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Abstract In this paper, we prove higher integrability results for the gradient of the solutions of some

elliptic equations with degenerate coercivity whose prototype is

−div (a(x, u)Du) = f in D′(Ω), f ∈ Lr(Ω), r > 1,

where, for example, a(x, u) = (1 + |u|)−θ with θ ∈ (0, 1). We study the same problem for minima of

functionals closely related to the previous equation.
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0 Introduction

The main aim of this paper is to study the integrability properties of the gradient of (global or
local) solutions of problems like{

−div(a(x, u)Du) = f in D′(Ω),
u = 0 on ∂Ω.

(1)

We recall that in the classical case a(x, s) ≡ 1, by means of the Calderon-Zygmund regularity
theorem [1], we have that if f ∈ Lr(Ω), then a(x, u)Du = Du belongs to Lm(Ω), where m = r∗

if 1 < r < N , otherwise m can be any number bigger than one.
The same happens (i.e. a(x, u)Du ∈ Lr∗

(Ω)), when a(x, s) = a(s) is a function independent
of the variable x. As a matter of fact, performing the following change of variable:

v =
∫ u

0

a(s)ds, (2)
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we obtain that v is a solution of {
−� v = f in D′(Ω),
v = 0 on ∂Ω.

Hence by the quoted Calderon-Zygmund theorem, the function v belongs to W 1,m
0 (Ω), where

m is as before, and thus Dv = a(u)Du ∈ Lr∗
(Ω) if r < N . When the function a depends

also on x, the previous change of variable cannot be applied and the problem to establish the
integrability properties of the gradient of the solutions of (1) is, in general, still open. Here we
will study the case when the coercivity can degenerate when u is too big. More precisely we
assume that f ∈ Lr(Ω), r > 1, and a(x, s) is a Carathéodory function satisfying

α

(1 + |s|)θ
≤ a(x, s) ≤ β, 0 ≤ θ < 1. (3)

Notice that our case includes the classical one.

We refer for the existence of solutions of (1) to [2].

If the problem is {
−div(a(x, u)Du) = −div(F ) in D′(Ω),

u = 0 on ∂Ω,
(4)

in [3] we prove the existence of solutions when F ∈ Lν(Ω), ν sufficiently close to 2. In this case
the space for solutions is sharp and it depends on θ.

On the contrary, the existence result for (1), proved in [2], is not sharp. We will recall this
in Section 2.

We will first prove here an higher integrability result for a(x, u)Du with respect to [2], (u
solution to (1)), and then also for Du when the datum f is sufficiently regular (see Theorems
1.1–1.7).

A counterexample of Meyers [4] shows that, just in the easier case a(x, s) = a(x) with
β ≥ a(x) ≥ α > 0, if r < N , there are local solutions u with Du not belonging to Lr∗

loc(Ω), but
only to L2+ε

loc (Ω), with ε depending on α and r. Thus in the general case (1) the goal is to prove
this kind of regularity.

Let us point out that, if we assume a more restrictive condition
α

(1 + |s|)θ
≤ a(x, s) ≤ β

(1 + |s|)θ
, 0 < θ < 1,

the problem will become easier, since the regularity of a(x, u)Du is equivalent to that of Du
(1+|u|)θ ,

in which there is no explicit dependence on x (see Theorems 1.2–1.3).

Nevertheless, also in the general case (3), it is possible to achieve the result by giving a
further assumption on a(x, s), which is implied, for example, by

∂a(x, s)
∂x

=
(
∂a(x, s)
∂x1

, · · · , ∂a(x, s)
∂xn

)
∈ (Lm(Ω))N , m > N,

(see Theorems 1.5 and 1.6).

The higher integrability on a(x, u)Du is interesting in itself, but can be used, for regular
data, to deduce higher integrability on Du.

In the second part of the paper, we study an analogous problem for minima of functionals
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like

J(v) =
∫

Ω

a(x, v)|Dv|2dx−
∫

Ω

fvdx, (5)

where a(x, s) is a Carathéodory function such that
β0

(1 + |s|)2θ
≤ a(x, s) ≤ β1, 0 ≤ θ <

1
2
.

Functionals like (5) are differentiable just in some directions and, in any case, their Euler
equations do not look like Equation (1).

1 Main Results

1.1 Elliptic Equations

Let Ω be a bounded open subset of RN . Consider the following nonlinear elliptic problem:{
−div (a(x, u)Du) = f in D′(Ω),
u = 0 on ∂Ω,

(6)

where a(x, u) : Ω × R → R, is a measurable Carathéodory function satisfying
α

(1 + |s|)θ
≤ a(x, s) ≤ β, (7)

where α and β are positive constants and θ is a real number such that

0 < θ < 1. (8)

We recall that in [2] an existence (and regularity) result for the solution of (6) is proved by
using approximation techniques. In more details they prove the following:

Proposition 1.1 Let f be a function in Lr(Ω), with r > N/2. Then there exists a function
u in H1

0 (Ω) ∩ L∞(Ω) which is a solution of (6). If, otherwise, r verifies
2N

N + 2 − θ(N − 2)
≤ r <

N

2
, (9)

then again there exists a function u that is a solution of (6) and it belongs to H1
0 (Ω) ∩ Lh(Ω),

where

h =
Nr(1 − θ)
N − 2r

. (10)

Finally if r > 1 such that
N

N + 1 − θ(N − 1)
< r <

2N
N + 2 − θ(N − 2)

, (11)

then there exists a solution u in W 1,q
0 (Ω), where

q =
Nr(1 − θ)
N − r(1 + θ)

< 2. (12)

Moreover, if r > N(2−θ)
N+2−Nθ , such a solution verifies the following regularity condition:

a(x, u)Du ∈ (L2(Ω)
)N

. (13)

Remark 1.1 Notice that when 1 < r < N
N+1−θ(N−1) , then q < 1. Anyway, it is still possible

to give a definition of the solution (see [2]), but such a solution doesn’t belong to any Sobolev
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space. This is the reason why we will not consider this case.

Remark 1.2 It is easy to verify that the L∞ or Lh regularity on u holds true if u is any
solution in H1

0 (Ω) (not necessarily got by approximation), and that we have

‖u‖L∞(Ω) ≤ C0 = C0(|Ω|, N, r, ‖f‖Lr(Ω)) (14)

if r > N
2 ; while if r satisfies (9) then

‖u‖Lh(Ω) ≤ C1(α,N, θ, ‖f‖Lr(Ω)). (15)

Moreover, these results hold true, with obvious modifications, for the following more general
problem: {

−div
(
a(x, u)|Du|p−2Du

)
= f in D′(Ω),

u = 0 on ∂Ω,
(16)

with p > 1.

We are interested in the regularity of the gradient Du of a solution of (6).

The case of bounded solutions

Theorem 1.1 Assume (7) and (8) hold and let f ∈ Lr(Ω), where r > N
2 . If u ∈ H1

0 (Ω) is a
solution of problem (6) then

Du ∈ (L2+ε
loc (Ω)

)N
, (17)

where ε is a positive constant that depends only on α, β, r, N , |Ω| and ‖f‖Lr(Ω).

Remark 1.3 In general, as noticed in the introduction, under the assumptions of Theorem
1.1, if r < N , which is the interesting case, we cannot expect that Du belongs to Lr∗

loc(Ω) as
it happens for the Laplacian equation (i.e. in the particular case a(x, s) = 1). As a matter of
fact, it is not true even if a(x, s) = a(x), as it is showed by the counterexample of Meyers (see
[4]).

