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a b s t r a c t

We will browse a series of results on elliptic equations and systems, with particular
nonlinear lower order terms and measure right-hand side, obtained in the last years
in the papers (Cirmi and Leonardi, 2014; Cianci et al., 2017; Cirmi et al., 2014,
2017, 2018).

Namely we take into account equations whose prototypes are:

− ∆u + u|Du|2 = f

or

− ∆u +
|Du|2

uθ
= f, θ ∈ ]0, 1[,

where the right-hand side f belongs to a suitable Morrey space, for instance to L1,λ,
0 < λ ≤ N − 2, and we prove corresponding Morrey estimates for the gradient of a
solution.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known from 1959, by the fundamental result of E. De Giorgi [33], that any H1-weak solution
on the elliptic equation

− div(a(x)Du) = 0 in Ω ⊂ RN ,

with measurable bounded coefficients a(x), belongs to the Hölder space C0,µ, for some 0 < µ < 1.
Some years later, the seminal result by De Giorgi was extended by S. Campanato (see [18,19]) to an

equation of the type

− div(a(x)Du) = div g + f in Ω ⊂ RN , (1.1)

with g in the Morrey space L2,λ(Ω) and f ∈ L
2N

N+2 , N+2
N λ(Ω).
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Actually, with respect to the work of E. De Giorgi, the information on Hölder continuity of u is gained
estimating |Du| in corresponding Morrey space L2,λ.

The, nowadays classical, technique of estimating |Du| in a suitable Morrey space relies on the so called
Campanato’s decomposition. Namely, in a ball BR ⊂⊂ Ω , we can write

u = v + w

where w ∈ H1
0 (BR) is the solution of the problem

− div(a(x)Dw) = −div g + f,

while v ∈ H1(BR) is a weak solution of the problem{
−div(a(x)Dv) = 0 in BR

v = u on ∂BR.

Moreover, v satisfies the so called Saint-Venant principle, i.e. for 0 < ρ ≤ R it holds∫
Bρ

|Dv|2 dx ≤ c
( ρ

R

)N−2+2µ
∫

BR

|Dv|2 dx.

Lax–Milgram theorem and the aforementioned estimate yield to∫
Bρ

|Du|2 dx ≤ c1

( ρ

R

)N−2+2µ
∫

BR

|Du|2 dx + c2(∥f∥, ∥g∥) ρλ

and this latter estimate, via a sophisticated iterative process (see [18,19]), induces Du ∈ L2,λ(Ω). If λ > N−2,
the membership of Du to L2,λ gives back the Hölder continuity of u as well.

The linear structure of the operator on the left-hand side of (1.1) is necessary in order to perform the
Campanato’s decomposition.

In the same period of time, G. Stampacchia [64,65], by a duality method, proved the existence of a so
called very weak solution u ∈ W 1,q

0 (Ω), 1 ≤ q < N
N−1 , of the problem

− div(a(x)Du) = f in Ω

under the assumption f ∈ L1(Ω).
At the beginning of the eighties the famous result of G. Stampacchia has been proved also for nonlinear

operators, like the p-Laplacian, by L. Boccardo et al. [11–16].
Stampacchia’s global result was extended to the framework of Morrey spaces by G. Mingione [61] (see

also [6,34–36,40–42,44,45,47,62,63]) and, independently, by the author in the papers [24,25] in the first decade
of year 2000.

Namely, using again Campanato’s decomposition, under the assumption f ∈ L1,λ, 0 < λ ≤ N − 2, it was
proved that Du ∈ Lq,λ, 1 ≤ q ≤ N

N−1 < 2.
On the other hand, Mingione’s result in [61] opened also the way to further extensions and, in particular,

to the theory of fractional differentiability of Du. In the quoted paper the following fundamental observation
is made: Morrey regularity of Du leads to its fractional differentiability.

In the last few years, Morrey estimates of the gradient of a solution and Mingione’s differentiability theory
have been extended also to operators with lower order terms and measure right-hand side.

In the papers [20–23,27] there have been taken into account equations whose prototypes are:

− ∆u + u|Du|2 = f (1.2)
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or

− ∆u + |Du|2

uθ
= f, θ ∈]0, 1[, (1.3)

where the right-hand side f belongs to a suitable Morrey space, for instance to L1,λ, 0 < λ ≤ N − 2, and
Morrey estimates of Du have been proved.

Of course the linear structure of the operators is lost and so a new technique for dealing with these
problems had to be developed.

Here we show also that Mingione’s differentiability theory (see also the works of Kristensen and
Mingione [41,42]) can be transferred to operators of the type (1.2) and (1.3). This is part of a new set
of estimates, including potential estimates, as for instance in [44,45,47], that would be very interesting
to extend in the present setting too. In this sense the reader can refer, besides to the cited papers, also
to [7,46,48] for further useful remarks, observations and developments.

Actually in papers [20,22,23,27] it has even shown more, that is, for equations of the type (1.2) or (1.3),
the lack of Morrey regularity of the gradient prevents its fractional differentiability (see examples below).

