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We prove that if a vector—function f belongs to the Morrey space
LI’A(Q, H?N), with QCR", n>3, N>2, A€[0,n—2], then there exists a
unique very weak solution u of the system

ue Wy (2, RY),

such that Du belongs to the space L*"~*"*~(Q, R"™) for any g €[1, -1,
provided the matrix of coefficients (4;) has L™ N VMO entries.

Keywords: Elliptic systems; V’MO-coefficients; L'-data
AMS Subject Classifications: 35J25; 35D10

1. Introduction

This article is devoted to the study of existence and regularity of solutions to the
Dirichlet problem associated to the system’

{ A(u) = —D; (Ay(x)Dju) = f,

ue Wy (Q. RY), W)

where Q is an open bounded subset of IR” (n>3) with C'-boundary, A4 an elliptic
operator with VMO-coefficients and f belongs to the Morrey space L'“*(2, RY),
re[0,n—2].

In a previous article [1] we established the local regularity of the very weak
solution to the aforementioned problem in a suitable Morrey space; it is the aim of
this article to extend that result up to the boundary of the domain .
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We point out that the extension of the regularity property up to the boundary of
the domain requires a new decomposition of the solution in a neighbourhood of
a boundary point and for this purpose we will follow the idea of [2].

The study of linear elliptic equations (N = 1) with L' (or measure) right-hand side
and bounded coefficients was started by Stampacchia [3,4] and was later treated by
many authors and by different approaches while, for elliptic systems (N > 2), several
existence results were obtained under additional structural conditions: a short survey
of known results was given in [1].

In this article we consider linear systems with VMO coefficients without further
structural conditions and prove existence and regularity results for very weak
solutions (briefly called Stampacchia solutions).

An important ingredient in our approach is the so called A-harmonic
approximation Lemma of Duzaar and Steffen [5] (see also [6,7]), a new method
allowing for a rapid and elegant implementation of certain comparison procedures.

A description of such a method has been given in the article [1].

We remark that recent regularity results in Morrey spaces of the type L' are in
the papers [8—-12].

This article is organized as follows: we start with notations and a few auxiliary
results in Section 2. In Section 3 we recall known [1,13] Morrey spaces regularity
result saying that for f= D,g;, with g;e L**(Q2, R"), the gradient Du of the solution
u to the problem (1) belongs to the same space L>*(€2, R™).

This assertion allows us to state the existence of the Stampacchia solution to (1)
for any f'e L'(Q2, R") in Section 4.

An analogue of Saint-Venant’s principle for solutions of (1) with =0 is given in
Section 5. Finally, in Section 6 these results, combined with a Campanato-type
approach, yield to the local regularity of Du in a suitable Morrey space.

2. Some notations and auxiliary results

In IR" (n > 3), with generic point x = (xy, X5, .. ., X,,), we shall denote by © a bounded
open nonempty set with diameter dg and C'-boundary 9<2.
For p>0 and x, € IR" we define

B(x,, p) = {x € IR" : |x — x,| < p},
Q(x,, p) = 2N B(x,, p),
d (x,, 02) = dist(x,, 0%2).
If yo=Vot>--->Von_1, 0) we define

B (¥6,p) = {x € B(y,,p) : X, > 0},
F(y,,, :0) = {XGB(ym p) L Xy = O}
Moreover, if u e L'(Q(x,, p), RY) we denote by
1
UQ(x,p) = T u(x)dx,
D 1 O S )

where |Q(x,, p)| is the n-dimensional Lebesgue measure of Q(x,, p).
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Definition 2.1 (Morrey space) Let ¢> 1 and 0 <X <n. By L¥*(Q, IR") we denote the
linear space formed by the vector-functions u € L/($2, IR") for which

1/q
lull orey = sup {,0)\/ [u(x)]4 dx} < 400,
Q(x,,0)

X,€Q,0< p<dq
L(Q, IR™) equipped with the above norm is a Banach space.

Definition 2.2 (Campanato space) Let ¢g>1 and 0<i<n+g. By £, R")
we denote the space of all vector-functions u € LY(2, IR") such that

1/q
(] por (o) = sup {,0’\ / u(x) — gy, | dx} < +00.
X,€R,0< p=<dq Q(x,,0)

Moreover, we introduce the notion of BMO and VMO classes.

