 1
ψn(y) = yn − ζ(y1, . . . , yn−1).

(34)

It turns out that ψ(y) = (ψ1(y), . . . , ψn(y)) is a C1-diffeomorphism verifying the following properties:
(i) ψ(yo) = 0 (see (33)1),

(ii) ψ(B(yo, Ro) ∩ ∂Ω) = {x ∈ Rn
: xn = 0, |xi | < Ro, for i = 1, . . . , n − 1},

(iii) there exist two positive constants α1 and α2, with α1 ≤ α2, such that

α1 |y − yo| ≤ |ψ(y)| ≤ α2 |y − yo|, ∀y ∈ B(yo, Ro) ∩ Ω ,
B+(0, α1 Ro) ⊂ ψ(B(yo, Ro) ∩ Ω) ⊂ B+(0, α2 Ro),

B(yo, α1/α2 Ro) ∩ Ω ⊂ ψ−1(B+(0, α1 Ro)) ⊂ B(yo, Ro) ∩ Ω . (35)

Remark 6. The fact that ζ ∈ C1 and the condition (33)2 allow us to choose Ro so that |Dζ | is sufficiently small in
B(yo, Ro) ∩ Ω̄ .

Put R1 = α1 Ro; if z ∈ B+(0, R1) we set

Ãi j (z) = Ai j (ψ
−1(z)),

Bi j (z) = Ãhk(z)
∂ψi

∂yh
(ψ−1(z))

∂ψ j

∂yk
(ψ−1(z)),

U (z) = u(ψ−1(z)),

Gi (z) = gh(ψ
−1(z))

∂ψi

∂yh
(ψ−1(z)).

(36)

Let us observe that Bi j (z) still satisfies hypotheses (13).
Moreover, by the definitions (34) and (36) it follows that

∂ψi

∂yh
=

δih if i = 1, . . . , n − 1, h = 1, . . . , n

δih −
∂ζ

∂yh
if i = n, h = 1, . . . , n

(37)

and that

Λ1

n∑
h=1

(
∂ψi

∂yh
ηi

)2

≤ Bi jηiη j ≤ Λ2

n∑
h=1

(
∂ψi

∂yh
ηi

)2

, ∀η = (ηi ) ∈ RnN . (38)

On the other hand, exploiting (37), we obtain

n∑
h=1

(
∂ψi

∂yh
ηi

)2

= |η|2 + η2
n|Dζ |2 − 2

n−1∑
h=1

∂ζ

∂yh
ηhηn := I

whence, since maxB(yo,Ro)∩Ω̄ |D ζ | < 1,

(1 − |Dζ |)2 |η|2 ≤ I ≤ (1 + |D ζ |)2 |η|2.

Gathering together the last inequality and (38) we deduce

Λ1(1 − |Dζ |)2 |η|2 ≤ Bi jηiη j ≤ Λ2(1 + |Dζ |)2 |η|2, ∀η = (ηi ) ∈ RnN .

The above inequality and formula (16) yield

γ ′
= γ ′(Ro)

= (n − 1)

1 −

Λ2(1 + max
B(yo,Ro)∩Ω̄

|Dζ |)2 − Λ1(1 − min
B(yo,Ro)∩Ω̄

|Dζ |)2

Λ2(1 + max
B(yo,Ro)∩Ω̄

|Dζ |)2 + Λ1(1 − min
B(yo,Ro)∩Ω̄

|Dζ |)2


2
 .
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With the change of coordinates z = ψ(y), since u is the solution of the system (32) in Ω ∩ B(yo, Ro), then U
becomes a solution of the problem3U ∈ W 1,2(B+(0, R1),RN )

Di (Bi j (z)D jU ) = Di Gi (z) in B+(0, R1)

U = 0 on Γ (0, R1).

(39)

Remark 7. Since ψ is of class C1 and gi ∈ L2,κ(Ω ∩ B(yo, Ro),RN ) then, by virtue of Theorem V of [8],
Gi ∈ L2,κ(B+(0, R1),RN ) and

‖G‖L2,κ (B+(0,R1))
≤ c(ψ)‖g‖L2,κ (Ω∩B(yo,Ro))

. (40)

Fix now κ ∈ [0, γ [
4 and let gi ∈ L2,κ(Ω ,Rn).

