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Abstract. We derive estimates for solutions to the equations like

−div(|∇u|p−2∇u) = f ,

where f belongs to weak Lq spaces. As applications of our results we show that the
entropy solutions of

− div(|∇u|p−2∇u) = |u|a−1u

are regular provided that 0 ≤ a < n(p− 1)/(n− p).

1. Introduction

Throughout this paper we let Ω stand for a bounded open set in Rn and 1 <
p ≤ n (we usually have p < n, for the case p = n is rather simple concerning the
questions we consider).

We shall consider quasilinear operators

− divA(x,∇u) ,

where A : Rn×Rn → Rn is a mapping that satisfies the following assumptions for
some constants 0 < α ≤ β < ∞:

(1.1)
the function x 7→ A(x, ξ) is measurable for all ξ ∈ Rn, and

the function ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Rn;

for all ξ ∈ Rn and a.e. x ∈ Rn

(1.2) A(x, ξ) · ξ ≥ α|ξ|p ,
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and

(1.3) |A(x, ξ)| ≤ β|ξ|p−1 .

A principal example is the p-Laplacian

∆pu = div(|∇u|p−2∇u) .

Let f ∈ L1(Ω). We consider the problem

(1.4)
{ − divA(x,∇u(x)) = f in Ω

u = 0 on ∂Ω ,

and our goal is to find estimates for u and ∇u in terms of the weak Lq norm of f .
Since f is only an L1 function, some remarks concerning the concept of the solution
are needed; however, since we are going to prove estimates that are independent of
the a priori regularity of the solution, one may proceed by proving such estimates
for honest distributional solutions in W 1,p

0 (Ω) and reach the desired estimates by an
approximation. We shall use the concept of an entropy solution that was introduced
by Benilan et. al. in [2], where the existence and uniqueness of such a solution was
also established. A function u is called an entropy solution of the problem 1.4 if
the truncations Tk(u) belong to W 1,p

0 (Ω) for each k > 0, and
∫

Ω

A(x,∇u(x)) · ∇Tk(u− ϕ) dx =
∫

Ω

Tk(u− ϕ)f dx

for each ϕ ∈ C∞0 (Ω). Here and in what follows Tk is the truncation operator at
level k, Tk(s) = min(1, k/|s|)s. Note that an entropy solution is always a solution
in the sense of distributions; here we use the definition

∇u(x) = lim
k→∞

∇Tk(u)(x) ,

which is a.e. well defined. This gradient ∇u need not be distributional, however if
u has a distributional gradient in L1 (and for p > 2 − 1/n u will have), then this
new gradient is distributional. This all is quite simple; the reader may consult [2]
or [9] for more details. What we really need is to be able to use truncations of u
as test functions for equation (1.4). Some people prefer using a slightly different
notion of a solution, called renormalized solution; see e.g. [12], [3]. In our case,
where f ∈ L1 renormalized and entropy solutions coincide.

We work in weak Lq spaces, known also as Marcinkiewicz spaces or Lorentz
spaces L(q,∞): if q > 1, then the space weak−Lq(Ω) consists of measurable func-
tions g on Ω such that

(1.5) sup
t>0

t|{x ∈ Ω: |g(x)| > t}|1/q < ∞ .

This condition is equivalently stated as

(1.6) |||g|||q = sup
E⊂Ω
|E|>0

1
|E|1/q′

∫

E

|g| dx < ∞ ,
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where q′ is the conjugated exponent of q, 1/q+1/q′ = 1. It is a rather easy exercise
to prove that weak−Lq(Ω) is a Banach space under ||| · |||q and, moreover, if the
supremum in (1.5) is denoted by A, then

A ≤ |||g|||q ≤ q′A .

For a detailed analysis of weak Lq spaces we refer to [16]. Note that both (1.5)
and (1.6) make sense also for q = 1; however then the latter is striclty stronger
condition and coincides with the definition of L1.

The following is our main result in this paper.