Definition 2.3 (John—Nirenberg space) Let Q be a cube in IR". By BMO(Q)
we denote the space of all functions ueLl(Q,HQNZ) such that the semi-norm
defined by

[u]BMO(Q) = su lu — uQ| dx

p7~ -
ocol01/10)
is finite, where the supremum is taken over all cubes with sides parallel to

coordinate axes.
Let us recall that £7"(Q) =2 BMO(Q) V¢ > 1.

Definition 2.4 (Sarason space) For a matrix-function weLl(Q,H{NZ) and r>0
we define

V(x,r) = sup ——- W(y) = Waxpldy
0= p=r 1905 )] Jagp) o)
and we introduce the VMO-continuity modulus for w

V(r) = sup V(x,r).

xeQ

By VMO we denote the space of all matrix-functions w e L'(£, B?Nz) such that
V(r) < +o0 forall 0 <r < dg
and

lirr(l) V(r)=0.

3. L**-regularity of Du on Q
Ifu:Q—)lRN, we set

. =1,.... n :
i r=l...N

a
Diza_a Du:(D[ur)i,]
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Let A;(x), i, j=1,2,...,n, be matrix-functions for which the following
conditions be satisfied:

A (x) = 45 (x)  foraa. xeQ.

e L=(Q, RY) N VMO,
N (2)

There exist two positive constants A; and A, such that

A |81 = Ap(x)EE = A€ 3)
for a.a. xeQ, V& = (¢) e R"N.

For xeQ, 0<r<dg, we set

Vix,r)= sup ——
( ) 0<p£)r |Q(x,p)| Q(x,p)

ij=1,2,n

|4i(¥) = (Ai) gy p| Ay 4)

In this section we are concerned with regularity of weak solution u € W(])’Z(Q, RN)
of the problem

D{(Aj(x)Dju) = D;g; in L, ®)

where Q is an open bounded domain with C' boundary, g;€ L**(Q, R"Y) and the
coefficients satisfy conditions (2) and (3).

THeorem 3.1 [1] Let ue W(l)’z(Q, IRN) be the weak solution to the problem (5),
let conditions (2) and (3) be satisfied. Assume that g;€ L**(2, R") for » €[0, n].

Then Du e L**(Q2, IR™) and there exists a positive constant ¢ = ¢ n, 1, Ay, A, Q)*
such that the inequality

1Dull 2@y = ¢l gll2@) ©)
holds.
In particular, if
r€ln—2,n] (7
then ue CO7(Q, RN), with y =1 — %, and the inequality
[Wcor < ¢l gl ®)
holds.

CoroLLARY 3.1 Let x,€IR", Qr={x=x,+Ry:yeQ}, 0<R<1 and assume the
hypotheses of the Theorem. Then ue C%(Qg, IRN) and there exists a positive constant
c=cpy(n, A, A1, A»), which is independent of R, such that the inequality

[M]CO.V(Q_R) =c ” g”LU(QR) (9)
holds.
Proof
The Corollary is true for R=1 by the previous theorem.

The rest of the proof follows readily as in the Corollary 3.1 of [1].
The following Lemma is the analogue of Theorem 9.1 ([14] p. 339).
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Lemma 3.1 [1] Let ue W' (Q,RY) be a solution to Equation (5) where
g€ L*M(Q, RY), with 1 €[0,n[, and let conditions (2) and (3) be satisfied.
Then there exist two positive constants ¢ = c(n, A, Ay, A>) and p, = py(n, x, Ai, A>)
such that
1 Dull 208, rjay < ¢ (R 1Dull 280, vy + 11 81l 12000 (10)
for any z,€ Q and 0 < R<min {d(z,, 02), p,}.

We will recall now the estimates on half ball obtained in [1].
For fixed y,=(yo1, V02, ---,0) and R>0, let us take into account the system

Di(B[]‘(X)DjM/) = D;g; in B+(J/o, R)a (1 1)
u' =0 onI(y,R)

under the following structural assumptions:

1., (12)
B;}S(x) = B;;'(x) for a.a. xe B (y,, R).