The systematic study of equations of the type (1.2) or (1.3) with measure right-hand sides was initiated
by Boccardo, Arcoya et al. [4,5,8,10,29]. The aim was to show that the presence of the lower order term
guaranteed more regularity (for instance H1-regularity) on a solution with respect to the same operator but
without the lower order term like in (1.1).

For operators with a (“bad”) nonlinear lower order term the aforementioned decomposition procedure
cannot be performed and thus to avoid such an obstruction for obtaining the necessary local estimates one
has to adopt an alternative method as the one originally used in [20,27].

The new method of proof involves a certain delicate and tricky sophisticated set of a priori estimates and
truncation methods, combining integral estimates and Morrey type density conditions.

Roughly speaking the equation is tested with the product η2u, where η is the standard cut-off function and
the information on the gradient is inferred directly from the operator without splitting the solution. Then a
special iteration procedure starts, which relies on a refinement of Sobolev–Morrey embedding theorem (see
Theorem 2.3) contained in [24,25].

This paper is organized as follows. In Section 3 we deal with operator (1.2), while in Section 4 we take
into account operator (1.3).

2. Notations, functions spaces and auxiliary tools

In RN (N ≥ 3), with generic point x = (x1, x2, . . . , xN ), we shall denote by Ω a bounded open nonempty
set and C0,1-boundary ∂Ω and diameter dΩ .

For R > 0 and x0 ∈ RN we define

BR(x0) = {x ∈ RN : |x − x0| < R}.

Now, let us define the functional spaces we will use. We use a modification of the usual definitions,
essentially equivalent, to simplify the treatment in the following.

Definition 2.1 (Morrey Space). Let q ≥ 1 and λ ∈]0, N [. By Lq,λ(Ω) we denote the space of all functions
u ∈ Lq(Ω) such that

∥u∥Lq,λ(Ω) = sup
x0∈Ω

0<R≤dΩ

{
R−λ

∫
BR(x0)∩Ω

|u(x)|qdx

}1/q

is finite. Lq,λ(Ω) equipped with the above norm is a Banach space.
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We will often use the short notation ∥ · ∥q and ∥ · ∥q,λ instead of ∥ · ∥Lq(Ω) and ∥ · ∥
Lq,λ(Ω)

, respectively.

Remark 2.2. Recall that

(i) Lq,λ ̸⊂ Lq+ε, ∀ε > 0;
(ii) if λ > N − p then L1,λ ⊂ W −1,p.

Theorem 2.3 (Sobolev–Morrey Embedding Theorem). Let Ω ⊂ RN , u ∈ W 1,p
0 (Ω) be such that Du ∈

Lp,σ
loc (Ω), with σ < N − p.
Then u ∈ Lpσ ,σ

loc (Ω) with 1
pσ

= 1
p − 1

N−σ .
Moreover, for any H ⊂⊂ Ω , there exists a positive constant c, depending on N, p, σ,Ω , H, such that

∥u∥Lpσ,σ(H) ≤ c∥Du∥Lp,σ(H) .

Remark 1. The previous theorem can be stated in a global form under the assumption that Du ∈ Lp,σ(Ω).

Now, we recall some basic facts about fractional order Sobolev spaces.

Definition 2.4 (Fractional Sobolev Space). Let t ∈]0, 1] and q ≥ 1. Wt,q(Ω) is the space of all functions
u ∈ Lq(Ω) such that

∥u∥Wt,q(Ω) = ∥u∥q + [u]t,q,Ω < +∞

where

[u]t,q,Ω =

⎧⎪⎪⎨⎪⎪⎩
(∫

Ω

∫
Ω

|u(x) − u(y)|q

|x − y|N+tq
dx dy

) 1
q

if t < 1

∥Du∥q if t = 1.

Here Du represents the gradient of the function u i.e.

Du ≡
(

∂u

∂xi

)
i=1,...,N

≡ (Di u)i=1,...,N .

The following result is a well-known Sobolev’s embedding theorem in the case of fractional space.

Theorem 2.5 (Fractional Sobolev Embedding). Let Ω be a domain of RN with C0,1 boundary, q ≥ 1 and
t ∈]0, 1] such that tq < N . Then

Wt,q(Ω) ⊂ L
Nq

N−tq (Ω)

with continuous embedding.

3. Operators with natural growth lower order term

We start considering the model system of equations{
−div [(s2 + |Du|2)

p−2
2 Du] + u|Du|p = f in Ω

u = 0 on ∂Ω
(3.1)
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where p ∈ [2, N [, u : Ω → Rn (n ≥ 1) is the unknown vector, s ≥ 0 is a constant and f ∈ L1(Ω ,Rn) is a
vector-valued function belonging to a suitable Morrey space.

It is well known that the presence of lower order terms can have a regularizing effect on the solutions.
There is an extensive literature about Dirichlet problems with lower order terms having quadratic growth
with respect to the gradient (see [9,17]) and also for higher order equations whose coefficients satisfy a
strengthened ellipticity condition (see [21] and see also [30–32] for more details concerning such kind of
high-order equation).