The case of unbounded solutions

We start with a simpler case when, instead of (7) we assume that a(x, u) is a measurable
Carathéodory function satisfying the stronger condition

α

(1 + |s|)θ
≤ a(x, s) ≤ β

(1 + |s|)θ
, 0 < θ < 1. (18)

We have the following results:

Theorem 1.2 Let (18) be satisfied and assume that f ∈ Lr(Ω), where r verifies (9). If
u ∈ H1

0 (Ω) is a solution of problem (6), then there exists a positive constant ε that depends only
on N , α and β (with ε ≤ r∗ − 2), such that

a(x, u)Du ∈ (L2+ε
loc (Ω)

)N
. (19)

Finally, if r > 2N
N+2−θ(N−2) then there exists a constant s > 2 such that

Du ∈ (Ls
loc(Ω))N . (20)

Remark 1.4 We observe that the result of Theorem 1.2 (respectively 1.1) works in general
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if u ∈ H1
0 (Ω) is a solution of the following nonlinear problem:{

−div(a(x, u,Du)) = f in D′(Ω),

u = 0 on ∂Ω,
(21)

where a(x, u,Du) : Ω × R × RN → RN is a measurable Carathéodory vector-valued function
satisfying

|a(x, u,Du)| ≤ β
|Du|

(1 + |u|)θ
, (respectively |a(x, u,Du)| ≤ c|Du|),

a(x, u,Du)Du ≥ α|Du|2
(1 + |u|)θ

, θ ∈ (0, 1). (22)

Moreover, proceeding as in [5], if ∂Ω is sufficiently smooth, we can prove regularity up to the
boundary.

Theorem 1.3 Let u be a solution of problem (6) that belongs to W 1,q
0 (Ω), where q is as in

(12). Assume that a(x, u) satisfies (18). If

a(x, u)Du ∈ (L2
loc(Ω)

)N
, (23)

and if f belongs to Lr(Ω), where r > 2N
N+2 verifies (11), then there exists a positive constant ε

that depends only on N , α and β (with ε ≤ r∗ − 2), such that

a(x, u)Du ∈ (L2+ε
loc (Ω)

)N
. (24)

Remark 1.5 We notice that the solutions obtained in [2] satisfy (23) if r satisfies the further
condition r > N(2−θ)

N+2−Nθ (see Proposition 1.1). Moreover, the condition r > 2N
N+2 is not restrictive

since if r < 2N
N+2 we will prove in the following Theorem 1.7 that Du

(1+|u|)θ ∈ (Lr∗
(Ω))N just in

the general case (7).

Remark 1.6 We point out that under the assumptions of Theorem 1.3 one has q∗ = h and
it is not possible to improve the summability of Du (see Remark 3.3 at the end of the proof of
Theorem 1.3).

Moreover the results of Theorems 1.1, 1.2 and 1.3 have a local version, as shown by the
following result:

Theorem 1.4 Assume u ∈ H1
loc(Ω) or W 1,q

loc (Ω) is a local solution of problem (6), where
a(x, u) satisfies (18). If f ∈ Lr

loc(Ω), with r > 2N
N+2−θ(N−2) , there exists a positive constant ε

that depends only on N , α and β (with ε ≤ r∗ − 2), such that

a(x, u)Du ∈ (L2+ε
loc (Ω)

)N
. (25)

Moreover if r > N/2, then u belongs to L∞
loc(Ω), while if r verifies (9), then u is in Lh

loc(Ω),
where h is as in (10).

Remark 1.7 We point out that the proof of the Lh
loc(Ω) regularity of the local solutions of

problem (6) requires the assumption (18) while when we have a global solution, the proof of
the Lh(Ω) regularity needs just the weaker condition (7).

We return now to the general case when the weaker condition (7) (with respect to (18)) is
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assumed and we study what happens when u, in general, is an unbounded solution. We have:

Theorem 1.5 Let (7), (8) and (9) hold. Assume that u ∈ H1
0 (Ω) is a solution of problem (6)

that satisfies ∫ u

0

∂a(x, s)
∂x

ds ∈ L2+σ
loc (Ω), σ > 0. (26)

Then there exists a positive constant ε that depends only on N and σ (with ε ≤ r∗ − 2) such
that

a(x, u)Du ∈ (L2+ε
loc (Ω)

)N
. (27)

Moreover if r > 2N
N+2−θ(N−2) then there exists s > 2 such that

Du ∈ (Ls
loc(Ω))N . (28)

Remark 1.8 We observe that assumption (26) is verified if, for example, we have∣∣∣∣∂a(x, s)∂x

∣∣∣∣ ≤ h(x) a.e., x ∈ Ω, ∀s ∈ R, (29)

where h(x) belongs to Lm(Ω) with m > N .

Theorem 1.6 Let (7), (8) hold and f ∈ Lr(Ω) with r as in (11). Assume u is a solution of
problem (6) belonging to W 1,q

0 (Ω) and verifying

g(x) =
∫ u

0

∂a(x, s)
∂x

ds ∈ (Lq+σ
loc (Ω)

)N
, σ > 0, (30)

where q is as in (12). Then there exist two positive constants r0 and ε, where r0 > N
N+1−θ(N−1)

depends only on N and θ, while ε depends only on N, θ, σ and r, such that if we assume

r0 < r <
2N

N + 2 − θ(N − 2)
, (31)

then

a(x, u)Du ∈ (Lq+ε
loc (Ω)

)N
. (32)

Moreover if g(x) belongs to L2+σ(Ω), then there exists a positive constant γ such that

a(x, u)Du ∈
(
L2+γ

loc (Ω)
)N

. (33)

Remark 1.9 The assumption r > r0 is taken to guarantee that q is “near” 2 so that it is
possible to use the techniques related to the Hodge decomposition (see Lemma 2.2 below).

Remark 1.10 Let us now point out that, in some particular case, the solution can reach a
better regularity.

For example if a(x, u) = a(u) then under the weak conditions (7) and (8) it is easy to
prove every solution u ∈ H1

0 (Ω) belongs to W 1,r∗
0 (Ω) if N/2 < r < N and to W 1,q

0 (Ω) if
2N

N+2−θ(N−2) < r < N
2 , where q is, as before, given by the following formula:

q = q(r) =
Nr(1 − θ)
N − r(1 + θ)

.

We notice that when r > 2N
N+2−θ(N−2) we have q > 2. Moreover, we have q → r∗ as r → N/2.
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In all the previous results we have assumed that the summability r of the data f verifies
the following condition:

r >
2N
N + 2

. (34)

If condition (34) is violated, it is possible to prove by using the techniques of [6], the following
regularity result:

Theorem 1.7 Let (7) and (8) hold and f ∈ Lr(Ω), where r verifies
N

N + 1 − θ(N − 1)
< r <

2N
N + 2

. (35)

Then every solution u ∈W 1,q
0 (Ω) (where q is as in (12)) of problem (6) satisfies

Du

(1 + |u|)θ
∈
(
Lr∗

(Ω)
)N

. (36)

1.2 Minima of Functionals

Let v be in W 1,p
0 (Ω) and consider the following functional:

J(v) =
∫

Ω

a(x, v)j(Dv)dx−
∫

Ω

fvdx. (37)

Here a : Ω ×R → R is a Carathéodory function such that
β0

(1 + |s|)θp
≤ a(x, s) ≤ β1, 0 < θ <

1
p
, (38)

where 0 < β0 ≤ β1, and j is a convex function, where j : RN → R, j(0) = 0, satisfying

β2|ξ|p ≤ j(ξ) ≤ β3 (|ξ|p + 1) , β3 ≥ β2 > 0. (39)

Moreover, f is a function in Lr(Ω), where r verifies

r ≥ [p∗(1 − θ)]′. (40)

We notice that the functional in (37) is differentiable just in the directions of W 1,p
0 (Ω)∩L∞(Ω)

(see [7]), and in this case its Euler equation is not (6).

