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ABSTRACT
We deal with maps u : � ⊂ R

n → R
n minimizing variational integrals∫

�
[|Du(x)|p + h(detDu(x))] dx, where 2 ≤ p < n, h : (0,+∞) → [0,+∞)

is convex andblowswhendetDu → 0+: limt→0+ h(t) = +∞. If such ablow
up is a power of | ln(t)|, then we derive regularity for the minimizer u =
(u1, . . . , un).Weare able also todealwith integrals containingall theminors:∫
�
[|Du(x)|p + ∑n−1

s=2 |adjs(Du(x))|qs + h(detDu(x))] dx with qs ≥ 1.
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1. Introduction andmain result

We consider variational integrals

E(u) =
∫
�

W(x,Du(x)) dx (1)

where u : � ⊂ R
n → R

n, n ≥ 3 and � is a bounded open set. In the framework of nonlinear elas-
ticity, a reasonable assumption is polyconvexity [1,2], that is, for each x, W(x, F) can be written as
a convex function of minors taken from the n × n matrix F. In this paper we are concerned with
regularity properties for minimizers of (1) under polyconvexity: contributions to partial regularity
can be found in [3–10]; on the other hand, maximum principle, pointwise bounds and L∞ regular-
ity appear in [11–17]; injectivity can be found in [18]. Let us mention that, in nonlinear elasticity, a
natural assumption on the stored energy functionW(x, F) is given by

W(x, F) → +∞ as det F → 0+ (2)

see [1]. Such a condition says that an infinite amount of energy is needed to shrink a finite volume
to zero. Assumption (2) leads us to the unilateral constraint detDu > 0. Let us mention that singular
behaviour (2) brings us mathematical difficulties and the above-mentioned regularity results cannot
be applied under (2).

CONTACT Francesco Leonetti leonetti@univaq.it

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00036811.2018.1504027&domain=pdf
mailto:leonetti@univaq.it


2 H. GAO ET AL.

In [19], these difficulties are overcome and the author proved pointwise bounds for minimizers of
some polyconvex integrals (1) under singularity (2). More precisely in [19] it is considered the simple
model

W(x, F) = |F|p + h(det F) (3)

where 2 ≤ p and h : (0,+∞) → [0,+∞) is a convex function which blows up as t → 0+ sufficiently
slow, that is

lim
t→0+

h(t) = +∞ (4)

and for some λ ∈ (0, 1) andM ∈ [0,+∞)

h(λt) ≤ h(t)+ M ∀t ∈ (0,+∞). (5)

Note that h(t) = − ln(t) verifies (5) with M = − ln(λ) and any λ ∈ (0, 1). On the contrary, h(t) =
[ln(t)]2 does not satisfy (5). In this paper we show how to deal with [ln(t)]2 and with any power
of ln(t) by making the following weaker assumption: for some λ, γ ∈ (0, 1) and c1,M ∈ [0,+∞) it
results

h(λt) ≤ h(t)+ c1(h(t))γ + M ∀t ∈ (0,+∞). (6)

Let us note that the simple model (3) is useful when trying to understand the competition between
|F|p and h(det F)when |F| is small; on the other hand such a simplemodel (3) does notmake E weakly
lower semicontinuous, see Theorem 4.5, part (ii) in [20]. Weak lower semicontinuity is an important
tool when proving existence of minimizers by direct methods. Following Remark 8.32 (iii) at page
405 in [2], we overcome such a trouble by taking all the minors in the density:

W(x, F) = |F|p +
n−1∑
s=2

bs|adjs(F)|qs + h(det F). (7)

WhenusingRemark 8.32weneed bs > 0, qs ≥ p/(p − 1) and h(t) ≥ bn|t|r − cwith r> 1 and bn > 0;
in the present paper, devoted to regularity properties, we make the weaker assumptions

bs ≥ 0 and qs ≥ 1 (8)

for all s = 2, . . . , n − 1; moreover, we need no assumption about the behaviour of h(t) for large t.
Note that

|adjs(F)|2 =
∑ ∣∣∣∣∣∣det

⎛
⎝ Fi1α1 · · · · · · Fi1αs

· · · · · · · · · · · · · · ·
Fisα1 · · · · · · Fisαs

⎞
⎠

∣∣∣∣∣∣
2

(9)

where the sum is taken over all increasing s-tuples 1 ≤ i1 < i2 < · · · < is ≤ n and 1 ≤ α1 < α2 <
· · · < αs ≤ n, see page 249 in [2]. In the sequel we will shortly write W(Dv) ∈ L1 instead of x →
W(x,Dv(x)) ∈ L1. We will prove the following