The existence of a weak solution with finite energy (that is u ∈ W 1,p
0 (Ω ,Rn)) for systems whose prototype

is (3.1) has been proved by A. Bensoussan and L. Boccardo in [8] assuming that the main part of the operator
satisfies the so-called “Landes condition” (see [49]), which amounts to a sort of diagonal structure of the
system, and that the lower order term verifies a sign (or angle) condition (see below for the precise statements
of the assumptions).

G. Mingione (see [61]) has investigated the differentiability properties of the distributional solutions of a
nonlinear elliptic equation (n = 1) of the type

− div [(s2 + |Du|2)
p−2

2 Du] = µ

where s is a nonnegative constant, p > 1 and µ is a signed Radon measure with finite total variation
|µ|(Ω) < +∞ enjoying the following density condition

|µ|(BR) ≤ MRλ, for some M > 0, λ ∈ [0, N ]

for any ball BR ⊂ Ω .
This differentiability result has been extended to the very weak solutions of non-diagonal linear elliptic

systems (n ≥ 2) without lower order terms in [26].
Here we present similar differentiability properties for the usual weak solutions to systems of nonlinear

elliptic equations, under the Landes condition, with lower order terms having natural (or critical) growth
with respect to the gradient and satisfying a sign condition.

We denote by A(x, ξ) a matrix-valued function whose entries are the functions

Aν
i : Ω × RnN → R

for i = 1, . . . , N and ν = 1, . . . , n. Each entry is a Carathéodory function (i.e. continuous in ξ ∈ RnN for
a.e. x ∈ Ω and measurable in x for every ξ) satisfying the following conditions for a.e. x ∈ Ω , for every
nonnegative real number s and for every ξ, η ∈ RnN such that ξ ̸= η (1):

∃Λ1 > 0 : (Aν
i (x, ξ) − Aν

i (x, η))(ξν
i − ην

i ) ≥ Λ1 (s2 + |ξ|2 + |η|2)
p−2

2 |ξ − η|2, (3.2)

∃Λ2 > 0 : |A(x, ξ)| ≤ Λ2 (s2 + |ξ|2)
p−2

2 |ξ|, p ∈ [2, N [, (3.3)

Aν
i (x, 0) = 0, (3.4)

Aν
i (x, ξ)

[
ξν

i |γ|2 − γνγµξµ
i

]
≥ 0 ∀γ ∈ RN . (3.5)

Remark 2. Since p ≥ 2 the assumption (3.2) implies the strong monotonicity assumption

(Aν
i (x, ξ) − Aν

i (x, η)) (ξν
i − ην

i ) ≥ c(Λ1, p) |ξ − η|p. (3.6)

1 We assume the use of Einstein’s convention throughout the paper.
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For s ≥ 0 we set

V (ξ) ≡ Vs(ξ) := (s2 + |ξ|2)
p−2

4 ξ ∀ξ ∈ RnN . (3.7)

The assumptions (3.2) and (3.4) imply the ellipticity condition

Aν
i (x, ξ)ξν

i ≥ Λ1 |V (ξ)|2, a.e. x ∈ Ω , ∀ξ ∈ RnN . (3.8)

Moreover, from Lemma 2.1 of [37] and (3.2) (see also [61]) we have the following properties

c(n, p)−1(s2 + |ξ|2 + |η|2)
p−2

2 ≤ |V (ξ) − V (η)|2

|ξ − η|2
≤ c(n, p)(s2 + |ξ|2 + |η|2)

p−2
2 , (3.9)

(Aν
i (x, ξ) − Aν

i (x, η))(ξν
i − ην

i ) ≥ c(Λ1, n, p) |V (ξ) − V (η)|2. (3.10)

The assumption (3.3) and Young’s inequality yield

|A(x, ξ)| ≤ c(Λ2, p) (s2 + |ξ|2)
p−1

2 . (3.11)

Remark 3. The assumption (3.5) is the so- called “Landes condition”. Note that it is automatically implied
by (3.8), whenever n = 1.

For ν = 1, . . . , n let gν : Ω × Rn × RnN → R be Carathéodory functions and denote by g(x, u, ξ) the
vector-valued function whose νth component is gν . For g(x, u, ξ) we will assume the following conditions for
a.e. x ∈ Ω , for every u ∈ RN and for every ξ ∈ RnN :

|g(x, u, ξ)| ≤ b(|u|) [d(x) + |ξ|p], (3.12)

and

|g(x, u, ξ)| ≥ σ |V (ξ)|2 ∀u ∈ RN : |u| ≥ 1, (3.13)

where b(·) is a real valued, positive, increasing and continuous function, d(x) is a nonnegative function in
L1,λ(Ω ,Rn), λ ∈]0, N − p], s is a nonnegative real number and σ is a positive real number.

