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On the Integrability of the Jacobian 
under Minimal Hypotheses 

TADEOSZ IWANIEC & CARLO SBORDONE 

Communicated by J. M. BALL 

O. Introduction 

For /2 a domain in [R n and f: /2-+[R ~, f =  ( f l  . . . .  , fn)  a mapping of 
Sobolev class W~P(/2, ~ ) ,  1 =<p < 0% we denote by Df(x) : ~ R  n the dif- 
ferential and by J ( x , f )  = det Df(x) the Jacobian of f .  

The Jacobian function occurs in many different contexts, such as the 
geometric theory of measure and integration, the mapping degree theory, 
quasiconformal analysis, nonlinear elasticity, etc. Most often the expression 
J(x, f )  dx serves as a volume element on /2, which in conjunction with the 
formula 

J(x, f )  dx = df 1 ,',... ^ df  n = d ( f  1 d f  2 A . . .  A d f  n) 

leads, via integration by parts, to important estimates. 
In order to make use of these properties it is necessary to integrate the 

Jacobian. The usual hypothesis ensuring this integrability has been that 
f 1,n ~Wloc(/2, Rn). A natural question now arises: under what conditions on f 
is the Jacobian function locally integrable? Without any restrictions, there is 
no reason to expect that the degree of integrability of J(x, f )  is different from 
that of [Df(x)] ~. Surprisingly, just one condition, that J ( x , f )  does not 
change sign in /2, implies higher integrability of the Jacobian. STEFAN MtS~- 
ZER [MU2] was the first to observe this phenomenon. 

For notational simplicity, let us declare that f e WI6Pc(/2, [R n) is orientation- 
preserving if J(x, f )  >= 0 almost everywhere. MOLLER has shown that the Jaco- 
bian of an orientation-preserving mapping f e 1,~ Wloc(/2, R ~) actually belongs 
to the Zygmund class L logL(E) for each compact set E C/2 ;  see also 
[CLMS] and IT]. In its most general form, the result can be rephrased as 
follows 

(0.1) 

E t2 
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where Je denotes the integral mean of the Jacobian over E. As a corollary 
Mf3iL~EI~ has improved RESrlETNYAK'S theorem [R] on the weak convergence of 
the Jacobians. Again we frame it in a slightly more general form [12]. 

Corollary 0.1. Let f i~  W1;c ([2, [R~), j = 1, 2 . . . . .  be orientation-preserving map- 
pings converging to f weakly in W~;c(12, JR'). Then 

(0.2) lim ~(o(x)J(x , f ] )  dx = ~ O ( x ) J ( x , f )  dx 

for every (o E exp (f2), the closure of step functions in the n o r m  ]l[[Exp(12) (see 
Section 1 for the notation we use here and in the sequel). 

If  (pE C~(O),  the condition J(x,  f j )  >= 0 is not required. In the proof of 
this result there is hidden a weak form of the Jacobian function that we shall 
eventually employ [B, MU 1, BM, DMU]. 

Definition 0.1. For a mapping f ~ W~gPc (~2, JR"), with p >= n2/(n + 1), the 
weak Jacobian is a Schwartz distribution Jf ~ ~ ' ( t 2 )  defined by the rule 

(0.3) Jf[~ol = - j f n  d f l  ^ . . .  ^ dfn-1 ^ dcp 
~2 

for all test functions (a E C0~([2). 

The argument showing f n  d f l  ^ . . .  ^ dfn-1 ^ d(o to 
routine. By the Sobolev Imbedding Theorem f"~Ll"~c([2) 
d f n - 1  r rnZ/(n2--1) E ,~ loc (t-2), as desired. 