Since limRo→0+ γ ′(Ro) = γ , Remark 6 implies that we can choose a positive Ro = Ro(∂Ω , 1, γ, κ) so that γ ′ > κ .
If now U ∈ W 1,2(B+(0, R1),RN ) is a solution of the problem (39), by Theorem 4.2 we have, for every

R ∈]0, R1/2[,

DU ∈ L2,κ(B+(0, R),RnN )

and the inequality

‖DU‖L2,κ (B+(0,R)) ≤ c
[
‖DU‖L2(B+(0,R1))

+ ‖G‖L2,κ (B+(0,R1))

]
(41)

holds.
From (41) and the Poincaré inequality we achieve for all R ∈]0, R1[,

[U ]L2,κ+2(B+(0,R)) ≤ c
[
‖DU‖L2(B+(0,R1))

+ ‖G‖L2,κ (B+(0,R1))

]
.

The above inequality, changing back to the old coordinates (see Theorem V from [8]), gives (see (35))

[u]L2,κ+2(Ω∩B(yo,Ro))
≤ c

[
‖Du‖L2(Ω) + ‖g‖L2,κ (Ω)

]
. (42)

Inequalities (41) and (42) yield

[u]L2,κ+2(Ω∩B(yo,Ro))
+ ‖Du‖L2,κ (Ω∩B(yo,Ro))

≤ c
[
‖Du‖L2(Ω) + ‖g‖L2,κ (Ω)

]
. (43)

Proof of Theorem 2.1. Since Ω is of class C1, around every yo ∈ ∂Ω there exists a ball B(yo, Ro) and a
corresponding diffeomorphism ψ : B(yo, Ro) → Rn such that (33) and (34), (i), (ii), (iii) are satisfied.

Because ∂Ω is compact, only a finite number of such balls is needed to cover it, say B1,B2, . . . ,Bν . For each Bι
we suppose that its radius is small enough (see Remark 6).

Then there exists an open set Ω ′
⊂⊂ Ω such that Ω ′, B1,B2, . . . ,Bν cover Ω .

Exploiting inequalities (31) and (43) we obtain

[u]L2,κ+2(Ω ′) + ‖Du‖L2,κ (Ω ′) ≤ c
[
‖Du‖L2(Ω) + ‖g‖L2,κ (Ω)

]
(44)

and, for ι = 1, 2, . . . , ν,

[u]L2,κ+2(Ω∩Bι) + ‖Du‖L2,κ (Ω∩Bι) ≤ c
[
‖Du‖L2(Ω) + ‖g‖L2,κ (Ω)

]
. (45)

On the other hand, Theorem 1.III from [9] p. 42 yields

‖Du‖L2(Ω) ≤ c‖g‖L2(Ω) (46)

and thus inequality (5) is achieved putting together inequalities (44)–(46).

In particular, (5)–(7) yield the required Hölder continuity of u and inequality (8). �

3 By Di we denote ∂
∂zi

.
4 The same γ as is defined in (4).
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6. Existence and uniqueness of the Stampacchia solution: Proof of Theorem 2.2

As in paper [23] we will use the duality method introduced by Stampacchia in papers [27,28].
To this end we observe the following

Remark 8. Let Ω be bounded. If g ∈ L p(Ω ,RN ) with p > n ≥ 2 then g ∈ L2,κ(Ω ,RN ) with 0 ≤ κ ≤ n(1 − 2/p)
and

‖g‖L2,κ (Ω) ≤ c(n) dn(1/2−1/p)−κ/2
Ω ‖g‖L p(Ω). (47)

Proof of Theorem 2.2. By the Lax–Milgram theorem, there exists a linear continuous operator

G : W −1,2(Ω ,RN ) → W 1,2
0 (Ω ,RN )

such that ũ = G(T ) is the unique weak solution of the equation

A(ũ) = T .