Theorem 1.7. Suppose that f ∈ weak−Lq(Ω) ∩ L1(Ω) and that u is the entropy
solution of (1.4).

i) If 1 ≤ q < n/p and

γ =
nq(p− 1)
n− pq

,

then u ∈ weak−Lγ(Ω) and

|||u|||γ ≤ c|||f |||1/(p−1)
q ,

where c = c(α, n, p, q) > 0.
ii) If 1 ≤ q < p∗′ and

s = q∗(p− 1) =
nq(p− 1)

n− q
,

then ∇u ∈ weak−Ls(Ω) and

|||∇u|||s ≤ c|||f |||1/(p−1)
q ;

here c = c(α, n, p, q) > 0.
iii) If q > p∗′, then u ∈ W 1,p

0 (Ω) and

||∇u||Lp(Ω) ≤ c|||f |||1/(p−1)
q ,

where c = c(α, n, p, q, |Ω|) > 0.

Here, as usually, p∗ = np/(n− p) is the Sobolev conjugate of p. An easy calcu-
lation shows that if we denote γ = nq(p− 1)/(n− pq) as above, then

q < p∗′ ⇔ γ < q′ ⇔ γ < p∗ ,

and this is further equivalent to

s = q∗(p− 1) < p .

As to related results, Del Vecchio [4] proved that if f is in the Lorentz space L(q, q∗),
then the solution u is in W 1,q∗(p−1).

If q = n/p, then it follows from iii) and [17, 4.2] that u is locally in BMO.
The endpoint case q = p∗′ in ii) seems much harder. However, the methods of [7]
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might appear useful in trying to show that, then the gradient of solution lies in the
weak-Lp.

If q > n/p, then the solution is bounded. Indeed, it follows from iii) that then
an entropy solution is an ordinary W 1,p

0 (Ω)-solution. Hence the boundedness goes
back to works of Ladyzhenskaya and Ural’tseva, and Serrin (see e.g. [11, Ch. 4
Thm 7.1] and [15]).

In the case iii) one cannot expect obtaining higher integrability exponent than
p that wouldn’t depend on the domain Ω, cf. [8, Remark 4.8.c]. Of course, in the
setting of iii) one has that locally ∇u is s-integrable for some s > p by [13].

In section 2 we give examples showing that Theorem 1.7 is optimal.
Our methods develop further ideas from [10].
We apply Theorem 1.7 to investigate the regularity of solutions to the problem

(1.8)





−divA(x,∇u(x)) = |u|a−1u in Ω
u = 0 on ∂Ω
|u|a ∈ L1(Ω) .

We show:

Theorem 1.9. If u is the entropy solution of (1.8) and 0 ≤ a < n(p− 1)/(n− p),
then u is locally Hölder continuous in Ω. In the case of smooth A, in particular for
the p-Laplacian, u is in fact in C1,ε

loc (Ω) for some ε > 0.

The key point in Theorem 1.9 is to show that the solution u is bounded, whence
divA(x,∇u(x)) ∈ L∞(Ω) by (1.8). After this, the Hölder regularity and the C1,ε

regularity (which holds as soon as A is Hölder continuous in x) follow from known
results [15] and [5], [6]. Also the corresponding global results could be stated in
smooth domains, but we leave their formulation to the reader.

The critical exponent ac = n(p− 1)/(n− p) in Theorem 1.9 is truly critical. We
shall show in Example 3.1 below that in the supercritical case a > ac there are
singular (unbounded) entropy solutions of

−∆p(u) = ua .

However, if we assume a priori that u ∈ W 1,p(Ω), then every solution of (1.8) is
regular (i.e. Hölder continuous) if

a ≤ p∗ − 1 = ac +
p

n− p
;

see [11, Ch. 4 Thm 7.1] for subcritical case and [18] for the critical case. Moreover,
in the p-Laplacian case one can easily prove that there always exists a nontrivial
regular solution of (1.8) if

0 ≤ a < p∗ − 1 , a 6= p− 1 ,

where the latter case corresponds to the eigenvalue problem. In the critical case
a = ac we do not know whether there exists singular solutions if p 6= 2. For linear
equations p = 2 such a solution was first found by Aviles [1]. Examples with large
singular sets have been constructed by Pacard [14].



ESTIMATES FOR p-POISSON EQUATIONS 5

2. Weak Lq estimates

In this section we derive estimates that yield Theorem 1.7. Throughout the
section we let u be an entropy solution of (1.4). First we prove a few lemmas.

Lemma 2.1. Let v ∈ L1(Ω) be such that

kb|{|v| > 2k}| ≤ A|{|v| > k}|a

for all k > 0, where b > 0 and 0 ≤ a < 1. Then v ∈ weak−Lb/(1−a)(Ω) and

sup
t>0

tb/(1−a)|{|v| > t}| ≤ A1/(1−a)2b(1−a)−2
.