Here is one of our main estimates: 

be integrable is 
and d f  I ^ . . .  ^ 

Theorem 1. Let f :  [Rn ~ [R ~, f =  ( f l ,  f 2  . . . .  f n ) ,  be a mapping of Sobolev class 
WI'n-~(tR ~, [Rn), with -oo < e _ 1. Then 

(0.4) ~ [ d f l l - e J ( x , f )  dx<= C(n)[e  f Ildfltll-~ Ildf2Nn_~... lldfnlln_~ 
~n 

=< C(n)le]  ~ j D f ( x ) l n - ~ d x .  
Nn 

The presence of the factor l el in (0.4) is the essence of this inequality, 
since, by Hadamard's  Inequality, we always have a pointwise estimate 

I d f l l - " J ( x , f )  <-Id/ll 1-~ I d f l ' " l d f " l  �9 
The arguments establishing Theorem 1 are based on new estimates in the 

Hodge Decomposition, see [I1]. 
Throughout what lies ahead, we are concerned mainly with the determination 

of the minimal conditions on f to ensure local integrability of the Jacobian. 
The primary result is the following consequence of Theorem 1. 

Theorem 2. Let B C 3B be given concentric balls in [R n and let f : 3B ~ [R n be 
an orientation-preserving mapping of class (ql<=s<n Wl'S( 3B, [Rn), such that 

(0.5) sup ( n - s )  ~ jDf(x)l~ ~ < o~. 
1<= s<n 3B 
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Then J (-, f )  E L ~oc (3B) and the following uniform estimate holds : 

(0.6) ~ J ( x , f )  dx 
B 

<=C(n) ]Df(x)[ n+l n + C ( n )  l i m s u p ( n - s )  ~[Df(x)[Sdx 
s/~n 3B 

<= C(n) sup (n--  s) IDf(x)l s 7. 
1< s<n  3B 

Two classes of functions for which condition (0.5) is satisfied will be of 
particular interest. The first class, denoted by weak-Wl'"(3B, [R~), consists of 
mappings with IDfl weak-Ln(3B). However, the emphasis will be on the sec- 
ond class, called the Orlicz-Sobolev space Dnlog-lD((2,  Rn); see the next 
section for definitions. The point is that smooth mappings are dense in 
Dnlog- lD(O,  ~n). 

In the latter case Theorem 2 reduces to the following result which should 
be regarded as dual to that of METLLER. 

Theorem 3. Let f : I2 ~ ~.~ be an orientation-preserving mapping of the Orlicz- 
Sobolev class Dnlog-lD(g2, [Rn). Then the Jacobian o f f  is locally integrable. 
Moreover, for each compact subset E C [2, the following estimate holds 

(0.7) I J ( x , f )  

E 

dx C(n, E> IDf(x)l dx 

'J log(e + [Df(x)['~ 
k [Dfl,  / 

where ]Df]• denotes the iniegral mean of lDf[ over ~ .  

Another result of this paper identifies the weak Jacobian Jf as the point- 
wise Jacobian J ( . , f ) .  

Theorem 4. Let f : (2 ~ FR ~ be as in Theorem 3. Then 

(0.8) ~ ( o ( x ) J ( x , f )  dx = - f f ~ d f  1 ^ . . .  ^ d f  ~-1 ^ d~o 
12 I2 

for all test functions q~ ~ C~ ~ (;2). 

As a result, we can now assert: 

Corollary 1. Let f and f j, j = 1, 2 . . . . .  be orientation-preserving mappings of the 
Orlicz-Sobolev class Dnlog-ID(s [Rn). Suppose that l i m f j = f  weakly in 
WI'P([2, R n) with some p > n2/(n + 1). Then 