Moreover, we assume the following angle condition

gν(x, u, ξ)(uν − τν) ≥ 0, ∀τ, u ∈ Rn : |τ | ≤ |u| (3.14)

which amounts to a sign condition in the scalar case n = 1.
We consider the following system{

u ∈ W 1,p
0 (Ω ,Rn), g(x, u, Du) ∈ L1(Ω ,Rn)

−DiA
ν
i (x, Du) + gν(x, u, Du) = fν (3.15)

where, for any ν = 1, . . . , n, fν denotes the νth component of the vector

f ∈ L1,λ(Ω ,RN ), λ ∈]0, N − p]. (3.16)

By a weak solution of the system of equations (3.15) we mean a vector- valued function u ∈ W 1,p
0 (Ω ,Rn)

such that ⎧⎪⎪⎨⎪⎪⎩
g(x, u(x), Du(x)) ∈ L1(Ω ,Rn)∫
Ω

Aν
i (x, Du) Div

ν dx +
∫
Ω

gν(x, u, Du) vν dx =
∫
Ω

fν vν dx

∀ v ∈ W 1,p
0 (Ω ,Rn) ∩ L∞(Ω ,Rn).

(3.17)

The existence of a weak solution of the above problem has been proved in [8].
So that about the regularity we can prove the following
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Theorem 1. Let assumptions (3.2), (3.3) (3.4), (3.5), (3.12), (3.13), (3.14), (3.16) be satisfied and let
u ∈ W 1,p

0 (Ω ,Rn) be a weak solution of the problem (3.15).
Then

V (Du) ∈ L2,λ
loc (Ω ,RnN ), Du ∈ Lp,λ

loc (Ω ,RnN ) (3.18)

and for any Ω ′ ⊂⊂ Ω there exist two positive constants c1 and c2, depending only on data, such that

∥V (Du)∥L2,λ(Ω ′) ≤ c1, (3.19)

and

∥Du∥Lp,λ(Ω ′) ≤ c2. (3.20)

Remark 4. The previous Morrey regularity result holds as well if λ > N −p assuming also u ∈ L∞(Ω ,Rn).

To prove the differentiability of a weak solution u we shall require the following Hölder continuity
assumption on the map x → A(x, ξ):{

there exist L > 0 and η ∈]0, 1] such that
|A(x, ξ) − A(x0, ξ)| ≤ L|x − x0|η(s2 + |ξ|2)

p−1
2 , ∀x, x0 ∈ Ω , ξ ∈ RnN .

(3.21)

Theorem 2. Let the assumptions (3.2), (3.3), (3.4), (3.5), (3.12), (3.13), (3.14), (3.16), (3.21) be satisfied
and let u ∈ W 1,p

0 (Ω ,Rn) be a weak solution of the problem (3.15). Set

δ = min
{

1,
λ

2

}
. (3.22)

Then

V (Du) ∈ W t,2
loc (Ω ,RnN ), Du ∈ W

2t/p,p
loc (Ω ,RnN ) (3.23)

for every t ∈ [0, ηδ[.
Moreover, for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω there exist two positive constants c1 and c2,

independent on u, such that

[V (Du)]2W t,2(Ω ′) ≤ c1

[∫
Ω ′′

(sp + |Du|p) dx + ∥V (Du)∥2
L2,θ(Ω ′′)

]
(3.24)

and

[Du]p
W 2t/p,p(Ω ′)

≤ c2

[∫
Ω ′′

(sp + |Du|p) dx + ∥Du∥p

Lp,θ(Ω ′′)

]
. (3.25)

Remark 5. In the case λ > N − p the differentiability result stated above holds for the bounded weak
solutions of the problem (3.15).

Remark 6. As a consequence of the fractional Sobolev embedding Theorem 2.5 we gain a better integrability
on Du. Namely,

Du ∈ L
pn

n−2t
loc (Ω ,RnN ) for every t ∈ [0, ηδ[

where δ is the number defined in (3.22).



Please cite this article in press as: S. Leonardi, Morrey estimates for some classes of elliptic equations with a lower order term, Nonlinear Analysis
(2018), https://doi.org/10.1016/j.na.2018.05.010.

8 S. Leonardi / Nonlinear Analysis ( ) –

3.1. Optimality of the result

The above result turns out to be optimal for this class of systems. As a matter of fact, as shown below,
the differentiability of a solution fails whether λ = 0, that is under the sole requirement that f is just in
L1(Ω ,Rn), while in the case of the operator without lower order term a small amount of differentiability
still holds (see [61]).

Given a vector u ∈ Rn and a real number k > 0 let us denote by Tk(u) the vector-valued function whose
components are defined by

[Tk(u)]ν =

⎧⎨⎩uν if |u| ≤ k

k
uν

|u|
if |u| > k

(3.26)

for ν = 1, . . . , n. Moreover, if v ∈ W 1,p
0 (Ω ,Rn) then Tk(v) ∈ W 1,p

0 (Ω ,Rn) and for any i = 1, . . . , N and
ν = 1, . . . , n and it holds

Di[Tk(v)]ν =

⎧⎪⎨⎪⎩
Div

ν if |v| ≤ k

k

|v|

[
Div

ν − 1
|v|2

vνvµDiv
µ

]
if |v| > k

see [49].
Let n = 2 (or n = 1), Ω = B(0, 1/2) and, for a. e. x ∈ B(0, 1/2), define

u(x) =
(∫ 1/2

|x|

1
ρn/2|logρ|

dρ,

∫ 1/2

|x|

1
ρn/2|logρ|

dρ

)
.