The function G is the Green operator of A.
If p > n and A satisfies conditions (6) and (7), then by virtue of (8) and (47)5, G continuously maps W −1,p(Ω ,RN )

into C0(Ω̄ ,RN ) (see Lemma 4.I, p. 30, from [9]) and

max
Ω̄

|G(ψ)| ≤ c(n,Λ1,Λ2) d
1−

n−κ
2 +n(1/2−1/p)−κ/2

Ω ‖ψ‖W−1,p(Ω), ∀ψ ∈ C0(Ω̄ ,RN ), (48)

where ψ = Di gi .
Thus, u is the Stampacchia solution of the system (1) if and only if∫

Ω
u ψ dx =

∫
Ω

f G(ψ) dx, ∀ψ ∈ C0(Ω̄ ,RN ). (49)

From (48) and (49) we have for all ψ ∈ C0(Ω̄ ,RN ),∣∣∣∣∫
Ω

u ψ dx

∣∣∣∣ ≤ c(n,Λ1,Λ2) d1−n/p
Ω ‖ψ‖H−1,p(Ω)‖ f ‖L1(Ω).

Since C0(Ω̄ ,RN ) is dense in W −1,p(Ω ,RN ) we get

‖u‖
W 1,q

0 (Ω)
≤ c(n,Λ1,Λ2) d1−n(1−1/q)

Ω ‖ f ‖L1(Ω)

with 1
q = 1 −

1
p , p > n.

The mapping f 7→ u is the adjoint G? of G, that is u = G?( f ).
Since G continuously maps W −1,p(Ω ,RN ) into C0(Ω̄ ,RN ), then G? is a continuous linear operator from

L1(Ω ,RN ) into W 1,q
0 (Ω ,RN ), for all q < n

n−1 .

7. Global regularity of the Stampacchia solution: Proof of Theorem 2.3

In this section we will gather together the technique developed in [6] with the nowadays classical method of
S. Campanato, as we did in paper [12]. We reproduce this procedure here for the reader’s convenience. Let us introduce
a truncation operator. For a given constant k > 0 we define the cut-off function Tk : R → R as

Tk(s) =

{
s if |s| ≤ k
k sign(s) if |s| > k.

5 Since p > n then n − 2 < n(1 − 2/p) and we can choose e.g.

κ =
1
2

{n − 2 + min {n(1 − 2/p), γ }} .
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For a vector-function f = ( f r (x))r=1,...,N , x ∈ Ω , we define the truncated vector-function fk = (Tk( f r ))r=1,...,N
pointwise.

For a given vector-function f ∈ L1,λ(Ω ,RN ) let us consider a sequence of functions { fk}k∈N such that

(i) fk ∈ W −1,2(Ω ,RN ) ∩ L1,λ(Ω ,RN ), ∀k ∈ N,
(ii) fk → f in L1(Ω ,RN ) as k → +∞,

(iii) ‖ fk‖L1(Ω) ≤ ‖ f ‖L1(Ω),∀k ∈ N,
(iv) ‖ fk‖L1,λ(Ω) ≤ ‖ f ‖L1,λ(Ω),∀k ∈ N.

An example of a sequence satisfying the above requirements is the sequence {Tk( f )}k∈N.
For fixed k ∈ N, let uk ∈ W 1,2

0 (Ω ,RN ) be the weak solution of the system

−Di (Ai j (x)D j uk) = fk in Ω , (50)

that is,uk ∈ W 1,2
0 (Ω ,RN )∫

Ω
Ai j (x)D j uk Diϕ dx =

∫
Ω

fkϕdx, ∀ϕ ∈ W 1,2
0 (Ω ,RN ).