(0.9) lim ~o(x )J ( x ,  f j )  dx = ~ ( o ( x ) J ( x , f )  dx 
j~co  ~2 (2 

for every q~ ~ C1(s 
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The question to face next is: What are really the minimal assumptions on 
f : [2 ~ N" which guarantee that J (x, f )  ~ L loc (g2) ? Theorem 2 is certainly the 
best known to date. On the one hand, in the light of  the two special cases, 
weak-Wl'n(f2, [R ") and Dnlog- lD( f2 ,  N~), it is not obvious how to formulate 
minimal conditions, at least in terms of  the familiar function spaces. On the 
other hand, our example, see Section 6, illustrates undoubtedly that Theorem 3 
does not leave much room for improvement. There is an example, due to 
J. BALL & E MURAT [BM, counterexample 7.4] which shows that Theorem 4 
and Corollary 1 fail for mappings f fi weak-Wl'~([2, Rn). It remains to argue 
whether the above results stay valid if the condition J(x, f )  >= 0 a.e. is replaced 
by Jf[~o] >_ 0 for all non-negative test functions ~0 6 C0~(f2). 

In some respects estimates (0.1) and (0.7) determine the limitations on the 
integrability theory of  the Jacobian function. It would be possible at this mo- 
ment to interpolate between these two limits. Indeed it has been already com- 
municated to us by H. BREZIS, N. Fusco and C. SBORDONE that 

-- (e e Q l~ + IDflQ 

for 0 == a _< 1, where f : ~ R "  is an orientation-preserving mapping of  
Orlicz-Sobolev class D ~ l o g - ~ D ( ~ ,  Rn). 

As a closing remark, although we do not pursue the matter here, our 
results relate directly to the existence and regularity problems in non-linear 
elasticity [AF, B, BM, BU, CD, D, DM, DG, G, GMS, M, R, T] and quasi- 
regular mappings [BI, GE, I3]. 

1. Notation and properties of some function spaces 

In the Introduction we have been relatively inexact with the notation and 
definitions. This section is devoted to giving more precise information about 
some function spaces. 

Let E be a measurable subset of  R n. The usual Lebesgue space LP(E) is 
equipped with the norm 

I l g l l p ,  E = Ig(x)l p p, 1 <=p <oo. 

The average of a function g~.LI(E) is denoted by 

= ~g(x) d x =  1 I e IE j .J g(x) dx, gE 

E 

provided [E I (the Lebesgue measure of  E) is positive and finite. 
A measurable function g on E C R n is said to be of Zygmund class 

L log L (E) if 

S (e (1.1) Ig(x) l log + J < 
E 
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It is not readily apparent that the above integral defines an order-preserving 
norm in L log L(E).  Actually, the triangle inequality is fairly non-trivial; see 
[IK]. In connection with Corollary 0.1 we should mention that the dual space, 
denoted by Exp (E), consists of  functions g such that 

(1.2) [1 g []Exp(E) ~-" k>0inf --kl I eklg(x)l dx < oo. 

E 

We shall now distinguish three classes of functions which interpolate between 
LP(E) and 01<__s<pLS(E). 

The Marcinkiewicz class, denoted by weak-LP(E), consists of  functions g 
on E C [R" such that 

(1.3) Mp(g) =[ ]@1 

where g, ( t )  = ]{x(E;  [g(x)] > t}] 
Recall that 

1 

sup tPg, (t) ~ < co, 
t > 0  

denotes the distribution function of g. 

(1.4) l lg(x)l s dx = s ~ tS - lg . ( t )  dt < co 
E 0 

for all l__<s<p.  
A measurable function g on the set E C R ", n >___ 2, belongs to the Orlicz 

space L" log- lL(E)  if 

(1.5) I Ig(x)l"dx <co. 
log(e  + Ig(x)l) 

E 

We should observe that the corresponding Young function q~ : [R + 
N+, ~ ( t )  = t" log- l (e  + t), is strictly increasing, convex and satisfies 
limt_~0t -1 ~( t )  = 0, limt_.oo t -1 ~( t )  = co. More importantly, ~(2t )  _< 2n~( t ) .  
The last inequality, known as the Aa-condition, implies that the step func- 
tions are dense in the norm topology of L ~ log- lL(E) .  We shall make use of 
the Luxemburg norm 

(1.6) ][g,,~ = inf Ik > O; f ~ ( ' g ~ ) [ )  dx < 11. 