We can readily prove that u ∈ W 1,2
0 (B(0, 1/2),R2) is a solution of the Dirichlet problem associated to

the system

− ∆u + T1(u)|Du|2 = f(x)

where

f(x) = 1 − (n/2 − 1)log|x|
|x|n/2+1

log2|x|
+ T1(u(x))|Du(x)|2.

Easy calculations show that

Du ̸∈ L2,σ
loc (Ω ,R2N ) for any σ ∈]0, N [,

this implies that the vector-valued function f belongs to L1(Ω ,R2) but does not belong to L1,σ(Ω ,R2) for
any σ ∈]0, N [.

Moreover

Du ̸∈ W t,2
loc (Ω ,R2n) for any t ∈]0, 1[

since otherwise, being W t,2
loc (Ω ,R2n) ⊂ L

2n
n−2t
loc (Ω ,R2n), it would be Du ∈ L2,n−2t

loc (Ω ,R2n).

4. Operators with degenerate lower order term

Here we present some results about the regularity of a solution of the Dirichlet problem associated to the
singular equation

− div(a(x)Du) + M
|Du|2

uθ
= f(x) in Ω (4.1)
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where Ω is an open bounded subset of RN (N ≥ 3) with smooth boundary, a(x) is a L∞-matrix satisfying the
standard ellipticity condition, θ ∈]0, 1[, M is a positive constant and f is sufficiently regular i.e. it belongs
to a suitable Morrey space Lq,λ(Ω), with q ≥ 1, to be specified later on.

There is a huge literature about the problems with quadratic term in the gradient (see [9,13,43]) also
for high-order equations whose coefficients satisfy a strengthened ellipticity condition (see [21] and see also
[30–32] for more details concerning such kind of high-order equation), but they do not consider a singularity
in the lower order term.

The problem (4.1) has been studied in the paper [4] by D. Arcoya, J. Carmona, T. Leonori, P. J. Mart́ınez-
Aparicio, L. Orsina, F. Petitta and in the paper [10] by L. Boccardo where the source term f belonged to
Lq(Ω) with q ≥ 1.

Here we will extend to the gradient of a solution the Morrey property of the right-hand side f and we will
show that, in some cases, we can improve some results contained in [4,10] without increasing the summability
of f .

It remains an open problem how to extend Mingione’s theory to the case when the right-hand side f is a
Radon measure or it is slightly more regular, but not more than L1, for instance when it stays in L1,λ with
0 ≤ λ ≤ N − 2 (see e.g. [3]). In this case we cannot perform the decomposition of a solution in the “good
part” and the “bad part” as it was done e.g. in [26] (see also [28,38,39,50,51,53–59]).

We now denote by a(x) a symmetric matrix whose entries aij(x) for i, j = 1, . . . , N are bounded functions
satisfying the following standard structural conditions for a.e. x ∈ Ω and for every ξ ∈ RN :

∃Λ1, Λ2 > 0 : Λ1 |ξ|2 ≤ aij(x)ξiξj ≤ Λ2 |ξ|2 . (4.2)

Let us consider the following Dirichlet problem⎧⎨⎩ − div(a(x)Du) + M
|Du|2

uθ
= f in Ω

u = 0 on ∂Ω

(4.3)

where M denotes a positive constant, θ > 0 and f belongs to a suitable Morrey space to be specified later
on.

By weak solution of the above problem we mean a function u such that⎧⎪⎪⎨⎪⎪⎩
u ∈ H1

0(Ω), u > 0,
|Du|2

uθ
∈ L1(Ω)∫

Ω

a(x) DuDφ dx + M

∫
Ω

|Du|2

uθ
φ dx =

∫
Ω

fφ dx , ∀ φ ∈ H1
0(Ω) ∩ L∞(Ω).

(4.4)

Existence (and nonexistence) of positive solutions of the problem (4.3) has been studied in [4,10,29].
Under hypothesis (4.2), if 0 < θ < 2,

f ∈ Lm(Ω) with m = min
{(2∗

θ

)′
,
(
2∗)′

}
(4.5)

and it satisfies moreover the assumption

ess inf
{

f(x), x ∈ ω
}

> 0 for all ω ⊂⊂ Ω . (4.6)

Remark 4.1. If 0 < θ < 1, then m =
( 2∗

θ

)′ and the assumption (4.6) has been weakened by Boccardo
in [10]. Namely, it can be assumed that f ≥ 0 and f ̸≡ 0 in Ω . In the case θ = 1, one has to assume moreover
that Λ1 > 2M . In [5], Corollary 2.12, it has been established the uniqueness of the solution.
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4.1. Gradient integrability in the case of regular right-hand side

The following theorem states the regularity of Du in a suitable Morrey space which, in turn, will be a
fundamental tool to obtain the fractional differentiability of the gradient of a solution u (see Theorem 4.4
below). It could be also used other kinds of Morrey spaces, similar to weighted Lebesgue spaces, as it was
done in [52].

We will focus on local estimates just in the case

0 < θ < 1 (4.7)

and we will prove the following

Theorem 4.2. Let the assumptions (4.2), (4.6) and (4.7) be satisfied and assume that the function f is
such that

f ∈ Lm,λ(Ω), (4.8)

with m =
( 2∗

θ

)′ = 2N
2N−θ(N−2) and 0 < λ < N .

