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In this paper we prove existence, uniqueness, and regularity results for solutions of 
nonlinear elliptic equations in which the differential operator has logarithmic growth 
with respect to the gradient. The solution will belong to the Sobolev space W 1,1

0 (Ω), 
to the Orlicz–Sobolev space generated by the function t log(1 + |t|), but not to any 
Sobolev space W 1,p

0 (Ω), with p > 1.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a bounded open set in RN , N ≥ 2, and let M : Ω → R
N2 be a matrix-valued function such 

that there exist 0 < α ≤ β such that

M(x)ξ · ξ ≥ α|ξ|2,
∣∣M(x)

∣∣ ≤ β, (1.1)

for almost every x in Ω, and for every ξ in RN . Moreover we assume that

f belongs to LN (Ω). (1.2)

In this paper we study the existence of distributional solutions belonging to W 1,1
0 (Ω) (but not to W 1,p

0 (Ω)
for every p > 1) of the boundary value problem

⎧⎨
⎩−div

(
log(1 + |∇u|)

|∇u| M(x)∇u

)
= f in Ω,

u = 0 on ∂Ω.

(1.3)
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An existence result for solutions of (1.3) is a consequence of the results of [16,17] (see also [22]), concerning 
nonlinear elliptic problems in non-reflexive Banach spaces, but we will give here a direct proof of the existence 
of a solution u (see Theorem 3.1 in Section 3). We point out that one of the main difficulties lies in the 
non-reflexivity of the Orlicz–Sobolev space where we find the solution u. However, we overcome this difficulty 
using a priori estimates and the Dunford–Pettis theorem.

Furthermore, and thanks to the assumption (1.2), we will prove the existence of a solution belonging 
to L∞(Ω); to this aim, note that the assumption for the existence of a bounded solution for a p-laplacian 
(p > 1) type elliptic equation is that f belongs to Lm(Ω), with m > N

p ; in our case, the growth of the 
operator is in between the case p = 1 and the case p > 1, and we obtain bounded solutions for data in 
LN (Ω), i.e., under a stronger assumption than f in Lm(Ω), m > N

p , for some p > 1, but weaker than the 
assumption f in Lm(Ω), m > N which is the one which corresponds to p = 1.

Note that if M is the identity matrix, our problem is variational, since it can be seen as the Euler–Lagrange 
equation for the functional

J(v) =
∫
Ω

[(
1 + |∇v|

)
log

(
1 + |∇v|

)
− |∇v|

]
−
∫
Ω

fv. (1.4)

We recall that variational integrals of nearly linear growth (but different from the one in (1.4)) were 
introduced in [13] for the study of non-Newtonian fluids of Prandtl–Eyring type, and studied in [18,2,12,21,
24,6,14,15]. In particular, in [18] regularity results for the gradients of minima are proved (with respect to 
the regularity of the data).

The plan of the paper is as follows: in the next section we will recall some results on Orlicz, and Orlicz–
Sobolev spaces, while the main result will be proved in Section 3. In Section 4 we will prove an existence 
and uniqueness results for solutions of (1.3) if f belongs to L1(Ω).

2. Some results on Orlicz spaces

Let A : R+ → R
+ be a convex function, and let LA(Ω) be the space of measurable functions u on Ω such 

that there exists L > 0 such that
∫
Ω

A

(
|u|
L

)
< +∞.

In LA(Ω) we can define the Luxemburg norm given by

‖u‖LA(Ω) = inf
{
λ > 0 :

∫
Ω

A

(
|u|
λ

)
≤ 1

}
,

which makes LA(Ω) a Banach space. Given a convex function A, we denote by Ã its convex conjugate 
function, and we recall that

st ≤ A(s) + Ã(t), ∀s, t ∈ R
+, (2.1)

and that, if

A(s) =
s∫
a(t) dt,
0
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then

Ã(s) =
s∫

0

a−1(t) dt.