Theorem 1.1: Let � be a bounded open subset of R
n, n ≥ 3. Let h : (0,+∞) → [0,+∞) be a con-

vex function verifying (6). Let us consider the variational integral (1) with the stored energy function
(7) where 2 ≤ p < n and (8). Let us assume that u = (u1, . . . , un) ∈ W1,p(�;Rn) satisfies detDu > 0
almost everywhere in� with W(Du) ∈ L1(�) and

E(u) ≤ E(w) (10)

for every w ∈ u + W1,p
0 (�;Rn) with detDw > 0 almost everywhere in � and W(Dw) ∈ L1(�). We

let |�| be the Lebesgue measure of�.
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(i) If γ < p/n, then there exists a constant c2 such that, for every component uj, we have

inf
∂�

uj − c2|�|1/n−γ /p ≤ uj(x) ≤ sup
∂�

uj + c2|�|1/n−γ /p (11)

for almost every x ∈ �. The constant c2 is given by

c2 = CSc
1/p
3 2(n−γ n)/(p−γn)

where CS = (n − 1)p/(n − p) is the Sobolev constant,

c3 =
M|�|γ + c1‖h(detDu)‖γL1(�)

(1 − λ2)p/2
.

(ii) If γ = p/n, then for any L ≥ sup∂� uj

|{uj > L}| ≤ |�|e1−(e1/p
∗
CSc

1/p
3 )−1(L−sup∂� uj) (12)

and for any L ≥ − inf∂� uj

|{uj < −L}| ≤ |�|e1−(e
1/p∗CSc

1/p
3 )−1(L+inf

∂�
uj)
. (13)

(iii) If γ > p/n, then for any L > 0 ∨ sup∂� uj

|{uj > L}| ≤ 2np(n−p)/(nγ−p)2 [(Cp
Sc3)

n/(nγ−p) + (2[0 ∨ sup
∂�

uj])np/(nγ−p)|�|]
(
1
L

)np/(nγ−p)

(14)
and for any L > 0 ∨ − inf∂� uj

|{uj < −L}|≤2np(n−p)/(nγ−p)2 [(Cp
Sc3)

n/(nγ−p)+ (2[0 ∨ − inf
∂�

uj])np/(nγ−p)|�|]
(
1
L

)np/(nγ−p)
.

(15)

In the previous Theorem 1.1 we assumed p<n: when p ≥ n, Iwaniec et al. [21] show that every
component of mappings with finite distorsion is weakly monotone: this means that every component
enjoysmaximum andminimumprinciple on every ball B ⊂ � [22]; note that mappings with positive
Jacobian have finite distortion.

In order to give a corollary of Theorem 1.1, we need two function spaces. The first one is the
exponential class Exp(�,Rn), which consists of all measurable vectors f = (f 1, . . . , f n) such that∫

�

eν|f | < ∞

for some ν > 0. It is a Banach space under the norm

‖f ‖Exp(�,Rn) = inf
{
ν > 0 :

∫
�

e|f |/ν ≤ 2
}

The second one is the weak Lm space, known also asMarcinkiewicz space, which is defined as follows:
ifm> 1, then the Marcinkiewicz space Lmweak(�) consists of measurable functions f on� such that

Am(f ) = sup
t>0

t|{x ∈ � : |f (x)| > t}|1/m = sup
t>0

tf∗(t)1/m < ∞,

where f∗(t) = |{x ∈ � : |f (x)| > t}| denotes the distribution function of f. We recall that Lm(�) is
a proper subspace of Lmweak(�), and if f ∈ Lmweak(�) for some m> 1, then f ∈ Lm−ε(�) for every
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0 < ε ≤ m − 1.We denote Lmweak(�,R
n) for vectors f = (f 1, . . . , f n) such that f i ∈ Lmweak(�) for each

i. For a detailed analysis of Lmweak spaces we refer to [23].