Proof. By induction we have

|{|v| > t}| = 2bt−b(
t

2
)b|{|v| > t}|

≤ 2bt−bA|{|v| > t/2}|a

≤ A
Pk

j=1 aj−1
2b
Pk

j=1 jaj−1
t−b

Pk
j=1 aj−1 |{|v| > 2−kt}|ak

,

which tends to
A1/(1−a)2b(1−a)−2

t−b/(1−a) ,

as k →∞.

In what follows 1 < p < n.

Lemma 2.2. If k > 0, then

α

∫

{k<|u|<2k}
|∇u|p dx ≤ k|{|u| > k}|1/q′ |||f |||q

and
kp∗/p′ |{|u| > 2k}| ≤ c|{|u| > k}|p∗/pq′ |||f |||p∗/p

q ,

here the constant c depends only on n, p, and 1/α.

Proof. We use v = Tk(u− Tk(u)), k > 0 as a test function. Then

α

∫

{k<|u|<2k}
|∇u|p dx = α

∫

Ω

|∇v|p dx

≤
∫

Ω

A(x,∇u) · ∇v dx =
∫

Ω

fv dx ≤ k

∫

{|u|>k}
|f | dx

≤ k|{|u| > k}|1/q′ |||f |||q .

Hence by the Sobolev inequality

k|{|u| > 2k}|1/p∗ ≤ ( ∫

Ω

|v|p∗ dx
)1/p∗ ≤ ck1/p|{|u| > k}|1/pq′ |||f |||1/p

q ,

and the lemma follows.
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Lemma 2.3. Suppose that

sup
t>0

tγ |{|u| > t}| ≤ B

for some 0 ≤ γ < q′. Then

α

∫

{|u|<k}
|∇u|p dx ≤ cB1/q′k1−γ/q′ |||f |||q

for all k > 0; here c depends only on γ and q.

Proof. Using Lemma 2.2 and the assumption we infer that

α

∫

{|u|<k}
|∇u|p dx = α

∞∑

j=0

∫

{k2−j−1<|u|<k2−j}
|∇u|p dx

≤
∞∑

j=0

k2−j−1|{|u| > k2−j−1}|1/q′ |||f |||q

≤ B1/q′
∞∑

j=0

(k2−j−1)1−γ/q′ |||f |||q

≤ B1/q′

21−γ/q′ − 1
k1−γ/q′ |||f |||q ,

as desired.

Proof of Theorem 1.7.
Proof of claim i): By Lemma 2.2 the assumption of Lemma 2.1 holds with

a =
p∗

pq′

b =
p∗

p′

A = c|||f |||p∗/p
q ;

here a < 1 since q < n/p. Then

b

1− a
=

n(p− 1)q′

q′(n− p)− n
= γ ,

and Lemma 2.1 yields

sup
t>0

t|{|u| > k}|1/γ ≤ c|||f |||(p∗/p)(1/b)
q = c|||f |||1/(p−1)

q .

The claim follows from the equivalence of (1.5) and (1.6).
Proof of claim ii): We obtain from Lemma 2.3 that

|{|∇u| > t}| ≤ |{|u| > k}|+ t−p

∫

{|u|<k}
|∇u|p dx

≤ |{|u| > k}|+ ct−p|||u|||γ/q′
γ k1−γ/q′ |||f |||q

≤ |||u|||γγ
(
k−γ + ct−p|||u|||−γ/q

γ |||f |||qk1−γ/q′) .
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Next we minimize this in k, i.e. choose

k =

(
γtp|||u|||γ/q

γ

c|||f |||q(1− γ/q′)

)q/(q+γ)

,

and arrive at

|{|∇u| > t}| ≤ |||u|||γ(1−γ/(q+γ))
γ ct−pγq/(q+γ)|||f |||γq/(q+γ)

q ,

where c is a constant depending on n, p, q and α. Now we observe that

pγq

q + γ
=

nq(p− 1)
n− q

= q∗(p− 1) = s ,

and hence

|{|∇u| > t}| ≤ ct−s|||u|||s/p
γ |||f |||s/p

q .

The proof is complete since we have by i) that

|||u|||γ ≤ c|||f |||1/(p−1)
q .