There exist two positive constants A} and A}, such that
Ay I8 = By()§§ = A |57 for a.a. x € BY(yy, R) ,VE = (§)) € R™. (13)

We denote by V' the "M O—continuity modulus for the matrix B,

Definition 3.1 A vector-function u' € W'3(B™(y,, R), R") is a weak solution of
system (11) if

/ Byj(x)Diu/’ Dy, dx = f Dig Dipdx Vo€ Wy (B*(1,, R). RY)
BH(y0.R) B*(y0,R) ‘

u'=0 on I'(y,, R).
The following Lemma is the analogue of Theorem 13.1 ([14], p. 355).

Lemma 3.2 [1] Let ' € W"(B*(y,, R),IR) be a solution to problem (11) where
gi€ LM(B+(y(,, R), R™), with » €[0,n[, and let conditions (12) and (13) be satisfied.

Then there exist two positive constants ¢ = c(n, ., Ay, Ay) and p = py.(n, A, A}, A})
such that

||Du/||L2')‘(B+(}"mRu)) =c [(min{ﬁa R — Ro})_'\ ||Du/||L2(B+(y,,.,R)) + | g”L”(B*(}’o,R))] (14)

for any 0<R,<R.

We recall here the proof of the Theorem 3.1 for the reader’s convenience, since
the procedure will be used later on.

Proof of Theorem 3.1 Since Q is of class C' and bounded (see e.g. [15], p. 305), there

.....
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7 there exists a C'-function ¢/, defined on a domain D c IR"~" such that with respect
to a suitable system of coordinates {yi,...,y,}, with the origin at y/:

(a) the set 32 N B(¥/, R) can be represented by an equation of the type

yﬂ = ;j(yla e ayl1—1)5
(b) each y e QN B/, R) satisfies

V> (P1see s Vnm1)-

Without loss of generality we can suppose that the system of coordinates is such
that the hyperplane tangent to dQ at ¥/ has equation y, =0, that

@) =D/ F)=0 (15)

7|D§/| <1/2.

For such domains the portion of boundary within the ball B(¥/, R) can be
straightened by means of the smooth transformation’.

{Ipl(y):yl_(y_/)z fori:Lz"--an_l’ (16)
Wiz(y) =Vn— ;j (yl7 e ayn—l)-

It turns out that ¥(y)=1(y),....¥,(y)) is a CY(B(H/, R))-diffeomorphism
verifying the following properties (see e.g. [15], p. 305 or [14], Theorem V, p. 375):

() Y(BGF,RNIV) ={xeR":x,=0, x| <R, fori=1,...,n—1},

(i) 31y=7 1<l <3ly=31VreBE RN,

(i) B*(0,R/2) CY(BG/,R)NQ) C B*(0,3R), BF,3RNQCY (BT (0,R) C

BG/,2R)N Q.

If ze B0, R) we set

and that R is such that max;—

,,,,,

31/!, awk

Bi(z) = Ars(¥~ ()) (w ()) (10 '),

gi(2) = (¥~ ()) (w '(2)), (17
W (2) = u(y~(2)),

where we have used the fact that the absolute value of the Jacobian determinant of
¥ !(2) is equal to 1.

Let us observe that Lemma 2.1 of [1] guarantees that the coefficients By (z) still
satisfy hypothesis (12).

Moreover, from definition (16) and the fact that max
it follows that

- J
e | PE < 12,

(1/2)* At Inl* < Banme < (3/2)* Aa Inl> ¥ = (n) e R™. (18)
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Thus a change of variables in the system (5) yields
u' € WH(BH(0, R)),
v =0 on (0, R),

/ Bix Dyl Digpdz = / Dig Dipdz Vee Wy (BH(0, R)).
B*+(0,R) B+(0,R)

(19)

To the problem (19) we apply Lemma 3.2 and so we conclude that Du’ lies in
L**(B*(0, R,)), R, €10, R[, with norm estimate (14).

As a consequence, the matrix-function Du/(Y(y)), y€ BG/,r)N K, rel0, 3R,[,
belongs to L>*(B(3/,r) N Q) that is, by the chain rule, Du e L>*(BF/,r) N Q).