Let u ∈ H1
0(Ω) be the solution of the problem (4.3) in the sense of (4.4).

Then Du ∈ L2,µ
loc (Ω) for every µ < µ̄, where

µ̄ =

⎧⎨⎩
2

2 − θ

λ

m
if 0 < λ < N − 2m

N − 2 if λ ≥ N − 2m.
(4.9)

Moreover, there exists a positive constant c, independent of u, such that

∥Du∥L2,µ
loc (Ω) ≤ c (4.10)

for every µ < µ̄.

Remark 4.3. Theorem 4.2 naturally extends Theorem 1.1 in [4], Theorems 3.1 and 4.1 in [10] and
Theorem 1.1 in [29] to the framework of Morrey spaces.

Note that if 0 < λ < N − 2 then λ < µ̄ ≤ N − 2.
Furthermore, observe that if f ∈ Lm̄(Ω), with m̄ > m =

( 2∗

θ

)′, then f ∈ Lm,λ(Ω) with λ = N
(
1 − m

m̄

)
,

where λ < N − 2m if m̄ < N
2 , otherwise λ ≥ N − 2m.

Once the Morrey estimate (4.10) is established, following the proof of Theorem 4 in [27] exploiting the
method introduced in [61] (see also [1,26,40]). We are able to prove the fractional differentiability of Du.
Namely, the following Theorem holds.

Theorem 4.4. Let the assumptions (4.2), (4.7) and (4.8) be satisfied. Assume that aij ∈ C0,η(Ω), 0 < η < 1,
and let u ∈ H1

0(Ω) be a positive weak solution of the problem (4.3).
Then

Du ∈ Wt,2
loc(Ω) (4.11)

for every t ∈ [0, ηδ[ and for every δ < min
{

1, µ̄
2
}

, with µ̄ defined in (4.9).
Moreover, for every couple of open subset Ω ′ ⊂⊂ Ω ′′ ⊂⊂ Ω there exists a positive constant c, independent

of u, such that

[Du]2Wt,2(Ω ′) ≤ c

[∫
Ω ′′

|Du|2 dx + ∥Du∥2
L2,µ(Ω ′′)

]
, (4.12)

for every µ < µ̄.
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4.2. Counterexamples to the regularity of the gradient

In this section we construct two counterexamples to show that our results are somehow optimal.

4.2.1. Counterexample to Morrey regularity
This example shows that the Morrey regularity of the right-hand side is transmitted to the gradient of a

solution through the lower order term.
Namely, we produce a solution v ∈ H1

0(Ω) of an equation of the type (4.3) without lower order term
(i.e. M = 0) which has no gradient in L2,λ(Ω) for any λ > 0, although the right-hand side belongs to a
suitable Morrey space.

Let v : B1/2(0) → R be the function defined as

v(x) =
∫ 1/2

|x|

1
tN/2|log t|

dρ . (4.13)

Observe that, being

∂v(x)
∂xi

= − xi

|x|
1

|x|
N
2 log|x|

and |Dv(x)|2 = 1
|x|N log2|x|

,

it can readily seen that v ∈ W 1,1
0 and that

Dv ∈ L2(B1/2(0)
)
, Dv ̸∈ L2,µ

(
B1/2(0)

)
for any µ > 0. (4.14)

Moreover, set

g(x) ≡
1 −

(
N
2 − 1

)
log|x|

|x|
N
2 +1log2|x|

= ∆v(x),

we have that

lim
ρ→0+

∫
Bρ

⏐⏐⏐⏐ 1−
(

N
2 −1

)
log|x|

|x|
N
2 +1log2|x|

⏐⏐⏐⏐m dx

ρλ
< +∞

where m =
(

2∗

θ

)′
, θ is a fixed number in ]0, 1[, λ = N(1−θ)(N−2)

2N−θ(N−2) < N − 2m.
So that

g(x) ∈ Lm,λ(B1/2(0)) .

According to Theorem 4.2, for any fixed positive constant M , the function u(x), solution of the problem⎧⎨⎩
u ∈ H1

0
(
B1/2

(
0
))

− ∆u + M
|Du|2

uθ
= g in B1/2

(
0
)

,

is such that

Du ∈ L2,µ
loc

(
B1/2(0)

)
with µ > λ.

On the other hand, since as well

m ≡
(2∗

θ

)′
<

2(N − λ)
N − λ + 2 ,
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then, according to Theorem 3.1 by Adams [2] (see also [62]), a solution u of the problem (with M = 0){
u ∈ W1,1

0
(
B1/2

(
0
))

− ∆u = g in B1/2
(
0
) (4.15)

is such that

Du ∈ L
m(N−λ)
N−λ−m

,λ(B1/2(0)) .

It is worthwhile to observe that, with our choice of m and λ, it is

m(N − λ)
N − λ − m

= 2
(

1 − λ

N

)
(2).

Moreover we stress that even if the function u(x) = −v(x) ∈ H1
0 (B1/2(0)) (3) is the weak solution of the

problem (4.15), as previously seen, it is

Du = −Dv ̸∈ L2,µ
loc

(
B1/2(0)

)
for any µ > 0.