E 

There is an advantage in using the following integral expression instead of 
llgll~ 

(1.7) [gle = (e [g(x)l~ 
log + 

This is not a norm, but compares well with the Luxemburg norm, see Lem- 
ma 1.2. For more properties of Orlicz spaces we refer to the recent book-by 
RAo & REN [RR]. 
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The third class of functions on E C R ~, denoted by L m (E), consists of all 
functions g EAI<=s<~LS(E) such that 

[ (1.8) Ilgll.),E= sup ( n - s )  ~]g(x)[ '  ~- <~o. 
l<=s<n E 

This is a norm in L ") (E) which makes L ~) (E) a Banach space. We introduce 
the following quantity 

(1.9) ( g ) n , e = l i m s u p  ( n - s )  ~[g(x)lS s <oo 
s ' Z n  E 

for g e L ") (E). 
The next two lemmas establish a relation between the above three classes 

of functions. 

l_emma 1.1. The Marcinkiewicz class weak-Ln(E) is contained in L n) (E), and 
the following uniform bounds hold: 

(1.10) (g)~,E -< 2M~(g), 

(1.11) Jig II,~,E =< nM~(g) 

for all g E weak-Ln(E). 

Proof. If  1 =< s < n, for each a > 0, one can split the integral in the right-hand 
side of (1.4) to obtain 

~ Ig(x)[S dx = s  ~ t s - l g , ( t ) a t  +s  o~ tS- lg , ( t )  at 
E 0 a 

a saS-n 
<= s l g l  $ t ~-1 dt + - -  IEI M~(g) .  

0 n - - s  

The second integral has been estimated by the inequality g. (t) <= I E] t-nM~(g), 
which is a direct consequence of the definition of  the constant Mn(g) (see 
(1.3)). Setting a = Mn(g) we arrive at the homogeneous inequality 

~n - s )  ~ I g ( x ) l  ~ ~ <_ n[Mn(g)] s. 
E 

Now estimates (1.10) and (1.11) follow because nl/n< 2 and nVS<= n for 
l<=s<n .  

The second lemma deals with the class L n log-lL(E).  

Lemma 1.2. The Orlicz space Lnlog-IL(E) is contained in Ln)(E), and the 
following uniform bounds hold: 

(1.12) (g)n,E _-< 2[g]E, 

(1.13) IIg [],~,e <---- 4n[g]E, 

(1.14) [g]E <-- eli g J]~ 

for all gEL n log-lL(E).  
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Proof.  We need two elementary inequalities: 

(1.15) log~(e + t) _-< )L~(e + t),  

log(e + )~t) 
(1.16) min{1, 4} _-< ____ max[l ,  2} 

log(e + t) 

for t and ,~ non-negative. These are left as an exercise. 
It follows from the definition of  the Luxemburg norm I[gl] = [Ig[[~ that 

(1.17) II g II = 
Ig(x)t  

log + 

Let 1 =< s < n. By the HOlder Inequality and by (1.15), for each k > 0, we can 
write 

s l og~g(e+k[g] )  
Ig[ <= log(e + k]g]) 

E E 

s [gl n 
< ( e + k [ g l )  
= log(e  + k lg [ )  

E 

Hence, we immediately obtain 

s n - s l  . n - s  i g l  n 

(1.18) ( n - s )  [g[S <_ ( n _ s )  nssn(e+k[glg)ns l ~  . 

E 

Letting k =  1/[g[e yields (1.12) and (1.13). Of  course, one must do some 
arithmetic to obtain the constants 2 and 4n, respectively. In order to prove 
(1.14), we put k = [[gl1-1 and s = 1 in (1.18). This yields 

e Ig]E n~l 
Igle<- + ':'~llgllJ Ilgll. 

Hence, by a routine calculation, we infer that 

IglE <- en Ilgll --< en Ilg[]. 