By the assumptions (38)–(40), J turns out to be defined on the whole space W 1,p
0 (Ω). We

extend J to a larger space, W 1,q
0 (Ω) with q = Np(1−θ)

N−θp by

I(v) =

{
J(v) if J(v) is finite,
+∞ otherwise.

(41)

We recall the following result proved in [8]:

Proposition 1.2 Let (39)–(40) hold. Then there exists a minimum u of I(v) in W 1,q
0 (Ω).

Moreover if r > N
p then any minimum u of I on W 1,q

0 (Ω) belongs to W 1,p
0 (Ω)∩L∞(Ω); thus

J attains its minimum in W 1,p
0 (Ω).

If
(

p∗

1+θp

)′
≤ r < N

p , then u belongs to W 1,p
0 (Ω) ∩ Lh(Ω), with

h =
Nr[p(1 − θ) − 1]

N − rp
, (42)

and thus, again J attains its minimum on W 1,p
0 (Ω).
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Finally, if [p∗(1 − θ)]′ ≤ r <
(

p∗

1+θp

)′
, then u belongs to W 1,ρ

0 (Ω), with

ρ =
Nr[p(1 − θ) − 1]
N − r(1 + θp)

. (43)

Remark 1.11 We observe that ρ∗ = h, so there is continuity with respect to the regularity
of u in the two cases above. Moreover, we have ρ = p for r =

(
p∗

1+θp

)′
, and if r tends to N

p

then h tends to +∞.

As before, we are interested in the regularity of the gradient of solutions depending on the
regularity of the datum f . As in previous sections we have to take into account the upper
growth condition on a(x, s). More precisely, let us first suppose that, instead of (38), a(x, s)
satisfies the stronger condition

β0a1(x)a2(u) ≤ a(x, s) ≤ β1a1(x)a2(u), (44)

where

0 < α1 ≤ a1(x) ≤ α2, (45)

γ1

(1 + |s|)pθ
≤ a2(s) ≤ γ2. (46)

A simple example in which these hypotheses are satisfied is when
β0

(1 + |s|)θp
≤ a(x, s) ≤ β1

(1 + |s|)θp
, 0 < β0 ≤ β1, 0 < θ <

1
p
. (47)

Assume that r verifies

r > [p∗(1 − θ)]′. (48)

Theorem 1.8 Let (48), (39) and (44)–(46) hold. Then every minimum u ∈W 1,q
0 (Ω) satisfies

[a(x, u)]
1
p |Du| ∈ Lp+ε

loc (Ω), (49)

where ε is a positive constant depending only on the data. Besides, if r verifies

r >

(
p∗

1 + θp

)′
, (50)

then there exists a positive constant ν such that

|Du| ∈ Lp+ν
loc (Ω). (51)

Remark 1.12 We do not know if a higher regularity for Du holds true, when r ≤
(

p∗

1+θp

)′
.

Remark 1.13 We observe that, in general, all the previous results hold for quasi-minima of
(37).

Remark 1.14 We recall that if a(x, s) = a(s) then (44) is equivalent to (38) and that, in
general, this equivalence doesn’t hold if a depends also on the x variable, as shown by the
following example:

a(x, s) =
1

(1 + α(x)|s|)pθ
, (52)

where, for example, α(x) is bounded with infΩ α(x) = 0.
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Let us now return to the general assumption (38). Define

H(x, τ) =
∫ τ

0

(a(x, s))1/pds. (53)

We notice that H(x, ·) : R → R is strictly increasing and H(R) = R. Hence the inverse
function is well defined, with respect to the variable τ , C(x, t). We have the following result:

Theorem 1.9 Let (48), (38) and (39) hold true. Assume that there exists ∂C
∂x (x, t) a.e. in

Ω, and that

∂C

∂x
(x, t)/t=z(x) ∈ Lq(Ω), ∀z ∈W 1,p

0 (Ω), (54)

and that the distributional derivative ∂a1/p(x,s)
∂x is a measurable function verifying⎧⎪⎪⎨

⎪⎪⎩

∣∣∣∣
∫ τ

0

∂a1/p(x, s)
∂x

ds

∣∣∣∣ ≤ c1|τ |γ + c2 a.e. in Ω,

0 ≤ γ <
q∗

p
=
N(1 − θ)
N − p

.

(55)

Then there exists a positive constant ε, which depends only on α, β, N , |Ω| and ‖f‖Lr(Ω), such
that every minimum u ∈W 1,q

0 (Ω) with J(u) finite satisfies

a1/p(x, u)|Du| ∈ Lp+ε
loc (Ω). (56)

Moreover, if r verifies (50) there exists a positive constant ν such that

|Du| ∈ Lp+ν
loc (Ω). (57)

Remark 1.15 Notice that we can weaken the assumption (55) so that it becomes∣∣∣∣
∫ τ

0

∂a1/p(x, s)
∂x

ds

∣∣∣∣ ≤ c1(x)|τ |γ + c2, a.e. in Ω, (58)

where c1(x) ∈ Lλ(Ω) with γ
p∗(1−θ) + 1

λ <
1
p .

Remark 1.16 An example of a functional verifying the assumptions (38), (54) and (55) is
the model case (52) with the function α(x) positive, bounded in Ω and verifying, for example,
the following further regularity condition:

|Dα|
α2

∈ Lm(Ω), m > N. (59)

We point out that the model case (52) with α(x) = χE(x) (χE(x) characteristic function
of E ⊂ Ω measurable) does not satisfy condition (55). In this case the problem of further
regularity of Du is still open.

2 Notations and Preliminaries

In this section, we give some preliminary results that will play an essential role in what follows.
We start with the following theorem (see [9]) whose proof is the same as the one by Gehring
([10]):

Lemma 2.1 Let Q be an N-cube and set QR = {x ∈ RN : |xi − x0i| < R, i = 1, ..., N}.
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Assume that w ∈ L1(Q) and that we have

−
∫

QR

w(x)dx ≤ γ0

{(
−
∫

Q2R

wmdx

) 1
m

+ −
∫

Q2R

gdx

}
, (60)

for each x0 ∈ Q and each R < 1
2 min{dist(x0, ∂Q), R0}, where R0 and γ0 are positive constants,

0 < m < 1 and we have set −∫
Q
v = 1

|Q|
∫

Q
v. Assume that the function g belongs to Ls

loc(Q) for
some s > 1. Then there exists a constant d > 1 such that w ∈ Ld

loc(Q), and we have

−
∫

QR/2

w(x)ddx ≤ γ1

{(
−
∫

QR

wdx

)d

+ −
∫

QR

gddx

}
(61)

for Q2R ⊂ Q, R < R0, where γ1 is a constant that depends only on the data.

We will need the following decomposition theorem (see [11] or [12]):

Lemma 2.2 Let Qσ = Q(x0, σ) be an open N -cube centered in x0 of side 2σ, v ∈W 1,r
0 (Qσ),

r > 1, and let −1 < γ < r − 1. Then there exist φ : Qσ → R and H : Qσ → RN such that

H ∈
(
L

r
1+γ (Qσ)

)N

, divH = 0, φ ∈W
1, r

1+γ

0 (Qσ) and

|Dv|γDv = Dφ+H, (62)

‖H‖
L

r
1+γ (Qσ)

≤ c(r,N)|γ| · ‖Dv‖1+γ
Lr(Qσ), (63)

‖Dφ‖
L

r
1+γ (Qσ)

≤ (1 + c(r,N)|γ|)‖Dv‖1+γ
Lr(Qσ). (64)

Remark 2.1 We notice explicitly that the constant c = c(r,N) which appears in the formulas
(63) and (64) doesn’t depend on x0, neither on σ, nor on r if r belongs to a compact set.