We also recall that LÃ(Ω) is the dual space of LA(Ω) and that inequality (2.1) and the definition of norm 
in LA(Ω) and LÃ(Ω) imply

∫
Ω

u(x)
‖u‖LA(Ω)

v(x)
‖v‖LÃ(Ω)

≤
∫
Ω

A

(
u(x)

‖u‖LA(Ω)

)
+

∫
Ω

Ã

(
v(x)

‖v‖LÃ(Ω)

)

≤ 1 + 1,

that is ∣∣∣∣
∫
Ω

uv

∣∣∣∣ ≤ 2‖u‖LA(Ω)‖v‖LÃ(Ω), ∀u ∈ LA(Ω), ∀v ∈ LÃ(Ω). (2.2)

For example, if A(s) = sp

p , then Ã(s) = sp
′

p′ , with p′ = p
p−1 , and LA(Ω) and LÃ(Ω) are the “standard” 

Lebesgue spaces Lp(Ω) and its dual Lp′(Ω). If, instead, A(s) = es − s − 1, then, since

A(s) =
s∫

0

a(t) dt,

with a(s) = es − 1, we have a−1(t) = log(1 + t), so that

Ã(s) =
s∫

0

log(1 + t) dt = (1 + s) log(1 + s) − s.

Thus, by (2.1), we have

st ≤ es − s− 1 + (1 + t) log(1 + t) − t, ∀s, t ∈ R
+,

which then implies, dropping negative terms,

st ≤ es − 1 + t log(1 + t), ∀s, t ∈ R
+. (2.3)

If u belongs to LA(Ω), one cannot in general control the norm of u with the integral of A(u). One has 
however the estimate

‖u‖LA(Ω) ≤ max
{

1,
∫
Ω

A(u)
}

= max
{
1,
∥∥A(u)

∥∥
L1(Ω)

}
. (2.4)

If A satisfies the so-called Δ2 condition, i.e., if there exist s0 ≥ 0 and C > 0 such that

A(2s) ≤ CA(s), ∀s ≥ s0,

then L∞(Ω) is dense in LA(Ω). Once one has defined the Orlicz space LA(Ω), one can define the Orlicz–
Sobolev space W 1,A(Ω) as the space of LA(Ω) functions whose distributional derivatives belong to LA(Ω), 
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and W 1,A
0 (Ω) as the closure of C∞

0 (Ω) in W 1,A-norm. As in the “standard” Lebesgue–Sobolev case, W 1,A
0 (Ω)

is continuously embedded in LB(Ω) (see [10]), with B given as follows: first we define

H(s) =
[ s∫

0

(
t

A(t)

) 1
N−1

dt

]N−1
N

,

and then define B(s) = A(H−1(s)). The embedding between norms becomes, once written as integrals,

∫
Ω

B

(
|u|

[M
∫
Ω
A(|∇u|)] 1

N

)
≤

∫
Ω

A
(
|∇u|

)
, ∀u ∈ W 1,A

0 (Ω), (2.5)

for some M > 0 independent of u. If A(s) = s log(1 +s), then it can be proved (see [10]) that one can choose 
B(s) = [s log(1 + s)]

N
N−1 (see also [11]).

In the following, we will use the continuous function L : RN → R
N , defined by

L(ξ) = log(1 + |ξ|)
|ξ| ξ, ∀ξ ∈ R

N ,

and the convex, Δ2 function A : RN → R defined by

A(ξ) = L(ξ) · ξ = |ξ| log
(
1 + |ξ|

)
, ∀ξ ∈ R

N .

Note that, since (2.3) holds for A, then, choosing Ã(t) = et − 1, it follows that (2.2) holds for A and Ã.

3. Existence

In this section we prove the main result of this paper.

Theorem 3.1. Assume (1.1) and (1.2). Then there exists a unique solution of (1.3), that is, a function 
u ∈ W 1,A

0 ∩ L∞(Ω) such that

∫
Ω

log(1 + |∇u|)
|∇u| M(x)∇u · ∇v =

∫
Ω

fv, ∀v ∈ W 1,A
0 (Ω). (3.1)

Proof. Let uε be a weak solution of the Dirichlet problem
⎧⎨
⎩ εL(uε) − div

(
log(1 + |∇uε|)

|∇uε|
M(x)∇uε

)
= f in Ω,

uε = 0 on ∂Ω,

(3.2)

where L = −Δ. The existence of uε in W 1,2
0 (Ω) is a consequence of the Leray–Lions theory (see [20,9,7,