Finally, by inequality (1.16) and by identity (1.17), we conclude that 

[gl~-- ~lg[ n l o g - l ( e  + Igl "~ 

< m a x I l ,  lg le  ~ ~lglnlog-X(e+ Igl~ e n I[gfr) ~ f ~ [ , }  < ][g[[~' 
as desired. 
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Let f2 be a domain in R ~. We shall consider the Orlicz-Sobolev space 
D n log- lD (f2, R ") consisting of  all functions f : f2 ~ [R n whose distributional 
differential D f : f 2 ~ G L ( n )  has norm [Df[ belonging to the Orlicz space 
L n log- lL(f2) .  The class of  such functions may be given a norm 

( ~  n 2 kn+l 
(1.19) II f I[D~log-iD(o,~)= Ifl~)-ZC+lllDflll~. 
Basic properties of  the Orlicz-Sobolev spaces have been established by 
DONALDSON & TgUDIN6ER [DT]. We infer from [DT] the following density lem- 
ma analogous to that of  MEYERS & SER~N for Sobolev spaces. 

I .emma 1.3. The class C~~ ~, [R n) is dense in D ~ log-ID([R ~, [Rn). 
This result can be obtained by a standard convolution technique, which re- 

quires the following property of  the translation operator 

lira I I g ( x  + Y) - g ( x )  I1~ = 0 .  y-,0 

The latter can easily be verified, since the step functions are dense in 
L ~ log- lL  ([Rn). 

2. Hodge decomposition 

In this section we formulate a technical lemma which will play an impor- 
tant role later. Let f2 C Nn be a regular domain, for instance a Lipschitz do- 
main. In our applications f2 will be the whole of [R ~. We begin by looking 
at the familiar Poisson equation in f2: 

(2.1) divVu = dive),  

where u is an unknown function of  Sobolev class w~'r(~c2), 1 < r < co, and 
co = (o91 . . . . .  ogn) is a given vector field in Lr(f2, Rn). The existence and 
uniqueness of  the solution folllows by variational principles. Therefore we have 
the Hodge decomposition of  o9 

(2.2) e) = r / +  Vu, 

where I / is  a divergence-free vector field of  class Lr(f2,  ~n), that is, d i v e /=  0. 
The gradient of  u can be given an explicit integral representation in terms of  
o9. Employing the Calder6n-Zygmund theory of  singular integrals yields the 
following estimate 

(2.3) IIVu + I1'I c(n,  r)l l  e) 

Notice that, by the uniqueness of  the decomposition, u = 0 whenever 
dive) = O. Similarly, t / =  0 if co is the gradient of  a function from W~'r(f2). 
We would therefore expect the following stability property of  the Hodge 
decomposition under non-linear perturbations of  e). 
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Lemma 2.1. Let  co be a vector f ie ld  o f  class L r(1-e) (g-2, R n) with r > 1 and 

- o o  < e < 1 - 1 Consider the Hodge decomposition 
r 

(2.4) [o)]-E~o = t / +  Vu 

with u ~ W01'r(f2) and d i v r / =  0. The following estimates hold: 
(i) I f  o3 = V v  is a gradient f ie ld with v ~ W~ 'r(1-e) ( f2) ,  then 

l[ ,T IIr,~ __< C(n,r)lel [1~ 1 - e  II r(l-e~ 

(ii) I f  ~o is divergence-free, then 

11 v .  IIr,~ = C(n, r ) le l  I1~o I1~%~. 

7 In this We shall apply this result only for s = fR ~ and for some r __> ~. 
case Lemma 2.1 is just a rephrasing of  what was shown in [I1]; see 
Theorem 8.2. The stronger statement will be proved in the forthcoming paper  
[IS]. 