Proof of claim iii): By multiplying u with a constant we are free to assume that
|||f |||q = 1. Indeed, for λ = |||f |||1/(1−p)

q the function λu is an entropy solution of
(1.4) with the mapping A replaced by

Ã(x, ξ) = λp−1A(x, λ−1ξ)

and f replaced by
f

|||f |||q ;

note that Ã satisfies exactly the same structural assumptions as A does.
We also assume, as we may that q < p/n (observe that

|Ω|1/q′ |||f |||q ≤ |Ω|1/q̄′ |||f |||q̄
if q ≤ q̄). Now we have

α

∫

{|u|≤1}
|∇u|p dx ≤

∫

Ω

A(x,∇u) · ∇T1(u) dx

=
∫

Ω

T1(u)f dx ≤ |Ω|1/q′ |||f |||q = |Ω|1/q′

and by Lemma 2.2

α

∫

{|u|>1}
|∇u|p dx ≤ α

∞∑

j=0

∫

{2j<|u|<k2j+1}
|∇u|p dx

≤
∞∑

j=0

2j |{|u| > 2j}|1/q′

≤ c

∞∑

j=0

2j(1−γ/q′) ;

here the constant c comes from the fact that by i) u ∈ weak−Lγ(Ω), where

γ = nq(p− 1)/(n− qp) > q′ .

The proof is complete.
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2.4. Example. Let u(x) = |x|−a − 1, a > 0. Then the truncations of u belong to
W 1,p

0 (B), where B = B(0, 1) is the unit ball of Rn. A direct computation shows
that

− div(|∇u|p−2∇u)(x) = ap−1(a(1− p) + n− p)|x|a(1−p)−p = f(x)

if x 6= 0. Now we observe that f ∈ L1(B) if and only if

a <
n− p

p− 1
.

Then u is an entropy solution of

−∆p(u) = f

in B. Moreover, it follows that if

a =
n− pq

q(p− 1)
,

then f ∈ weak−Lq(B) and u ∈ weak−Lγ(B) if and only if

γ ≤ nq(p− 1)
n− qp

.

Furthermore, ∇u ∈ weak−Ls(B) if and only if s ≤ q∗(p− 1).
This shows that Theorem 1.7 is sharp.

3. Regularity of entropy solutions to equations −divA(x,∇u) = |u|a−1u

In this section we study the regularity of solutions to the entropy solutions of
(1.8) and prove theorem 1.9.

Proof of theorem 1.9. We use a bootstrap argument. To start with we let
f = |u|a−1u. Since f ∈ L1(Ω) we have by Theorem 1.7 that

u ∈ weak−Lγ1(Ω) , γ1 =
n(p− 1)
n− p

.

Therefore
f ∈ weak−Lq1(Ω) , q1 =

γ1

α
.

Now we repeatedly use Theorem 1.7. At the jth step we obtain

u ∈ weak−Lγj (Ω) where γj =
nqj−1(p− 1)
n− pqj−1

,

and
f ∈ weak−Lqj (Ω) , qj =

γj

α

here we put q0 = 1. By recursion

qj =
n

n( a
p−1 )j − p

∑j
k=1(

a
p−1 )k
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provided that qj−1 < n/p. Since 0 ≤ a < n(p− 1)/(n− p), it is immediate that qj

is an increasing sequence and moreover, there is an δ > 0 such that

j∑

k=0

(
a

p− 1
)k−j =

j∑

k=0

(
a

p− 1
)−k

≥ δ +
j∑

k=0

(1− p/n)k

= δ +
n

p
− n

p
(1− p/n)j+1

>
n

p

if j is large enough. One easily checks that for such a j it holds that qj > n/p.
Therefore we conclude that f ∈ weak−Lq(Ω) for some q > n/p and hence u is
bounded by the remark after Theorem 1.7. Moreover, as indicated in that remark
it follows for instance from [15] that u is then locally Hölder continuous. In the
case of the p-Laplacian it follows that u is in C1,ε for some ε > 0 by e.g. [5].

3.1. Example. Suppose that

a > ac =
n(p− 1)
n− p

.

Let
b =

p

a− p + 1

and u(x) = |x|−b. Since a > ac u is an entropy solution of

(3.2) −∆p(u) = f ,

where
f(x) = bp−1

(
b(1− p) + n− p

)|x|−ab ∈ L1(B(0, 1)) .

Because of the nonhomogeneity of (3.2) there is a constant λ > 0 such that v = λu
satisfies

−∆p(v) = va ,

but v is not regular (bounded).
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