19]); furthermore, since f belongs to LN (Ω), and N > N
2 , every uε belongs to L∞(Ω) by the results of 

Stampacchia (see [23]), although not uniformly in ε.
Step 1: Existence and uniqueness in W 1,A

0 (Ω).
First of all, using uε as a test function in (3.2), we have, dropping nonnegative terms, and using (1.1),

α

∫
|∇uε| log

(
1 + |∇uε|

)
≤ ‖f‖LN (Ω)‖uε‖L1∗ (Ω) ≤ S‖f‖LN (Ω)

∫
|∇uε|,
Ω Ω
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where S is the Sobolev constant for the embedding of W 1,1
0 (Ω) in L1∗(Ω). Therefore, if S > 0 we have

∫
Ω

|∇uε| ≤ S|Ω| + 1
log(1 + S)

∫
{|∇uε|≥S}

|∇uε| log
(
1 + |∇uε|

)

≤ S|Ω| +
S‖f‖LN (Ω)

α log(1 + S)

∫
Ω

|∇uε|,

which implies, choosing S large enough, that there exists R > 0 such that

∫
Ω

|∇uε| ≤ R,

∫
Ω

|∇uε| log
(
1 + |∇uε|

)
≤ R. (3.3)

By the compactness of the Sobolev embedding, there exists a subsequence (not relabelled) such that

uε converges in L1(Ω) and a.e. to a function u. (3.4)

Let now E ⊂ Ω be measurable, and S > 0; we have

∫
E

∣∣∣∣∂uε

∂xi

∣∣∣∣ ≤
∫
E

|∇uε|

≤ S|E| + 1
log(1 + S)

∫
{|∇uε|≥S}

|∇uε| log
(
1 + |∇uε|

)

≤ S|E| + R

log(1 + S) . (3.5)

Choosing first S in such a way that the second term of the right hand side is small, and then |E| so that 
the first term of the right hand side is small as well, we have that {∂uε

∂xi
} is equiintegrable. Thus, by the 

Dunford–Pettis theorem, and up to subsequences (not relabelled), there exists Yi in L1(Ω) such that ∂uε

∂xi

weakly converges to Yi in L1(Ω).
Now we want to prove that

uε weakly converges to u in W 1,1
0 (Ω), (3.6)

and we follow [3,5]. Since ∂uε

∂xi
is the distributional partial derivative of uε, we have

∫
Ω

∂uε

∂xi
ϕ = −

∫
Ω

uε
∂ϕ

∂xi
, ∀ϕ ∈ C∞

0 (Ω).

Passing to the limit, using that ∂uε

∂xi
weakly converges to Yi in L1(Ω), and that uε strongly converges to u

in L1(Ω), we obtain

∫
Ω

Yiϕ = −
∫
Ω

u
∂ϕ

∂xi
, ∀ϕ ∈ C∞

0 (Ω),

which implies that Yi = ∂u , so that u belongs to W 1,1
0 (Ω).
∂xi
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The convergence (3.6) and the second of (3.3) imply (see [8])
∫
Ω

|∇u| log
(
1 + |∇u|

)
≤ R, (3.7)

which then implies that u belongs to W 1,A
0 (Ω), as desired.

Since by (2.3) we have

|∇u| log
(
1 + |∇uε|

)
≤ |∇u| log

(
1 + |∇u|

)
+ |∇uε|,

integrating on Ω, and using (3.3) and (3.7), we get

∫
Ω

|∇u| log
(
1 + |∇uε|

)
≤ 2R. (3.8)

Note that it is not possible to use the function u as a test function in (3.2) since it does not belong to 
W 1,2

0 (Ω). However, thanks to the density of C∞
0 (Ω) in both W 1,1

0 (Ω) and W 1,A
0 (Ω), for every k > 0 there 

exists a C∞
0 (Ω) function Uk such that

‖u− Uk‖W 1,1
0 (Ω) ≤

1
k
,

∥∥∇(u− Uk)
∥∥
LA(Ω) ≤

1
k
.

Using uε − Uk as a test function in (3.2), we have

〈
εL(uε), uε − Uk

〉
+

∫
Ω

M(x)L(∇uε) · ∇(uε − Uk) =
∫
Ω

f(uε − Uk).