Another tool is the following lemma of real analysis, whose proof is very easy and can be
found in [10]:

Lemma 2.3 Let f(τ) be a non-negative bounded function defined for 0 ≤ R0 ≤ t ≤ R1.
Suppose that for R0 ≤ τ < t ≤ R1 we have

f(τ) ≤ A(t− τ)−α +B + γf(t), (65)

where A,B,α, γ are non-negative constants, and γ < 1. Then there exists a constant c, depend-
ing only on α and γ such that for every ρ,R,R0 ≤ ρ < R ≤ R1 we have

f(ρ) ≤ c
[
A(R− ρ)−α +B

]
. (66)

We now state the following regularity theorem proved in [13] (Theorem 2.1):

Theorem 2.1 Let v ∈W 1,p
loc (Ω), φ0 ∈ Lm

loc(Ω), where 1 < p < N and m satisfies

1 < m <
N

p
. (67)

Assume that for all BR1 ⊂⊂ Ω the following integral estimate holds :∫
Ak,ρ

|Dv|p ≤ c1

[∫
Ak,R

φ0dx+ (R− ρ)−λ

∫
Ak,R

|v|p
]
, (68)

for every k ∈ N and R0 ≤ ρ < R ≤ R1, where Ak,ρ = Bρ ∩ {|v| > k}. Here c1 = c1

(N, p,m,R0, R1, |Ω|), and λ is a real positive constant. Then we have v ∈ Ls
loc(Ω), where
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s = (pm)∗.

Finally, we conclude this section with a technical lemma that can be easily proved by
induction.

Lemma 2.4 Let Yn be a sequence of non-negative numbers satisfying

Yn+1 ≤ cbnY 1+δ
n , ∀n = 0, 1, . . . , (69)

where c, b and δ are positive constants and b ≥ 1. If

Y0 ≤ c−
1
δ b−

1
δ2 , (70)

then Yn → 0 when n→ +∞.

3 Proofs of Theorems 1.1–1.7 (Elliptic Equations)

In this section, we prove the results stated in Section 2 concerning the regularity of Du, when
u is a solution of the Dirichlet problem (6).

Proof of Theorem 1.1 We recall, as noticed in Remark 1.2, that every solution u ∈ H1
0 (Ω)

verifies the following estimate:

‖u‖L∞(Ω) ≤ C0 = C0(Ω, N, r, ‖f‖Lr(Ω)). (71)

Let QR be an N -cube contained in Ω. Choose Ψ = (u− uR)η2 as a test function in (6), where
η ∈ C∞

0 (QR), 0 ≤ η ≤ 1, η ≡ 1 on QR/2, |Dη| ≤ c/R, and uR = 1
|QR|

∫
QR

u. Using (7) and the
fact that u ∈ L∞(Ω) we obtain

α

(1 + ‖u‖L∞(Ω))θ

∫
Ω

|Du|2η2 ≤ α

∫
Ω

|Du|2η2

(1 + |u|)θ

≤ 2β
∫

Ω

|Du|η|Dη||u− uR| +
∫

Ω

f(u− uR)η2. (72)

Thus we can conclude that∫
Ω

|Du|2η2 ≤ 1 + ‖u‖L∞(Ω)

α

(
2β
∫

Ω

|Du|η|Dη||u− uR| +
∫

Ω

f(u− uR)η2

)

≤ c0

(∫
Ω

|Du|η|Dη||u− uR| +
∫

Ω

f(u− uR)η2

)
, (73)

where c0 = 1+C0
α max{2β, 1}, with C0 as in (71). From now on, the proof is the same as that

of the uniformly elliptic case (see [10]) and we have

−
∫

QR/2

|Du|2 ≤ c1

[
1
RN

(∫
QR

|f | 2N
N+2

)N+2
N

+
1

RN+2

(∫
QR

|Du| 2N
N+2

)N+2
N

]
,

where c1 = c(N, |Ω|, r, ‖f‖Lr(Ω)). Applying Lemma 2.1 with w(x)= |Du(x)|2, m = N
N+2 and g

= (
∫
Ω
|f | 2N

N+2 )
2
N |f | 2N

N+2 we get the result.

Remark 3.1 It is easy to see that Theorem 1.1 holds true if f is supposed to belong to
W−1,ρ(Ω) where ρ > N .

Proof of Theorem 1.2 We point out that under the assumption (18) the regularity result (19)
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is equivalent to the following:
|Du|

(1 + |u|)θ
∈ L2+ε

loc (Ω). (74)

Define

v(x) =
1

1 − θ
sign(u)

(
(1 + |u|)1−θ − 1

)
. (75)

Let QR ⊂ Ω and η be a cut-off function as in the proof of Theorem 1.1. Choose as a test
function w = (v − (v)R)η2, where v is as in (75). Using assumption (18) and (75) we obtain

α

∫
QR

|Dv|2η2 = α

∫
QR

η2|Du|2
(1 + |u|)2θ

≤ β

∫
QR

2η|Dη||Dv||v − (v)R| +
∫

QR

fη2 (v − (v)R) , (76)

that is, (73) with u replaced by v. Thus proceeding as in the proof of Theorem 1.1 we obtain
that there exists a positive constant ε such that Dv ∈ L2+ε

loc (Ω), i.e. (74) holds true.

Assume now that r > 2N
N+2−θ(N−2) . It remains to prove the regularity stated in (20). To

do this, we will use the regularity stated in (74). We notice that proceeding as in the proof
of Lemma 2.3 in [2] we can prove that there exists a constant c0, depending only on the data,
such that ∫

Ω

|Du|2|u|2(γ−1) ≤ c0, γ =
(N − 2)(1 − θ)r

2(N − 2r)
. (77)

Let p = 2 + ε and s = 2λ+ (1 − λ)p > 2, where ε is as in (74) and λ ∈ (0, 1) to be determined
later. Using Young’s inequality we obtain∫

QR

|Du|s =
∫

QR

|Du|(1−λ)p

(1 + |u|)2λ(γ−1)
|Du|2λ(1 + |u|)2λ(γ−1)

≤
∫

QR

|Du|2(1 + |u|)2(γ−1) +
∫

QR

|Du|p
(1 + |u|) 2λ(γ−1)

1−λ

≤ c1, (78)

where c1 is a constant that depends only on the data, and where we have set 2λ(γ−1)
1−λ = θp,

that is, λ = θp
θp+2(γ−1) . Notice that we have λ < 1 as it is equivalent to the assumption

r > 2N
N+2−θ(N−2) .

Remark 3.2 We observe that it is possible to show that the thesis (19) of Theorem 1.2 is
also true if we replace the assumption f ∈ Lr(Ω) (r verifying (9)) with a weaker hypothesis
that f belongs to W−1,ρ(Ω), where ρ > 2.

Proof of Theorem 1.3 Let v(x) be as in (75). The function w = (v− vR)η2 ∈ H1
0 (QR), by the

assumption (23) and the fact that 2(1 − θ) < q∗. Thus it is possible to proceed exactly as in
the proof of Theorem 1.2 and to conclude that (24) holds.

Remark 3.3 If f ∈ Lr(Ω) with r verifying (11) then, as just noticed in Section 2, we cannot
expect a better regularity for Du as shown by the following model case:⎧⎨

⎩ −div
(

Du

(1 + |u|)θ

)
= f in D′(Ω),

u = 0 on ∂Ω.
(79)
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We have |Du| = |Dv|(1+|u|)θ = |Dv|[|v|(1−θ)+1]
θ

1−θ , where v =
∫ u

0
ds

(1+|s|)θ . By the Calderon-
Zygmund theorem, the sharp regularity for v is W 2,r(Ω) ∩W 1,r

0 (Ω) which gives Du ∈ Lq(Ω).