We will prove, first, the following

Theorem 7.1. Assume that hypotheses (2), (3), (6) and (10) hold and let uk be the weak solution of problem (50).
Then

D uk ∈ Lq,ν
loc (Ω ,R

nN ), ∀q ∈

[
1,

n

n − 1

[
,∀k ∈ N,

with ν = n − q(n − λ − 1), moreover for all Ω ′
⊂⊂ Ω there exists a positive constant c depending on n, q, λ, Λ1,

Λ2, dΩ , dist(Ω ′, ∂Ω) such that

‖Duk‖Lq,ν (Ω ′) ≤ c
[
‖Duk‖Lq (Ω) + ‖ f ‖L1,λ(Ω)

]
, ∀k ∈ N. (51)

Proof. We can proceed as in the proof of Theorem 4.1 from [12] exploiting Theorem 3.1 for q < n
n−1 . �

Analogously, fixed k ∈ N, we take into consideration a weak solution uk ∈ W 1,2(B+(0, R1),RN ) of the following
system:{

Di (Bi j (x)D j uk) = fk in B+(0, R1),

uk = 0 on Γ (0, R1).
(52)

Theorem 7.2. Let assumptions of Theorem 3.2 and (10) be satisfied and let a function uk ∈ W 1,2(B+(0, R1),RN )

be a weak solution of the system (52).
Then, for every R < R1/2, we have

D uk ∈ Lq,ν
loc (B

+(0, R),RnN ), ∀q ∈

[
1,

n

n − 1

[
, ∀k ∈ N,

with ν = n − q(n − λ− 1), and the inequality

‖D uk‖Lq,ν (B+(0,R)) ≤ c
[
‖D uk‖Lq (B+(0,R1)) + ‖ f ‖L1,λ(B+(0,R1))

]
holds, where the constant c > 0 depends also on R1.

Proof. We can proceed as in the proof of Theorem 4.1 from [12] exploiting Theorem 3.2 for q < n
n−1 . �

Theorem 7.3. Let Ω be a bounded domain with C1-boundary. Assume that hypotheses (2), (3), (6) and (10) hold and
let uk be the weak solution of problem (50). Then

D uk ∈ Lq,ν(Ω ,RnN ), ∀q ∈

[
1,

n

n − 1

[
,∀k ∈ N,
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with ν = n − q(n − λ− 1), and there exists a positive constant c depending on n, q, λ, Λ1, Λ2, dΩ such that

‖Duk‖Lq,ν (Ω) ≤ c
[
‖Duk‖Lq (Ω) + ‖ f ‖L1,λ(Ω)

]
, ∀k ∈ N.

Proof. The proof follows from the previous two theorems, exploiting the idea of Section 5. �

Proof of Theorem 2.3. We have already remarked (see Theorem 2.1 formula (9)) that

‖Duk‖Lq (Ω) ≤ c(n, q,Λ1, dΩ )‖ f ‖L1(Ω), ∀k ∈ N,∀q ∈

[
1,

n

n − 1

[
.

This information allows us to deduce that there exists a subsequence {unk } ⊂ {uk} such that

(a) unk ⇀ v in W 1,q(Ω ,RN ) as k → +∞, ∀q ∈ [1, n
n−1 [,

(b) unk → v in Lq(Ω ,RN ) and a.e. in Ω as k → +∞, ∀q ∈ [1, n
n−1 [,

(c) the function v is the Stampacchia solution of the Dirichlet problem (1).

By the uniqueness of the Stampacchia solution we can conclude that v = u.
To prove the theorem we need only to show that Du ∈ Lq,ν(Ω).
To this end let us fix xo ∈ Ω and ρ ∈]0, dΩ ].
Since, by (a), we have

Dunk ⇀ Du in Lq(Ω(xo, ρ),RN ),

by virtue of Proposition 3.5 in [2], p. 53 (see also [29], Ch. V, Theorem 1), and (51) we obtain

‖D u‖
q
Lq (Ω(xo,ρ))

≤ lim inf
k→+∞

‖D unk ‖
q
Lq (Ω(xo,ρ))

≤ ρν lim inf
k→+∞

‖D unk ‖
q
Lq,ν (Ω)

≤ c(n, q, λ,Λ1,Λ2, dΩ , ∂Ω)‖ f ‖L1,λ(Ω) ρ
ν .