4.2.2. Counterexample to differentiability
By this second example we show that the presence of the lower-order term does not ensure the

differentiability of a solution if the right-hand side does not belong to any Morrey space, i.e. if it is just in
a Lebesgue space.

The first counterexample is flexible enough to be modified for our purposes and thus, for the sake of
simplicity, we keep the notation of the previous subsection for v(x), g(x), θ, m, λ.

We preliminarily observe that, being

tN/2|ln|t|| = o (t) as t → 0,

then

lim
|x|→0

v(x) = +∞.

Moreover it can be readily proved that

vθ(x) = O

⎛⎝ 1

|x|θ
(

N
2 −1

)⏐⏐ log|x|
⏐⏐θ
⎞⎠ as |x| → 0

so that the function

h(x) ≡ |Dv(x)|2

(v(x))θ

is such that

h(x) ∈ L
m(

B1/2(0)
)
, h(x) ̸∈ Lm,µ

(
B1/2(0)

)
for any µ > 0.

2 Note that, in general, it is

L
2(·) ⊂ L

2(1− ν

N
),ν(·) 0 < ν < N .

3 v(x) from (4.13).
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As a consequence, the function h(x) − g(x) ̸∈ Lm,µ
(
B1/2(0)

)
for any µ > 0.

In this way, the function v(x) ∈ H1
0(B1/2(0)) is solution of the equation

− ∆v + |Dv|2

vθ
= h(x) − g(x)

but, as we will see, its gradient is not fractionally differentiable.
Indeed, if it happened to be

Dv ∈ Wt,2
loc(Ω) for some t̄ ∈]0, 1[

then, in force of the embedding Wt̄,2
loc(Ω)⊂L

2N
N−2t̄
loc (Ω) (see Theorem 2.5), it should also be Dv ∈ L

2, 2N
N−2t̄

loc (Ω).
But this is false as we have shown in (4.14).

4.3. Gradient regularity in the case of measure right-hand side

In this section we will consider the problem (4.3), under the assumptions (4.2) and (4.6), when the
right-hand side satisfies

f ∈ L1,λ(Ω), λ ∈]0, N − 2[. (4.16)

By a solution of the problem (4.3) we now mean a function u such that⎧⎪⎪⎨⎪⎪⎩
u ∈ W1,1

0 (Ω), u > 0,
|Du|2

uθ
∈ L1(Ω)∫

Ω

a(x) DuDφ dx + M

∫
Ω

|Du|2

uθ
φ dx =

∫
Ω

fφ dx , ∀ φ ∈ C∞
0 (Ω).

(4.17)

Here we prove the following

Theorem 4.5. Let the hypotheses (4.2), (4.6), (4.7) and (4.16) be satisfied. Then there exists a solution u

of the problem (4.17)) such that

• Du ∈ Lσ̄,λ
loc (Ω) where σ̄ = (N−λ)(2−θ)

N−λ−θ ,
• DTk(u) ∈ L2,λ

loc (Ω) for every k ∈ N.

with corresponding norm estimates.

Remark 4.6. Observe that the presence of the lower order term improves the regularity of the solution in
comparison with analogous results for an operator only in principal part (see [24,25,61]).

Remark 4.7. If the right hand side f ∈ L1,λ(Ω), with N − 2 < λ < N and θ ∈]0, 2[, then there exists
a solution u of the problem (4.3) which belongs to L∞(Ω), thereby improving Theorem 1.1 in [4] (see
Remark 2.6 therein contained) and Theorem 1.5 part (1) in [29].

4.4. Gradient regularity in the case of right-hand side “below the duality exponent”

Here we deal with an intermediate case, in the sense that the right hand side is not merely a measure
and it does not belong to the right dual space (see [54,62]).

For further details on topics which are closed related to the present ones, also dealing with higher order
operators and weighted Morrey spaces the reader can refer to [40–42,61,63] and also to [24,26–28,38,39,43,50–
53,55–60].
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Theorem 4.8. Let the assumptions (4.2), (4.6) and (4.7) be satisfied and assume that the function f is
such that

f ∈ Lm,λ(Ω), (4.18)

with 1 < m <
( 2∗

θ

)′ (4) and λ ∈]0, N [.
Then, there exists a weak solution of the problem (4.3), in the sense of definition (4.17), such that

Du ∈ Lσ(µ),µ
loc (Ω), for every µ < µ̄

where

σ(µ) = m(N − µ)(N − 2)(2 − θ)
(N − µ)(N − 2m) + m[2N − θ(N − 2)] − 2N

and (4.19)

µ̄ = min
{

N − 2
N − 2m

λ, N − 2
}

.

Moreover, there exists a positive constant c, independent of u, such that

∥Du∥
Lσ(µ),µ

loc (Ω)
≤ c. (4.20)

Remark 4.9. Let us consider the equation

∆u = f in RN .

A well known result due to D. Adams [2] states that if f ∈ Lm,λ with 1 < m < 2(N−λ)
N−λ+2 , then Du ∈ L

m(N−λ)
N−λ−m

,λ

and the exponent m(N−λ)
N−λ−m is sharp. We point out that the presence of a lower order term having quadratic

growth with respect to |Du| and singular with respect to u, increases, at least locally, the summability of
the gradient of the solution.