Proof of Theorem 1.4 The proof of (25) is exactly the same as that given in Theorems 1.2 and
1.3. Hence it remains to show that if u ∈ H1

loc(Ω) and r > N/2 then u ∈ L∞
loc(Ω), while if f

verifies (9) then u belongs to Lh
loc(Ω), where h is as in (10).

L∞
loc-regularity We notice that our aim is equivalent to prove that v ∈ L∞

loc(Ω), where v
is as in (75). Denote by Br the ball centered at x0 and of radius r. Let B2ρ ⊂⊂ Ω, ρn = ρ+ ρ

2n

and define Bn = Bρn . We have Bn ⊃ Bn+1. Moreover, let k be a number bigger than one that
will be chosen later and denote kn = k − k

2n . We introduce the following sequence of cut-off
function µn in C∞

0 (Ω) verifying:

0 ≤ µn ≤ 1, |Dµn| ≤ 2n+2

ρ
, µn = 0 outside Bn, µn ≡ 1 in Bn+1.

Choose µ2
n(v − kn+1)+ as a test function in (6). We obtain

α

∫
Bn∩{v>kn+1}

|Dv|2µ2
n ≤

∫
Bn∩{v>kn+1}

a(x, u)DuDvµ2
n

= −2
∫

Bn∩{v>kn+1}
µna(x, u)DuDµn(v − kn+1)+ +

∫
Bn

fµ2
n(v − kn+1)+. (80)

Moreover, using assumption (18) and Young’s inequality we have∣∣∣∣∣2
∫

Bn∩{v>kn+1}
µna(x, u)DuDµn(v − kn+1)+

∣∣∣∣∣
≤ 2β

∫
Bn∩{v>kn+1}

|Dv|µn|Dµn|(v − kn+1)+

≤ α

2

∫
Bn∩{v>kn+1}

|Dv|2µ2
n +

2β222(n+2)

αρ2

∫
Bn∩{v>kn+1}

(v − kn+1)2+. (81)

Putting together all the previous estimates we obtain

α

2

∫
Bn∩{v>kn+1}

|Dv|2µ2
n ≤ 2β222(n+2)

αρ2

∫
Bn∩{v>kn+1}

(v − kn+1)2+ +
∫

Bn

fµ2
n(v − kn+1)+. (82)

Now we show that from the integral estimate (82) it follows that v ≤ k in Bρ for a suitable
choice of k. Using the Sobolev inequality and (82) we have∫

Bn+1

(v − kn+1)2
∗

+ ≤
∫

Bn

[µn(v − kn+1)+]2
∗

≤ cs

(∫
Bn

|D[µn(v − kn+1)+]|2
) 2∗

2

≤ cs

(∫
Bn∩{v>kn+1}

|Dv|2µ2
n +

∫
Bn

|Dµn|2(v − kn+1)2+

) N
N−2

≤ c0

(
22(n+2)

ρ2

∫
Bn∩{v>kn+1}

(v − kn+1)2+ +
∫

Bn

|f |µ2
n(v − kn+1)+

) N
N−2

, (83)

where c0 = cs

[
2
α

(
2β2

α + 1
)] N

N−2
and cs = cs(N) is the Sobolev constant. We now distinguish
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the two cases: r′ ≥ 2 and r′ < 2, where 1/r + 1/r′ = 1. If r′ ≥ 2, we have∫
Bn

|f |µ2
n(v − kn+1)+ ≤ ‖f‖Lr(Ω)Y

1− 1
r

n , Yn ≡
∫

Bn

(v − kn)r′
+ . (84)

We observe that when we assume r > N/2 we have r′ < N
N−2 < 2∗, and thus, using (83) and

(84) we derive that

Yn+1 ≤
(∫

Bn+1

(v − kn+1)2
∗

+

) r′
2∗

|An+1|1− r′
2∗

≤ c1

[
22(n+2)

ρ2

∫
Bn

(v − kn+1)2+ + ‖f‖Lr(Ω)Y
1− 1

r
n

] Nr′
(N−2)2∗

|An+1|1− r′
2∗ , (85)

where c1 = c
r′
2∗
0 and An+1 = Bn+1 ∩ {v > kn+1}. Then

Yn ≥
∫

Bn∩{v>kn+1}
(kn+1 − kn)r′

=
kr′

2(n+1)r′ |Bn ∩ [v > kn+1]|,

from which it follows that

|An+1| ≤ |Bn ∩ {v > kn+1}| ≤ 2(n+1)r′

kr′ Yn. (86)

Notice that r′ ≥ 2 is equivalent to r ≤ 2. Then using (86) we have∫
Bn

(v − kn+1)2+ ≤ Y
2
r′

n |Bn ∩ {v > Kn+1}|1− 2
r′ ≤ 2(n+1)r′(1− 2

r′ )c2

kr′(1− 2
r′ )

Y
1− 1

r
n ,

where c2 = (
∫

B2ρ
|v|r′

)1/r. From (85) and (86) we deduce (being k ≥ 1) that (69) holds true

with c =
c1 max{ c2

ρ2 ,‖f‖Lr(Ω)}r′/224(r′+1)

k
r′(1− r′

2∗ )
, b = 22(r′+1) and δ = (1− 1

r ) r′
2 − r′

2∗ . We notice that δ > 0

is equivalent to the assumption r > N/2. If we choose k verifying∫
B2ρ

|v|r′ ≤ kr′(1− r′
2∗ ) 1

δ

(c1 max{ c2
ρ2 , ‖f‖Lr(Ω)}r′/224(r′+1))

1
δ

b
−1
δ2 ,

(70) is also satisfied. Hence we can apply Lemma 2.4 and conclude that Yn → 0 as n→ +∞, that
is v ≤ k in Bρ. To prove also v ≥ k0, (k0 > 0), we notice that if u = −u then v ≡ ∫ u

0
ds

(1+|s|)θ =
−v. Hence it is sufficient to apply the previous result to the function v = −v. As a matter of
fact, u verifies a problem of the same kind of u. When r′ < 2 we set Yn =

∫
Bn

(v − kn)2+ and
the proof is similar to that of the previous case r′ ≥ 2, and so we omit it.

Lh
loc-regularity Let us now assume that r verifies (9). Let BR1 ⊂⊂ Ω and 0 ≤ R0 ≤ τ <

t ≤ R1 ≤ 1 be arbitrarily fixed. Choose η(v − Tk(v)) as a test function in (6), where v is as
defined before in (75) and η is a cut-off function in C∞

0 (Bt) such that 0 ≤ η ≤ 1, η ≡ 1 on
Bτ , |Dη| ≤ C(t− τ)−1. Notice that when r < N we have that f = −div(f1) with f1 ∈ Lr∗

(Ω).
Hence we obtain

∫
Bt

a(x, u)DuD[η(v − Tk(v))] =
∫

Bt

f1D[η(v − Tk(v))]. (87)

We estimate now the integrals in (87). Applying (18) we deduce that∫
Bt

a(x, u)DuD[η(v − Tk(v))] ≥ α

∫
Ak,τ

|Dv|2 − βC

t− τ

∫
Ak,t−Ak,τ

|Dv||v − Tk(v)|
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≥ α

∫
Ak,τ

|Dv|2 − δ

∫
Ak,t−Ak,τ

|Dv|2 − β2C2

δ(t− τ)2

∫
Ak,t−Ak,τ

v2, (88)

where Ak,t is as in Theorem 2.1 and δ is a positive constant to be determined. Besides, using
Young’s inequality we can increase the right-hand side of (87) as follows:∫