Dropping the positive term ε〈L(uε), uε〉, we obtain

〈
εL(uε),−Uk

〉
+
∫
Ω

M(x)L(∇uε) · ∇(uε − Uk) ≤
∫
Ω

f(uε − Uk).

Since M(x)L(∇u) · ∇(uε − u) belongs to (and is bounded in) L1(Ω) thanks to (3.8), we have

〈
L(uε),−εUk

〉
+

∫
Ω

M(x)
[
L(∇uε) − L(∇u)

]
· ∇(uε − u) +

∫
Ω

M(x)L(∇uε) · ∇(u− Uk)

≤
∫
Ω

f(uε − u) +
∫
Ω

f(u− Uk) −
∫
Ω

M(x)L(∇u) · ∇(uε − u). (3.9)

We have

〈
L(uε),−εUk

〉
= −ε

∫
Ω

∇uε · ∇Uk,

and so, since the sequence {uε} is bounded in W 1,1
0 (Ω), and Uk belongs to C∞

0 (Ω), we have

lim
〈
L(uε),−εUk

〉
= 0. (3.10)
ε→0
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Furthermore,

lim
ε→0

∫
Ω

f(uε − u) = 0, (3.11)

and
∣∣∣∣
∫
Ω

f(u− Uk)
∣∣∣∣ ≤ C1

k
‖f‖LN (Ω). (3.12)

Furthermore, the use of (2.2) with A(s) = s log(1 + s) and Ã(s) = es − 1 (note that (2.2) holds true since 
st ≤ A(s) + Ã(t) by (2.3)) yields

∣∣∣∣
∫
Ω

M(x)L(∇uε) · ∇(u− Uk)
∣∣∣∣ ≤ 2β

∥∥∇(u− Uk)
∥∥
LA(Ω)

∥∥log
(
1 + |∇uε|

)∥∥
LÃ(Ω)

≤ 2β 1
k

max
(
1, ‖uε‖W 1,1

0 (Ω)
)
≤ C2

k
. (3.13)

We also have
∫
Ω

M(x)L(∇u) · ∇(uε − u) =
∫
Ω

M(x)
[
L(∇u) − L(∇Uk)

]
· ∇(uε − u)

+
∫
Ω

M(x)L(∇Uk) · ∇(uε − u) = I1 + I2

and, thanks to Lemma A.1 in Appendix A, and to (2.2),

|I1| ≤ 2β
∫
Ω

log
(
1 +

∣∣∇(u− Uk)
∣∣)∣∣∇(uε − u)

∣∣

≤ 4β
∥∥log

(
1 +

∣∣∇(u− Uk)
∣∣)∥∥

LÃ(Ω)

∥∥∇(uε − u)
∥∥
LA(Ω) ≤

C3

k
,

while

lim
ε→0

I2 = lim
ε→0

∫
Ω

M(x)L(∇Uk) · ∇(uε − u) = 0,

since M(x)L(∇Uk) is fixed in L∞(Ω), and ∇(uε − u) weakly converges to zero in (L1(Ω))N . Thus,

lim sup
ε→0

∫
Ω

M(x)L(∇u) · ∇(uε − u) ≤ C3

k
. (3.14)

Using (3.10)–(3.14), we have proved that

lim sup
ε→0

∫
M(x)

[
L(∇uε) − L(∇u)

]
· ∇(uε − u) ≤ C4

k
,

Ω
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which, together with the monotonicity of L(ξ), implies

lim
ε→0

∫
Ω

M(x)
[
L(∇uε) − L(∇u)

]
· ∇(uε − u) = 0. (3.15)

Adapting the proof of a result by Leray and Lions (see [20]), from (3.15) it follows that

∇uε(x) → ∇u(x) a.e. in Ω. (3.16)

This almost everywhere convergence and (3.5) allow to use the Vitali theorem to prove that

∇uε → ∇u strongly in
(
L1(Ω)

)N
, (3.17)

so that, thanks to the growth of L(ξ), we have

L(∇uε) → L(∇u) strongly in
(
Lr(Ω)

)N
, for every r ≥ 1. (3.18)

Thus, choosing ϕ in W 1,∞
0 (Ω) as a test function in (3.2), we obtain

ε
〈
L(uε), ϕ

〉
+

∫
Ω

M(x)L(∇uε) · ∇ϕ =
∫
Ω

fϕ.