Corollary 1.1: Let� be a bounded open subset ofRn, n ≥ 3. Let h : (0,+∞) → [0,+∞) be a convex
function verifying (6). Let us consider the variational integral (1) with the stored energy function (7)
where 2 ≤ p < n and (8). Fix u∗ = (u1∗, . . . , un∗) ∈ Lip(�̄,Rn). Let us assume that u = (u1, . . . , un) ∈
u∗ + W1,p

0 (�;Rn) satisfies detDu > 0 almost everywhere in� with W(Du) ∈ L1(�) and

E(u) ≤ E(w)
for every w ∈ u∗ + W1,p

0 (�;Rn) with detDw > 0 almost everywhere in� and W(Dw) ∈ L1(�).

(1) If γ < p/n, then u ∈ L∞(�,Rn);
(2) If γ = p/n, then u ∈ Exp(�,Rn);
(3) If γ > p/n, then u ∈ Lnp/(nγ−p)

weak (�,Rn).

Remark 1.1: For γ = 0 or c1 = 0 in (6) we obtain (5), already treated in [19] and satisfied by any
convex function h with h(t) = − ln(t) for every t ∈ (0, t0), where 0 < t0 ≤ 1.

In Section 3 we give examples of functions satisfying the condition (6).
Let us mention [24–27] concerning some two-dimensional problems. It would be interesting to

understand whether an exponent γ ∈ [p/n, 1) could produce an unbounded minimizer or not. We
note that [28–30] deals with a ‘singular’ example in dimension n= 2 but such an example shows a C1

map that is neither C1,β norW2,2. In the present paper we are concerned with dimension n ≥ 3 and
we would need an unbounded map.

2. Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1: For sup∂� uj < L0 ≤ L < +∞ and λ as in (6), we define w = (w1, . . . ,wn)
as follows: wj = uj − (1 − λ)[(uj − L) ∨ 0] and wi = ui if i �= j. Since sup∂� uj < L, we have (uj −
L) ∨ 0 ∈ W1,p

0 (�) and w ∈ u + W1,p
0 (�;Rn). Note that Dw=Du on {uj ≤ L}. Moreover

Dwi =
{
Dui if i �= j
λDui if i = j,

}
on{uj > L} (16)

thus

detDw = λ detDu > 0 on{uj > L} (17)

and, using (6),

0 ≤ h(detDw) ≤ h(detDu)+ c1(h(detDu))γ + M on{uj > L} (18)

Note that

|adjs(Dw)|2 =
∑

∣∣∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎜⎜⎝
∂wi1

∂xα1
· · · ∂w

i1

∂xαs· · · · · · · · · · · ·
∂wis

∂xα1
· · · ∂w

is

∂xαs

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

2

=
∑∣∣∣∣det ∂(wi1 , . . . ,wis)

∂(xα1 , . . . , xαs)

∣∣∣∣
2

so that, if j /∈ {i1, . . . , is}, then

det
∂(wi1 , . . . ,wis)

∂(xα1 , . . . , xαs)
= det

∂(ui1 , . . . , uis)
∂(xα1 , . . . , xαs)
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otherwise, if j ∈ {i1, . . . , is}, then

det
∂(wi1 , . . . ,wis)

∂(xα1 , . . . , xαs)
= λ det

∂(ui1 , . . . , uis)
∂(xα1 , . . . , xαs)

These properties guarantee that

|adjs(Dw)| ≤ |adjs(Du)| on{uj > L}. (19)

ThenW(Dw) ∈ L1(�) so we can use such a w in (10) and we get

∫
{uj>L}

[
|Du|p +

n−1∑
s=2

bs|adjs(Du)|qs + h(detDu)

]
dx

≤
∫

{uj>L}

[
|Dw|p +

n−1∑
s=2

bs|adjs(Dw)|qs + h(detDw)