As a matter of the fact, let f ∈ Lm,λ with 1 < m < 2(N−λ)
N−λ+2 and 0 < λ < N − 2, and let us fix

θ̄ = N(N−λ−2)
(N−2)(N−λ) . Note that this choice implies 2(N−λ)

N−λ+2 = 2N
2N−θ(N−2) .

Thus, by Theorem 4.8 there exists a weak solution of the homogeneous Dirichlet problem related to the
equation

− ∆u + M
|Du|2

uθ̄
= f in Ω

such that Du ∈ Ls,λ
loc (Ω), where

s = m(N − λ)(N − 2)(2 − θ̄)
(N − λ)(N − 2m) + m[2N − θ̄(N − 2)] − 2N

>
m(N − λ)
N − λ − m

.

On the other hand, for every θ ∈]0, 1[, let us fix λ̄ = N (N−2)(1−θ)
N−θ(N−2) . This choice implies 2(N−λ̄)

N−λ̄+2 = 2N
2N−θ(N−2) .

Assume that f ∈ Lm,λ̄ with 1 < m < 2(N−λ̄)
N−λ̄+2 , by Theorem 4.8 there exists a solution of the homogeneous

Dirichlet problem related to the equation

− ∆u + M
|Du|2

uθ
= f in Ω

such that Du ∈ Ls,λ̄
loc (Ω), where s = m(N−λ̄)(N−2)(2−θ)

(N−λ̄)(N−2m)+m[2N−θ(N−2)]−2N
> m(N−λ̄)

N−λ̄−m
.

4 Note that if θ ∈]0, 1[ then min
{(

2∗

θ

)′
,
(

2∗
)′}

= 2N
2N−θ(N−2) .
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Remark 4.10. The result of Theorem 4.8 links up continuously with the results already proved in [20].
In fact, when m → m̄ =

( 2∗

θ

)′ then

σ(µ) → 2 and µ̄ → min
{ 2

2 − θ

λ

m̄
, N − 2

}
while, when m → 1 then

σ(µ) → 1 and µ̄ → λ.

Moreover, if λ → 0 then σ(µ) → mN(2−θ)
N−mθ and we obtain, at least formally, the results already proved

in [10,29].

Remark 4.11. If λ ≥ N − 2m Theorem 4.8 gives us a solution whose gradient belongs in Ls,µs
loc (Ω), for

every s < 2, for some µs ∈]0, N − 2[.
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Pisa, 1980.

http://refhub.elsevier.com/S0362-546X(18)30134-2/sb1
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb2
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb3
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb3
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb3
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb4
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb4
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb4
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb5
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb5
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb5
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb6
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb6
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb6
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb7
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb7
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb7
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb8
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb8
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb8
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb9
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb9
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb9
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb10
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb10
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb10
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb11
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb11
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb11
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb12
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb12
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb12
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb13
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb13
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb13
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb14
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb14
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb14
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb15
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb15
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb15
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb16
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb16
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb16
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb17
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb17
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb17
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb18
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb19
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb19
http://refhub.elsevier.com/S0362-546X(18)30134-2/sb19


Please cite this article in press as: S. Leonardi, Morrey estimates for some classes of elliptic equations with a lower order term, Nonlinear Analysis
(2018), https://doi.org/10.1016/j.na.2018.05.010.

16 S. Leonardi / Nonlinear Analysis ( ) –

[20] P. Cianci, G.R. Cirmi, S. D’Asero, S. Leonardi, Morrey estimates for solutions of singular quadratic non linear equations,
Ann. Mat. Pura Appl. 196 (5) (2017).

[21] G.R. Cirmi, S. D’Asero, S. Leonardi, Fourth-order nonlinear elliptic equations with lower order term and natural growth
conditions, Nonlinear Anal. TMA 108 (2014) 66–86.

[22] G.R. Cirmi, S. D’Asero, S. Leonardi, Gradient estimate for solutions of a class of nonlinear elliptic equations below the
duality exponent, AIP Conf. Proc. 1863 (2017).

[23] G.R. Cirmi, S. D’Asero, S. Leonardi, Gradient estimate for solutions of nonlinear singular elliptic equations below the
duality exponent, Math. Meth. Appl. Sci. 41 (1) (2018).

[24] G.R. Cirmi, S. Leonardi, Regularity results for the gradient of solutions of linear elliptic equations with L1,λ data, Ann.
Mat. Pura Appl. (4) 185 (2006).

[25] G.R. Cirmi, S. Leonardi, Regularity results for solutions of nonlinear elliptic equations with L1,λ data, Nonlinear Anal.
TMA 69 (1) (2008) 230–244.

[26] G.R. Cirmi, S. Leonardi, Higher differentiability for solutions of linear elliptic systems with measure data, Discrete Contin.
Dyn. Syst. 26 (1) (2010) 89–104.

[27] G.R. Cirmi, S. Leonardi, Higher differentiability for the solutions of nonlinear elliptic systems with lower order terms and
L1,θ-data, Ann. Mat. Pura Appl. (4) 193 (1) (2014).
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