Passing to the limit as ε tends to zero, which is possible by the above results, yields
∫
Ω

M(x)L(∇u) · ∇ϕ =
∫
Ω

fϕ, (3.19)

for every ϕ in W 1,∞
0 (Ω). Since u belongs to W 1,1

0 (Ω), if Ã = et − 1, we have

∫
Ω

Ã
(∣∣L(∇u)

∣∣) =
∫
Ω

|∇u| < +∞,

so that |L(∇u)| belongs to LÃ(Ω). Therefore, since W 1,∞
0 (Ω) is dense in W 1,A

0 (Ω), and since W 1,A
0 (Ω)

functions also belong to L
N

N−1 (Ω), from (3.19) it follows that (3.1) holds true.
Once (3.1) holds true, if u and v are two solutions in W 1,A

0 (Ω) of (1.3), uniqueness follows from the 
monotonicity of L(ξ).

Step 2: L∞(Ω) estimates.
To prove that u belongs to L∞(Ω), let Gk(s) = (|s| − k)+ sgn(s) for k > 0 and s in R. Since Gk(uε)

belongs to W 1,2
0 (Ω), we can choose it as a test function in (3.2) to obtain

α

∫
Ω

A
(∣∣∇Gk(uε)

∣∣) ≤ ∫
Ω

fGk(uε) ≤
∫
Ω

|f |
∣∣Gk(uε)

∣∣. (3.20)

Recalling the Orlicz–Sobolev embedding (2.5) for W 1,A
0 (Ω), we have

∫
B

(
|Gk(uε)|

[M
∫
Ω
A(|∇Gk(uε)|)]

1
N

)
≤

∫
A
(∣∣∇Gk(uε)

∣∣), (3.21)

Ω Ω
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where B(s) = [s log(1 + s)]1∗ . If we define

λ−N = M

α
‖f‖LN (Ω)

∥∥Gk(uε)
∥∥
L1∗ (Ω),

by the Hölder inequality and (3.20) we have,

M

∫
Ω

A
(∣∣∇Gk(uε)

∣∣) ≤ M

α

∫
Ω

|f |
∣∣Gk(uε)

∣∣ ≤ λ−N ,

so that (3.21) becomes, thanks to the fact that B is increasing,
∫
Ω

B
(
λ
∣∣Gk(uε)

∣∣) ≤ ∫
Ω

A
(∣∣∇Gk(uε)

∣∣) ≤ 1
α

∫
Ω

|f |
∣∣Gk(uε)

∣∣ ≤ λ−N

M
, (3.22)

that is,
∫
Ω

[
λ
∣∣Gk(uε)

∣∣ log
(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

≤ λ−N

M
,

which implies ∫
Ω

[∣∣Gk(uε)
∣∣ log

(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

≤ 1
M

[
λ−N

]1∗
.

Recalling the definition of λ, we obtain

∫
Ω

[∣∣Gk(uε)
∣∣ log

(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

≤ M
1

N−1

α1∗ ‖f‖1∗

LN (Ω)

∫
Ω

∣∣Gk(uε)
∣∣1∗

.

Let now δ > 0, and let s0 > 0 be such that δ log(1 + λs0) = 1; i.e., s0 = (e1/δ − 1)λ−1. Then

s = δs log(1 + λs0) ≤ δs log(1 + λs0) + s0 ≤ δs log(1 + λs) + s0,

which can be rewritten, recalling the expression for s0, as

s ≤ δs log(1 + λs) +
(
e1/δ − 1

)
λ−1.

Raising to the power 1∗, we then have

s1∗ ≤ Cδ
[
s log(1 + λs)

]1∗
+ Cδλ

−1∗
.