3. Proof  of  Theorem 1 

In this section we are dealing with mapping f =  1 2 ( f  , f  , . . . , f ~ )  of  
Sobolev class WI ' " - e (R  ", ~") ,  - o o  < e __< 1, without any assumption on the 
sign of  the Jacobian J ( x ,  f )  dx = d f  1 ^ . . .  ^ d f  ~. As a preliminary step we 
recall that 

Ildfll-~J(x,f)l ~ ]dfll'-~ldf2l "" ld f l .  

Thus (0.4) always holds with constant equal to I in place of  C ( n ) l e  [. It  
3 With this assumption we may apply may therefore be assumed t h a t [ e l  < 7 "  

n - e  7 
Lemma 2.1 with r -  __> --  and ~ = R n. Accordingly, we consider the 

1 - e  4 
Hodge decomposit ion 

(3.g I v f  ~ I-~Vf ~ = ~ + Vu 

with u ~ w l ' r ( ~  n) and d i v t / =  0. Therefore 

(3.2) I1~11 n-~ < C ( n ) l e l  IlVflll  1-~ 

For notational simplicity it is advantageous to use differential forms instead 
of  vector fields. Thus a vector field ~/ in R n will be identified with a differen- 
tial form of degree i and the gradient Vu with du. Clearly 

n - - C  

d f  2 ^ d f  3 ^ . . .  ^ d f n E L n - l ( R n ) .  
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n - - 8  n - - 8  
Since - -  and - -  are HOlder conjugate exponents, by Stokes' Theorem 

1 - e  n - 1  
via an approximation argument we find that 

(3.3) ~ du A df  2 A . . .  ^ d f  n= j d (ud f  2 A - - ' ^  df  n) = 0 .  
•n ~n 

Now, equation (3.1), HOlder's Inequality and Hadamard's  Inequality yield 

j Idf  1 I - r d I  1 ^ d f  2 ^ . . . ^  d i  n 
~n 

= j ~  A df2 A - . . ^  d f  ~ 
Rn 

_< I1,1 II ~-~ [I d f  2 A . . .  A d f  n [[n-e 
1 - e  n -1  

=< C(n)Ie[ I]dfl]] n-el-e [[df2]]n_e...l[dfnlln_e. 

In the last step we have used (3.2). This completes the proof of Theorem 1. 

A glance over this proof reveals that there exist more general inequalities 
for integrals involving minors of the differential Df(x )  of arbitrary order. For 
this, however, one has to appeal to the Hodge decomposition for differential 
forms of higher degree; see Theorem 8.2 in [I 1]. This generalization and fur- 
ther results will be presented in [IL]. 

4. Proofs of  Theorem 2 and Theorem 3 

From now on we shall consider only orientation-preserving mappings. Let 
B = B(a, r) C B(a, 2r) = 2B C B(a, 3r) = 3B be given concentric balls in [R n. 
Let 0 ~ C~ ~ (2B) and ~ ~ C~ (3B) be cut-off functions such that 

C(n) 
(i) 0_<0__<1, 0 = 1  on B, [ V 0 ] _ < - - ,  

F 

C(n) 
(ii) 0_<~u__< 1, ~ , = 1  on 2B, [ V ~ u [ _ _ < - -  

P 

We shall examine an auxilliary mapping FE Wl'n-e(E n, ~") with compact 
support, defined by 

(4.1) F = (Ip'f 1 . . . . .  ~fn-1,  ofn) .  

It is straightforward to see that 

(4.2) q~]df I [-~df 1 A . . .  A d f  n-1 A df  n 

= l d F l l - e d F  1 A ' ' "  A dF" - f " [ d f l l - ~ d f  1 A . . .  A d f  n-1 A do. 