Bt

f1D[η(v − Tk(v))]

≤
∫

Ak,t−Ak,τ

|f1|2 + C2

∫
Ak,t−Ak,τ

v2

(t− τ)2
+

1
δ

∫
Ak,t

|f1|2 + δ

∫
Ak,t

|Dv|2, (89)

where δ is as before. Using the previous estimates in (87) we have∫
Ak,τ

|Dv|2 ≤ 2δ
α

∫
Ak,t

|Dv|2 + c3

∫
Ak,t

v2

(t− τ)2
+ c4

∫
Ak,t

φ0,

where c3 = C2

α (1 + β2

δ ), c4 = 1
α

(
1 + 1

δ

)
and φ0 = f2

1 . Notice that φ0 belongs to Lm
loc(Ω) with

m = r∗/2. Now we want to eliminate the first term on the right-hand side including Dv. To
do this, we proceed exactly as in the proof of Theorem 5.1 of [13]. Hence choose δ such that
γ = 2δ

α < 1 and let ρ, R be arbitrarily fixed with R0 ≤ ρ < R ≤ R1. Thus we can deduce that
for every t and τ such that ρ ≤ τ < t ≤ R, we have∫

Ak,τ

|Dv|2 ≤ γ

∫
Ak,t

|Dv|2 +
c3

(t− τ)2

∫
Ak,R

v2 + c4

∫
Ak,R

φ0. (90)

Applying Lemma 2.3 in (90) we conclude that∫
Ak,ρ

|Dv|2 ≤ cc3
(R− ρ)2

∫
Ak,R

v2 + cc4

∫
Ak,R

φ0, (91)

where c is the constant given by Lemma 2.3, that is, a constant depending only on γ. Thus
v verifies the assumptions of Theorem 2.1 of Section 3 with p = λ = 2. The condition (67) is
equivalent to r < N/2, which is true by assumption. Hence v ∈ Ls

loc(Ω), where s = (r∗)∗ =
Nr

N−2r , which implies u ∈ Lh
loc(Ω) with h as in (10).

Proof of Theorem 1.5 Let us define

v(x) =
∫ u

0

a(x, s)ds. (92)

Then

Dv(x) = a(x, u)Du+
∫ u

0

∂a(x, s)
∂x

ds. (93)

Let QR ⊂ Ω and η be a cut-off function as in the proof of Theorem 1.1. Choose as a test
function ψ = (v − vR)η2. We obtain∫

QR

a(x, u)DuDvη2dx ≤ 2
∫

QR

a(x, u)|Du||v − vR|η|Dη| +
∫

QR

f(v − vR)η2.

We now estimate the terms in the previous inequality. Then we have∫
QR

a(x, u)DuDvη2 =
∫

QR

(a(x, u))2|Du|2η2 +
∫

QR

a(x, u)Duη2

∫ u

0

∂a(x, s)
∂x

ds, (94)

and for the last integral in (94), using the assumption (26), we have∣∣∣∣
∫

QR

a(x, u)Duη2

∫ u

0

∂a(x, s)
∂x

ds

∣∣∣∣ ≤ 1
2

∫
QR

(a(x, u))2|Du|2η2 +
1
2

∫
QR

η2g(x)2, (95)
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where we have set
g(x) =

∫ u

0

∂a(x, s)
∂x

ds. (96)

Besides, we have

2
∫

QR

a(x, u)|Du||v − vR|η|Dη|

≤ 2
[
1
2
δ

∫
QR

(a(x, u))2|Du|2η2 +
1
2δ

∫
QR

|Dη|2|v − vR|2
]
, (97)

where δ is a positive constant to be chosen. Putting together the previous estimates we deduce
that (

1
2
− δ

)∫
QR

(a(x, u))2|Du|2η2

≤ 1
2

∫
QR

η2g(x)2 +
1
δ

∫
QR

|Dη|2|v − vR|2 +
∫

QR

f(v − vR)η2. (98)

Let us choose δ = 1
4 . From (98) and (93) we obtain∫
QR/2

|Dv|2 ≤ 2
∫

QR

(a(x, u))2|Du|2η2 + 2
∫

QR

g(x)2η2

≤ 6
∫

QR

g(x)2η2 +
32c2

R2

∫
QR

|v − vR|2 + 8
∫

QR

f(v − vR)η2. (99)

Now observing that, by the assumption (26), |g(x)|2 belongs to Lγ(Ω), where γ = 2+σ
2 is bigger

than one; we can proceed as in [10] and conclude that there exists a positive constant ε0 such
that Dv ∈ L2+ε0

loc (Ω) which implies (27) with ε = min{σ, ε0}. Thus proceeding exactly as in the
proof of Theorem 1.2 we can conclude that (28) also holds.

Proof of Theorem 1.6 As a first step we prove that a(x, u)Du ∈ Lq+ε(Ω). Let v be as in (92).
Let QR ⊂ Ω as before and R/2 ≤ ρ < σ ≤ R and η ∈ C∞

0 (Qσ), 0 ≤ η ≤ 1, η ≡ 1 on Qρ, with
|Dη| ≤ C/(σ − ρ). Applying Lemma 2.2 to the function D[η2(v − vR)] we obtain that there
exists a function ϕ ∈W 1,q′

0 (Qσ), where q is as in the statement of the theorem and{
Dϕ = |D[η2(v − vR)]|q−2D[η2(v − vR)] +H,

div(H) = 0,
(100)

‖H‖Lq′ (Qσ) ≤ c(q,N)|q − 2|‖D[η2(v − vR)]‖q−1
Lq(Qσ), (101)

‖Dϕ‖Lq′ (Qσ) ≤ (1 + c(q,N)|q − 2|) ‖D[η2(v − vR)]‖q−1
Lq(Qσ). (102)

Choose ϕ as a test function in (6). We obtain∫
Qσ

a(x, u)DuDϕ =
∫

Qσ

fϕ, (103)

from which, using (93), we deduce that∫
Qσ

DvDϕ ≤
∫

Qσ

|g(x)||Dϕ| +
∫

Qσ

fϕ, (104)

where g is as in (30). From (104), using Young’s inequality, we obtain∫
Qσ

D[η2(v − vR)]Dϕ ≤
∫

Qσ

∣∣D [(η2 − 1)(v − vR)
]∣∣ |Dϕ| + ∫

Qσ

|g(x)||Dϕ| +
∫

Qσ

|fϕ|
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≤
∫

Qσ\Qρ

[
2η|Dη||v − vR| + (1 − η2)|Dv|] |Dϕ| + ∫

Qσ

|g(x)||Dϕ| +
∫

Qσ

|fϕ|. (105)

Moreover, using inequality (102), we have∫
Qσ\Qρ

[
2η|Dη||v − vR| + (1 − η2)|Dv|] |Dϕ| + ∫

Qσ

|g(x)||Dϕ|

≤ ‖2η|Dη||v − vR| + (1 − η2)|Dv|‖Lq(Qσ\Qρ)‖Dϕ‖Lq′ (Qσ) + ‖g(x)‖Lq(Qσ)‖Dϕ‖Lq′ (Qσ)

≤ c0

[
2C
σ − ρ

‖v − vR‖Lq(Qσ\Qρ) + ‖Dv‖Lq(Qσ\Qρ) + ‖g(x)‖Lq(Qσ)

]
×‖D[η2(v − vR)]‖q−1

Lq(Qσ)