]
dx

≤
∫

{uj>L}

[
|Dw|p +

n−1∑
s=2

bs|adjs(Du)|qs + h(detDu)+ c1(h(detDu))γ + M

]
dx

so that ∫
{uj>L}

|Du|p dx ≤
∫

{uj>L}
[|Dw|p + c1(h(detDu))γ + M] dx (20)

Note that, on {uj > L},
|Du|2 = |Dw|2 + (1 − λ2)|Duj|2 (21)

thus,

|Du|p ≥ |Dw|p + (1 − λ2)p/2|Duj|p (22)

since p ≥ 2. Equations (20) and (22) merge into

(1 − λ2)p/2
∫

{uj>L}
|Duj|p dx ≤ M|{uj > L}| + c1

∫
{uj>L}

(h(detDu))γ dx. (23)

From Hölder inequality with exponents 1/γ and 1/(1 − γ ) it follows that∫
{uj>L}

(h(detDu))γ dx ≤ ‖h(detDu)‖γL1({uj>L})|{uj > L}|1−γ ;

using last inequality in (23), we have

(1 − λ2)p/2
∫

{uj>L}
|Duj|p dx ≤ M|{uj > L}|1−γ |{uj > L}|γ

+ c1‖h(detDu)‖γL1({uj>L})|{uj > L}|1−γ

≤ (M|�|γ + c1‖h(detDu)‖γL1(�))|{uj > L}|1−γ ,

that is ∫
{uj>L}

|Duj|p dx ≤ c3|{uj > L}|1−γ (24)
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where c3 denotes the constant

c3 =
M|�|γ + c1‖h(detDu)‖γL1(�)

(1 − λ2)p/2
.

Note that 1{uj>L}Duj = D[(uj − L) ∨ 0] and (uj − L) ∨ 0 ∈ W1,p
0 (�); therefore, since p<n, the

following Sobolev inequality holds

(∫
{uj>L}

|uj − L|p∗
dx

)1/p∗

≤ CS

(∫
{uj>L}

|Duj|p dx
)1/p

where 1/p∗ = 1/p − 1/n and CS = (n − 1)p/(n − p) is the Sobolev constant; using this inequality
in (24) we get ∫

{uj>L}
|uj − L|p∗

dx ≤ Cp∗
S cp

∗/p
3 |{uj > L}|p∗(1/p−γ /p). (25)

For any V >L we have

(V − L)p
∗ |{uj > V}| =

∫
{uj>V}

|V − L|p∗
dx ≤

∫
{uj>V}

|uj − L|p∗
dx

≤
∫

{uj>L}
|uj − L|p∗

dx; (26)

then, putting together (25) and (26), we have

|{uj > V}| ≤ Cp∗
S cp

∗/p
3

(V − L)p∗ |{uj > L}|p∗(1/p−γ /p) (27)

for every V,L with V > L ≥ L0. Then we can use Lemma 4.1 at page 93 of [31] that we write for the
convenience of the reader. See also [32,33]. �

Lemma 2.1: Let c∗,α,β be positive constants. Let ϕ : [L0,+∞) → [0,+∞) be decreasing and such
that

ϕ(V) ≤ c∗
(V − L)α

[ϕ(L)]β (28)

for every V,L with V > L ≥ L0. It results that:

(i) if β > 1 then we have

ϕ(L0 + d) = 0,

where

d = {c∗[ϕ(L0)]β−12αβ/(β−1)}1/α ; (29)

(ii) if β = 1 then for any L ≥ L0 we have

ϕ(L) ≤ ϕ(L0)e1−(ec∗)
−1/α(L−L0);

(iii) if β < 1 and L0 > 0 then for any L ≥ L0 we have

ϕ(L) ≤ 2α/(1−β)
2
[c1/(1−β)∗ + (2L0)α/(1−β)ϕ(L0)]

(
1
L

)α/(1−β)
.
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We use the previous lemma with ϕ(L) = |{uj > L}|, c∗ = Cp∗
S cp