Applying Theorem 1 to the mapping F we find that 

(4.3) ~ 0l V f  1 [-~J(x,f) dx 
B 

_< ~]VO[ ]f[ [ D f l n - l - e + C ( n ) ] e [  J[DF[ n-e 
3B 3B 
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In view of conditions (i) and (ii) we have an easy pointwise estimate 
IDFt <- C(n) r -~ Ifl  + C(n)lDfl .  Therefore, 

(4.4) ~. IDFt n-e <= C(n) .  r ~-n ~. l f]  n-e + C(n) ~. IDTI n-~. 
3B 3B 3B 

Notice that D f  is not affected when a constant vector is added to f ;  thus 
we may assume that the mean of f over the ball 3B is equal to zero. This 
justifies the application of the Poincar6 Inequality to the first integral in the 
right-hand side of (4.4). Hence 

(4.5) J [DF[ ~-~ <__ C(n) ~ [Df[ "-~. 
3B 3B 

By conditions (i) and HOlder's Inequality we find that 

I IV~l Ifl  IOfl "-1-~ 

3B [! ]+[! j C(n) If[  IDf[ n+l 
F 

Then, by the Poincar6-Sobolev Inequality with p - 
n ( n - a )  

n + l  

(n+l)  ( n - l - t )  
n(n-e) 

< n, we can write 

[ f l  = I f  5- Cp(n) IDNI p . 

Therefore, 

C(n) 
Ivy01 [fl  ID/I n-l-~ --- ID/I ~ . 

F 
3B 

This, together with (4.5) reduces inequality (4.3) to 
n + l  

(4.6) ] V f l l - ~ J ( x , f )  dx <__ f ( n )  iOf[ ~4r + C ( n ) l e l  IOfl =-~. 

B 3B 

All that remains is to examine the limit as a decreases to zero. Theorem 2 
follows routinely from Fatou's Lemma. 

Finally, inequality (0.6) together with (1.7), (1.8) and (1.13) implies (0.7), 
proving Theorem 3. 

5.  T h e  w e a k  J a c o b i a n  

In this section we shall prove formula (0.8) in Theorem 4. We may assume 
that the test function ~oEC~~ is non-negative. As in the proof of 
Theorem 2, we shall consider an auxilliary test function g/E Co ~ (I2), equal to 
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unity on the support of  ~o. Thus, the mapping F = (~/fl  . . . . .  ~/fn-1, q~fn) has 
compact support and belongs to the Orlicz-Sobolev space D n log-ID(s ~n). 
Clearly, for 0 < e < 1 and for an arbitrary H~ C~(f2)  we can write 

(5.1) ~ Id f  1 [ - ~ d f  1 A . . .  A d f  n-1 A d(~of n) 
~2 

= ~ I d F 1 ] - ~ d r  1 A . . .  A dF ~-~ A d ( F  n - H )  
s 

+ ~ ]dF1] -edF  1 A ' ' '  A dF n-1 A dH. 
s 

In order to estimate the first integral in the right-hand side of  (5.1) we apply 
Theorem i to the mapping (F  1, F 2 . . . . .  F ~-1, F ~ -  H). After this, we appeal 
to (1.8) and (1.14) in I_emma 1.2, to obtain 

S [dF ~ [ - e d F  1 A . . .  A dF "-1 a d ( F  '~ - H )  

C<n) I~ [ [ldF 1 Ii 1-z~ II dF2 IIn-~""" II d F " - I  II.-~ lid( F~ - H)IIn-~ 

[5 l ix ] <= C ( n )  e IDFI n- '  e [ V F " -  VlII ~ " 

s 

=< C(n)l~l  IllOgl .),~"-1-~ ii[ VV. _ V H]  II.),~ 

-< c ( n )  l ~ l  II IDFI I1~ -1-~ II I DEn - VHI I1~. 

Recall that the symbol ]l lie stands for the Luxemburg norm in the Orlicz 
space L n log- lL( /2) .  