Therefore, we have∫
Ω

∣∣Gk(uε)
∣∣1∗

≤ Cδ

∫
Ω

[∣∣Gk(uε)
∣∣ log

(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

+ Cδ|Ak|λ−1∗
,

since the integral is on the set Ak = {|uε| ≥ k}. Thus, choosing δ < 1 such that CδM
1

N−1 ‖f‖1∗

LN (Ω) ≤
α1∗

2 , 
we have ∫ [∣∣Gk(uε)

∣∣ log
(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

≤ C1|Ak|λ−1∗
.

Ω
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We now have ∫
Ω

[∣∣Gk(uε)
∣∣ log

(
1 + λ

∣∣Gk(uε)
∣∣)]1∗

≥
[
log(2)

]1∗
∫

{λ|Gk(uε)|≥1}

∣∣Gk(uε)
∣∣1∗

,

and so ∫
{λ|Gk(uε)|≥1}

∣∣Gk(uε)
∣∣1∗

≤ C2|Ak|λ−1∗
. (3.23)

On the other hand,
∫

{λ|Gk(uε)|≤1}

∣∣Gk(uε)
∣∣1∗

≤
∫

{λ|Gk(uε)|≤1}∩Ak

λ−1∗ ≤ |Ak|λ−1∗
,

so that, summing with (3.23), and recalling the definition of λ,

∫
Ω

∣∣Gk(uε)
∣∣1∗

≤ C3|Ak|λ−1∗
= C4|Ak|

[ ∫
Ω

∣∣Gk(uε)
∣∣1∗

] 1
N

.

Therefore,
∫
Ω

∣∣Gk(uε)
∣∣1∗

≤ C5|Ak|1
∗
.

Choosing h > k, we arrive at

|Ah| ≤
C5

(h− k)1∗ |Ak|1
∗
,

which then implies, since 1∗ > 1, that there exists k0 = k0(Ω, N, f), such that |Ak0 | = 0 (see [23]). Hence, 
uε belongs to L∞(Ω), uniformly with respect to ε, and so u is in L∞(Ω) as well. �
4. L1(Ω) data

In this section we prove existence and uniqueness of entropy solutions for (1.3) if f only belongs to L1(Ω). 
First of all, following [1], we give the definition of entropy solution of (1.3).

Definition 4.1. A measurable function u such that Tk(u) belongs to W 1,A
0 (Ω) for every k > 0 is an entropy 

solution of (1.3) if

∫
Ω

log(1 + |∇u|)
|∇u| M(x)∇u · ∇Tk(u− ϕ) ≤

∫
Ω

fTk(u− ϕ), (4.1)

for every ϕ in W 1,A
0 (Ω) ∩ L∞(Ω).

Theorem 4.2. Let f be a function in L1(Ω). Then there exists a unique entropy solution u of (1.3). Fur-
thermore, log(1 + |∇u|) belongs to Lq(Ω), for every q < N .
N−1
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Proof. Let n ∈ N, and consider the solution un (given by Theorem 3.1) of the following problem:
⎧⎨
⎩−div

(
log(1 + |∇un|)

|∇un|
M(x)∇un

)
= Tn(f) in Ω,

un = 0 on ∂Ω.

(4.2)

Choosing v = Tk(un) as a test function in the formulation (3.1) of Eq. (4.2), we obtain
∫
Ω

A
(∣∣∇Tk(un)

∣∣) ≤ ∫
Ω

|f |
∣∣Tk(un)

∣∣ ≤ k‖f‖L1(Ω). (4.3)

By the Orlicz–Sobolev inequality (3.21) with B(s) = [s log(1 + s)]1∗ , we have

∫
Ω

[
|Tk(un)|

[Mk‖f‖L1(Ω)]
1
N

log
(

1 + |Tk(un)|
[Mk‖f‖L1(Ω)]

1
N

)]1∗

≤ k‖f‖L1(Ω),

which implies

∫
Ω

[∣∣Tk(un)
∣∣ log

(
1 + |Tk(un)|

[Mk‖f‖L1(Ω)]
1
N

)]1∗

≤ Mk1∗‖f‖1∗

L1(Ω).

Since |Tk(un)| = k on the set Ak = {|un| ≥ k}, we have

[
k log

(
1 +

(
M‖f‖L1(Ω)

) 1
N k

N−1
N

)]1∗
|Ak| ≤ Mk1∗‖f‖1∗

L1(Ω).