∗/p
3 , α = p∗ and β = p∗(1/p − γ /p);

from (27) we get:
(i) If γ < p/n then β > 1, thus

|{uj > L0 + d}| = 0

this implies

uj ≤ L0 + d = L0 + CSc
1/p
3 |{uj > L0}|1/n−γ /p 2(n−γ n)/(p−γn)

almost everywhere in�. In order to get the right-hand side of (11), we control |{uj > L0}| bymeans of
|�| and we take a sequence {(L0)k}k with (L0)k → sup∂� uj. Let us show howwe obtain the left-hand
side of (11). We change sign to uj; since n ≥ 3, it turns out that {1, . . . , n} \ {j} �= ∅ thus we take s =
min{1, . . . , n} \ {j} and we change sign to us too; we get v = (v1, . . . , vn) with vi = −ui if i ∈ {j, s},
vi = ui if i ∈ {1, . . . , n} \ {j, s}. Since we have only two changes of sign, detDv = detDu > 0; thus
we can apply the right-hand side of (11) to v and we are done.

(ii) If γ = p/n then β = 1, and for any L ≥ L0 we have

|{uj > L}| ≤ |{uj > L0}|e1−(e1/p
∗
CSc

1/p
3 )−1(L−L0)

In order to get (12) we control |{uj > L0}| by means of |�| and we take a sequence {(L0)k}k with
(L0)k → sup∂� uj. Let us show howwe obtain (13). As in the proof of part (i), we need only to change
signs to uj and us where s = min{1, . . . , n} \ {j}.

(iii) If γ > p/n then β < 1. For any L ≥ L0 > 0 ∨ sup∂� uj we have

|{uj > L}| ≤ 2np(n−p)/(nγ−p)2 [(Cp
Sc3)

n/(nγ−p) + (2L0)np/(nγ−p)|{uj > L0}|]
(
1
L

)np/(nγ−p)

In order to get (14) we control |{uj > L0}| by means of |�| and we take a sequence {(L0)k}k with
(L0)k → 0 ∨ sup∂� uj. Let us show how we obtain (15). As in the proof of part (i), we need only to
change signs to uj and us where s = min{1, . . . , n} \ {j}. This ends the proof of Theorem 1.1.

Proof of Corollary 1.1: By Theorem 1.1 and the assumption u∗ ∈ Lip(�̄,Rn), we have
(1) If γ < p/n, then (11) implies for any j ∈ {1, . . . , n},

|uj(x)| ≤ ‖u∗‖L∞(�,Rn) + c2|�|1/n−γ /p

thus

‖u‖L∞(�,Rn) ≤
n∑
j=1

‖uj‖L∞(�) ≤ n(‖u∗‖L∞(�,Rn) + c2|�|1/n−γ /p) < ∞

(2) If γ = p/n, then (12) and (13) imply for any j ∈ {1, . . . , n}, for any L ≥ ‖u∗‖L∞(�)

|{uj > L}|
|{uj < −L}|

}
≤ |�|e1−(e1/p

∗
CSc

1/p
3 )−1(L−‖uj∗‖L∞(�)) ≤ c4e−μL (30)

where

c4 = |�|e1+μ‖uj∗‖L∞(�) and μ = (e1/p
∗
CSc

1/p
3 )−1

Equation (30) yields

|{|uj| > L}| = |{uj > L}| + |{uj < −L}| ≤ 2c4e−μL for L ≥ ‖u∗‖L∞(�)
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Since

{|u| > nL} ⊂
n⋃
j=1

{|uj| > L}

then

|{|u| > nL}| ≤
n∑
j=1

|{|uj| > L}| ≤ 2nc4e−μL for L ≥ ‖u∗‖L∞(�) (31)

Since |{|u| > nL}| ≤ |�|, then for 0 ≤ L < ‖u∗‖L∞(�) one has

|{|u| > nL}| ≤ |�| ≤ |�|eμ‖u∗‖L∞(�)e−μL (32)

Puting together (31) and (32) we get

|{|u| > nL}| ≤ c5e−μL, for all L ≥ 0 (33)

where

c5 = max{2nc4, |�|eμ‖u∗‖L∞(�)}
We now prove �

Lemma 2.2: Let u = (u1, . . . , un) be a measurable vector; let C> 0, μ > 0 be constants such that

|{|u| > t}| ≤ Ce−μt , ∀t > 0,

then ∫
�

eν|u| < ∞ ∀ν : 0 < ν < μ.