We now return to identity (5.1) where we let e go to zero. Since Hfi 
Cg  (s there is no difficulty with the convergence of  the second term in the 
right-hand side of  (5.1). Its limit is equal to zero, because ~e dF 1 ^ . . .  ^ 
dF n-1 A dH = (--1) n-1 ~a d(  HalF1 A . . .  A dF n - l )  = 0. Therefore 

lim~__,0 ga~ l d f l l - ~  d f l  A ' ' '  A d f n - l  A d(~ofn) 

=< C(n)I~al [llOrl [/~ -1 IIIVF ~ - VHI I1~, 

for every Hfi C0~(D). According to Lemma 1.3, with an appropriate choice 
of  H, the norm 11[ VF" - VH] lie can be made as small as one likes. Thus the 
above limit equals zero as well. This, after splitting the integral, is equivalent 
to 

lim / I  q~]dfl] -~ d f  ~ A . ' ' A  d f n +  ~ f n ] d f l ] - ~  d f  I A ' - ' A  d f  n-~ A d(ol = O. 
~ o  L~ _1 

Clearly, the second term converges to ~ f ' ~  d f  I A . ' .  A d f  n-1 ^ d(o. It remains 
to show that the first term above converges to ~ q ~ ( x ) J ( x , f )  dx. Recall that 
we have already established the local integrability of  the Jacobian. Therefore, 
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the following pointwise estimate 

[ d f l l - * J ( x , f )  <= (1 + l d f l [ - 1 ) j ( x , f )  

<= IDfl "-1 + J ( x , f )  ~ L~oc(f2) 

justifies the use of  Lebesgue's Domina ted  Convergence Theorem.  In conclu- 
sion, 

~ (o (x )J (x , f )  d x = -  l f n  d f  1 ^ ' "  ^ d f  n-1 ^ d(o 
Q Q 

for  every (O ~ Co ~ (f2),  as desired. 
Corol lary 1 is now immediate;  compare  with [D]. 

6. An  example 

We consider the radial mapping  

x ! 1 
(6.1) f ( x )  = ~ log n [x~ 

1 / x 

in the ball B = B ( O, e -~  ).  
1 ! 1 

For notat ional  simplicity we introduce the funct ion (o(r) = - -  log ~ - - ,  with 
1 r r 

0 < r < e n Then  a rather  e lementary computa t ion  shows that  

(6.2) Df(x)  = (o(]xl) Id + x @ x  (o' (Lx l) , 

where the tensor  product  x @x  is an n •  whose / j-entry equals xixj, 
i , j =  1 , 2  . . . .  ,n .  

(O __1 
We find that  ( O + r ( O ' -  and [(O+r(O'[_<(O for r < e  " 

1 
n log --  

r 

Moreover,  it follows f rom (6.2) that  

- 1  
d e t D f ( x )  = ( O n - I ( ( O  ..[_ IX] (Or) - -  

nlxl n" 

Thus the integral ~]xl<e-1/nJ(x,f)dx is obviously divergent. 

On the other  hand  IOf(x) ] 2 = Trace (Df)  t (Df)  =n(o2 +2 Ix ] (O(O' + Ix ]2 ((O,)2 = 
(n - 1) (o 2 + ((O + Ix[ (O,)2. Hence 

n n 

(n -- 1)2 (on([xt) < [Of(x)] n <=n2 (on(lx[) 

or, equivalently, 

~- 1 ~- 1 
(n -- 1) 2 i x [ - n  log ~ _ [Df(x)[n < n 2 Ixl-n log i x[ 
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From this we readily deduce that 

c(n) [Of(x) l" C(n) 
Ix[" log(e+ IDf(x)l l_ 8/ = IxI" 

which shows that f E w e a k -  D" log-iD(B, R"). Notice that the Jacobian of 
f is negative. However, with the aid of a reflection about an ( n -  1)-dimen- 
sional hyperplane we easily modify this example to obtain an orientation- 
preserving mapping. Then we may conclude with the following statement. 

Proposition 6.1. There exists a mapping f : B - ~ R  n of a ball B C R" such that 

(i) [Dfln log -1 (e + [Df] , ]  [Dfl ~ ~ weak - L I ( B ) ,  

(ii) J(x,  f )  is positive everywhere, but fails to be locally integrable. 
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