Hence,

|Ak| ≤
M‖f‖1∗

L1(Ω)

[log(1 + (M‖f‖L1(Ω))
1
N k

N−1
N )]1∗

.

Moreover, from (4.3) it follows that, for every ρ > 0,
∫

{|∇un|≥ρ}

A
(∣∣∇Tk(un)

∣∣) ≤ k‖f‖L1(Ω),

we deduce that

∣∣{|∇un| ≥ ρ
}∣∣ ≤ M‖f‖1∗

L1(Ω)

[log(1 + (M‖f‖L1(Ω))
1
N k

N−1
N )]1∗

+
k‖f‖L1(Ω)

ρ log(1 + ρ) .

With the choice

k = ρ

[log(1 + ρ)]
1

N−1
,

we obtain (after some simple calculations)

∣∣{|∇un| ≥ ρ
}∣∣ ≤ C

[log(1 + ρ)]
N

N−1
,

which implies that log(1 + |∇un|) is bounded in Lq(Ω), for every q < N .
N−1
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Using a result proved in [4] for general monotone operators, we have that there exists a measurable 
function u, with Tk(u) belonging to W 1,A

0 (Ω) for every k > 0, such that both un almost everywhere 
converges to u, and ∇un almost everywhere converges to ∇u (for the definition of ∇u, see [1]). The almost 
everywhere convergence of ∇un and the boundedness of log(1 + |∇un|) in Lq(Ω) imply that log(1 + |∇u|)
belongs to Lq(Ω), for every q < N

N−1 , as desired.
If we define

Q(x, ξ) = log(1 + |ξ|)
|ξ| M(x)ξ,

we have, if ψ belongs to W 1,∞
0 (Ω), and k > 0,

∫
Ω

[
Q(x,∇un) −Q(x,∇ψ)

]
· ∇Tk(un − ψ) +

∫
Ω

Q(x,∇ψ) · ∇Tk(un − ψ) =
∫
Ω

Tn(f)Tk(un − ϕ).

Using the monotonicity of Q, the almost everywhere convergence of ∇un, and the Fatou lemma, we obtain
∫
Ω

[
Q(x,∇u) −Q(x,∇ψ)

]
· ∇Tk(u− ψ) ≤ lim inf

n→+∞

∫
Ω

[
Q(x,∇un) −Q(x,∇ψ)

]
· ∇Tk(un − ψ),

while the Lebesgue theorem (and the almost everywhere convergence of un) implies

lim
n→+∞

∫
Ω

Tn(f)Tk(un − ψ) =
∫
Ω

fTk(u− ψ).

We observe now that |∇Tk(un − ψ)| is bounded in LA(Ω), and is almost everywhere convergent. Thus, by 
the Vitali theorem, ∇Tk(un − ψ) strongly converges in (L1(Ω))N to ∇Tk(u − ψ). Therefore, recalling that 
ψ is Lipschitz continuous, so that |Q(x, ∇ψ)| is in L∞(Ω),

lim
n→+∞

∫
Ω

Q(x,∇ψ) · ∇Tk(un − ψ) =
∫
Ω

Q(x,∇ψ) · ∇Tk(u− ψ).

Thus, putting together all the results, we obtain
∫
Ω

Q(x,∇u) · ∇Tk(u− ψ) ≤
∫
Ω

fTk(u− ψ), (4.4)

for every ψ in W 1,∞
0 (Ω). Recalling that W 1,∞

0 (Ω) is dense in W 1,A
0 (Ω) ∩ L∞(Ω), for every fixed ϕ in 

W 1,A
0 (Ω) ∩ L∞(Ω), there exists a sequence ψn in W 1,∞

0 (Ω) such that

‖ψn − ϕ‖W 1,A
0 (Ω) ≤

1
n
, ‖ψn‖L∞(Ω) ≤ ‖ϕ‖L∞(Ω) + 1.

Therefore, choosing ψ = ψn in (4.4), we have
∫
Ω

Q(x,∇u) · ∇Tk(u− ψn) ≤
∫
Ω

fTk(u− ψn).