Proof: Let k ∈ N, then∫
�

|u|k = k
∫ ∞

0
tk−1|{|u| > t}| ≤ Ck

∫ ∞

0
tk−1e−μt dt

= −Ck
μ

∫ ∞

0
tk−1 de−μt = −Ck

μ

[
tk−1e−μt|∞0 −

∫ ∞

0
e−μt dtk−1

]

= Ck(k − 1)
μ

∫ ∞

0
e−μttk−2 dt = Ck(k − 1)(k − 2)

μ2

∫ ∞

0
e−μttk−3 dt

= · · · = Ck(k − 1) · · · 2 · 1
μk−1

∫ ∞

0
e−μt dt = Ck!

μk

This implies ∫
�

(ν|u|)k
k!

≤ C
(
ν

μ

)k

thus for 0 < ν < μ we use Taylor’s expansion to derive that∫
�

eν|u| =
∫
�

[
1 + ν|u| + (ν|u|)2

2!
+ (ν|u|)3

3!
+ · · ·

]

≤ C

[
|�| + ν

μ
+

(
ν

μ

)2
+

(
ν

μ

)3
+ · · ·

]
= C

⎡
⎣|�| +

∞∑
j=1

(
ν

μ

)j
⎤
⎦ < ∞

This ends the proof of Lemma 2.2.
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We use the previous lemma and we have for any 0 < ν < μ/n∫
�

eν|u| < ∞

this shows that u ∈ Exp(�,Rn).
(3) If γ > p/n, then (14) and (15) imply that, for any j ∈ {1, . . . , n}, for any L > ‖u∗‖L∞(�),

|{uj > L}| ≤ c6
(
1
L

)np/(nγ−p)
and |{uj < −L}| ≤ c6

(
1
L

)np/nγ−p

where

c6 = 2np(n−p)/(nγ−p)2 [(Cp
Sc3)

n/(nγ−p) + (2‖u∗‖L∞(�))
np/(nγ−p)|�|]

thus

|{|uj| > L}| = |{uj > L}| + |{uj < −L}| ≤ 2c6
(
1
L

)np/(nγ−p)

this implies

Anp/(nγ−p)
np/(nγ−p)(u

j) = sup
L>0

Lnp/(nγ−p)|{|uj| > L}|

≤ sup
0<L≤‖u∗‖L∞(�)

Lnp/(nγ−p)|{|uj| > L}| + sup
L>‖u∗‖L∞(�)

Lnp/(nγ−p)|{|uj| > L}|

≤ ‖u∗‖np/(nγ−p)
L∞(�) |�| + 2c6 < ∞.

This ends the proof of Corollary 1.1. �

3. Final remarks

Remark 3.1: Let us note that the proof of theorem 1.1 does not use convexity of h: we only need
measurability of x → h(detDw(x)); this is guaranteed, for example, if h is continuous.

Remark 3.2: Let us mention that a basic step in the proof of theorem 1.1 is the choice of the test
function w; such a test function is taken from [19] and here we emphasize the feature of w. Because
of the constraint detDw > 0, test functions with a flat part, such as those arising from a truncation
argument, are not allowed. Our function wj can also be written as wj = ψ(uj) where

ψ(s) =
{
s if s ≤ L
L + λ(s − L) if s > L.

(34)

This means that, on {s > L}, we keep increasing, since λ > 0, but with less ‘speed’, since λ < 1. Pos-
itivity of λ keeps under control the constraint detDw > 0; smallness of λ allows us to lower |Dw|p
with respect to |Du|p.