Thus by changing back coordinates in (14) we deduce that

||Du||Lz~)\(B(JF/ﬂ/‘)ﬂQ) =< C[”Du”LZ(Q) + ”f”L“(Q)]a (20)

where ¢ =cp(n, A, A, A, R, R— R,).
Since R, is arbitrary, it can be chosen sufficiently close to R so that the family

,,,,,

On the other hand, set

R : n —=J
8= ngslznd(x,ﬂ? \leB(y ,r)) >0,

the open set
H={xeQ:d(x,02)>3§/2} CC Q

is such that H, By, B,, ..., B, cover Q.
The aforementioned remarks, the use of Corollary 3.2 of [1] and Lax—Milgram
Theorem prove the Theorem (see e.g. [14, p. 365, 366] or [16, pp. 252-255]).

4. Existence and uniqueness of the Stampacchia solution

Stampacchia proved in [3,4], by duality method, the existence and uniqueness of the
weak solution to Dirichlet boundary problem for elliptic equations with non smooth
coefficients and right-hand side measure.

Definition 4.1 Let fe L'(2, IR"). We say that a vector-function u € W(l)’l(Q,HZN) is
a very weak solution (briefly Stampacchia solution) of the system (1) if it satisfies

/uA((p)dX:/f(pdx
Q Q
Voe d = {pe Wy (2, RY)N CUQ, RY) : A(p) e CO(Q, RY)). 1)

The proof of the existence and uniqueness of the Stampacchia solution to (1)

follows the same steps as in papers [1,10,17].

THEOREM 4.1 [I] Let Q be a bounded domain with C'-boundary and fe L'(S2, R").
Let conditions (2) and (3) be satisfied.
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Then there exists a unique Stampacchia solution u of problem (1) such that
ue Wy'(Q, RY) for any q < .
Moreover, there exists a positive constant ¢ = cy(n, q, A1, N>, ) such that

||u||W(1),(,(Q) <cllflloe- (22)

CoRrOLLARY 4.1 Let x,€R", Qr={x=x,+Ry:yeQ}, 0<R<1 and assume the
hypotheses of the Theorem. Then there exists a unique Stampacchia solution u of
problem (1) such that ue Wy (g, RY) for any q < .

Moreover, there exists a positive constant ¢ = cy(n, q, A1, A»), which is independent
of R, such that

_ _1
el < R0 1710 (23)

Proof The proof follows readily from Theorem 4.1 of [l] using a standard
homotopy argument on £ and taking into account (9) from Corollary 3.1.

5. Saint-Venant’s principle
In this section we consider weak solutions of the homogeneous systems

—Di(A(x)D») =0 in Q. (24)

As the right-hand side g =0, Lemmas 3.3 and 3.4 of [1] hold with any A > 0. For
A>n—2 any weak solution u/, ve W'? to problems (11) and (24), respectively, is
locally Hélder continuous on  and B*(y,, R)UT(,, R), respectively.

Exploiting Lemma 3.2 and arguing as in Lemma 5.1 and Theorem 5.1 of [1] we
get the following ‘half-ball version’ of Holder semi-norm estimate and Saint-Venant
principle.

LemmA 5.1  Let o' be a solution to problem (11), let conditions (12) and (13) be
satisfied and assume that eln—2,n[, y=1— %, qell,2].
Then there exists a positive constant ¢ = c(p,n, r, A, A/2)4 such that it holds

1/2—1/g)—2)2
[U/]Co.y(m) < " VDN DU | a0 (25)

V0 <p< &R

THEOREM 5.1 (Saint-Venant Principle on BY)  Let u’ be a solution to problem (11), let
conditions (12) and (13) be satisfied and assume that A€ln—2, n[, y =1 —”5*,
qgell,2.

Then, there exist a positive constant c independent of y, such that, for any weak
solution v to system (11), it holds

n—q+yq
an P e
1w L+ (3, pryy = € (g) DU Zo(8+ (3,0 21 (26)

YO<p; <p<R.
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6. Global regularity of the Stampacchia solution

First of all let us introduce the truncation operator. For a given constant k>0 we
define the cut off function 7j: IR — IR as

s if |s| <k,
Ti(s) = . .
ksign(s) if |s] > k.