Using the convergence of ψn to ϕ, it is easy to pass to the limit in the right hand side. We remark now that the 
integral in the left hand side is on the set {|u −ψn| ≤ k}, which is contained in the set {|u| ≤ k+‖ψn‖L∞(Ω)}; 



620 L. Boccardo, L. Orsina / J. Math. Anal. Appl. 423 (2015) 608–622
thanks to the assumptions on ψn, and setting M = k + ‖ψ‖L∞(Ω) + 1, this set is contained in the set 
{|u| ≤ M}. Thus, the left hand side is equal to

∫
{|u−ψn|≤k}

Q
(
x,∇TM (u)

)
·
(
∇TM (u) −∇ψn

)
.

Using the Fatou lemma, we have

∫
{|u−ψ|≤k}

Q
(
x,∇TM (u)

)
· ∇TM (u) ≤ lim inf

n→+∞

∫
{|u−ψn|≤k}

Q
(
x,∇TM (u)

)
· ∇TM (u).

As for the second term, we have

∣∣∣∣
∫

{|u−ψn|≤k}

Q
(
x,∇TM (u)

)
· (∇ψn −∇ϕ)

∣∣∣∣ ≤ 2β
∥∥Q(

x,∇TM (u)
)∥∥

LÃ(Ω)‖ψn − ϕ‖W 1,A
0 (Ω).

Since

∥∥Q(
x,∇TM (u)

)∥∥
LÃ(Ω) ≤ max

(
1,
∫
Ω

∣∣∇TM (u)
∣∣) ≤ C,

we have

lim
n→+∞

∫
{|u−ψn|≤k}

Q
(
x,∇TM (u)

)
· ∇ψn =

∫
{|u−ψn|≤k}

Q
(
x,∇TM (u)

)
· ∇ϕ.

Summing up, and recalling the definition of Q, we have

∫
Ω

log(1 + |∇u|)
|∇u| M(x)∇u · ∇Tk(u− ϕ) ≤

∫
Ω

fTk(u− ϕ),

for every ϕ in W 1,A
0 (Ω) ∩ L∞(Ω), i.e., u is an entropy solution of (1.3).

As for uniqueness, the choice ϕ = Th(u) in (4.1) gives

∫
{h≤|u|<h+k}

log(1 + |∇u|)
|∇u| M(x)∇u · ∇u ≤

∫
Ω

fTk

[
u− Th(u)

]
,

which implies

lim
h→∞

∫
{h≤|u|<h+k}

log(1 + |∇u|)
|∇u| M(x)∇u · ∇u = 0, ∀k > 0. (4.5)

Thanks to the monotonicity of the differential operator and (4.5), it is possible to repeat the proof of [1] to 
prove the uniqueness of the entropy solution u. �
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Appendix A

Lemma A.1. For every s, t in R we have

∣∣∣∣s log(1 + |s|)
|s| − t

log(1 + |t|)
|t|

∣∣∣∣ ≤ 2 log
(
1 + |s− t|

)
(A.1)

Proof. By symmetry, it is enough to prove the result for s ≥ t. If s ≥ t ≥ 0, we have to prove that

log(1 + s) − log(1 + t) ≤ 2 log(1 + s− t).

If we define

g(s) = 2 log(1 + s− t) − log(1 + s) + log(1 + t),

we have

g′(s) = 2
1 + s− t

− 1
1 + s

≥ 0,

so that g(s) ≥ g(t) = 0, and the result is proved. If t ≤ 0 ≤ s, since |s − t| = s − t = s + |t|, we have to 
prove that

log(1 + s) + log
(
1 + |t|

)
≤ 2 log

(
1 + s + |t|

)
,

which is equivalent to

(1 + s)
(
1 + |t|

)
≤

(
1 + s + |t|

)2
.

Expanding the expressions, we have to prove that

1 + s + |t| + s|t| ≤ 1 + s2 + t2 + 2s + 2|t| + 2s|t|,

which is clearly true. Finally, if t ≤ s ≤ 0, since |s − t| = s − t = |t| − |s|, we have to prove that

log
(
1 + |t|

)
− log

(
1 + |s|

)
≤ 2 log

(
1 + |t| − |s|

)
,

which is true by the first step since |t| ≥ |s| ≥ 0. �
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