Remark 3.3: As we have seen in the proof, the additional piece (h(t))γ in (6) shows up as
(h(detDu))γ ; since h(detDu) ∈ L1, then Hölder inequality allows us to estimate the integral of
(h(detDu))γ over {uj > L} by means of |{uj > L}|1−γ : this is enough to make the proof going to
the end. A posteriori, the role of (h(t))γ is similar to the one that a functionM(x) ∈ Lr would have if
it would be put in place of the constant M in (5), see also [34].
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Lemma 3.1: Assume that h : (0,+∞) → [0,+∞) is convex and verifies (4); assume that for some
λ ∈ (0, 1), γ ∈ [0, 1),M, c ∈ [0,+∞) and for some 0 < t0 ≤ 1, we have

h(λt) ≤ h(t)+ ch(t)γ + M ∀t ∈ (0, t0]. (35)

Then (6) holds for every t ∈ (0,+∞) with a new constant M∗ = M + h(t0)+ ch(t0)γ , that is

h(λt) ≤ h(t)+ ch(t)γ + M + h(t0)+ ch(t0)γ ∀t ∈ (0,+∞).

Proof of Lemma 3.1: Being h convex, either h decreases in (0,+∞) or h blows up as t → +∞.
If h decreases in (0,+∞), then for all t > t0 we have

h(λt) ≤ h(λt0) ≤ h(t0)+ ch(t0)γ + M

≤ h(t)+ ch(t)γ + M + h(t0)+ ch(t0)γ

and the lemma is proved.
Let us assume now that h blows up as t → +∞ and let us denote with t∗ the point where h assumes

its minimum value. Let t ∈ (t0,+∞). If t ≥ t∗/λ, then t∗ ≤ λt ≤ t; being h increasing for s > t∗, we
have

h(λt) ≤ h(t) ≤ h(t)+ ch(t)γ + M∗.

If t0 < t < t∗/λ, then λt0 < λt < t∗. Since h decreases for s < t∗ and in view of the assumption, we
have

h(λt) ≤ h(λt0) ≤ h(t0)+ ch(t0)γ + M

≤ h(t)+ ch(t)γ + M + h(t0)+ ch(t0)γ

and the lemma is proved. �

Remark 3.4: The following class of functions

h(t) =
{

| ln t|k ∀t ∈ (0, 1]
0 ∀t ∈ [1,+∞).

k ∈ {2, 3, 4, . . .} (36)

satisfies the assumptions of Lemma 3.1 and therefore Theorem 1.1 can be applied to it, but these
functions do not satisfy the assumption (5).

Indeed it is easy to verify that h ∈ C1(0,+∞) and h is convex. Moreover, in order to prove (35),
let us consider t0 = e−1. Then for any λ ∈ (0, 1) and for any t ∈ (0, e−1] we have

| ln(λt)|k = | ln λ+ ln t|k = (| ln λ| + | ln t|)k

=
k∑

j=0

(
k
j

)
| ln λ|j| ln t|k−j

≤ | ln t|k + | ln λ|k +
k−1∑
j=1

(
k
j

)
max{1, | ln λ|k−1}| ln t|k−1

= | ln t|k + | ln λ|k + (2k − 2)max{1, | ln λ|k−1}| ln t|k−1.

Then, settingM = | ln λ|k, c = (2k − 2)max{1, | ln λ|k−1} and γ = k−1
k , we have

h(λt) ≤ h(t)+ M + c[h(t)]γ .
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We now prove that (36) does not satisfy (5). That is, we need to prove that, ∀λ ∈ (0, 1), ∀M ∈
[0,+∞), there exists t = t(M, λ) ∈ (0,+∞) such that

h(λt) > h(t)+ M.

We will take t ∈ (0, 1) so that we need to prove

| ln(λt)|k > | ln t|k + M. (37)

We take 0 < t < e−(M/k| ln λ|)1/(k−1) ≤ 1, so that

| ln t| >
(

M
k| ln λ|

)1/(k−1)
≥ 0

Then, for such a t one has

| ln(λt)|k = | ln λ+ ln t|k = (| ln λ| + | ln t|)k

=
k∑

j=0

(
k
j

)
| ln λ|j| ln t|k−j

≥
(
k
0

)
| ln λ|0| ln t|k +

(
k
1

)
| ln λ|| ln t|k−1

= | ln t|k + k| ln λ|| ln t|k−1

> | ln t|k + k| ln λ| M
k| ln λ| = | ln t|k + M

and (37) is proved.
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