≤ c1

[
Cq

(σ − ρ)q

∫
Qσ\Qρ

|v − vR|q+
∫

Qσ\Qρ

|Dv|q +
∫

Qσ

|g(x)|q
]

+δ
∫

Qσ

|D[η2(v − vR)]|q, (106)

where c0 = 1 + maxq∈[1,3]c(q,N), c1 = cq
02q3q

δq−1 and δ is a positive constant that will be chosen
later. Using (100), (105) and (106) we get∫

Qσ

∣∣D[η2(v − vR)]
∣∣q =

∫
Qσ

D[η2(v − vR)]Dϕ−
∫

Qσ

D[η2(v − vR)]H

≤ c1

{
Cq

(σ − ρ)q

∫
Qσ\Qρ

|v − vR|q +
∫

Qσ\Qρ

|Dv|q +
∫

Qσ

|g(x)|q
}

+
∫

Qσ

|fϕ| + 2δ
∫

Qσ

∣∣D[η2(v − vR)]
∣∣q + γ0(δ)‖H‖q′

Lq′ (Qσ)
, (107)

where c1 is as before, i.e. it is a positive constant that depends only on δ, N and q in a
continuous way, and γ0(δ) = δ

1
1−q . Let us choose s = Nr(1−θ)

N−2rθ = ((q′)∗)′. Notice that r > s

since r < N/2. Thus using the Hölder and the Young’s inequalities and (100) again, we have∫
Qσ

|fϕ| ≤
(∫

Qσ

|f |s
) 1

s
(∫

Qσ

|ϕ|s′
) 1

s′
≤ cs

(∫
Qσ

|f |s
) 1

s
(∫

Qσ

|Dϕ|q′
) 1

q′

≤ 2cs

(∫
Qσ

|f |s
) 1

s
(∫

Qσ

∣∣D[η2(v − vR)]
∣∣q + |H|q′

) 1
q′

≤ (2cs)qγ1(δ)
(∫

Qσ

|f |s
) q

s

+ δ

∫
Qσ

∣∣D[η2(v − vR)]
∣∣q + δ‖H‖q′

Lq′ (Qσ)
, (108)

where δ is as in (107), cs is the Sobolev constant and γ1(δ) = δ1−q. Using in (107) the estimates
(108), (101) and (102) we obtain∫

Qσ

∣∣D[η2(v − vR)]
∣∣q ≤ c2

{
Cq

(σ − ρ)q

∫
Qσ\Qρ

|v − vR|q

+
∫

Qσ\Qρ

|Dv|q +
∫

Qσ

|g(x)|q +
(∫

Qσ

|f |s
) q

s

}

+
[
3δ + (γ0(δ) + δ)c(q,N)q′ |q − 2|q′] ∫

Qσ

∣∣D[η2(v − vR)]
∣∣q , (109)

where c2 = max{c1, 2qγ1(δ)cqs}. Choose δ = 1/6 and observe that if r → 2N
N+2−θ(N−2) then
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q = q(r) → 2. Then it is possible to choose r0 such that if r satisfies (31) then the corresponding
q = q(r) verifies [

γ0

(
1
6

)
+

1
6

]
c(q,N)q′ |q − 2|q′ ≤ 1

4
, (110)

that is, if we choose, for example, r0 satisfying q(r0) ≥ 3/2 such that

[
γ0

(
1
6

)
+

1
6

]
max

⎧⎨
⎩
(

max
3
2≤q≤3

c(q,N)

)( 3
2)

′

, 1

⎫⎬
⎭ |q(r0) − 2| ≤ 1

4
, (111)

then we have

1
4

∫
Qρ

|Dv|q ≤ c2

{
Cq

(σ − ρ)q

∫
Qσ\Qρ

|v − vR|q

+
∫

Qσ\Qρ

|Dv|q +
∫

Qσ

|g(x)|q +
(∫

Qσ

|f |s
) q

s

}
. (112)

Adding to both sides the quantity c2
∫

Qρ
|Dv|q, and applying Lemma 2.3, we have∫

QR/2

|Dv|q ≤ c3(q)

{
Cq

Rq

∫
QR

|v − vR|q +
∫

QR

|g(x)|q +
(∫

QR

|f |s
) q

s

}
, (113)

where c3 is a positive constant that depends only (in a continuous way) on q and N . Notice
that when q = ( qN

N+q )∗, by the Sobolev inequality we get
∫

QR

|v − vR|q ≤ cs

(∫
QR

|Dv| qN
N+q

)N+q
N

, (114)

where cs is again the Sobolev constant. We point out that, since q ≤ 2,

cs ≤
(

(N − 1)p
N − p

)q

, p =
qN

N + q
≤ 2,

(see for example [14]), we deduce that cs ≤ c4 = c4(N) = ( (N−1)2
N−2 )2. Using (114) in (113) and

dividing by RN , we obtain

−
∫

QR/2

|Dv|q ≤ 2Nc3(q)

{
Cqc4

(
−
∫

QR

|Dv| qN
N+q

)N+q
N

+ −
∫

QR

|g(x)|q + −
∫

QR

|F | q
s

}

≤ c5(q)

{(
−
∫

QR

|Dv| qN
N+q

)N+q
N

+ −
∫

QR

|g(x)|q + −
∫

QR

|F | q
s

}
, (115)

where c5 is a constant that depends only on N and in a continuous way on q, F =
(∫

Ω
|f |s)1−s/q

|f |s2/q and |F |q/s belongs to Lr/s(Ω), r/s > 1. By Lemma 2.1 and (93) we deduce that

Dv ∈ Lq+ε
loc (Ω), a(x, u)Du ∈ Lν

loc(Ω), (116)

where ε = ε(q,N, σ, r) and ν = q + min{ε, σ}. It remains to show that if g(x) is more regular,
that is, if it belongs to L2+σ(Ω), σ > 0, then (33) also holds true. As a first step we will prove
that Dv is in L2

loc(Ω) and hence by (93) a(x, u)Du also belongs to L2
loc(Ω). To do this, it is

sufficient to show the following equality:

A =
{
m ∈ [q(r0), 2] : v ∈W 1,m

loc (Ω)
}

= [q(r0), 2].
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This last result can easily be proved by following [5], thus showing that A is an open and closed
subset of [q(r0), 2]. Finally to prove (33), as now we know that Dv ∈ L2

loc(Ω), it is possible to
proceed as in the proof of the previous theorem.

Remark 3.4 We notice that if r > N(2−θ)
N+2−Nθ , it is proved in [2] that any distributional

solution found by approximation can be used as a test function in (6) and, in particular,
a(x, u)Du ∈ L2(Ω). So if we suppose a better regularity on

∫ u

0
∂a(x,s)

∂x ds, that is, that this term
belongs to L2+σ(Ω), σ > 0, then we can avoid the use of the Hodge decomposition technique
and prove, by following the outline of the proof of Theorem 1.5, that the results of Theorem
1.6 hold for every solution obtained by approximation as in [2].

Proof of Theorem 1.7 Take as a test function in (6) w = ϕ(v), where v is as in (75) and
ϕ(s) = T1(s− Tn(s)). This implies the following integral estimate:

α

∫
n<|v|<n+1

|Dv|2 ≤
∫
|v|>n

|f |.

Now in order to prove the quoted regularity results it is sufficient to apply the following result
that can be easily proved by using the techniques in [6]:

Proposition 3.1 Let w be a measurable function such that Tk(w) ∈ W 1,p
0 (Ω), 1 < p < N ,

for every positive k. If F ∈ Lm(Ω) and we have∫
n<|w|≤n+1

|∇w|p ≤ c0

∫
|w|>n

|F |,

where 1 < m < (p∗)′ = Np
Np−N+p , then |Dw|p−1 ∈ Lm∗

(Ω).