The above inequality and (c) prove the theorem. �

Proof of the Corollary 2.1. The proof of the Corollary 2.1 is an easy consequence of the following useful.

Lemma 9. Let Ω have C1-boundary and let v ∈ W 1,p
0 (Ω) be such that D v ∈ L p,λ(Ω), with λ ∈]0, n − p[, p < n.

Then

v ∈ L pλ,λ(Ω)

where 1
pλ

=
1
p −

1
n−λ

and there exists a positive constant c = c(n, p, λ,Ω) such that

‖v‖L pλ,λ(Ω) ≤ c‖D v‖L p,λ(Ω).

Proof. By a well known representation formula, we have

v(x) ≤ c(n)
∫
Rn

V (y)

|x − y|n−1 dy, for a.a. x ∈ Ω (53)

where

V (y) =

{
|D v(y)| y ∈ Ω
0 y ∈ Rn

\ Ω .

The theorem can be proved by applying to formula (53) a slight modification of the proof of Theorem 2 from [11]. �

8. Application to quasilinear problems

The previous results can be extended to a class of quasilinear elliptic systems. Let Ai j : Ω × RN
→ RN 2

be
matrix-valued functions satisfying Carathéodory conditions and such that

Ai j (x, u) =

(
Ars

i j (x, u)
)

r,s=1,...,N
∈ L∞(Ω × RN ,RN 2

),

Ars
i j (x, u) = Asr

ji (x, u) for a.e. x ∈ Ω ,∀u ∈ RN ,
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and there exist two positive constants Λ1 and Λ2 such that

Λ2 |ξ |2 ≥ Ai j (x, u)ξiξ j ≥ Λ1 |ξ |2 for a.e. x ∈ Ω ,∀u ∈ RN ,∀ξ = (ξ r
i ) ∈ RnN . (54)

Then the following theorem holds:

Theorem 8.1. Let Ω be open domain with C1-boundary, f ∈ L1,λ(Ω ,RN ), 0 < λ ≤ n − 2, and let condition (6) be
satisfied.

Then there exists a distributional solution u to the Dirichlet problem{
−Di (Ai j (x, u)D j u) = f in Ω
u = 0 on ∂Ω (55)

such that

Du ∈ Lq,ν(Ω ,RnN ), ∀q ∈

[
1,

n

n − 1

[
with ν = n − q(n − λ− 1), moreover there exists a positive constant c depending on n, q, λ, Λ1, Λ2, dΩ such that

‖Du‖Lq,ν (Ω) ≤ c ‖ f ‖L1,λ(Ω).

Proof. We will only briefly sketch the proof.
Let us denote by uk a weak solution of (55) corresponding to the right-hand side fk . The existence of uk can

be proved by Galerkin approximation following Ch. IV, par. 8, or Ch. VIII, par. 5, from the book [21] or using the
Leray–Lions Theorem (see [24]).

Reasoning as in the proof of Theorem 7.3 we can obtain a uniform estimate of ‖D uk‖Lq,λ(Ω) for any q ∈ [1, n
n−1 [.

Note that, even if Ai j (x, uk(x)) depend on k, the norm estimates of Duk are uniform with respect to k by assumption
(54).

As a consequence of the uniform norm estimate of D uk in Lq,λ(Ω ,RnN ) we deduce that {uk} is bounded in
W 1,q(Ω ,RN ) for any q ∈ [1, n

n−1 [.
Thus there exists a subsequence {unk } ⊂ {uk} such that

(a’) unk ⇀ u in W 1,q(Ω ,RN ) as k → +∞, ∀q ∈ [1, n
n−1 [,

(b’) unk → u in Lq(Ω ,RN ) and a.e. in Ω as k → +∞, ∀q ∈ [1, n
n−1 [.

Then, for any ϕ ∈ C∞

0 (Ω ,R
nN ), Ai j (x, unk (x))D ϕ → Ai j (x, u(x))D ϕ in Lq ′

(Ω ,RnN ) and so u is a distributional
solution to the problem (55).

The proof can be now finished as in Theorem 2.3. �
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