For a vector-function f=(f"(x))—;
vector-function f = (Ti(f")),=1

is just (Tx(/"())r=1,.... n-
Throughout this section we shall assume that the right-hand side of (1)

feLl"™Q,RY), rel0,n-2].

For such a vector-function let us consider a sequence of functions { f;} ey such
that

@) fie W@, RYY N LY (Q, RY) Yk e IN,
(i) fr—fin L', R") as k — +o0,
(1) NSl < 1/ e Yk €N,
V) N fellpay < 1/ o) Yk € IN.

An example of a sequence satisfying the above requirements is the sequence

{Ti(f)} kern-

For fixed k € IN, let u; be the weak solution of the system
~D{(Ay(x)Dyu) = fi in Q 27)
that is,
e € Wi(Q, RY),

/ A;j(x)Dju Dipdx = / feodx Yoe Wit (Q, RY).
Q Q

As in Section 3 we get the global estimate by combining the local interior
estimate, the estimate on half ball and the local flattening of the boundary of .
Let us recall the following local estimate proved in [1].

THEOREM 6.1 [1]  Assume that hypotheses (2), (3) hold and let u; be the weak solution
of problem (27).
Then

loc

Dup e LY (2, R"™Y) Vg [1, Ll[ Vk € IN,
n —

with v=n—qm—x—1), and for all HCCQ there exists a positive constant
c=cy(n A, q, A1, Ao, d(H,3Q)) such that

I Dugell paoieny < ¢ [I1Duicll Loy + 1/l iay] Yk € IN. (28)
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We now consider the case of a half ball, i.e.

Di(Bij(x)Djux) = fi in B*(y,, R), (29)
ur =0 on T (y,, R)

and prove the following theorem.

THEOREM 6.2 Assume that hypotheses (12), (13) hold and let uy be the weak solution
of problem (29).
Then

Dug € LY (B (v, R,), R™) Vg e [1, Ll[ Vk € IN,
n_

withv=n—qmn—x—1), and for all R,< R. Moreover, there exists a positive constant
c=cpn, i q, A}, Ay, R,) such that

| Dugell vy, R)) < € [”Duk”L‘I(BHy(,,R))
+”f”L]‘}”(B‘*'(y(,,R))] Vk € IN. (30)

Proof We will follow the idea of the proof of Theorem 6.1 of [1].

Fix keIN, x,€T(y,, R), p€]0, min{l,5, R — |x, — v,|}° and extend f; by zero
to IR".

Let G be a bounded C'-domain in IR", = {x = (¥, x,) € IR" : x,, > 0} containing
B*(0,1)® and, for any positive p, denote by

Gy={x=x,+py:yeG}.

Then B*(x,, p)CG,CR",.

For a cut off function ne C*(IR") with suppne B(0,1); 0<n<1, n=1 on
B(0,1/4), put ¢(x) = n(==) for x € G, and gi(x) =fi(x)p(x) on G,,.

Let wy € W(l)’z(Gp, IR") be the weak solution of the Dirichlet problem

—Di(Bj(x)Djwiy) =gr in G,
wi =0 on 9G,

(31)
and observe that for v, =u; — w;, we have
—Di(Bj(x)Djvi) =0 in B*(y,, p/4).

Since any weak solution of the problem (31) is also a very weak solution of the same
problem then, by (23) and by item (iv) it follows that, for any g € [1, -2,

> n—1

+ —
||Wk||l{/V1.q(B+(xmp)) < ”Wk”(I]/Vlv‘l(Gﬂ) =< Cpn 1 nq'lgk"zl(Gﬂ))

g
<cp" "q||fk||il(3+(xmp))'

(32
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Gathering together (26) and (32) we deduce that, for any o< p/4,

1D ||[zq(3+(xm(r))

n—q+yq
‘ [(5) 1DVl o .y + P ||qL“’\(B+(xa.p))j|

—q+
o e D q n+q+iq—ng q
=c 5 I uk||L(l(B+(x[“p)) +p ”f”Ll,x(BJr(x{“R)) .