4 Proofs of Theorems 1.8–1.9 (Minima of Functionals)

In this section we prove the results stated in Section 2 concerning the regularity of Du, where
u is a minimum of the functional (37).

Proof of Theorem 1.8 By assumption (44) and the minimality of u we have

β0α1

∫
Ω

(
|Du|a

1
p

2 (u)
)p

−
∫

Ω

fu ≤ α2β1

∫
Ω

(
|Dw|a

1
p

2 (w)
)p

−
∫

Ω

fw, (117)

for every w ∈W 1,p
0 (Ω) with J(w) finite. Let us define

H(τ) =
1

γ
1/p
1

∫ τ

0

a
1
p

2 (s)ds, (118)

where γ1 is the positive constant that appears in the assumption (46). Since H(τ) is strictly
increasing and H(R) = R by (46), the inverse function H

−1
(t) is well defined on R and the

following estimate holds true:∣∣∣H−1
(t)
∣∣∣ ≤ ∣∣G−1(t)

∣∣ , where G(τ) =
∫ τ

0

1
(1 + |s|)θ

ds. (119)

The estimate (119) follows from the fact that
∣∣H(τ)

∣∣ ≥ |G(τ)|. Notice that by (119) we deduce
that ∣∣∣H−1

(t)
∣∣∣ ≤ [|t|(1 − θ) + 1]

1
1−θ − 1. (120)
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Moreover, using assumption (46) we have∣∣∣∣(H−1
)′

(t)
∣∣∣∣ ≤ (1 +

∣∣∣H−1
(t)
∣∣∣)θ

. (121)

Denote H(w) = w. Let us point out that H is bijective between

A =
{
w ∈W 1,q

0 (Ω) : J(w) < +∞
}

(122)

and W 1,p
0 (Ω) as we can easily see by differentiating w = H

−1
(w) that

|Dw| =
∣∣∣∣(H−1

)′
(w)
∣∣∣∣ |Dw|, (123)

from which, using (121) and (120), we have

|Dw| ≤
(
1 + [|w|(1 − θ) + 1]

1
1−θ

)θ

|Dw|. (124)

Indeed, from (124) we see that Dw ∈ Lq(Ω) if Dw ∈ Lp(Ω), and then w ∈ W 1,q
0 (Ω) since

H
−1

(0) = 0. Moreover, J(w) < +∞ since Dw = 1

γ
1/p
1

a
1/p
2 (w)Dw ∈ Lp(Ω). We can rewrite

(117) as follows:

β0α1γ1

∫
Ω

|Dv|p −
∫

Ω

fH
−1

(v) ≤ max{1, β1α2γ1}
[∫

Ω

|Dw|p −
∫

Ω

fH
−1

(w)
]
, (125)

where v = H(u). Hence v is a quasi-minimum in W 1,p
0 (Ω) of

F (w) =
∫

Ω

|Dw|p −
∫

Ω

fH
−1

(w), (126)

and the regularity (49) follows from Theorem 6.7 of [15]. Now we show, using (49), that if r
satisfies (50) then (51) also holds true. To do this we notice that, proceeding as in the proof of
Theorem 1.4 in [8], it follows, by using (50), that there exists c0 (c0 > 0), depending only on
the data, such that ∫

Ω

|Du|p(1 + |u|)(λ−θ)pdx ≤ c0,

where λ > θ is defined by the formula λp = Nr[p(1−θ)−1](r−1)
(N−rp)r − 1. Let γ = tp + (1 − t)(p + ε)

where t ∈ (0, 1) is to be determined later. Using Young’s inequality we obtain∫
BR

|Du|γ =
∫

BR

|Du|tp(1 + |u|)(λ−θ)pt |Du|(1−t)(p+ε)

(1 + |u|)(λ−θ)pt

≤
∫

BR

|Du|p(1 + |u|)(λ−θ)p +
∫

BR

|Du|p+ε

(1 + |u|) (λ−θ)pt
1−t

≤ c1, (127)

where c1 > c0 is a constant that depends only on the data and where we have set (λ−θ)pt
1−t =

θ(p+ ε), that is, t = θ(p+ε)
(λ−θ)p+θ(p+ε) ∈ (0, 1). Hence (51) holds true with ν = γ − p.

Proof of Theorem 1.9 Our first goal is to prove that the map H : A → W 1,p
0 (Ω) defined by

w = H(w) = H(x,w(x)), where H is as in (53) and A as in (122), is well defined and bijective.
Indeed, using (55) we have

Dw = a1/p(x,w)Dw +
∫ w

0

∂
(
a1/p(x, s)

)
∂x

ds ∈ Lp(Ω), (128)

for every w ∈ A. Moreover, for every z ∈ W 1,p
0 (Ω) there exists z ∈ A, such that z = H(z). As
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a matter of fact, if we define z(x) = C(x, z(x)), then

Dz =
∂C

∂x
(x, z) +

∂C

∂t
(x, z)Dz, a.e. in Ω.

Let us observe that using assumption (38) we have∣∣∣∣∂C∂t (x, z)Dz
∣∣∣∣ = |Dz|∣∣∂H

∂τ (x,C(x, z))
∣∣ =

|Dz|
a1/p(x,C(x, z))

≤ β
1/p
0 (1 + |C(x, z)|)θ |Dz|.

when |H(x, τ)| ≥ |G(τ)|, where G is as in (119), we have

|C(x, t)| ≤ |G−1(t)|, (129)

and thus ∣∣∣∣∂C∂t (x, z)Dz
∣∣∣∣ ≤ β

1/p
0

(
1 + [1 + |z|(1 − θ)]

θ
1−θ

)
|Dz|,

where the right-hand side belongs to Lq(Ω). We can now conclude, using (54), that Dz belongs
to Lq(Ω).

Using the definition of H and the minimality of u we have∫
Ω

F (x, u,Du) ≤
∫

Ω

F (x, v,Dv), ∀v ∈W 1,p
0 (Ω), (130)

where we have set

F (x, y, ξ) =

∣∣∣∣∣ξ −
∫ C(x,y)

0

∂
(
a1/p(x, s)

)
∂x

ds

∣∣∣∣∣
p

− fC(x, y),

and u = H(x, u(x)). In order to apply the quoted result in [15] it is sufficient to verify the
growth conditions of F . We have, using (55), that

c0|ξ|p + c1|C(x, y)|γp +
|f |ν
ν

+
|C(x, y)|ν′

ν′
+ c2 ≥ F (x, y, ξ)

≥ c3|ξ|p − c4|C(x, y)|γp − |f |ν
ν

− |C(x, y)|ν′

ν′
− c5,

where ν < r is to be chosen. Notice that, by (129), we have

|C(x, y)|γp ≤
(
[|y|(1 − θ) + 1]

1
1−θ + 1

)γp

≤ c6|y|
γp
1−θ + c7,

where γp
1−θ < p∗, by the assumption on γ. Besides, we have

|C(x, y)|ν′ ≤
(
[|y|(1 − θ) + 1]

1
1−θ + 1

)ν′

≤ c8|y| ν′
1−θ + c9.

We notice that r′
1−θ < p∗, by (48), and thus we can choose ν < r such that ν′

1−θ < p∗. Hence
it follows that

|C(x, y)|γp + |C(x, y)|ν′ ≤ c10|y|γ + c11,

where γ = max
{

ν′
1−θ ,

γp
1−θ

}
< p∗. Thus the hypothesis of the quoted theorem is satisfied and

then the stated results follow.
It remains to prove that under the assumption (50) the regularity result (57) holds true but

we omit such a proof as it is similar to the proof of (51) in Theorem 1.8.
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