An application of Lemma 1.1 of [18, p. 7] to the above inequality gives

IA

1D il Fo(p+ v, . o)
v
< (2 Duy||Y ntgthg—ng) 14 33
=<5 1Dl pacpr vy, pyy T © N0y |- B3

The proof can now be completed as in Lemma 3.4 of [1].
Now we are in the position to prove the following theorem.

THEOREM 6.3 Assume Q2 to be a bounded domain with C'-boundary and hypotheses
(2), (3) to be satisfied.

Let, moreover, u be the Stampacchia solution of problem (1).

Then

Due L9, R™), Vqe [1, n"—l[

with v=n—q(n— X — 1), and there exists a positive constant ¢ = cy(n, r, q, A1, A, Q)
such that

1 Dull pasy < ¢ [I1Dull ey + 1/ 1oy (34)

Proof We have already remarked (see Theorem 2.1, formula (22)) that

n
1 Dull oy < cv(n, g, A1, Ao, ) [ fllpvey YhkEIN, Yge |:19 m[

This information allows us to deduce that there exists a subsequence {u,, } C {uy}
such that

(@) u,, — vin w9, R") as k — 400 Vg e[l, i B

(b) uy, > vin LY, RY) and a.e. in Q as k— +oo Vg e[l, s B
(c) the function v is a Stampacchia solution of the Dirichlet problem (1).

By the uniqueness of the Stampacchia solution we can conclude that v=u.
To achieve the thesis we need only to show that Du e L""().

For this purpose let us fix HCC 2, x,€ H and p €]0, dy].

Since, by (a), we have

Du,, — Du in LY(H(x,, p), R").
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By virtue of (28) we obtain

q : : q
1D 2y s, gy = B 0E LD 24 g1,
v ‘
< p liminf LDty |20,
< c[lIDull oy + 1/ 2] £

where ¢ = cp(n, A, g, A1, Ao, d(H, Q) > 0.

The above inequality proves the estimate in the interior of .

In an analogous manner, as in the proof of the Theorem 3.1 from [1],
formula (30) yields the estimate, for any p €10, %R(,[ and R, €]0, R[,

1Dl s gy < € LI DUl Loy + 1/ ey - (35)

where ¢ =cy(n, A, A1, A», R— R,) and B(¥/, p) is the generic element of an open finite

,,,,,

The above two inequalities together with the standard argument of covering and
flattening 92 ends the proof (see Theorem 3.1).

COROLLARY 6.1  Assume the same hypotheses of Theorem 6.3 and that ) €]0, n—2|.
Then

ue LP(Q, IRY)

for all Be[l, Lo=2=D

> n—x-=2
The proof of the Corollary 6.1 is an easy consequence of the following useful
Lemma (proved in a slightly different form in [1, Lemma 6.1] and in [9, Lemma 5.1])
applied to each component of u.

LEMMA 6.1 Letve Wé’p(Q, IR) such that Dv € L""(2, IR"), with « €]0, n — p[. Then

ye LP"(Q, R),

o L —1_ 1
Whelep = —ir

Moreover, there exists a positive constant ¢ =c(n, p, 2) such that

VIl pex@) < D VIr@) + 1D VI e(e))- (36)

COROLLARY 6.2 [1] Assume that the hypotheses of Theorem 6.3 is satisfied and
suppose that »=n—2. Then the solution u of problem (1) belongs to BMO(Q).

Acknowledgments
Stara was supported by grants GACR 201/09/0917 and MSM 0021620839.



Downloaded by [Laurentian University] at 05:13 06 October 2014

Complex Variables and Elliptic Equations 1097

Notes

1. Einstein’s convention will be used throughout this article.

2. As a permanent convention we will denote by ¢j(..., ) a constant which depends on
various parameters, on the coefficients of the system through the smallness of their VM O-
continuity modulus and on the geometrical properties of the involved domain €.

3. For the sake of simplicity we will drop the index j relative to the diffeomorphism .
4. The same p of Lemma 3.2.
S. The same p of Lemma 3.4 of [1].
6. For example, set G=G; UG, where G ={y=[/,y,]eR":|y|<1,y,€]0,1[} and
Gy={y € IR" : there exists z=[Z, 1/2] with |z/| =1 so that |z —y|<1/2}.
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